
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics 

2018 

Cognitive Load Reduces the Effects of Optic Flow on Gait and 2 Cognitive Load Reduces the Effects of Optic Flow on Gait and 2 

Electrocortical Dynamics During Treadmill Walking 3 Electrocortical Dynamics During Treadmill Walking 3 

Brenda Malcolm 
The Sheryl & Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert 
Einstein College of Medicine, New York, USA 

John J. Foxe 
Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, New York, 
USA 

John S. Butler 
Dublin Institute of Technology 

Sophie Molholm 
The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental 
Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York 

Pierfilippo De Sanctis 
Trinity College Dublin, Centre for Bioengineering, Trinity Biomedical Sciences Institute, Dublin, Ireland Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Mathematics Commons, and the Medicine and Health Sciences Commons 

Recommended Citation Recommended Citation 
Malcolm, B., Foxe, J. & Butler, J. (2018). 

This Article is brought to you for free and open access by 
the School of Mathematics at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301304231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=arrow.tudublin.ie%2Fscschmatart%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Cognitive load reduces the effects of optic flow on gait and 1 

electrocortical dynamics during treadmill walking 2 

 3 

Brenda R. Malcolm 1, 2 , John J. Foxe 1, 2, 3, 4, 5, # , John S. Butler 1, 5, 6, 7 , Sophie 4 

Molholm 1, 2, 3, 4 & Pierfilippo De Sanctis 1, 2, 8, # 
5 

 
6 

1
The Sheryl & Daniel R. Tishman Cognitive Neurophysiology Laboratory 7 

Children's Evaluation and Rehabilitation Center (CERC) 8 
Department of Pediatrics 9 

Albert Einstein College of Medicine 10 
Bronx, New York 10461, USA 11 

 12 
2 
Program in Cognitive Neuroscience 13 

The Graduate Center of the City University of New York 14 
New York, New York 10016, USA 15 

 16 
3
 The Del Monte Institute for Neuroscience 17 

Department of Neuroscience 18 
University of Rochester School of Medicine and Dentistry

 19 
Rochester, New York 14642, USA 20 

 21 
4 
The Dominick P. Purpura Department of Neuroscience 22 

Rose F. Kennedy Intellectual and Developmental Disabilities Research Center 23 
Albert Einstein College of Medicine 24 

Bronx, New York 10461, USA 25 
 26 

5 
Trinity College Institute of Neuroscience 27 

Dublin, Ireland 28 
 29 

6 
Trinity College Dublin 30 

Centre for Bioengineering 31 
Trinity Biomedical Sciences Institute 32 

Dublin, Ireland 33 
 34 

7 
School of Mathematical Sciences 35 
Dublin Institute of Technology 36 

Dublin, Ireland 37 
 38 

8 
The Saul R. Korey Department of Neurology 39 

Albert Einstein College of Medicine 40 
Bronx, New York 10461, USA 41 

 42 

 43 
Correspondence: john_foxe@urmc.rochester.edu and pierfilippo.sanctis@einstein.yu.edu 44 

 45 

 46 



ABSTRACT 47 

 While navigating complex environments the brain must continuously adapt to both 48 

external demands such as fluctuating sensory inputs, as well as internal demands, such as 49 

engagement in a cognitively demanding task. Previous studies have demonstrated changes in 50 

behavior and gait with increased sensory and cognitive load, but the underlying cortical 51 

mechanisms remain unknown. Here, in a Mobile Brain/Body Imaging (MoBI) approach sixteen 52 

young adults walked on a treadmill with high density EEG and 3D motion capture tracked 53 

kinematics of the head and feet. Visual load was manipulated with the presentation of optic flow 54 

with and without mediolateral perturbations, and the effects of cognitive load were assessed by 55 

the performance of a Go/No-Go task on half of the blocks. During increased sensory load, 56 

participants walked with shorter and wider strides, which may indicate a more cautious pattern 57 

of gait. Interestingly, cognitive task engagement attenuated these effects of sensory load on 58 

gait. Using an Independent Component Analysis (ICA) and dipole-fitting approach, neuro-59 

oscillatory activity was evaluated from source-localized cortical clusters. Significant modulations 60 

in spectral power in the theta (3-7Hz), alpha/mu (8-12Hz), beta (13-30Hz), and gamma (31-61 

45Hz) frequency bands were observed over occipital, parietal and frontal source clusters, as a 62 

function of optic flow and task load. These findings provide insight into the neural correlates of 63 

gait adaptation, and may be particularly relevant to older adults who are less able to adjust to 64 

ongoing cognitive and sensory demands while walking. 65 

 66 

 67 

Keywords: EEG, Mobile Brain/Body Imaging (MoBI), dual-task design, Independent 68 

Component Analysis (ICA), power spectral density 69 
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INTRODUCTION 71 

 Although we typically take walking for granted, the neural systems that regulate it 72 

perform many complex functions (Rossignol, Dubuc, & Gossard, 2006). Human locomotion 73 

involves the combination of descending pathways from the brainstem to the spinal cord 74 

(Duysens & Van de Crommert, 1998), the involvement of the cerebellum and basal ganglia to 75 

modulate posture and balance (Grillner, Wallen, Saitoh, Kozlov, & Robertson, 2008) and more 76 

recent evidence points to the direct involvement of cortical motor areas in the control of leg 77 

muscle activity (Artoni et al., 2017; T. H. Petersen, Willerslev-Olsen, Conway, & Nielsen, 2012). 78 

Moreover, when navigating new or unpredictable environments, cortical resources must be 79 

recruited to integrate numerous sources of sensory information including visual, vestibular, 80 

somatosensory and proprioceptive inputs (Jacobs & Horak, 2007; Varraine, Bonnard, & 81 

Pailhous, 2002), or to attend to cognitively demanding secondary tasks (De Sanctis, Butler, 82 

Malcolm, & Foxe, 2014). Behavioral studies have previously explored adaptations in gait in 83 

response to various manipulations in sensory and cognitive load, however much remains 84 

unknown about the cortical underpinnings of sensorimotor mechanisms during locomotion. 85 

Here, the aim was to assess the effects of both increased environmental (deployed with optic 86 

flow stimuli and visual perturbations) and cognitive load (either engaging in performing a 87 

cognitive task or not) on gait and neuro-oscillatory activity.  88 

 Vision provides a fundamental source of information for the control of goal-directed 89 

movements (Lappe, Bremmer, & van den Berg, 1999; W. H. Warren, Jr., Kay, Zosh, Duchon, & 90 

Sahuc, 2001). Optic flow, the visual motion we experience as a result of traveling through our 91 

environment (Lappe & Grigo, 1999) is a powerful signal that can be used to control the 92 

parameters of our movements. Prior studies have introduced perturbations and experimentally 93 

manipulated visual inputs to better understand how changes in the visual environment 94 

contribute to locomotion. For example, changing the speed of optic flow causes people to 95 

modulate their walking speed accordingly (Prokop, Schubert, & Berger, 1997) and the direction 96 



of optic flow influences heading direction (Butler, Smith, Campos, & Bulthoff, 2010; Lappe et al., 97 

1999; W. H. Warren & Hannon, 1988). Other studies have employed sinusoidally oscillating 98 

visual scenes and observed anisotropic changes in gait parameters, i.e. measures such as step 99 

width variability increased in magnitude in accordance with the degree and direction of visual 100 

perturbations (O'Connor & Kuo, 2009). Walking in a virtual reality (VR) environment matched to 101 

the speed of the treadmill, Hollman et al. (2006) found that young adults took shorter strides and 102 

wider steps, with increased variability in stride velocity and step width, compared to walking in a 103 

non-VR (visually static) environment, modulations they characterize as reflecting gait instability 104 

(Hollman, Brey, Robb, Bang, & Kaufman, 2006). Furthermore, likely due to the fact that humans 105 

are more unstable in the ML direction during locomotion (Bauby & Kuo 2000, Donelan 2004, 106 

Dean 2007, O’Connor & Kuo 2009) previous studies have noted an increased sensitivity to 107 

environmental perturbations in the mediolateral (ML) direction, opposed to those in the anterior-108 

posterior (AP) direction. For example, ML oscillations introduced into a VR environment in the 109 

form of continuous but unpredictable (pseudo-random) perturbations resulted in participants 110 

taking shorter and wider steps with increased gait variability compared to the no-perturbation 111 

condition, but this effect was not observed with perturbations in the AP direction (McAndrew, 112 

Dingwell, & Wilken, 2010; McAndrew, Wilken, & Dingwell, 2011). These gait adaptations were 113 

interpreted as assuming a more cautious pattern of walking. 114 

 When navigating complex real-world environments, another challenge to walking 115 

behavior is the accommodation of an attentionally demanding secondary task, such as following 116 

directions or responding to a text message. Dual-task walking situations have been widely 117 

studied in various laboratory settings and with different populations, for reviews see (Al-Yahya 118 

et al., 2011; Woollacott & Shumway-Cook, 2002). Depending on the type and complexity of the 119 

secondary cognitive task, young adults have typically shown none or minimal costs in the 120 

maintenance of postural control (Woollacott & Shumway-Cook, 2002) and gait stability. 121 

However some reported changes in young adults’ walking as a result of dual-tasking have 122 



included reduced gait velocity (Hollman, Kovash, Kubik, & Linbo, 2007; Springer et al., 2006), 123 

reduced cadence and stride length, increased stride time and stride time variability (Al-Yahya et 124 

al., 2011) and decreased step width variability (Grabiner & Troy, 2005). These modulations 125 

have been interpreted as an adoption of a more conservative gait pattern, and may be 126 

explained in terms of a capacity sharing model of attentional trade-off (Pashler, 1994; Tombu & 127 

Jolicoeur, 2003) in which cortical resources recruited to maintain steady gait become taxed 128 

under conditions of increased cognitive load (O'Shea, Morris, & Iansek, 2002). Additional 129 

support for this model comes from findings in older adults who often exhibit greater costs in the 130 

form of gait instability, when engaged in a cognitive task (Yogev-Seligmann, Hausdorff, & Giladi, 131 

2008). Finally, in nondemented older adults, declines in executive function were correlated with 132 

decreased walking speed (Ble et al., 2005) and increased gait variability (Springer et al., 2006). 133 

These studies provide indirect evidence of the presence of shared cortical resources for 134 

cognitively demanding tasks and the maintenance of gait stability.  135 

 Research using functional magnetic resonance imaging (fMRI) and motor imagery 136 

(Bakker et al., 2008), as well as functional near-infrared spectroscopy (fNIRS) (Harada, Miyai, 137 

Suzuki, & Kubota, 2009; Miyai et al., 2001) and transcranial magnetic stimulation (TMS) (N. T. 138 

Petersen et al., 2001; N. T. Petersen, Pyndt, & Nielsen, 2003), have provided additional 139 

evidence of cortical involvement in walking behavior. But due to the slow temporal resolution of 140 

hemodynamic measures, EEG, with its portability, relative low cost and excellent temporal 141 

resolution, has emerged as the method of choice to assess electrocortical functioning during 142 

active movements. When utilized in concert with body motion tracking this approach is referred 143 

to as Mobile Brain/Body Imaging (MoBI) (Gramann et al., 2011; Gramann, Jung, Ferris, Lin, & 144 

Makeig, 2014; Makeig, Gramann, Jung, Sejnowski, & Poizner, 2009). Recent MoBI studies from 145 

our group and others have established the viability (De Sanctis, Butler, Green, Snyder, & Foxe, 146 

2012; Gramann, Gwin, Bigdely-Shamlo, Ferris, & Makeig, 2010) and long-term reliability 147 

(Malcolm et al., 2017) of recording event-related potentials (ERPs) reflecting cognitive 148 



processes during treadmill and outdoor (De Vos, Gandras, & Debener, 2014) walking. 149 

Additional studies have employed the MoBI approach to measure differences in electrocortical 150 

activity and gait at varying levels of walking speed (De Sanctis et al., 2014; Kline, Poggensee, & 151 

Ferris, 2014), and have assessed age-related differences in behavior, gait and ERPs during 152 

dual-task walking (Malcolm, Foxe, Butler, & De Sanctis, 2015).   153 

 Other MoBI studies have provided evidence of suppression of oscillatory activity over 154 

motor cortex during walking (Cevallos et al., 2015; Presacco, Goodman, Forrester, & Contreras-155 

Vidal, 2011) compared to standing, signifying increased activations during motion compared to 156 

at rest (Wagner et al., 2012), in agreement with prior research showing that efficient motor 157 

actions are associated with alpha (8-12Hz) and beta band (13-35Hz) rhythms, such as local 158 

field desynchronizations over sensorimotor and parietal cortex (Pfurtscheller, 2000; 159 

Pfurtscheller, Graimann, Huggins, Levine, & Schuh, 2003). Recording EEG activity during 160 

locomotion, researchers have also begun to investigate the cortical dynamics associated with 161 

different phases of the gait cycle during steady-state walking (Gwin, Gramann, Makeig, & Ferris, 162 

2011; T. H. Petersen et al., 2012; Severens, Nienhuis, Desain, & Duysens, 2012), walking in 163 

synchrony with pacing tones (Wagner, Makeig, Gola, Neuper, & Muller-Putz, 2016) and when 164 

experiencing a loss of balance (Sipp, Gwin, Makeig, & Ferris, 2013). In an effort to explore the 165 

neurophysiological correlates of active vs. passive locomotion, Wagner et al. (2012) recorded 166 

EEG while participants walked in a Lokomat machine for robotic-assisted walking rehabilitation 167 

(Wagner et al., 2012). Spectral patterns over sensorimotor cortical areas revealed significant 168 

modulations in mu (8-12Hz), beta (18-21Hz) and gamma (25-40Hz) band frequencies, as well 169 

as activity that may represent the transition from stance to swing phase of the gait cycle.  170 

 A major issue in obtaining informative event-related cortical activity during walking is the 171 

presence of movement-related artifacts. While gait-specific activity has been identified in low 172 

EEG frequencies <10Hz (Castermans, Duvinage, Cheron, & Dutoit, 2014; Gwin, Gramann, 173 

Makeig, & Ferris, 2010; Kline, Huang, Snyder, & Ferris, 2015; Presacco, Forrester, & Contreras-174 



Vidal, 2012), several different groups have investigated different approaches that may be 175 

employed to successfully isolate and remove head movement and gait artifacts from cortical 176 

signals (Gwin et al., 2010; Kline et al., 2015; Nathan & Contreras-Vidal, 2015; Severens et al., 177 

2012; K. L. Snyder, Kline, Huang, & Ferris, 2015). One approach involves using independent 178 

components analysis (ICA), already shown to be effective at separating eye and muscle-related 179 

noise from EEG signals obtained during seated tasks (Delorme, Sejnowski, & Makeig, 2007; 180 

Jung et al., 2000), combined with dipole fitting procedures that model independent components 181 

(ICs) as equivalent current dipoles (Oostenveld & Oostendorp, 2002), to accurately localize the 182 

resulting neural sources. Snyder et al. (2015) recently tested this tactic by recording EEG over a 183 

silicone swim cap, thus blocking all real electrophysiological activity, and demonstrated that ICA 184 

and dipole fitting procedures accurately isolated 99% of non-neural sources by location (outside 185 

of the brain) or by a lack of dipolar characteristics (K. L. Snyder et al., 2015).  186 

 Here, we employed a MoBI approach with young adult participants to evaluate the 187 

effects of environmental load, in the form of three different visual conditions (consistent optic 188 

flow, optic flow with visual perturbations and static) as well as cognitive load, on gait and 189 

electrocortical dynamics. Spatiotemporal measures of gait and variability in head movement 190 

were captured with kinematics recordings. Spectral power was obtained from high-density EEG 191 

using an ICA and dipole fitting procedure. Independent Component cluster models were then 192 

used to identify modulations in average spectral activity across participants as a result of optic 193 

flow and cognitive task load. We hypothesized that increased load during walking would lead to 194 

a more conservative and more variable pattern of gait. Furthermore, previous literature has 195 

reported increased cortical excitability exhibited in the form of power reductions, or 196 

desynchronization, in the alpha frequency band over occipital regions during visual processing 197 

(Pfurtscheller & Lopes da Silva, 1999), as well as in the mu and beta bands before and during 198 

movements (Pfurtscheller & Klimesch, 1991; Wagner et al., 2012). In line with these findings, 199 

we predicted that increased sensory load (optic flow vs. static) and cognitive load (processing 200 



letters vs. not processing letters) would lead to a decrease in alpha power over occipital regions, 201 

and decreased mu and beta power over sensorimotor cortex. Finally, based on literature linking 202 

increased alpha power over parietal regions to attentional mechanisms used to suppress task-203 

irrelevant information (Foxe & Snyder, 2011), we predicted that sensory load, particularly 204 

unreliable visual scene motion in the form of mediolateral perturbations, would result in 205 

increased alpha power over parietal cortex.  206 

 207 

 208 

METHODS 209 

Participants  210 

 Eighteen healthy young adults participated in the experiment. Data from two participants 211 

were excluded due to technical issues; therefore results reported here were derived from 212 

sixteen individuals (five females) with a mean age of 25.6 years (SD = 4.5 years). All individuals 213 

reported normal or corrected-to-normal vision and were free from any neurological, psychiatric 214 

or locomotor disorders, by self-report. Participants were recruited from the lab’s existing subject 215 

pool and from flyers posted at the Albert Einstein College of Medicine. The Institutional Review 216 

Board of the Albert Einstein College of Medicine approved the experimental procedures and all 217 

participants provided their written informed consent. All procedures were compliant with the 218 

principles laid out in the Declaration of Helsinki for the responsible conduct of research. 219 

 220 

Stimuli and procedure 221 

 While walking on the treadmill, participants were presented with a full-field visual display 222 

consisting of a star field (200 randomly placed white dots projected onto a black background). In 223 

the two dynamic optic flow conditions, the stars emanated outward from a central focus of 224 

expansion point, either moving steadily with no visual perturbations (NOP) or oscillating with 225 

continuous perturbations in the mediolateral direction (MLP). Optic flow was programmed from: 226 



  227 

D(t) = A × sin(0.4×2πt) 228 

 229 

Where D(t) was the translation distance (m), A was the amplitude of displacement and t was 230 

time (sec). Sinusoidal perturbations in the ML direction were applied at amplitudes of 0 (NOP 231 

condition) or 0.12 m (MLP condition). The frequency selected (0.4 Hz) was within the range of 232 

those used in previous studies of human gait (McAndrew et al., 2010; O'Connor & Kuo, 2009). 233 

The star field moved in this manner throughout the duration of a three-minute walking block. A 234 

static condition was also employed in which the same number of stars were randomly presented 235 

across the visual field projection but did not move, i.e., no optic flow. Participants were 236 

instructed to keep their eyes fixed on a central fixation cross.  237 

 In addition to these three visual conditions, participants were presented with a Go/No-Go 238 

response inhibition task. Stimuli consisting of letters were shown in the center of the visual field, 239 

not interfering with the optic flow. During ‘Task’ blocks, participants were instructed to engage in 240 

the cognitive task by responding quickly and accurately to the frequently-occurring Go trials by 241 

clicking a wireless mouse button following the presentation of the letter ‘O’, while withholding 242 

responses during infrequent No-Go trials, designated by the presentation of the letter ‘X.’ The 243 

probability of Go and No-Go trials was 0.80 and 0.20, respectively. The duration of each letter 244 

was 400ms with a random stimulus-onset-asynchrony (SOA) ranging from 600-800ms. 245 

Response inhibition performance was assessed by a participant’s percentage of Correct 246 

Rejection (CR) trials, defined as when a response was correctly withheld following a No-Go 247 

stimulus. In order to evaluate the effect of cognitive task load on gait and EEG spectral power, 248 

half of the experiment was performed as ‘No-Task’ blocks, in which the Go/No-Go stimuli were 249 

shown but participants were instructed not to respond to the task, or to cognitively engage in the 250 

task. Images were projected centrally (InFocus XS1 DLP, 1024 x 768 pixel) onto a black wall 251 



approximately 1.5m in front of the participant. The stimulus display was programmed with 252 

Presentation software version 18.1 (Neurobehavioral Systems, Berkeley, CA).  253 

 With the two factors of visual condition (static, optic flow with no perturbation, optic flow 254 

with mediolateral perturbation) and cognitive task (task performance or no-task performance), 255 

this design resulted in a total of six different experimental conditions. Each participant performed 256 

three blocks of each condition, resulting in a total of 18 blocks, each lasting three minutes. All 257 

conditions were conducted in a pseudo-random order, counterbalanced across participants, and 258 

a practice block was performed before undertaking the main experiment. Several rest breaks 259 

were provided in between blocks. Participants self-selected their walking speed at the beginning 260 

of the experiment and maintained that speed throughout. Average walking speed was 3.9 km/hr 261 

(range: 3.2–4.5 km/hr). All subjects walked while wearing comfortable shoes and a safety 262 

harness. See Figure 1 for a representation of the recording set-up. No specific task prioritization 263 

instructions (i.e., walking versus cognitive task) were given, other than for participants to direct 264 

their gaze towards the central fixation cross (and presentation of task-relevant letters) during no-265 

task as well as task blocks.  266 

 267 

------------------------------------------------------------------------------------------------------------------------------- 268 

Insert Figure 1 Here 269 

------------------------------------------------------------------------------------------------------------------------------- 270 

 271 

Kinematics recording 272 

 Three-dimensional kinematic data were collected at 100Hz using a 9-camera Optitrack 273 

infrared motion capture system and Arena v.1.5 acquisition software (Natural Point). Each 274 

participant wore 10 reflective markers: four were placed on the head (attached to the EEG cap, 275 

right and left sides, front and back), and three markers were placed on each foot. These were 276 

placed over the participants’ shoes, on the calcanei, the second and the fifth distal metatarsals.  277 

 278 



Electrophysiological recording 279 

 Continuous EEG was recorded with a 72-channel BioSemi ActiveTwo system (digitized 280 

at 512Hz; 0.05 to 100 Hz pass-band, 24 dB/octave). Stimuli from Presentation software were 281 

transmitted to BioSemi Actiview via a parallel cable. Time-synchronized acquisition of stimulus 282 

triggers, behavioral responses, EEG and rigid body motion tracking was conducted with Lab 283 

Streaming Layer software (Swartz Center for Computational Neuroscience, UCSD, available at: 284 

https://github.com/sccn/labstreaminglayer).  285 

 286 

Data Analysis 287 

 All EEG and kinematic data analyses were performed using custom MATLAB scripts 288 

(MathWorks, Natick, MA) and EEGLAB (Delorme & Makeig, 2004). 289 

 290 

Kinematics 291 

 Heel strikes were computed from the heel marker trajectory, using an automated peak-292 

picking function (MATLAB custom scripts) and confirmed by manual inspection, to identify the 293 

point where the heel marker was at the most anterior point in the anterior-posterior direction 294 

(Dingwell, John, & Cusumano, 2010; Zeni, Richards, & Higginson, 2008). Individual strides were 295 

defined as consecutive heel strikes of the same foot. Responses to visual optic flow and 296 

cognitive task load on the gait cycle were assessed by three dependent measures. Stride time 297 

(ST) was defined as the time between consecutive heel strikes of the same foot, while Stride 298 

length (SL) was calculated as the sum of each pair of consecutive step lengths that made up 299 

each stride (Alton, Baldey, Caplan, & Morrissey, 1998; Dingwell & Cusumano, 2015). Step width 300 

(SW) was computed as the lateral distance between the two heel markers at the time of right 301 

heel strike (Kang & Dingwell, 2008; Kline et al., 2014; Owings & Grabiner, 2004). The means 302 

and standard deviations of each of these measures were calculated for each block of each 303 

condition, for each participant. Finally, the mean SD of the head markers in the mediolateral and 304 



anterior-posterior directions was used as a measure of postural stability and overall variability in 305 

movement position on the treadmill. The SD was calculated for each block separately, and then 306 

averaged over conditions, then subjects. 307 

 308 

EEG and power spectral density 309 

 EEG data were first high-pass filtered at 1Hz using a zero phase FIR filter (order 5632) 310 

(Winkler, Debener, Muller, & Tangermann, 2015). Then all blocks for each subject were 311 

concatenated into one dataset. Noisy channels were identified and removed by visual inspection 312 

and by automatic detection of channels with signals more than five times the standard deviation 313 

of the mean across all channels. The remaining channels were re-referenced to a common 314 

average reference. Continuous data were then subjected to a manual visual inspection resulting 315 

in the rejection of any sequences that contained large or non-stereotypical artifacts. An 316 

extended Independent Components Analysis (ICA) decomposition was performed on the 317 

remaining data using default training mode parameters (Makeig, Bell, Jung, & Sejnowski, 1996). 318 

ICA separates various generators of task-evoked cortical activity to help distinguish and 319 

separate from artifactual sources such as electrical noise, eye blinks, neck muscles and 320 

walking-related artifacts such as cable sway (Jung et al., 2000).  321 

 The resulting Independent Components (ICs) were then coregistered with a standard 322 

MNI (Montreal Neurological Institute) boundary element head model and fit with single 323 

equivalent current dipole models using the DIPFIT toolbox in EEGLAB (Delorme, Palmer, 324 

Onton, Oostenveld, & Makeig, 2012; Oostenveld & Oostendorp, 2002). Only ICs for which the 325 

estimated dipole model was located within the brain and explained > 85% of the variance of the 326 

IC scalp map were retained (Gwin et al., 2011). These were then examined and any that were 327 

clearly artifactual were rejected; these could have included activity originating from eye blinks, 328 

bad electrodes and muscle noise. Rejection criteria were based on topography, spectra, 329 

component activation time course, and dipole location (Jung et al., 2000). Following this 330 



procedure there were an average of 10 brain related ICs per participant (ranging from 6 to 16 331 

ICs) for use in further analyses. Presumably, these ICs reflect activity generated in cortical 332 

sources close to the location of their equivalent dipole model (Akalin Acar & Makeig, 2013). 333 

Remaining ICs were then clustered across participants with EEGLAB clustering routines using 334 

the parameters of 3-D dipole location, scalp topography and power spectra (3-45Hz) (Onton & 335 

Makeig, 2006). Using principal components analysis, these feature vectors were reduced to 10 336 

principal components and clustered using a k-means algorithm implemented in EEGLAB. K-337 

means is a well-known clustering algorithm that requires no prior information about the 338 

associations of data points with clusters. ICs that were further than three standard deviations 339 

from any of the resulting cluster centers were identified as outliers. Finally, only clusters that 340 

included ICs from at least half of the participants were retained, resulting in the eight clusters 341 

reported below.     342 

 For the spectral analysis, we chose to look at the neural oscillatory pattern resulting from 343 

component activations, in comparison to the data from separate channels, since independent 344 

components may help to explain the activity underlying a specific cognitive function. whereas 345 

channel activations are the result of summed potentials volume-conducted from different parts 346 

of the brain (Onton, Westerfield, Townsend, & Makeig, 2006). Even though EEG does not have 347 

the spatial resolution of fMRI, this technique has been shown to provide a spatial resolution of 348 

around a few centimeters (Mullen, Acar, Worrell, & Makeig, 2011). Power spectral density 349 

(PSD) was computed using Welch’s method, separately for each IC and for each of the six 350 

experimental conditions. Periodograms were obtained in windows of 512 samples (1 sec), an fft 351 

length of 1024, with 50% overlap, and windowed with a Hamming window of the same length as 352 

the segment. Similar parameters were used to calculate spectra for ICs in a previous MoBI 353 

study (K. L. Snyder et al., 2015). The resulting periodograms were averaged over the ICs in 354 

each cluster to produce an estimation of the absolute PSD for four frequency bands of interest: 355 

theta (3-7Hz), alpha (8-12Hz), beta (13-30Hz) and gamma (31-45Hz).  356 



 357 

Statistical analyses 358 

 Cognitive task performance was analyzed with a one-way repeated-measure ANOVA, 359 

with the factor of visual load (static, no perturbation optic flow and ML optic flow). Gait and 360 

posture data were analyzed with 2 (Task Load) x 3 (Visual Load) repeated measures ANOVAs. 361 

Because walking speed has a direct relationship with stride length and stride time (Dingwell et 362 

al., 2010; Kang & Dingwell, 2008) walking speed was included as a covariate in the analysis of 363 

these gait parameters. The covariate was mean-centered, i.e., deviations from the mean speed 364 

were used instead of the raw values, to avoid interfering with the test of the main effects 365 

(Delaney & Maxwell, 1981). For the analysis of power spectral density (PSD), separate two-366 

factor (task load, visual condition) repeated-measures ANOVAs were performed for each IC 367 

cluster and frequency band of interest. Greenhouse-Geisser corrections were applied when 368 

appropriate, but original degrees of freedom have been reported. All statistical analyses were 369 

performed using IBM SPSS (v. 24).  370 

 371 

 372 

RESULTS 373 

Cognitive Task Performance  374 

 Figure 2 shows the percentage of Correct Rejections (CRs) for each visual condition 375 

(static, no perturbation optic flow and optic flow with ML perturbations). No differences were 376 

found for response inhibition performance as a function of the visual condition employed, F2, 30 = 377 

0.27, p = .76, indicating that participants were able to perform the Go/No-Go task equally well 378 

regardless of the dynamic state of the star field.     379 

 380 

------------------------------------------------------------------------------------------------------------------------------- 381 
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 384 

Gait and Posture 385 

 Average and mean SD of stride time, stride length and step width for all six conditions 386 

are presented in Figure 3.  387 

Stride Time: For the parameter of average stride time, there was a main effect of task load, F1, 388 

14 = 8.51, p = .01, and an interaction between task load and visual condition, F2, 28 = 3.99, p = 389 

.03. Follow-up paired comparisons showed that, averaged over all visual conditions, participants 390 

took significantly faster strides when engaged in the task (Mean = 1179ms, SD = 75) compared 391 

to the no-task blocks (Mean = 1189ms, SD = 78), t15 = 3.02, p = .009. Furthermore, for the no-392 

task conditions, participants exhibited increasingly faster strides with increasing levels of visual 393 

load. The slowest strides were observed for the static no-task condition, closely followed by the 394 

no perturbation optic flow condition. On the other hand, during the task blocks, there was 395 

minimal difference in average stride time according to visual stimuli. Averaging across task 396 

conditions revealed significantly longer strides for the no-perturbation optic flow condition in 397 

comparison to the presentation of ML perturbations (p = .02). For the measure of average stride 398 

time variability, no significant effects were found.  399 

Stride Length: There was a main effect of visual condition on average stride length, F2, 28 = 400 

3.59, p = .04, as well as a significant effect of task load, F1, 14 = 11.85, p = .004, and an 401 

interaction was observed between these two factors, F2, 28 = 5.43, p = .01. In line with the 402 

findings outlined above for Stride Time, participants took significantly shorter strides when 403 

engaged in the task (Mean = 1423mm, SD = 115) compared to not performing the task (Mean = 404 

1438mm, SD = 122), t15 = 3.50, p = .003. The effect of visual condition on average stride length 405 

exhibited the greatest difference between the static star field condition in which participants took 406 

overall longer strides, compared to the ML visual perturbations (p = .04). This effect also 407 

appeared to be most prominent for the no-task blocks, as stride length progressively decreased 408 



with the dynamic optic flow and even more so as perturbations were applied to the star field. For 409 

stride length variability no effects reached the level of significance, though interestingly, strides 410 

tended to be more variable when participants observed the dynamic optic flow and were not 411 

engaged in the cognitive task.  412 

Step Width: There was a significant effect of the visual condition on average step width, F2, 28 = 413 

7.14, p = .003, reflecting the fact that compared to the static visual condition, participants 414 

walked with wider steps during the no perturbation optic flow blocks (p = .002) as well as with 415 

ML perturbations (p = .02), regardless of whether they performed the cognitive task. Average 416 

step width variability exhibited a robust effect of task load, F1, 14 = 11.77, p = .004, with more 417 

variable step widths across all visual conditions when not performing the cognitive task (Mean = 418 

16.2mm, SD = 4.8), compared to during task blocks (Mean = 14.5mm, SD = 3.7).  419 

 420 

------------------------------------------------------------------------------------------------------------------------------- 421 
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 424 

Mean SD of head position: Figure 4 shows the mean SD of head position in the mediolateral 425 

(ML) direction (left) and anterior-posterior (AP) direction (right). For head position variability in 426 

the ML direction, there was a main effect of task load, F1, 15 = 8.56, p = .01, indicating decreased 427 

variability in head position in the lateral direction when performing the cognitive task (Mean = 428 

26.7mm, SD = 9.2) in contrast to walking without engaging in the task (Mean = 29.6mm, SD = 429 

10.8).   430 

 For the average variability in head position in the AP direction, there was also a main 431 

effect of cognitive task load, F1, 15 = 10.12, p = .006, as well as an interaction between cognitive 432 

load and visual condition, F2, 30 = 7.33, p = .003. This effect was indicative of increased 433 

variability on the no-task blocks (Mean = 44.8mm, SD = 19.2) compared to performing the task 434 



(Mean = 33.5mm, SD = 18.0), and while the different task blocks were shown to maintain a 435 

similar level of variability, the no-task conditions showed a decrease in variability from the static 436 

visual condition, to the no perturbation optic flow, and then even more so with the introduction of 437 

ML perturbations.  438 

 439 
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 443 

Power spectral density 444 

 Table 1 lists the specifics (number of ICs and subjects included in each cluster and the 445 

approximate anatomical location (Brodmann area and Tailarach coordinates) of cluster 446 

centroids) of the eight clusters that were localized to cortical areas and composed of ICs from at 447 

least half of the participants. Figure 5 shows the clusters of electrocortical sources localized to 448 

occipital, parietal and frontal cortical areas.  449 

 450 
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 458 

 Three clusters were located over occipital cortex. Scalp topography, dipole location (blue 459 

dots indicate the location of each IC, red dots represent the cluster centroid) and average power 460 

spectral density (PSD) for these clusters are presented in Figure 6. For the cluster located over 461 

medial occipital cortex, no significant modulations were found in the PSD of any frequency 462 



bands according to task load or visual condition. In contrast, for the right occipital cluster, robust 463 

differences in spectral power attributable to the presentation of the three different visual 464 

conditions were found in theta, F2, 22 = 8.94, p = .008 and alpha, F2, 22 = 21.50, p < .001, 465 

frequencies, with a smaller effect observed in the beta range, F2, 22 = 4.18, p = .05. The same 466 

pattern emerged for the lower frequencies (theta and alpha) in that there was on average higher 467 

spectral power for the static conditions compared to both dynamic optic flow conditions (p’s < 468 

.05), but no difference between the two optic flow conditions (p’s > .50). For the beta range, 469 

increased power was observed during the static conditions compared to the no perturbation 470 

optic flow (p = .006), but no significant differences were found between the static and ML optic 471 

flow or between the two dynamic conditions (p’s > .10). Furthermore, there was a strong effect 472 

of task load on alpha spectral power, F1, 11 = 14.15, p = .003, with higher power over all three 473 

no-task conditions compared to when participants performed the cognitive task. Finally, a 474 

significant interaction between task load and visual condition was found for gamma band power, 475 

F2, 22 = 4.96, p = .02, indicating that while spectral power remained relatively consistent across 476 

the visual conditions when participants engaged in the cognitive task, when they did not perform 477 

the task gamma power remained high for the static visual condition but decreased greatly during 478 

the no perturbation optic flow blocks, and decreased to a lesser extent with ML perturbations in 479 

optic flow. 480 

 For the IC cluster located in left occipital cortex, modulations in spectral power were only 481 

observed in the alpha frequency range. There was a robust effect of visual condition, F2, 26 = 482 

10.76, p = .004, with higher alpha power observed for the static visual condition compared to 483 

both dynamic conditions (p’s = .005) but no difference apparent between the two dynamic 484 

conditions (p = .88). There was also a trend towards higher alpha power on no-task blocks, F1, 13 485 

= 4.52, p = .053, compared to blocks when participants engaged in the cognitive task.  486 

 487 
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 491 

 Figure 7 shows scalp topography, dipole location and power spectra for one cluster over 492 

left temporal cortex and two clusters located over right parietal cortex. For the cluster localized 493 

to the left superior temporal gyrus, the different visual conditions had a significant effect on both 494 

theta band (F2, 22 = 7.00, p = .02) and alpha band (F2, 22 = 9.65, p = .001) spectral power. Both 495 

frequency bands showed significantly greater power during the static visual blocks compared to 496 

both dynamic optic flow conditions (p’s < .05), with no differences between the two dynamic 497 

conditions (p’s > .05). Additionally, no differences were apparent at higher frequencies. For the 498 

cluster localized to the right inferior parietal lobule, the only significant difference in spectral 499 

power was observed for the factor of visual condition in the alpha frequency range, F2, 18 = 5.94, 500 

p = .01. Again, regardless of task load, there was higher alpha power during the static star field 501 

blocks in comparison to both of the optic flow conditions (p’s < .02), but there was no difference 502 

in power between the two dynamic star field displays (p = .66).  503 

 Significant modulations in spectral power as a result of visual condition were observed in 504 

the cluster of ICs located over medial parietal cortex, localized to the precuneus. This effect 505 

occurred across all frequency bands of interest: theta (F2, 28 = 20.09, p < .001), alpha (F2, 28 = 506 

15.63, p = .001), beta (F2, 28 = 10.33, p < .001), and gamma (F2, 28 = 3.66, p = .04). For 507 

frequencies in the theta, alpha and beta bands, significantly greater power was observed for the 508 

static condition compared to both the no perturbation optic flow (p’s < .01), and the ML 509 

perturbation condition (p’s < .01), but there was no difference between the two optic flow 510 

conditions (p’s > .05). In the gamma range only a significant difference between static and ML 511 

perturbations was observed (p = .05) but there was no difference between static and no 512 

perturbation (p = .22) or between the two optic flow conditions (p = .24). For the alpha and beta 513 

frequency bands, differences were also observed in spectral power linked to cognitive task 514 



engagement: alpha (F1, 14 = 21.07, p < .001), beta (F1, 14 = 13.16, p = .003). For both, overall 515 

higher power was found for the no-task blocks compared to when participants performed the 516 

task. Finally, for frequencies in the alpha range there was an interaction between task load and 517 

visual condition, F2, 28 = 5.94, p = .007, indicating that while either performing the cognitive task 518 

or not, there was a desynchronization in alpha power between the static visual condition to the 519 

no-perturbation optic flow condition, whereas a different result was observed with the 520 

introduction of ML perturbations. When performing the task, average power continued to 521 

decrease when perturbations were introduced into the optic flow, but when not engaged in the 522 

task, alpha power actually increased with the ML perturbations.  523 

 524 
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 528 

 The final two clusters located over frontal cortical areas including the supplementary 529 

motor area and the anterior cingulate are depicted in Figure 8. For the cluster located over 530 

supplementary motor area, significant changes in spectral power were found in the theta range 531 

linked to task performance, F1, 22 = 9.41, p = .006, representing the effect that average spectral 532 

power was higher when subjects performed the cognitive task compared to when they did not. 533 

Significant effects of the visual condition on spectral power were observed in the theta (F2, 44 = 534 

5.01, p = .02), alpha (F2, 44 = 29.52, p < .001) and beta (F2, 44 = 17.20, p < .001) bands. For alpha 535 

and beta this was reflected in the fact that higher spectral power was observed for the static 536 

condition compared to both no perturbations (p’s < .001) and ML perturbations (p’s < .001), 537 

whereas no difference occurred between the two dynamic conditions (p’s > .05). For the theta 538 

range, spectral power during the ML perturbation conditions were significantly lower compared 539 

to presentation of the static star field (p = .006), as well as the no perturbation optic flow (p = 540 



.04), while there was no difference between the static and no perturbation conditions (p = .19). 541 

Additionally, for frequencies in the alpha range, there was a significant interaction between task 542 

load and visual condition, F2, 44 = 5.77, p = .01, indicating that the average spectral power 543 

remained approximately the same between task conditions for both the static and no 544 

perturbation star field displays, however with ML visual perturbations spectral power increased 545 

during no-task blocks but decreased with task engagement.   546 

 Lastly, for the IC cluster located to anterior cingulate cortex, significant changes in 547 

spectral power were observed only in lower frequencies. The visual conditions significantly 548 

affected spectral power in both the theta (F2, 28 = 10.16, p < .001) and alpha (F2, 28 = 10.13, p < 549 

.001) frequency ranges. This effect was indicative of greater power for the static visual condition 550 

compared to both the no perturbation optic flow (p’s < .005) and the ML perturbation optic flow 551 

(p’s < .005), but no difference was apparent between the two dynamic conditions (p’s > .10). 552 

Additionally, in the theta range, spectral power significantly increased during performance of the 553 

cognitive task in comparison to no-task blocks, across all three visual conditions, F1, 14 = 11.61, 554 

p = .004. 555 

 556 
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 560 

 561 

DISCUSSION 562 

Effects of optic flow and cognitive load on gait 563 

 The objective of the current experiment was to examine changes in gait and cortical 564 

network activity in response to the presence of optic flow stimuli, as well as the engagement or 565 

lack of engagement in a cognitive task. During two dynamic visual conditions a pattern of optic 566 



flow created by the movement of a star field radiating outwards generated a sense of forward 567 

movement. The optic flow either moved steadily (no perturbations) or oscillated with continuous 568 

mediolateral (ML) perturbations. Sensory load, presented here in the form of optic flow, did not 569 

result in decrements in task performance, i.e., there were no costs in the behavioral domain as 570 

a result of the different visual conditions. Conversely, both sensory and cognitive load had 571 

significant effects in the motor domain. Participants took shorter strides as cognitive and 572 

sensory load increased. Average step width also increased with visual load, with wider steps 573 

during both optic flow conditions compared to the static star field. However, the interactions 574 

observed between cognitive and sensory load for the measures of stride time/length and head 575 

position in the AP direction reveal that optic flow modulates gait more so when participants are 576 

disengaged from the cognitive task. For example, participants made faster and shorter strides 577 

during both optic flow conditions compared to the static condition, when they were not engaged 578 

in the task. Also, during no-task blocks, average head position variability in the anterior-posterior 579 

(AP) direction decreased as the amount of visual load increased, i.e., in the presence of optic 580 

flow and even more so with the introduction of ML perturbations. These findings likely indicate 581 

the engagement of a more conservative pattern of gait with increased load: shorter and wider 582 

steps, and the maintenance of a more consistent position along the length of the treadmill. This 583 

may be indicative of increased allocation of sensorimotor resources in order to accommodate 584 

potentially destabilizing sensory load. 585 

 The primary effect of increased cognitive load on gait appeared to be a reduction in 586 

walking variability. When performing the inhibitory control task, participants exhibited decreased 587 

variability in step width and head position in both directions. These findings suggest that 588 

cognitive task engagement actually led to a more consistent pattern of motor behavior. 589 

Participants adopted a more stereotyped manner of walking, with less stride-to-stride 590 

fluctuations when attention was bound to the Go/No-Go task. Prior dual-task walking (DTW) 591 

findings seem to go along with these results, as Grabiner & Troy (2005) also observed 592 



decreased step width variability and more conservative gait under cognitive load (Grabiner & 593 

Troy, 2005). Additionally, Lovden et al. (2008) observed that when young adults performed a 594 

moderately difficult cognitive task, gait variability decreased (Lovden, Schaefer, Pohlmeyer, & 595 

Lindenberger, 2008). They contend that an external focus of attention is beneficial to motor 596 

performance, and that there will be no cross-domain competition, resulting in costs, as long as 597 

cognitive load remains moderate (Lovden et al., 2008).   598 

 Interestingly, when the ML perturbations were applied to the optic flow, participants often 599 

did not exhibit increased movement in that direction, in relation to the no-perturbation optic flow. 600 

This was somewhat surprising considering that other studies have observed effects such as 601 

changes in posture and increased variability in gait and dynamic stability (McAndrew et al., 602 

2011) in response to ML visual perturbations. One possible reason that this may have occurred 603 

is that participants in this study walked in a safety harness and wore an EEG cap, with 604 

electrodes tethered to an overhead platform. Another explanation for the relative lack of 605 

modulation in body position in the ML direction is that participants may have become 606 

accustomed to the perturbations over time and were able to ‘entrain’ their walking behavior to 607 

accommodate them. Because the ML visual oscillations were constant for the duration of each 608 

three-minute block, in contrast to some studies that have employed pseudo-random 609 

perturbations (McAndrew et al., 2010; McAndrew et al., 2011), participants here may have 610 

unconsciously come to predict the effect that oscillations may have had on body position and 611 

adjusted their gait accordingly. For example, Brady et al (2009) applied continuous ML 612 

perturbations to the treadmill surface and observed that within five minutes people showed 613 

adaptation in the form of entrainment and began to time their steps to occur in line with the 614 

phase of oscillation applied (Brady, Peters, & Bloomberg, 2009). Also, in a very recent study, 615 

young adults quickly adapted to continuous mediolateral optic flow perturbations by taking 616 

shorter, wider and more variable steps, until after approximately three minutes step length and 617 

width returned to normal (unperturbed) levels, while variability did not (Thompson & Franz, 618 



2017). The authors attribute these results to visuomotor adaptation processes – the return of 619 

step length and width to normal levels as visual perturbations continued likely reflects a 620 

deprioritization of visual inputs while presumably other inputs, such as vestibular and 621 

proprioceptive modalities were up-regulated. On the other hand, they point to the sustained 622 

increase in variability as indicative of a necessary, reactive step-to-step balance control 623 

strategy.  624 

 There were a few gait parameters in which a significant difference was found between 625 

the two optic flow conditions (e.g., shorter strides and less variability in AP head position with 626 

added ML perturbations). These findings are consistent with other studies that have employed 627 

constant, sinusoidal oscillations and have still observed changes in measures such as step 628 

width (O'Connor & Kuo, 2009) and stride length variability. It is possible that when people come 629 

to predict the environmental perturbations, they will exhibit consistent changes in gait to better 630 

accommodate them. For example, that participants walked with faster and shorter strides and 631 

increased step width could be interpreted as a more cautious gait approach in response to 632 

sensory load. Furthermore, walking on a treadmill requires the strict regulation of both walking 633 

speed and position, but Dingwell (2015) showed that young adults regulated stride-to-stride 634 

fluctuations in walking by prioritizing speed maintenance, not their position in the anterior-635 

posterior direction, therefore letting themselves drift to the front and back of the treadmill before 636 

correcting (Dingwell & Cusumano, 2015). This notion may explain the current finding of 637 

increased influence of visual flow on head position variability only in the AP direction, not the ML 638 

direction. When walking without additional cognitive load, participants may have allowed 639 

themselves to drift forwards and backwards on the treadmill, especially during the static no-task 640 

condition (perhaps the least attentionally demanding).   641 

 642 

Modulations in power spectral density 643 



 Following an Independent Components Analysis (ICA) and dipole-fitting procedure, 644 

neuro-oscillatory activity was evaluated from eight source-localized clusters of Independent 645 

Components (ICs). To identify modulation in the power content across different frequencies as a 646 

function of visual load and cognitive task engagement, power spectral density (PSD) was 647 

calculated for each condition in each IC, and then averaged over all ICs in each cluster. These 648 

results provide new information about the frequency-related effects of optic flow stimulation and 649 

task load on brain activity during locomotion. The locations of the IC clusters reported here were 650 

similar to locations cited in other mobile EEG studies (Gwin et al., 2011; Kline, Huang, Snyder, 651 

& Ferris, 2016; Sipp et al., 2013; Wagner et al., 2012): three clusters were located over occipital 652 

cortical areas, one cluster localized to the left superior temporal gyrus, right inferior parietal 653 

lobule, the precuneus in the parietal lobe, and two frontal clusters over supplementary motor 654 

area and anterior cingulate cortex. Results indicate a widely distributed cortical network 655 

exhibiting task-specific fluctuations in spectral power.  656 

Occipital Region  657 

 Other than the IC cluster over medial occipital cortex where no significant modulations 658 

were observed, all other clusters exhibited significant changes in the spectral power of lower 659 

frequencies (theta and alpha) linked to visual presentation and optic flow. For the right occipital 660 

cluster, average spectral power was reduced in the theta, alpha and beta ranges, with increased 661 

sensory load. In the left occipital cluster, this effect was also seen, but only in the alpha range. 662 

Additionally, decreased alpha power was also observed in the right occipital cluster as 663 

participants processed the Go/No-Go task letters; with a trend towards this effect in the left 664 

occipital cluster as well. Alpha band oscillations have long been shown to play an important role 665 

in directing attention, for a review see (Foxe & Snyder, 2011). Desynchronization in the alpha 666 

band over occipital regions is assumed to reflect cortical excitation related to various stages of 667 

stimulus processing (Pfurtscheller, Stancak, & Neuper, 1996), thus the reduction in alpha power 668 



when presented with increased visual demands in the form of optic flow. Furthermore, EEG 669 

studies of parieto-occipital alpha band activity have revealed a more sophisticated role as a 670 

mechanism involved in selectively attending to relevant information in the environment (Foxe, 671 

Simpson, & Ahlfors, 1998; Foxe & Snyder, 2011; Kelly, Lalor, Reilly, & Foxe, 2006; A. C. Snyder 672 

& Foxe, 2010; Worden, Foxe, Wang, & Simpson, 2000). Presumably this paradigm required 673 

participants to selectively disengage from processing the distracting optic flow information when 674 

they were performing the task, reflected as synchronization in alpha power over cortical regions 675 

dedicated to optic flow processing. Subsequently, during the blocks in which they saw the 676 

Go/No-Go letters but were instructed to not engage cognitively, an effortful, top-down 677 

recruitment strategy would likely be employed in order to ignore the letters, i.e., synchronization 678 

in alpha to inhibit processing, but at the same time suppress any potentially destabilizing 679 

information from the dynamic star field. Gait results indicate the adoption of a progressively 680 

more conservative manner of walking with increased visual input but no task engagement. 681 

Consequently, it seems that even though the optic flow lent no meaningful information to 682 

walking behavior, on some level participants did pay attention to and process this information. 683 

Thus, these findings may indicate a flexible deployment of enhanced alpha band activity to 684 

selectively suppress to-be-ignored aspects of this complex environment (Dockree, Kelly, Foxe, 685 

Reilly, & Robertson, 2007; Foxe & Snyder, 2011; Worden et al., 2000). This pattern of results is 686 

consistent with alpha desynchronization not simply due to visual stimulation but being 687 

specifically task driven (Kelly et al., 2006; Klimesch, 2012), a theory that goes along with the 688 

current finding of a greater desynchronization in alpha power when individuals also engaged in 689 

the task.    690 

 There was also an interaction between cognitive and sensory load in the gamma range 691 

(31-45Hz) in the right occipital cluster. Here, gamma power increased while participants were 692 

engaged in the Go/No-Go task, then decreased as they disengaged during no-task conditions, 693 

though only while exposed to optical flow. Sustained attention requires ongoing activation of 694 



task-relevant regions and evidence links gamma in sensory cortices as a mechanism to 695 

enhance processing of task-relevant sensory inputs (Clayton, Yeung, & Cohen Kadosh, 2015). 696 

Previous studies have also reported enhancement of gamma band activity during visuospatial 697 

attention tasks (Siegel, Donner, Oostenveld, Fries, & Engel, 2007) and gamma power has been 698 

associated with task complexity (Fitzgibbon, Pope, Mackenzie, Clark, & Willoughby, 2004). 699 

However, if sustained gamma power in this region is indeed related to sustained task 700 

engagement, it is an open question as to why the static no-task condition maintained a higher 701 

average spectral power in relation to the other no-task conditions.    702 

 703 

Left Superior Temporal Gyrus 704 

 A main effect of visual condition was observed for theta and alpha activity in this region, 705 

with reductions in spectral power associated with increased optical flow input. Animal studies 706 

have shown that this area is involved in processing optic flow and visual motion information 707 

generated from environmental stimuli (Duffy & Wurtz, 1991). Therefore the current findings may 708 

indicate increased activation in this region when presented with more computationally 709 

demanding visual environments.  710 

 711 

Parietal Region 712 

The IC cluster localized to the right inferior parietal lobule showed a significant decrease 713 

in alpha spectral power for both dynamic flow conditions compared to the static visual condition. 714 

The precuneus cluster exhibited a similar pattern with decreased spectral power in theta, alpha 715 

and beta for optic flow relative to static, while gamma power was higher for the static condition 716 

relative only to visual ML perturbations. Thus, if we are to assume that participants invest more 717 

resources to counteract unreliable proprioceptive information (generated by ML visual 718 

perturbations), evidenced by their engagement in a more conservative pattern of gait, higher 719 



gamma power during the static condition may be acting to increase reliance on proprioceptive 720 

information via enhanced sensory processing (Clayton et al., 2015). 721 

The precuneus also showed modulations in spectral power as a result of cognitive task 722 

load, with activity in both alpha and beta bands ramping up during no-task blocks, possibly as a 723 

mechanism to inhibit and down-regulate visual load (Banerjee, Snyder, Molholm, & Foxe, 2011; 724 

Foxe et al., 1998; Foxe & Snyder, 2011). Furthermore, an interaction between visual and 725 

cognitive load within the alpha-band reveals that power decreases with visual load as 726 

participants are engaged in the cognitive task, but increases as participants disengage from the 727 

task, particularly while exposed to mediolateral perturbations. Considering precuneus 728 

connections with sensorimotor regions (Cavanna & Trimble, 2006), the latter finding might 729 

indicate an alpha-band mediated gating/suppression mechanism of unreliable information to 730 

sensorimotor regions. Interestingly, the IC clustering approach produced two parietal clusters, 731 

sensitive to attentional demands resulting from cognitive task engagement and the radiating star 732 

field, that were both localized to the right hemisphere. This finding fits nicely with several reports 733 

in the literature. The precuneus has been linked to the processing of scenes, with previous 734 

imaging studies reporting middle parietal cortex to be involved in visuospatial processing (Harris 735 

et al., 2000), and specifically the right hemisphere to be more spatially oriented to the 736 

surrounding environment (Joseph, 1988). Topographic mapping of high-density EEG recorded 737 

in a line-bisection task revealed a right hemisphere dominant network with activation spreading 738 

from right parieto-occipital scalp, to regions over right superior cortices (Foxe, McCourt, & Javitt, 739 

2003). The right hemisphere may also control shifts in attention when viewing a scene - fMRI 740 

studies have reported right-lateralized fronto-parietal activity during shifts in visual attention 741 

(Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000). Furthermore, a recent EEG study 742 

found increased processing of optic flow speed over right parietal recording sites (Vilhelmsen, 743 

van der Weel, & van der Meer, 2015). And in an older study that used positron emission 744 

tomography (PET), the right precuneus was cited as one of three areas that showed increased 745 



cerebral blood flow specifically in response to optic flow stimulation (de Jong, Shipp, Skidmore, 746 

Frackowiak, & Zeki, 1994). These authors claim that both dorsal and ventral pathways are 747 

involved in the processing of optic flow stimuli, based on their finding of occipito-parietal as well 748 

as occipito-temporal activation patterns (de Jong et al., 1994). This claim is in line with a recent 749 

proposal that the inferior parietal lobe does not fit into the traditional dorsal-ventral visual 750 

processing stream dichotomy, and that specifically the right inferior parietal lobe plays an 751 

important role in maintaining attention while also responding to salient new information (Singh-752 

Curry & Husain, 2009).  753 

  754 

Supplementary motor area (SMA) 755 

The SMA has been implicated in an enormous variety of motor functions including 756 

planning and gait initiation (Mihara, Miyai, Hatakenaka, Kubota, & Sakoda, 2007) and 757 

coordinating more demanding walking tasks (Kurz, Wilson, & Arpin, 2012), as well as cognitive 758 

control functions (Nachev, Kennard, & Husain, 2008). In a recent MoBI study employing 759 

connectivity analysis based on fluctuations in spectral power between cortical IC clusters, the 760 

authors proposed a cortical network underlying both active and viewed limb movements driven 761 

by the right premotor cortex and SMA, but also including cingulate and parietal areas (Kline et 762 

al., 2016). In another MoBI paradigm, brain-to-muscle connectivity was assessed by measuring 763 

heel-strike related spectral perturbations and electromyographic recordings (Artoni et al., 2017). 764 

They found evidence of unidirectional drive from contralateral motor cortex to leg muscles in the 765 

swing phase, with stronger modulations in mu, beta and gamma bands for clusters over motor 766 

areas compared to non-motor areas. And motor regions, including the cingulate motor cortex, 767 

supplementary motor area, and primary foot motor cortex were among the cortical areas with 768 

maximal influence on lower limb muscles during stereotyped walking (Artoni et al., 2017).  769 

Therefore it does not come as a surprise that we also observed modulatory activity 770 

resulting from both sensory and cognitive processing in this cluster. A desynchronization was 771 



observed in both alpha and beta bands associated with increased visual input (optic flow), 772 

compared to the static condition. Additionally, theta power was significantly reduced with MLP, 773 

in comparison to the other visual conditions. Furthermore, an interaction was observed for alpha 774 

frequencies, as the presentation of ML perturbations resulted in a different pattern of spectral 775 

modulation depending on whether one was engaged in the task or not. Finally, in relation to 776 

cognitive load, theta power was higher when participants performed the task; in line with 777 

findings showing theta power is sensitive to the recruitment of executive control in interference 778 

situations (Nigbur, Ivanova, & Sturmer, 2011).  779 

 780 

Anterior cingulate cortex (ACC) 781 

According to fMRI studies, the ACC is thought to monitor ongoing mental processes and 782 

signal the need for increased attentional focus (Fassbender et al., 2009; O'Connell et al., 2007; 783 

Simoes-Franklin, Hester, Shpaner, Foxe, & Garavan, 2010). We observed significant increases 784 

in theta and alpha spectral power in this cluster, observed across approximately 3-12Hz 785 

frequencies, for the static visual condition compared to both dynamic optic flow conditions. 786 

Additionally, theta power showed a significant increase for task performance, in line with the 787 

results observed in the SMA cluster above, and points to the role of theta oscillations in 788 

executive control processes during increased task load (Clayton et al., 2015). Cognitive-task 789 

related modulations in this cluster likely reflect processing demands dedicated to the Go/No-Go 790 

task, as the ACC has frequently been cited for recruitment in processing error detection and 791 

correction (O'Connell et al., 2007; Walton, Croxson, Behrens, Kennerley, & Rushworth, 2007) 792 

as well as evidence from a Go/No-Go ERP study implicating this area in conflict monitoring and 793 

attentional allocation (Dias, Foxe, & Javitt, 2003; Fallgatter, Bartsch, & Herrmann, 2002).  794 

 795 

In conclusion, by utilizing an ICA and clustering approach to isolate cortical sources 796 

supporting dual-task walking activity, we have demonstrated that the MoBI technique is capable 797 



of distinguishing subtle modulations in gait and spectral power attributed to sensory and 798 

cognitive load. Future investigations will examine event-related spectral perturbations (ERSPs) 799 

to determine if the timing of spectral power fluctuations is associated with specific phases of the 800 

gait cycle. This will add to the literature as cortical involvement in gait is already being explored 801 

in the context of steady-state and robotic-assisted treadmill walking (Gwin et al., 2011; Presacco 802 

et al., 2012; Seeber, Scherer, Wagner, Solis-Escalante, & Muller-Putz, 2014; Wagner et al., 803 

2016; Wagner et al., 2012). In future MoBI protocols, the utilization of spatially-filtered EEG 804 

signals during active movements may provide insight into the neural dynamics underlying gait 805 

adaptation. This area of research is especially relevant for applications such as 806 

neurorehabilitation, for example to decode user intentions from EEG in brain-computer 807 

interfaces (Kilicarslan, Prasad, Grossman, & Contreras-Vidal, 2013; Wagner et al., 2012). 808 

Additionally, valuable information may be gained in relation to monitoring the neural correlates 809 

underlying disease progression and rehabilitation in diseases such as Multiple Sclerosis and 810 

Parkinson’s (Boyd, Vidoni, & Daly, 2007). Finally, older adults often have difficulty adapting to 811 

increased cognitive load during locomotion and show evidence of declines in proprioceptive, 812 

vestibular and somatosensory processing (Goble, Coxon, Wenderoth, Van Impe, & Swinnen, 813 

2009; Hay, Bard, Fleury, & Teasdale, 1996), factors that may increase fall risk (Ayers, Tow, 814 

Holtzer, & Verghese, 2014; Setti, Burke, Kenny, & Newell, 2011). MoBI approaches in virtual 815 

reality environments (e.g., visual perturbations) could be employed in combination with gait 816 

training strategies to successfully challenge people’s walking ability, with the aim of reducing fall 817 

risk in vulnerable populations. 818 
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Figure 1: Representation of recording apparatus: a participant walking on the treadmill wearing 850 

an EEG cap and motion capture markers, facing the optic flow display.  851 
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 859 
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 861 

 862 

 863 

 864 



Figure 2: Response inhibition performance on the Go/No-Go task. From left to right: percentage 865 

of correct rejections (CRs) for all 16 participants during static visual field, dynamic optic flow with 866 

no perturbation (NOP) and optic flow with ML perturbation (MLP). Red markers indicate the 867 

means for each condition, with vertical bars representing standard deviations.  868 

 869 

 870 

 871 

 872 

  873 



Figure 3: Average and mean variability for stride time, stride length and step width. Top row 874 

represents means, bottom row is mean SD, for stride time (left column), stride length (center) 875 

and step width (right column) for all six experimental conditions. Open circles represent the No-876 

Task conditions, while crosses represent Task blocks. SNT = Static No Task, NOPNT = No 877 

perturbation No Task, MLPNT = Mediolateral perturbation No Task, ST = Static Task, NOPT = No 878 

perturbation Task, MLPT = Mediolateral perturbation Task. 879 
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 883 
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 885 



 886 

Figure 4: Average variability in head position, in ML (left) and AP (right) directions for all six 887 

experimental conditions. Open circles represent the No-Task conditions, while crosses 888 

represent Task blocks. SNT = Static No Task, NOPNT = No perturbation No Task, MLPNT = 889 

Mediolateral perturbation No Task, ST = Static Task, NOPT = No perturbation Task, MLPT = 890 

Mediolateral perturbation Task.  891 
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 902 

 903 



 904 

Table 1: Clusters of Independent electrocortical sources (ICs). Description and approximate 905 

location (Brodmann area and Tailarach coordinates) of cluster centroids for all clusters located 906 

in the cortex and containing ICs from more than half of the participants. 907 

 908 

 909 

Functional Area 
Brodmann 
Area 

Talairach coordinates 
(x,y,z) 

No. of subjects (S) 
and ICs 

Medial occipital lobe, lingual 
gyrus 

BA17 11, -94, -10 12 S, 14 ICs 

Right occipital BA19 47, -73, -1 11 S, 12 ICs 

Left occipital BA19 -43, -71, 14 12 S, 14 ICs 

Left superior temporal gyrus BA22 -47, -17, -6 10 S, 12 ICs 

Right inferior parietal lobule BA40 43, -34, 36 8 S, 10 ICs 

Parietal lobe, precuneus BA7 12, -62, 34 11 S, 15 ICs 

Supplementary motor area BA6 -6, -16, 45 14 S, 23 ICs 

Limbic lobe, anterior cingulate BA24 1, 25, 22 14 S, 15 ICs 

 910 

 911 

 912 

 913 

 914 

 915 



 916 

Figure 5: Clusters of electrocortical sources localized to occipital cortex (yellow), parietal cortex 917 

(inferior parietal lobule: cyan, precuneus: red) and frontal cortex (Supplementary Motor Area:  918 

purple, Anterior Cingulate Cortex: green). 919 
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 930 

 931 

 932 

 933 

 934 



 935 

Figure 6: Occipital cortex clusters. Scalp topography, dipole location (blue dots indicate the 936 

location of each IC, red dots represent the cluster centroid) and average power spectral density.  937 

 938 

 939 

 940 



 941 

Figure 7: Clusters located over temporal and parietal cortex. Scalp topography, dipole location 942 

(blue dots indicate the location of each IC, red dots represent the cluster centroid) and average 943 

power spectral density.  944 

 945 

 946 



 947 

Figure 8: Clusters located over frontal cortical areas. Scalp topography, dipole location (blue 948 

dots indicate the location of each IC, red dots represent the cluster centroid) and average power 949 

spectral density for the cluster localized to the supplementary motor area (top panel) and the 950 

anterior cingulate (bottom panel).  951 
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