
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics 

2014 

Fully Inert Subgroups of Abelian p-Groups Fully Inert Subgroups of Abelian p-Groups 

Brendan Goldsmith 
Technological University Dublin, brendan.goldsmith@tudublin.ie 

Luigi Salce 
University of Padova 

Paolo Zanardo 
University of Padova 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Goldsmith, B., Salce, L. & Zanardo, P. (2014) Fully Inert Subgroups of Abelian p-Groups, Journal of Algebra, 
Vol 419, 1 December 2014, Pages 332-349 DOI: 10.1016/j.jalgebra.2014.07.021 

This Article is brought to you for free and open access by 
the School of Mathematics at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301304213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


FULLY INERT SUBGROUPS OF ABELIAN p-GROUPS

B. GOLDSMITH, L. SALCE, P. ZANARDO

Abstract. A subgroup H of an Abelian group G is said to be
fully inert in G, if for every endomorphism φ of G, the factor group
(H + φ(H))/H is finite. This notion arises in the study of the
dynamical properties of endomorphisms (entropy). The principal
result of this work is that fully inert subgroups of direct sums of
cyclic p-groups are commensurable with fully invariant subgroups
of the direct sum.

Introduction

All groups discussed in this paper are Abelian, so the word “group”
always means an additively written “Abelian group”. Motivated by the
study of the dynamical properties of an endomorphism φ of a group, φ-
inert subgroups have been introduced in [5], according to the following

Definition 1. Let G be a group, φ : G → G an endomorphism and H
a subgroup of G. H is called φ-inert if H ∩ φ(H) has finite index in
φ(H), equivalently, if the factor group (φ(H) + H)/H is finite.

The family of all φ-inert subgroups of G obviously contains all the
φ-invariant subgroups of G, as well as the finite subgroups and the
subgroups of finite index. Passing to a “global condition”, we have the
following notion, also introduced in [5].

Definition 2. A subgroup H of a group G is said to be fully inert if
it is φ-inert for every endomorphism φ of G.

Fully inert subgroups represent a common generalization of finite
subgroups and of subgroups of finite index, as well as of fully invariant
subgroups.

Recall that two subgroups K,H of a group G are said to be commen-
surable, if both (K + H)/H and (K + H)/K are finite. Commensu-
rability is an equivalence relation; this fact was proved in [7], and also
follows readily from Proposition 1.4 of the present paper. This notion
is relevant in the investigation of the fully inert subgroups of a given
group G, since, as shown in [6], a subgroup commensurable with some
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2 B. GOLDSMITH, L. SALCE, P. ZANARDO

fully inert subgroup of G is also fully inert. Actually, a main question
in the investigation of fully inert subgroups, is whether or not every
fully inert subgroup of G is commensurable with some fully invariant
subgroup.

In two recent papers ([6] and [7]), fully inert subgroups of divisible
groups and of free groups have been investigated and characterized.
Furthermore, extending verbatim the definitions to Jp-modules, where
Jp denotes the ring of p-adic integers, fully inert submodules of torsion-
free complete Jp-modules have been characterized in [9]. It is worth
pointing out a significant difference between fully inert subgroups of
free groups and those of divisible groups. In the former case, every
fully inert subgroup is commensurable with a fully invariant subgroup
while in the latter case there exist fully inert subgroups not satisfying
this property. It happens also in the case of torsion-free Jp-modules
that fully inert submodules may fail to be commensurable with fully
invariant submodules (see [9]).

In this paper we begin the investigation of fully inert subgroups
of p-groups. The techniques used are more sophisticated than in the
divisible and free cases, reflecting the fact that fully invariant subgroups
of p-groups have a more complicated structure. Although our interest
in this work is centred on direct sums of cyclic p-groups, we will on
occasion present results for fully transitive p-groups, noting that direct
sums of cyclic p-groups are always fully transitive. Fully invariant
subgroups of fully transitive p-groups may be completely described via
the well-known classification due to Kaplansky (see [11, Theorem 25]).

After a preliminary section containing some results on commensu-
rable subgroups of p-groups and of their fully invariant subgroups, the
main body of the paper is devoted to proving that fully inert subgroups
of direct sums of cyclic p-groups are commensurable with fully invari-
ant subgroups. This result was not unexpected, but its proof is far
from straightforward and is significantly more difficult than the corre-
sponding proof in the case of torsion-free Jp-modules H, despite the
superficial resemblance of the two cases. A significant complication in
the case of p-groups is that the lattice of fully invariant subgroups is
vastly more complicated than the corresponding lattice in the torsion-
free situation, where the lattice is just the chain pαH (α ≤ ω). Indeed,
to get the result we must consider two cases, each needing quite dif-
ferent discussions and techniques. The first case, handled in Section 2,
deals with bounded p-groups, while the second case, handled in Sec-
tion 3, deals with semi-standard direct sums of cyclic p-groups, that is,
direct sums whose Ulm-Kaplansky invariants are all finite. A final step
that combines the results obtained in the two cases described above,
completes the proof.

In the final section, Section 4, we give an example of a separable
p-group containing fully inert subgroups not commensurable with any
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fully invariant subgroup. For this purpose we use a p-group constructed
by Pierce (see Theorem 15.4 in [12]), whose endomorphism ring, mod-
ulo the ideal of small endomorphisms, has a particularly simple struc-
ture.

1. Notations and preliminary results

For unexplained notations, definitions and standard results on p-
groups we refer to the classical volumes of Fuchs [8].

Two subgroups K,H of a group G are said to be commensurable, if
both (K + H)/H and (K + H)/K are finite. If H and K are commen-
surable, we use the notation H ∼c K.

We will show that two subgroups of a p-group are commensurable
if and only if they contain a common summand of finite index. We
start by considering the case when one group contains the other as a
subgroup of finite index; then the following result by Pierce is available
(see Lemma 16.5 in [12]).

Proposition 1.1. Let G be an arbitrary p-group and H a subgroup of
G such that G/H is finite. Then G decomposes as G = F ⊕C, with F
finite, and H = (F ∩H)⊕ C.

An immediate consequence of Proposition 1.1 is the following

Corollary 1.2. Let C be a class of p-groups containing the finite groups
and closed under taking direct summands and finite direct sums. Let
H be a subgroup of finite index of the p-group G. Then H ∈ C if and
only if G ∈ C.

Classes of p-groups satisfying the conditions of the preceding corol-
lary are, for instance, the class of totally projective p-groups (of fixed
length) and the class of torsion-complete groups.

We need now a preparatory lemma.

Lemma 1.3. Let X = F1⊕C1 = F2⊕C2 be two direct decompositions
of the p-group X, with F1 and F2 finite. Then C1 = F ′

1 ⊕ C and
C2 = F ′

2 ⊕ C, with F ′
1 and F ′

2 finite.

Proof. Applying Proposition 1.1 with G = X and H = C1 ∩ C2, we
obtain X = F ⊕ C and C1 ∩ C2 = (F ∩ C1 ∩ C2) ⊕ C. Thus C
is a summand of both C1 and C2, and, clearly, the complements are
finite. ¤

We can now prove the announced result on commensurable sub-
groups of p-groups.

Proposition 1.4. Let G be a p-group, and H, K two subgroups of G.
Then H is commensurable with K if and only if H = F ⊕ C and
K = F ′ ⊕ C, where F and F ′ are finite.
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Proof. Assume that H ∼c K. Applying Proposition 1.1 twice, firstly
to H + K and H, and then to H + K and K, we obtain two direct
decompositions H + K = F1 ⊕ C1 = F2 ⊕ C2, where F1, F2 are finite
and H = (F1 ∩H)⊕ C1, K = (F2 ∩K)⊕ C2. Applying Lemma 1.3 to
X = H +K, we get H = (F1∩H)⊕F ′

1⊕C and K = (F2∩K)⊕F ′
2⊕C.

Setting F = (F1 ∩H)⊕F ′
1 and F ′ = (F2 ∩H)⊕F ′

2, we get the desired
decompositions. The converse is obvious. ¤

Note that the preceding proposition readily implies that commensu-
rability is an equivalence relation.

The following well-known fact will be used repeatedly in our discus-
sion; it has been previously used in [4].

Lemma 1.5. Suppose that G = A ⊕ B and X is a fully invariant
subgroup of A. Then there is a subgroup C of B such that X ⊕ C is
fully invariant in G.

Proof. Let C = 〈δ(x) : x ∈ X, δ ∈ Hom(A,B)〉. We claim that
(i) γC ⊆ X for all γ ∈ Hom(B, A);
(ii) βC ⊆ C for all β ∈ End(B).
Assuming for the moment that we have established these claims,

consider the subgroup X ⊕ C of G. If ∆ =
( α γ

δ β

)
is an arbitrary

endomorphism of G (with the usual conventions), then ∆(X ⊕ C) ⊆
(αX + γC)⊕ (δX + βC). Clearly αX ⊆ X by the full invariance of X
in A and δX ⊆ C by the definition of C. The claims (i) and (ii) above
then establish the full invariance of X ⊕ C in G.

To establish the first claim, note that if c ∈ C, then c =
∑

δi(xi) for
some xi ∈ X, δi : A → B. But then γ(c) = γ(

∑
δi(xi)) =

∑
γδi(xi)

and γδi ∈ End(A). Thus γδi(xi) ∈ X since the latter is fully invariant
in A.

For the second claim, it suffices to note, using the same notation
as above, that βγi ∈ Hom(A,B) so that β(c) =

∑
βγi(xi) ∈ C by

definition. ¤
Let G be a direct sum of cyclic p-groups. We fix a standing notation,

namely, we write

G =
⊕

0<n<κ

Gn

where κ is either a finite ordinal or ω, and Gn is a direct sum of λn

copies of Z(pcn), where 0 < c1 < · · · < cn < . . . , and λn (n < κ) is a
nonzero cardinal. Thus, for 0 < n < κ, we have

Gn =
⊕

α<λn

Zeα,n
∼=

⊕

λn

Z(pcn),

where the eα,n are fixed generators of Gn of order pcn .
The next lemma was proved in [1], with a slightly different formu-

lation; see [1, Theorem 2.8]. It will be repeatedly applied throughout
this paper.
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Lemma 1.6. Let G =
⊕

0<n<κ

Gn be as above, and consider its subgroup

G′ =
⊕

n∈A Gn, where ∅ 6= A ⊆ κ. Then L is a fully invariant subgroup

of G′ if and only if L =
⊕

n∈A ph(n)Gn, where the integers h(n) satisfy
the conditions

(1) h(n) ≤ cn for all n > 0 in A;
(2) h(i) ≤ h(n) ≤ h(i) + cn − ci for all 0 < i < n in A.

2. The case of bounded p-groups

In this section we examine the case when the p-group G is bounded.
Hence, in the above notation, κ = k + 1 is finite, and we may write

G =
k⊕

n=1

Gn. We assume that G is not finite, otherwise our results are

devoid of interest.
Denote by πn the canonical projections of G onto Gn and by πα,n the

projections onto Zeα,n, for α < λn. The n-support of z ∈ G is defined
by Suppn(z) = {α < λn : πα,n(z) 6= 0}.

Let H be a fully inert subgroup of G. We assume that H is not
finite. We introduce an ad hoc notation: for n > 0, let

Xn = Xn(H) = {α < λn : πα,n(z) 6= 0, for some z ∈ H}.
Of course Xn =

⋃
z∈H Suppn(z). Note that H ⊆ ⊕

n≤k, α∈Xn
Zeα,n.

Since H is not finite, it follows that there is at least one m ≤ k such
that Xm is an infinite set.

It is also clear that, for each α ∈ Xn, there is y ∈ H such that
πα,n(y) = pcn−1eα,n.

To avoid cumbersome repetitions, we also introduce a terminology
for endomorphisms: we say that φ ∈ End(G) is the standard endomor-
phism that extends the assignments φ : eα,n 7→ gα, for suitable n ≤ k,
α ∈ V ⊆ λn, and gα ∈ G, if φ annihilates all the other generators eβ,i

of G (i ≤ k, β < λi).

The following technical lemma will be crucial for our discussion,
specifically in proving Steps 1 and 5 of Theorem 2.2.

Lemma 2.1. In the above notation, let Xn be infinite and pick any
infinite subset Y of Xn. Then there exist countably many distinct βi ∈
Y and zi ∈ H (i < ω) such that

(1) βi ∈ Suppn(zi) and βi /∈ Suppn(zj) for every j < i < ω;
(2) if g(i) is the minimum exponent such 0 6= pg(i)eβi,n ∈ πβi,nH,

then πβi,n(zi) = pg(i)eβi,n;
(3) if j < i, and πβj ,n(zi) = upteβj ,n, t a suitable integer, u coprime

with p, then g(j) ≤ t.

Proof. We construct the sequence {zi}i<ω by induction. Pick any β0 ∈
Y ⊆ Xn, and choose z0 ∈ H such that πβ0,n(z0) = pg(0)eβ0,n 6= 0, and
g(0) is minimum in the sense of (2). Assume that z0, . . . , zi−1 have
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been constructed. Choose βi ∈ Y such that βi /∈ Suppn(zj) for every
j < i < ω; this is possible, since Y is infinite. Then pick zi ∈ H
such that πβi,n(zi) = pg(i)eβi,n 6= 0, and g(i) is minimum. Take any
j < i, and let πβj ,n(zi) = upteβj ,n, t a suitable integer, u coprime with
p. Then g(j) ≤ t since, by induction, g(j) was the minimum exponent
appearing in πβj ,nH, and u is a unit of Jp. The element zi satisfies the
conditions (1)–(3). ¤

The following theorem deals with the special case when all the Gn

are infinite. It is the crucial stage in deriving the final theorem of this
section.

Theorem 2.2. Let H be a fully inert subgroup of a bounded p-group

G =
k⊕

n=1

Gn, where each Gn is an infinite direct sum of copies of Z(pcn)

and 0 < c1 < · · · < ck. Then H is commensurable with a fully invariant
subgroup of G.

Proof. We may assume that H is infinite, since finite subgroups are
commensurable with the fully invariant subgroup {0}. We adopt the
notation and conventions that precede the statement. In particular,
Gn =

⊕
α<λn

Zeα,n
∼= ⊕

Z(pcn); by hypothesis, each λn is infinite.
Now we proceed by steps.

Step 1. Let m ≤ k be minimal such that Xm is an infinite set. Then
λn \Xn is a finite set, for every n ≥ m.

Proof. Assume, for a contradiction, that λn \ Xn is infinite, for some
n ≥ m. Take infinitely many αi < λn, i < ω, with αi /∈ Xn. Say
A = 〈eαi,n : i < ω〉; note that A ∩H = 0. Since Xm is infinite, we may
construct sequences {βi}i<ω ⊆ Xm, and {zi}i<ω ⊆ H as in Lemma 2.1.

Consider the standard endomorphism φ of G that extends the as-
signments

φ : eβi,m 7→ pcn−cmeαi,n, i < ω.

We verify that φH ⊇ pcn−1A. Actually, we will show that pcn−cm+g(i)eαi,n

is in φH for every i < ω, and so we are then finished, since g(i) ≤
cm − 1. The verification is by induction on i < ω. If i = 0, then
φ(z0) = φ(pg(0)eβ0,m), since βi /∈ Suppn(z0) for every i > 0; it follows
that φ(pg(0)eβ0,m) = pcn−cm+g(0)eα0,n ∈ φH. If i > 0, then

φ(zi) = φ(pg(i)eβi,m) +
∑
j<i

φ(ujp
tjeβj ,m) =

pcn−cm(pg(i)eαi,n +
∑
j<i

ujp
tjeαj ,n),

for suitable tj ≥ g(j), uj units of Jp, again since βi /∈ Suppn(zj) for
every j < i. By induction pcn−cm+g(j)eαj ,n ∈ φH for any j < i, and

therefore we get pcm−cn+g(i)eαi,n ∈ φH, as required.
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Since pcn−1A ∩H = 0, the group (pcn−1A + H)/H is infinite, while
(φH + H)/H is finite, since H is fully inert – a contradiction. ¤

If m is minimal such that Xm is infinite, then H = F ⊕ H1, where
H1 ⊆ Gm ⊕ · · · ⊕ Gk, and F is a finite group. Thus H1 ∼c H and so
H1 is also fully inert. Then, replacing H by H1 if necessary, we may
safely assume that H ⊆ Gm ⊕ · · · ⊕ Gk. Moreover, in view of Step 1,
we may also assume that λn = Xn for m ≤ n ≤ k. It suffices to add to
H the finitely many elements eα,n, whenever α ∈ λn \Xn (m ≤ n ≤ k),
and note that the resulting enlarged subgroup is again fully inert and
commensurable with H.

Step 2. For m ≤ n ≤ k, let Vn = 〈pcn−1eα,n : α < λn〉 = pcn−1Gn.
Then the Z(p)-vector space (Vn + H)/H is finite.

Proof. Recall that we may assume λn = Xn for m ≤ n ≤ k and so Xn =
λn is infinite. Assume, for a contradiction, that (Vn +H)/H is infinite.
Then there exist countably many distinct pcn−1eαi,n ∈ Vn (i < ω) that
are linearly independent modulo H. Let W = 〈pcn−1eαi,n ∈ Vn : i < ω〉;
note that W ∩H = 0. Since Xn is infinite, applying Lemma 2.1 to Xm

and arguing as in the proof of Step 1, we may find an endomorphism
φ of G such that φH ⊇ W . Since W is infinite and W ∩H = 0, as in
Step 1 we conclude that (φH + H)/H is infinite – a contradiction. ¤

From the above discussion we conclude that for m ≤ n ≤ k, there
exist nonnegative integers f(n) ≤ cn − 1, such that

|(pf(n)Gn + H)/H| < ∞, m ≤ n ≤ k.

We assume that f(n) is the minimum integer that satisfies this finite-
ness property.

Let L =
⊕

m≤n≤k pf(n)Gn; clearly, we also have |(L + H)/H| < ∞.

Step 3. Let K = 〈eβi,n : i < ω〉 ⊆ Gn where βi < λn are distinct.
If (ptK + H)/H is finite for some t < cn, then also (ptGn + H)/H is
finite.

Proof. Let K0 = 〈eβ0,n, eβ1,n, . . . , eβs,n〉 ⊆ Gn be such that (ptK +
H)/H ⊆ (ptK0 + H)/H. In particular, pteβi,n ∈ ptK0 + H for all
i < ω. Assume, for a contradiction, that (ptGn + H)/H is infinite.
Then it contains a countable subgroup and so there exist countably
many distinct αi < λn (i < ω) such that (T + H)/H is infinite, where
T = 〈pteαi,n : i < ω〉.

Consider the standard endomorphism φ of G that extends the as-
signments

φ : eβi,n 7→ eαi,n, i < ω.

Then pteαi,n = φ(pteβi,n) ∈ φ(ptK0) + φH for all i < ω. It follows that
T ⊆ φ(ptK0) + φH. Since φ(ptK0) is finite and H is fully inert, it
follows that (φ(ptK0) + φH + H)/H is finite, hence also (T + H)/H is
finite – a contradiction. ¤
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We want to show that L =
⊕

m≤n≤k pf(n)Gn is a fully invariant
subgroup of G′ =

⊕
m≤n≤k Gn. By Lemma 1.6, it suffices to show that

the integers f(n) satisfy conditions (1) and (2) of that lemma. Actually,
condition (1) is automatic, since f(n) < cn, by our choice of the f(n).
The next step verifies that condition (2) also holds.

Step 4. If m ≤ n < n + r ≤ k, then f(n) ≤ f(n + r) ≤ f(n) +
cn+r − cn.

Proof. Since the λn are all infinite, the cardinal ω is contained in both
λn and λn+r. We show firstly that f(n) ≤ f(n + r). Consider the
standard φ ∈ End(G) such that φ : ei,n+r 7→ ei,n, i < ω. Let K =
〈ei,n+r : i < ω〉 ⊆ Gn+r; since pf(n+r)K ⊆ H, we get pf(n+r)φK =
〈pf(n+r)ei,n : i < ω〉 ⊆ φH. Then (pf(n+r)φK + H)/H is finite, since H
is fully inert. Then Step 3 shows that (pf(n+r)Gn +H)/H is also finite.
From the minimality of f(n) it follows that f(n) ≤ f(n + r).

Secondly, we show that f(n + r) ≤ f(n) + cn+r − cn. Consider the
standard ψ ∈ End(G) such that ψ : ei,n 7→ pcn+r−cnei,n+r, i < ω. Then
ψH contains 〈pf(n)+cn+r−cnei,n+r : i < ω〉. Arguing as above, we see that
(pf(n)+cn+r−cnGn+r + H)/H is finite. From the minimality of f(n + r)
it follows that f(n + r) ≤ f(n) + cn+r − cn. ¤

Now we prove that H ∼c L. Since we have observed above that
(H + L)/H is finite, the commensurability follows from the next step.

Step 5. (H + L)/L is a finite group.

Proof. It suffices to show that (πnH + pf(n)Gn)/pf(n)Gn is finite for all
m ≤ n ≤ k. Indeed

(H + L)/L ⊆ (
⊕

m≤n≤k

πnH + L)/L =
⊕

m≤n≤k

(πnH + pf(n)Gn)/pf(n)Gn.

We assume, for a contradiction, that (πnH + pf(n)Gn)/pf(n)Gn is infi-
nite, for some m ≤ n ≤ k. Then (πnH + pf(n)Gn)/pf(n)Gn contains a
countable group, say 〈yi + pf(n)Gn : i < ω〉, yi ∈ πnH. In particular,
there must be an infinite subset Y of Xn such that, for all α ∈ Y , there
exists g(α) < f(n) such that pg(α)eα,n ∈ πα,nH. We apply Lemma
2.1 to the set Y , getting countably many distinct βi ∈ Y and zi ∈ H
(i < ω) satisfying conditions (1)–(3) of that lemma. Note that, by the
definition of Y , g(i) < f(n) for all i < ω.

Consider the standard endomorphism φ of G such that

φ : eβi,n 7→ eβi,n, i < ω.

An argument, similar to that in the proof of Step 1 (under the present
circumstances cm = cn, βi = αi), shows that all the pg(i)eβi,n lie in
φH. It follows that (〈pf(n)−1eβi,n : i < ω〉+ H)/H is finite. Using Step
3, we may conclude that (pf(n)−1Gn + H)/H is finite, contrary to the
minimality of f(n). We have reached the desired contradiction. ¤
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The final step in our argument is:

Step 6. If m > 1 and s < m, then f(m) ≥ cs.

Proof. Recall that H ∩Gs = 0. Pick infinitely many distinct ei,m ∈ Gm

and ei,s ∈ Gs, i < ω. Consider the standard endomorphism φ such that
φ : ei,m 7→ ei,s. Then φH ⊇ pf(m)

⊕
i<ω Zei,s. Since H is fully inert and

H ∩⊕
i<ω Zei,s = 0, this is possible only if pf(m)

⊕
i<ω Zei,s = 0, i.e.,

f(m) ≥ cs. ¤
An immediate consequence of Step 6 and Lemma 1.6, is that L =

{0} ⊕ L is fully invariant in the whole group G =
k⊕

n=1

Gn. Then H is

commensurable with a fully invariant subgroup of G, as required. ¤
Before we give the final theorem of this section, we make an elemen-

tary observation: if H ⊆ X, X is a direct summand of G, and H is
fully inert in G, then H is fully inert in X.

Theorem 2.3. Let H be a fully inert subgroup of a bounded p-group
G. Then H is commensurable with a fully invariant subgroup of G.

Proof. Assume H is fully inert in G =
k⊕

n=1

Gn = F ⊕ G̃, where all the

homogeneous components of F are finite (and so F itself is finite) while
those of G̃ are all of infinite rank. Now if H1 = F + H, then H ∼c H1

and so H1 is fully inert in G. Furthermore H1 = H1 ∩ (F ⊕ G̃) =
F ⊕ (H1 ∩ G̃); set H2 = H1 ∩ G̃. Note that H2 ∼c H1, so H2 is fully
inert in G and as observed above, H2 is fully inert in G̃.

Now, applying Theorem 2.2 to H2, we get that H2 ∼c K̃, where K̃
is fully invariant in G̃. Now, using Lemma 1.5, we can find a fully
invariant subgroup K of G such that K = C ⊕ K̃ for some subgroup
C ⊆ F . Note that K̃ ∼c K and as

H ∼c H1 ∼c H2 ∼c K̃ ∼c K,

we have that H is commensurable with a fully invariant subgroup of
G. ¤

3. The general case

As usual, if G is a p-group and u = (σn)n≥0 is an increasing sequence
of ordinals or symbols ∞, G(u) denotes the fully invariant subgroup of
G defined as follows:

G(u) = {g ∈ G | h(png) ≥ σn, n ≥ 0}.
Let G be a fully transitive p-group, H an arbitrary subgroup of G.

Consider the increasing sequence of ordinals u(H) = (σn)n≥0 defined
by

σn = min{h(png) | g ∈ H}.
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Obviously the inclusion H ⊆ G(u(H)) holds.

Let H be an arbitrary subgroup of a p-group G. We denote by H∗

the intersection of the fully invariant subgroups of G containing H;
clearly, H∗ is the smallest fully invariant subgroup of G containing H.
We call it the fully invariant hull of H.

It is easy to show that

H∗ = 〈φ(x) : φ ∈ End(G), x ∈ H〉 =
∑

φ∈End(G)

φH.

Lemma 3.1. If G is a fully transitive p-group and H ⊆ G, then H∗ =
G(u(H)).

Proof. The inclusion H∗ ⊆ G(u(H)) is obvious, as G(u(H)) fully in-
variant in G and contains H. For the reverse inclusion, consider the
sequences U(H) and U(H∗). Clearly U(H) ≥ U(H∗), where the order-
ing is taken pointwise; hence G(U(H)) ⊆ G(U(H∗)). However, as G is
fully transitive and H∗ is fully invariant in G, it follows from Kaplan-
sky’s classification [11, Theorem 25] that H∗ = G(U(H∗)) ⊇ G(U(H)),
as required. ¤

We prove two general lemmas on fully inert subgroups that have
some independent interest. They will be needed in the discussion that
follows.

Lemma 3.2. Let H be a fully inert subgroup of G = A ⊕ B. Then
H1 = H ∩ A is fully inert in A.

Proof. Take any φ ∈ End(A) and extend it to φ̄ ∈ End(G) by setting
φ̄B = 0. Then φ̄H ⊇ φH1, and we get

(φ̄H + H)/H ⊇ (φH1 + H)/H ∼= φH1/(H ∩ φH1) = φH1/(H1 ∩ φH1).

Then (φH1 +H1)/H1
∼= φH1/(H1∩φH1) is finite, since H is fully inert.

We conclude that H1 is fully inert in A, since φ was arbitrary. ¤
Lemma 3.3. Let H be a fully inert subgroup of a p-group G =

⊕
β∈I Gβ,

where I is a totally ordered set of indices, and let πβ : G → Gβ (β ∈
I) be the canonical projections. Then there exists t ∈ I such that
(
∑

β≥t πβH + H)/H is finite.

Proof. For convenience, we introduce the notation πtH =
∑

β≥t πβH.

Assume, for a contradiction, that (πtH + H)/H is infinite for every
t ∈ I. For every n > 0 we will construct, by induction, the following
sequences

(i) indices t1 < t2 < · · · < tn < . . . in I;
(ii) elements an ∈ G (n > 0), where an ∈ πtnH, and an + H /∈

〈a1 + H, . . . , an−1 + H〉 for all n > 0;
Let us first construct a1, t1. Take any t1 ∈ I; since (πt1H + H)/H is

infinite, there exists an element a1 ∈ G such that a1 ∈ πt1H \H.
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Assume that for i ≤ n, the families t1, . . . , tn ∈ I, ai ∈ πtiH have
been constructed. Observe that (πtn+1H + 〈a1, . . . , an〉 + H)/H is in-
finite, since it contains the infinite group (πtn+1H + H)/H. Hence
there exists an index tn+1 > tn and an element an+1 ∈ G such that
an+1 ∈ πtn+1H and an+1 + H /∈ 〈a1 + H, . . . , an + H〉.

The new families obtained by adding tn+1, an+1 to the given ones,
satisfy conditions (i) and (ii).

Let T = 〈an : n > 0〉. Clearly the group (T + H)/H is infinite, since
an + H /∈ 〈a1 + H, . . . , an−1 + H〉 for all n > 0.

Now we set ψ =
∑

n>0 πtn , and observe that this is a well-defined
endomorphism of G. Then (ψH+H)/H contains (T+H)/H, hence it is
infinite. But this is impossible, since H is fully inert – a contradiction.

¤

Let now G be an unbounded direct sum of cyclic p-groups. We
maintain the notation of the preceding section, so G =

⊕
0<n<κ

Gn, each

Gn =
⊕

α<λn
Zeα,n is a direct sum of copies of Z(pcn), 1 ≤ c1 < c2 <

· · · < cn < . . . , and the λn are suitable cardinals. Here κ = ω, since G
is unbounded.

Note that we may order lexicographically the pairs of indices (n, α)
of the eα,n, where n > 0, α < λn; hence we get a totally ordered set
of indices I, and we can write G =

⊕
(n,α)∈I Zeα,n, where I is a totally

ordered set. Accordingly, we denote by π(n,α) the canonical projections
π(n,α) : G → Zeα,n.

For each t < ω, let Gt =
⊕

n≥t Gn, and G<t =
⊕

1≤i<t Gi. For H

any subgroup of G, define H t = H ∩ Gt and denote by H∗t the fully
invariant hull of H t in Gt. Recall that, by Lemma 3.2, H t is fully inert
in Gt whenever H is fully inert in G.

Note that H∗t ⊆ H∗ ∩Gt for every t > 0.

Corollary 3.4. Let the notation be as above. If H is a fully inert
subgroup of G, there exists a t > 0 such that, for every r ≥ t, we have
Hr =

⊕
n≥r πnH =

⊕
n≥r,α<λn

π(n,α)H.

Proof. In view of Lemma 3.3, there exists an index (t, α) ∈ I, where
t > 0, α < λt, such that (

⊕
β≥(t,α) πβH + H)/H is finite. Analogously

to Lemma 3.3, we use the notation π(t,α)H =
⊕

β≥(t,α) πβH.

Since (π(t,α)H + H)/H ⊇ (πγH + H)/H whenever γ ≥ (t, α), and⋂
γ≥(t,α) πγH = 0, we conclude that (πγH + H)/H = 0, for some γ ≥

(t, α). Since the order of the indices is lexicographic, we readily see that,
without loss of generality, we may assume α = 0 and γ = (t, 0). Then
we get π(t,0)H ⊆ H ∩Gt = H t; moreover H t ⊆ ⊕

β≥(t,0) πβH = π(t,0)H

is obvious. Since
⊕

n≥t πnH ⊆ ⊕
n≥t,α<λn

π(n,α)H = π(t,0)H, we get

H t =
⊕

n≥t πnH =
⊕

n≥t,α<λn
π(n,α)H.
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The general formula follows since (π(t,0)H + H)/H = 0 implies
(πγH + H)/H = 0, for any index γ ≥ (t, 0), and we can repeat the
above argument. ¤

We prove a result, of independent interest, on fully invariant hulls.
As a consequence, we can derive Lemma 3.6 which is a crucial compo-
nent of the proof of the key theorem, Theorem 3.7.

Proposition 3.5. Let G =
⊕

j∈J Zej be a direct sum of cyclic p-groups,

and consider the subgroup H =
⊕

j∈J πjH of G, where πj denotes the
projection of G onto Zej. Then the fully invariant hull H∗ of H satisfies
the equality H∗ =

⋃
φ∈End(G) φH.

In particular, for every element a ∈ H∗ there exist an element g ∈ H
and an endomorphism φ of G such that φ(g) = a.

Proof. To get the equality
∑

φ∈End(G) φH = H∗ =
⋃

φ∈End(G) φH, we

will prove that, given arbitrary x, y ∈ H and φ, ψ ∈ End(G), there
exist z ∈ H and α ∈ End(G) such that φ(x) + ψ(y) = α(z). Let us
consider the supports X = Supp(x) and Y = Supp(y), which are finite
subsets of J . We distinguish two cases.

If X∩Y = ∅, let z = x+y and define α by extending the assignments:
α(ej) = φ(ej), if j ∈ X, α(ej) = ψ(ej), if j ∈ Y , and α(ej) = 0, if
j /∈ X ∪ Y .

Then α(x + y) = α(x) + α(y) = φ(x) + ψ(y), as desired.
Assume now that X ∩ Y = I is non empty; let X ′ = X \ I and

Y ′ = Y \ I. Note that, since Zei is a cyclic p-group, for each i ∈ I
either π(x) = rπi(y), for some r ∈ Z, or sπi(x) = πi(y), for some s ∈ Z.
Therefore we can split I as I = I1∪I2, where I1∩I2 = ∅, πi(x) = riπi(y)
for i ∈ I1, and πi(y) = siπi(x) for i ∈ I2, for suitable ri, si ∈ Z. Let
x′ =

∑
i∈X′ πi(x) and y′ =

∑
i∈Y ′ πi(y), and set

z = x′ + y′ +
∑
i∈I1

πi(y) +
∑
i∈I2

πi(x).

Note that all the above summands of z are elements of H, since H =⊕
j πjH, so also z ∈ H.
We define the endomorphism α of G by the assignments:
(1) α(ej) = φ(ej) if j ∈ X ′, α(ej) = ψ(ej), if j ∈ Y ′, α(ej) = 0 if

j /∈ X ∪ Y ;
(2) α(ei) = (riφ + ψ)(ei) for i ∈ I1, α(ei) = (φ + siψ)(ei), for i ∈ I2.
Then we get

α(z) = α(x′) + α(y′) +
∑
i∈I1

απi(y) +
∑
i∈I2

απi(x) =

φ(x′) + ψ(y′) +
∑
i∈I1

(riφ + ψ)πi(y) +
∑
i∈I2

(φ + siψ)πi(x) =

φ(x′)+ψ(y′)+φ
∑
i∈I1

riπi(y)+ψ
∑
i∈I1

πi(y)+φ
∑
i∈I2

πi(x)+ψ
∑
i∈I2

siπi(x) =
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φ(x′) + φ
∑
i∈I1

πi(x) + φ
∑
i∈I2

πi(x) + ψ(y′) + ψ
∑
i∈I1

πi(y) + ψ
∑
i∈I2

πi(y) =

φ
∑
i∈X

πi(x) + ψ
∑
i∈Y

πi(y) = φ(x) + ψ(y)

as desired.
Once we have H∗ =

⋃
φ∈End(G) φH, the final assertion of our state-

ment is obvious. ¤
Lemma 3.6. Let G =

⊕
n Gn be a direct sum of cyclic p-groups, where

Gn =
⊕

α<λn
Zeα,n, and let H be a fully inert subgroup of G. Then

there exists an integer t > 0 such that, for any s ≥ t and every element
a ∈ H∗s, there exist an element g ∈ Hs and an endomorphism φ of Gs

such that φ(g) = a.

Proof. By Corollary 3.4, there exists an integer t > 0 such that

Hs =
⊕

n≥s,α<λn

π(n,α)H,

for any s ≥ t. Since Hs is fully inert in Gs, we are in the position to
apply Proposition 3.5 to Gs, Hs and H∗s, reaching the desired conclu-
sion. ¤

We remark that, in the statement of the preceding lemma, we may
safely replace φ ∈ End(Gt) by φ ∈ End(G), as every endomorphism of
Gt trivially extends to an endomorphism of G.

The basic idea in the proof of the next theorem is the same as in
Lemma 3.3, but the argument is considerably more delicate.

Theorem 3.7. Let H be a fully inert subgroup of the direct sum of
cyclic p-groups G. Then there exists t > 0 such that (H∗t + H)/H is
finite.

Proof. Assume, for a contradiction, that (H∗t + H)/H is infinite for
every t > 0. For every n > 0 we will construct, by induction, the
following families, increasing by inclusion:

(i) integers t1 < t2 < · · · < tn < tn+1;
(ii) elements a1, a2, . . . , an ∈ H∗, where ai ∈ H∗ti , and ai + H /∈

〈a1 + H, . . . , ai−1 + H〉 for all i ≤ n;
(iii) g1, . . . , gn ∈ H, where gi ∈ H ti ;
(iv) ψ1, . . . , ψn ∈ End(G), such that Supp(ψi) ⊆ Gti ⊕ · · · ⊕ Gti+1−1

and ψi(gi) = ai, for all i ≤ n.
Let t > 0 be the integer furnished by Lemma 3.6.
We start with t1 = t, so that H∗t1 = H∗t. Since (H∗t + H)/H is

infinite, we may pick a1 ∈ H∗t \H. Now we apply Lemma 3.6 for the
case s = t, to find an element g1 ∈ H t and an endomorphism φ1 of Gt

such that φ1(g1) = a1. Say g1 ∈ Gt ⊕ · · · ⊕Gt2−1 for some t2 > t1 = t,
and let ψ1 be the endomorphism of Gt which coincides with φ1 on
Gt ⊕ · · · ⊕Gt2−1, and vanishes elsewhere.
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Assume that for i ≤ n, the families t1, . . . , tn, tn+1 ∈ Z, ai ∈ H∗ti ,
gi ∈ H ti and ψi ∈ End(G) satisfying the conditions (i)–(iv), have been
constructed.

Observe that (H∗tn+1 + 〈a1, . . . , an〉+ H)/H is infinite, since it con-
tains the infinite group (H∗tn+1 + H)/H. Hence there exists an+1 ∈
H∗tn+1 such that an+1 + H /∈ 〈a1 + H, . . . an + H〉. We apply Lemma
3.6 for the case s = tn+1. We may find gn+1 ∈ H tn+1 and φn+1 ∈
End(Gtn+1) such that φn+1(gn+1) = an+1. Say gn+1 ∈ Gtn+1 ⊕ · · · ⊕
Gtn+2−1, for some integer tn+2 > tn+1, and let ψn+1 be the endomor-
phism of G which coincides with φn+1 on Gtn+1 ⊕ · · · ⊕ Gtn+2−1, and
vanishes elsewhere. Note that, by construction, the endomorphisms
ψn+1 and ψi, i ≤ n have disjoint supports.

The new families, obtained adding tn+2, an+1, gn+1, ψn+1 to the given
ones, satisfy conditions (i)–(iv).

Let T = 〈an : n > 0〉. Clearly the group (T + H)/H is infinite, since
an + H /∈ 〈a1 + H, . . . , an−1 + H〉 for all n > 0.

Now we set ψ =
∑

n>0 ψn, and observe that this is a well defined en-
domorphism of G, since, by construction, the ψn have pairwise disjoint
supports. Then (ψH + H)/H contains (T + H)/H, hence it is infinite.
But this is impossible, since H is fully inert – a contradiction. ¤
Corollary 3.8. Let the notation be as above. If H is a fully inert
subgroup of G, there exists a t > 0 such that

H t =
⊕
n≥t

πnH = H∗t

In particular, we get the direct decomposition H = H1 ⊕ H∗t, where
H1 = H ∩G<t.

Proof. In view of Theorem 3.7 and Corollary 3.4, there exists t > 0
such that (H∗t + H)/H is finite and Hr =

⊕
n≥r πnH for every r ≥ t.

From the descending chain of finite groups

(H∗t + H)/H ⊇ (H∗t+1 + H)/H ⊇ · · · ,

and
⋂

n≥t H
∗n = 0, we conclude that (H∗s + H)/H = 0, for some

s ≥ t. Without loss of generality, we assume that s = t. Then we get
H∗t ⊆ H ∩Gt = H t =

⊕
n≥t πnH ⊆ H∗t.

Finally, since G<t ⊕ ⊕
n≥t πnH ⊇ H, the modular law yields the

direct decomposition H = H1⊕
⊕

n≥t πnH = H1⊕H t = H1⊕H∗t. ¤
We note that H1 = H ∩G<t is a fully inert subgroup of the bounded

group G<t, by Lemma 3.2.

Theorem 3.9. A fully inert subgroup H of a semi-standard p-group G
is commensurable with a fully invariant subgroup of G.

Proof. By Corollary 3.8, H = H1 ⊕ H∗t for a suitable t > 0, where,
due to the hypothesis that G is semi-standard, H1 is finite. Since H∗t
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is fully invariant in Gt, by Lemma 1.5 there exists a finite subgroup
C of G<t such that A = C ⊕ H∗t is fully invariant in G, so H∗t is
commensurable with A. Since H∗t has finite index in H, we conclude
that also H is commensurable with A. ¤

In order to prove the general result, we need to apply Lemma 1.6
several times. For the convenience of the reader, we recall the content
of that lemma: the subgroup L =

⊕
n∈A ph(n)Gn of G is fully invariant

in G′ =
⊕

n∈A Gn (∅ 6= A ⊆ κ) if and only if the integers h(n) satisfy
the conditions

(1) h(n) ≤ cn for all n > 0 in A;
(2) h(i) ≤ h(n) ≤ h(i) + cn − ci for all 0 < i < n in A.

Theorem 3.10. A fully inert subgroup H of a direct sum of cyclic
p-groups G is commensurable with a fully invariant subgroup of G.

Proof. By Theorem 2.3 we may assume that G is unbounded. We adopt
the previous notation. By Corollary 3.8, we have H = H1 ⊕ H∗t, for
some t > 0, where H1 = H∩G<t is fully inert in the bounded group G<t,
by Lemma 3.2. By Theorem 2.3 it follows that H1 is commensurable
with a fully invariant subgroup of G<t, say L =

⊕
0<i<t p

f ′(i)Gi, where
the f ′(i) satisfy the conditions (1), (2) of Lemma 1.6, for 0 < i < t. On
the other hand, H∗t is fully invariant in Gt, hence H∗t =

⊕
n≥t p

f(n)Gn,
where the f(n) satisfy conditions (1), (2) of Lemma 1.6, for t ≤ n < ω.

Clearly H ∼c L ⊕ H∗t, hence, to reach the desired conclusion, it
suffices to show that the subgroup

H ′ = L⊕H∗t =
⊕
0<i<t

pf ′(i)Gi ⊕
⊕
n≥t

pf(n)Gn,

which is fully inert in G since it is commensurable with H, is commen-
surable with a fully invariant subgroup of G.

Step 1. If pf ′(s)Gs is infinite, for some s < t, then f ′(s) ≤ f(n) ≤
f ′(s) + cn − cs for almost all n ≥ t.

Proof. For all n ≥ t we pick e0,n ∈ Gn. Since λs contains ω, we may
pick infinitely many distinct en,s ∈ Gs, t ≤ n < ω.

Consider the standard endomorphism φ of G such that φ : e0,n 7→
en,s (n ≥ t). Let X = 〈pf(n)en,s : n ≥ t〉. Then φH ′ ⊇ X, and so
(X +H ′)/H ′ ⊆ (φH ′+H ′)/H ′ is finite, since H ′ is fully inert. Assume
that f(n) < f ′(s) if and only if n ∈ B (where B might be empty). Since

(X + H ′)/H ′ ∼=
⊕
n∈B

Z(pf ′(s)−f(n)),

we readily conclude that B is a finite set, i.e., f(n) ≥ f ′(s) for almost
all n ≥ t.

Consider now the standard endomorphism ψ such that ψ : en,s 7→
pcn−cse0,n (n ≥ t). Let Z = 〈pf ′(s)+cn−cse0,n : n ≥ t〉; then (Z +
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H ′)/H ′ ⊆ (ψH ′ + H ′)/H ′ is finite. Assume that f(n) > f ′(s) + cn− cs

if and only if n ∈ C. Since

(Z + H ′)/H ′ ∼=
⊕
n∈C

Z(pf(n)−f ′(s)−cn+cs),

we conclude that C is finite, hence f ′(s) + cn− cs ≥ f(n) for almost all
n ≥ t. Thus we have seen that f ′(s) ≤ f(n) ≤ f ′(s) + cn− cs for every
n ∈ ω \ B ∪ C. ¤

Step 2. If pf ′(s)Gs and pf(n)Gn are both infinite, for some 1 ≤ s < t,
n ≥ t, then f ′(s) ≤ f(n) ≤ f ′(s) + cn − cs.

Proof. Since both λs and λn contain ω, we may pick infinitely many
distinct ei,s ∈ Gs and ei,n ∈ Gn, i < ω.

We firstly assume, for a contradiction, that f ′(s) > f(n); let W =
〈pf(n)ei,s : i < ω〉. Then the group (W + H ′)/H ′ ∼= ⊕

ω Z(pf ′(s)−f(n)) is
infinite. Consider the standard endomorphism φ such that φ : ei,n 7→
ei,s. Then φH ′ ⊇ W , and so (φH ′ + H ′)/H ′ ⊇ (W + H ′)/H ′ is infinite
– a contradiction, since H ′ is fully inert.

Secondly, we assume, for a contradiction, that f(n) > f ′(s)+cn−cs;
let Y = 〈pf ′(s)+cn−csei,n : i < ω〉. Like above, the group (Y + H ′)/H ′ is
infinite. Consider the standard endomorphism ψ such that ψ : ei,s 7→
pcn−csei,n. Then ψH ′ ⊇ Y , and so (ψH ′ + H ′)/H ′ ⊇ (Y + H ′)/H ′ is
infinite – a contradiction. ¤

Let us set h(i) = f ′(i), for 1 ≤ i < t and h(n) = f(n), for n ≥ t,
whence H ′ =

⊕
n>0 ph(n)Gn.

We define S to be the set of s < t such that ph(s)Gs = pf ′(s)Gs is
infinite.

Using Step 1, we see that the integers h(n), h(s) (n ≥ t, s ∈ S)
satisfy conditions (1), (2) of Lemma 1.6, for all s ∈ S and exactly for
all n ≥ t that don’t lie in a suitable finite subset D of ω. Moreover,
Step 2 shows that ph(j)Gj is finite whenever j ∈ D.

We define E = {i < t : i /∈ S} ∪D. The above discussion shows that⊕
j∈E ph(j)Gj is finite, and that the integers h(n) satisfy conditions (1),

(2) for all n ∈ A = ω \ E . Since, by Lemma 1.6, N =
⊕

n∈A ph(n)Gn is
fully invariant in

⊕
n∈A Gn, by Lemma 1.5 there exists C ⊆ ⊕

j∈E Gj

such that N ⊕ C is fully invariant in G. Since C is finite by construc-
tion, by Proposition 1.4 we conclude that H ′ = N ⊕ ⊕

j∈E ph(j)Gj is
commensurable with N ⊕ C. ¤

We remark that, in general, a fully inert subgroup H of a direct
sum G of cyclic p-groups is not commensurable with H∗ (i.e., H∗/H is
infinite), even when in the situation where G is semi-standard.
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Example 3.11. Let B be a standard p-group so that B =
∞⊕
i=1

〈ei〉 where

each ei is of order pi. Then the socle of B is B[p] =
∞⊕
i=1

〈pi−1ei〉. Let

H = B[p] + 〈e2〉 = 〈e1〉⊕ 〈e2〉⊕
∞⊕
i=3

〈pi−1ei〉; then H is a finite extension

of B[p] and hence is fully inert in B.
For each j > 2, there is an endomorphism φj of B where φj(e2) =

pj−2ej and φj maps the remaining basis elements to 0. Since e2 ∈ H,

the images φj(e2) are all in H∗ and so H∗ ⊇ 〈e1〉 ⊕ 〈e2〉 ⊕
∞⊕
i=3

〈pi−2ei〉

and hence H∗/H ⊇ (〈e1〉⊕〈e2〉⊕
∞⊕
i=3

〈pi−2ei〉)/(〈e1〉⊕〈e2〉⊕
∞⊕
i=3

〈pi−1ei〉)
is infinite.

4. Fully Inert Subgroups of p-groups not
commensurable with fully invariants

The purpose of this final short section is to give an example of a
separable p-group containing fully inert subgroups not commensurable
with fully invariant subgroups.

Consider any Abelian p-group G whose basic subgroups are semi-
standard. Say B =

⊕
n Bn is basic in G, where Bn is a finite direct

sum of copies of Z(pn).
Recall that an endomorphism θ of a p-group G is called small if

for every k ≥ 1 there is an integer m (depending on k), such that
θ((pmG)[pk]) = 0. We will denote by Es(G) the ideal of End(G) con-
sisting of the small endomorphisms of G.

We firstly observe the following fact.

Lemma 4.1. If θ is a small endomorphism of G then the image θ(B[p])
is finite. In particular, (B[p]+θ(B[p]))/B[p] is finite for all θ ∈ Es(G).

Proof. As θ is small, there is an integer N such that θ((pNG)[p]) = 0.
However, if x ∈ BN+i[p] (i ≥ 1), then x ∈ (pNG)[p], and so the image
of B[p] under θ is just the finite image θ((B1 ⊕ · · · ⊕BN)[p]). ¤
Theorem 4.2. Let G be a separable p-group of cardinality 2ℵ0, with
semi-standard basic group B, such that End(G) = Jp ·1G⊕Es(G). Then
the subgroup B[p] of G is fully inert in G but it is not commensurable
with any fully invariant subgroup of G.

Proof. If φ is any endomorphism of G then φ has the form φ = r ·1G+θ
for some r ∈ Jp, θ ∈ Es(G). Consequently B[p] + φ(B[p]) = B[p] +
θ(B[p]) and so the quotient (B[p]+φB[p])/B[p] is finite by Lemma 4.1.
Thus B[p] is fully inert in G.

Suppose, for a contradiction, that B[p] is commensurable with some
fully invariant subgroup K of G. Then, since (K +B[p])/B[p] is finite,
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we get |K + B[p]| = |B[p]| = ℵ0. So K must be countable. Since G
is separable, it is fully transitive and so by Kaplansky’s classification
(see [11, Theorem 25]), K must have the form K = G(u) for some
U -sequence u = (u0, u1, . . . ). In particular, K ⊇ (pu0G)[p]. However,
|(pu0G)[p]| = |pu0G| and since |G/pu0G| = |B/pu0B| = ℵ0, we have that
|G| = |pu0G| = |(pu0G)[p]| = 2ℵ0 . But this immediately contradicts the
fact that K is countable. Thus B[p] is not commensurable with any
fully invariant subgroup of G, as required. ¤

Note that in the above theorem, there is nothing special about B[p];
one could use B[pk] for any k ≥ 1.

The Abelian p-groups satisfying the requirements of Theorem 4.2
are the so-called Pierce-like groups. They were first constructed in
[12, Theorem 15.4]; see also Corner’s construction of such groups [3,
Theorem 4.1].
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