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Abstract

Classical and Deep Learning methods are quite common approaches for anomaly de-

tection. Extensive research has been conducted on single point anomalies. Collective

anomalies that occur over a set of two or more durations are less likely to happen by

chance than that of a single point anomaly. Being able to observe and predict these

anomalous events may reduce the risk of a server’s performance. This paper presents a

comparative analysis into time-series forecasting of collective anomalous events using

two procedures. One is a classical SARIMA model and the other is a deep learning

Long-Short Term Memory (LSTM) model. It then looks to identify if an influx of

message events have an impact on CPU and memory performance.

The findings of the study conclude that SARIMA was suitable for time series modeling

due to the elimination of heteroskedasticity once transformations were implemented,

however it was not suitable for anomaly detection based on an existing level shift

in the data. The deep learning LSTM model resulted in more accurate time-series

predictions with a better ability to be able to handle this level shift. The findings

also concluded that an influx of event messages did not have an impact on CPU and

memory performance.

Signed: Sonya Leech

Keywords: ARIMA, SARIMA, LSTM, Anomaly, Collective, Forecasting, Time

Series Modelling
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Chapter 1

Introduction

When unusual patterns occur in data this is classified as an anomalous event also

known as an outlier. An outlier is a single extreme event. Detecting these anomalous

events can be considered a support aid for a variety of different business organizations.

It can be used in cyber security to aid to detect cyber attacks (Chandola, Banerjee,

& Kumar, 2009). It can also be used in the financial sector for credit card fraud

or the betting domain for gambling fraud. It can also aid in intrusion detection for

network security or even in census data (Lu, Chen, & Kou, 2003). Being able to predict

when a system or application log message is exceeding the normal operational bounds

allows the IT support people become more proactive than reactive to their business

process.

A collective anomaly is when more than one irregularity occurs consistently over a set

amount of observations in a dataset. These collective anomalous events will fade out

single point anomalies effectively reducing noise in the anomalous forecast process.

These collective anomalies have been studied in time series data and LSTM models

(Bontemps, McDermott, Le-Khac, et al., 2016). Our research is based on collective

anomalous events.

These irregularities in the data can be identified using common measures of location

like the mean or median value of a distributed dataset while traversing over those time-
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CHAPTER 1. INTRODUCTION

series data using a rolling window (Box & Jenkins, 1970). To identify these anomalous

events we introduce SARIMA, GARCH, and LSTM models. These linear, non-linear

and network models capture the stationarity and volatility of the data (Box & Jenkins,

1970). These models are widely used in time series data and forecast analysis (Lasisi

& Shangodoyin, 2014),(Engle, 2001).

1.1 Problem Statement

High-end applications generate thousands of log messages per minute (Jayathilake,

2012). As more applications are added to servers the volume and velocity of the data

become exponential (Huang, 1998). Manually sifting through this log data to find

the root cause of errors that impact on application or server performance becomes

unrealistic and extremely time-consuming (Jayathilake, 2012). Having an important

application go down at any given time may cost a business thousands of dollars in

failed Service Level Agreements. The data is analysed to find the fault is often noisy,

heterogeneous and suffering from high dimensionality. This makes finding the fault

quite complex and time-consuming.

As log data is textual, this time series multivariate data suffers from a lack of labelled

data. When sifting through the data it is important to grasp what factors are im-

portant to keep and which can be discarded. The parsing of the log data should be

accurate while providing usable data for analysis. This labelled data is necessary to

support in the aid of quick fault diagnosis and efficient relevant data retrieval.

Initial diagnosis of an event will start with a support person trawling through log

data looking for a status type of “ error ” just before the issue occurred. With many

developers working cross site on an application the standard definition of these clas-

sifications may produce a false positive. A warning classification by one person might

be an error classification to another. This may lead to lengthier delays in pinpointing

the fault detection due to filtering out incorrectly labelled log data.

Anomaly detection has been researched under many different titles but all leading to-

3



CHAPTER 1. INTRODUCTION

wards the same research field, example’s of those are outlier detection, noise detection,

exception mining, anomaly detection to name a few (Hodge & Austin, 2004). Outliers

in data have a strong impact on predictions. Some outliers are defined as noise. Singh

and Upadhyaya describes the noise as "a phenomenon in data which is not of interest

to the analyst, but acts as a hindrance to data analysis". When looking for outliers one

needs to look for unusual patterns or behaviours in data. It was often the case that

outliers in data were removed from a dataset to reduce noise. As more research was

conducted around outliers it then became widely accepted and used to detect when

a process deviates from the norm and under what conditions the deviation occurs. It

became so widely popular that some business domains apply strict confidentiality to

the anomalous methods used for its analysis like crime and terrorist activities (Singh

& Upadhyaya, 2012).

From this comes a need for an automated anomaly detection tool (Chandola et al.,

2009) that can identify rare events or behaviours in data that differ significantly from

the norm. These anomalies can come in the form of point, contextual or collective

anomalies (Chandola et al., 2009). Being able to track, control and understand these

anomalous events can aid a business in its ability to better handle and control these

events. Some of these anomalous events may impact or bottleneck the performance of a

server leading to significant cost implications. Such is the case that when Amazon has

an additional 100 ms delay in their response times it impacts them by a 1% reduction

in sales (Ibidunmoye, Hernandez-Rodriguez, & Elmroth, 2015).

1.2 Organisation of Dissertation

This dissertation is organised as follows:

Chapter 1 gives an introduction to the background of the research and identifies the

problem statement. It then identifies the scope and limitations of the research. Chap-

ter 2 provides relevant background literature reading in the domain of time series

forecasts as well as research developments within that domain. It then goes through

4



CHAPTER 1. INTRODUCTION

the research objectives and methodologies. Chapter 3 gives a brief review of the data.

Chapter 4 brings the reader through exploratory analysis. Time series modelling of the

data via SARIMA, GARCH and LSTM is conducted in chapter 5. Anomaly detection

is covered in chapter 6. Performance analysis is reviewed In chapter 7 for CPU and

memory metrics. Chapter 8 goes through the evaluation of the results. Chapter 9

contains the conclusion and future work identified.

1.3 Scope and Limitations

1.3.1 Scope

The scope of the research is to classify log event data and conduct time series models

for anomaly detection using both classical and deep learning methods with a compar-

ative analysis done on the results. Naïve Bayes and K-Mode cluster models will be

implemented for classification analysis. SARIMA, GARCH and LSTM models will

be implemented for time series anomaly detection analysis. Performance analysis will

then be analysed on CPU, memory and disk space metrics to see if anomalous events

have an impact on the performance of a server.

1.3.2 Limitations

Due to the volume of the workload, some limitations were identified.

Classification of the data was not implemented. The existing predefined severity event

types within the dataset was used for classification. Those severity types were Info,

Warn and Error. This is defined as a limitation as a higher level of abstraction of

log event data was used whereby it would have been more appropriate to do a deeper

dive classification of the different types of messages to further identify which types

of textual events are causing anomalies. For example, showing that an event of type

error is anomalous would not be as beneficial as showing an anomalous event of type
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"connection limit reached".

Anomaly detection was only implemented on Info type event messages. Warn and

Error type events were ignored from the anomaly detection analysis. This was a

limitation as these types of events are only informational. It may have been more

appropriate to pick warn or error type messages as these types of messages are more

of an indication of a process heading towards an out of control event than that of an

informational message.

Missing data was ignored and no imputations were implemented. This missing data

occurred at the start of the dataset and was then filtered out so as not to be analysed.

Because there was very little missing data, the limitation is minor but their needs to

be a method implemented to impute missing data in the future.

Two transformations should have been implemented on the dataset to eliminate the

existing level shift identified in the data. This limitation rendered the SARIMA model

not suitable for anomaly detection as the data still contained seasonality. It might have

been the case that the model may have performed better than that of LSTM had the

2nd transformation been done on the dataset.

Although CPU and memory were analysed from a performance perspective disk space

was excluded from the analysis. This was a limitation as it was reduced from the scope

of the research and it may be the case that an influx of messages might have caused

the disk space to increase.

For anomaly detection, a simple two standard deviation metric was used. Three

standard deviations were initially implemented but were removed from the analysis

since only extreme values outside of the 99.7% confidence interval would have been

captured from the Gaussian distribution of the data. It would have been better if a

level shift algorithm was implemented to better detect the anomalous events within

the existing shift in the data.
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Literature Review

2.1 Classification

Currently reviewed research papers identify in-depth studies on how to cleanse and

classify data. Some of the areas of research are related to spam mail (Delany, Cun-

ningham, & Coyle, 2005), website classification (Delany et al., 2005) and classification

of emails (Youn & McLeod, 2007) but not much research can be found around the

classification of application log data. Decision Trees, Random Forests, Support Vec-

tor Machines and Naïve Bayes models are useful approaches to classification using

supervised machine learning algorithms. A common approach is to use Naive Bayes

classification algorithm as it does not require parameter tuning and is easy to imple-

ment although Support Vector Machines (SVM) would tend to have a higher precision

value than that of Naïve Bayes. (Ting, Ip, & Tsang, 2011). As the data will be contin-

uously streamed into the model an issue may arise with unforeseen data, therefore, a

new approach needs to be applied. Implementing an unsupervised clustering k-mode

machine learning algorithm would be the best approach. This algorithm clusters the

categorical data into partitions based on similarity (Sharma & Gaud, 2015) and has a

higher degree of accuracy over that of the Naïve Bayes model. When using a cluster

approach a k number needs to be identified to support the number of clusters for the
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data. As this data is streamed and has high volume - identifying the proper k number

would be flawed (Sharma & Gaud, 2015). We attempt to address this problem using a

Gaussian mixed model (GMM) method to automatically define the number of clusters

required based on the incoming data. (Celeux & Soromenho, 1996).

2.2 Time Series Models

Time series forecasting for anomaly detection needs past and present observations as

an aid to help determine future values. Box and Jenkins briefly describe a stochastic

process and how to make a forecast. "A model which describes the probability structure

of a sequence of observations is called a stochastic process....To make a forecast is to

infer the probability distribution of future observation from the population, given a

sample z of past values. An important factor of the stochastic process is the test

for stationarity. These tests are necessary because most data is not stationary by

default like for example volatile stock prices. The most common models to handle non-

stationary time series data is ARIMA, SARIMA and GARCH. ARIMA and SARIMA

are implemented when the data is stationary or when seasonality and trend exist. The

model needs to present conditional mean and constant variance (Box & Jenkins, 1970).

GARCH is implemented when the data is volatile and contains heteroskedasticity by

having conditional variance and zero mean (Bollerslev, 1986). The main difference with

the GARCH model is that while ARIMA and SARIMA bring back actual predicted

values the GARCH model uses the difference of the data to determine a prediction

variability value. 1 The GARCH model in its own right is more suited for economic

type data (Engle, 2001) and is only suited if you are looking for a variance prediction

value. To determine which model to use the data would need to be analysed for trend,

seasonality and volatility before an assumption can be made. These classical models

are least square models with its performance analysed using the residual errors of the

model.
1With time series data the percentage difference or the variance of the data points are used to

draw a variance prediction value from GARCH.
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LSTM networks are a type of Recurrent Neural Network (RNN) that can be used

as an approach for anomaly detection. Using unsupervised clustering of the data

LSTM learns the relationship between past and current data, using learned weights [

(Hochreiter & Schmidhuber, 1997), (Bontemps et al., 2016) ] which can then model

and capture normal behaviour. Gaussian assumptions can then be used to determine

if the predicted values are anomalous by smoothing past errors and comparing them

to new errors.

2.3 Stationarity

A stationarity process is also known as a stochastic process. It is when the properties

of the time series do not change over time. To be strictly stationary the distribution of

the time series data needs to be unaffected by any shift of (n=?) times plotted along

the axis of the time series data. Data can be tested for stationarity by looking at its

variance, mean and autocorrelation function. Another term for the autocorrelation

function is the Spectral Density function (Box & Jenkins, 1970). A constant mean

(m=1) is an indication that the time series is stationary if this value holds throughout

all times within the time series data. A constant variance which measures the spread

of the time series is another indication of stationarity. A histogram can be plotted

to determine the shape of the data for its variance. The shape of the time series if

stationary would contain a probability distribution of the time series as a Multivariate

Normal Distribution. This would be represented as a Gaussian process which when

plotted in a histogram contains a Gaussian bell-shaped curve. A weak stationarity

process is also known as covariance stationarity is where the variance in the time series

does change with time. Another test can be implemented using the periodogram. The

periodogram uses the Spectral Density Function. It uses sine and cosine waves with

different frequencies of the time series data. It is used to check the randomness of

the residuals of a time series after fitting a model to the data (Ashot Vagharshakyan,

1999). It was first used by Schuster in 1898 (Schuster, 1898).
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A unit root is a collection of random variables indexed by points in time series data.

This is also known as a stochastic process (non-deterministic random process). A Unit

root tests to see if a shock in the data has a permanent effect. If unit root exists then

the time series is deemed not stationary.

There are different types of unit root tests:

1. Augmented Dickey-Fuller

2. Phillips-Perron

3. Kwiatkowski Phillips Schmidt Shin

4. Elliott Stock Rothenberg ADF-GLS

ADF

With ADF its null hypothesis is that there is unit root which implies non-stationarity.

It was developed by David Dickey and Wayne Fuller in 1979 (Dickey & A. Fuller, 1979).

As part of its computation, it fits the regression model by Ordinary Least Squares

(OLS) starting at the lag of the first difference. It tests for an independent normal

random variable with a mean and variance of zero. If P < 1 it implies stationarity

with a limiting distribution of normality. If P > 1 it implies non-stationarity with

a limiting distribution called Cauchy. If P = 1 it assumes a random walk and a

transformation would need to be done on the time series data (Dickey & A. Fuller,

1979). If the p-value is significant it recommends using the ADF Test Statistic. This

test should be used with caution as it has a high Type I error rate. It also suffers

from a "near observation equivalence" problem as it cannot distinguish between true

unit-root processes of 0 and near unit-root processes that are close to zero.

PP

PP is a non-parametric unit root test. Its null hypothesis is that a time series is

integrated to the order of 1 which is non-stationary as it has been first differenced. It

supports weakly dependent and widely dissimilar distributed data and its time series

models do not need to be stationary. It looks at drift or drift and a linear trend.

One of its assumptions is that its sequence of innovation is 0 for all time series (Peter
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C. B. Phillips, 1988). The PP test is a variation of the DF test. To allow for serial

correlation its test statistic is based on a regression line without any modification.

When computing the test statistics to ensure that serial correlation has no impact on

the widely dissimilar distributions a heteroskedasticity and autocorrelation consistent

estimator (HAC) is used.

KPSS

KPSS test was developed to give more grounding in unit root tests. Shin, Kwiatkowski,

Schmidt, and Phillips defined the test as "We propose a test of the null hypothesis that

an observable series is stationary around a deterministic trend. The series is expressed

as the sum of the deterministic trend, random walk, and stationary error, and the test

is the LM test of the hypothesis that the random walk has zero variance."

ADF-GLS

ADF-GLS is a modification to the ADF test. It aims to have more power than that of

the ADF test when an unknown mean or trend is present. ADF-GLS is first estimated

by a generalized least squares (GLS) model followed by a DF test to test for unit

root. Elliott, Stock, and J. Rothenberg cited that "Employing a model common in the

previous literature, we assume that the time series data were generated where dt is a

deterministic component and vt is an unobserved stationary zero-mean error process

whose spectral density function is positive at zero frequency". Its initial experiments

confirm that it works well when the sample size is small (Elliott et al., 1996).

To identify patterns in data, techniques that can be used are smoothing, fitting a curve

or running an Auto Correlation plot on the time-series data. Pattern identification

can be accomplished by looking at a sequence of values that follow an order that is not

random ie it does not happen by chance. Being able to extrapolate these patterns allow

us to better predict for the future. A trend pattern would have a linear positive or

negative gradient. The smoothing operation functions are the moving average function,

the median function or the exponential weight function. The moving average function

will have a set window size example (s=7) that will return the moving average of the

time-series. This would only repeat itself every 7 points in the time-series. Statsoft
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recommends "Medians can be used instead of means. The main advantage of median

as compared to moving average smoothing is that its results are less biased by outliers

(within the smoothing window). Thus, if there are outliers in the data (e.g., due

to measurement errors), median smoothing typically produces smoother or at least

more "reliable" curves than moving average based on the same window width. The

main disadvantage of median smoothing is that in the absence of clear outliers it may

produce more "jagged" curves than moving average and it does not allow for weighting."

Smoothing out the data removes noise and cancels the outliers in the data. Robert

J Hyndman recommends that for non-seasonal data the model parameter should be

10 and for seasonal data the parameter should be 20.

2.4 Seasonality & Trend

Seasonality in economics has been defined by Hylleberg as "Seasonality is the sys-

tematic, although not necessarily regular, intra-year movement caused by the changes

of the weather, the calendar, and timing of decisions, directly or indirectly through the

production and consumption decisions made by the agents of the economy" . Season-

ality is an important factor in time series modelling as to exclude this factor leads

to building an inaccurate forecasting model. Peart also describes its importance as

"Every kind of periodic fluctuations, whether daily, weekly, quarterly. or yearly must

be detected and exhibited not only as a subject of study in itself but because we must

ascertain and eliminate such periodic variations before we can correctly exhibit those

which are irregular or non-periodic and probably of more interest and importance"

Peart.

Seasonal Decomposition is where the data has been decomposed into seasonal-

ity, trend and remainder components. This process is called Seasonal Adjustment

or Deseasonalizing. STL is a Seasonal Decomposition that uses a set of sequential

smoothing operations based on Loess (Locally Weighted Regression) smoother. The

eigenvalue and frequency analysis results determine which part of the data is trend and
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seasonality. To identify trends and patterns within the dataset it removes the seasonal

patterns. STL supports missing values by a using a dependant and independent vari-

able (x, y). It uses a regression of (x) which is a smoothing of (y) therefore allowing x

to be computed for any value (x) along the independent variable scale (Cleveland &

Cleveland, 1990). It also handles data diverging from normality also known as aber-

rant data through its computation of using an inner loop that is nested in an outer

loop (Cleveland & Cleveland, 1990). As each iteration passes through the inner loops

it updates the seasonal and trend components. The outer loop calculates a robustness

weight. If the time series point diverges from normality and results in a high residual

value it then passes a zero weight back to the inner loop which will then be used as

part of the inner loop computation. The residuals will show if variability exists within

the time-series data. Parameters defined in seasonality are frequency and periodicity.

The seasonal dummy variable for periodicity for month is (n=12), for day (n=365) and

(n=24*365) for hourly. The frequency is defined by the aggregation of the data.

Seasonal Decomposition is where the data has been decomposed into seasonal-

ity, trend and remainder components. This process is called Seasonal Adjustment

or Deseasonalizing. STL is a Seasonal Decomposition that uses a set of sequential

smoothing operations based on Loess (Locally Weighted Regression) smoother. The

eigenvalue and frequency analysis results determine which part of the data is trend and

seasonality. To identify trends and patterns within the dataset it removes the seasonal

patterns. STL supports missing values by using a dependent and independent variable

(x, y). It uses a regression of (x) which is a smoothing of (y) therefore allowing x to be

computed for any value (x) along the independent variable scale (Cleveland & Cleve-

land, 1990). It also handles data diverging from normality also known as aberrant

data through its computation of using an inner loop that is nested in an outer loop

(Cleveland & Cleveland, 1990). As each iteration passes through the inner loops it

updates the seasonal and trend components. The outer loop calculates a robustness

weight. If the time series point diverges from normality and results in a high residual

value it then passes a zero weight back to the inner loop which will then be used as

part of the inner loop computation. The residuals will show if variability exists within
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the time-series data. Parameters defined in seasonality are frequency and periodicity.

The seasonal dummy variable for periodicity for month is (n=12), for day (n=365) and

(n=24*365) for hourly. The frequency is defined by the aggregation of the data.

Hylleberg defined different types of seasonal adjustment methods:

1. X11 Method

2. Unobserved Component Models For Seasonal Adjustment Filters

3. Model-Based Estimating Structural Models Of Seasonality

4. Model-Based ARIMA Models

5. Model-Based Periodic Variance

6. Model-Based Box-Jenkins

All of the above models have not been defined in the literature but have been docu-

mented as evidence that different tools exist.

X-11 procedure was developed by Julius Shiskin in the 1950’s (B. Q. Dominique Ladi-

ray, 2001). It is based on a single time series using a sequential moving average filter.

It was developed to support seasonal adjustment and decomposition of monthly and

quarterly series. Its components consisted of a seasonal component, a combined trend

and cycle component, a trading day component which looks at the composition of the

day-of-the-week at a month and quarter time series. Another one of its components

measures the effect of the Easter holidays and finally an irregular component that

covers all the other fluctuations not picked up by the other components. (Ladiray &

Quenneville, 2001). X-11 models are "Additive" and "Multiplicative". The difference

between both models is that the Additive Model adds the components together and

the Multiplicative Model multiplies the components together.

Additive Model = Ct + St + Dt + Et + It

Multiplicative Model = Ct * St * Dt * Et * It
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It components are represented as:

1. C: Cycle

2. S: Seasonal,

3. D: Day of Week

4. E: Easter Holiday

5. I: Irregular

Box-Jenkins is a combination of an AR and MA model. It was developed by Box

and Jenkins (George E. P Box, 1976). AR is the Autoregressive model and MA is the

Moving Average model. Combined it is known as the ARMA Model. An assumption

with using Box-Jenkins is that the data is stationary, ie constant in mean and variance

for all values in the time-series. If there is seasonality in the data then Box-Jenkins can

support seasonality by using the SARIMA Model. Box-Jenkins identifies seasonality

using autocorrelation and partial autocorrelation correlogram. The correlogram looks

at the correlation between different lags on the time-series. It looks at the current

period against past periods to determine if seasonality exists (t-1). The first lag on

the plot is an autocorrelation onto itself and as such should be ignored. The partial

autocorrelation looks at the moving average value from the time-series data.

Portmanteau Test can be used to statistically determine if there is a correlation

in the time series data. It looks at the residuals of the model to test for correla-

tion (Jennifer Castle, 2010). The Ljung–Box and Box–Pierce are different types of

Portmanteau tests. G. M. Dominique Ladiray Jean Palate and Proietti commented

that "The detection of the various periodicities must be done before any modelling

of the time series. Among the statistical tools that can be used in this respect, the

most efficient are certainly: the spectrum of the series, the Ljung-Box test and the

Canova-Hansen test". When using a Box-Jenkins (George E. P Box, 1976) approach

a minimum dataset would be of no less than 50 observations but a recommendation

would be 100.
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Canova-Hansen

Canova and Hansen is a statistical test to see if there is seasonality in the data against

that of the null hypothesis which implies unit root exists at all of the seasonal fre-

quencies except zero. (Taylor, 2003)

2.5 Goodness Of Fit Tests

Testing for the goodness of fit determines whether the model selected is the best fit

model for the data. Data can either be parametric or non-parametric. With paramet-

ric data, we make an assumption or an inference about the parameters of the data

based on a sample of the population which is then used as estimated model parameters

if all assumptions hold. Non-parametric data assumes that the data does not have a

normal distribution, has no characteristical structure and that all assumptions don’t

hold. In statistical models to understand which values to assign to a parameter either

an Ordinary Least Square (OLS), a Methods Of Moments (GMM) or a Maximum

Likelihood method can be used.

GMM

GMM was developed by Karl Pearson in 1894 (Encyclopedia.com, n.d.) and pub-

lished in his journal "Biometrikia" in 1936 (Fisher, 1937). GMM can be used in both

parametric and non-parametric data. Using population moment conditions we can

understand the variance, mean, skewness and kurtosis of the population. This allows

us to understand the shape of the distribution of the data and from this, we can

estimate the parameters of the data for the model under certain moment conditions

(Wooldridge, 2001).

MLE

MLE became very popular in 1992 by Ronald Fisher (Aldrich et al., 1997). With

MLE the goal is to find the best way to fit a distribution of any type to the data. For
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example, any distribution that is normal once fitted to an experiment with that same

distribution should have the same symmetrical shape with no skewness. All the data

should lie around the mean value. Any data that does not fit the shape is then con-

sidered to be part of different distribution and the likelihood of predicting the values

is low.

Normality Tests

Normality tests are important when you want to ascertain the confidence interval. For

time series data to be of normal distribution the data from the quantile plot should

fit along the regression line. Any data that drifts further from the regression line

indicates that there is uncertainty that the data is normally distributed. There are

different ways to detect that time series data is of a normal distribution. Quantile

Plots, Box-Plots and histograms are some good visual diagnostic aids. Although these

graphical aids are good indicators of normality to be truly sure of your findings -

strong statistical tests should be conducted that tests whether the data is of a normal

Gaussian distribution. These statistical tests are Skewness, Kurtosis, Shapiro-Wilk,

Anderson-Darling and Cramér–von Mises.

For skewness, the value should be zero and for kurtosis, the distribution of the data

should be equal to 0 or for excess kurtosis should be equal to 3.0. A greater than

3 kurtosis indicates a heavy-tailed distribution and a kurtosis less than 3 has a light

tailed distribution (Mohd Razali & Yap, 2011).

The Shapiro-Wilk test is a left tailed test. On initial development, it only showed

good results when the data size was n <50. This was enhanced further with the im-

plementation of the AS R94 algorithm which effectively allowed it to support a larger

sample size (Mohd Razali & Yap, 2011).

Anderson-Darling is an enhancement of the Cramér–Von Mises test, it focuses more
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on the tails of the distribution. During the running of the test, it calculates the critical

values for each distribution(Mohd Razali & Yap, 2011).

Time Series Dependence Test

When modelling data the time series needs to be independent. This is important as

if the time series data is dependent on other time lags then this means that trend or

seasonality still exist in the model and as such may produce inaccurate predictions.

To test for independence a Ljung–Box can be implemented.

The Ljung–Box test is a portmanteau test which checks the residuals of the ARIMA

model for white noise. Its null hypothesis is that data is independently distributed.

The alternative hypothesis is that the data is not independently distributed and ex-

hibits serial correlation. It tests the overall randomness based on the number of lags

defined which is different from testing for randomness at each distinct lag (Ljung &

Box, 1978). A residual ACF test is deemed more powerful than that of a Pearson test.

Heteroskedasticity - ARCH Test

Heteroskedasticity is when the errors of the model are not constant over time. Over

time the errors span out in range (Bollerslev, 1986). This makes the prediction volatile.

GARCH models treat heteroskedasticity as a variance to be modelled (Engle, 2001).

Engle’s LaGrange Multiplier test can be used to test for heteroskedasticity.

2.6 Anomaly Detection

Anomalous detection can be implemented by looking at points in time. A single point

that is distant from the majority of observations can be considered an anomaly. Con-

siderations need to be taken to decide under what conditions a deviation is classified

as an anomaly. Different classifications can be implemented, those are point, collective

and contextual (Singh & Upadhyaya, 2012).
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Two types of outliers are discussed. Those are the Additive Outlier (AO) (Fox, 1972)

and the Innovational Outlier (IO) (Balke, 1993). The AO outlier occurs over a single

observation like a point in time. It is something that may occur due to random chance.

The IO outlier is identified when it remains an outlier over several observations. It

does not drop back to a normal value until some time has passed (Tsay, 1988).

Changes in the structure of data can also be an outlier. Different types of changes exist.

Three of these structures are discussed in the paper. Those are the Level Shift(LS),

the Variance Change (VC) and Transient Change(TC) (Tsay, 1988).

LS in time series data is when the data abruptly changes and remains at that abrupt

change until a constant amount of time has lapsed (Balke, 1993). VC is when the

variance of the data changes over time. Transient changes occur over time like a

stepping change or a gradual slope change. To identify these structural changes in the

data one would need to read in all the data as a batch process. Another process to

detect outliers is to use a sequential iteration over the time series data. Tsay describes

the importance of not ignoring these changes in the data "Outliers, level shifts, and

variance changes are commonplace in applied time series analysis. However, their

existence is often ignored and their impact is overlooked."

2.7 Model Evaluation

Before data can be modelled, the model parameters (p,d,q) need to be defined. These

model parameters can be used as an aid to define which model to use. Mehdiyev,

Enke, Fettke, and Loos comments that "Some methods indicate superior performance

when error based metrics are used, while others perform better when precision values

are adopted as accuracy measures".

RMSE has been criticized as being heavily misinterpreted and should be removed from

the literature since it is calculated based on the variance of three measures than that

of one. Those measures are the distribution of the error magnitude, the average error
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magnitude and the square root of the number of errors (Willmott & Matsuura, 2005).

This theory is rejected by (Chai & Draxler, 2014) who say that RMSE should be used

when the errors of the model are Gaussian. MAE and MSE have been used by Babu

and Reddy on their hybrid ARIMA and ANN models. MSE was used by Shipmon,

Gurevitch, Piselli, and Edwards on their time series anomaly detection paper.

2.8 Summary of Literature

SARIMA models are better suited when the data contains trend or seasonality and

GARCH models work better under conditions of volatility. GARCH models have

shown high prediction success rates in finance but the model predicts variance for

each error term (Engle, 2001) and may not be suited for anomaly detection when

looking for anomalous events in counts of application log data. Siami-Namini and

Namin conducted a test on LSTM and ARIMA in time series data. The results of the

test confirmed that LSTM outperformed ARIMA by 85% and that setting the value

epoch = 1 generates a reasonable prediction model.

Stationarity is important in time series modelling for ARIMA and GARCH. The ADF

test suffers from high Type I error rates. The ADF test is the most commonly used

test (Davidson & Mackinnon, 2012). The PP test was found to have poor performance

on a finite sample size (Davidson & Mackinnon, 2012). ADF-GLS is a modification to

the ADF test. Its initial experiments confirm that it works well when the sample size

is small (Elliott et al., 1996). Davidson and Mackinnon documented that ADF-GLS

has more advantage over the ADF test. The KPSS test was developed to give more

grounding in unit root tests (Shin et al., 1992).

Understanding how well data is distributed can be used to determine the approxima-

tion of a value based on its normal distribution. There is much goodness of fit tests.

A statistical skewness test with a value of zero ascertains a normal distribution. A

kurtosis test should have a distribution value of zero or for excess kurtosis should be

equal to 3. A Chi-Square test is used when the data is categorical. Mohd Razali and
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Yap conducted tests on SW, AD and CVM to see which test performed the best. The

outcome of his results concluded that SW was the best performing test with the AD

test coming a close second. Testing for normality is important but it may be hard

to pass a normality test because with large sample sizes any kind of deviation from

normality will cause the data to become non-normal.

Lasisi and Shangodoyin studied outlier detection on airport data. They looked at

Innovation (IO), Level Shift(LS), Additive (AO) and Transient Change (TC) Outlier

algorithm’s on ARIMA Models. Their findings concluded that combined usage of AO,

LS and TC captured 60% of their outliers with LS producing the best results.

2.9 Gaps in Literature

It is very hard to identify gaps in the literature. This area of research is heavily re-

searched. There are many aspects to time series modelling and anomaly detection.

We can see from the literature that many avenues need to be explored to aid in de-

termining the right techniques and tools to use. The more you dive into the research

the more avenues that open up. Although no gaps in the literature have been defined,

this is not to say that they do not exist. Further research should be conducted on one

element of the topic to identify gaps in the literature.

2.10 Research Aim and Objective

2.10.1 Research Question

Is K-Mode clustering able to classify log event data with a better accuracy rate than

that of Naïve Bayes? Can LSTM outperform SARIMA or GARCH by forecasting a

better prediction accuracy measure to support anomalous events? Does an anomalous

event harm a servers CPU, memory or disk space usage?
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2.10.2 Research Aim

This research aims to look at how well different classification models perform against

each other on the same dataset. Once classified we then look to compare and contrast

on how well classical and deep learning models predict anomalous events. A question

then needs to be answered to see how correlated anomalous events are with that of

performance metric data and is that correlation positive or negative.

2.10.3 Objective

Labelling data correctly can lead to shorter resolution times in fault diagnosis. Imple-

menting Naïve Bayes and K-Mode clustering will show a difference in terms of accuracy

of its labelling of the data into different classified groupings. The evaluation of the

test will provide evidence as to which model is better suited for the given data.

Manual streaming of large datasets can be cumbersome when looking for fault detec-

tions when an anomalous event occurs. Can this be better addressed using a deep

learning network model like LSTM and how does it compare against a more classical

model like SARIMA or GARCH?

Understanding if an anomalous event of type a has, for example, a 10% higher impact

on CPU, memory or disk space performance than that of an anomalous event of type

b helps weight and prioritise anomalous events mean time to resolution. This research

should provide evidence as to the strength of the relation between the event type mes-

sages and the CPU, memory and disk space usage. This allows us to provide evidence

as to whether these anomalous events have an impact on server performance.

The objective of the research is to provide evidence as to the strength of the correlation

on a server’s performance under the condition of an anomalous event. An anomalous

event is composed of some pre-defined rules and modelled using both deep learning

and classical models.
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2.10.4 Research Methodologies

With 4 months of data time series SARIMA, GARCH and LSTM models will be im-

plemented to identify the best-suited model for anomalous events in log event type

data. CPU, disk space and memory metrics will then be used to determine if these

anomalous events have either a positive or negative impact on the performance of a

server. The goodness of fit tests on these time series models will be tested on residual

errors. RMSE will be used to identify the best (p,d,q) parameters for model predic-

tion. The detection of anomalous events will be based on two standard deviations.

Exploratory analysis will be conducted on daily and hourly data.

This study can be summarized as follows:

• Exploratory analysis will be conducted on event type messages of Info, Warn

and Error for daily and hourly data using descriptive statistics.

• Pearson’s correlation analysis will be conducted on the three event type messages

to see if they have a linear correlated relationship with each other.

• Distribution analysis will be conducted on the data to determine its shape using

statistical tests of skewness and kurtosis. Graphical histograms and quantile

plots will also be used to conclude as to whether the data is of a Gaussian

distribution.

• Unit Root tests will be conducted on the data using ADF and KPSS tests.

• Seasonal and trend analysis will be conducted using auto correlation and partial

autocorrelation functions. STL and CH tests will also be used.

• Transformations will be done on the data to remove trend and seasonality if

identified in the analysis. Those transformations are a natural log, 1st difference

and square root.

• An LM test will be conducted on the residuals of a GARCH (1,1) model on all

transformed and non transformed data to confirm if a heteroskedastic ARCH

effect exists in the data.
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• A SARIMAmodel will be implemented for time series prediction. This model will

support seasonality and trend. The auto ARIMA function will iterate through

each of the (p,d,q) parameters to identify the best fit model with the lowest

AIC and RMSE value. The lowest RMSE of the iterated model will be used to

identify model parameters.

• The residual errors of the SARIMA model will be analysed.

- Auto correlation will be plotted on the residual errors to confirm if there

are any lags outside of the confidence interval limits.

- A Ljung Box test will be conducted on the residual errors to determine

time dependency.

- Normalcy tests will be conducted using AD, Shapiro-Wilks and CMV tests.

• An LSTM model with parameters of a repeat iteration of 10 using an epoch size

of 1, 10, 50 and 100 will be tested for time series predictions. The test with the

lowest RMSE will be used for time series predictions.

• Two STD values will be used for both SARIMA and LSTM prediction models

for anomaly detection.

• Pearson’s correlation test will be conducted on event type messages against that

of the percentage of CPU used, free memory and disk usage.
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Data Understanding

For this research log event, data will be captured. This data will come from a Kafka

application log server. The data will be pulled every hour, parsed, cleansed, aggregated

and fed into a Mongo database. Disk usage, CPU and memory information will be

pulled hourly from a graphite server for the performance metrics. This data is already

summarized so no aggregation will be necessary. For the initial exploratory analysis,

a dashboard will be created and hosted on a local server. The dashboard will be made

up of D3 time series charts. These charts will be near real-time as they will be fed

from the automatic pushes of the aggregated data pulls. All code will be developed in

python. For LSTM modelling the model will be implemented on Keras which sits on

top of Tensor flow through the python Jupyter notebook. An architectural diagram

of the platform is shown in figure 3.1
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Figure 3.1: Anomaly Detection Architectural Diagram

3.1 Feature Identification

Kafka application log data was analysed. Exploration of the data concluded that there

were only three types of log levels active on the server. Those were info, error and

warn. No other log level severity type like debug or trace was found within the logs.

For the performance metrics memory_percent_free and cpu_pct.use variables were

identified.

Features identified:

• Info

• Error

• Warn

• memory_percent_free

• cpu_pct.use
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• Timestamp

3.2 Data Cleansing

Data parsing will be done on the textual log messages to parse out the timestamp and

severity type. Deeper parsing of the textual message itself will be conducted to bring

back only the first 100 characters. For data cleansing, any row with no timestamp

starting with 2018 or 2019 within the first set of characters will be removed from the

dataset. All words will be converted to lower case. All stop words, punctuations,

white spaces and numbers will be removed from the data set.

3.3 Missing Data

Initial observations identified that 66 individual hours of data was missing which

equates to 2.75 days of data. The missing data occurred around the same time in-

terval and was not widely dispersed throughout the data set. No imputation was

implemented for this missing data. This missing data were included in the analysis

for daily exploration but was excluded for hourly.
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Exploratory Analysis

An exploratory analysis was first conducted on daily data. The data analysed was

from 21/12/2018 - 26/02/2019. Hourly data from 01/01/2019 - 13/04/2019 was then

analysed and used for the remainder of the research objectives as specified in chapter 2.

Figure 4.1 shows the time series dashboard that was created. It is used to visually

inspect if there is any correlation between any of the different event type messages.

The dashboard has been filtered to show a subset of the data from 11th January to

5th February because the 20th of January was the highest producer of log message

events during the initial exploratory analysis phase.
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Figure 4.1: Exploratory Analysis Dashboard

4.1 Daily Analysis

For the initial two months of the data table, 4.1 shows that a total of 1.5 million event

type messages were produced. Out of those messages the error type events produced

the highest number of events equating to a total of 55.5%.

Total Percent

Total 1,574,682 100%

Info 560,828 35.62%

Error 874,336 55.52%

Warn 139,518 8.86%

Table 4.1: Count of Aggregated Log Data
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For any analysis herein the alpha will be 0.05

4.1.1 Normality

Distribution analysis was done for each of the severity type messages. The first graph

to the left in figure 4.2 shows info type messages not being of a normal distribution. The

graph displays a platykurtic kurtosis with positive right-tailed skewness. Its quantile

plot underneath it does confirm that the data is not normally distributed but does

observe some fitting on the regression line. We also observe some outliers in the data.

The middle and right graphs which show the warn and error distributions indicate a

very volatile dataset due to the high volume of low counts of messages and a small

volume of high count messages. The three quantile plots show that the data is not of

a normal distribution for each of the severity type events.

Figure 4.2: Info, Warn, Error Daily Distribution Analysis

Figure 4.3: Daily Quantile Plots

For data to be of normal distribution its skewness should be zero and its kurtosis

should be three. As per table 4.8 info, warn and error do not conform to the skewness

and kurtosis values to be of a normal distribution.
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Skewness Kurtosis

Info 2.5 9.1

Warn 6.7 48.7

Error 34.7 1261

Table 4.2: Daily Skewness-Kurtosis

SW and AD normalcy goodness of fit tests were conducted on the data.

Log Type Test Test Statistic P Value

Info

SW 0.7 0.0

AD 3.2 1.0

Warn

SW 0.1 3.2

AD 21.6 1.0

Error

SW 0.0 0.0

AD 585.9 1.0

Table 4.3: Daily Goodness Of Fit Tests

SW Test

Null Hypothesis: The data is normally distributed.

Alternative Hypothesis: The data is not normally distributed.

If p-value < 0.05 reject the null hypothesis. The data is not normally distributed.

AD Test

Null Hypothesis : The data is normally distributed.

Alternative Hypothesis: The data is not normally distributed.
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Critical values [10%: 0.62, 5% : 0.74, 1% : 1.03]

If test statistic > critical values : Reject the null hypothesis the data is not normally

distributed.

Normalcy Results

Info :

We reject the null hypothesis of the SW test p=0.0. There is statistical evidence

to suggest the data is not of a normal distribution. With the AD test (test statistic

=3.2 > 5% at 0.74) we reject the null hypothesis. The data is not normally distributed.

Warn :

We fail to reject the null hypothesis of the SW test p=3.2. The AD test (test statistic

=21.6 > 5% at 0.74) is showing strong evidence to suggest that the data is not nor-

mally distributed.

Error :

We reject the null hypothesis of the SW test p=0.0. There is statistical evidence to

suggest the data is not of a normal distribution. The AD test (test statistic =585.9

> 5% at 0.74) is showing strong evidence to suggest that the data is not normally

distributed.

4.1.2 Unit Root Tests

Unit Root tests were conducted.

ADF

Null Hypothesis : Data has unit root (implies not stationary)

Critical Values : [10%: -2.59, 5%: -2.90, 1%: -3.53]

P value < 0.05 : Reject the null hypothesis. The data is stationary.
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If test statistic < critical values. Fail to reject the null hypothesis the time series has

unit root and is not stationary.

KPSS

Null hypothesis : The data is stationary and does not have unit root.

KPSS critical Values : [10% : 0.34, 5% : 0.46, 1% : 0.73]

If test statistic < critical value : Fail to reject the null hypothesis. The data does not

contain unit root and is stationary.

Critical values for all tests:

ADF Critical Values : [10% : -2.59, 5% : -2.90, 1% : -3.53, ]

KPSS Critical Values : [10% : 0.34, 5% : 0.46, 1% : 0.73]

Test Statistic P Value

ADF -2.21 0.20

KPSS 0.38 0.08

Table 4.4: Daily Info Unit Root Values

Test Statistic P Value

ADF -8.15 0.00

KPSS 0.12 0.10

Table 4.5: Daily Warn Unit Root Values

Test Statistic P Value

ADF -8.06 0.00

KPSS 0.1 0.10

Table 4.6: Daily Error Unit Root Values
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Results: Unit Root Tests

Info :

In the ADF test (p=0.20, test statistic (-2.21) < critical value (-2.90)). We accept

the null hypothesis. The time series has unit root and is not stationary. For the KPSS

test (test statistic (0.38) < critical value (0.46)) therefore we fail to reject the null

hypothesis, the data is stationary.

Warn :

We reject the the null hypothesis for the ADF test (p=0.00, test statistic (-8.15) >

critical value (-2.90)). The time series has no unit root and is stationary. For the KPSS

test (test statistic (0.12) < critical value (0.46)). We fail to reject the null hypothesis

the time series is stationary.

Error :

We reject the the null hypothesis of the ADF test (p = 0.00, test statistic (-8.06) >

critical value (-2.90). The time series has no unit root and is stationary. We fail to

reject the null hypothesis for the KPSS test (test statistic (0.1) < critical value (0.46)).

Which implies the time series is stationary.

Mean and Variance Analysis

For forecast analysis, the data needs to be stationary in mean and variance for it to

fit an ARIMA Model. The data was split into 2 random samples. Mean and variance

tests were conducted on both samples.
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Info Error Warn

Mean 1 10227 2428 19007

Mean 2 4720 1439 0

Mean Diff 5507 989 19007

Variance 1 73815141 23224782 16608359

Variance 2 1605014 14 0

Variance Diff 72210127 23224768 16608359023

Table 4.7: Daily Mean-Variance Analysis

Table 4.7 shows that the data is not stationary in mean and variance as there are

significant differences in mean on both samples for each severity type message. This

is the same for the variance test.

4.1.3 Seasonality & Trends

Trend and seasonal graphs were created for info, warn and error type events. STL

decomposition was done with the frequency set to weekly using the additive model. A

monthly period was ignored due to the lack of initial data for analysis.

Figure 4.4: Daily Seasonal Decomposition Analysis

As per table 4.4 we visually observe that trend and seasonality do exist in the dataset.

The graphs are displayed in order of observed, trend, seasonality and residuals. The

trend is shown in the 2nd graph of the grouped graphs. For trend info type events
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do show a variance change while warn events to show a transient type change and

error events show the same as warn but not as apparent. Seasonality is shown in the

third row of the grouped graphs and there does seem to be a repeat pattern over the

time series. These patterns become more apparent when higher levels of frequency are

used. A correlogram was also created to identify trends in the dataset.

Auto correlation - Partial Autocorrelation

Figure 4.5: Daily ACF PACF

For the correlogram, the first fifty lags were used. This gave fifty data points within

the time-series to be tested for correlation and trends. We observe from the Info cor-

relation chart that Info type events do show trend in the dataset while warn and error

do not show any trends.

A statistical CH test was conducted to see if the data contained seasonality with the

results concluding that there was no evidence of seasonality or trends in the dataset.

An ARIMA difference utility test using ndiff was implemented to see how many times
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we difference the data to remove trend. The result of the test indicated that there was

no trend in the data set for any of the different types of severity messages. As such

we conclude that there is no statistical evidence to suggest seasonality or trend exist

but this may be taken with caution due to the graphical evidence presented.

4.1.4 Correlation

Pearson’s correlation analysis was implemented on the daily data to see if any of the

event types have any type of relationship with each other. It is observed from figure

4.6 that info type events have a very strong correlation with warn events (0.7). Info

events also have a strong correlation with error events (0.5). Error and warn events

do show a significant correlation with each other of (0.9). The results of the Pearson’s

test conclude that there is strong statistical evidence of relationships between each of

the different event types.

Figure 4.6: Daily Pearson Correlation Test : Info : Warn : Error
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4.2 Hourly Analysis

The hourly analysis was conducted on the event type data.

4.2.1 Normality

Histograms and quantile plots were graphed on the hourly data to indicate as to the

data’s distribution and shape.

Figure 4.7: Hourly Distribution Analysis

Figure 4.7 shows that the data does not conform to a normal distribution as the data

is not a symmetrical shape on the histograms and does not fit along the regression

lines in the quantile plots. The histograms also show that the data is contained within

a small range of values.

As per table 4.8 info, error and warn do not conform to the skewness and kurtosis

tests to be of a normal distribution.
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Skewness Kurtosis

Info 215.4 272.0

Warn 25.1 680.9

Error 45.2 2144.2

Table 4.8: Hourly Skewness - Kurtosis

Normalcy goodness of fit tests was conducted on the data. SW and AD tests were

implemented.

Log Type Test Statistic P Value

Info

SW 0.2 0.0

AD 552.8 1.0

Warn

SW 0.1 0.0

AD 980.4 1.0

Error

SW 0.0 0.0

AD 997.5 1.0

Table 4.9: Hourly Goodness Of Fit Tests

SW Test

Null Hypothesis: The data is normally distributed.

If p-value < 0.05 reject the null hypothesis. The data is not normally distributed.

AD Test

Null Hypothesis : The data is normally distributed.

Critical values [10% : 0.65, 5% : 0.78, 1% : 1.09]
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If test statistic > critical values : Reject the null hypothesis the data is not normally

distributed

Info, warn and error event types reject the null hypothesis for the AD test. The data

is not normally distributed. The SW test also rejects the null hypothesis, the data is

not normally distributed.

4.2.2 Stationarity

The stationarity tests that were implemented on the hourly data.

ADF Test

Null Hypothesis: Data has unit root(implies not stationary).

Critical values: [10% : -2.56, 5% : -2.86, 1% : -3.43]

P value < 0.05: Reject the null hypothesis, the data is stationary.

If ADF statistic > critical values: Reject the null hypothesis of unit root. The time

series is stationary.

KPSS Test

Null hypothesis for the KPSS test : The data is stationary

Critical values: [10%: 0.34, 5% 0.46, 1%: 0.73]

If test statistic < critical value : Fail to reject the null hypothesis, the data is stationary.

ADF critical values: [10% : -2.56, 5% : -2.86, 1% : -3.43]

KPSS critical values: [10%: 0.34, 5% 0.46, 1%: 0.73]
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Test Statistic P Value

ADF -19.27 0.00

KPSS 1.28 0.01

Table 4.10: Hourly Info Stationarity Values

Test Statistic P Value

ADF -13.49 0.00

KPSS 0.27 0.1

Table 4.11: Hourly Warn Stationarity Values

Test Statistic P Value

ADF -27.00 0.00

KPSS -0.13 0.1

Table 4.12: Hourly Error Stationarity Values

Results: Unit Root Tests

The time series is stationary for info and error type events as they pass both the KPSS

and ADF test. Warn type events do pass the ADF test but fail the KPSS test.

4.2.3 Seasonality & Trend

Figure 4.8: Hourly Seasonality-Trend
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A trend and seasonality graph was created. The graph was based on hourly data. As

per table 4.8 it is visually observed that there was a negative followed by a positive

trend detected in the monthly time series data for info event types. A step downward

type trend was detected for warn and error type events. Seasonality is observed for

each severity event type.

A statistical CH test was conducted to see if the data contained seasonality. The test

was implemented for daily, weekly and monthly frequencies. The results conclude that

there is no evidence of seasonality in the dataset for daily and weekly data but there

was evidence of seasonality in monthly data for info and warn but none for error.

4.2.4 Correlation

ACF-PACF

Figure 4.9: Hourly ACF-PACF

For the correlation chart in figure 4.9 , the first 168 lags were used. This is a representa-

tion of one week’s worth of time series data. We observe from the info correlation chart

that there is still some correlation within the time series data around lag twenty-five
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onwards which is an indication that the time series data is dependant on its previous

time series observations. The partial autocorrelation chart shows that there is still

some residual noise which exceeds the significance threshold. For warn, there appears

to be no correlation on the data except for the first three lags with the PACF still

showing some residuals on the first ten lags. For error, there was no correlation at

all through the time series except around lag two. Looking at the p and q values for

ARIMA modelling

Info: The data would need to be differenced to become more stationary

Warn: The data would need to be differences to get rid of the residual noise on the

PACF plot

Error : (1,1)

We conclude from the hourly data that transformation should be implemented on info

and warn and no transformation is required for error data.

4.2.5 Cross Correlation

Hourly cross-correlation analysis was done on all the different event types. The lag

value was set to twenty-four which represents a full day. Cross-Correlation was con-

ducted on all untransformed events.

Figure 4.10: Hourly Cross Correlation

The results of the cross-correlation charts imply that info and warn have a significant

correlation at lag one and lag two. This implies that an info event will become a warn
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type event within the first two lags which represents the t-1 with a less significant

correlation at t-2. The info and error correlation chart have significant correlation at

lag one. This implies that an Info type event does have a strong correlation with an

error type event at t-1. The warn and error correlation chart also show significant

correlation at lag one. This implies that a warn type event will result in an error type

event within the first hour as the time will be t-1.
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Time Series Modelling

5.1 GARCH

A GARCH Model was implemented on each of the non transformed and transformed

datasets so that an LM test could be conducted. The result of the LM test was to

conclude if heteroscedasticity occurred in the model and if so it implied that the data

was volatile and not suitable for ARIMA modelling.

LM Test Results On Non-Transformed Data

Test Statistic P Value

Info -4.37 0.99

Warn 0.02 1.00

Error 11.03 0.27

Table 5.1: Hourly Engle’s LM Test for Autoregressive Conditional Heteroscedasticity

From table 5.1 :

Info p-value (0.99) > test statistic (-4.37). We reject the null hypothesis and conclude

that heteroscedasticity does exist.
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Warn p-value (1.0) > test statistic (0.02). We reject the null hypothesis an arch ele-

ment does exist.

Error p-value (0.27) < test statistic (11.03). We fail to reject the null hypothesis, no

arch element exists in the error dataset.

This indicates that info and warn require a transformation before ARIMA modelling

can be implemented. The error dataset requires no transformation.

5.2 ARIMA

For time-series forecasting an Auto ARIMA model was tested to automatically iden-

tify the best order of the p, d, q values. As seasonality was detected via the seasonal

decomposition function a SARIMA model was implemented. The parameters of the

model were set to forecast four hours into the future with the seasonal parameter set

to "True" and the seasonal period set to "24" which represents hourly data over one

day. A set of tests were conducted on the model to aid in the acceptance of the best

fit model.

Model Tests:

ADF

KPSS

CH

STL

LM

LB

SW

AD

CM
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Transformations were implemented on the data due to the detection of seasonality and

trends from the initial exploratory analysis. To avoid over-fitting an analysis was con-

ducted on each model order and comparing it to that of other model p, d, q orders. The

results of all tests are based on the independent statistical tests implemented.

An LB test was conducted to test for autocorrelation on the residuals. The results of

the LB test indicate if the time series data is dependent on previous time series lags.

For prediction modelling the time-series data should not be dependent on previous

time series values as it implies seasonality or trend may exist in the data.

LB Test On Non-Transformed Data

Test Statistic P value on Chi Square Distribution

Info 0.73 0.99

Warn 0.03 1.00

Error 2.85 0.98

Table 5.2: Hourly Ljung-Box Q-Test

The LB Null Hypothesis tests that no serial correlation exists up to lag ten.

Info p value (0.99) > alpha (0.05)

Warn p value (1.00) > alpha (0.05)

Error p value (0.98) > alpha (0.05)

The test concludes that we fail to reject the null hypothesis. There is no correlation

in the time series residuals. This can be further demonstrated by figure 5.1 and table

5.3 which show all the p values are less than 0.05.

LB Graph For Each Severity Type
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Figure 5.1: Un-Transformed Hourly LjungBox Test

Info Warn Error

p-value 0.89 0.98 0.89

p-value 0.98 0.99 0.98

p-value 0.99 0.99 0.96

p-value 0.99 0.99 0.58

p-value 0.99 0.99 0.72

p-value 0.99 0.99 0.82

p-value 0.99 0.99 0.89

p-value 0.99 1. 0.94

p-value 0.99 1. 0.96

p-value 0.99 1. 0.98

Table 5.3: Hourly Ljungbox P Values

5.2.1 Info Hourly ARIMA Analysis

ARIMA analysis was conducted on Info type events. Three transformations were at-

tempted on the dataset. These transformations include natural log, first difference

and square root.

Some initial discrepancies were evident in the hourly analysis and were noted for the
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rest of the ARIMA modeling analysis. It was observed that seasonal decomposition

often concludes that trend and seasonality do exist but the CH test does not always

pick this up. This is due to the limitations of the CH test and the fact that it is sen-

sitive to data not being transformed and it is not able to identify higher-level trends

within the dataset. With that, the seasonal decomposition test took more power than

that of the CH test. It was also observed that where trend existed the ADF test

was not detecting that trend existed, this may be as a result of the near observation

equivalence problem that ADF suffers from. With that, a SARIMA model was tested

where seasonal decomposition showed that either trend or seasonality existed. Further

to this point all results in the tables are reflective of statistical tests and are not an

accurate assumption but are a guide in our analysis.
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Type Test Untransformed Log(x) 1st Diff Sq Root

No Unit Root

ADF True True True True

KPSS False False True False

Trend

Ndiff ADF True True True True

No Seasonality

CH False False True False

STL False False False False

No ARCH Effect

LM True True True True

TS Indep.

LB True True True True

Normal Dist

SW False False True False

A-D False False False False

Model

SARIMA (1, 0, 2)x (2, 0, 3)x (1, 0, 0)x (2, 0, 3)x

(1, 0, 1, 24) (0, 0, 2, 24) (2, 0, 2, 24) (1, 0, 0, 24)

Model Score

RMSE 122.85 0.45 2.01 2.93

AIC 39756.63 1955.72 10547.20 15564.92

Accepted or Rejected Reject Accept Reject Reject

Table 5.4: Hourly Info Model Transformation Analysis

50



CHAPTER 5. TIME SERIES MODELLING

Figure 5.2: Info Hourly ARIMA Analysis log(x)

The results of the analysis as per table 5.4 conclude that the natural log(x) transforma-

tion was the best fit model with an order of (2,0,3)x(0,0,2,24) an AIC of (1955.72) and

an RMSE of (0.45). The Unit Root tests do conflict with each other and only agree on

1st difference transformation. There is evidence to suggest that seasonality does exist

via most of the transformations using the Canova-Hansen and Seasonal Decomposition

tests. On testing for heteroscedasticity, there was evidence to suggest that it existed

when no transformation was performed on the data but after transformation, it was

smoothed out. Passing the LB test confirmed that the time series data was not depen-

dant on previous time series lags which is also evident in the correlogram of the model

as per figure 5.2 as no values are outside of the confidence interval boundaries. The

quantile plot in figure 5.2 does indicate a fair fit model based on the fitted regression

line. The data is not of a normal distribution as it deviates from the regression line

on the quantile plot and which is evident in the CVM graph.
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5.2.2 Warn Hourly ARIMA Analysis

Warn type messages were transformed based on natural log, first difference and square

root to determine which transformation fitted the model best.

Type Test Untransformed Log(x) 1st Diff Sq Root

No Unit Root

ADF True True True True

KPSS True True False True

No Trend

Ndiff ADF True True True True

No Seasonality

CH False True True True

STL False False False False

No ARCH Effect

LM False True True True

No TS Indep.

LB True True True True

Normal Dist

SW False False False False

A-D False False False False

Model

SARIMA (2, 0, 2) (1, 0, 2) (3, 0, 2 ) (1,0,2)

Model Score

RMSE 25.60 0.03 0.48 0.31

AIC 35060.71 -1717.81 4357.86 11618.60

Accepted or Rejected Reject Accept Reject Reject

Table 5.5: Hourly Warn Model Transformation Analysis

Warn Hourly ARIMA Analysis
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Figure 5.3: Warn Hourly ARIMA Analysis log(x)

For warn the model analysis table 5.5 shows that the natural log transformation pro-

duced the best model fit of order (1,0,2) with an AIC (-1717.81) and RMSE (0.03)

score. Seasonality and trend were detected within the dataset but showed conflicting

evidence. The test for heteroscedasticity does indicate that the data is volatile when

no transformation is performed but after transformation, the ARCH element no longer

exists. Throughout all different model analysis, there is no indication that the time

series is dependant on previous time series values. Figure 5.3 shows the quantile plot

produces a fair fitted model as the data does generally fit the regression line very well

except when it deviates from the line at the ends. There still appears to be some

residual noise in the autocorrelation plot which is an indication that correlation does

exist with previous time lags in the model but it is not strong enough to fail the LB

test. Seasonal decomposition does show evidence of trend and seasonality. The CM

test does indicate that the data is not normally distributed after the model has been

fitted
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5.2.3 Error Hourly ARIMA Analysis

Error Hourly ARIMA Analysis

Type Test Untransformed Log(x) 1st Diff Sq Root

No Unit Root

ADF True True True True

KPSS True True True False

No Trend

Ndiff ADF True True True True

No Seasonality

CH True True True True

STL False False False False

No ARCH Effect

LM True Not completed Not completed Not completed

TS Indep.

LB True False True True

Normal Dist

SW False True False False

A-D False False False False

Model

SARIMA (0, 0, 1) SARIMAX (1, 0, 0) (3, 0, 3)

Model Score

RMSE 363.26 1313.78 5.99 0.82

AIC 56281.57 41611.88 56290.17 21743.40

Accepted or Rejected Rejected Rejected Rejected Accepted

Table 5.6: Hourly Error Model Transformation Analysis
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Figure 5.4: Error Hourly ARIMA Analysis Square Root

Error

For error the model analysis reference to table 5.6 observes that the square root trans-

formation was the best fit model (3, 0, 3) with an AIC score of (21743.40) and an

RMSE (0.82) score. For most of the transformations the model did not contain unit

root but there was conflicting evidence to support this. Seasonality and trend do exist

via the seasonal decomposition charts. The correlation on the residuals passed the LB

test which indicates that the time series is not dependent on past time series data.

5.2.4 Info Hourly Prediction Analysis

Further analysis was conducted on Informational type messages. Warn and Error type

messages were excluded from the analysis due to time constraints.
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Figure 5.5: Info Hourly Train And Prediction Result

From figure 5.5 we observe the trained, actual and prediction data values. Visually the

model appears to fit the data very well but there appears to be an apparent slight shift

in the data from series 2700 onwards. This shift shows a very slight underprediction

of the ARIMA model. Based on the visual inspection of the graph, this model does

appear to be a fair fit model.

A closer inspection was conducted on the model with the trained data removed from

the graph. A 2 standard deviation window was added to see how far the model stayed

within the confines of the upper and lower confidence interval.
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Figure 5.6: Info ARIMA Predictions Before Shift In Data

Figure 5.6 shows a closer look at the data before the shift in the data occurred. We

can see from the graph that the predictions are quite close to the actual values but

some predictions are underpredicting where there appears to be a higher than normal

increase in messages.

On looking at figure 5.7 we can see that a lot of the predictions are outside of the lower

confidence interval boundary. This graph gives a clearer indication that this model is

not the best fit due to the inaccurate predictions of the data when a shift occurs.

Figure 5.7: Info ARIMA Predictions After Shift In Data
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5.3 LSTM

LSTM Modelling was conducted on Info type events. No modelling was done on warn

and error type messages due to time constraints. The analysis was conducted based

on the first difference and no other transformations were done on the data.

5.3.1 Info Hourly LSTM Analysis

A univariate sequential LSTM model was built using a walk forward model. Its pa-

rameters were tested with four memory neurons using a loss function of mean squared

error and an Adam algorithm. Each test was repeated ten times and the average

RMSE value was returned. This is because each time an independent model is run

it produces different RMSE values. Getting the mean of the RMSE provides more

confidence that the test result was not a statistical fluke. For each type of test, only

the epoch value was changed. The values tested were 1, 10, 50 and 100. The batch

size remained at a constant of 1. The train and test size were kept the same as the

ARIMA Model to help align the parameters as close as possible to each other.

Descriptive Statistics and Box plots graphs were conducted on each of the tests for

LSTM.

Epoch Test Count RMSE STD Min 25% 50% 75% Max Status

1 10 155.82 7.36 146.63 150.56 154.78 160.36 168.77 Reject

10 10 147.80 3.52 142.85 145.50 146.70 149.88 153.92 Reject

50 10 145.43 3.46 138.10 144.03 145.98 148.11 149.30 Accept

100 10 2542.56 7573.09 143.98 145.70 147.63 149.22 24095.96 Reject

Table 5.7: Hourly Info LSTM Model Descriptive Statistics

Table 5.7 shows the results of each test. The status column determines which model

was accepted or rejected. Running ten iterations with a batch size of one using fifty
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epochs produced the lowest mean RSME with a value of 145.43. An epoch size higher

than 50 contained the worst result with an epoch size of ten being the 2nd best walk

forward model. This can be seen in figure 5.8.

Figure 5.8: Info LSTM Model Univariate Walk Forward Box Plot Analysis

5.3.2 Info LSTM Prediction Analysis

Figure 5.9 shows the train and test model results of the last iteration of the fifty epoch

model. The initial set of values for training the model ie that is the 66% of the data

has been removed. We can see from the graph that LSTM has handled the shift in

the data very well. The test values which are the prediction values are quite close to

the test values.
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Figure 5.9: Info Hourly LSTM 50 Epoch Prediction Analysis

To ensure consistency in approach the LSTM model was zoomed in on the first three

hundred and fifty points. Figure 5.10 shows that the model is a very good fit model.

two standard deviation confidence interval boundaries were set on the upper and lower

limits.

Figure 5.10: Info LSTM Before Shift - Plotting First 350 Data Points

Zooming in on the shift in the time series in figure 5.11 we can see that the model is

a very good fit.
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Figure 5.11: Info LSTM After Shift - Plotting last 800 Data Points
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Anomaly Detection

To find anomalies in data one needs to look at extreme values or values that deviate

from the norm that are not reflective of cyclic seasonality or trends. For anomaly

detection residual error, principal component analysis, cooks distance and level shift

are some of the tools used to determine if data deviating from the norm is an actual

anomaly or not. These anomalies are based on unexplained observations and are also

known as outliers and both these words are used quite interchangeably in the research

papers. Types of anomalies are a point, contextual and collective. Point anomalies

are also known as additive outliers which are defined by (Fox, 1972) and his interpre-

tation on how to capture them is via a likelihood ratio test. These anomalies are a

sudden sharp increase in value followed by a sudden change back to normal. Collective

anomalies are when a consecutive number of anomalies occur throughout observations

also known as transient change outliers. These collective anomalies can be caused by

a seasonal shift in the data which is known as a level shift.

Collective anomalies are the scope of this project. Our investigation is to identify

collective anomalies and compare them against that of the ARIMA and LSTM mod-

els. A simple approach used to detect if anomalies occurred is to evaluate how many

points the data deviated from the mean using a standard deviation (STD) function. A
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twenty-four-hour rolling window for the STD was used. The sigma levels were based

on two STD’s so that the anomaly was not limited to only identifying really large

spikes in the data. Due to their being no domain experts involved, no outliers in the

data were removed and data was analysed based on all data points. The residual errors

were graphed to see if there was any visual observation of anomalies in the data based

on the two standard deviation confidence level. Anomalies were only conducted on

Informational type messages due to the constraints of time.

6.0.1 ARIMA

Figure 6.1 shows the residual errors from the ARIMA model. It is observed that

anomalies have occurred in the model based on the points that deviate outside of the

upper and lower two STD confidence interval boundaries. Visually it is hard to tell if

collective anomalies have occurred.

Figure 6.1: Info ARIMA Residual Errors

Two graphs have been created. Here collective anomalies have been detected. Two

graphs have been plotted. These graphs are filtered to show a reduction in the dataset

that is concentrated in showing detected collective anomalies. From figure 6.2 we can
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visually see more clearly the anomalies detected. Three collective anomalies have oc-

curred within the full dataset.

Figure 6.2: Info : Two STD Collective Anomalies

Table 6.1 identifies the amount of point and contextual anomalies detected. It also

identifies the series of where the anomalies occurred. As expected there is more one

STD anomalies than that of two and three STD’s. Two STD’s for Informational type

messages observed three collective anomalies between series 2206 and 2207 and series

2652 to 2653 and series 2696 to 2697.

Deviation Point Collective Series

Three STD 33 2 [2206:2207,2696:2697]

Two STD 43 3 [2206:2207,2652:2653, 2696:2697]

1 STD 65 6

Table 6.1: Info - Anomaly Count

There is significant variance in the STD around series 2220. The data was then further

analysed to see if some sort of a pattern existed that caused the significant spike to

occur. We can see that the data reached its peak very sharply over one hour and was

not, in fact, a gradual incline as per figure ??. It may be determined that this is due
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to missing data and a further check was done to determine if the data was indeed

missing.

Series Date Value

2206 2019-03-26 14:00:00 689.0

2207 2019-03-26 15:00:00 2115.0

2208 2019-03-26 16:00:00 420.0

Table 6.2: Info Anomaly Detection Missing Data Check for Spike

We can see from table 6.2 that this is not in the case, that there was, in fact, no

missing data for that period. A domain expert would need to asses this incline to give

a better indication as to the reason for the significant increase.

6.0.2 LSTM

The residuals of the LSTM model were graphed in figure 6.3 with the two STD bound-

aries added. Most of the residuals are centered around zero except for the residuals

near-series 900. The residual graph appears stationary and does not show the level

shift that occurs in the ARIMA residual graph 6.1.

Figure 6.3: Info LSTM Residuals
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Anomalies have been plotted with an x on figure 6.4. Eighty-four point and fifteen

collective anomalies have been detected. For each collective anomaly detected all’s it

anomalies have been plotted. Out of the fifteen collective anomalies detected thirteen

occurred within a two-hour window and two occurred within a three-hour window.

The green x’s represent the three-hour window and the red x’s indicate the two-hour

window.

Figure 6.4: Info LSTM Collective Anomalies On The Residuals

Anomaly Comparison

For ARIMA it detected three collective anomalies while LSTM detected fifteen as per

table 6.3

Model point Collective

ARIMA 43 3

LSTM 84 15

Table 6.3: Info LSTM and ARIMA Anomaly Count
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CPU-Memory - Performance

Analysis

Memory and CPU metrics were analysed to see if they have any correlation with in-

creased log message output. Pearson’s, Kendal and Spearman are Goodness of fit tests.

Pearson’s cross-correlation statistic was used to test the linear relationship between

the variables. A correlation coefficient of one indicates a positive high correlation. -1

indicates a negative correlation. A correlation of zero indicates no correlation.

7.1 CPU

For CPU metrics it was identified that the server contained thirty-one CPU’s. A

"Percent Total CPU Used" metric was used for analysis. Figure 7.1 shows the person’s

cross-correlation coefficients matrix results. With a correlation value of r=0.1, this

correlation coefficients indicates that there is a low correlation between CPU usage

and Informational log message output.
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Figure 7.1: Info and CPU Hourly Pearson’s Correlation Analysis

Figure 7.2 shows that seasonality exists within the data as we can see a pattern

emerging. The correlation is negative at its highest point at lag 8 and then drifts off.

A correlation coefficient of r=1.5 suggests that the evidence is not strong enough to

indicate correlation exists.

Figure 7.2: Info and CPU Hourly Correlation Analysis
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7.2 Memory

For memory metrics, the server contained 100gb of memory. A "free memory" metric

was used for analysis. Figure ?? shows the results of the Pearson test which indicates

a correlation value of r=0.2. This indicates a low correlation between memory usage

and Informational log message output.

Figure 7.3: Info and Memory Hourly Pearson’s Cross Correlation Analysis

In figure 7.4 the correlation graph between info and free memory indicate a shift

in the data from lag zero onwards. The correlation value is quite low at 0.15 and

suggest that there is no evidence to suggest a correlation between memory and info

log messages.
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Figure 7.4: Info and Memory Hourly Correlation Analysis
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Evaluation

For Daily data, it was observed that 55% of the events were generated by the error

severity event and only 8% were generated by the warn severity event. A 55:35 split

was detected between error and info event types. From these statistical counts, it

would appear that an error event may have occurred over a considerable amount of

time that caused it to surpass the info type message count. Observationally from

these values, it would appear that no correlation exists between the warn and error

type events or it may be the case that the error events that occurred may have been

stuck in an iterative loop over a considerable period.

8.1 Daily

For time series modelling we need to conclude from the data if it fits a certain pat-

tern or shape. The results of these tests may indicate the need for further tests or

transformations to be done before the data can be modelled. Those types of tests are

normality, unit root, stationarity, volatility, trend, seasonality and time series depen-

dence tests. The majority of these tests have been conducted on the daily data.
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8.1.1 Info

Testing For Normality:

We reject the null hypothesis of the SW test p = 0.0. The data is not normally

distributed. We reject the null hypothesis of the AD test (test statistic=0.07 > critical

values at 5%= 0.74. The data is not normally distributed. Skewness=2.5 indicates a

heavy right-tailed distribution with a platykurtic kurtosis=9.1 both of which indicates

variance in the data. Both the quantile plot and the histogram do show that the data

was not of a normal distribution. Based on the combined tests there is strong evidence

to suggest the data is not of a Gaussian distribution.

Testing For Stationarity:

When testing to see if a shock in the data has an impact on the time series the ADF

unit root test p=0.20 indicates unit root does exist and implies non-stationarity. The

KPSS test for unit root (test statistic =0.38 < critical value 0.46) shows evidence

that unit root does not exist and implies stationarity. Mean and variance tests on the

data using two sample populations from the same dataset indicated a high degree of

variance and mean. These results do not hold for ARIMA which looks for conditional

mean and constant variance. Using the combined tests there was strong evidence to

suggest that the info type event data did not present stationarity.

Testing For Trend And Seasonality:

For trend, info type events do show patterns of variance change in the data. Seasonality

was also evident in the seasonal decomposition chart. The correlogram did show that

trend exists. The results of the CH test indicated that no trends existed in the data.

Although statistically there was no evidence to suggest that seasonality existed there

was too strong an evidence in the visualization charts to reject the hypothesis that

seasonality or trend did not exist.
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8.1.2 Warn

Testing For Normality:

Warn type events did display volatility in the data. With the SW test p=3.2, we fail to

reject the null hypothesis, the data is normally distributed. The AD test (test statistic

=21.6 > critical value at 5% = 0.74) rejects the null hypothesis. There is evidence

to suggest the data is not normally distributed. Skewness = 6.7 shows a heavy right-

tailed distribution with a leptokurtic kurtosis = 48.7 both of which indicates variance

in the data. The histogram and the quantile plot show that the data is not of a normal

distribution as it does not fit anywhere along the regression line and the majority of

the values in the histogram occur within the zero to one thousand range. Based on

the combined tests the evidence is conflicting. If the low number of high outliers were

removed from the dataset this may change the results of the skewness and kurtosis test.

It may also change the shape of the histogram and the distribution of the fit along

the regression line. Further analysis would need to be conducted with the outliers

removed to see if they occurred by random chance and are not seen to be part of the

normal observation.

Testing For Stationarity:

Testing for stationarity the ADF unit root test p=0.00 implies that the time series

has no unit root and is stationary. For KPSS unit root (test statistic =0.12 < critical

value 0.46) provides evidence to suggest that the time series is stationary so we fail

to reject the null hypothesis. A high degree of variance and mean are an indication

that the time series is not stationary. Using the statistical KPSS and ADF tests their

is strong evidence to suggest that the warn type event data is stationary. The high

variance and mean in the data may be partially due to the high outlier values detected

in the dataset.

Testing For Trend And Seasonality:

A transient type of change was observed in the trend chart. Seasonality does exist over

repeat observations. The correlogram does not show any trend or seasonality. The

CH test failed to detect seasonality or trend in the dataset. Based on the visual and
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statistical evidence more tests will need to be conducted on the data to provide more

solid reasoning for accepting or rejecting the hypothesis that seasonality and trend

exist.

8.1.3 Error

Testing For Normality:

Error type events show volatility in the data. This can be seen in its histogram where

a high degree of low values frequently occurs with a low degree of high values. Its

quantile plot shows that the data is not of Gaussian distribution as none of the data

fits along the regression line. It is observed from the quantile plot and the histogram

that a significant outlier occurred that may have contributed to the data not fitting

a normal distribution. The test for normality using the SW test p=0.0. shows strong

statistical evidence that the data is not of a normal distribution. The AD test (test

statistic=585.9 > critical values at 5%=0.74) rejects the null hypothesis, the data is

not normally distributed. With skewness=34.7 and kurtosis=1261 this indicates that

the data contains a heavy right-tailed distribution and a leptokurtic shape. The results

of the normality test for error may be due to the same reasons as that of the warn

tests. The significant outlier in the data may have an impact on the data’s shape

and distribution. Removal of this outlier if it occurred by chance and was not seen

to be a normal observational pattern will give a better indication to the true shape of

the data. It is suggested that this outlier be removed before any further analysis is

conducted.

Testing For Stationarity:

Testing for stationarity the ADF unit root test p=0.0 implies that the time series is

stationary. For KPSS unit root (test statistic =0.12 < critical value 0.46) also provides

evidence to suggest that the time series is stationary. Running a two population sample

mean and variance test on the dataset confirms that they both contain high variance

and mean. The results of the test show strong statistical evidence that the time series

is stationary through the ADF and KPSS test. It may be the case that the significant
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outlier has an impact on the mean and variance results.

Testing For Trend And Seasonality:

The results of the CH test confirmed that no trend or seasonality exists. The seasonal

decomposition chart, on the other hand, does visually provide evidence of trend and

seasonality. The correlogram does show that no trend or seasonality exists in the ACF

plot but there appears to be a negative trend occurring between lag forty-two and

forty-eight in the PACF plot. Using the results of the correlogram and the seasonal

decomposition there is evidence to suggest that seasonality and trend do exist.

8.2 Hourly

No high-level aggregation analysis was implemented on the hourly data. The analysis

was done to ascertain if the hourly data could be time series modelled.

8.2.1 Info

Testing For Normality:

There was evidence to suggest that info type events were not normally distributed

by the results of the AD and SW test. Its histogram and quantile plot also showed

graphical evidence that the data is not Gaussian. The quantile plot regression line

does indicate a not so good fitting. A high number of outliers are deviating from the

tail end of the regression line. A non-symmetrical shape is displayed on the histogram

with a heavy right-tailed distribution. A kurtosis of 272.0 and skewness of 215.5 also

indicate the data may not be of a normal distribution.

Testing For Stationarity:

Their is evidence to suggest that info type events are time series stationary with the

ADF test(p=0.00, test statistic (-19.27) > critical values at 95% (-2.86)). The KPSS
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test also provides evidence to suggest that the time series is stationary (test statistic

(1.28) < critical values at 95% (0.46))

Testing For Trend And Seasonality:

The STL chart does show evidence of trend and seasonality. A positive and negative

variance change is detected. The results of the CH, ACF and PACF tests fail to

identify seasonality or trend in the data although the ACF and PACF do observe

some volatility. A deeper dive on the correlogram for ACF does confirm non-existent

trend or seasonality as per figure 8.1

Figure 8.1: Info ACF Filtered On 1st Twenty Lags

8.2.2 Warn

Testing For Normality:

Warn type events were not normally distributed based on the evidence provided by

the AD and SW tests. The quantile plot indicates that the data does not fit along

the regression line. We also observe a high number of outliers deviating from the tail

end of the regression line which may be affecting the shape of the distribution. The

histogram does not show a symmetrical shape to support a normal distribution and

displays a heavy right tail. Its kurtosis=680.9 and its skewness=25.1 also indicate the

data may not be of a normal distribution.

Testing For Stationarity:

Warn type events pass the unit root test for ADF (p=0.00, test statistic =-13.49 >

critical values at 95% (-2.86)) implying the time series is not stationary but KPSS
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(test statistic = 0.27 < critical values at 95% (0.46)) passes the test for stationarity.

This indicates a conflict of results. The ADF test for warn type events may suffer from

near observation equivalence and further tests would need to be conducted before a

judgement could be made.

Testing For Trend And Seasonality:

The STL graph shows that trend and seasonality do exist. The CH test identified

seasonality on the monthly frequency of the hourly data but did not observe seasonality

on the hourly or weekly frequency. The ACF graph does not display any trend or

seasonality but there appears to be a pattern emerging in the PACF graph as per

figure 8.2. This can be observed as a range of values that are spanning in-in time.

We can see the negative values at lag two, five, seven and ten showing a slight linear

shift.

Figure 8.2: Warn PACF First 30 Lags Filtered Observation

8.2.3 Error

Testing For Normality:

The error type events were not normally distributed. Both tests rejected the null

hypothesis for the AD and SW tests. The quantile plot shows that the data does not

fit along the regression line. Two outliers appear to deviate from the regression linen.

A non-symmetrical heavy right-tailed distribution is showing on the histogram. With
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a kurtosis=2144.2 and skewness=45.2, it is also evidence to suggest that the data is

not normally distributed.

Testing For Stationarity:

Error type events pass the unit root tests for ADF (p=0.00, test statistic=-27.00 >

critical values at 95% (-2.86)). The KPSS test also indicates that the time series is

stationary ( Test statistic (-0.13) < critical values at 95% (0.46))

Testing For Trend And Seasonality:

Tend and seasonality is observed within STL. The CH test does not identify seasonality

for any of the daily, weekly or monthly tests conducted which is further supported by

the correlogram for ACF which does not indicate any seasonality.

8.3 Daily - Hourly Recap

Daily

For info type events there is evidence to suggest that the data is not normally dis-

tributed. The evidence for stationary did not hold. Trend and seasonality were ob-

served in the data.

Warn type events are displaying volatility. The AD test fails on a normality test and

SW passes the test for a Gaussian distribution. Other statistical tools provide evidence

to suggest that the data is not normally distributed. Unit root tests passed the ADF

and KPSS tests and both tests provided evidence that the data was stationary. Trend

and seasonality do exist in the data. It was noted that there is a significant outlier in

the data. This outlier may have an impact on some of the test results. It is suggested

that this outlier be removed or analysed to see if it happened by chance or is a normal

observation pattern.

Error type events also show volatility in the data. Both the AD test and the SW test

failed for normality. Both the KPSS and ADF test confirm that the data is stationary.

Trend and seasonality do exist in the data. As per the suggestions for warn, there is
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a significant outlier in the data that may have an impact on some of the test results.

It would be suggested that this outlier be removed or further analysis.

The strength of the relationship between two variables was conducted on each of the

severity type events. This was done so that it could identify if a causation relationship

existed and to what extent was the strength of that relationship. The test showed a

significant relationship exists between warn and error and info and warn with a lesser

significant relationship with info and error.

Hourly

There is strong evidence to suggest that info type events are time series stationary.

This was evident with the results of the ADF and KPSS test. Info type events were

not normally distributed. The AD and SW tests showed evidence to suggest this. This

was further confirmed with the visual observations from the histograms and quantile

plots.

There was conflicting evidence on warn type events for unit root. The ADF test

implies non-stationarity while the KPSS implies stationarity. It is known from the

literature that ADF suffered from type 1 errors. More analysis would need to be done

on the data to confirm if the ADF test suffers from near observation equivalence. A

recommendation would be to also try and ADF-GLS test. Warn type events were not

normally distributed based on the evidence provided by the AD and SW tests.The

high number of outliers observed deviating from the tail end of the regression line

would need further analysis to understand the story behind their occurrence.

The error type events were not normally distributed. Both tests rejected the null

hypothesis for the AD and SW tests. Their is evidence to suggest that error type

events are time series stationary with the passing of the ADF test and KPSS tests.

Seasonilty was slightly detected in the STL graphs and all other tests did not detect

seasonality or trend existed. Looking at all the combined tests, their is evidence to

suggest that seasonality or trend do not exist.
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8.4 Time Series Modelling

8.4.1 Info

For time-series modeling, the data went through multiple transformations to detect

the best fit model for predictions. It was first noted that the untransformed hourly

data suffered from trend and seasonality via STL but that was not detected in the

correlogram. It is evident from the tests in table 5.4 that both KPSS and ADF con-

flicted with their results for stationarity for three of the four tests. The only time the

CH test detected seasonality was on its 1st difference transformation. All models pre-

sented evidence that the data did not suffer from heteroskedasticity and was suitable

for ARIMA modeling. On looking at the results of all the transformations there was

never a case where all tests equally passed.

The lowest RMSE of 0.45 of the natural log transformation with a model of (2,0,3)*(0,0,0,24)

was used as the best fit model. The (p,d,q) parameters (2,0,3) reflect the ACF and

PACF correlogram shown in figure 8.1, which indicate that the ACF p value = 2 and

PACF q value=3 with zero for no difference. This no difference may indicate that

ADF holds out on this test more than KPSS as the ADF test passed for stationarity

but the KPSS test failed for stationarity. The Seasonal values(0,0,0,24) indicate white

noise. When we look back at autocorrelation of the residuals from the model as per

figure 5.2 this indicates no white noise and there is no evidence to suggest that the

model is time series dependant based on the results of the LB test. It may be the case

that the time-series does in-fact not contain seasonality, therefore, an ARIMA model

may be better suited.

8.4.2 Warn

To recap, the warn data for hourly analysis did not present normality and has conflict-

ing results for stationarity. Trend and seasonality were detected in the dataset. Table

5.5 shows all the results of the model analysis for each of the transformations. Het-
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eroskedasticity was not observed after the data was transformed. The lowest RMSE

was recorded at 0.03 with an AIC of -1717.81 from the natural log transformation. On

testing for seasonality within the ARIMA model the results show that ARIMA did

not identify any seasonality or trend, this conflicts with the results of the STL test

but does not conflict with the results of the CH test. The (p,d,q) parameters of (1,0,2)

were observed as the best parameters from auto ARIMA. Looking at figure 8.3 may

suggest that (3,0,2) may be a better fit model.

Figure 8.3: Warn ACF - PACF Filtered Observation

8.4.3 Error

The initial analysis of the hourly error data indicated volatility in the dataset. The

data was not of a normal distribution and trend and seasonality were not detected.

One significant outlier was detected in the data that may have had an impact on the

results of the statistical tests. It would be recommended that this outlier be removed

from the system as a temporary measure as it is so significant until further analysis can

be conducted to see why it occurred and under what conditions caused this behavior.

Although the best fit model for info and warn was from the natural log transformation,

the accepted model for the error type events was square root. As the data did present

volatility before the transformation was conducted we observe from the time-series

graph in 8.4 that most of the observations are at zero with one significant spike. As

these are error type events - they may not occur as often as info or warn type events.

It is recommended that a GARCH model be tested on the data before and also an

ARIMA and GARCH combined be conducted.
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Figure 8.4: Error Hourly Time Series Observation

8.5 Anomaly Detection

8.5.1 SARIMA

The SARIMA model for info type events shows that the test data does fit the train

data up to a period where the data does not suffer variance. The predictions against

those of the test data do seem to fit the data quite well but it is evident that the

predictions are nearly always linear upward trend in the residual errors. A level shift

occurred in the data that saw the predictions weakening straight from the point of

shift. Their is a slight linear upward trend detected in the residual errors. This level

shift would confirm that trends still exist in the data and this was proven from the

statistical KPSS test which failed the stationarity test as it should be able to detect

the change in mean and variance when the shift occurs. The CH test was conducted

to test for trends and seasonality but this test rejected the hypothesis for trend and

seasonality. After some investigations, a limitation was identified in the CH test. CH

first needs the data to be transformed before it can make its assumption. It can

also only detect seasonality or trend at the lowest level of data (Taylor, 2003). On

looking back at the hourly transformations this identified limitation does not hold. It

is observed that the CH test was able to detect that seasonality existed on the warn

type events on the untransformed data as per figure 5.5

After the shift in the data, it becomes quite apparent how far the prediction deviates
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from the observed values. It is constantly under predicting by around 200 values at

each point. Although the SARIMA model was not able to predict the data it was

further used as an analysis for anomaly detection using a two standard deviation

approach.

For anomaly detection, a three STD approach was initially used but was then reduced

to two STD’s to reduce only capturing the extreme outliers and missing the lower

impact outliers. As our research was looking at collective anomalies the number of

outliers detected was further reduced. It was observed from table 6.1 that out of forty-

three point anomalies only three were collective anomalies. These anomalies occurred

over 2 periods.

With the SARIMA model detecting a structural pattern change in the data, further re-

search was done in this area. Different algorithms exist for different patterns or shapes

identified in data. As our data suffered from level shift it is worth investigating if a

level shift algorithm can handle this level shift? A level shift is when there is an abrupt

change in the mean level (Balke, 1993)"Outliers, level shifts, and variance changes are

commonplace in applied time series analysis. However, their existence is often ignored

and their impact is overlooked." (Tsay, 1988) A level shift and a transient change out-

lier algorithm would be a more suitable approach than that of the STD mechanism.

Lasisi et al studied outlier detection on airport data. They looked at Innovation (IO),

Level Shift(LS), Additive (AO) and Transient Change (TC) Outlier algorithms. Their

findings concluded that combined usage of AO, LS, and TC captured 60% of they’re

outliers with LS producing the best results. (Lasisi & Shangodoyin, 2014) These al-

gorithm’s are best suited for level shifts in the data set.

8.5.2 LSTM

LSTM was implemented to see if a deep learning neural network model could better

detect and forecast anomalies than that of a classical SARIMA or GARCH model.
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Multiple models were tested to bring back the lowest mean RMSE. It was confirmed

that running ten iterations with a batch size of one using fifty epochs produced the

best results (RSME=145.43). Any iterations above fifty epochs caused a decline in

model performance. The LSTM residuals of the model appear to be stationary. There

does not appear to be much variance in the data. The results of the tests for LSTM

provide a near perfect fit. The observations and the actual values are so close to each

other the difference is hardly recognizable. From the anomalies, it detected LSTM

identified eighty-four point anomalies and out of those eighty-four anomalies fifteen of

them were collective. Some of these anomalies also appear to occur over three periods

which means it existed for 1.5 hours.

8.5.3 Comparison

Our initial research aim was to compare SARIMA, GARCH and LSTM models for

anomaly detection. We confirm that SARIMA was not suitable for the info type

events for anomaly detection due to the existing level shift in the data. LSTM, on the

other hand, was able to give more accurate predictions even with the level shift in the

data.
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Conclusion and Future Work

A Box-Jenkins SARIMA model and a highly sophisticated neural network LSTM

model were analyzed. Log messages with a severity type of info, error and warn

was tested. SARIMA was tested on untransformed data, 1st difference, natural log,

and square root transformations.

Different parameter factors were taken into consideration before deciding which model

to use. Those factors came from the results of the unit root, normality, heteroskedas-

ticity, time series dependency, and seasonality tests. RMSE was used for the model

accuracy measures. A 1st difference transformation was applied to the LSTM model.

Unit root tests for KPSS and ADF showed conflicting results for unit root. The ADF

test always failed to reject the null hypothesis and concluded that that unit root ex-

isted through all of the tests. This, however, was not the case for KPSS which did

show it both reject and accept its hypothesis. As the ADF test suffers from type 1

errors and near observation equivalence, it is recommended that another test like the

PP test or the ADF-GLS test is implemented instead of the ADF test. The ADF test

was initially chosen due to it being so popular in the research papers
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When testing for seasonality it was evident from the results of the test in comparison

to the results of the STL tests that the CH test was not able to detect seasonality or

trend for the majority of cases. It was, however, a little better at predicting season-

ality at the higher frequency level for monthly data over the hourly periods. The CH

for seasonality needs the first transformation to be done on the data before it can be

applied. It is not able to handle higher level seasonal dimensionality in the data. This

test should be eliminated from the study as it was not the best tool of choice. It was

unfortunate that the limitations of the CH test were not evident in the research papers

first read and only after questioning the results of the tests did I find the necessary

papers.

For time-series prediction the results of the models concluded that the SARIMA model

was not suitable for modeling predictions due to the existing shift in the data after

the first principle transformation was done. The LSTM model was far more superior

and better suited to handle the shift in the data. It is recommended that a further

transformation is done on the data to remove the existing seasonality or trend in the

data.

A rolling twenty-four window two STD approach was used for anomaly detection. The

LSTM model was able to better predict anomalies than that of SARIMA. It is recom-

mended that a better-suited algorithm that supports a level shift in the data should

be implemented like LS or TC. Other recommendations would be to try Principal

Component Analysis (PCA) or Cooks distance.

A hybrid model of SARIMA and LSTM could be implemented so that the classical

model can be able to better handle the seasonality in the data. As only info type

events were analyzed for anomalies error and warn event type events should be tested

in future studies.
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For ARIMA model parameters a periodicity of twenty-four was only implemented. It is

recommended that different periodicity values should be implemented that can catch

the higher dimensional levels of trends and seasonality. As was observed from the

seasonal decomposition graphs the weekly and monthly graphs are more pronounced

for trend and seasonality than that of the daily graphs.

For the LSTM model parameters, it is recommended that further analysis be con-

ducted by increasing the number of repeats that the model cycles through. It is also

recommended to use a batch size greater than one to help the model predict better.

As was noted after fifty epochs the model started to degrade. It is recommended that

no further epoch increases are recommended. It is also recommended that further

transformations are done on the data and applied to the LSTM model. Currently,

only a first difference transformation was applied to the model.

The correlation on info type messages, CPU and memory was quite low and the

evidence suggested that this should be rejected. Further correlation tests on CPU,

memory and disk usage should be tested against the warn and error type events. There

were thirty-two CPU’s on the server. Correlation analysis should be further refined

by looking at the correlation between each CPU and each log event type message as

an overall percentage metric might hide a potential load on these anomalous events.A

Pearson correlation test was used for the analysis. As the CPU metric did display

seasonality while the info type events also displayed non-stationarity it would be better

if a Kendal or Spearman’s correlation was implemented instead.
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