
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Doctoral Theses&Dissertations

2017

Data Mining by Grid Computing in the Search for Extrasolar Data Mining by Grid Computing in the Search for Extrasolar

Planets Planets

Oisin Creaner [Thesis]
Dublin Institute for Advanced Studies, creanero@cp.dias.ie

Follow this and additional works at: https://arrow.tudublin.ie/ittthedoc

 Part of the Databases and Information Systems Commons, External Galaxies Commons,

Instrumentation Commons, Numerical Analysis and Scientific Computing Commons, Other Astrophysics

and Astronomy Commons, Other Computer Sciences Commons, Software Engineering Commons, Stars,

Interstellar Medium and the Galaxy Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Creaner, O. (2017) Data Mining by Grid Computing in the Search for Extrasolar Planets, Doctoral Thesis,
Institute of Technology, Tallaght, Dublin. DOI:10.21427/7w45-6018

This Theses, Ph.D is brought to you for free and open
access by the Theses&Dissertations at ARROW@TU
Dublin. It has been accepted for inclusion in Doctoral by
an authorized administrator of ARROW@TU Dublin. For
more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/ittthedoc
https://arrow.tudublin.ie/ittthe
https://arrow.tudublin.ie/ittthedoc?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/128?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/125?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/130?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/130?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/127?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/127?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=arrow.tudublin.ie%2Fittthedoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

i

Data Mining by Grid Computing in the Search for

Extrasolar Planets

Oisín Oliver Creaner B.A. (mod)

Being a Thesis presented for the award of Doctor of Philosophy

Dr. Eugene Hickey CPhys, MInstP, DEA, PhD

Kevin Nolan BSc MSc, Dr. Niall Smith Ph.D

School of Science and Computing

Institute of Technology, Tallaght, Dublin

Old Belgard Road,

Tallaght,

Dublin 24

Submitted to Quality and Qualifications Ireland (QQI) July 2016

ii

i. Declaration Statement

I hereby certify that the material, which I now submit for assessment on the

programmes of study leading to the award of PhD, is entirely my own work and has not

been taken from the work of others except to the extent that such work has been cited

and acknowledged within the text of my own work. No portion of the work contained in

this Thesis has been submitted in support of an application for another degree or

qualification to this or any other institution.

__________________________________ ________________

 Signature of Candidate Date

I hereby certify that all the unreferenced work described in this Thesis and submitted for

the award of PhD, is entirely the work of Oisín Creaner. No portion of the work

contained in this Thesis has been submitted in support of an application for another

degree or qualification to this or any other institution.

__________________________________ ________________

 Signature of Supervisor Date

__________________________________ ________________

 Signature of Supervisor Date

__________________________________ ________________

 Signature of Supervisor Date

iii

ii. Acknowledgements

I would like to take this opportunity to thank everyone who has helped me through these

last few years, and without whom this Thesis would never have made it to publication.

First, I would like to thank my supervisors, Dr. Eugene Hickey and Kevin Nolan –

Eugene, your support and encouragement throughout have kept me going and Kevin,

without your constant drive towards perfection and robust work has made this project

what it is. I would like to thank everyone at the Institute of Technology, Tallaght,

especially John Behan, Martin McCarrick and Tadhg O Briain, for the opportunity to

complete this project, in particular through the provision of the PhD continuation fund.

Second, I thank the entire team down in Blackrock Castle Observatory, most of all Dr.

Niall Smith, my co-supervisor, for all the work which you have assisted us with

throughout the years.

Thanks are also due to the team at Grid Ireland in Trinity College Dublin, especially

John Smith, Stephen Childs, John Ryan, David O’Callaghan and Gabriele Pierantoni for

their help in bringing an astrophysicist into the world of High Performance Computing.

This project made extensive use of data from SDSS. Funding for the SDSS and SDSS-II

has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the

National Science Foundation, the U.S. Department of Energy, the National Aeronautics

and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and

the Higher Education Funding Council for England. The SDSS Web Site is

http://www.sdss.org/.

I thank my family for being there for me throughout it all, my parents Ann and Aidan,

who first encouraged me to look to the stars, my brothers Dónal and Rúairí who kept me

sane throughout the long years of work, my grandmother Miriam who provided me with

a refuge away from the city in which to work, my nephew and many aunts, uncles,

cousins and friends who have been there for me when needed.

Finally, I dedicate this work to two people who were there for me from the start but who

weren’t able to see me finish this work. To my granddad Pat and my nanny Peg, I hope

that you’re proud of me.

iv

iii. Abbreviations List

Abbreviation Meaning
ΔC Difference in colour

ΔCmax Maximum permitted difference in colour

Δmmax Maximum permitted difference in magnitude

∆m Difference in magnitude

AD Anno Domini

ADASS Astronomical Data Analysis Software and Systems

API Applications Programming Interface

ASCII American Standard Code for Information Interchange

AT&T American Telephone & Telegraph

B Johnson B magnitude

Bash Bourne-Again SHell

BC Before Christ

BCO Blackrock Castle Observatory

CAS Catalogue Access Server

CCD Charge Coupled Device

cf. conferre (compare with)

char Character

CIT Cork Institute of Technology

C-K Comparison-Check Photometry

Cl Colour with respect to the next band of longer wavelength

CLI Command Line Interpreter/Interface

Cs Colour with respect to the next band of shorter wavelength

CSV /.csv Comma Separated Value

CTI Catalogue Information File

DAS Data Access Server

DE Development Environment

Dec Declination

double Double Precision Floating Point Number

DR Data Release

e.g. exempli gratia (for example)

EC2 Elastic Cloud Compute

EGI European Grid Infrastructure

etc. et cetera (and so on)

FITS / .fits /.fit Flexible Image Transfer System

FORTRAN FORmula TRANslation (programming language)

v

FoV Field of view (telescope specific)

g SDSS g band magnitude

GB GigaByte (109 or 230 Bytes)

GMS Grid Management System

GUI Graphical User Interface

GUID Globally Unique IDentifier

HDD Hard Disk Drive

HDU Header Data Unit

HPC High Performance Computing

i SDSS i band magnitude

IDE Integrated Development Environment (IDE)

int Integer

ITTD Institute of Technology, Tallaght, Dublin

JDL Job Description Language

JSS Job Submission System

kB kiloByte (103 or 210 Bytes)

ksh Korn SHell

LAN Local Area Network

LFC Logical File Catalogue

lfc-cp gLite command. Analogous to cp

lfc-cr gLite command. Copy and Register.

lfc-ls gLite command. Analogous to ls

LFN Logical File Name

long Long form integer

ls Unix "list" tool. Lists the contents of a directory

LSST Large Synoptic Sky Survey

max maximum

MB MegaByte (106 or 220 Bytes)

min minimum

mn magnitude in a given band (n)

mn+1 magnitude in the next band of longer wavelength than a given band (n)

mn-1 magnitude in the next band of shorter wavelength than a given band (n)

MPI Message Passing Interface

MS MicroSoft

N Number: usually an integer which refers to a counted quantity

PC Personal Computer

PoI Point of Interception

PPR/.ppr Pipeline Parameter File

vi

PRM/.prm API Parameter File

PSF Point-Spread Function

QE Quantum Efficiency

r SDSS r band magnitude

R Rating

RA Right Ascension

RAM Random Access Memory

Rl Rating with respect to the next band of longer wavelength

Rs Rating with respect to the next band of shorter wavelength

S Size (of FoV)

S3 Simple Storage Service

SCG Scientific Computing Group

SDSS Sloan Digital Sky Survey

sh bourne SHell

SNR Signal-to-Noise Ratio

SQL Structured Query Language

SSH Secure SHell

SURL Storage Universal Resource Locator

TB TeraByte (1012 or 240 Bytes)

TCD Trinity College, Dublin

tsObj SDSS calibrated object lists

TTV Transit Time Variation

TXT/.txt Text file

u SDSS u band magnitude

U Johnson U magnitude

UFS Unix File System

USNO United States Naval Observatory

V Johnson V magnitude

VLDB Very Large Data Base

VM Virtual Machine

VO Virtual Organisation

WAN Wide Area Network

wc Unix word count tool

WN Worker Node

XLDB eXtremely Large Data Base

z SDSS z band magnitude

vii

iv. Abstract

A system is presented here to provide improved precision in ensemble differential photometry.

This is achieved by using the power of grid computing to analyse astronomical catalogues. This

produces new catalogues of optimised pointings for each star, which maximise the number and

quality of reference stars available.

Astronomical phenomena such as exoplanet transits and small-scale structure within quasars

may be observed by means of millimagnitude photometric variability on the timescale of

minutes to hours. Because of atmospheric distortion, ground-based observations of these

phenomena require the use of differential photometry whereby the target is compared with one

or more reference stars. CCD cameras enable the use of many reference stars in an ensemble.

The more closely the reference stars in this ensemble resemble the target, the greater the

precision of the photometry that can be achieved.

The Locus Algorithm has been developed to identify the optimum pointing for a target and

provide that pointing with a score relating to the degree of similarity between target and the

reference stars. It does so by identifying potential points of aim for a particular telescope such

that a given target and a varying set of references were included in a field of view centred on

those pointings. A score is calculated for each such pointing. For each target, the pointing with

the highest score is designated the optimum pointing.

The application of this system to the Sloan Digital Sky Survey (SDSS) catalogue demanded the

use of a High Performance Computing (HPC) solution through Grid Ireland. Pointings have

thus been generated for 61,662,376 stars and 23,697 quasars.

viii

v. Table of Contents

i. Declaration Statement .. ii

ii. Acknowledgements ... iii

iii. Abbreviations List .. iv

iv. Abstract vii

v. Table of Contents ... viii

vi. Table of Tables ... xv

vii. Table of Figures .. xviii

1. Introduction .. 1

1.1. Introduction to the Project ... 1

1.2. Structure of the Thesis .. 2

1.2.1. Part I: Background .. 3

1.2.2. Part II: Design & Implementation ... 5

1.2.3. Part III: Results ... 7

1.2.4. Part IV: Future Work & Conclusions ... 8

1.2.5. Appendices .. 9

1.3. Summary ... 10

2. Core Concepts of Photometric Variability .. 11

2.1. Variability of Astronomical Objects ... 11

2.1.1. Variable Stars .. 13

2.1.2. Exoplanets ... 17

2.1.3. Quasars .. 24

2.2. Photometry .. 25

2.2.1. Classes of Photometry ... 25

2.2.2. Historical Development of Photometry .. 27

2.2.3. Differential Photometry Operations .. 30

2.3. Application of Data Mining Techniques to Astronomical Catalogues 38

2.4. Conclusions ... 39

3. Computing Background & Concepts ... 40

3.1. Assessment of Computing Requirements ... 41

3.2. High Performance Computing .. 41

3.2.1. Grid Ireland ... 44

ix

3.3. Software Specifications ... 47

3.3.1. Computer Programming Concepts .. 47

3.3.2. Software Solutions .. 52

3.4. Conclusion .. 60

4. Project Objectives .. 61

4.1. Astronomical Goals ... 61

4.1.1. Individual Field Optimisation ... 62

4.1.2. Production of Catalogue of Optimised Fields ... 63

4.1.3. Meta-Analysis ... 66

4.2. Computing Goals .. 68

4.2.1. Demonstration of Grid Use on Data-Rich, Process Poor Problem 68

4.2.2. Computing Metrics ... 69

4.3. Summary ... 71

5. Locus Algorithm & Scoring .. 73

5.1. Coordinate System .. 74

5.2. Locus Algorithm Definition .. 77

5.2.1. Aggregate Data from SDSS .. 77

5.2.2. Identify Potential Reference Stars ... 78

5.2.3. Apply the Locus to Each Candidate .. 79

5.2.4. Identify the Points of Intersection ... 81

5.2.5. Output the Intersection with the Best Score .. 82

5.2.6. Failed Targets .. 83

5.3. Scoring System ... 84

5.3.1. Rating System Options .. 84

5.3.2. Combining Ratings into Scores ... 88

5.4. Conclusion .. 89

6. Project Design Concepts and Approach .. 90

6.1. Design Concepts ... 90

6.1.1. Design Strategy ... 91

6.1.2. Design Philosophy .. 93

6.2. Design Approach ... 95

6.2.1. Design Process .. 96

x

6.2.2. Design Techniques .. 98

6.3. Summary ... 100

7. Project Design ... 102

7.1. Design Requirements & Constraints ... 102

7.1.1. Astronomical Specifications ... 102

7.1.2. Computational Limitations ... 104

7.1.3. Consequent Software Design .. 107

7.2. Overall Software Design ... 109

7.2.1. SDSS Data Access API ... 111

7.2.2. Data Pipeline ... 116

7.2.3. Parameterisation .. 125

7.2.4. Grid Management Software .. 134

7.2.5. SQL Queries to CAS ... 136

7.2.6. Error Handling Routines ... 138

7.3. Summary ... 140

8. Data Storage and Management .. 143

8.1. Data Storage Devices .. 143

8.1.1. Logical File Catalogue .. 145

8.1.2. Grid Data Transfers ... 146

8.2. Directory Structure .. 147

8.2.1. Top Level Structure... 147

8.2.2. Workspace ... 148

8.2.3. Scripts .. 149

8.2.4. Test .. 150

8.2.5. Data ... 151

8.2.6. Release .. 154

8.3. Internal Structure of File Types .. 155

8.3.1. Flexible Image Transport System (FITS) ... 156

8.3.2. Catalogue Information (CTI) .. 161

8.3.3. Parameter Files .. 161

8.3.4. Text (TXT) .. 164

8.3.5. Comma Separated Value (CSV) ... 165

xi

8.3.6. Job Description Language (JDL) .. 168

8.4. Summary ... 169

9. Implementation & Operations .. 172

9.1. Project Implementation ... 172

9.1.1. Development Environment ... 172

9.1.2. Software Testing ... 173

9.2. Practicalities of Grid Operation .. 174

9.2.1. Grid Job Submission & Scripts ... 175

9.2.2. Data Limitations of the Grid ... 176

9.2.3. Result Generation & Collation .. 178

9.3. Summary ... 179

10. Individual Result .. 181

10.1. Aggregate Data from SDSS .. 182

10.2. Identify Potential Reference Stars ... 183

10.3. Apply the Locus Algorithm to each Candidate ... 187

10.4. Observation of a Pointing.. 190

10.5. Expansion to the Catalogue on the Grid ... 191

10.6. Conclusions ... 192

11. Catalogue Outputs & Analysis .. 194

11.1. Overview of the Catalogues Generated... 194

11.2. Local Catalogue .. 196

11.3. Quasar Catalogue .. 198

11.4. Exoplanet Catalogue ... 201

11.5. Summary ... 204

12. Meta-Analysis of the Exoplanet Catalogue .. 205

12.1. Magnitude Variations .. 206

12.1.1. Variation of Score with Magnitude ... 208

12.1.2. Variation of Number of Failed Targets with Magnitude 209

12.1.3. Variation of Descriptive Statistics .. 210

12.2. Colour Variation.. 212

12.2.1. Variation of Score with Colour ... 213

12.2.2. Variation of Number of Failed Targets with Colour 215

xii

12.2.3. Variation of Descriptive Statistics with Colour 216

12.3. Summary ... 217

13. Computational Results .. 221

13.1. Data Metrics .. 221

13.1.1. Source Data Metrics .. 223

13.1.2. API Data Metrics... 223

13.1.3. Pipeline Data Metrics .. 225

13.2. Processing Metrics .. 227

13.2.1. API Metrics ... 228

13.2.2. Pipeline Metrics .. 229

13.3. Grid Metrics .. 233

13.3.1. Local Catalogue Job .. 235

13.3.2. Quasar Catalogue Job .. 236

13.3.3. Exoplanet Catalogue Job ... 237

13.4. Issues Arising from Project ... 239

13.5. Conclusions ... 242

14. Future Use & Refinements of the Project .. 244

14.1. Reuse of the Project .. 245

14.1.1. Magnitude and Colour Arguments .. 246

14.1.2. Choice of SDSS filter .. 248

14.1.3. Observational Parameters.. 248

14.1.4. Target List Options ... 251

14.1.5. Data Source Parameters .. 252

14.2. Migration to Cloud .. 252

14.3. Refinement of the Project ... 256

14.3.1. Addition of Functions to the Algorithm .. 257

14.3.2. Scoring .. 265

14.3.3. Computational Optimisation ... 268

14.4. Conclusions ... 271

15. Conclusions ... 273

Appendix A Bibliography & References .. 276

A-a In-Text citations .. 276

xiii

A-b SDSS Acknowledgement .. 299

Appendix B Symbols and Terminology .. 301

B-a Hierarchy of the Thesis ... 301

B-b Text Conventions .. 301

B-c Design Symbols .. 302

B-c-a Programs and Scripts .. 302

B-c-b Functions ... 303

B-c-c Processes ... 303

B-c-d Loops ... 303

B-c-e Logical Operations .. 304

B-c-f Computing Elements ... 304

B-c-g Storage Devices ... 304

B-c-h Stored Data .. 305

B-c-i Logical Catalogues .. 305

B-c-j Data Flow .. 305

B-c-k Logical Operations .. 306

B-c-l Developmental Tools .. 306

B-c-m Documents .. 306

Appendix C Code Sample .. cccvii

C-a C .. cccvii

C-b BASH ... cccviii

C-c JDL ... cccxv

C-d SQL .. cccxvi

Appendix D Results Samples .. cccxix

D-a Distribution of SDSS flags ... cccxix

D-b Local Catalogue Data ... cccxxi

D-c Output Catalogues ... cccxxii

D-c-a Sample of Quasar Catalogue ... cccxxii

D-c-b Sample of Exoplanet Catalogue ... cccxxiii

D-c-c Reference Stars for SDSS J203733.62+001953.5 cccxxiv

Appendix E Index ... cccxxv

xiv

xv

vi. Table of Tables

Table 2-1: Breakdown of number and proportion of planets detected by various

techniques. Taken from the Interactive Extra-solar Planets Catalog, Zolotukin, 2017.

Retrieved 25th January 2017 [9] .. 17

Table 3-1: Comparison between Grid and Cluster solutions. Green indicates the

superior option in a category, while red indicates the inferior. 43

Table 3-2: Comparison of SDSS Data Access Options. Green highlighting indicates

preferred option. .. 54

Table 3-3: Comparison of programming languages with FITSIO Capability 56

Table 7-1: Reduced version of SDSS Clean Sample of Point Sources Filter [143] 116

Table 7-2: Error Definitions. Errors defined in this project use negative integers.

FITSIO Built-in errors use positive integers to report errors .. 139

Table 8-1: Illustration of the encoding of exoplanet job parameters in an output file

name. Colours are used to indicate the data components to which each component of

the filename corresponds... 152

Table 8-2: FITS Data Types [118] .. 157

Table 10-1: Table of reference stars for SDSS J113824.40+483457.8 (highlighted in

yellow.) One of the reference stars, SDSS J113749.38+482307.1, is shown in red and is

used to provide a worked example of the rating and scoring system............................ 190

Table 11-1: Excerpt from the Local Catalogue. Columns are RA, Dec and Magnitude

(u, g, r, i, z) .. 196

Table 11-2: Comparison between Source Catalogue, Local Catalogue, and output from

the SDSS Clean Sample of Stars Algorithm based on SQL query to the CAS [6] 197

Table 11-3: Parameter list for Quasar Catalogue .. 198

Table 11-4: Excerpt from Quasar Catalogue. Columns are Right Ascension,

Declination, Magnitude (u,g,r,i,z), Pointing RA, Pointing Dec and Score. Highlighted

xvi

in red are two quasars for which no suitable pointings were possible for the given

criteria. Highlighted in green is the quasar with the best score in this small sample,

SDSS J170355.79+604511.7 .. 198

Table 11-5: Summary of output from Quasar Catalogue .. 199

Table 11-6: Descriptive statistics of the Quasar Catalogue, filtered to those quasars for

which pointings were available. The only magnitude (g, r, i) and colour parameters (g-r,

r-i) which contribute to the score are shown. .. 200

Table 11-7: Summary of Input Parameters for Exoplanet Catalogue 201

Table 11-8: Summary of output from Exoplanet Catalogue. The percentage column

compares elements in the output catalogue with the number of unique objects in the

overall catalogue and with the number of objects in the local catalogue...................... 201

Table 11-9: Excerpt from Exoplanet Catalogue. Columns are Right Ascension,

Declination, Magnitude (u,g,r,i,z), Pointing RA, Dec and Score. Highlighted in green is

the highest scoring target in this sample ... 203

Table 11-10: Descriptive statistics of a subset of 106 stars of the Exoplanet Catalogue,

filtered to include only those 942,895 stars for which pointings were available. Only

the magnitude (g, r, i) and colour parameters (g-r, r-i) which contribute to the score are

shown. ... 203

Table 13-1: Data Size for the various databases used and created during this project.

Approximate or rounded values are indicated with a tilde (~), while values with

significant trailing zeroes are indicated with a decimal point (.). The Mean Size per

entry is calculated by dividing the total size of the catalogue by the number of entries

and as such includes contributions from header data spread per entry. 222

Table 13-2: Assessment of processing elements of three phases of the project 228

Table 13-3: Grid metrics for the three primary grid jobs. Timing data for the Quasar job

is unavailable at this time. ... 234

Table 14-1: Summary of proposed expansions to this project 271

xvii

Table 15-1: Distribution of flags bit in 62630 SDSS fits entries cccxix

Table 15-2: Distribution of flags_2 bit in 62630 SDSS fits entries cccxx

Table 15-3: Distribution of status bit in 62630 SDSS fits entries cccxx

Table 15-4: An arbitrary sample of 50 entries in the Local Catalogue cccxxi

Table 15-5: The top 40 quasars in the Quasar Catalogue cccxxii

Table 15-6: the top 50 stars by score in the sample of 106 targets from the Exoplanet

Catalogue.. cccxxiii

Table 15-7: Coordinate (RA, Dec) list for all 247 references for SDSS

J203733.62+001953.5, the target with the highest score in the sample of 106 targets

from the Exoplanet Catalogue .. cccxxiv

xviii

vii. Table of Figures

Figure 1-1: Thesis Structure .. 3

Figure 1-2: Background Chapters ... 4

Figure 1-3: Design and Implementation Chapters .. 5

Figure 1-4: Results Chapters ... 7

Figure 1-5: Future Work Chapters .. 9

Figure 1-6: Appendices ... 9

Figure 2-1: Calculated duration, shape and depth of light curves for uniformly dark,

centrally eclipsing secondary objects of various radii orbiting uniformly illuminated

primary objects at constant velocity. ... 14

Figure 2-2: Calculated duration, shape and depth of light curves for uniformly dark

secondary objects of constant radii (rsecondary = 0.5Rprimary) transiting the primary at

different apparent latitudes. ... 16

Figure 2-3: Exoplanet Detections by method as a function of time. Taken from the

Interactive Extra-solar Planets Catalog, Zolotukin, 2013-2017. Retrieved 25th January

2017 [9] ... 19

Figure 2-4: (left) An image of Venus in transit across the sun, demonstrating a planetary

transit and limb darkening in the Sun. Image:NASA/SDO, HMI [34] 20

Figure 2-5: Distribution of the maximum transit depth (dimensionless) for Exoplanets.

Observations by the Kepler space telescope are shown separately. Solar system objects

shown for comparison, data from Cox, 2000. [36] Data for exoplanets taken from

Zolotukhin, 2017.[9] ... 21

Figure 2-6: (right) A plot of the radii and masses of low mass stars, brown dwarves and

planets at 4×108 (red line) and 5×109 (black line) years from a model by Chabrier et al.

[38] Four low mass stars (red circles) and Jupiter (blue triangle) are shown for

comparison. Image: ESO [39] .. 22

xix

Figure 2-7: The geometric probability for alignment suitable for transit depends on

orbital distance and stellar radius, assuming the planet to be small relative to the star.

Formula and data for the solar system from Koch et al., 2005. [37] Data for exoplanets

taken Zolotukhin, 2017.[9] .. 23

Figure 2-8: Distribution of proportion of time in transit. Data for Exoplanets from

Zolotukhin, 2017.[9] Data for Solar System from Koch & Gould, 2005. [37] 24

Figure 2-9: Position and orientation of the Field of View (FoV) can maximise the

number of reference stars. Images: Stephen O’Driscoll, Dept. of Applied Physics &

Instrumentation, CIT. [2] .. 37

Figure 3-1: Spectrum of parallel computing ... 42

Figure 3-2: Schematic of the physical organisation of Grid Ireland 44

Figure 3-3: Conceptual structure of the grid from the user perspective. 45

Figure 3-4: Programming Language Paradigms ... 50

Figure 3-5: Project Software Strategy ... 59

Figure 5-1: Principles of operation of the Locus Algorithm for two stars. 74

Figure 5-2: Celestial Coordinate System showing the convergence of meridians towards

the pole and the consequent foreshortening of unit angles in Right Ascension. From A

review of Coordinates, Redmond [129] .. 75

Figure 5-3: Overview of the Locus Algorithm Process. Data from the Catalogue is

aggregated to form a Mosaic in memory. Candidate reference stars are identified within

this Mosaic, and a Rating is calculated for each. A Locus is drawn around each where a

FoV may be centred. The Points of Intersection (PoI) between these Loci are identified

and a score calculated for each. The PoI with the highest score is output as the optimum

pointing for that target. Each of these steps is illustrated in its respective subsection

below. .. 77

xx

Figure 5-4: Modified image taken from SDSS Navigate image showing fields. [130] To

obtain data on all stars in the green box, data from the SDSS fields marked in red must

be aggregated to form a mosaic. ... 78

Figure 5-5: Reference stars must be identified from among the stars in the mosaic. The

target is shown in white. Potential reference stars are indicated in green. Rejected stars

are indicated in red. Stars are rejected if they are too bright or faint (indicated by size),

if their colour indices are different to the target (indicated with 7 point stars) or if they

cannot be resolved (indicated with overlapping stars.) ... 79

Figure 5-6: The loci are defined by assigning a pair of RA and Dec coordinates to a

cornerpoint and a pair of Boolean switches which indicate whether to draw a line North

or South and East or West from the cornerpoint. Each Star is assigned a colour, and the

locus that corresponds to it is drawn in the same colour... 80

Figure 5-7: The intersection points between the lines are the points at which the score

changes. For clarity, each star has been assigned a rating of 1 in this example. As a

result, the score for each PoI is equal to the number of stars within a FoV of the PoI. .. 81

Figure 5-8: Locus Algorithm. Target: white star. Pointing & FoV: blue. Reference

stars and their loci: Fully in the FoV: greens. On the edge of the FoV: yellows. Outside

FoV: reds ... 82

Figure 5-9: Four conditions upon which a target will fail. Clockwise, from top left: (1)

a target with no references, (2) a target with one reference, (3) a target the loci of whose

references do not intersect and (4) a target for which the loci of its references are nested

such that they do not intersect one another. .. 83

Figure 5-10: Potential rating systems. The binary scoring system, with a rating of 1

within the limit, and 0 outside. Under the triangular and square systems, rating trends

from 0 at the limit to 1 at a perfect match. Triangular uses a linear progression, while

square uses a parabolic progression. ... 85

Figure 5-11: The Witch's Hat graph. This graph demonstrates the distribution of rating

against difference in two colour indices calculated as shown in Equation 5-6 87

xxi

Figure 6-1: Illustration of Top-Down design concept. The overall task is broken into

components recursively until it can be coded. Note that not all components require the

same number of steps to refine as shown in the case of Part 2 in the illustration above. 91

Figure 6-2: Illustration of Bottom-Up design concept. A number of components are

created which are assembled into more abstract components and eventually used to form

the overall program. This diagram also highlights one potential issue with Bottom-Up

design. Components (e.g. parts g & i in this diagram) may be designed and developed

but are unused in the final design. [134] ... 93

Figure 6-3: Top-Down design in breadth-first and depth-first modes. Breadth-first

solutions follow the path indicated by the letters in the alphabetical order (I excluded for

clarity.) Depth-first strategies follow the decimal pattern (e.g. 1.1 comes ahead of 1.1.1,

which comes ahead of 1.2.) [139] ... 95

Figure 6-4: Design and Development Cycle ... 97

Figure 6-5: Software Design Document Example: an early version of the filtering

process by which candidate reference stars are identified. The current version of this

design forms the basis of Subsection 7.2.2.1.1. Note the informal notes in red text

which indicate design decisions which were outstanding at this point in the development

process. .. 99

Figure 7-1: Bottom-Up Perspective on the Software Design of this Project 108

Figure 7-2: Top-Down Software Design: User Parameters define SQL queries to the

CAS and are used by the Parameterisation system to define API jobs which process the

SDSS catalogue to generate the Local Catalogue. The Local Catalogue is then

processed with further user arguments in the Main Data Pipeline to produce the Output

Catalogues. Each component is discussed in its respective subsection. Not shown are

Grid Management (7.2.4) and Error Checking (7.2.6) systems which are integrated

within other software elements. .. 110

Figure 7-3: Data Access API... 112

Figure 7-4: Diagnose ... 113

xxii

Figure 7-5: Extract .. 115

Figure 7-6: Operation of Pipeline in Target List mode ... 117

Figure 7-7: Operation of Pipeline in Catalogue Traversal mode 118

Figure 7-8: Call pipeline script (dashed boxes represent the modifications dependent on

mode)... 119

Figure 7-9: Locus Algorithm Program .. 120

Figure 7-10: Filter Function .. 122

Figure 7-11: Locus Main Function ... 124

Figure 7-12: Parameterisation Modes. User input, together with the data contained in

the CSV file from the CAS determines which mode parameterisation employs. Target

List and API parameterisation run on and store their output on gridUI, while Catalogue

Parameterisation mode is a grid job, managed by its own suite of GMS, storing the

parameter files generated on the LFC. .. 126

Figure 7-13:API Parameterisation... 129

Figure 7-14: Pipeline Parameterisation. Note that the target input module shown here is

the one for target list mode. Figure 7-15 shows the changes made for Catalogue

Traversal Mode ... 132

Figure 7-15: Target Input module for Pipeline Parameterisation in Catalogue Traversal

mode. Note that as PRT files only include FITS paths, the target input module produces

no output to the PRT file. .. 133

Figure 7-16: Grid Management Software ... 135

Figure 7-17: SQL Queries to generate input for Parameterisation 136

Figure 7-18: Error Checking System .. 140

Figure 8-1: The data storage and processing elements used within the project, and the

interactions between them. .. 144

xxiii

Figure 8-2 Top Level Directory Structure: This structure is used on all physical storage

elements, and constructed as needed below the working directory on that element. 148

Figure 8-3 Workspace Directory: The top level of subdirectories is used for overall

version control. Lower levels are automatically generated by the Eclipse IDE. 148

Figure 8-4: Scripts Directory: Subdirectories are used for families of scripts. 149

Figure 8-5: Test Directory: a partial directory tree for the test directory. A sample test

(test 2 of 8-6-2011) is shown with an expanded directory structure. As can be seen from

this example, a given test does not necessarily generate a full directory structure 150

Figure 8-6: Data Folder: The SDSS Catalogue structure is shown in Figure 8-7. The

subdirectory structure of the parameter directories and the naming convention of the

files are the same in the jdl, prm and ppr directories. Output catalogues in test, xop and

qso directories are typically stored in a directory with their date, and may include

further information in the directory or file name as shown in Table 8-1. 151

Figure 8-7: SDSS Directory structure: As is shown in this diagram, the same directory

structure is used for both Local Catalogue and Raw SDSS catalogue files. 153

Figure 8-8: Definition of an SDSS tsObj File Path. Given Run (R), Rerun (r), Camcol

(C) and Field (F): Rerun and Field in the filename are padded with leading zeroes to the

length illustrated, but leading zeroes are not used in the directory names, nor are they

used for Rerun or Camcol in either the filename or the directory. [113] An arbitrarily

selected example is shown. ... 154

Figure 8-9 Release Folder ... 154

Figure 8-10: General Structure of a FITS File. Each fits file consists of one or more

HDU. The HDU can be separated in to the Header and the Data Unit. The Header may

contain zero or or more name-value pairs which describe the data in the Data unit. The

data unit consists of zero or more rows each consisting of a series of column entries

corresponding to the name-value pairs in the Header. The data in these columns may be

a single entry or a vector of multiple values. .. 156

xxiv

Figure 8-11 SDSS tsObj*.fit File: Only one HDU is used, which contains a mean

of 847 rows and 146 columns of data. These columns contain entries which have either

one value (referring to the observation as a whole) or five values, one for each SDSS

band filter .. 158

Figure 8-12: Local Catalogue FITS File. The local catalogue files contain RA, Dec and

a vector of 5 magnitude values for each star that passes the extract process shown in

Subsection 7.2.1.2 ... 159

Figure 8-13: Output FITS File: Output data included RA, Dec and an array of mag as

per the Local Catalogue. In addition, the RA and Dec of the pointing (av_ra and

av_dec), and the score for that pointing are given. ... 160

Figure 8-14: CTI File: each CTI file describes the contents of a FITS file. It lists the

number of rows in the file as a long int, the number of columns as an int. It then has a

repeating structure for each of the 146 columns in an SDSS fits file consisting of an int

for the column number, and an array of 16 characters for the column name, and three

more integers for the typecode, repeat and width of that column. 161

Figure 8-15 API Parameter Files (PRM): API parameter files consist of a long int

representing the number of files to be processed as part of the job the file represents,

and an array whose entries are arrays of characters – the path to each file. The length of

these paths is a variable, defined to be 150 ... 162

Figure 8-16 Pipeline Parameter Files (PPR): PPR files consists of 4 observational

parameters, and a repeating structure for each mosaic to be generated, itself consisting

of two repeating structures, one listing the paths to the files to be aggregated into that

mosaic, and the other listing the targets to be analysed within that mosaic. Each

repeating structure has a long int controlling variable. ... 163

Figure 8-17 Parameter Text Files (PRT): these files are ASCII text files used to list file

paths without requiring binary file access. They consist of a line for each file,

terminated with a newline character, and each line consists of a sequence of characters

representing the path to that file .. 163

xxv

Figure 8-18: API CSV File: These files consist of lists of run, rerun, camcol and field

for each of the fields to be processed. These numbers can be translated into file paths

using the definition shown in Figure 8-8 .. 166

Figure 8-19 Pipeline CSV File (Target List mode): These files consist of a number of

sets of lines, each corresponding to the mosaic of fields around a target in the target list.

Within these groups, each line corresponds to a field in the mosaic. Target information

is repeated on each row within the group.. 167

Figure 8-20: Pipeline CSV File (Catalogue Traversal mode): These files consisted of a

number of sets of lines, each corresponding to the mosaic of fields around a target field.

Within these groups, each line corresponded to a field in the mosaic. Target field

information was repeated on each row within group. ... 168

Figure 8-21: Job Description Language (JDL) files: These files consist of a number of

key-value pairs specified in strings with specific formatting determined by the gLite

User Guide [7]. .. 169

Figure 10-1 Fields required for target star SDSS J113824.40+483457.8 (dark green).

All areas which can be included in a FOV with the target are highlighted in bright

green. The 14 fields which must be accessed to create this area are highlighted in red.

Image taken from SDSS Navigate tool. [130] .. 182

Figure 10-2, There are 10,813 entries (shown in red) in SDSS among the 14 fields

required for SDSS J113824.40+483457.8. Of these, 2447 met the criteria for a star

(highlighted in orange.) Only the 1457 stars marked in green could be included in a

FoV with the target (white with black cross). ... 184

Figure 10-3: Filters to identify reference star candidates. The 42 candidate reference

stars, highlighted in cyan boxes in the were selected from among all stars (green

diamonds) within a FoV of the target (white and black cross) by including only those

which were of the correct magnitude (white circles), and which matched the target on

both g-r (magenta diamonds) and r-i (yelow squares) colour indices. 185

Figure 10-4: Possible Intercepts. For a given corner point and locus (yellow) there are

four relative positions other cornerpoints can reside at. From each of these, Loci can be

xxvi

drawn North or South and East or West. Loci that produce an intercept are shown in

green, those that do not are shown in red. ... 187

Figure 10-5 The Locus algorithm applied to all 42 candidate reference stars, indicated

by blue diamonds. The Loci for each of the references are shown in red. The optimum

pointing, and the Field of View centred on that point are highlighted in Green. The

reference stars used in this optimum pointing are highlighted with yellow circles. 188

Figure 10-6: Image taken from Raheny Observatory based on pointing for SDSS

J113824.40+483457.8 (circled in red). Reference stars are circled in blue. Note that the

FoV for Raheny Observatory is larger than the FoV for which the Exoplanet catalogue

was originally intended. The size and position of the original FoV and pointing is

approximated in a green overlay. .. 191

Figure 11-1: Distribution of scores in the Quasar Catalogue. This graph shows only the

distribution of scores for quasars for which a valid pointing could be identified. 199

Figure 11-2: Distribution of scores for a sample of 106 stars in the Exoplanet Catalogue.

Not shown in this sample are 57105 stars for which no pointing was observed 202

Figure 12-1: Distribution of Magnitudes for a sample of 106 stars from SDSS. The

proportion of the sample is plotted against the proportion of the distribution of stars in

the whole sky as predicted by Allen. [157] Errorbars are not included as the Poisson

error is too small to be displayed. ... 207

Figure 12-2: Distribution of scores as a proportion of overall targets in a given r

magnitude bin. The addition of a variable offset allows for separation of the magnitude

binning. Errors shown are given by Poisson statistics ... 208

Figure 12-3: Plot of failed targets against magnitude. Shown in grey in the background

is the overall distribution of stars by r magnitude. Errorbars are not included as the

Poisson error is too small to be displayed. .. 209

Figure 12-4: Distribution a set of descriptive statistics of scores for a sample of 106 stars

in the Exoplanet Catalogue, separated into magnitude bins and plotted against

magnitude. Note that Maximum and 95th percentile values are plotted on the left-hand

xxvii

y-axis, while other variables are plotted on the right axis as the former have a much

wider range of values. ... 210

Figure 12-5: Colour Distribution of Stars in SDSS. All four colours using neighbouring

magnitudes are shown here. No errorbars are shown, as Poisson statistical variation

would not be visible at this scale. ... 212

Figure 12-6: Distribution of count of scores against score and g-r (left) and r-i (right)

colour indices for a sample of 106 stars in the Exoplanet Catalogue. Stars for which no

pointing could be determined are excluded from these plots. The distribution of scores

against colour index can be observed to be similar to the distribution of stars by colour

index as shown in Figure 12-5. The peak of each distribution is highlighted in green

and red respectively... 214

Figure 12-7: Proportion of targets in a given bin of colour index that failed to find a

pointing, plotted against the proportion of stars in the sample in that bin. 215

Figure 12-8: Distribution of a variety of descriptive statistics of scores against g-r colour

index. Note that Maximum and 95th percentile values are plotted on the left-hand y-

axis, while other variables are plotted on the right axis as the former have a much higher

range of values. ... 216

Figure 12-9: Distribution of a variety of descriptive statistic of scores against r-i colour

index. Note that Maximum and 95th percentile values are plotted on the left-hand y-

axis, while other variables are plotted on the right axis as the former have a much higher

range of values. ... 217

Figure 12-10: SDSS Navigate image for J203733.62+001953.5, the target with the

highest score of any target in the sample of 106 stars from the Exoplanet Catalogue.

Shown in green is the target, in red are each of the 247 reference stars selected for use

with that target to produce a score of 117.70, in yellow is the pointing – the point at

which the telescope should be aimed and in blue are the boundaries of a 0.25 degree

field of view centred on that pointing. This image may be contrasted with Figure 10-6

to illustrate the increase in the number of reference stars for this “top” target. 219

xxviii

Figure 13-1: Distribution of Local Catalogue File creation times over 15 minute

intervals from 25th-27th August 2010 .. 235

Figure 13-2: Exoplanet Catalogue output files generated over time in bins of 1 hour . 238

Figure 14-1: Effect of changing maximum colour index difference between target and

reference star on the rating. A candidate reference star with a colour index difference of

0.5 is shown as a example. When the maximum permitted colour difference (ΔColmax)

is 0.5, its rating is 0. When ΔColmax is 1, its rating is 0.5, and when ΔColmax is 2, its

rating is 0.75. ... 247

Figure 14-2: Locus Algorithm with different FoV sizes. Target, references and pointing

identical to Figure 5-8. Blue outline shows the original pointing. Purple and Magenta

show larger and smaller FoV sizes respectively. Solid lines show results of using the

originally calculated pointing. Dashed lines show the optimal pointings for those FoV

sizes. Circled stars indicate those references affected by the size of FoV 249

Figure 14-3: Conceptual structure of the AWS from the user perspective. The similarity

of this structure to the structure of the grid as shown in Figure 3-3 suggests that many

components of the software could be reused should the project be translated into a cloud

computing paradigm.. 254

Figure 14-4: Ratio of the spherical correction factor for the northern edge of a

15arcminute FoV to that for the southern edge. As is shown, these values are very close

to equal at low-medium Dec. .. 259

Figure 14-5: Position and orientation of the Field of View (FoV) can maximise the

number of reference stars. Images: Stephen O’Driscoll, Dept. of Applied Physics &

Instrumentation, CIT. [2] (Duplicate of Figure 2-9) ... 261

Figure 14-6: a Sketch of the Spiderweb Algorithm in simulation using the same

simulated starfield and colour scheme as in Figure 5-6. By drawing the possible

orientations of the field such that one target is at the corner and another on the edge of

the FoV, it is possible to identify an optimum pointing and rotation, shown in blue.

This field includes 6 targets as opposed to the 5 shown in Figure 5-6. 262

Figure 15-1: Table of Text Styles ... 302

xxix

Figure 15-2: Programs & Scripts .. 303

Figure 15-3: Functions .. 303

Figure 15-4: Processes .. 303

Figure 15-5: Loops & Repeating Data Structures ... 304

Figure 15-6: Logical Operations ... 304

Figure 15-7: Computing Elements .. 304

Figure 15-8: Storage Devices .. 305

Figure 15-9: Stored Data ... 305

Figure 15-10: Catalogues .. 305

Figure 15-11: Data Flow ... 305

Figure 15-12: User Input ... 306

Figure 15-13: Developmental Tools ... 306

Figure 15-14: Documents .. 306

1

1. Introduction

This Chapter introduces the project in two major Sections. Section 1.1 introduces the

fundamental concepts of the project and the project objectives in brief. The scope of

the project and the techniques used to achieve the objectives are outlined.

Section 1.2 uses the Hierarchy of the Thesis as outlined in Section B-a to describe the

Parts and Chapters of the Thesis and outline the overall structure of the document as a

whole.

1.1. Introduction to the Project

This project uses novel Data Mining techniques to analyse large astronomical

catalogues, harnessing the power of Grid Computing to produce new catalogues of

pointings optimised for Differential Photometry for observers searching for extrasolar

planets by the transit method.

Differential Photometry, as discussed in Section 2.2 is the measurement in changes in

the flux of light from a source over time relative to other sources. When observing

variable astronomical phenomena, this variability must be established by comparison

with one or more reference stars. The more such reference stars, and the closer the

colour match these reference stars are for the target of observation, the more precise the

photometric observations that will result. [1]

It is apparent that adjustments to the position of the Field of View (FoV) to be observed

can increase the number and quality of reference stars available for comparison. Most

simply, the field of view may be moved so the target star is off-centre, but still within

the field of view, to include additional reference stars. The challenge is posed by the

choice of which adjustments to make. [2]

In this project, an automated method for making this decision was developed, called the

Locus Algorithm. [3] The Locus Algorithm, defined in detail in Chapter 5, generates a

pointing and score for each target, given a set of parameters. These pointings are pairs

of Right Ascension (RA) and Declination (Dec) coordinates upon which to centre the

field of view of the telescope, optimised to provide a maximum number of reference

2

stars which most closely match the target, and the score is a measure of how well

optimised that pointing is.

This algorithm is applied to large astronomical catalogues to provide output catalogues

of pointings for each star. This task is an example of data mining: extracting useful

knowledge from large data sets. [4] The scale of current astronomical databases (e.g.

the Sloan Digital Sky Survey (SDSS): 4.76TB of data for 357,175,411 objects [5, 6])

makes such a data mining task a computationally intensive process.

A distributed computing solution provides faster processing by breaking the overall task

into discrete jobs which can be processed in parallel on multiple processors. Several

distributed paradigms exist at present. Of these, grid computing was chosen for this

project. Grid computing demands that jobs submitted using its own unique computing

language, known as JDL. [7] In addition, appropriate software must be written to

manage this submission process.

Two large catalogues, described in detail in Chapter 11, have been generated using

these techniques: a catalogue of pointings for all quasars in SDSS; and a catalogue

pointings for of all stars in SDSS.

This project brings together expertise from the fields of astronomy, astrophysics and

computer science to develop algorithms to extract useful information from astronomical

catalogues. These techniques have been informed by advanced photometric techniques

developed by the Astronomy & Instrumentation Group at Cork Institute of Technology

(CIT) and have benefited from the use of high-performance computing resources from

Grid Ireland at Trinity College Dublin. (TCD)

1.2. Structure of the Thesis

The Thesis is broken up into four main Parts, framed by the Preface, which explains the

conventions and terms used in the project, this Introduction and the Appendices, as

illustrated in Figure 1-1. These four Parts are

• Part I: Background – Chapters 2-4 outline the fundamental domain and

technique information required for the project

3

• Part II: Design & Implementation – Chapters 5-9 define the solution to the

overall project problem, and describe the design and implementation of that

solution.

• Part III: Results – Chapters 10-13 state and provide analyses of the results of the

project from an astronomical and computational perspective.

• Part IV: Future Work & Conclusions – Chapter 14-15 propose a number of

projects which are to be built upon the basis of this project, and conclude the

Thesis by summarising the project as a whole.

Figure 1-1: Thesis Structure

1.2.1. Part I: Background

Chapters 2-4 provide the background information upon which the rest of the Thesis is

based. The background Chapters show why this project was undertaken. These

Chapters, taken together, give a fundamental understanding of the concepts involved

and the resources available and needed for this project. This Part of the Thesis

demonstrates the scope of the project. Chapter 2 is primarily concerned with the known

science of variable objects. Chapter 3 describes existing technologies such as grid

computing. Chapter 4 states the objectives of the project - the contribution the project is

designed to make to those fields. Part I: Background positions the project in the

correct context, both historical and contemporary, for Part II: Design &

Implementation.

Thesis

Background

Design & Implementation

Results

Future Work & Conclusion

Introduction

Appendices

Preface

4

Figure 1-2: Background Chapters

1.2.1.1 Astronomical Background

In Chapter 2, the basic scientific information required to understand the project is

introduced. This Chapter begins by introducing the concept of variable astronomical

phenomena and how they can be observed. Here, a historical foundation is laid by

describing the observation of variable stars, especially eclipsing binary stars. The

earliest extrasolar planet observations are then considered, followed by a discussion of

current trends and approaches in exoplanet detection and surveys. The techniques and

technologies involved in Photometry are also discussed, again from a historical

perspective first, then moving up to the modern techniques of Ensemble Differential

Photometry.

1.2.1.2 Computing Background & Concepts

The next Chapter discusses resources required and available for this project. The

computing requirements for this project are assessed in terms of software, hardware and

data storage requirements. An overall view of High Performance Computing (HPC) is

explained, providing context for the HPC solution which is used in this project, Grid

Ireland. Chapter 3 describes the software components of the project, first defining

overall concepts for the project, and then explaining the specific solutions chosen.

1.2.1.3 Goals of the Project

The last Chapter in this Part of the Thesis lays out the Goals of the Project. This

Chapter is split into two Sections: the Astronomical Goals, and the Computational

Goals. The Astronomical Goals Section defines the improvements that the project is

intended to provide for differential photometry surveys. The need for a reliable

algorithm and a means of comparing candidate stars is demonstrated. The requirement

Background Chapters

Core Concepts of Photometric Variability

Computing Background & Concepts

Project Objectives

5

to scale these techniques from single targets to large catalogues and adapt to a variety of

parameters is highlighted. The Computational Goals are two-fold. First, the project

must demonstrate a capability for data-rich, process-poor computing in a grid

environment. Second, the project must provide numerical analyses of its performance

in the form of metrics, defined here. Chapter 4 makes extensive reference to Part III:

Results.

1.2.2. Part II: Design & Implementation

The second Part of the Thesis considers the Design and Implementation of the project.

These Chapters move from a discussion of why the project was undertaken to describing

how it was accomplished. This Part begins by defining the Locus Algorithm, the overall

solution to the project, and describes the novel technique at the centre of this project. It

then outlines the concepts and philosophy of design used in the project. Then, the

design of the project is laid out from the top down to the fine details in two Chapters:

Project Design, which considers the conceptual structure of the project and Data Storage

and Management, which defines the data structures and file types used in the project.

This Part of the Thesis is completed by a description of the practicalities of

Implementing and Operation of the project.

Figure 1-3: Design and Implementation Chapters

1.2.2.1 Locus Algorithm & Scoring

Chapter 5 describes the Locus Algorithm, the novel approach to providing optimised

pointings which lies at the heart of this project. The algorithm is defined by means of a

Design and Implementation Chapters

Data Storage and Management

Project Design Concepts and Approach

Project Design

Implementation & Operations

Locus Algorithm & Scoring

6

step-by-step description of the process at the finest level. A key, modular component of

the algorithm is the Scoring system. Several examples of scoring systems are shown.

One of these was selected for the large-scale release versions used to produce the results

shown in Part III. The rationale for this choice is explained, and that system is

described in detail.

1.2.2.2 Project Design Concepts and Approach

Next, the design requirements of the project are defined, that is a framework by which

multiple systems can interact over the course of the project. The design process is then

shown: a step-by-step, evolutionary procedure with a robust system of version control

which uses detailed design documents.

1.2.2.3 Project Design

Using the tools and following the philosophies defined in the previous Chapter, Chapter

7 shows the overall design of the project. Working Top-Down from an overall design,

the Chapter steps through each component of that design, breaking them down to the

pseudocode level. The three main components defined in separate Sections in this

Chapter are the Applications Programming Interface (API) which abstracts the data

from the sources, the Pipeline which uses this abstracted data to produce the outputs,

and the Management software which ties manages the submission of jobs to the grid.

1.2.2.4 Data Storage and Management

A robust structure was developed to manage the data as described in Chapter 8. First,

the data storage and processing elements of the project are defined. The second Section

of the Chapter describes the data storage structure that is used throughout the project to

ensure reliable access to the data in spite of the multiple storage systems used. Finally,

each of the data types used in this project is described in detail. Both externally defined

data types and novel data types defined for this project are used, and the definition of

and the rationale for the use of each is given.

1.2.2.5 Implementation & Operations

The work cycle of development, coding and implementation used throughout the project

is shown in the final Chapter in this Part of the Thesis. The ongoing operations of the

7

project are explained in detail. Grid operations in particular place boundaries on the

project, and these are discussed here.

1.2.3. Part III: Results

While Part I: Background demonstrates why the research was undertaken, and Part II:

Design & Implementation describes how it was carried out, Part III: Results shows what

was achieved. These four Chapters discuss the output from the project, both from an

astronomical and computational perspective.

Figure 1-4: Results Chapters

Firstly, a fully described worked example of the project in action on a single target is

shown. Next, the catalogues produced are described from an overall perspective. The

results of the Exoplanet Catalogue are subject to a meta-analysis which discusses the

trends and patterns shown in the data. Finally the computational metrics developed over

the course of the project are explained, presenting the capability that has been

demonstrated by this project.

1.2.3.1 Individual Result

This Part of the Thesis begins with Chapter 10. This Chapter consists of worked

example of the algorithm in action on SDSS J113824.40+483457.8 a star selected based

on observational constraints at Raheny Observatory. The results of an observation of

this star from Raheny Observatory are presented. This result consists of the output from

a single instance of the project's operation: each of these outputs would form an entry in

the catalogues produced.

Results Chapters

Individual Result

Catalogue Outputs & Analysis

Computational Results

Meta-Analysis of the Exoplanet Catalogue

8

1.2.3.2 Catalogue Outputs & Analysis

Chapter 11 presents the catalogues produced over the course of the work. Two separate

catalogues are shown: a catalogue showing pointings for all quasars in the SDSS

footprint and a catalogue showing pointings for all stars in SDSS for exoplanet

observation. The rationale for each of these catalogues, and an explanation of the

capability this demonstrates is given. The parameter set used to create each of these is

also stated. Short excerpts from these catalogues may be found in the Appendices.

1.2.3.3 Meta-Analysis of the Exoplanet Catalogue

This Chapter presents a meta-analysis of the exoplanet catalogue produced from a

phenomenological perspective. This meta-analysis shows trends observed within the

data, and allows an end-user to interpret catalogue results. Notably, this process

includes identifying patterns in scoring, so the user can identify high and low scores

relative to the overall distribution of scores.

1.2.3.4 Computational Results

The concluding Chapter of this Part of the Thesis, Chapter 13, shows quantitative

assessments of how the project operated. Three main areas in which the project can be

judged are discussed, Data Metrics – measurements of data volume and composition,

Processing Metrics – the time and processing power taken to complete various project

components and Grid Metrics – measurements of the performance of the grid solution

by comparison with non-grid computing solutions.

1.2.4. Part IV: Future Work & Conclusions

The last of the four Parts of the Thesis consists of a Chapter on Future Work and the

Conclusion. The Future Use & Refinements of the Project Chapter describes several

projects to be built on this project. The Conclusion Chapter summarises the project and

explains in brief how the objectives were met.

Having described why to carry out the project, detailed how it is carried out, explaining

what has been discovered, the final Part of this Thesis describes where these results can

be taken in the future.

9

Figure 1-5: Future Work Chapters

1.2.4.1 Future Use & Refinements of the Project

This Chapter suggests Future Use & Refinements of the Project that might be

undertaken. The large parameter space of the software and the limited utilisation made

of that space in the course of this project is discussed. This Chapter describes possible

explorations of this parameter space. These include suggestions for other classes of

object to study. The use of the designed flexibility to allow the project to operate with

forthcoming catalogues is discussed. Several modifications to the software are

proposed in this Chapter. Finally, additional software functions beyond those used in

this project are proposed.

1.2.4.2 Conclusions

The Conclusions Chapter provides a brief assessment of the project as a whole, and

summarises the output of the project, explaining in brief the objectives of the project,

and stating briefly how those objectives have been met.

1.2.5. Appendices

Figure 1-6: Appendices

There are four appendices to this Thesis. The first Appendix is a bibliography and

references, which compiles full citations to all of the documents referred to throughout

Future Work and Conclusions Chapters

Future Use & Refinements of the Project

Conclusions

Appendices

Results Samples

Bibliography & References

Index

10

the Thesis. Second is a series of code excerpts demonstrating the layouts and styles used

in the various languages while programming this project. Next, a set of extracts from

the results of the project is presented. The last Appendix is an index.

1.3. Summary

This Chapter introduces the project in brief, outlining the astronomical problem which

the project is intended to solve, and summarising the solution that has been developed to

do so. A brief outline of the structure of this Thesis is provided, explaining the function

of each Part of the document, and highlighting the roles the individual Chapters play in

the overall work.

11

2. Core Concepts of Photometric Variability

This Chapter introduces the core concepts of astronomical photometric variability by

exploring the classes of objects to be studied, and the techniques used to study them.

The Chapter begins by considering the class of object to be studied: variable objects. A

brief introduction to astronomical variability is given. This introduction consists of a

definition of what is meant by astronomical photometric variability, and a reference to

the broader context of the observation of variable astronomical objects.

The Chapter then discusses several specific classes of variable astronomical objects in

detail. Three primary classes of object are considered: Variable stars, which were the

first variable objects to be studied after the planets of the Solar System; [8] extrasolar

planets, which are most commonly observed by the effects they have on their parent

star; [9] and finally quasars, a very different class of object which may be observed with

similar techniques to those used to observe exoplanet transits. [10]

The next Section of this Chapter discusses the techniques used to observe these

phenomena. Any measurement of the amount of light that is detected from an object

can be considered a photometric observation. The Section is broken into three

Subsections. The first Subsection, 2.2.1 defines three overall classes of photometric

observations used: Absolute, Relative and Differential. The second, 2.2.2, discusses the

historical development of photometric techniques which may be used to generate those

observations. Next, in Subsection 2.2.3 there is a detailed consideration of the specific

operational parameters of the technique used in this project: differential photometry

using CCD-based observations of ensembles of stars. [10, 11]

Finally, Section 2.3 discusses the use of astronomical catalogues to identify stars which

meet user-defined astrometric and photometric criteria.

2.1. Variability of Astronomical Objects

This project is concerned with the photometric variability of astronomical objects.

Photometric variability, as discussed in Section 2.2, is change in the amount of light

detected from an object. [12]

12

Objects as varied as rotating asteroids [13] and Active Galactic Nuclei (AGN) [14]

exhibit photometric variability. Some variability is intrinsic to the object being

observed. Other variations are extrinsic: it can be attributed to external causes. The

variability can be dramatic, as in the case of Mira, the first confirmed variable star,

which has been observed to vary from 10.1 to 2.0 in Jonson V Magnitude, [15] to minor

variations such as that of the Sun as it rotates with sunspots on its surface (about 0.01 in

V magnitude over about 30 days) [15]. There can be once-off events (like supernovae)

or regular cycles (such as eclipsing binary stars.) [8] They can take place over long

timescales (up to the lifetime of a star) [16] or short timescales (millisecond pulsars)

[17].

A full treatment of all variable objects is beyond the scope of this project. Instead, this

Section discusses three classes of objects.

• Variable stars were the first of these three classes of objects to be observed. The

history of the observation of variable stars and several causes of stellar

variability, both intrinsic and extrinsic are discussed in brief. One class of

variable star, that of eclipsing binary stars, is of particular significance in this

project. This is because observations of eclipsing binary stars can be considered

a precursor to the observation of extrasolar planets by the transit method as

discussed in Subsection 2.1.1. An understanding of the history, techniques and

technologies used in studying these objects can thus help guide the study of

extrasolar planets.

• Extrasolar planets, also referred to as exoplanets, are planets which orbit a star

other than the Sun. The history of the observation of these planets, and a

number of techniques used to observe them, are discussed in Subsection 2.1.2,

beginning with the 1992 observation of PSR1257+12b by Wolszczan & Frail

[18] and the 1995 observation by Mayor and Queloz of 51 Peg b [19]. The

particular technique this project focusses on is the transit method, pioneered in

2000 by Charbonneau et al [20] and Henry et al. [21] This method is defined

and discussed in detail in Subsection 2.1.2.1.

13

• Quasars are much more luminous, and much more distant objects, than the

nearby stars observed as exoplanet host candidates. They are described in

Subsection 2.1.3. [14] However these objects, too, show small-scale visible-

wavelength variation on a range of time scales. [22] These variations can be

observed using similar techniques to those used to study exoplanets. [10] [23] ,

These similarities in observational techniques are described in brief in

Subsection 2.1.3.

2.1.1. Variable Stars

Aristotle, whose writings influenced other classical philosophers, believed that the

cosmos was unchangeable: stars did not, indeed could not vary [16]. This belief was

challenged by observations of cataclysmic events such as novae and supernovae

wherein a star would suddenly "appear" in the night sky, only to disappear again. The

modern interpretation is in fact that all stars vary over the course of their lifetimes. [24]

Moreover, it is thought that all stars vary to some extent over shorter timescales: for

example the Sun is known to vary by about 0.1% in Johnson V magnitude over the 11-

year Schwabe cycle. [25] Both of these classes of variability are beyond the scope of

this Thesis, which is concerned with variations over a shorter timescale.

The first surviving records of any recurring variable star are those of Mira (Omicron

Ceti), observed by Fabricius in 1596 and 1609. Halwarda later measured the period of

variability for Mira to be 11 months, in 1638. This can be considered the starting point

of the known history of variable stars. [26, 27]

Algol (Beta Persei), is a star whose variability may have been known since ancient

times, as suggested by mythological associations such as that with the Gorgon in Greek

mythology. [27] The first definitive records of its variability are Montanari's from

1667. Its periodicity was measured by Goodricke in 1783, who later proposed a

mechanism for its variability – that a darker body regularly passed between the Earth

and Algol – a proposal that later observations would confirm. [28] This mechanism is

functionally identical to that used to observe variability in a star due to an exoplanet

transit, as discussed in Subsection 2.1.2.1.

14

Calculations of the system's parameters were made by Pickering in 1881, and largely

confirmed by Vogel's 1889 measurement of its radial velocity variations by means of

the Doppler effect. [8] From these measurements, amongst others, Algol is now known

to be a close binary star system with a third component in a much wider orbit. [16]

The two close components: a brighter star, Algol A and a fainter companion, Algol B,

form a system where each passes between the Earth and the other at various points in its

orbit. This causes a reduction in the light from the system, as some of the light from the

more distant of the two is obscured by the closer star. In the case of Algol, this

reduction can be observed with the naked eye. [28] Such a system is referred do as an

eclipsing binary system, and many such systems are now known.

Smaller scale variation than that observed in Algol can be measured using photometric

techniques as discussed in Subsection 2.2.2. A series of observations of a

photometrically variable object can be plotted to form a light curve as discussed in

Section 2.2. In the case of an eclipsing binary star, several key parameters of the

lightcurve can be determined, from which parameters of the system can be calculated by

fitting simulated models to the observed lightcurve. The following parameters are

relevant to this Thesis, as these same parameters can be measured for extrasolar planets.

Figure 2-1: Calculated duration, shape and depth of light curves for uniformly dark, centrally

eclipsing secondary objects of various radii orbiting uniformly illuminated primary objects at

constant velocity.

15

• Depth: Transit depth is the degree to which observed brightness is reduced.

Assuming a central eclipse, a uniformly dark transiting object and a uniformly

illuminated primary, this would depend solely on the proportion of surface of the

object which is obscured. The maximum value of this degree of obscuration

would thus give a direct value for the ratio of cross-sectional area of the two

objects, as shown in Figure 2-1. In practice, additional factors such as luminous

secondary objects, limb darkening and star spotting can complicate this

calculation for stars. [21] Improved photometric precision permits shallower

transits to be observed, as well as revealing details of the shape of the lightcurve

as discussed below.

• Period: the eclipses repeat over a cycle equal to the orbital period of the objects.

Deviations from this period indicate a more complex system: e.g. a third

companion, whose presence may be confirmed by other measurements. This is

the case with as Algol C, whose presence changes the timing of the eclipsing

binary pair Algol A and B. [29] Improved temporal precision permits subtler

effects on eclipse timing, such as those caused by exomoons, to be observed.

[30]

• Duration: The duration of the eclipse is related to the apparent path length taken

by the obscuring object across the surface of the object being obscured and the

velocity of the orbit. In addition, larger secondary objects will cause obscuration

for longer durations than smaller ones as shown in Figure 2-1. As with period,

improved temporal precision permits improved measurement of this quantity.

• Shape: The shape of the lightcurve can vary, depending a number of factors. A

larger eclipsing object will take longer to reach the minimum brightness than a

smaller one as shown in Figure 2-1, while a grazing eclipse will show a different

shape of lightcurve to a central eclipse as demonstrated by Figure 2-2. In

addition, the shape of the lightcurve can reveal the effects of limb darkening.

[31] Improved precision in photometry permits the shape of the lightcurve to be

more precisely defined, which permits improved discrimination between, for

example, grazing transits of stars and central transits of exoplanets.

16

Figure 2-2: Calculated duration, shape and depth of light curves for uniformly dark secondary

objects of constant radii (rsecondary = 0.5Rprimary) transiting the primary at different apparent

latitudes.

A number of additional parameters can be measured by observing the parameters above.

• Orbital geometry: The shape and orientation of the orbit of the two stars

determines whether an eclipse occurs, as the eclipsing body must cross the

narrow area of space between the Earth and the more distant body, indicating a

low angle between the orbital plane and the line of sight to the Earth. The

calculated transit latitude of the obscuring body can be used to calculate this

angle more precisely.

• Secondary Eclipse: For a given system, a secondary eclipse may also be

observed, where the brighter object obscures the fainter one, and for which the

same parameters may be measured. The fainter the secondary object is, the

smaller this effect is, and as a result the more sensitive the photometry needed to

observe a secondary eclipse. As orbits may be eccentric, sometimes highly so,

the presence of a primary eclipse does not guarantee that a secondary will be

observed, nor vice-versa.

• Radial Velocity: Spectroscopic measurements can be used to supplement the

photometry by calculating the radial velocity of the components of the system.

17

These measurements allow for calculations of the relative movements of the

objects, Measurements of the radial velocity variation of eclipsing binary stars

can prove exceptionally useful as the inclination between the orbital plane and

the line of sight is known to be near zero for an eclipsing system. Thus, the

radial velocity is known to be the full velocity of the objects, and thus can be

used in the calculation of their relative masses.

2.1.2. Exoplanets

Planets are much less massive than stars, and, by definition, do not generate their own

energy by nuclear fusion – the current working definition of an exoplanet is an object

with a true mass below the limiting mass for thermonuclear fusion of deuterium (~13

Jupiter Masses for objects of solar metallicity) that orbits a star. [32] This means they

are necessarily much fainter than their host stars, and the angular separation between

star and planet is typically small. [17] This makes direct observation difficult. Indirect

techniques, however, have proven more successful as demonstrated in Table 2-1. This

Section discusses these techniques.

Number of planets detected Detection method Proportion of detections

698 Radial Velocity 19.57%

76 Direct Imaging 2.13%

2703 Transit 75.78%

1 Astrometry 0.03%

51 Microlensing 1.43%

24 Pulsar Timing 0.67%

5 Transit Timing Variation (TTV) 0.14%

9 Other 0.25%

Table 2-1: Breakdown of number and proportion of planets detected by various techniques. Taken

from the Interactive Extra-solar Planets Catalog, Zolotukin, 2017. Retrieved 25th January 2017 [9]

The first confirmed extrasolar planet was observed by timing variations of the pulsar

PSR1257+12 in 1992 by Wolszczan & Frail. [18] In 1995, a planet was discovered

orbiting the main sequence star 51 Peg by Mayor & Queloz, using the radial velocity

method. [19] Both of these observations made use of the fact that the planet and its host

star orbit their mutual barycentre, which leads to variations in the timing of pulses from

the pulsar, and the radial velocity of the host star. Since then, there have been 3,567

confirmed extrasolar planet discoveries as of the 24th of January, 2017. [9] A

breakdown of these detections is given in Table 2-1. The techniques used to observe

18

these planets are described in brief below, summarised from The Exoplanet Handbook,

Perryman, 2011. [17]

• Radial Velocity: The movement of the star about the barycentre can be

measured using the Doppler shift of its spectral lines. This method measures

variations in the velocity component of the star along the line of sight, but gives

no information about transverse movements. The absence of information about

a transverse component means that radial velocity observations alone cannot

distinguish between a low mass planet in an edge-on orbit and a higher mass

object in an almost face-on orbit.

• Transit: This technique detects the reduction in light from a star when a planet

passes between the earth and the star, analogous to the observation of eclipsing

binaries above. This is the technique that this project is focussed upon, and it is

discussed in detail in Section 2.1.2.1.

• Direct Imaging: Stars are between 105 (in the infrared) and 1010 (in the visible)

times more luminous than planets, and the angular separation of a planet from its

host star is typically no more than a few arcseconds for nearby systems. These

facts impose technical challenges on direct imaging requiring very high signal to

noise and resolution.

• Timing: The signal from any system with a measurable temporal signal (e.g. an

eclipsing binary star system or a pulsar) can be disrupted due to changes in the

light travel time caused by the orbit of the primary about the barycentre.

• Gravitational Microlensing: From general relativity, it can be understood that

mass distorts space-time, deflecting the path of electromagnetic radiation. When

a large mass passes between the observer and a distant source, that source can be

magnified. When an exoplanet host system passes between the observer and a

distant source star, complex, time-dependent behaviour can be observed as a

result of the time-dependent changes in alignment.

• Astrometry: Extremely high resolution imaging can measure the position of a

star to sufficient precision to track its transverse movement due to the

gravitational influence of a planet.

19

Figure 2-3: Exoplanet Detections by method as a function of time. Taken from the Interactive

Extra-solar Planets Catalog, Zolotukin, 2013-2017. Retrieved 25th January 2017 [9]

These methods can be used to complement one another, and such complementary

observations can be necessary to confirm the object is observed is, in fact, a planet. For

example, a planet detected by the transit method must be subject to follow-up

measurements using the radial velocity method to calculate the mass of the object - the

lightcurve from a low mass star eclipse and a large planetary transit can be similar.

Astrometric observations in combination with radial velocity measurements can provide

a 3-dimensional projection of the orbit of the star about the barycentre. With such a

projection, the parameters of the system can be fully calculated. [17]

Exoplanet observations can require highly specialised equipment. Direct Imaging and

Astrometry require extremely high resolution imaging which is beyond the capabilities

of all but the largest and most advanced ground-based telescopes with expensive

adaptive optics, or space-based observations. The Radial Velocity method requires

precise spectroscopy, which demands specialist equipment. Gravitational Microlensing

depends upon chance alignments which are non-recurring events. [17] Transit

observations, on the other hand, can be made with relatively inexpensive equipment,

including small aperture (as low as 0.2m) telescopes and consumer grade CCDs. [33]

20

2.1.2.1 Transit Method

Figure 2-4: (left) An image of Venus in transit across the sun, demonstrating a planetary transit

and limb darkening in the Sun. Image:NASA/SDO, HMI [34]

The Transit method is a photometric method for observing exoplanets which works by

observing the reduction in photometric intensity of a star as a planet passes between the

observer and the star, in a manner analogous to eclipsing binary stars discussed above.

Transits were first observed independently from 1999-2000 by Henry et al. (2000) [21]

and Charbonneau et al. (2000) [20].

Due to the fact that most planets are much smaller than their parent stars, photometric

sensitivity on the order of millimagnitudes is required to detect planets [17]. The

limitations and requirements this places on the photometry are discussed in Section 2.2,

but as discussed by Billings [35] and Castellano, [33] the detection of giant planets

orbiting small stars is within the capabilities of modest equipment.

Transit depth is a dimensionless quantity used to measure of the reduction in observed

light from the host star. This reduction can be measured by plotting a light curve as

discussed above. Large planets orbiting small stars can easily be understood to give

deeper transits. Photometric precision greater than the transit depth is necessary for a

transit to be detected and precision substantially greater than the transit depth is

21

necessary to show the shape of the transit lightcurve as shown in Figure 2-2 above.

This causes a selection bias in favour of larger planets orbiting smaller stars. [17]

Figure 2-5: Distribution of the maximum transit depth (dimensionless) for Exoplanets.

Observations by the Kepler space telescope are shown separately. Solar system objects shown for

comparison, data from Cox, 2000. [36] Data for exoplanets taken from Zolotukhin, 2017. [9]

As can be seen in Figure 2-6, large planets can be comparable in dimensions to small

stars, even though their mass is much smaller. As a result, the majority of exoplanets

detected by ground based telescopes show transit depths comparable to or greater than

those that would be predicted for the Solar System’s gas giants, as shown in Figure 2-5.

The transit depth for a perfect Earth analogue is 8.39X10-5. [36]

Transits can only be observed when the alignment of the planet, its host star, and the

observer is correct. This is only possible if the planet’s orbit is aligned edge-on to the

observer, to within the precision of the angle subtended by the star from the planet. The

probability that a planet’s orbit will be aligned correctly thus depends on the distance

the planet is from the star, and the radius of the star itself, and can be determined

geometrically.

22

Figure 2-7 demonstrates the geometric probability of a planet being in an alignment

suitable for transits to be observed at various distances. For a perfect Earth analogue,

the probability of alignment suitable for observation is calculated to be 0.47%. [37]

Planets close to their parent star, and which orbit a large parent star are more likely to be

suitably aligned.

Figure 2-6: (right) A plot of the radii and masses of low mass stars, brown dwarves and planets at

4×108 (red line) and 5×109 (black line) years from a model by Chabrier et al. [38] Four low mass

stars (red circles) and Jupiter (blue triangle) are shown for comparison. Image: ESO [39]

23

In addition, transits can only be observed for a short proportion of the orbit during

which syzygy (3-body linear alignment) between its host star, the exoplanet, and the

Earth occurs. This period can be calculated as the time it takes the planet to sweep out

that angle of its orbit that corresponds to the angle that the star subtends in its sky.

For a perfect Earth analogue, a transit would last thirteen hours over the course of a full

orbit, i.e. one year. This means that an Earth analogue would spend only 0.15% of its

time in transit. [37] This again creates two further observational biases in favour of

planets in close orbits: planets in close orbits are in transit for a larger proportion of

their orbits, and those transits recur more frequently.

Figure 2-7: The geometric probability for alignment suitable for transit depends on orbital distance

and stellar radius, assuming the planet to be small relative to the star. Formula and data for the

solar system from Koch et al., 2005. [37] Data for exoplanets taken Zolotukhin, 2017. [9]

A transit survey, especially one using modest equipment, must take account of these

selection factors. Increased photometric precision allows for smaller planets to be

observed. A survey of as many stars as possible maximises the opportunity for a transit

to be observed, due to the low probability that a transit is taking place at any given

moment. As will be shown in Section 2.2, these goals are not incompatible.

24

Figure 2-8: Distribution of proportion of time in transit. Data for Exoplanets from Zolotukhin,

2017. [9] Data for Solar System from Koch & Gould, 2005. [37]

2.1.3. Quasars

The term “quasar” comes from “quasi-stellar radio source.” The “quasi-stellar” part of

the name comes from the fact that quasars appear as point sources even with the most

advanced interferometers currently available. [22] Quasars are highly energetic, very

distant active galactic nuclei. [14] They are powered by the accretion of matter onto the

central supermassive black hole of the host galaxy. [40]

Observations of quasars show variations in both optical emission on short timescales.

[41] However, the speed of light sets an absolute limit on the rate of change of any

object: an object cannot change more rapidly than its size divided by the speed of light.

For this reason, the phenomena responsible for short timescale photometric variations

must occur over a small region.

By plotting a photometric light curve, an observer may probe regions which are too

small to be resolved. The techniques used to observe and plot these light curves are

similar to those used to observe transiting exoplanets. [10] These photometric

techniques are discussed in detail in Section 2.2.

25

133,336 quasars had been recorded as of 2010, many of which were observed by the

Sloan Digital Sky Survey (SDSS). [42] This is much smaller than the 357,175,411

unique objects recorded in the seventh SDSS data release, which formed the basis of

this project. [43] As a result of this smaller dataset, and the similarities of techniques

used to observe quasars to those used to observe exoplanet transits, it was decided to

perform an analysis of the quasars in SDSS as discussed in Subsection 4.1.2.1 to test the

software.

2.2. Photometry

Photometry is, at its simplest, the study of the brightness of stars and other astronomical

objects. [12] In this Section, photometry in general is discussed under two primary

headings. The first Subsection, 2.2.1, gives the definition and description of three major

classes of photometry – Absolute, Relative and Differential. The second Subsection,

2.2.2, discusses the history of various photometric techniques, going from the naked-eye

observations of ancient times to modern CCD-based ensemble photometry.

The third Subsection, 2.2.3, discusses the principles of operation of the photometric

technique that this project is intended to work with, which is differential photometry.

This Subsection considers the limitations placed by instrumental, environmental and

astronomical factors on the accuracy and precision of the measurements needed to

observe the phenomena discussed in Section 2.1. In addition, this Subsection describes

how one might mitigate or eliminate these effects.

2.2.1. Classes of Photometry

Photometry may be considered in terms of three basic classes, although as Landolt

notes, there is some disagreement in the literature as to the exact definitions of these

classes. [44] This Subsection defines the following terms as they are used throughout

this Thesis.

• Absolute Photometry measures the total apparent brightness of an object by

reference to some standard. Landolt defines absolute photometry narrowly,

accepting only standards based on spectrophotometry or with reference to a

laboratory source such as a black body cavity. [44] Sterken & Manfroid favour

a broader definition whereby absolute photometry may be defined in terms of a

26

set of standard stars such as the Landolt stars. [45] [46] The apparent brightness

of Vega (Alpha Lyrae) has traditionally been used as a zero point for the

magnitude scale, although its use has since been discredited, as it is itself

variable. [47] [48]

In either case, the main source of error when carrying out absolute photometry is

in the transformation to the standard. [49] This error can be as high as 5%. [50]

As a result, absolute photometry is not suitable for this project, as this error is

larger than the effects to be measured, and it will not be discussed further.

• Relative Photometry is the comparison of a target star with some comparison

object. Landolt defines relative photometry as any comparison with a reference,

including those with photometric standards. [44] Milone and Pel refer to any

photometry which involves the comparison of two or more stars as differential

photometry. [1] For the purposes of this Thesis, a distinction is drawn between

measurements of the relative flux between two or more objects at a single point

in time, which are referred to as relative photometry, and ones which have a

temporal component, which are referred to here as differential photometry.

• Differential Photometry, as used within this Thesis, may be understood as a

time-dependent series of relative photometric measurements. It is assumed that

time-dependent atmospheric effects will apply similarly to objects which are

close to one another. [10] Close matching between the target and the reference

stars can maximise this correlation of effect. [51]

In the case of both Relative and Differential photometry, the traditional method was to

compare the target star with a single reference, which was known or believed to be non-

variable, known as the comparison star. [11] If a comparison star could not be

identified which was known to be constant, a third star, known as the “Check star” was

used to determine if any variability observed was due to the Target or the Comparison

star, in a technique known as Comparison-Check (CK) photometry. [11]

The use of many reference stars, rather than just one or two, a technique referred to as

Ensemble Differential Photometry, is favoured in modern differential photometry, as

each can act as a check on the others, and greater redundancy can be achieved in

27

excluding a variable reference. This technique also allows for many targets to be

assessed simultaneously. [50] This technique was made possible by the emergence of

photometric CCD cameras as discussed in Subsection 2.2.2.5. [52]

2.2.2. Historical Development of Photometry

The history of photometry begins with ancient astronomers making observations with

the naked eye, and crudely classifying the stars they saw into magnitude classes, which

were later to evolve into the mathematical scale we still use today.

A mathematical scale demands instruments capable of making measurements which can

be used in the calculations. This Section discusses the history of these measurements

from Ancient Greece up to the modern day, when computer-controlled apparatus is

designed for ever greater precision.

2.2.2.1 Visual

As described by Herbig (1945), [53] the magnitude scale, still used in a refined form

today, is based upon the classes developed by Hipparcos (c. 127 BC) [54] which

grouped stars by their apparent visual brightness. Ptolemy's seminal catalogue,

Almagest, (c. 150AD) [55] is based in part on these observations. This ancient scale

was simply a categorisation of stars from bright to faint. As can be seen from the fact

that many dissimilar objects are in the first magnitude of this system, it was not

intended as a robust mathematical scale. [56]

Many later observations used this or a related scale. Notably, for the purposes of this

Thesis, Goodricke (1783) made his measurements of Algol by reference to whether it

was brighter or fainter than neighbouring stars. [28] Using the definitions in Section

2.2.1, each point on Goodricke's measurement may be considered a primitive form of

relative photometry, and the whole observation can be treated as an early version of

differential photometry.

This type of observation, which relies upon both perception and memory, can give

remarkably good precision, but very poor accuracy. [56]

28

2.2.2.2 Mechanical/Visual

The human eye is quite capable as a comparative instrument. Improved accuracy can be

achieved if the fallible element of human memory is removed. [56] Starting with

Bouguer (1760), instruments were developed which reduced the brightness of some

bright standard by extinction, defocusing or demagnification until it matched that of a

star. [1] [57] By measurement of the extent to which the standard object was reduced,

the ratio of brightness of the star and standard could be established to a precision of

between 2% [56] and 5%. [1]

Based upon measurements of this type, Pogson (1856) proposed the modern definition

of the magnitude scale with a ratio of 100 in brightness between stars separated by 5

magnitudes. This proposal was based on an approximate fit to existing measurements.

[58] [59]

2.2.2.3 Photographic

In principle, photographic measurements should be less subjective than visual ones: a

physical record exists of the observation which can be revisited later. Bond (1859)

developed an equation to relate the exposure time and the size of the image of a star.

[60] Photographic measurements of objects of different colours depend on the response

of the photographic emulsion.

These differences, and the later development of photographic emulsions that better

mimicked the response of the human eye, led to the development of separate visual and

photographic magnitudes. Again, however, the precision of these measurements was far

greater than its accuracy, with mean maximum precision of ~2%. [56] [1]

2.2.2.4 Photoelectric

Photoelectric measurements of starlight began with Monck (1892) from his house in

Earlsfort Terrace [61] and Minchin (1895). [62] [56] These early observations allowed

a measurement of the intensity of light incident on the apparatus relative to a

calibration. With a similar instrument, Stebbins (1910) made observations with a

precision of about 2%, and was able to observe the secondary eclipse of Algol (i.e.

29

when Algol B is obscured by Algol A). [63] [56] The precision of these and later

observations of a single target is limited by extinction variations. [1]

Big improvements could be achieved by applying differential techniques. [1] Walraven

(1952) developed an instrument which would observe short-period variables quasi-

simultaneously with a nearby reference star. [64] This quasi-simultaneity was achieved

by “chopping” between the target and the reference. The use of a nearby reference star

reduces the effect of extinction variations. [51] Photoelectric measurements depend

upon careful selection of reference stars such that the references themselves do not vary

on the timescale of the experiment. [51]

2.2.2.5 CCD

Charge Coupled Devices (CCDs) were invented at AT&T Bell labs in 1969 by Boyle

and Smith (1970). [65] Initial CCDs had large instrumental errors, but with modern

CCDs this has been greatly reduced. [66] [13] CCD photometry was established as

being at least equal to photoelectric in 1984 by Walker, and has since surpassed its

predecessor. [67] [65]

CCD photometry has advantages over photoelectric photometry in two key ways. The

two-dimensional nature of the CCD means that the need to switch the observation

between target and reference can be eliminated, as instead both objects can be observed

simultaneously. This gives truly simultaneous data on target and reference stars. [52]-

The second is that many reference stars, not one, (or two as in the C-K method) is

possible, a technique called ensemble differential photometry. [11]

Ensemble differential photometry creates for two further advantages: first, the ensemble

provides an ideal standard against which to perform differential calculations even if

some members of the ensemble show low-amplitude variability. Second, all stars in the

ensemble can be monitored simultaneously, and any variation in each can be measured.

[11] This makes it an ideal technique for exoplanet transit surveys, as it can provide

precise photometry of many stars simultaneously. [50]

30

2.2.3. Differential Photometry Operations

This Subsection discusses differential photometry in detail, under four principal

headings. First the mathematical principles underlying differential photometry are

explained, with particular reference to the increases in precision available by means of

ensemble differential photometry. Secondly, a number of data reduction techniques are

discussed in brief. Third, the sources of noise and the limits these place upon the

precision of photometric measurements are discussed. Finally, techniques that may be

used to improve upon these limits are discussed in brief. It is the automation of these

improvements upon which this project is founded.

2.2.3.1 Mathematical principles

At its most fundamental, relative photometry calculates the difference in magnitude

between the target star and a comparison star. Calculating the “true” magnitude of each

would demand a transformation to a standard photometric system. As previously

discussed, this greatly reduces the available precision.

∆�� = −2.512 log ������ − ���
���������� − ����

Equation 2-1: The basic arithmetic task of relative photometry. Taken from Budding and

Demicran [13]

However, for objects near to one another, both spatially and in terms of brightness, this

transformation would be approximately the same. The net effect is that the

transformation term cancels, and the result is given by Equation 2-1. [13]

This calculation will give the difference in apparent magnitude between the target star

and the comparison. [13] This calculation alone, however, demands an idealised

comparison star: Any variation measured in ∆m is potentially traceable to either star,

although comparison stars are usually chosen to be non-variable within a desired

precision and timescale. [1]

The addition of a third star against which the comparison star is checked allows for a

guarantee that both check and comparison stars are constant within the required

precision so long as the ratio between check and comparison remains constant, as any

31

variation in either is unlikely to be correlated. [13] If that ratio does vary, the

comparison process may need to be extended to a fourth or subsequent star until a stable

comparison star can be found.

2.2.3.2 Ensemble Differential Photometry

Ensemble differential photometry may be considered the logical conclusion of the

extended process of using a comparison and check star. In the simplest form of

ensemble photometry, the total intensity of the ensemble is assumed to be constant, and

any difference between the ensemble and the target star can be attributed to the target.

[11] A more sophisticated model allows for an iterative process whereby each star in

the ensemble is compared against the ensemble, and apparent variables are removed.

[68] [69]

2.2.3.3 Data Reduction

Photometric analysis requires that flux data be extracted from an image of the star

which may cover several pixels. The best statistical accuracy is provided by Point

Spread Function (PSF) fitting, but this method is cumbersome. [65] More common is

the use of aperture photometry which measures the instrumental flux within a circular

aperture, and the sky background using an annulus around the star using technologies

such as the Image Reduction and Analysis Facility, known as IRAF. [68] [70]

IRAF, first developed in 1981 at Kitt Peak National Observatory “is a general purpose

software system for the reduction and analysis of scientific data.” [70] It provides a

series of scripts, tools and tasks which are used in a variety of astronomical roles from

the spectroscopy of comets [71] to the subject most relevant to this project, Ultrahigh-

Precision CCD Photometry. [68] More recently, systems to overcome the shortcomings

of the Command Language for IRAF as a scripting language have been developed.

These systems, such as PyRAF, first released in 2001, have provided interfaces to the

use of IRAF with the capabilities of more modern programming systems – e.g. Python

in the case of PyRAF. [72] [73]

Using these interfaces is common practice for observational astronomers to develop

automated pipelines to extract information that is relevant to their specific observations.

32

[73] Two such pipelines are of interest to this project: the SDSS Imaging Pipeline,

which produced the data used as input for this project, [74] and qvar, a system

developed at BCO Labs to apply the techniques of differential photometry to quasar

observations. [22] [75]

The SDSS Imaging Pipeline gathers data from the 2.5m Apache point observatory

telescope and pipes this information into a variety of data processing activities: for

example: Astroline, which reduces the data from the telescope to manageable levels

for further processing by creating “postage stamp” star cut-outs; and the Frames

pipeline, which produces corrected frames, atlas images and, most relevant to this

project, object catalogues. [74]

qvar automatically extracts the flux, creates a reference (“master-star”) from the

ensemble, and analyses the data from each star, excluding references from the ensemble

if they show variation of their own. The master-star can then be compared against the

target to provide a differential photometry observation of that target. [22] [75]

2.2.3.4 Noise & Photometric Precision

In this Subsection, the causes of noise within a photometric measurement are discussed

in detail. For each class of noise, the physical cause is addressed, and factors which

influence its magnitude are discussed. In addition, systematic errors such as

transformation errors may exist for a given measurement, but careful selection of

comparison stars can reduce or eliminate this. [1]

2.2.3.4.1 Extinction Noise

Extinction is a reduction in brightness of an object caused by the absorption or

scattering of some of the light by the intervening medium. Extinction noise, as applied

to astronomical photometry, usually refers to unpredictable variations in atmospheric

absorption and scattering. [76]

Extinction noise may be split into two subclasses: first order extinction (independent of

colour) and second order (colour-dependent.) First order extinction depends primarily

on airmass. If the difference in airmass is low, as is the case for stars close together,

such as those in a small FoV, the difference in first order extinction is low. [1]

33

Burdanov et al. characterised this assumption by suggesting that the best photometry

was available if the target and references were within a radius of 5-7 arcminutes of one

another. [77]

Second order extinction is colour dependent: that is to say it occurs when certain

wavelengths of light are preferentially absorbed and/or scattered by the atmosphere.

This can be a major source of error in differential photometry with broadband filters.

[51] In this case, different stars may have different distributions of light across the

bandpass. If certain of these wavelengths are reduced but not others, a dimming will be

observed more strongly in those stars which emit more of that light.

However, the effect of this can also be minimised if the target and reference stars are

similar in colour. [1] Milone and Pel note that colour indices may be more useful than

spectral type matching if, for example, there are substantial differences in interstellar

reddening between the two stars. [1] This is because the significant factor in

determining the utility of a reference star is whether atmospheric effects apply equally

to it as to the target, not whether it is physically similar.

2.2.3.4.2 Scintillation

Scintillation is a random variation in the apparent brightness of a star, commonly

referred to as “twinkling” for visible stars, caused by the refraction of starlight through

heterogeneous pockets of air temperatures in the upper atmosphere. [10] This refraction

causes light to be bent towards and away from the aperture at various points in time.

[78]

Scintillation noise is proportional to the signal and dominates for bright stars. [1]

Scintillation amplitudes are dependent on telescope size and exposure duration. Noise

decreases with telescope size, as the refraction may deflect the path of the light onto a

different part of the same detector, but larger telescopes are much more expensive. [51]

Increasing the exposure time decreases the contribution of Scintillation to the overall

noise budget. [78]

While scintillation continues to be a significant contributor to the limits of current

ground based photometry, novel techniques using new generations of fast CCD’s and

real-time data analysis using smart algorithms can improve things significantly. An

34

example of this, of relevance to this project output and results, is a novel automated

technique called SelPhot, which can mitigate the effect of the varying atmosphere to be

removed by selecting only those exposures where the effect of the atmosphere is

minimised, using a technique called “Lucky Imaging,” then using the technique of

“shift-and-add” to stack these images on top of one another to provide significant

improvements in photometric precision and resolution. [10] [79] [80]

Lucky exposures, first described by Fried (1978) are most readily acquired for

telescopes with apertures (D) a few (3.5-4) times larger than the spatial extent of the

atmospheric turbulent cells (r0), and become highly improbable above 8 times larger

than the cells. [80] This enables near-diffraction-limited imaging for small- (0.36m) to

medium-sized (1.52m) telescopes. [81]

2.2.3.4.3 Photon Noise

Photon Noise, variously referred to as shot noise, white noise [1] or “Gaussian noise

associated with Poisson counting statistics of photons,” [78] is a term for random noise

inherent to counting photons from a variety of sources. When extracting the flux for a

star from a CCD frame, both star and sky measurements can vary, both are subject to

this source of noise, and this means both contribute to the overall noise budget. [1]

Photon noise obeys Poisson statistics – this means that the signal-to-noise ratio for any

photon measurement depends on √�. [1] The relative contribution from Photon noise

can therefore be reduced by increasing photon count. This can be achieved by

increasing aperture or integration time, or by choice of a brighter reference star. [10] [1]

2.2.3.4.4 Detector Noise

Detector noise is noise generated by the detector and can come from several different

sources. Detector noise occurs either in the act of absorbing the photons or in the

process of reporting the detection of those photons. Which source dominates depends

on the nature of the detector and the wavelength regime to be observed.

Detector noise may be driven by the quantum efficiency (QE) of the device, whereby

some, but not all photons incident on the device are reported. This QE is often

35

wavelength dependent, but was more dominant in the past, as modern CCDs have very

high QE. [44]

Thermal noise, whereby the detector itself emits light in the spectrum to which it is

sensitive, is a major source of error in infrared photometry, but is less significant for

instruments in the visible spectrum. [1], [82] Thermal noise can be treated by cooling

the detector with liquid Nitrogen or Helium as needed. [1] [51]

Read noise is noise generated in the process of extracting data from detections in the

device. In the case of CCDs, this is caused by the fact that CCD detections take the

form of small electrical currents. They are therefore vulnerable to electronic

interference. Early CCDs had very high read noise, but according to Howell, this

problem was rapidly reduced with improved technology, and is no longer a dominant

contribution. [65] Young and Milone & Pel suggest that amplifier noise was significant

in the photoelectric era, but is now relatively insignificant. [51] [1]

2.2.3.5 Improvements to Precision

As can be seen from the above Subsection, and as Burdanov et al. demonstrate

empirically, precision of differential photometric measurements can be improved by a

number of methods. [77] Some of these methods are observer and/or instrument based,

and are thus beyond the scope of this project. Others, however, can be addressed in

advance by careful choice of reference stars, and the use of ensemble differential

photometry with those reference stars. For example, photon noise on the ensemble,

which is proportional to √�, would be expected to decrease in proportion to the square

root of the number of photons from the references in the ensemble. [1]

Individual reference stars should be an approximate match for the target star in terms of

magnitude and a close match in terms of colour. [1] [51] Additional reference stars

provide more reliable photometry by permitting the elimination of variables from the

ensemble and the reduction of relative errors by combining the measurements from

multiple references. [69] [22]

This project focusses on addressing each of these requirements, by providing, for any

given target, the optimised pointing with the most reference stars, most closely matched

36

to the target in terms of Magnitude and Colour, by shifting the point of aim of the

telescope slightly to allow for more reference stars to be included in the FoV with the

target.

In addition, for the purposes of the search for extrasolar planets, all reference stars in an

ensemble can be compared with one another, to determine if any of the references are

themselves variable. If they are, they are eliminated from the ensemble for the purposes

of use as a comparator, but the variance in that reference can be tracked separately, and

it can be determined whether it play host to an exoplanet. [69] [22]

The scoring system discussed in Section 5.3 provides a modular, user-controlled

solution which incorporates these factors into a score for a given pointing. As discussed

in Subsection 14.3.2, this system would be suitable for further in-depth analysis to

provide improved precision in the scoring system.

2.2.3.5.1 Magnitude Match

Ideal reference stars are similar in magnitude to the target star, or slightly brighter. [1]

This improves photon noise contributions to the overall noise budget. A reference star

much brighter than the target runs the risk of saturating the detector. A sufficiently

bright reference may even demand the use of a neutral density filter, which introduces

yet another source of noise. [1] [51] A fainter one will necessarily show a large signal to

noise ratio and may not achieve the constancy required of a reference. [1] [13]

2.2.3.5.2 Colour Match

It is widely advised that a reference star be close in colour to the target star. [1] [13] [51]

Colour match may be achieved using existing photometric measurements of sufficient

accuracy. Young (1991) suggests a limit of 0.3 mag difference in Johnson B-V colour

index. [51] The SDSS catalogue, as discussed in Section 2.3, provides precise

photometric measurements of 357,175,411 [5, 6] objects in five different colours. [43]

SDSS colour indexes are used to rate individual reference stars in this Thesis as

discussed in Subsection 5.3.1.

37

2.2.3.5.3 Point of Aim

In addition to careful selection of reference stars, it may be possible to get more, or

better references by moving the centre of the field of view of the telescope. All

potential reference stars in the vicinity of the target must be considered, and the field of

view adjusted to include the best of these. [23] [2]

Care must be taken when performing these adjustments not to place a reference star or

the target star too close to the edge of the field of view, as edge effects on the detector

may cause difficulties. [83] [51]

Figure 2-9: Position and orientation of the Field of View (FoV) can maximise the number of

reference stars. Images: Stephen O’Driscoll, Dept. of Applied Physics & Instrumentation, CIT. [2]

38

A computationally simple approach is to simply translate the centre of the field of view

on the North-South, East-West axes. A more thorough approach would also allow for

rotations to the field of view, but that can be computationally intensive as is discussed

in Subsection 14.3.1.3.

This project is based upon these principles: determining, for each of many targets, the

best possible reference stars, and the correct telescope pointing to observe the target and

as many of them as possible.

2.3. Application of Data Mining Techniques to Astronomical Catalogues

This project is designed to perform data analysis on astronomical catalogues to

accomplish the improvements to precision described above. Astronomical catalogues

consist of lists of many astronomical objects, usually with astrometric and photometric

information on each object. Some catalogues, such as the Sloan Digital Sky Survey

(SDSS) include additional information.

This photometric information allows for reference stars to be selected for closer match

to the target in terms of magnitude and colour as discussed above. The astrometric

information permits the identification of stars that can be included in a FoV with the

target with an appropriate point of aim.

This allows the observer to plan observations in advance to ensure the best choice of

reference stars. In addition, a target may be selected from amongst otherwise equally

viable candidates based on the quantity and quality of reference stars available to the

observer.

This project makes use of the SDSS Catalogue of Calibrated Objects (usually referred to

in this project as the “SDSS Catalogue” or the Source Catalogue for brevity) for this

purpose. As of 2006, during the planning phases of this project, SDSS was the largest

photometric and spectroscopic survey in the optical wavelength range. [84] As such it

was the most rigorous test available for the computing solution developed for this

project at the time of development.

39

Subsequent catalogues, such as the Large Synoptic Sky Survey (LSST) are expected to

surpass it in the coming years, and are considered as potential targets for future projects

derived from this one as discussed in Subsection 14.1.5. [85]

2.4. Conclusions

Astronomical photometry is the study of the flux of light from an astronomical object.

Astronomical phenomena vary over a variety of timescales, and by differing quantities.

This project is concerned with variability on the timescale of minutes to hours, and of

the order of 1% or smaller flux variations, such as are encountered with transiting

exoplanets. This demands precise photometry.

Noise, dominated by the atmosphere, makes direct measurements of this precision

impossible from the ground. However, the atmospheric effects on the flux from similar

stars which are close to one another are similar. Therefore, by observing two or more

stars at the same time, the atmospheric effects can be reduced by comparing the change

in relative flux over time, a technique called "differential photometry."

Using more reference stars, and reference stars which are closer in apparent colour to

the target permits greater certainty that observed variations are intrinsic to the target

object, and not attributable to atmospheric effects or to effects intrinsic to the reference

stars.

Small adjustments to the pointing of the telescope, by translation or rotation, can permit

the inclusion of more reference stars which more closely match the target. This project

is intended to provide a reliable, automated process for making these adjustments, as

outlined further in Chapter 4.

40

3. Computing Background & Concepts

This is a scientific computing project, developed with a Top-Down design philosophy.

As such it demands a robust assessment and planning process which identifies the

project’s needs and compares them with the resources that are available. With a clear

understanding of this comparison, it is possible to develop a plan for providing a

solution to the computing problem.

The fundamental goal of this project is to develop and test a system to probe the SDSS

Catalogue, and large astronomical catalogues in general, seeking stars which are highly

suited to differential photometry, and hence optimising the potential detection of

exoplanets by the transit method.

Therefore, from a computing perspective, it is imperative to understand SDSS and the

demands that the analysis will place upon the computing resources available before

beginning the software design process. Section 3.1 assesses the requirements of the

project with regards to an analysis of SDSS.

This assessment indicates a need for high-performance computing resources to provide

capacity beyond those available from the individual computers available to the project.

The solution to this problem is to use multiple computers working together in a parallel

computing paradigm. Section 3.2 explains the concept of parallel computing in detail.

The spectrum of parallel computing paradigms is examined and the options available to

this project considered. The paradigm chosen for this project is grid computing, and the

particular implementation of this paradigm used is Grid Ireland. The architecture of

Grid Ireland in is explained in Subsection 3.2.1

The format in which SDSS data is stored places requirements on the software systems

that can be used in the project. Other considerations such as the most suitable

programming paradigm for the needs of the project, the level of the programming

language chosen, and the relative speed and efficiency of the programs generated are

defined and taken into account. The software solutions available and the options

selected within each of these parameters are detailed in Section 3.3.

41

3.1. Assessment of Computing Requirements

This project uses novel techniques to analyse the SDSS catalogue, with the intention of

developing a system to data mine large astronomical catalogues on a star-by-star basis

to identify those most amenable to study by differential photometry. The exact

astronomical parameters used to perform this analysis, and the benchmarks used to

assess the performance of this system are discussed in Chapter 4. It is, however,

essential to have a basic understanding of SDSS to determine the scale of the project,

and thus the scope of the resources needed for this project to be viable.

As discussed in Section 2.3, SDSS DR7 is an astronomical catalogue consisting of

4.27TB of data. This data includes entries on 357,175,411 [5, 6] unique objects. These

entries are stored in 421,388 astronomical standard Flexible Image Transport System

(FITS) format table files. [5] These files take the extension .fits (or .fit for systems

limited to three character extensions.)

FITS files consist of one or more Header and Data Units (HDU), each of which consist

of a header and the data that header describes. [86] The FITS format is described in

more detail in Subsection 8.3.1, but its use requires that any software used in this

project have access to FITSIO (fits Input/Output) Libraries as discussed in Subsection

3.3.2.1.

An experimental estimate of the time taken to fully process a single target star in the

SDSS Catalogue using an early prototype of the Application Processing Interface (API

– defined in Subsection 7.2.1) on a single PC at ITTD was between 0.25 and 1.0

seconds. Multiplying this by the number of unique celestial objects in SDSS indicated

an overall processing time of between 2.8 and 11 years. This indicated a need for a high

performance computing system as discussed in Section 3.2. Later refinements to the

system led to a reduction in this time as indicated in Section 13.2.

3.2. High Performance Computing

High performance computing is an umbrella term covering a spectrum of different

techniques. [87] All take the same fundamental approach to increasing the speed at

which a computing challenge can be completed – that of parallel processing. [87] [88]

Parallel processing is where many calculations are carried out at the same time on

42

separate processors. This allows the overall computing problem broken down into

multiple smaller tasks which can be carried out concurrently. [89] [87]

The techniques used to divide and solve the computing tasks range from classic

supercomputers, where many processors are located in close proximity to one another

and connected by a high speed bus [90]; to volunteer computing systems where many

widely distributed processors are connected by standard internet connections. [91] A

means of distinguishing between different paradigms of parallel computing is the degree

of distribution, [89] which typically has an inverse relationship with the speed of

connectivity as shown in Figure 3-1. There is considerable overlap between the terms

used, as each represents a spectrum of related technologies, indicated in the diagram

with shades of grey. [87] [88] [89]

Figure 3-1: Spectrum of parallel computing

Of the five paradigms shown in Figure 3-1, three were unsuitable or unavailable for this

project. Classic supercomputers use highly specialised hardware and software which

was not available at ITTD. Volunteer Computing projects such as SETI@home or

folding@home must, by definition, incorporate recruitment of the volunteers, [91]

which was not within the scope of this project.

Cloud computing, which may be considered an evolution of grid computing, [88] was

an emerging technology when this project was envisaged, and was not a viable option at

the time. Conversion of the project software to the Cloud paradigm is considered in

Section 14.2 as a suitable future expansion of the project.

Classic Supercomputer

Cluster Computing

Grid Computing

Cloud

Computing

Volunteer Computing

Increased Distribution

Improved Connectivity

43

The two remaining options, Cluster and Grid Computing were compared, both on the

merits of the paradigm as a whole and in terms of the particular implementations that

were available to the SCG at the time of the development of the project.

Cluster computing is where a number of physically proximate computers are connected

to one another by means of high speed Local Area Network (LAN) connections. [89]

Cluster computing can be differentiated from classic supercomputing by the use of off-

the-shelf components as opposed to specialised equipment. [90] In this paradigm, each

computer on the cluster, known as a node, runs a separate instance of a standard

operating system (OS). A private cluster of 40 computers was available at ITTD under

the auspices of the School of Computing. This cluster operated using a Message

Passing Interface (MPI) system. MPI is a specification for message passing between

individual computers in a cluster situation. [92]

 Grid (Grid Ireland) Cluster (ITTD School of
Computing)

Computers 1152 40

Storage 10TB (allocated) <1TB

Management Software EGI/gLite MPI

Connectivity 1Gbps Ethernet LAN,
10Gbps WAN

1Gbps Ethernet LAN

Control External (TCD) Internal (ITTD)

Table 3-1: Comparison between Grid and Cluster solutions. Green indicates the superior option in

a category, while red indicates the inferior.

Grid computing uses a number of physically distributed computers connected to one

another using a network, which may be public, private or the Internet. Grid computing

is similar to cluster computing in that the individual nodes run separate instances of the

OS. Grid computing typically incorporates middleware to manage the assignment of

elements of the project to the nodes. Grid Ireland was a project to make grid computing

available to Irish scientific computing projects. The grid consisted of 1152 processors

at the OpCentre in Trinity College Dublin (TCD) and a number of other centres around

the country. [93] It was operated using the European Grid Infrastructure (EGI) including

the gLite middleware package which provided robust job management systems. [93]

[7] Dedicated storage of 10TB was made available to the SCG by Grid Ireland. Table

3-1 shows the comparison between the Grid and Cluster solutions available.

44

The grid paradigm, implemented by Grid Ireland, was selected for use in this project.

As can be seen from Table 3-1, it outperformed the Cluster option in most relevant

categories.

3.2.1. Grid Ireland

Physically, Grid Ireland consisted of 1152 computers, also referred to as nodes or

worker nodes. [93] Each node was an off-the-shelf PC running a separate instance of

Scientific Linux version 4.5. This means that each has its own local Unix File System

(UFS.) These included 768 computers at the OpCentre at TCD and up to 384

computers located at eleven locations around the country, of which 50 were at ITTD.

Note that due to Grid Ireland’s intentionally heterogenous structure, nodes were of

different physical configurations, including RAM, local HDD and CPU capability. The

user could specify requirements for these parameters as part of a grid job submission as

discussed in Subsection 7.2.4. [94]

Figure 3-2: Schematic of the physical organisation of Grid Ireland

These computers were connected locally by 1Gbps Ethernet LAN connections and the

locations were connected to the OpCentre’s 10Gbps network by means of 10Gbps

dedicated line network connections. [93] Over 700TB of data storage, also distributed

TCD OpCentre ITTD

Grid

Management

System

gridUI

Node

Node

Node

Storage

Storage

Storage

Node

Node

Node

Storage
Storage

Storage

Other Institutions

Node

Node

Node

Storage
Storage

Storage

User Input

Other Institutions

Node

Node

Node

Storage
Storage

Storage

OpCentre

Personnel

45

nationally and managed through the OpCentre was available to the grid, of which 10TB

was allocated to the SCG. [93] In general, data access was limited to local node data, or

data accessed through the GMS, such as the Logical File Catalogue (LFC.)

Access to the grid was provided by means of gridUI (grid user interface), a dedicated

computer which acted as a gateway to the grid, located at ITTD. This computer used

the same operating system and shell, and had the same access to the grid as a grid node

and as such was ideal for testing and debugging grid software. It was accessed by the

user through the secure shell (SSH) remote login routine. Figure 3-2 shows this

physical organisation in schematic form.

Figure 3-3: Conceptual structure of the grid from the user perspective.

Grid elements only interact with one another thorough the Grid Management System

(GMS.) [93] [7] The GMS has two major components: the Logical File Catalogue

(LFC) and the Job Submission System (JSS). [7] These two elements are designed in

LFC

Grid Jobs

User Interaction

Job

Submission

System

gridUI

Node

Node

Node

Storage
Storage

Storage

User Input

Node

Node

Node

LFC

Management

LFC

Storage
Storage

Storage

46

such a way the physical location of a computing resource is controlled automatically by

the GMS. [7] As a result, design choices are shaped more by the conceptual design

shown in Figure 3-3 rather than the physical layout shown in Figure 3-2.

The LFC system consists of three elements.

• The first is a catalogue of Logical File Names (LFN) linked to their

corresponding Globally Unique Identifiers (GUID) and Storage Universal

Resource Locator (SURL). [95] LFNs are designed to be human-readable and

are structured to mimic a standard UFS. GUIDs are a unique string of the form

guid:<unique_string> and are used as a primary key for each file in the

catalogue. SURLs refer to the location where the file is physically stored.

• The physical storage referred to by the SURL is the second element of the LFC

suite. [95] [7] Unless the user specifies otherwise, the physical location of files

is assigned automatically by the GMS.

• Data in the LFC cannot be directly accessed, but rather must be accessed by

means of the final element of the LFC – the set of gLite middleware

commands used to interact with the data in the LFC. [7] These commands are

designed to mimic the UNIX shell commands. For example, the gLite

command lfc-ls will list the contents of a directory specified by its LFN in

the same way that the ls UNIX command will list the contents of a directory in

the UFS. [7] [96]

Similarly, the user does not interact with the grid nodes directly. Work is instead

assigned to the nodes by the JSS. [7]

Users submit individual tasks to the JSS by means of grid jobs. Grid jobs are each

defined by a single file written in the Job Description Language (JDL/.jdl). JDL is

described in more detail in Subsection 8.3.6, but fundamentally consist of a series of

name-value pairs which fully define the task assigned to the grid and specify any

requirements that that task may have.

A JDL file must include the path to an executable file which will be copied to and

executed on the worker node (WN.) [7] Additional requirements may include data files

47

that are required for the job. [7] Unless the user specifies otherwise in the job, the

physical location of the worker node is selected automatically by the GMS.

Jobs are submitted to the GMS using gLite commands. When these commands are

executed, the JDL file is sent to the GMS, and the executable file, together with any

data files specified in the job, are uploaded to the grid. [7] These files are placed,

together, in the working directory of the WN to which the job is assigned. This is an

essential consideration for the design of the executable software.

Further gLite commands exist for the monitoring and management of grid jobs. [7]

[95] Grid jobs, once submitted to the scheduler are given a status to indicate their

progress from “submitted” to “cleared” which may be monitored by the user manually,

or automatically as used in this project and discussed in Subsection 7.2.4. [7]

Grid jobs may fail to complete for a variety of reasons, including grid problems, such as

node crashes or software problems such as memory leaks or missing data. The GMS

does not automatically resubmit failed jobs, instead requiring that the user monitor the

progress of jobs, and resubmit them if appropriate. Checkpointing may be implemented

by the user using the LFC and suitable scripting techniques if desired, but is not part of

the default system. [7]

3.3. Software Specifications

As shown above, external factors such as the format data is stored in place constraints

on software options and project objectives set requirements.

Several core concepts of computer programming are also relevant to the choices that

must be made for this project, and are described in detail in Subsection 3.3.1. These

concepts complete the framework for the choices to be made in Subsection 3.3.2. For

each, the options available are explained in detail. Their advantages and disadvantages

are compared to provide a rationale for the choice that was made.

3.3.1. Computer Programming Concepts

Providing a software solution to a problem means choosing a programming language in

which to write that solution. The most fundamental requirement of the chosen language

48

is that it be compatible with the computing problem posed. This compatibility can be

assessed on two criteria.

Firstly, there must be a suitable implementation of that language on the OS to be used.

This implementation takes the form of a system to translate the program the

programmer has written into machine code. [97] The mechanisms for this translation

are discussed further in Subsection 3.3.1.2.

Secondly, in any programming language, there are collections of instructions that

invoke particular behaviour in the computer. These collections are called Libraries. For

a programming language to be considered compatible with a problem there must be

suitable instructions available to the programming language to access any data that is

needed. These instructions may be part of the standard library of instructions built into

the language or may be available through a custom library which must be linked to the

program by the programmer.

Within this project, where there are multiple languages which meet these criteria, three

further concepts of computer programming are considered when choosing among those

options. Those concepts are the abstraction level of the available languages, the

translation mechanisms available, and the programming paradigm for which the

language is designed. These concepts are explained below.

3.3.1.1 Language Levels

The level of a programming language is a description of the degree of abstraction from

the processor’s instruction set, also known as machine code. The instruction set is a set

of patterns of bits, known as instructions, which make up the fundamental building

blocks of software. These instructions correspond to the physical design of the

processor, and cause it to carry out their respective functions.

Abstraction is a means of enabling the human mind to comprehend a system by

understanding what its subsystems do without knowing how those subsystems operate

do it. [98] For example, assembly language replaces the bit patterns of the instruction

set with mnemonics which are easier for the programmer to read. This corresponds to a

single layer of abstraction.

49

A programming language is said to be higher level than another if it has more levels of

abstraction, and has more automated features, however different authors use the terms

“High Level” and “Low Level” differently. As an example, C may be considered a high

level language (as per Deitel & Deitel, 2001 [99]) because it uses natural language

elements and allows for features such as loops. On the other hand, C may be considered

a relatively low-level language (as per Kernighan & Ritchie, 1988 [100]) because it

allows for low-level access to data. Because of the combination of features it could be

described as mid-level, as per Schildt, 1987. [101] This Thesis, therefore, refers to the

level of a language only relative to others to which it is compared.

3.3.1.2 Software Translation

Unless software is written in machine code, it must be translated into machine code in

order for the computer to be able to run it. [97] Programs written in Assembly

Language usually require a one-for-one translation of the assembly mnemonics into

machine code, using a program called an assembler. [102] Programs written in higher

level languages may be compiled or interpreted. These processes are carried out by

programs called compilers or interpreters, each of which is specific to the machine and

source languages to be translated. [103]

Compilers translate source code into machine code before the program is executed.

[104], [97] This machine code can then be executed at a later date, and may be executed

repeatedly. Compilation has the advantage that it is much faster to execute at run time,

because the translation has already taken place. Its chief disadvantage is that a program

must be complete before individual functions can be tested. [97] [103]

Interpreters read, translate and execute a program one statement at a time at run time.

[97] [102] This is a slightly inefficient way of executing programs, as each statement

must be translated each time it is encountered, especially if there are loops in the

program. [102] Languages such as Python and shell scripting languages are examples

of interpreted languages. [105] Virtual Machines, (VM) such as the Java Virtual

Machine, are another class of interpreter. The advantages of using interpreters is that

functions can be tested as they are designed, and, in the case of VM, that changes made

to a language specification can be made to a single compiler, rather than having to

update a family of compilers. [103]

50

Languages are often described as compiled or interpreted. This description is based

upon how they are designed to be used, but this categorisation is not absolute. It is

possible to create an interpreter for a compiled language, or vice versa. As an example,

Ch is an interpreter for C, a compiled language. [106] In this Thesis, however,

languages are described according to their designed use, and were used in this manner

in the course of the project.

3.3.1.3 Software Paradigms

Burdett et al. define two main categories of programming language, Imperative and

Declarative. [102] Within each of those Burdett et al. include two paradigms as shown

in Figure 3-4. Procedural and Object Orientated languages are subsets of Imperative

Languages. [102] [107] Functional and Logic programming are subsets of Declarative

programming. [102] Many languages have features of more than one paradigm of

computing. C++ is an example of a hybrid language: it supports both object-oriented

and procedural programming; and a given C++ program may contain elements of both

paradigms [108].

Figure 3-4: Programming Language Paradigms

Imperative languages are languages in which the programmer gives the step-by-step

instructions to the computer to complete the program. These instructions include the

order in which the instructions are to be carried out. Commands are usually executed in

the order they appear unless a branching statement interrupts this model. [103] [102]

Programming Languages

Imperative Languages Declarative Languages

Procedural

Languages

Object Oriented

Languages

Functional

Languages

Logic

Languages

51

Procedural languages, such as C, are sometimes referred to as Imperative languages.

[107] In this Thesis the distinction is made that procedural languages are a subset of

imperative languages in which program statements are grouped into subroutines, also

called functions or procedures. [102] [107] Procedures may be considered additional

levels of abstraction, created by the programmer above those built into the program,

which are referred to as “primitive statements.” This procedural abstraction lends itself

to a process of stepwise refinement, a key element of Top-Down design as discussed in

Chapter 5.

Object-Oriented languages, such as C++, are imperative languages which include the

concept of objects. Objects contain both program routines (called methods) and the data

being processed (called properties.) [102] Object orientation may be considered an

additional level of abstraction above that available to procedural languages. [103]

Software written in an object oriented manner is considered more reliable and more

reusable because self-contained objects are easier to control. [107] [102] While object-

oriented languages can themselves be considered a subset of procedural languages,

[102] languages described as procedural in this Thesis should be understood to exclude

object orientation unless otherwise specified.

Declarative languages, including SQL, consist of statements that specify the properties

of the results of the program, in contrast to imperative languages which describe the

means by which those results are generated. [102] These statements are used in

conjunction with a database or a set of rules to identify results that match the query

Functional languages, such as Wolfram Language – the underlying language of

Mathematica, are a subset of declarative languages wherein computation is expressed in

the form of mathematical functions. [102] Purely functional languages do not include

elements of program state, such as variables. This eliminates side effects that can occur

in procedural languages – where a change to a variable can cause a function to provide

different results. Instead, in Functional Programming, calling the same function with

the same arguments will produce the same results every time. [109]

Logic Programming languages, such as ProLog, are based on the principle of formal

logic. Logic programming works by means of a series of statements of facts and

52

definitions of inference rules. [110] These rules are used in a form of automated

reasoning to provide the answer to a query. [102]

3.3.2. Software Solutions

Four challenges exist within this project that require a software solution. The first is

accessing the SDSS data and retrieving it from its online archive. Once that data is

available for the project, the second software requirement is to analyse and manipulate

that data in the form of FITS files to produce the astronomical results. Next, a solution

must be developed to access and use the grid. This may be considered under two

headings – accessing the LFC and managing grid jobs. Finally, as the three prior

requirements are likely to have divergent solutions, a system must be developed to

connect them together and provide a system to control the workflow and make the

results available to the end user.

3.3.2.1 Accessing SDSS

SDSS provides two principal mechanisms for accessing SDSS. Those are the Catalogue

Archive Server (CAS) and the Data Archive Server (DAS.) [111] In addition to these

systems, a number of third-party systems exist including, for example, “Tool for

OPerations on Catalogues And Tables” (TOPCAT) which uses Virtual Observatory

(VO) standards to provide access to multiple catalogues including SDSS. [112]

The VO is not a single technology, but rather an approach and a set of standards which

are intended to provide uniform access to multiple astronomical data sources. The

International Virtual Observatory Alliance (IVOA) is a collaboration of many

astronomical data projects (both users and generators) which determines these

standards. [113]

One such standard promulgated by the IVAO is the Astronomical Data Query Language

(ADQL.) ADQL is derived from SQL and is designed to enable queries which are

specific to astronomy to be performed on the many tabular datasets and the relational

databases which form the VO. [114] Output from ADQL queries is recommended to be

delivered in the form of VOTables [115], an XML format based on the FITS binary

table format which is built to be particularly suitable for astronomical query output as

delivered by the VO. [116]

53

The use of the Python programming language, which is built with support for a large

suite of libraries [105] and with a design which enables it to be used as a “glue

language,” linking together components of a software system written in many languages

[117] enables the user to incorporate ADQL queries to VO enabled systems such as

SDSS by using the astropy library. [118] astropy is a suite of astronomical

software designed to enable Python programs to access most core tools used in

astronomy and astrophysics. [118]

The use of VO-derived systems, for the most part, requires access to VO web services at

runtime. [118] However, as discussed in Subsection, 3.2.1, the nodes at Grid Ireland

are isolated from general internet access, and can only interact with data provided via

the GMS. This makes the VO approach unsuited for work with the HPC solution used

in this project. Instead, the work of this project focussed exclusively on the use of the

SDSS provided tools: CAS and DAS as discussed below.

The CAS is an SQL Database with a web interface which permits fast searches with

time and row limits using the SkyServer tool [119] and larger batch queries using the

CasJobs site. [6] The DAS is a collection of FITS images and tables containing the

outputs of the SDSS observation pipelines. [111]

Data accessed through the CAS is provided to the user in the form of Comma Separated

Value (CSV), HyperText Markup Language (HTML) or eXtensible Markup Language

(XML) files. Of these, CSV files were used in this project when accessing the CAS as

it is the most light-weight. [120] Queries submitted via SkyServer are fast, but limited;

while queries submitted via the second method called CasJobs – a batch processing

mechanism – was nevertheless found to be unpredictable in response time. [6] Results

for similar queries submitted on several occasions delivered response times that varied

from 10 minutes to 1 day. This unpredictability makes the CAS unsuitable for

interactive operations at run time. Repeat access to data via CAS means repeatedly

downloading the data. Access to data via the CAS requires a fast, reliable Internet

connection from the processing machine to SDSS, which cannot be guaranteed.

The SDSS data needed for this project is called the SDSS Calibrated Object lists and is

stored in the DAS as tsObj*.fit files. [121] These files contain FITS tables, which

54

are discussed in more detail in Subsection 8.3.1, store numerical data as floating point

numbers, which are much more compact than their ASCII representation.

These files in the DAS are stored in a directory and filename tree that is defined by four

observational parameters: run, rerun, camcol and field. This directory structure

is fully explained in Subsection 8.2.5.1. The correspondence between the observational

parameters and the astrometric coordinates of the objects observed cannot be calculated

at run time. Instead, they must be identified by means of a catalogue query through the

CAS. [122] The mandates a series of SQL queries to identify these fields, and shell

scripts to bring these files together at run time as discussed in Subsections 7.2.4 and

7.2.5.

These files can be downloaded in a non-interactive mode by means of the wget

application (or any other bulk download utility) and stored locally or on a grid resource

such as the LFC. [122] wget recreates the directory structure used in the website it

downloads from, which preserves the correspondence between file name and

astrometric location. [123] This permits repeat access to the data without a need for

repeat downloads of the data. LFC response times for access to the LFC were

experimentally assessed to vary between 1 and 5 seconds.

 CAS/Online Access DAS/Download

Data Format SQL Database (CSV output) FITS Tables

Storage Online Local (Grid)

Interaction Integrated Separate (via CAS)

Response Time Unpredictable (<10 mins) Predictable (<1s)

Internet Access Frequency Download many times Download once

Data Access Web Interface LFC

Repeat Access Same speed each time Faster after first time

Table 3-2: Comparison of SDSS Data Access Options. Green highlighting indicates preferred

option.

As is shown in Table 3-2, downloading data via the DAS has many advantages over use

of the CAS at runtime. As a result, this is the chosen method for interaction with SDSS

in this project. Limited use of the CAS is still required to map the FITS file paths to

astrometric coordinates. SQL queries must be written to provide this information.

These are used as a pre-run step to guide grid jobs, resulting in no run-time delays

during job execution. SQL is considered a declarative language, although it includes

55

limited imperative elements. [124] This paradigm guides the design of SQL queries as

shown in Subsection 7.2.5.

3.3.2.2 Processing FITS Files

Accessing FITS data requires use of a language with suitable FITSIO Libraries. Five

options are considered here: C, C++, FORTRAN, Python and Java.

C is a general purpose programming language designed for the UNIX operating system.

[100] It is “closer to the machine” than FORTRAN or the other language options

available, which makes it a better choice for dealing with system functionality such as

I/O. [125] Access to FITS files is provided by means of the CFITSIO Library, which is

the basis for the other FITSIO Libraries which are available. [126] [127] [128]

C++, originally referred to as “C with classes,” is an object-oriented language derived

from C. [108] Software written in this paradigm is considered to be easier to maintain

than procedural software like C. [125] CCFITS is an object-oriented interface to the

CFITSIO Library for use with C++. [127] CCFITS was subject to known bugs at the

start of this project. [127]

FORTRAN is an early high-level language developed primarily for mathematicians and

scientists. [125] It is designed such that its basic components resemble those in a

mathematical formula. FORTRAN is considered the fastest of the languages that are

available for numerical computing, but there can be a mismatch between the variables

and their representation on the computer which can cause Input/Output (I/O)

inefficiencies. [125] A FORTRAN interface is available for CFITSIO, which enables

use of this language with FITS files. [129]

Python is an interpreted, object oriented language which is designed to provide “a

simple, easy to learn syntax” [105] and a large suite of libraries to allow for specific

operational requirements and to provide an interface with existing systems, notably

PyFITS, first released in 2002, which provides an interface to FITS files. [130] At time

of writing, PyFits had been incorporated into AstroPy. [130] [118] Python programs

take longer to run than the other languages discussed here, but are easier to write and

understand. [105] [131] To provide this ease of use, Python is designed as a higher level

language than any of the others discussed here, and is itself implemented in C. [105]

56

Java programs look similar to C and C++ programs, and they use the same

programming Paradigm as C++. However, Java code is often interpreted at run-time,

which means it tends to be slower than the other options considered here. [125] The

JFITSIO Library is a java library wrapping the CFITSIO Library to allow Java Native

Interfaces (JNI) access to FITS Files. This library was not a mature technology at the

start of this project, development on JFITSIO having started in May 2007. [128]

 C C++ FORTRAN Python Java

Paradigm Procedural Object-
Oriented

Procedural Object-
Oriented

Object-
Oriented

Level [a] [100] [108]

[125]
1 3 2 5 4

Library [127]
[128] [129]

CFITSIO CCFITS CFITSIO [b] PyFITS/
Astropy

JFITSIO

Translation Compiled Compiled Compiled Interpreted Interpreted
Numerical

Computation

Speed [a][c] [125]

[132] [131]

4 3 5 1 2

Expertise

Available

Yes Yes No No Yes

Notes:
[a] ranked order lowest to highest.
[b] CFITSIO with FORTRAN Interface [129]
[c] interpersonal difference between programmers can dominate over differences
between programming languages [133]
Table 3-3: Comparison of programming languages with FITSIO Capability

Of the five options available, C was chosen as the primary programming language. The

FITSIO Libraries for each of the other three languages are wrappers for the CFITSIO

Library, indicating performance at best equal to that for CFITSIO. Its relatively low-

level system functionality provides an I/O performance advantage over the higher level

languages. While FORTRAN is slightly faster computationally, the performance is, as

Ashby says, “so close as to make any distinction between the languages on performance

grounds specious.” [125] Expertise within the SCG included C, C++ and Java, but not

FORTRAN or Python at time of start of the project. A side-by-side comparison

between the five available programming languages is given in Table 3-3.

With the decision to use C, the programming paradigm to be used in this aspect of the

project is therefore procedural, and the design of software in Chapter 7 must be

57

reflective of this. This decision also affects the choice of Integrated Development

Environment (IDE) discussed in Chapter 9.

3.3.2.3 Interacting with Grid

Grid Operations are not identical to operations in a classic, serial computing model.

The differences introduced below, and examined in detail in Section 7.1 impose a series

of constraints on the design of the software solution to the research problem.

As discussed in Subsection 3.2.1, access to grid resources such as the LFC requires the

use of externally provided software, that is, the gLite middleware package. [7]

Submission of jobs to the JSS is not a matter of typing a simple executable command.

Rather, grid jobs – files specifying the parameters of a grid job which are written in JDL

– must be submitted using further gLite commands. Each of these aspects of the use

of the grid places further design constraints on the project

• LFC Design Constraints

Access to the LFC requires authentication every time a file is copied to or from

it. The time taken for this authentication is experimentally estimated to be

approximately two seconds, in addition to the time taken to transfer the file over

the network. This sets a design parameter whereby the number of LFC access

commands must be minimised where possible.

• JSS Design Constraints

Grid job submission requires one JDL file per grid job to be executed on a node.

[7] Since the project is designed to require many such jobs, it is necessary to

develop a system to generate, store, submit, monitor and retrieve these jobs.

This system must create many similar files with different parameters to complete

the analysis.

In addition, the size of grid jobs must be selected in order to maximise efficiency.

Initial experimental estimates indicate that the submission of a grid job takes

approximately ten seconds, and the interval between job submission and the worker

node beginning the execution of its task is approximately five minutes, regardless of the

size of the job. These intervals may be considered dead time. Therefore, the designer

must maximise the length of the grid job to minimise the fraction of time thus wasted.

58

However, grid jobs in Grid Ireland are also not permitted to run for longer than three

days. [134]

The management of these design constraints is discussed in Section 7.1. Section 9.2

explains the practical steps taken to implement this design. Finally, Section 13.3

provides a series of metrics on the success of this implementation.

3.3.2.4 Shell Scripting

A shell is a Command Line Interpreter (CLI) which executes commands which are input

as text either manually or in the form of shell scripts. Shell scripts are programs that are

run directly by the shell. They consist of a series of commands in the same syntax as is

used when submitting instructions at the command line, and may include more

sophisticated features common to programming languages such as control structures

and variables. [135]

The use of these programming features enables the programmer, for example, to repeat

the execution of a command until a condition is met, or to run the same program with a

series of different arguments. [135]

UNIX operating systems typically include a number of different shells, each of which

has its own syntax, and shell scripts written in one shell may not be compatible with

another. There are too many options for shell scripts to list and compare them all here.

[135] The Bourne-again Shell (Bash) is the shell that is used to tie together the various

elements of this project. Bash was chosen for the following reasons:

• Bash combines the best features of the most popular shells, the Bourne shell

(sh), the C shell (csh), and the Korn shell (ksh), [135] including

o Control structures

o Piping

o Wildcards

o Ability to access and edit text files

• Bash is the default shell on Grid Ireland Computers [134]

• Bash is one of the most widely used and supported shells

59

• Bash scripting behaves similarly to the imperative paradigm of programming

used elsewhere in this project

This project uses three disparate software elements as described above. In order to be

used in the grid, these must be linked in two areas: management and execution. Both

links are achieved by means of bash shell scripts

Figure 3-5: Project Software Strategy

As shown in Figure 3-5, the bash management scripts take as input the results of SQL

queries to the SDSS CAS. These inputs are used to generate grid jobs, together with

input from the user specifying job size and with other parameters. Other management

scripts submit the jobs thus generated.

Each grid job may only specify a single executable. [7] This means that Bash scripts

must be developed to bring together the various elements that are required for a grid job.

Those may include gLite commands to download data from the LFC to the node,

programs written in C to analyse the data, and gLite commands to return output files

to the LFC.

Figure 3-5 also includes an illustration of the mechanism by which the SDSS data is

accessed: data from the DAS is downloaded to the LFC using wget, which preserves

SDSS CAS

Catalogue

Bash Management Scripts

SQL Queries

JDL Grid Jobs

Bash Execution Scripts

C Programs

LFC

LFC

LFC

gLite

commands

Node

Node

Node

wget

User Input
SDSS DAS

Data

60

the directory structure and file naming convention of the DAS. Grid jobs are assigned

elements of this data to access by the management scripts. Management scripts take

input from SQL queries of the CAS. The CAS includes information on the

correspondence between the observational parameters used to name the files and

directories in the DAS and the astrometric position of the objects contained in those

files.

3.4. Conclusion

The objective of this project is to use novel techniques and powerful computing

resources to develop a system capable of analysing the SDSS Catalogue. The output of

this analysis is a catalogue of stars which are amenable to observation by differential

photometry and thus suitable for observation for Exoplanets by the Transit Method.

As demonstrated in Section 3.1, this analysis requires computing power beyond that

which is available from a single over-the-counter PC. The analysis also requires a

robust software solution to access and process SDSS data.

To provide the computing power, the project examines several options for High

Performance Computing as discussed in Section 3.2. The solution chosen, based on the

available options, is to use Grid Ireland. Subsection 3.2.1 provides a detailed

description of the physical and conceptual structure of Grid Ireland. This structure itself

sets boundaries and requirements on the software developed for this project.

The software solutions to the various challenges posed in this project can be categorised

in four areas: SQL, C, grid and Bash. SQL queries provide the information used by

Bash scripts to manage grid jobs. Grid jobs execute further bash scripts, which use grid

middleware to access the data, and C Programs to process that data to produce

astronomical results.

It within this framework that the detail of the project design, fully explored in Chapter 7

is developed.

61

4. Project Objectives

The objectives of the project are divided between astronomical goals, and computing

goals. The astronomical goals set out in Section 4.1 are based on the requirements set

out in Chapter 2 for improved differential photometric precision. The computing goals

defined in Section 4.2 are to demonstrate the use of grid computing for a large-scale

astronomical data mining project.

4.1. Astronomical Goals

The scientific objective of this project is to provide an automated system to improve

differential photometry precision by providing more and better reference stars to

observers. Two scenarios are envisaged for the use of this system.

In the first, consider an observer who wishes to observe a specific target. As

demonstrated in Subsection 2.2.3.5.3, the ideal point of aim for their telescope may not

be directly at the target but rather offset from the target. This offset can be adjusted to

maximise the quantity and quality of available reference stars. Subsection 4.1.1 lays out

the requirements of this project to automatically determine the point of aim for a given

target.

The second scenario relates to the creation of catalogues of objects, each with an

appropriate pointing to maximise the precision of differential photometry available, and

with a figure of merit describing the quality of said photometry. An observer who

wishes to observe objects which meet certain criteria with great precision, but who does

not have an a priori preference of which particular object to observe may thus choose

the objects for which the best reference stars, and thus the best precision, is available.

Subsection 4.1.2 describes the project requirements to accomplish this goal.

Finally, the outputs of this project, including the catalogues, must be analysed. This

project is intended to develop and demonstrate a capability. This capability must be

analysed as to the nature, quality and limitations of its outputs. An understanding of

this analysis is required before future work can be proposed to make use of and expand

upon this capability. The analysis of outputs required for this project is discussed in

Subsection 4.1.3.

62

4.1.1. Individual Field Optimisation

Choosing the optimum point of aim for a given target requires several key factors. The

primary requirement is that the point of aim be positioned such that the target is

included in the field of view.

The field of view must also be positioned in such a way as to include a number of

reference stars. Viable reference stars in the vicinity of the target must be identified.

Unless all of these reference stars can be included in the same field, a choice must be

made between which ones to include, and which to exclude.

This process must be constructed in such a way as to lend itself to automation. An

algorithm consists of a sequence of steps to solve a problem. Therefore the optimisation

of a field needs to be broken down into a series of logical steps which can be

programmed.

When defining the algorithmic solution to the problem, practical limitations may

demand that certain constraints be placed on the solution. For example, rotating the

field of view greatly increases the computational complexity of the solution. Therefore

a pragmatic solution – which only considers the translation of the field of view rather

than permitting translation and rotation – would be more tractable in the first instance.

A naïve solution to the problem of choosing between possible pointings would be

simply to count the number of viable reference stars in the field at that pointing.

However, Young et al. [51] and Milone and Pel [1] suggest that close match between

target and reference star on colour is important for precision differential photometry.

Since a perfect match is unlikely, a sliding scale which calculates a rating for each

reference star should produce better results if appropriately calibrated. The rating

system developed for this project is discussed in Subsection 5.3.1 A given field can

have a score calculated for it by an appropriate combination of those ratings. The

mechanism used to combine scores into ratings is discussed in Subsection 5.3.2. The

optimum pointing is thus the pointing with the highest score.

Different observational conditions may provide different criteria for observation, such

as available dynamic range, and capacity for resolution, which will impact the choice of

63

viable reference stars. Therefore a system developed to determine these must allow for

flexible input parameters to control these criteria.

Since each combination of telescope and camera have their own size and shape of field

of view, a pointing developed for one telescope will not be optimised for another.

Therefore any system developed to automate this process must allow for the user to

input parameters designating the field of view size amongst the parameters discussed

above.

The first goal of this project, therefore, must be to create a system to optimise the

pointing for a given target. Such a system must be able to

• identify potential reference stars

• provide a rating for each

• determine potential pointings for a given telescope

• identify which pointing would provide the highest score for that target

• do so in a computationally efficient manner

• allow modular customisation of the scoring system

• provide a user input mechanism to allow for a variety of parameters to the

algorithm

4.1.2. Production of Catalogue of Optimised Fields

If it is possible to determine an optimised field for a single star, it follows that repetition

of this process for multiple stars would produce a series of pointings, one for each star.

Collation of these results can produce a catalogue which can be searched and sorted on

a variety of criteria.

Using a consistent scoring system across an entire catalogue analysis allows the end

user to compare one target with another. If the catalogue is then sorted by this score,

the "best" and "worst" targets in the catalogue can be identified, and follow-on

observations can emphasise targets with higher scores.

A catalogue produced in this manner will necessarily be highly specific in its input

configuration, in that a distinct set of observational and telescope parameters must be

submitted to the process which optimises the field for each target. Unless these

64

parameters are the same for all targets in a catalogue, comparison between targets is

meaningless. Therefore different equipment and observational conditions require

different input parameters. This means that the system of generating optimised

catalogues within this project must be developed such that the system can be used

repeatedly with different parameters to allow for different conditions.

Because the number of combinations of observational requirements and telescope

parameters in the world is very large, it is impractical to attempt to generate suitable

catalogues for all of them. Rather, within this project, a more pragmatic approach is

taken. The goal of this project is to demonstrate a reliable, repeatable and scalable

system which can produce catalogues for a variety of purposes. To this end, two

catalogues were to be generated to demonstrate the operation of the system in two

different modes, and to provide an initial resource for the astronomical community.

These were the Quasar Catalogue and the Exoplanet Catalogue, discussed below.

These two catalogues were generated using parameters for FoV that were towards the

low end of common FoV size [136], 10 arcminute for the Quasar Catalogue and 15

arcminute for the Exoplanet Catalogue. [23] These sizes were chosen to allow the use of

the catalogues and their pointings with multiple telescopes, including the ones at BCO

and Raheny Observatory, because it is possible to use a pointing with a telescope with a

FoV larger than the one for which the pointing was developed, but not for one smaller

than it, as discussed in Subsection 14.1.3 Similarly, the choice of ±2 magnitude limit

means a dynamic range between brightest and faintest reference of 2.5124=39.82. This

makes it possible to calibrate integration times such that the brightest references do not

saturate, while the fainter ones still achieve viable SNRs even with modest equipment.

The second goal of this project is the production of a system to create catalogues of

optimised pointings for differential photometry. Such a system must meet the following

criteria

• identify optimal pointing for a large number of stars

• produce scores for each of these pointings to permit comparison between them

• accept variable inputs to permit generation of multiple catalogues for multiple

criteria

65

• be scalable to accept large and small target sets

4.1.2.1 Quasar Catalogue

The first catalogue to be generated in the course of this project was called the "Quasar

Catalogue." As discussed in Subsection 2.1.3, quasars are variable objects which can be

observed using similar techniques to those used to observe exoplanet transits. The

generation of pointings for a set of quasars therefore would use similar parameters to

those used for exoplanets. In addition, the production of a sortable catalogue of

pointings for differential photometry on a large number of quasars has considerable

value in its own right. It is intended that these pointings be used in a forthcoming

observation project at BCO.

The number of quasars in SDSS is small compared to the number of stars (77,429 for

the fourth SDSS Quasar Catalogue [137] vs 357,175,411 [5, 6] for SDSS DR7, used in

this project) but still large enough to demand significant computing power to generate a

suitable catalogue. Therefore it was possible to use the quasar data set to act as a test

for the system to generate catalogues.

In addition, the quasar catalogue provides a means of testing the use of grid computing

resources. The quasar catalogue demanded the use of job creation, submission and

retrieval routines. These routines can be adapted and reused for subsequent catalogues,

including the exoplanet catalogue. Further, the quasar catalogue would provide early

metrics on the performance of the grid. (See Subsection 4.2.2 for details on metrics

required.)

The purpose of the quasar catalogue is as follows

• produce pointings for all 77,429 quasars in the fourth SDSS Quasar Catalogue

• demonstrate the system for creation of smaller catalogues

• test the grid computing techniques

• create methods for determining grid metrics

• provide preliminary metrics on grid software

66

4.1.2.2 Exoplanet Catalogue

The generation of a catalogue of candidate hosts for exoplanets, referred to as the

Exoplanet Catalogue, constitutes the Primary goal of this project. The objective here is

to identify pointings for every single star in SDSS by taking the entire catalogue of stars

as its target list. In the Exoplanet Catalogue, as discussed in Section 11.4 and Chapter

12, each target has an optimised field generated for it by the algorithm and a score

assigned to that pointing.

The production of a catalogue this large (there are 357,175,411 entries in SDSS [5, 6],

of which some number, unknown at the start of the project, were stars) demonstrates the

ability of the software to scale up from the quasar problem, and highlights and addresses

the difficulties in running a data-rich, process-poor project on a grid. The metrics

developed for use on the quasar catalogue can be used here to assess the performance of

the Exoplanet job.

The purpose of the Exoplanet Catalogue is as follows

• produce pointings for all stars amongst the 357,175,411 entries in SDSS DR7 [5,

6]

• demonstrate the system for generating large catalogues

• provide metrics on the use of a grid in a large-scale, data-rich, process-poor

problem

4.1.3. Meta-Analysis

The data produced in the various catalogues created as part of this Thesis takes the form

of a large collection of files. In the case of the Exoplanet catalogue, for example, the

data within those files amounts to a table of up to 357,175,411 rows and 10 columns.

This data may be searched and sorted for relevant outputs for specific purposes as

needed be a user.

However, it is necessary to analyse the output data, to allow understanding of the

meaning of values such as the core, and to guide further research based on this data.

This analysis of already analysed data is referred to in this Thesis as “meta-analysis.”

67

Close examination of the data permits the characterisation of the dataset, and helps to

identify interesting and scientifically relevant patterns and trends in the output data.

It is necessary to take a pragmatic approach to meta-analysis based on software and

hardware limitations as discussed in Chapter 12. This includes performing the meta-

analysis on subsets of the output data, rather than the entire dataset. These subsets are

chosen to be statistically significant and, in so far as practical, chosen to be an unbiased

representative sample of the entire data set; while limitations of these subsets are clearly

identified, and any conclusions drawn are made with suitable caveats.

The output catalogues, as discussed in Subsection 8.3.1.3, include position and

magnitude information (from which colour can be calculated) about the targets and

position and score information about the pointings generated. Of these, three variables

are suitable for meta-analysis as discussed in Chapter 12: magnitude, colour and score.

In addition, it is possible for entries to “fail” as discussed in Subsection 5.2.6 . The

meta-analysis must therefore provide the following

• determination of whether any significant distribution exists in magnitude, colour

and score, and if such patterns exist, provide a characterisation of those trends

• characterisation of the relationship between magnitude and score

• characterisation of the relationship between colour and score

• interpretation of these relationships, and guidance, as appropriate, for future

work

• identification of any failures in the output data, and an assessment of any

patterns in failed targets with respect to colour and magnitude

These data can be provided in the form of histograms which count the number of times

a variable takes a value that falls in a particular bin. When plotting histograms, the data

bins into which data is partitioned must be carefully selected. If the bins are too large,

detailed trends in the data may be obscured, but if they are two small, statistical noise

effects can come to dominate over the real pattern.

It is also relevant to identify the distribution of descriptive statistics of values for score

in a number of ranges of colour and magnitude. This is intended to provide a

quantitative assessment of the ranges of colour and magnitude in which unusually high

68

or unusually low scores are to be found, and provide a sense of where the score for a

particular pointing could be considered to fall within the range of values for similar

stars. (e.g. is the score above, below or approximately equal to mean, median etc…)

4.2. Computing Goals

The design and development of software to analyse the data in astronomical catalogues

and produce outputs, including catalogues, is one of the major goals of this project.

This project also tests and uses that software in a number of ways, such as timing grid

jobs, both individually and collectively, to assess their performance and to identify

occasions on which prediction and outcome do not match. The demonstration and

analysis of the performance of the computing resources used in this project therefore

also constitute a major computing goal of this project. As discussed in the following

Subsections.

4.2.1. Demonstration of Grid Use on Data-Rich, Process Poor Problem

The types of computing problem where the computational processes are more complex

and dominate the overall runtime of the program are typical of those to which grid

computing in the EGI system has previously been applied. [88]

The process by which valuable information is extracted from source data in this project

is computationally simple, as will be shown in Chapters 5 and 7, but there is a lot of

data over which to iterate this process. This type of computational problem has been

referred to as a “data rich, process poor” problem. As is demonstrated in Section 13.2,

data access times can dominate over processing time in problems of this type.

Furthermore, the application of grid computing to a new type of computing problem

therefore has the potential to demonstrate new capabilities and highlight any

weaknesses in the existing grid system as are proposed by work towards the “Data

Grid.” [138, 88]

As a result of the relative novelty of the pattern of use of the grid proposed in this

project, novel grid job submission, monitoring and retrieval systems must be built using

the existing gLite utilities. These systems are discussed in detail in Subsection 7.2.4.

69

4.2.2. Computing Metrics

As discussed in Subsection 4.2.1, this computing problem at the core of this project is of

a different type to those to which grid technology has previously been applied. As a

result, it is imperative that the project be carefully planned and monitored at multiple

levels (e.g., calculating the processing time per catalogue entry, per file, and per grid

job, which bundles many files together.) Metric and measurements are also necessary in

order to understand how the software system unfolds with such a grid solution,

requirement measurements (such as processing time, data access time and data volume.)

These metrics are used to characterise and evaluate the performance of the system.

These benchmarks can be also used to identify strengths and weaknesses in the project

design and/or the grid system itself.

If any element of the project comes to dominate over the rest, or form a bottleneck

which slows the running of the program, this must be identified, and steps taken in

future versions to resolve these problems.

The metrics defined in this Subsection are split into three key Sections:

• Data Metrics, which are concerned with the amount of data present at various

stages of the project, and how that data is organised and accessed.

• Timing Metrics, which evaluate the time taken to access, process and write the

data in various software components of the project.

• Grid Metrics, which discusses issues specific to the grid, including access to grid

data storage, job submission and retrieval, and limitations of the grid itself.

4.2.2.1 Data Metrics

Although Chapter 8 discusses the details of the nature and organisation of the data used

in this project, a brief outline is given here for reference. Firstly, the data for this

project is derived from source data from SDSS. That source data is first pre-processed

into an intermediate state, called the Local Catalogue, and then processed in a pipeline

to produce Output Catalogues. At each of these stages – source, local and output, the

data is organised into many files of various sizes. The source and local files are further

organised into a hierarchical file structure as discussed in Subsection 8.2.5.1.

70

In order to provide the user with an understanding of the characteristics of the data,

these files can be assessed on the following criteria: their size, the quantity of files and

the breakdown of the data structure used to store them. Where a distribution exists in

these parameters, relevant quantities, such as maximum, minimum and average values

for that parameter can be identified.

It is also possible that files may be missing from a dataset. These missing files may or

may not affect other output data. Missing files may be due to hardware failure, for

example disc failure or software failure, for example where a grid job was cancelled by

the job manager, as discussed in Chapter 9. The number of missing files must be

assessed, any impact on other data must be flagged, and where possible, the causes of

missing data must be attributed and assessed.

4.2.2.2 Processing Metrics

This project consists of three key stages discussed in detail in Section 7.2. Those stages

are downloading the source data; the Application Programming Interface (API) stage,

which generates the Local Catalogue; and the Data Pipeline stage which generates the

output data. Within the API and Pipeline stages, the data must be input, processed and

then output again. The process of parallelisation separates the API and Pipeline stages

into individual jobs.

From a perspective of acquiring processing metrics, these stages of the project can each

be timed as a whole, or as individual jobs. Within each of the stages, the sub-stages can

be separately timed and examined. Trends within the timing data can be plotted and

observed.

From this information, the breakdown between data access and processing time can be

fully characterised, and bottlenecks in the program can be identified and rectified.

4.2.2.3 Grid Metrics

Generating, submitting and retrieving thousands of individual grid jobs, accessing data

through grid mechanisms and other concerns specific to the use of grid computing must

be assessed. Mechanisms for monitoring grid programs are discussed in Chapters 7 and

71

9. The performance of the grid-specific systems can be monitored by timing in the

same way as the data processing above.

Limitations on the run time of individual grid jobs demand that grid jobs must be

calibrated to fit those limits. In addition, the submission, launch and retrieval of grid

jobs take a finite amount of time. Therefore a clear understanding of those timings must

be established before a job can be submitted.

4.3. Summary

This project has two primary elements, the astronomical and the computational. Each

serves the other: the astronomical objectives guide and provide utility to the

computational, and the computational element provides the tools needed to generate the

data needed for astronomical studies.

From an astronomical perspective, the objectives of the project are as follows

• Develop and demonstrate a flexible system to provide optimal pointings and a

score for one or more targets given the data on the stars around it and a set of

observational parameters.

• Apply this system to the SDSS Fourth Quasar Catalogue to produce up to

77,429 entries in an output Quasar Catalogue of pointings for optimal

differential photometry.

• Apply this system to all entries in SDSS to produce a catalogue of up to

357,175,411 entries of optimised pointings for stars, such that they might be

used to observe Exoplanets.

• Analyse the output data from the Exoplanet Catalogue to identify trends in the

data. This will help guide use of the data by identifying areas of the phase space

of resulting data which should be emphasised by end users and those which

should be avoided.

From a computing perspective, the objectives are to

• Design and implement a flexible software system capable of accepting variable

input and producing appropriate astronomical results as described above based

on that input.

72

• Enable that system to be operated in a grid environment to allow for the

processing of large catalogues.

• Organise, and collate the output data, and provide metrics on its storage

• Assess the performance of that system in unit testing to identify trends and

patterns that can be used to guide grid jobs.

• Assess the performance of the grid jobs in full-scale operations and compare

these metrics with the predictions based on unit tests.

73

5. Locus Algorithm & Scoring

Differential photometry requires that the target and a number of reference stars be

included together in a small FoV. These references provide an ensemble against which

the target can be compared, as discussed in Subsection 2.2.3.2.

As described in Subsection 2.2.3.5, it is possible to improve the precision of the

photometry achieved by using more reference stars, and by including reference stars

that more closely match the target in magnitude and colour. [1] [51] Therefore, an

objective of this project was to develop a system to maximise the number and quality of

reference stars for a given target by adjusting the point of aim (pointing) of the

telescope as set out in Subsection 4.1.1.

The Locus Algorithm, first discussed in Creaner et al., 2010, [3] is the solution to this

problem that was used in this project. There are two core concepts to the Locus

Algorithm. The first is that it is possible to define a locus about a point on the sky, such

that a FoV centred on any point on that locus will include the original point at the edge

of the FoV. Any FoV centred within the locus will therefore also include the target, and

any FoV centred outside the locus will not.

The second core concept is that applying this locus to a number of candidate reference

stars near to one another will cause these loci to intersect. At the points where the edge

of one locus intercepts the edge of another, the set of stars which can be included in a

field of view centred at that point changes.

This is illustrated in Figure 5-1. The red and blue boxes define the loci upon which a

FoV may be centred to include their respective stars at the edge. A FoV centred in the

pink area will include only the red star, while one in the pale blue area will include only

the blue. Any FoV centred in the purple area will include both, while one centred in the

black areas will include neither.

The points of intersection (PoI) between the red and blue loci, highlighted in yellow, are

the points where both stars will be included at the edge of the FoV. More generally,

given a larger sample of stars, it is at these points that the set of stars that can be

included in the FoV changes. Therefore, the Locus Algorithm identifies these PoI.

74

By examining these PoI, the set of stars that can be included in a FoV centred at one

such point can be compared with the set of stars included in a FoV centred at another.

A scoring system is therefore required to assess which PoI would produce a better

pointing. By assessing each set according to the scoring system, it is possible to

determine a point at which the score reaches a maximum value.

Figure 5-1: Principles of operation of the Locus Algorithm for two stars.

The Chapter first considers how to mathematically define a locus of points in the

Equatorial Coordinate system. Then, a step-by-step definition of the algorithm is given

with illustrations. Finally, the Chapter discusses a number of options for the scoring

system, a modular component that has been developed to suit the needs of this project,

and explains the choice of which system to use.

5.1. Coordinate System

Using Cartesian coordinates, and given a square FoV oriented such that its edges are

aligned with the primary x and y axes, and restricting the movement of the field to x or

y translations, the edges of the locus about a given point can be defined by a set of four

lines, two running of constant x (parallel to the y axis) and two of constant y (parallel to

the x axis), each half the size of the field of view away from that point.

75

Figure 5-2: Celestial Coordinate System showing the convergence of meridians towards the pole

and the consequent foreshortening of unit angles in Right Ascension. From A review of

Coordinates, Redmond [139]

However, the Locus Algorithm operates in the Equatorial Coordinate system, where

Right Ascension (RA) and Declination (Dec) are spherical Polar Coordinates. As

shown in Figure 5-2, this means that while a unit angle in Dec remains equal to the

same unit angle in true angular separation at all points on the surface, unit angles in RA

are only equal to true angle (and consequently, to unit angles in Dec) at the celestial

Equator. Away from the equator, lines of constant RA converge, coming to a point at

the poles.

This means at Dec other than 0°, unit angles in RA are foreshortened by comparison to

unit angles in Dec. The degree of this foreshortening is given by Equation 5-1.

76

��� � �� "# = ��$� ��� �
cos((��)

Equation 5-1: Relationship between true angle and angle in Right Ascension. [139]

By using this conversion factor, it was possible to approximate a Cartesian coordinate

system with RA and Dec. This reduced the computational complexity of the Locus

Algorithm by allowing a small, square Field of View (FoV) of angular side S, centred

on a point ("#*, (��*), to be defined by lines of constant RA and Dec as shown in

Equation 5-2.

This equation also defines the locus of points about a star located at point ("#*, (��*),

upon which a FoV of size S could be centred so as to include that star.

"#* − ,
2cos((��*)� ≤ "# ≤ "#* + ,

2cos((��*)�

/012 − 3
4� ≤ /01 ≤ /012 + 3

4�

Equation 5-2: Definition of a Fov of size S centred on a point (RA1,Dec1)

For small FoV, such as the 15 arcminute FoV used in the generation of the Exoplanet

Catalogue, this approximation was calculated to be accurate to within 1% for fields of

view outside the polar regions (i.e. for |Dec| < 66.5°.)

Corrections for within the polar region are more complex, and are beyond the scope of

this project. These corrections are proposed as a refinement of the project in Subsection

14.3.1.2.

In addition, the definition given in Equation 5-2 ignores the fact that Right Ascension

“loops around.” As a result, for example, an object at (359.99°, 0°) would not be

included in a FoV of size 0.25° with an object at (0.01°, 0°) even though their true

angular separation is 0.02°.

Since this limitation is only significant in a narrow strip of the sky around RA 0°,

representing just 0.223% of SDSS detections in DR7, allowance for this was not

included in the scope of this project, but is considered a refinement that could be made

in Subsection 14.3.1.1.

77

5.2. Locus Algorithm Definition

The following is a step-by-step set of instructions describing the Locus Algorithm in

detail, as it was implemented in this project. The design for the implementation of this

algorithm is given in Subsection 7.2.2.1, and Chapter 10 demonstrates its application.

Figure 5-3: Overview of the Locus Algorithm Process. Data from the Catalogue is aggregated to

form a Mosaic in memory. Candidate reference stars are identified within this Mosaic, and a

Rating is calculated for each. A Locus is drawn around each where a FoV may be centred. The

Points of Intersection (PoI) between these Loci are identified and a score calculated for each. The

PoI with the highest score is output as the optimum pointing for that target. Each of these steps is

illustrated in its respective subsection below.

5.2.1. Aggregate Data from SDSS

As shown in Figure 5-4, the data for stars around a target or set of targets will be

contained in many SDSS files, and as such, many local catalogue files. The program

assembles a single array from the files that cover the area of sky near to the target as

For each Locus

For each reference

Aggregate Data
See 5.2.1

Identify References
See 5.2.2

Apply the Locus
See 5.2.3

Identify the PoI
See 5.2.4

Identify the PoI with the
best score
See 5.2.5

Catalogue

files

Mosaic

List of references

List of Loci

Calculate Rating
See 5.3.1

Calculate Score
See 5.3.2

Output

Catalogue

78

specified in the parameter file. Since this array is composed of a number of “tiles” in

the form of the input catalogue files, this array is referred to as a “mosaic.”

Any star up to the full size of the field of view in any direction from a target can

potentially be included in a field of view with the target. Therefore, data must be

assembled from any file which includes any star within those limits.

Figure 5-4: Modified image taken from SDSS Navigate image showing fields. [140] To obtain data

on all stars in the green box, data from the SDSS fields marked in red must be aggregated to form a

mosaic.

5.2.2. Identify Potential Reference Stars

For each target, a short list is produced of those stars which would be suitable for to use

as reference stars. These stars must meet the following criteria.

• Position must be within the size of the field of view of the target.

• Magnitude must be within defined limits of the target’s magnitude

• Colour must match that of the target to within user-specified limits.

• They must be resolvable: i.e. no other star is within a user-defined resolution

limit of the target.

79

Figure 5-5 illustrates these filters. These filters together create a list of stars that are

suitable for use as references with the target, known as candidate reference stars. At

this point, the first element of the scoring system assigns a rating to each candidate

reference star. The reference stars are compared with the target, and a rating between 1

and 0 is assigned to each based on their similarity to the target using the rating system

discussed in Section 5.3.1.

Figure 5-5: Reference stars must be identified from among the stars in the mosaic. The target is

shown in white. Potential reference stars are indicated in green. Rejected stars are indicated in red.

Stars are rejected if they are too bright or faint (indicated by size), if their colour indices are

different to the target (indicated with 7 point stars) or if they cannot be resolved (indicated with

overlapping stars.)

5.2.3. Apply the Locus to Each Candidate

For each candidate reference star, a locus of points upon which the centre of the field of

view may be placed to include both the target and the reference is defined. Starting from

the definition of the locus given in Equation 5-2, it follows that, for each reference, only

the sides of the “box” nearest to the target need to be considered: no point on the side of

the locus in the opposite direction to the target will include the target.

80

The locus is therefore defined as a line of constant RA and a line of constant Dec drawn

from a point called the cornerpoint because it defines the corner of the Locus.

Figure 5-6: The loci are defined by assigning a pair of RA and Dec coordinates to a cornerpoint and

a pair of Boolean switches which indicate whether to draw a line North or South and East or West

from the cornerpoint. Each Star is assigned a colour, and the locus that corresponds to it is drawn

in the same colour.

Given the coordinates of the target 5"#6789:;, (��6789:;< and the coordinates of the

reference5"#=:>:8:?@: , (��=:>:8:?@:<, and a size of FoV S, the coordinates of the

cornerpoint 5"#AB8?:8CBD?;, (��AB8?:8CBD?;< are defined as shown in Equation 5-3

"#6789:; ≤ "#=:>:8:?@: ⇒ "#AB8?:8CBD?; = "#=:>:8:?@: − F ,
2 cos5(��;789:;<G

"#6789:; > "#=:>:8:?@: ⇒ "#AB8?:8CBD?; = "#=:>:8:?@: + F ,
2 cos5(��;789:;<G

(��6789:; ≤ (��=:>:8:?@: ⇒ (��AB8?:8CBD?; = (��=:>:8:?@: + ,
2�

(��6789:; > (��=:>:8:?@: ⇒ (��AB8?:8CBD?; = (��=:>:8:?@: + ,
2�

Equation 5-3: Definition of the Cornerpoint of the Locus for a given candidate reference star

81

For each line, its direction is described by a binary switch – assigned a value of 0 for

negative, 1 for positive. If the reference has a higher value in RA or Dec than the target,

the line for the locus is drawn in the positive direction, if the reference has a lower

value; the line must be drawn in the negative direction as shown in Figure 5-6.

5.2.4. Identify the Points of Intersection

The points where these lines intersect are identified. This is done by pairwise use of the

RA coordinate of the cornerpoint for one reference and the Dec coordinate of the

cornerpoint for another.

Figure 5-7: The intersection points between the lines are the points at which the score changes. For

clarity, each star has been assigned a rating of 1 in this example. As a result, the score for each PoI

is equal to the number of stars within a FoV of the PoI.

It is checked whether this pair of coordinates is actually an intersection point by

checking the direction of those lines. For example, a line of constant Dec in the

negative RA direction will not intersect a line of constant right ascension where the

latter has a higher RA value than the point from which the former is drawn. The result

is shown in Figure 5-7.

3
3

4

3 3

5 4 4

2 3

2

4
4

5 4 4

82

For each valid PoI, a score is calculated by combining the ratings of all potential

references that can be placed within a field of view centred on that PoI as discussed in

Subsection 5.3.2. These references are identified by determining the absolute value of

the difference between their RA and Dec coordinates and those of the PoI and ensuring

that value is lower than half the size of the field of view.

5.2.5. Output the Intersection with the Best Score

When the first intersection with a valid score is identified, the coordinates of that

intersection and its score are put into a variable called “best intercept.” When

subsequent intersections are identified, they are compared with this best intercept.

Figure 5-8: Locus Algorithm. Target: white star. Pointing & FoV: blue. Reference stars and their

loci: Fully in the FoV: greens. On the edge of the FoV: yellows. Outside FoV: reds

If their score is higher than the best so far, the new value is put in the place of the old.

When the last intercept has been identified and a score assigned to it, the best intercept

is put into an output array of all the best intercepts for each target. In the event that

83

multiple PoI are assigned the same score, the first of those PoI to be processed will be

the one that is included in the output.

5.2.6. Failed Targets

Targets for which no valid interception exists, or which have no viable reference stars

are assigned a pointing with coordinates (RA: 0, Dec: 0) and a score of 0, and are

considered to have “failed.” Targets may fail for the following reasons, as shown in

Figure 5-9:

Figure 5-9: Four conditions upon which a target will fail. Clockwise, from top left: (1) a target with

no references, (2) a target with one reference, (3) a target the loci of whose references do not

intersect and (4) a target for which the loci of its references are nested such that they do not

intersect one another.

• If there are no viable reference stars, the shortlist determined at step 5.2.2 will be

empty.

• If there are no PoI detected at step 5.2.4, no score will be assigned. This will

occur when:

84

o There is only one reference star: its lone locus cannot not intercept any

other

o The reference stars are arranged in such a way that their loci do not

intercept, either because they are too far apart or their loci nest within

one another.

5.3. Scoring System

The scoring system used in this project has two primary functions. Those functions are

firstly to identify which pointing, out of all the PoI, provides the most and best reference

stars for differential photometry for a given target, and second to provide a means of

comparing one target-pointing set with another.

With regards to those functions, there are two elements that make up the score for a

given pointing: the ratings, a value between 0 and 1 assigned to each individual

reference star, used to indicate how closely it matches the target as discussed in

Subsection 5.3.1 and how those ratings are combined to make the overall score for a

pointing, as described in Subsection 5.3.2.

The system used in this project was chosen from several options discussed It was

guided primarily by the domain expertise at BCO [23], and by the emphasis on

broadband colour agreement as per Milone and Pel, 2011 [1] and Young, 1991 [51].

As discussed in Subsection 14.3.2, refinements to the scoring system are suitable for

further study, with several proposed projects to carry out those refinements.

5.3.1. Rating System Options

In providing a rating for each individual reference star, the objective is to identify which

stars most closely resemble the target. For each star, the following pieces of

information must be made available about it: Its position in RA and Dec, and its

magnitude in multiple filters, (u, g, r, i, z) from which colour indices could be

calculated.

For the purposes of this project, the position of a reference star would be relevant only

in so far as its position must permit it to be in the FoV with the target for a relatively

narrow FoV such as the 10-15 arcminute fields used in this project.

85

For Magnitude, the user may specify a limit of magnitude to within which the reference

star must be of the target. In the case of the Exoplanet catalogue, this limit was set to

±2 magnitudes, a value chosen to permit the fainter references to achieve reliable SNR

while preventing saturation of the brighter ones using the equipment at BCO [23].

Figure 5-10: Potential rating systems. The binary scoring system, with a rating of 1 within the

limit, and 0 outside. Under the triangular and square systems, rating trends from 0 at the limit to 1

at a perfect match. Triangular uses a linear progression, while square uses a parabolic progression.

Milone and Pel (2011) state that colour dependent effects cancel when stars of similar

colour or “apparent spectral energy distribution” are selected as references, and that

colour indices in broadband filters may be more important than spectral type in this

regards. [1] Young et al. (1991) suggest that comparison stars be selected within a limit

of +/- 0.3 magnitude in Johnson B-V colour index. [51]

Both previous authors suggest additional factors such as small angular separation and

similar or brighter magnitude as discussed in Subsection 2.2.3.5. However, it was

determined, in consultation with observational experts at BCO, that for the small FoV

(10-15 arcminute, much smaller than that 4-5 degree limit suggested by Young et al.

[51]) and relatively small range of magnitudes (+/- 2 mag), that all stars which could be

included in the FoV and which were within the magnitude range would be considered

86

equally suitable references, but that it would be necessary to differentiate between stars

on the basis of the closeness of the match between their colour and that of the target.

[23]

IJKLM = NO − NOP2

∆I = IQLMR0K − IS0T0M0O10

2 − U ∆I
∆INLVU = S

Equation 5-4: Triangular rating equation. The colour index for a given star (Cstar) is calculated by

subtracting the magnitude in the next longer filter (mn+1). from the magnitude in a given filter (mn)

The Difference in colours (ΔC) is the difference between this value for the target (Ctarget) and that

for the reference (Creference). The rating (R) is then given as a value between 0 and 1 by subtracting

a normalised, absolute value given by dividing ΔC by the maximum permitted ΔC from 1.

2 − ∆I
∆INLV�4 = S

Equation 5-5: Square Difference rating Equation. Difference in colours (ΔC) is calculated in the

same way as in Equation 5-4, but instead of subtracting a normalised value of ΔC, a normalised,

squared value is used.

As a result of these guidelines, the user may also specify a limit to within which the

colour of the reference star must match the colour of the target. For the Exoplanet

catalogue, this was set to +/- 0.1 magnitudes. These limits were selected to provide a

baseline well within the limit suggested by Young. [51] Within that limit, there were

several options as to how to assign ratings to reference stars, as shown in Figure 5-10.

The Binary scoring system only distinguishes between references that are within the

limit and those outside it: no further distinction is made within that limit. The square

difference and triangular scoring systems are designed to make this distinction by

assigning a rating of 0 to a reference at the limit, a rating of 1 to a reference that is a

perfect match for the target on that colour. Between those limits, the triangular system,

based on Equation 5-4, uses a linear progression from 0 to 1, while the square difference

system, based on Equation 5-5, follows a parabolic progression.

87

Of the three options available, the triangular rating system was selected. It was chosen

over the binary system because it reflects the design goal whereby a reference which is

a perfect match for the target is given a better rating than one which “barely passes.”

IJKLM	W � NO �NOP2 IJKLM	J � NOX2 �NO

∆IW � IQLMR0K	W � IS0T0M0O10	W ∆IJ � IQLMR0K	J � IS0T0M0O10	J
2 � Y ∆IW

∆INLVY � SW 2 � Y ∆IJ
∆INLVY � SJ

S � SWZSJ
Equation 5-6: Calculation of Rating. For each star (Target and Reference) three magnitudes of

increasing wavelength (mn-1, mn & mn+1) are used. This permits the calculation of two colour

indices: Cs calculated from the shorter wavelength pair (mn-1 & mn) and Cl calculated from the

longer wavelength pair (mn & mn+1). From these, two corresponding ratings (Rs & Rl) are

calculated for each star as per Equation 5-4. Rs & Rl are multiplied to calculate the final rating R.

These methods apply where a single colour index is used. However, this project makes

use of two colour indices: to optimise photometry for a given SDSS band, both the

colour indices generated by comparing that band with its neighbours (e.g. g-r and r-i for

the r band) are used, where both are available (u and z each only have one neighbour.)

Figure 5-11: The Witch's Hat graph. This graph demonstrates the distribution of rating against

difference in two colour indices calculated as shown in Equation 5-6

88

In order to combine the ratings from two different colour indices, while continuing to

restrict the range of rating between 0 and 1, the ratings were combined by multiplying

them together, as shown in Equation 5-6.

This method of combining the ratings creates a distribution of rating against the two

colour indices which shows a sharp peak for references which exactly match the target,

as shown in Figure 5-11, a pattern described within this project to as the “Witch’s Hat

graph.”

5.3.2. Combining Ratings into Scores

Once the ratings for each potential reference star are calculated, the algorithm steps

through each potential pointing and combines the ratings from the reference stars that

are included in a field of view centred at that pointing.

For this project, the ratings for each star that could be included in the field were added

together as shown in Subsection 5.2.5. This provides a mathematically straightforward

solution to the problem of combining ratings into scores.

Meta-Analysis of the output as discussed in Chapter 12 show that scores in the

Exoplanet catalogue are highly variable, with a mean of 6.74, but a distribution that

showed a long tail, with one target showing a score of 117.

In ensemble photometry, each reference may be used as a target in its own right, and

inter-compared with the other. By being similar to the target, the reference stars are

also similar to one another. In the search for Extrasolar Planets, all stars can be

considered potential exoplanet hosts. Taken together, these facts mean that additional

reference stars continue to add value to a pointing even as the number of references

becomes very high.

However, further refinement to the method of combining ratings into scores may be

profitable, for example, to make allowance for a “Law of diminishing returns” as

discussed in Subsection 14.3.2.3.

89

5.4. Conclusion

The Locus Algorithm consists of a series of steps to identify an optimum pointing for a

given target, and to assign a score to that pointing. As discussed above, the following

assumptions are made:

• FoV used are small

• FoV are square

• FoV are aligned such that their edges align on the North/South and East/West

axes

• FoV may only be translated North/South or East/West

As shown in Figure 5-3, the steps required to complete the Locus Algorithm for a given

target are

• Aggregate the data needed for all potential reference stars from a source

catalogue, tiling multiple files together to create a mosaic if necessary

• Create a short list of candidate reference stars

• Assign ratings to each candidate reference star using the “Witch’s Hat” rating

system as shown in Figure 5-11 and Equation 5-6.

• Apply the Locus to each candidate, allowing for corrections for spherical

coordinates

• Identify the Points of Interception (PoI) between those Loci.

• Select the optimum pointing by calculating a score for each PoI, and designating

the pointing with the highest score the optimum pointing.

To accomplish all of the goals of this project, the Locus Algorithm must be iterated

many millions of times. Chapter 7 discusses the design of the software and hardware

solution required to implement this algorithm, on one target or many. Chapter 9

discusses the practical implementation of this project based upon that design. Finally,

Chapter 10 shows a fully worked example of this system in operation on a single target

star, SDSS J113824.40+483457.8.

90

6. Project Design Concepts and Approach

This Chapter describes the core concept and principles of design used throughout this

project, and the approach used to put these concepts into practice.

Design Concepts are a set of principles of design, which guide a designer in making

design choices, regarding the order in which software components should be designed

and developed, how these components should be separated, and how they should be

connected to one another.

Design Concepts are considered under two headings in Section 6.1:

• Design Strategies, referring to the pattern in which component parts of the

project were identified, in what order they should be developed, and at what

level of design input and output parameters should be determined.

• Design Philosophy, referring to a set of principles upon which design decisions

were made, such as whether to focus on maximally-optimised software for a

single purpose, or whether to allow for extension to other purposes.

The Design Approach refers to the method, including an explanation of choice of the

preferred design strategy used in this project to produce the final design of the project as

shown in Chapters 7 & 8. This method is further divided into two components in

Section 6.2

• Design Process: the series of steps used to manage the design and development

of the project

• Design Techniques, a set of tools used in this process to provide consistency in

the design process

These concepts and approaches were used to define all aspects of the project, including

software and data, as well as the approach to the scientific solution. The resulting design

of the project is described in Chapters 7 & 8.

6.1. Design Concepts

Two major design strategies are explained in Subsection 6.1.1: Top-Down design,

whereby high-level elements of the design are recursively broken into smaller elements

91

until the implementation of that element is clear, [141] and Bottom-Up design, wherein

the most basic components of the design are defined first, and assembled to make the

system. [142]

The Design Philosophy Subsection (6.1.2) refers to two concepts which underpin the

design of this project: Flexibility (e.g. allowing variable input parameters) and

Extensibility (e.g. allowing the software system to be used with other source

catalogues.) Together, these requirements demand the application of two other

principles: Modularisation of software to allow new or replacement modules to be

added to the software solution (e.g. the scoring system) and a Layered data structure to

permit abstraction of the data from the source. (e.g. the Local Catalogue.)

6.1.1. Design Strategy

There are two basic strategies applied in software design, Top-Down and Bottom-Up.

[143] It is often not practical to entirely depend on one or the other of these strategies.

[144] Instead, these strategies are often used together, as was the case in this project.

[142] Each of these strategies is described and the significance of that strategy to this

project discussed below.

Figure 6-1: Illustration of Top-Down design concept. The overall task is broken into components

recursively until it can be coded. Note that not all components require the same number of steps to

refine as shown in the case of Part 2 in the illustration above.

Overall

Part 1

Part 2

Part 3

Overall Overall

Part 1

Part 2

Part 3

Part 1.1

Part 1.2

Part 1.3

Part 1.4

Part 3.1

Part 3.2

92

The Top-Down design strategy requires a description of the complete system as a

starting point, which may then be decomposed into subsystems. This process is

repeated until a desired level of detail is achieved. This level of detail is set such that

implementation of the lowest level component is easily understood. [141] The recursive

nature of this strategy is referred to as “stepwise refinement.” [144] This process is

illustrated in Figure 6-1. The advantages of the Top-Down approach are that it allows

for more control over inputs and outputs to components of the project. [142] The

drawbacks are that it does not readily lend itself to early testing, as some necessary

components may not be available. [142]

The Bottom-Up strategy, by contrast, does not require a complete description of the

system before implementation can take place. [142] Instead, basic components are

created which can be assembled to allow higher levels of abstraction (cf. Subsection

3.3.1.1.) [144] These components can be assembled in any order to create the complete

system. The strength of the Bottom-Up approach is that it is easier to test early and it

encourages the development of reusable components. [142] A major disadvantage is

that it can require an intuition on the part of the designer to identify which components

will be needed. [144]

In this project, the Top-Down strategy was emphasised, as the overarching design of the

project was defined from an early phase as detailed in Section 7.2. This allowed it to be

decomposed into subtasks, each of which could be developed separately. In addition,

much of the software for this project was to be written from scratch, which suggests a

Top-Down approach as per Jalote, 2005. [144]

However, the design of this project incorporates some Bottom-Up elements. The use of

existing libraries and data structures defines some low-level components. For example,

the project used the SDSS catalogue, which is stored in FITS files. This necessitated

the use of the FITSIO library, as discussed in Subsection 3.3.2.2. The requirement of

these low-level components can be considered elements of Bottom-Up design. [144]

Jalote (2005) also suggests that later iterations in an incremental development process,

as discussed in Subsection 6.2.1 can be considered characteristic of a partially Bottom-

Up type approach, as existing components must be used to complete the new design.

[144]

93

Figure 6-2: Illustration of Bottom-Up design concept. A number of components are created which

are assembled into more abstract components and eventually used to form the overall program.

This diagram also highlights one potential issue with Bottom-Up design. Components (e.g. parts g

& i in this diagram) may be designed and developed but are unused in the final design. [144]

This Thesis generally describes the design of the project from the Top-Down

perspective. Bottom-Up design considerations are usually treated as constraints to this

design and are described as such where appropriate. The overall design of the project,

as explained in detail in Section 7.2, reflects this approach.

6.1.2. Design Philosophy

As discussed in Section 4.3, a key design goal of this project was to maximise the

flexibility of the software developed in the course of the project. Flexible design in this

case would allow for the use of the software under various operational or observational

conditions. For example, the FoV size discussed in Subsection 5.2.1 is variable from

observatory to observatory. This required that the program be designed to allow as

many of the criteria used in the analysis to be input by the user as parameters. These

parameters could be further subdivided into command line arguments (for short

parameters) or parameter files (for large sets of parametric data.) The parameterisation

system is described in Subsection 7.2.3.

Overall

Part B

Part A

Part B

Part A

Part a

Part e

Part f

Part c

Part b

Part d

Part a

Part b

Part c

Part d

Part e

Part f

Part g

Part h

Part i

Part h

Part h

Part a

Part e

Part f

Part c

Part b

Part d

94

Additional flexibility beyond the scope of parameterisation is possible through

extensible design. Extensible design exists where a system can have new capability

added without little or no effect on the operation of the rest of the system. [145]

Extensibility depends strongly on a clear overarching design, which allows for small,

incremental additions to be made to the program by changing individual components.

[146] A number of possible extensions to this project are considered in Subsection 14.3.

Allowance for these possibilities is built in to the design, primarily through Modular

Design and Data Layering, discussed below. [145]

Modular design means that software and data components can be modified or replaced

individually without necessarily requiring that other components be extensively

modified. [147] Modular components additionally lend themselves to being reused at

different stages of the project when a similar function is needed for a different purpose.

[144] The components of a modular design require a clear overall framework in which

each is connected with other modules. These connections should be as simple as is

practical, to minimise the coupling between modules. [148]

As an example, the scoring mechanism, for which there were several options, as

discussed in Section 5.3, is implemented with a modular function within the program

called scoring_mechanism as discussed in Subsection 7.2.2.1.1. The input to this

function is a structure containing the magnitudes for the star and target, and the output

is the rating for that star. So long as these inputs and outputs are maintained, this

module can be replaced with another which implements a different scoring system.

Related to the framework joining modules together is data structure. Hamlet and

Maybee, 2001 explain that data structures may be left vague at early stages of a Top-

Down design, only being detailed when a module requires them, or may be pinned

down at the start. [147] As this project required the use of FITS files from SDSS, much

of the structure of source data, including the file storage structure defined in Subsection

8.2.5.1, was known from the outset. This Bottom-Up element impacted the design of

the data structure used in the project. Some elements of the data structure used would

be inherently dependent upon the data structure of SDSS. To provide for extensibility

to other catalogues, it was necessary to create layers of data abstraction between source

data and the data used in the data processing pipeline.

95

The primary separation of data layers in the project was created by means of an

Application Programming Interface (API), as defined in Subsection 7.2.1. The source

data from SDSS was extracted into a local format that can be used by the pipeline

without being dependent upon the data structure of SDSS. Additionally, it is possible,

as proposed in Subsection 14.1.5, to extract data from other catalogues to this local

format such that the pipeline can be used with minimal changes. Both of these data

formats are discussed in Subsection 8.3.1.

Since both the internal and directory structure of the SDSS Files was well defined at the

outset of the project, it was decided to develop a rigorous layout for much of the

remaining directory structures (shown in Section 8.2) and the various file types to be

used (shown in Section 8.3) at an early phase of the project.

6.2. Design Approach

The design process used in this project emphasised a Top-Down approach as discussed

in Subsection 6.1.1. Within that strategy, the design process primarily followed a

breadth-first approach as illustrated in Figure 6-3, where all components at a given level

of abstraction are designed before any components of the next level down. [149]

Figure 6-3: Top-Down design in breadth-first and depth-first modes. Breadth-first solutions follow

the path indicated by the letters in the alphabetical order (I excluded for clarity.) Depth-first

strategies follow the decimal pattern (e.g. 1.1 comes ahead of 1.1.1, which comes ahead of 1.2.) [149]

A
1

B
1.1

C
1.2

D

1.1.1
E

1.1.2

J

1.1.1.1
K

1.1.1.2

F

1.2.1
G

1.2.2
H

1.2.3

96

Within this framework, each component of the project was designed and developed by

means of a cyclical and evolutionary design process which is described in detail in

Subsection 6.2.1. Cyclical design refers to the notion that design and development are

interwoven processes, whereby the project is first designed, then developed, then tested,

and the results of that test feed back into the design. [150] Evolutionary design refers to

the concept whereby software can be modified in small increments to add additional

features without impairing existing functionality. [148] An example of a component of

this project which was developed using the evolutionary process is the Parameterisation

software, shown in Subsection 7.2.3. Each of the three elements of that software was

developed as an incremental variation on the previous ones.

These two elements of the design and development process required a robust set of

design techniques which were used to record the software design as it evolved in

response to test results and evolving design requirements as described in Subsection

6.2.2. The most critical of these tools were a software design document template used

throughout the development process and a version control mechanism which allowed

for rollback when needed.

6.2.1. Design Process

The design and development cycle used in this project was based upon the Iterative and

Incremental development method [150], adapted to the particular needs of this project.

Crucial to the work cycle of this project was the repetition of this cycle over multiple

iterations and at multiple levels. The development steps used in this project were

Design, Develop, Test and Analysis as shown in Figure 6-4. [144]

• Design refers to the process of creating a detailed description of the design

object (in this case, usually software or data structures) [151]

• Development, in the context of this cycle, incorporates two major elements: the

application of the design and development process to the next level down in the

design, and the implementation and coding of the design at the lowest level.

[150]

97

• Testing refers to the process by which the design object would be used in a

simulation of its designed purpose, the results of which could be analysed to

determine if it was working correctly. [144]

• Analysis of the test results allows the developer to determine whether the design

object meets its requirements. [144] The various levels and forms of testing

used in this project are discussed in detail in Subsection 9.1.2.

Figure 6-4: Design and Development Cycle

Starting from the highest levels, the initial designs took the form of formal software

design documents as shown in Subsection 6.2.2.1. These documents were created in a

Top-Down method where each subsequent level showed the detail of operation of the

higher level.

On a practical level, the design documents were used as an internal reporting tool within

the SCG. The formal design documents would be iterated down to functional level,

below which an informal design would be sketched by the developer. The developer

would then develop and code this design and test it in a functional test as described in

Subsection 9.1.2. Typically, there would be refinements to this design and this process

would cycle between design, development and testing on a very short timescale.

At the end of this process, when the functional level design was ready for release, the

accumulated design changes would be incorporated into the higher level design

document. The developer would then repeat the process at the next step in the higher

level design.

Design

Initial

design

Develop

Test

Analysis

Release

Version

98

6.2.2. Design Techniques

The design of this project mandated the development of a set of consistent design

techniques to be used within the SCG for recording the design at each stage of

development and for clarity in reporting.

An internal design document style was developed to meet the specific goals of this

project. This design style included defining specific terms as they are used in this

project, and a set of colour coded design symbols derived from international standard

symbols [102] to ensure internal consistency in terminology. This set of symbols is

shown in Appendix B.

The cyclical design and development process together with the evolutionary design of

the project mandated rigorous version control. This was implemented on all design

documents and code as described in Subsection 6.2.2.2.

6.2.2.1 Design Documents

During the development of the project, design documents were developed using the

design terms and philosophy outlined above. Each design document consisted of two to

four pages describing in brief the component of the project that it was intended for. In

keeping with the Top-Down design strategy, several layers of design documents would

exist for the components of the project, as each subsequent layer explored a deeper layer

of the project in finer detail.

In practice, the layers of the design were not always consistent: in keeping with the

evolutionary design approach, it was possible that the design of a module would

become too complex to be clearly expressed in a single document. This would trigger

the creation of a new layer of the design, with the lower levels being abstracted to

individual documents, while the higher-level design was simplified.

Each design document followed a template similar to the one shown in Figure 6-5.

Each document began with a header which included the document type, the name of the

document, its version number and a date on which it was written. It then listed any

inputs to and outputs from the program, function or file that the document referred to.

99

A brief, one paragraph description of the project component would then be given.

Finally, a step-by-step description of the program or file was listed in bullet point form.

The level of the design module changed what these bullet points would describe: e.g.

for the highest order documents, the instructions were phrased in terms of the programs

executed, while for lowest level documents the bullet points were in pseudo-code.

For data design documents, the data components were listed in the order they appeared

in the file or array. The data type and names of each piece of the data are listed in

courier format. Where arrays of the same type of data exist, they were listed in an

indented format, usually with a number before them stating the number of elements in

that array.

Software design document:

Pipeline step 1: filter for stars within reach of target

Version 0.2 (changes from version 0.1 in italics)

2nd May 2008
Inputs: internal.fit file
 User Input Parameters
Output: internal_p1.fit file

This program filters a FITS format file for usable data points. It

accesses the file, compares it with a user-defined target and

filters the list to produce a new file for use at later steps.

Step one: read internal catalogue into memory

• Open FITS file internal_fits
• Dynamically allocate memory to hold this data (array

of structures? FITSIO may provide simpler but less
general solutions) internal_array_p1

• Read catalogue entries into allocated memory
Step two: compare with target

• Pass in the target object’s RA and DEC and a limiting

magnitude

• Make a comparison with elements of
internal_array_p1_1 using appropriate mathematical
methods (using complex trigonometric functions)

• Pass elements that meet the conditions into a

temporary array, and from there to a new array

internal_array_p1_2
Step three: save the filtered list

• Create a new FITS file internal_fits_p1 using the
same structure as internal_fits

• Write the elements of internal_array_p1_2 to the
new file

Alternative methods

I’ve been looking at some of the other data containers used in C++. Some of these may
be more suitable than Arrays of structures for the memory use here. Will need more
consideration about these options before a final choice is made, but will stick to arrays
of structures for version 0.2

Figure 6-5: Software Design Document Example: an early version of the filtering process by which

candidate reference stars are identified. The current version of this design forms the basis of

Subsection 7.2.2.1.1. Note the informal notes in red text which indicate design decisions which were

outstanding at this point in the development process.

The final element of a design document was the flowchart. The design document used

the symbols described above to give a visual representation of the flow of data or the

progress of the program.

internal_fits.fit

filter_main

read_fits

gets number of Number

for loop

gets the details array of

filter

for loop

ifmagnitu
de bright

if
paration

Gets the details output

write

for loop

Writes each

filtered_file.

counts the Number of

100

The design of this project, based on these software design documents, is shown in

Section 7.2. The document structure of Sections and Subsections are used there to show

the hierarchy of the design of the project in the Top-Down, depth-first manner

illustrated by Figure 6-3.

6.2.2.2 Version Control

The interleaving nature of design and development described in Subsection 6.2.1 made

version control essential, both for the designs that guide the development and the

software developed. A simple but robust implementation of version control was used in

this project.

All files would be headed with an appropriate comment (marked in code where

appropriate) giving their version number (as shown in the software design document,

shown in Figure 6-5.) Each file would also incorporate its version number into the file

name (for example filter_0_2.doc is the file shown in Figure 6-5.)

At each stage of the project’s development, refinements were made and the design

evolved with the needs of the project. In order to allow changes to be tracked easily, the

project’s design documents were themselves designed with a simple method for

showing where a change had been made. Changed components were shown with italic

text in software design documents. Changes in code were marked with appropriate

comments.

The first number in the version number was only changed for major overhauls of the

file, while version subheadings were changed regularly as minor changes were made.

6.3. Summary

The design of this project emphasised a Top-Down strategy. This means that an

overarching design was completed first, with components developed later. These

components were themselves designed before their subcomponents in a process of

stepwise refinement. Bottom-Up elements entered the design strategy in the form of

libraries which were needed and language or environmental limitations which had to be

met. These Bottom-Up elements are treated as constraints to the design.

101

It is intended that the design of this project be as flexible as possible while maintaining

functionality. As a result the following elements of design philosophy were adhered to.

• Flexibility at a user level was implemented by parameterisation where possible,

in the form of command line arguments or parameter list files which the user

could input.

• Extensibility was built into the code such that programmer-level modifications

to specific elements of the project were possible without a radical redesign being

needed.

• Modular design combined with a clear data-flow framework to which modules

could be attached permitted components to be swapped out to allow additional

functionality or reused in other stages of the project.

• Data Layering provided a layer of abstraction between source data and internal

data that allowed for changes in source data without changes to internal

software.

Where possible, the design approach used in this project followed a breadth-first model,

where a full description of all elements of a layer of abstraction would be developed

before the next layer of the Top-Down structure could be designed. At each level, a

component would be designed using the cycle of design → develop → test → analyse

→ design. Feedback from the analysis could be combined with evolutionary changes in

requirements to guide the next version of the design.

These designs were recorded in a suite of formal design documents. These documents

were structured to adhere to a template as illustrated by Figure 6-5. Both design

documents and code were subject to rigorous version control to ensure changes could be

clearly tracked and to permit rollback where needed.

The design of software shown in Chapter 7 and the data structures shown in Chapter 8

is derived from these documents, and follow the principles of design outlined in this

Chapter.

102

7. Project Design

This Chapter presents the final software and data flow design of the project as it was

implemented in the course of this project. The design shown here is the end result of

the evolutionary and iterative design and development process described in Subsection

6.2.1. The discussion of this design is split into two main Sections: the Design

Requirements & Constraints and the Overall Software Design.

Section 7.1 is a summary of the goals, constraints and requirements of the project as

discussed in Chapters 2-6. As discussed in Subsection 6.1.1, while these constraints can

be considered to impose an element of Bottom-Up flavour upon the design of this

project, the overall design of the project emphasised a Top-Down software design

strategy in a breadth-first mode as discussed in Subsection 6.2.1. [144]

The resulting design of the project is laid out in detail in Section 7.2 in a Top-Down,

depth-first pattern as defined in Figure 6-3. The depth first approach eases

comprehension of the design, as each high level Subsection (e.g. 7.2.1) refers to a

module and the lower level Subsections (e.g. 7.2.1.1 and 7.2.1.2) refer to components of

that module.

The data management design used in this project, and which provides further context

for the overall design presented here, is explained in detail in Chapter 8.

7.1. Design Requirements & Constraints

The design constraints of this project constitute an element of Bottom-Up design in this

project as discussed in Subsection 6.1.1. [144] The details of the design requirements

are discussed in length in Chapters 2-6, and are summarised here to provide context for

the design of the project as implemented later in this Chapter. This perspective is

discussed here under two subheadings: Astronomical Specification and Computational

Limitations, and summarised under Consequent Software Design.

7.1.1. Astronomical Specifications

The Astronomical goal of this project, as detailed in Section 4.1, is to create a catalogue

of stars suitable for use in the search for extrasolar planets by the transit method using

103

differential photometry, together with the ideal pointing for each star to maximise its

utility for this technique.

The requirements to achieve this goal can be summarised under the following four

headings:

• A source of suitable astronomical data including star positions and magnitudes

• A method to generate pointings for the observation of those stars for a given

FoV

• A mechanism by which these pointings can be compared with one another

• A system for recording and accessing those pointings

The source data used for this project is the SDSS Catalogue as discussed in Section 2.3.

The SDSS Catalogue is available through the CAS and DAS systems as discussed in

Subsection 3.3.2.1 [111]. The DAS access method was chosen, which provides the

SDSS data in the form of a collection of FITS data table files [111]. FITS file access

requires the use of the FITSIO library. [129] The software solution must therefore be

developed in a language which has a robust version of this library available to it as

discussed in Subsection 3.3.2.2.

The method developed to generate pointings is the “Locus Algorithm,” discussed in

detail in Chapter 5. Each iteration of this algorithm requires access to the data for the

region of sky surrounding the target star as shown in Subsection 5.2.1. The algorithm

was iterated many times to create the Exoplanet catalogue as discussed in Subsection

11.4, using the entire SDSS catalogue as an input. Accessing files or network resources

can be a bottleneck in this process, so a design goal was set to minimise the number of

these operations.

In order to identify the optimum pointing for a given target, and to allow the pointings

for different targets to be compared with one another, a scoring system was developed

as shown in Section 5.3. As there are several options for scoring system, this

component was designed as an interchangeable module within the software solution.

It was decided to use FITS for storage of the output. FITS has long been the standard

file type among the astronomical community and is internationally used to store both

104

data tables and images. [129] Furthermore, the use of FITS for both input and output of

data meant that this did not place any additional design constraints (such as a

requirement for additional I/O libraries) on the project.

Although FITS is the de facto standard for astronomical data transfer, its origins in the

late 1970s [152] impose limitations on its adaptability to more advanced challenges,

such as the limited character set (US-ASCII) and inadequate support for large,

distributed datasets in a robust, and transparent manner. [153]

The Hierarchical Data Format, Version 5 (HDF5) was adopted by the Low-Frequency

Array for radio astronomy (LOFAR) in 2011, [153] and authors such at Price et al

(2015) [154] and Thomas et al (2015) [153] suggest it would be a suitable replacement

for FITS in the medium-to-long term. The advantages of HDF5 include much faster I/O

and better compression of the data. [155]

In the short term, however, Price et al (2015) [155] highlight a lack of widespread

support for HDF5 in the field, with particular emphasis on the lack of data reduction

and image viewing packages. This lack of adoption in existing applications mandates

that this project must continue to use the existing standard (i.e. FITS) to provide for

wider accessibility, though future implementations such as those discussed in Chapter

14 may make use of HDF5 or similar technologies when widespread support is

available.

7.1.2. Computational Limitations

There are two major computing components of the project that place limitations on the

design. The input data for this project, as discussed in Subsections 3.3.2.1 and 7.1.1

above is the SDSS Catalogue, and it was decided that the results of this project should

be output in the FITS file format. The constraints imposed by this choice of data,

including issues that must be resolved by the software solution are discussed in

Subsection 7.1.2.1.

The specific hardware implementation available to this project was Grid Ireland. As

discussed in Subsection 7.1.2.2, that hardware solution imposed some constraints on the

design of the project, and required specific elements of the software solution to be

designed to accommodate grid computing.

105

7.1.2.1 Constraints Due to Input & Output Data

The input data for this project is the SDSS Catalogue of Calibrated Objects (usually

referred to in this project as the “SDSS Catalogue” for brevity.) The entire catalogue

was downloaded from the SDSS DAS using the wget utility in accordance with SDSS

instructions. [156] The catalogue is stored in FITS data table files, which must be

accessed using the FITSIO library. As discussed in Subsection 3.3.2.2, the language

with the best access to that library during the development phase of this project was C,

and it is used throughout this project.

The SDSS Calibrated Objects files (tsObj files) are defined to contain 146 columns

[121], and have a measured mean of 847 rows, each consisting of a single observation

of an object by an SDSS camera. Many of these objects are non-stellar sources, and

many more are not the “primary” observation of a particular source as defined by the

SDSS Image Processing Flags. [157] In addition, of the 146 columns, only three are

needed for the Locus Algorithm as defined in Section 5.2: the two positional

parameters, RA and Dec, and the model magnitude (itself a vector of five values: one

each for u, g, r, i, and z [158]).

The input SDSS data sets are too large for frequent data transfer using the Grid

hardware implementation. A necessary first step, therefore, is to reduce the data volume

at each processing step. This has the additional benefit of providing for extensibility to

other catalogues in future projects. To achieve this, an API, discussed in Subsection

7.2.1, has been developed to create a Local Catalogue consisting only of entries for a

“clean sample of stars” (as defined by SDSS [157]) and with only the three necessary

columns retained.

The files in this Local Catalogue are then used as the input for the data analysis pipeline

defined in Subsection 7.2.2. This pipeline, iterated over each of the ~86,000,000 stars

in the Local Catalogue was used to produce the output data for the Exoplanet Catalogue

as discussed in Subsection 11.4.

The API and the Pipeline are programs written in C. In order to enable the programs to

be developed in one environment and run in another, portability has been built into the

design of the software. Input parameters to the program such as target lists and the

106

paths to catalogue files to be processed are stored in parameter files as defined in

Subsection 8.3.3. These parameter files are generated by parameterisation software,

described in Subsection 7.2.3. This software was developed in a modular manner to

allow it to be modified to access the different file systems used in the project. Section

8.1 describes how the interactions between these file systems operats.

As shown in Subsection 5.2.1, for each target, it is necessary to identify the SDSS fields

which can be included in a FoV with the given target as shown in Figure 5-4. Each of

these fields, as discussed in Subsection 3.3.2.1, can be identified by the combination of

four field descriptors: run, rerun, camcol and field. Each field then corresponds

to a particular file in the SDSS Catalogue, whose filename and path are constructed

using those four elements.

SQL queries to the SDSS CAS were developed by Dr. Eugene Hickey of the SCG at

ITTD, as discussed in Subsection 7.2.5, and are used to identify these sets of field

descriptors. [159] These queries return CSV files containing the descriptors as shown

in Subsection 8.3.5 which are used as input to the parameterisation software.

7.1.2.2 Constraints Associated with the Hardware Implementation

As discussed in Section 3.1, the time required to process the SDSS Catalogue on a

single computer was initially assessed at between three and eleven years. A HPC

solution was therefore needed to permit the execution of the software solution as

discussed in Section 3.2. The particular paradigm of HPC chosen was grid computing,

and the grid which was used was Grid Ireland, as discussed in Subsection 3.2.1.

This choice imposes two constraints on the design of the project: Job Submission and

Data Access. Firstly, using an EGI grid requires that the overall computing tasks (API

and Pipeline) be divided into a number of grid job. Each grid job is specified by a “job

file” written in a scripting language called the Job Description Language (JDL) as

discussed in Subsection 3.3.2.3. Each JDL file, as described in Subsection 8.3.6, is a

structured text file which specifies a single executable file and optionally specifies a

number of parameters including node timeout limits, a set of data files to be uploaded to

the node and a string which can be passed as a command line argument to that

executable file [7]

107

These jobs are then assigned to worker nodes (WN) by the Job Submission System

(JSS) as shown in Subsection 3.2.1. [7] When a job is submitted to the grid, the

executable file is uploaded from gridUI to be run on the WN designated for the job, and

the parameters and arguments are passed to it. Variations in these arguments, contained

within the JDL file, are the means by which the overall tasks are divided into jobs.

Consequently, a different JDL file is required for each distinct job. [7] To complete the

overall tasks, therefore, necessitates the creation of many such file. This, in turn,

requires an automated process that creates unique JDL files from a template based upon

input data. The creation and submission of these jobs, and the process by which they are

tracked and monitored, is the basis of the grid management software suite, as discussed

in Subsection 7.2.4.

A second constraint upon the design is imposed by the mechanism by which WNs

actually access data. In particular, WNs do not have direct access to data stored in the

LFC, but instead must access the LFC using gLite commands as discussed in

Subsection 3.3.2.3. [7] However, because the C programs which are required to access

FITS files do not allow for easy incorporation of these gLite commands, it is

necessary to use BASH shell scripts as discussed in Subsection 3.3.2.4 as a wrapper.

These BASH scripts call gLite commands to copy the required data and programs to

the WN, execute those programs, and copy the output back to the LFC for storage as

illustrated by Figure 3-3. These shell scripts are used as the executables in grid jobs.

7.1.3. Consequent Software Design

As suggested by Jalote, and as discussed in Subsection 6.1.1, constraints on a project

can lend a Bottom-Up flavour to the design of the project. The constraints specified in

Subsections 7.1.1 and 7.1.2 make certain elements of software mandatory in this

project, and have a consequent influence on the design of other components of the

software. The influence of this on the overall design is shown in Figure 7-1 and

described below.

108

Figure 7-1: Bottom-Up Perspective on the Software Design of this Project

The major data processing operations, both in the API and Pipeline phases of the

project, have to be carried out by a series of C programs, to enable access to the

CFITSIO Library. These programs are executed on worker nodes within the grid

environment. The input data for these programs is therefore required to be copied from

the LFC to the WN, mandating the use of gLite commands. These commands are

also used to copy the output from the programs to the LFC for storage.

Bash shell scripts are used as wrappers to combine the C programs and gLite

commands into an executable suitable for use in a grid job. These jobs are specified by

JDL files, which are, themselves, automatically generated, submitted and managed by

grid management scripts, also written in Bash.

The input to the management software comes from direct user input and the outputs

from the CAS. The user input specifies parameters including both job parameters (such

as job size, maximum job number and so on) and astronomical parameters (such as

telescope FoV, SDSS colour, and limiting colour and magnitude variations.)

The data from the SDSS CAS is generated by SQL scripts, which identify the

corresponding SDSS DAS files needed for a set of targets. The contents of the SDSS

SDSS CAS

Catalogue

Bash Management Scripts

SQL Queries

JDL Grid Jobs

Bash Execution Scripts

C Programs

LFC
LFC

LFC

gLite commands

Node

Node

Node

wget

User Input SDSS DAS

Data

109

Catalogue are downloaded to the LFC using the wget utility through the SDSS DAS.

This makes them accessible to grid jobs using gLite commands.

As is the nature of Bottom-Up design components, this set of constraints sets

requirements that the software solution must include, but does not specify the exact

manner in which they are to be implemented. Section 7.2 addresses the specific design

of the project from a Top-Down perspective with reference, where appropriate, to these

Bottom-Up constraints.

7.2. Overall Software Design

This Section uses the Top-Down, depth-first manner as defined in Subsection 6.1.1 to

describe the design of the software solution of the project as it was implemented. The

overall design is shown in Figure 7-2. It shows the high-level components which make

up the overall design, each of which are discussed briefly below, and further

decomposed in their own Subsections. The software developed for this project is

intended for extensible use, potentially accepting source data from multiple catalogues

as discussed in depth in Subsection 14.1.5.

The Application Programming Interface (API), discussed in Subsection 7.2.1 is

designed to take the original source data (in this case, SDSS data), examine it to locate

the required data for the main software processes, and extract only that data which is

needed into a “tidy data” format as described by Wickham, 2014. [160] This format is

known as the Local Catalogue, described in detail in Section 8.3.1.2, and is structured in

a manner that can be used by the main data pipeline.

It is planned that the project will be extended to take in input data from another source,

as proposed in Subsection 14.1.5. This will require that a corresponding API will be

generated to suit, using existing SDSS API as a template.

110

Figure 7-2: Top-Down Software Design: User Parameters define SQL queries to the CAS and are

used by the Parameterisation system to define API jobs which process the SDSS catalogue to

generate the Local Catalogue. The Local Catalogue is then processed with further user arguments

in the Main Data Pipeline to produce the Output Catalogues. Each component is discussed in its

respective subsection. Not shown are Grid Management (7.2.4) and Error Checking (7.2.6) systems

which are integrated within other software elements.

The main data pipeline is a flexible process that uses parameter files and command line

arguments to identify input data from the local catalogue and specify the particular

analyses to be performed. By modifying the input parameters, the software can be run in

two different modes (Catalogue Traversal and Target List), as discussed in Section

7.2.2. This project incorporates two primary analyses which used these modes: an

analysis of quasars contained in SDSS and a full analysis of all stars in SDSS for their

suitability for exoplanet search by the transit method. (See Subsections 4.1.2.1 &

4.1.2.2)

For each catalogue

Local Catalogue Local Index

SDSS

catalogue

Source

SDSS API
See 7.2.1

CAS
output

Output catalogue

Source

catalogue

Other API

Catalogue
Index

Main Data Pipeline
See 7.2.2

Parameters

Parameterisation
See 7.2.3

SQL Queries
See 7.2.5

Other Index Query

Arguments

111

The Parameterisation program, discussed in Subsection 7.2.3, generates Parameter files

for both API and Pipeline. Parameter files contain lists of the paths to input files needed

for the API, and both files and targets for the Pipeline as discussed in Subsection 8.3.3.

This program allows for flexible use of the two main components.

Grid computing allows each of these components (API, Pipeline and Parameterisation)

to be run many times in parallel to deal with the volume of data that has to be processed.

Each has their own suite of grid management software to generate, submit and manage

grid jobs. As the various sets of grid management software have similar requirements,

and thus are designed in a similar way, they are discussed together in Subsection 7.2.4.

Specific to SDSS is the requirement to identify fields by means of SQL queries to the

CAS. These queries, described in Subsection 7.2.5, accept user parameters and generate

lists of targets and field identifiers used as input to the parameterisation software.

These queries are used in relation to both the Source and Local Catalogues because they

use the same directory structure.

Within each of the C programs, a robust system of Error Checking is used to ensure

reliable operation, and the identification of both fatal errors and warnings within the

program. This system was developed as a single portable module and is used

universally throughout the project. As such it is discussed separately in Subsection

7.2.6. Note that while error checking is not explicitly referenced in the definition of the

programs below for clarity, all function calls and any other operations which could

potentially raise an exception are subject to error checking.

7.2.1. SDSS Data Access API

The SDSS Data Access API is designed to extract data from the SDSS catalogue in such

a way that the files used in the pipeline are minimised in size. Each instance of the API

is executed as a grid job, submitted from gridUI by the grid management software in a

JDL file, which calls a bash shell script called call_api.

call_api operates on a worker node, and takes two parameter files as inputs from

gridUI. One is in PRT text format and one is in PRM binary format which are generated

as part of the parameterisation process. The PRT file (see Subsection 8.3.3.3) specifies

112

the full paths to a set of input SDSS fits files which are to be processed by the API to

create the corresponding local catalogue files and is used by the shell script. A for loop

iterates through this file, and uses the lcg-cp command to copy the listed files to the

WN.

Two programs, Diagnose and Extract, are then copied from the LFC to the WN. These

programs use the PRM parameter file (see Subsection 8.3.3.1) as an input to access the

fits files. The std.out from diagnose and extract are discarded to

/dev/null, as the GMS has limited capacity for storing output. [134] call_API

can operate in verbose mode for debugging, whereby this output is not discarded.

Figure 7-3: Data Access API

The Diagnose program (defined in Subsection 7.2.1.1) accesses and analyses the data

contained within the input files, and identifies the columns in the data table. The

column names together with information regarding their structure are then stored in a

CTI file.

Next, the Extract program (described in Subsection 7.2.1.2) carries out the substantive

work of the API. Taking the columns identified by Diagnose, it identifies the columns

containing only the relevant data: Right Ascension, Declination and Magnitude (itself

an array of 5 double values.) It then applies a reduced version of the SDSS clean

sample of stars algorithm to exclude entries which are not primary entries for stars. The

LFC

LFC

LFC Local catalogue

Input catalogue

gridUI

User
input

Grid
management &

parameterisation

JDL File

PRT File

PRM File

Worker Node

call api

diagnose

extract

For each input file

lcg-cp commands

For each output file

lcg-cr commands

Cti files

113

data for the remaining entries in those three relevant columns for this project are then

copied to a file which forms part of the local catalogue.

Finally, call_api then uses the lcg-cr command to copy all of the local catalogue

files to the LFC for storage, and registers them to the catalogue.

7.2.1.1 Diagnose

 Figure 7-4: Diagnose

The Diagnose program is designed to examine fits table files, specifically those supplied

by SDSS, and find out what data is in each column of the fits table. This information is

then stored in CTI files (See Section 8.3.2).

The Diagnose program takes as an argument the path to a PRM file (see Subsection

8.3.3.1) and uses the standard suite of error checking functions, defined in Subsection

7.2.6, to ensure the input is correct. The PRM file includes a count of and lists the input

diagnose

For each fits file

Input

SDSS

FITS Files

Get number of Rows

CTI

file

PRM

get_details

For each column

Get column name

Get column typecode

Get column repeat

Get column width

Copy loop index

Array of

Column

information

Create corresponding CTI File

Get number of Columns

Write array to file

error checking functions

114

SDSS files to be processed by the program. The count is used to control a for loop that

iterates over the list of fits files.

Within that primary loop, it accesses the fits files one at a time and creates a CTI file for

each one with the same name with the extension changed from .fit to .cti. The

program then determines the number of rows and columns in that file. For each

column, it uses the loop index to create a column index, and gets the name of each

column and its data type (typecode, repeat and width), and stores all of this

information in an array. The number of rows, columns and the array of information on

each column are then written into the CTI file.

7.2.1.2 Extract

Extract is designed to process a list of SDSS input fits files, and extract a subset of the

data stored in each of those files to create the Local Catalogue files. This subset is

defined to exclude any entries which do not meet a reduced version of the SDSS clean

sample of point sources criteria [157], and consists only of three columns of data: the

two position co-ordinates, RA and Dec, both stored as double precision floating point

numbers, and the magnitude of the object: a vector of 5 double-precision values, one for

each of the 5 SDSS colour bands (u, g, r, i & z).

Extract takes as an argument the path to a PRM file which contains a count of, and list

of FITS file paths. For each FITS file, the program uses functions to generate the paths

to the corresponding CTI file and the local catalogue fits file to be generated by

modifying the string containing the path by replacing the .fit extension with .cti

and _local.fit respectively.

The newly generated path to the CTI file created by the diagnose program is used to

access that file by the cti_extract function. The data from the CTI file is stored in

an array. The columns in which RA, Dec and Model magnitude are identified and

passed to the fits_extract function.

The fits_extract function loops through each object in the source FITS file and

applies a reduced version of the SDSS Clean Sample of Point Sources filter. This filter

checks if a set of bit-flags contained within the columns status, objc_flags and

115

objc_flags2 are set as shown in Table 7-1 and if the objc_type is star. The

effects of this reduced version are discussed in Subsection 11.2.

 Figure 7-5: Extract

Objects that pass this filter are counted, and written to an array of structures which is

passed to the fits_write function. The _local.fit file path is used to create a

FITS file to store the output, and a FITS data table is created within that file. The

contents of the array are written to this Local Catalogue file and the main loop moved

on to the next file listed in the PRM file.

These files taken together form the Local Catalogue, which uses the same file and

directory structure as the SDSS Catalogue, as discussed in Subsection 8.2.5.1

extract

For each fits file listed in prm

CTI cti_extract

get_info

cti_find

internal_fits_extract

Input FITS
read

for each object in file

write

For each object in array

Open local fits

Local

FITS

PRM

Array

if passes

generate local and cti file name

116

Column Flag Bitposition Required Value

status PRIMARY 13 TRUE

objc_flags BINNED1 28 TRUE

objc_flags PEAKCENTER 5 FALSE

objc_flags NOTCHECKED 19 FALSE

objc_flags2 BADCOUNTSERROR 8 FALSE

objc_flags2 PSFFLUXINTERP 15 FALSE

objc_type STAR n/a 6

Table 7-1: Reduced version of SDSS Clean Sample of Point Sources Filter [157]

7.2.2. Data Pipeline

The Data Pipeline applies the Locus Algorithm as defined in Section 5.2 to a set of

targets to produce output files which form the Output Catalogue(s). It operates in two

modes: Target List and Catalogue Traversal.

Target list mode is used when a set of one or more targets are selected in advance by the

user and are submitted to the pipeline for processing. This mode was used to produce

the Quasar Catalogue as discussed in Subsection 4.1.2.1 and illustrated by Figure 7-6

Catalogue traversal mode uses an existing catalogue or subset of a catalogue to produce

the target list. This target list is then submitted to the pipeline in a similar way to the

Target list mode discussed above. This mode was used to produce the Exoplanet

Catalogue as discussed in Subsection 4.1.2.2 and shown in Figure 7-7

Much of the software is designed to ignore the distinction between these two modes, for

example, by treating a single target as a list of length one. Distinctions between

operational modes are therefore discussed only as needed, as shown in Figure 7-8,

where dashed boxes are used to indicate interchangeable modules.

In Target List mode, a target list consisting of the positions (RA and Dec) of a set of

specific targets (e.g. quasars) is submitted through an SQL script to the CAS together

with FoV size as discussed in Subsection 7.2.5. For each target in the list, the script

identifies which fields are within the size of the FoV of that target as required by

Subsection 5.2.1. The CAS returns a list of field identifiers (run, rerun, camcol

and field as defined in Subsection 3.3.2.1) which can be used to generate file paths

and names in the SDSS directory structure as discussed in Subsection 8.2.5.1. This list

of identifiers is stored, along with the target data, in a CSV file, structured as shown in

Subsection 8.3.5.2, which is saved on gridUI.

117

This CSV file is used, together with user input of observation parameters (FoV Size,

resolution, maximum magnitude difference and maximum colour difference) as input

for the parameterisation software. This software, as discussed in Subsection 7.2.3

creates a set of PPR and PRT parameter files. These files contain observational

parameters, a list of targets and the paths to the files needed for each target. (For details

see Subsection 8.3.3.2)

Figure 7-6: Operation of Pipeline in Target List mode

For each of these parameter files, a grid job is automatically created by the grid

management software, which takes a command line input selecting SDSS band (stored

as colour) and generates JDL files, then submits and monitors the grid jobs. The

colour argument enables the same parameter files to be used for multiple SDSS

bands. Each grid job calls a script named call_pipeline (discussed below) which

uses the parameter files to identify the necessary local catalogue files and generates the

output catalogue based on the listed targets.

In Catalogue Traversal mode, a field list, consisting of the field identifiers for all fields

in the catalogue is submitted to the CAS instead of a target list. The SQL script

identifies, for each target field, the neighbouring fields which have at least one object

within the size of the FoV of any point in the target field. The set of identifiers for the

target field are recorded with those of the neighbouring fields in a CSV file as shown in

Subsection 8.3.5.3. This file is saved to gridUI.

Colour

Worker

Node call pipeline

LFC

 output catalogue

Local catalogue

Target
List

CAS

SQL Script

FoV Observational
Parameters

gridUI

Grid

JDL File

PRT File

PPR File

CSV File

parameterisation

118

The parameterisation process itself constitutes a grid-scale task in this mode. Grid

management software divides the CSV file into smaller parts, which are each used to

generate a JDL file for a grid job. This job runs the parameterisation software, which

uses the fields listed in the CSV file to access the local catalogue file for that field. Data

from the Local Catalogue is used in place of the target list data to generate the PPR and

PRT files. This script then uploads these files to the LFC.

Figure 7-7: Operation of Pipeline in Catalogue Traversal mode

Grid Management software then creates a JDL file for each PPR file on the LFC and

submits these to worker nodes. Each grid job accesses the PPR file on the LFC, instead

of having it uploaded from gridUI as part of the job submission process, but is

otherwise unmodified.

Two versions of the Call Pipeline script execute the pipeline, one in each of the two

modes. The primary distinction between these modes is that when run in Target List

mode, the Parameter files are stored on gridUI, while in Catalogue Traversal mode

those files are stored in the LFC. This means that in the first case, the job submission

process submits the PPR files as part of the grid job, while in the second, they have to

Colour

Worker Node

call pipeline

LFC

Output catalogue

Local catalogue

Field List

CAS

SQL Script

FoV Observational
Parameters

gridUI

Grid
management

JDL File

PRT File

PPR File

CSV File

Worker Node

parameterisation

Grid

JDL File

119

be copied out of the LFC using gLite commands. The two versions are otherwise

identical as shown in Figure 7-8.

For each Local Catalogue file listed in the PRT file, call_pipeline checks to see if

the file is already present on the WN, and if not, copies it from the LFC to the WN.

Note that each file is likely to be used by more than one target in the target list.

Call pipeline then executes the C program locus_algorithm, defined in Subsection

7.2.2.1, with the colour argument provided in the JDL file, redirecting its output to

/dev/null unless operating in verbose mode for debugging purposes. This program

implements the Locus Algorithm and generates an output file.

Figure 7-8: Call pipeline script (dashed boxes represent the modifications dependent on mode)

Finally, the output file is copied and registered to the LFC and any errors are reported to

the Grid Management Software.

7.2.2.1 Locus Algorithm

The Locus Algorithm program implements the Locus Algorithm as specified in Chapter

5. This program takes in a PPR file and an SDSS colour as arguments, and requires

Target List mode

Worker Node

call pipeline

locus_algorithm

For each input file

lcg-cp

lcg-cr command

lcg-cp command

gridUI

PRT File

PPR File LFC

LFC
output catalogue

local catalogue

PRT File

PPR File

JDL
submission

Catalogue Traversal mode

Not already
present

120

access to the Local Catalogue files listed in the PPR file. It analyses this input

(regardless of pipeline mode) and produces output files which are combined to form the

output catalogue

Figure 7-9: Locus Algorithm Program

As shown in Figure 7-9, after checking the arguments are valid, the program first

retrieves the observational parameters from the PPR file and stores them in memory.

For each field listed in the PPR file, a mosaic of stars is generated to aggregate the data

from multiple fields into a single array as required by the algorithm in Subsection 5.2.1.

This array is then quick-sorted in ascending order of RA to allow subsequent functions

to operate. Each star is then assigned a rating of 1 as an initialiser.

locus_algorithm

Local
Catalogue
files

PPR

colour

Observational
parameters

Get parameters

For all mosaics

Make Array

qsort

Mosaic of stars

For all targets Target

Get target

Candidate
Reference
Stars

filter

locus_main

Best Pointing

Populate output

Output Array

Output file

Write output

Argument and error
checking

121

For each target listed in the PPR file corresponding to this mosaic, each of the steps in

the bullet points below is carried out. (Note that in Target List mode, there is one such

target per mosaic, in Catalogue Traversal mode there is a range of numbers of targets.)

• The get_target function stores the RA, Dec and Mag values for the target in

a struct variable

• The filter function (discussed in Subsection 7.2.2.1.1) applies the filters of

the Locus Algorithm to generate an array containing a short list of candidate

reference stars as discussed in Subsection 5.2.2, and then assigns a rating to each

candidate.

• The locus_main function (explained in Subsection 7.2.2.1.2) then applies the

loci and identifies the best pointing for a given target. This pointing and its

score are written to an output array.

Once all targets in all mosaics in the PPR file have been analysed, the output array is

written to the output file and the program closes, reporting any errors using its exit code.

7.2.2.1.1 Filter

The Filter function generates a list of candidate reference stars for a given target. The

Filter function takes as input the following data from the calling function:

• The array of stars created from the mosaic of input files, which have been sorted

in ascending order of RA and initialised with ratings of 1

• Observational parameters (Resolution, FoV, maximum Magnitude difference

and maximum Colour difference)

• Details (RA, Dec and mag) of the target

• SDSS colour number corresponding to the SDSS band (u=0, g=1, r=2, i=3, z=4)

For each star in the mosaic, the following steps are carried out to create an array of

candidate reference stars as defined in Subsection 5.2.2. Note that all calculations

related to RA are corrected for spherical effects as shown in Equation 5-2.

Firstly, the sift function is applied to check whether or not the star could be resolved

and assigned it a rating of 0 if it could not. sift uses a loop to compare the star with

each of the subsequent stars in the mosaic with the following rules

122

• sift terminates when it reaches the end of the mosaic

• sift terminates when the difference between the RA of the star and the

subsequent star it is being compared against is greater than the resolution limit

• If the absolute difference between the Dec of the star and the Dec of the

subsequent star is less than the resolution limit, then:

o If one star is more than 5 magnitudes fainter than the other, then the

fainter star is assigned a rating of 0

o Otherwise both stars are assigned a rating of 0

Figure 7-10: Filter Function

A sequence of nested if statements as listed below are used to test to see if a star in the

mosaic is a viable candidate reference star.

• If a star currently has a rating of 1 (this means it passed the test in sift)

• If the absolute differences in RA and Dec are less than the FoV size

• If the absolute difference in Mag is less than the maximum magnitude difference

The function colour_comparison is called inside this nested set of conditions

which have the following steps:

filter

Colour

Observational
parameters

Mosaic of
stars

For all stars in the mosaic

Target

Candidate
Reference
Stars

Pass on
Resolution?

Colour

Sift

Pass on
Position?

Pass on
Magnitude?

Pass on
Colour?

Scoring

123

• It calculates the absolute difference in colour index between the selected filter

and all the neighbouring bands (e.g. u-g if u is selected, g-r and r-i if r is

selected)

• If the difference in each of these indices is less than the maximum colour

difference, then it passes the colour test, and a colour_match flag is set.

If all of the above tests are passed, the scoring_mechanism function is called

• If the SDSS colour is the first or last band (i.e. u or z), it uses the Triangular

rating formula defined in Equation 5-4.

• For bands with two neighbouring bands (SDSS bands g, i, or r) it uses the

mechanism for combining ratings from all neighbouring bands as defined in

Equation 5-6.

This produces an array of candidate reference stars, each listed with their individual

ratings which is passed to subsequent functions

7.2.2.1.2 Locus Main

The Locus Main function calculates the optimum pointing for a given target. The

complete set of these pointings forms the basis of the output catalogues of the entire

project. The function takes as input the target data, the array of candidate reference

stars near that target, the observational parameters and SDSS colour number. It

produces an entry in an array of targets and pointing. These entries each consist of the

following

124

• Target position (RA, Dec)

• Target Magnitudes (5 bands)

• Pointing position (RA, Dec)

• Score for the pointing

Figure 7-11: Locus Main Function

The Locus main function, as shown in Figure 7-11 has the following key steps

• The locus_main function first creates a placeholder variable

best_pointing, with a value initialised to RA 0, Dec 0, and Score 0.

• The set_boundaries function then generates the loci for each candidate

reference star by calculating the cornerpoint of that locus, and a bit-switch for its

direction in accordance with Equation 5-3. These cornerpoints are stored in an

locus_main

Colour

Observational
parameters

Set boundaries
Candidate
reference
stars For all candidates

Target from

array

Pointings
in Array

Set intercepts

Generate

Best
Intercept

Array of
cornerpoints

For all candidates

For all other candidates

Check Intercepts

For all candidates

Check if in FoV

Current
Intercept

Better than
best?

Calculate cornerpoint

125

array with a one-to-one correspondence with the array of candidate reference

stars

• The set_intercepts function then identifies the points of intersection

between these loci in accordance with Subsection 5.2.4 by using the RA of one

cornerpoint and the Dec of another.

• check_intercepts then checks, for each candidate reference star, if it is

within half the size of the FoV of the intercept. It combines the ratings for each

candidate reference star near that intercept into a score as described in

Subsection 5.3.2. This pointing and score are stored as current_pointing

• Next, current_pointing is compared with best_pointing. If the

score for current_pointing is higher than that for best_pointing,

best_pointing is updated to the value of current_pointing.

Finally, the best pointing for a given target is output into an array which is used to

generate the output file in accordance with Subsection 5.2.5 as shown in Figure 7-9.

The collection of these output files form the output catalogues and the primary result of

the project.

7.2.3. Parameterisation

The Parameterisation software is designed to provide flexible input to the API and

Pipeline programs. Early prototyping on these programs revealed that they would

become heavily dependent upon SDSS file and directory structures without a layer of

data abstraction to allow this information to be passed in by means of a parameter file.

The parameterisation software generates two types of binary parameter file, PRM files

for the API, and PPR files for the Pipeline. These files contain explicit file paths, target

lists and control variables for the API and Pipeline programs. These files are discussed

in Subsection, 8.3.3.

When developing the bash shell scripts used for grid management, it was determined

that these formats can not easily be interpreted by the shell. As a pragmatic solution to

this problem, text files containing the file paths were implemented which are accessed

by the shell scripts, as a supplement to the binary files used by the C programs. These

126

files, though stored with the file extension .txt, are referred to as Parameter Text

(PRT) files in this Thesis to distinguish them from ordinary plain text files.

Figure 7-12: Parameterisation Modes. User input, together with the data contained in the CSV file

from the CAS determines which mode parameterisation employs. Target List and API

parameterisation run on and store their output on gridUI, while Catalogue Parameterisation mode

is a grid job, managed by its own suite of GMS, storing the parameter files generated on the LFC.

The primary component of this system is a program called parameterisation.

This program takes as input a combination of command line arguments and data stored

in CSV files of various structures as described in Subsection 8.3.5. The output of this

program is a number of parameter files, the size and structure of which is determined by

command line arguments which designate which mode of operation the program

employs.

parameterisation is a program that switches modes based upon the command line

arguments with which it is called. It operates in three modes: API, Target List Pipeline

and Catalogue Traversal Pipeline. In all three modes, input consists of user input

arguments and a CSV file from the CAS. Different inputs are used to determine in

which mode Parameterisation operates. Regardless of mode, parameterisation

takes the following common arguments

gridUI

LFC

Local catalogue

PRT File

PPR File

CSV File

WN

call_param

Grid management
software

JDL File

User Input

choose
mode

parameterisation

PRT File

PPR File Target List
Parameterisation

PRT File

PPR File API
Parameterisation

Check
Input

parameterisation

Catalogue
Parameterisation

CSV File

PRM File

127

• A number indicating the size of grid job to generate

• The path in which the output parameter files are to be stored.

• The path to the CSV file containing data to parameterise

• The path that FITS files identified by the parameter files are stored in.

Input for the API mode has no additional arguments and the CSV file, as discussed in

Subsection 8.3.5.1, includes just the four columns used to identify fields: run, rerun,

camcol and field as defined in Subsection 3.3.2.1. When parameterise is

called with these four arguments, it operates in API mode as described in Subsection

7.2.3.1 below. .

Input for both pipeline modes (Target List and Catalogue Traversal) includes

information about the targets to be processed in the pipeline. In Target List mode, this

information is stored in the CSV file. This file includes information on each target and

identifiers for the fields around that target, the details of which are described in

Subsection 8.3.5.2. In addition, it is necessary to include observational parameters

regarding the telescope the output is intended for use with. As a result the following

arguments must be added by the user.

• Field of view size (in degrees)

• Telescope resolution (in degrees)

• Maximum magnitude difference (in magnitudes)

• Maximum colour index difference (in magnitudes)

When parameterise is called with these eight arguments, it operates in Target List

Pipeline mode as discussed in Subsection 7.2.3.2.

In Catalogue Traversal Mode, the Parameterisation software generates parameter files

which list all stars in a given catalogue as targets, together with the fields which are be

needed to create a mosaic for each group of targets.

The CSV file used as input here, as discussed in Subsection 8.3.5.3, includes a list of

target fields, each listed together with the corresponding neighbouring fields needed to

generate a mosaic around them. Both the target field and their neighbours are identified

by their field descriptors as above. Parameterise has to access each of these target

128

fields, to generate a list of targets to be used with the mosaic of field as discussed in the

description of the pipeline software in Subsection 7.2.2 above.

As a result, the scale of the Catalogue traversal mode is much greater than the other two

modes, it has to be operated as a grid task in its own right. Therefore the CSV file

generated as output from the CAS is subdivided by the grid management software into a

number of smaller CSV files. These smaller CSV files are used as input to each of the

parameterise grid jobs in turn.

This grid management software uses Parameterise in API mode to generate PRM files

corresponding to each small CSV file. As in the API, these PRM files give the file

paths to the fits files which are needed for the program. A grid job is generated for each

PRM file. These jobs are then submitted to the grid where a script called

call_param carries out the grid job.

call_param first downloads the parameterise program from the LFC. It then

downloads the local catalogue files specified in the PRT files supplied to the WN.

Next, it runs parameterise in catalogue traversal mode, generating PPR and PRT

files. Lastly, these output files are copied to and registered on the LFC using gLite

commands in call_param.

The call_param includes this PRM parameter file with the arguments to

parameterise. With this set of nine parameters, the program operates in Catalogue

traversal mode as described in Subsection 7.2.3.3.

7.2.3.1 API Parameterisation Software

In API mode, the parameterisation software generates PRM parameter files (defined in

Subsection 8.3.3.1) and corresponding PRT text files. These files are used in the API

and in the parameterisation process for the pipeline in Catalogue traversal mode. Each

API or parameterisation grid job corresponds to one PRM file, and the number of files

listed in the PRM determines job size.

The four arguments for the API mode are discussed in Subsection 7.2.3 above. In this

mode, the number indicating the size of grid job referrs to the number of fields, from

those listed in the CSV file, to include in each of the PRM files produced.

129

Figure 7-13:API Parameterisation

The first thing that the program does is to check its arguments to identify if it is being

used to Parameterise for the API or Pipeline. If the arguments supplied by the user are

unsuitable for either purpose, the program exits with an error code as discussed in

Subsection 7.2.6.

Next, the start_number variable is initialised to 0 and the end_number variable is

initialised to the number of fields per PRM. These variables are used to define the file

names for the output files from parameteriseation.

Parameterise

Do while not at end of csv

create_prm

Check

Arguments

Create PRM & PRT files

While < No of files & not at end of csv

Output file names

Arguments:
No of files,
Path for prm,
Path for csv,
Path for fits

CSV
file

Read CSV file

Generate path

End #

Add # of files

Start

Previous end number
becomes new start

Exit

Pipeline

PRM

PRT

Write number of files to PRM

If end

correct number of files in PRM

130

A do-while loop is then used to iterate over the CSV file from start to finish. When the

end of the CSV file is reached, the program terminates.

Each iteration of the loop calls the create_prm function, which creates a new PRM

and PRT file. The path into which the parameter files are written is an argument given

by the user, but the individual filenames are determined at runtime. Each filename is

the path given as the PRM path argument, appended (with underscore separators) with

start_number and end_number, and the extension .prm or .txt as appropriate.

For example, if parameterisation is run with a number argument of 50, and a

PRM path test/21-3-2012/parameter, the third PRM file produced by the

parameterise program would be test/21-3-2012/parameter_100_150.prm

Once the file is created, the number of fields per file is written to the PRM file as an

integer. (Note that data in PRM files is written as binary data rather than text.)

Next, the CSV file is accessed in a while loop which iterates as long as its index is less

than the number of fields, and the end of the CSV file has not been reached.

As described in Subsection 7.2.3 above, this CSV file has four columns each containing

an integer number: run, rerun, camcol and field. These four numbers together

identify a field in the SDSS catalogue. These numbers are used to generate both the file

name and the directory path of each file in accordance with the SDSS data structure. A

detailed description of how these paths are generated is given in Subsection 8.2.5.1.

These paths are then written to the PRM and PRT files sequentially.

 If the CSV file comes to an end before this loop reaches the number of fields, the

program rewinds and edits the PRM file by writing the current loop index in place of

the maximum number of fields. The program then closes all open files and terminates.

If this loop reaches the input number of fields before reaching the end of the CSV file,

the parameter files are closed. The outer loop finishes by incrementing the Start Number

and End number by the number of fields, and then iterates again.

131

7.2.3.2 Target List Pipeline Parameterisation Software

The Parameterisation software in both pipeline modes generates a series of PPR

parameter files and their corresponding PRT text files, each of which describes a single

grid job to the pipeline software. PPR Files, as defined in Subsection 8.3.3.2, containes

• observational parameters for a particular output catalogue

• a series of data blocks, each of which lists

o The number of and the paths to a set of Local Catalogue files needed to

create a mosaic suitable for use in the Locus Algorithm

o The number of and details of the targets for which that mosaic is to be

used

This Subsection describes how the parameterisation software operates in target list

mode, however, only the target input module as highlighted in Figure 7-14 changes

between this mode and catalogue traversal mode. As a result, most of this Subsection

applies to both modes, and only the altered target input module is described in detail in

Subsection 7.2.3.3.

In Target List mode, parameterise takes eight arguments as specified in Subsection

7.2.3. One of these is the path to a CSV file containing the details (RA, Dec, Mag) of a

list of targets, each of which is associated with a set of field descriptors (run, rerun,

camcol, field) for the fields needed to generate a mosaic about that target.

The ppr_parameterise function begins by creating a set of variables:

start_number (initialised to zero) and end_number (set to the number of mosaics

to be grouped together.) As shown in Figure 7-14, a do-while loop creates a new PPR

file at each iteration, the paths to which are determined by start_number and

end_number, and the given path in the same manner as in the API Parameterisation

phase above. Next, it writes the observational parameters and the number of mosaics

provided to the PPR file at that point.

The next loop reads in the field descriptors from the CSV file and uses the same

methods as used in the API Parameterisation stage to generate a series of file paths for

132

the FITS files that are needed to make each mosaic. These file paths are written to both

the PPR and the PRT files.

Figure 7-14: Pipeline Parameterisation. Note that the target input module shown here is the one

for target list mode. Figure 7-15 shows the changes made for Catalogue Traversal Mode

The Target Input module is then called. In this mode, the program reads in the data

about the target from the CSV file. Next, the integer 1 is written as the number of

targets in the mosaic and the data on that target from the CSV file is written to the PRM

ppr_parameterise

Do-While not at end of CSV

Write No of mosaics

Arguments:
No of
Mosaics,
Path for ppr,
Path for csv,
Path for fits,
FoV Size,
Resolution,
Mag
Difference
Col
Difference

CSV

file

End Add # of files Start

end number becomes new start

Create PPR

Write Obs. Params

While targets < no targets &
not end of CSV

Input target info

Read from CSV

Close PPR file

PPR

file

Input no. of targets

for entries with same

object id

Input file names

Read field ids

Generate path

Input no. of files

PRT

file If end

correct no of files in PPR

Target input

module

Check
Args

133

file. This completes the target input module which is replaced with a different module

when operating in Catalogue Traversal mode as discussed in Subsection 7.2.3.3.

The final stage of the outermost loop closes the PPR and PRT files and incrementes

start_number and end_number (which are used to name the files) by the number

of mosaics.

Each loop also includes several checks to identify if the end of the CSV file had been

reached early. When this happens, the program rewinds the PPR file and rewrites the

number of mosaics contained in the PPR file to the correct count of mosaics. It then

closes any open files and exits.

7.2.3.3 Catalogue Traversal Pipeline Parameterisation Software

In Catalogue Traversal Mode, the Parameterisation Software generates PPR files which

describe mosaics centred on entire fields worth of targets, instead of single targets from

a list as is the case in Target List mode.

Figure 7-15: Target Input module for Pipeline Parameterisation in Catalogue Traversal mode.

Note that as PRT files only include FITS paths, the target input module produces no output to the

PRT file.

There are two primary differences in the design of the parameterisation software

between these two modes. Firstly, traversing an entire catalogue and generating PPR

files based on each field within that catalogue constitutes a grid job as discussed in

PPR

file

For all entries in fits fils

Write target data

from FITS to PPR

Read next file path

Open fits file

Target input module
PRM

file

Local Fits

file

Get number of
targets

134

Subsection 7.2.3. Secondly, the Target Input module described in Subsection 7.2.3.2

above has to be replaced with one which could read Local Catalogue files specified in a

PRM file as shown in Figure 7-15.

In this Target Input Module, the next entry in the PRM file is read, which contains the

path to the fits file for the field around which the mosaic was to be generated. The

module reads the number of entries in the FITS file, and writes that as the number of

targets in the PPR file. It then loops through the FITS file, writing the details of the

stars in that FITS file into the PPR file as targets.

7.2.4. Grid Management Software

This project used gris computing for four primary roles. All grid operations require grid

management software to operate. The four modes are listed below.

• API

• Pipeline in Target List mode

• Pipeline in Catalogue Traversal mode

• Parameterisation for the Pipeline in Catalogue Traversal mode

For each of these roles, the same four components of the Grid Management Software

(GMS) exist: The design of these components is largely identical across each of the four

roles. The differences are treated here as minor variations to the design and highlighted

where significant. The four components of the GMS are listed below.

• job generation

• job submission

• job calling

• job monitoring

The generate_jobs scripts operate on gridUI. They use existing Parameter files

generated by the parameterise program in one of its modes to create a series of JDL

files, each of which is submitted as a grid job. Parameter files are stored on gridUI

except in the case of the Pipeline in Catalogue Traversal Mode, in which case the

Parameter files are on the LFC. These files are listed (using ls or lfc-ls commands

depending on the location of the parameter files) and the output of that list is piped by

135

script into a template using scripting variables. The output of these scripts is a directory

containing a set of JDL files which could be submitted by submit_jobs.

The submit_jobs scripts run on gridUI and submit a set of JDL files from a location

specified by the user to the GMS in a controlled manner. submit_jobs takes, as an

argument, the user-input limit to how many grid jobs Grid Ireland permitted that user to

have running simultaneously. It then submits jobs in batches of 10 at a time from

gridUI, waiting to ensure that all jobs previously submitted have started running before

submitting any more. It also monitors how many jobs are running at a time, stored as

the variable running_job_count. If (running_job_count + 10) is

greater than the limit of simultaneous jobs, submission is halted until

running_job_count is low enough that submitting a batch of new jobs would not

cause it to exceed the limit. The output from this set of scripts is a text file containing a

set of job identifiers which can be used by check_jobs to monitor the progress of

those grid jobs.

Figure 7-16: Grid Management Software

The Call scripts are unique to each grid job, and their details are discussed under the

headings of those grid jobs above. In general, the Call scripts copy input from the LFC,

LFC

gridUI

GMS

Worker

Node

Submit Grid Jobs

For each JDL

Call Script

Output

Parameter

files

Generate Grid Jobs

JDL files

WN files

Check
Jobs

Status

Executables

Input

Parameter

files

JDL

Executable

Grid Limits

Job
List

136

run executables which generate output on the WN, and then copy and register the output

to the LFC in the appropriate locations.

Finally, check_jobs interfaces with the GMS and tracks the status of on-going grid

jobs. The job lists output from submit_jobs is used as an input to check_jobs.

It generates a list of job statuses which can be piped to a file or displayed on std.out

as determined by the user. These statuses can also be piped through standard Unix tools

such as grep and wc to isolate individual jobs or particular groups of job statuses.

7.2.5. SQL Queries to CAS

In this project, SQL queries to the SDSS Catalogue Archive Server (CAS) are used to

produce CSV files which contain data used as an input to parameterisation in

each of its three modes as discussed in Subsection 7.2.3. The CAS is a Microsoft SQL

database which contains a variety of tables to store information about SDSS

observations. [111] Queries to the CAS are used to generate CSV files containing the

following information:

Figure 7-17: SQL Queries to generate input for Parameterisation

• A list of all fields in SDSS to be used with the API

• A list of all fields within the size of a FoV of each target in a target list to be

used with the pipeline in Target List mode

Identifying SDSS
Fields

SQL Fields

Query

SDSS

Fields

csv

SQL Target

Fields Query

Target

Fields

csv

Target

list csv

SQL Fields

count Query

Fields
counts

SQL Field

Fields Query

Field

Fields

csv

Match Fields to
Targets

Match Fields to Neighbouring Fields

137

• A list of all fields within the size of a FoV of the extreme points

(maximum/minimum for each of RA and Dec) of each field in a catalogue for

use with the pipeline in Catalogue Traversal mode

A suite of SQL queries has been developed by Dr. Eugene Hickey to generate these

outputs. [159] The first query is to generate a list of fields in SDSS. This query selects

all distinct combinations of the field identifiers run, rerun, camcol and field in

the field table. Each such combination uniquely identifies a single SDSS field, and thus

a single SDSS Calibrated Objects file as used in this project. The CSV files generated

as output by this query are defined in Subsection 8.3.5.1

The second query requires a list of target objects. In the case of the quasar catalogue,

this input list consisted of the list of objects in the SDSS quasar catalogue. [137] [161]

With this input, for each target, the query selects all fields meeting the criteria shown in

Equation 7-1

"#>D:[\,]7^ > "#;789:; − F ,_B`
���5(��;789:;<G

and

"#>D:[\,]D? < "#;789:; + F ,_B`
���5(��;789:;<G

(��>D:[\,]7^ > (��;789:; − ,_B` and (��>D:[\,]D? > (��;789:; + ,_B`

Equation 7-1: the fields which can be included in a FoV with a given target – those whose maximum

coordinate is greater than the coordinate of the target less the size of the FoV (SFoV) and whose

minimum coordinate is less than the coordinate of the target plus the size of the FoV, with

correction factors for RA as per Equation 5-1

The query then returns the target data, the field descriptors and a set of data used as

control variables. The CSV files generate as output by this query are defined in

Subsection 8.3.5.2

The final SQL Query acts as a nested SQL Query with two stages, as the scale of the

query is beyond the capacity of the CAS to handle as a single query. Instead, a first

query is run for each SDSS field, to count (but not identify) the number of fields in the

catalogue and assign a sequential number to each field. The output of this query is used

138

as input to a sequence of iterations of a query that, for each target field, identifies the

fields which met the criteria assigned in Equation 7-2:

"#>D:[\,]7^ > "#6_,]D? − bcde
@Bf5g:@hijklh<�

and

 "#>D:[\,]D? < "#6_,]7^ + bcde
@Bf5g:@mc,nop<�

(��>D:[\,]7^ > (��6_,]D? − ,_B` and (��>D:[\,]D? > (��6_,]7^ + ,_B`

Equation 7-2: the fields which can be included in a FoV with a any point in a target field (TF) –

those whose maximum coordinate is greater than the minimum coordinate of the TF less the size of

the FoV (SFoV) and whose minimum coordinate is less than the maximum coordinate of the TF plus

the size of the FoV, with correction factors for RA as per Equation 5-1

This query, as defined in Subsection 8.3.5.3, returns the field descriptors for the Target

Field and the fields used to create the mosaic around it, and a set of control variables.

7.2.6. Error Handling Routines

Error Checking, used throughout the C programs used in this project is implemented by

means of a header file, which includes the error definitions given in Table 7-2 and a

function contained in an independent c file which is included in the source code for each

program.

Error Checking is carried out by capturing the return value of each function as it is

called. When an operation which has the potential to produce an error is called, its

return value is checked. When an exception occurs in a given operation, the function

which called that operation returns an appropriate error as selected from the list in Table

7-2. Exceptions which occurr using FITSIO commands return the FITSIO status,

which works with the built-in FITSIO error checking routines.

This return value is passed to the error_checking function, which compares the

error value against the possible error values. The first check is against

ERR_NO_ERROR, defined to be 0, a value which is returned if the function completes

successfully: this prevents unnecessary further checks.

139

The second check takes advantage of the fact that FITSIO standard errors are denoted

by positive integers, while the errors defined in this project are denoted by negative

errors. A positive error value is assessed using built-in FITSIO error checking routines.

Error Definition Error Value Error Description

Non- Errors (0)

ERR_NO_ERROR 0 No Error present

API Errors -(1000 - 1999)

ERR_OUT_OF_MEMORY -1001 Memory full, unable to load more data

ERR_END_OF_FILE -1002 Pointer reached end of file prematurely

ERR_FILE_READ -1003 File Read Error occurred

ERR_CANNOT_OPEN -1004 File Cannot be opened

ERR_CANNOT_CLOSE -1005 File Cannot be closed

ERR_PAR_NOT_FOUND -1006 Parameter not found in CTI

ERR_WRITE_FAILURE -1007 Unable to write output file

ERR_INVALID_COLUMN -1008 Invalid column name

ERR_COLUMNS_EQUAL -1009 Two columns have the same name

ERR_FITS_ERROR -1010 Non-specific FITSIO Library Error

Pipeline Errors -(2000 - 2999)

ERR_NOT_FOUND -2001 No viable output found for any target

Parameterisation Errors -(3000 - 3999)

ERR_TOO_MANY_ARGS -3000 Too many arguments submitted to
parameterise

ERR_WRONG_FILE_TYPE -3001 Input file is of the wrong type

Table 7-2: Error Definitions. Errors defined in this project use negative integers. FITSIO Built-in

errors use positive integers to report errors

Following that, a set of nested if/else statements compare the error against the defined

errors. If the error matches one of the known errors, error_checking prints an

appropriate error message to std.out. If the error does not match any, an else

statement prints “an unknown error occurred” and returns the error. If, after

140

error_checking is complete the error value is still not ERR_NO_ERROR, then the

function returns the error.

Figure 7-18: Error Checking System

7.3. Summary

The design of this project can be considered under two headings: constraints imposed

upon it by external or prior concerns and a structured, Top-Down approach to

describing the components of the system.

The constraints are based on the astronomical goals of the project and computational

limits of the system. The astronomical goals of the system are to optimise pointings for

differential photometry on given targets, analyse catalogues of potential targets, and

generate output catalogues of these pointings. The solution to achieving these goals is

to implement the Locus Algorithm using C programs with the FITSIO library to access

and generate FITS files.

The computational limits of the system are derived from the final data format

definitions, quantity of data and the available computing resources. The Data from

Calling function

Function

error_checking

Sequence of If/Else

Error =
defined

Print message

error

Error not
ERR_NO_ERR

Return
Error

Return
value

std.out

Error > 0

FITSIO error check

Error = 0

141

SDSS requires data cleansing to reduce data volume and isolate the required data for the

project. This is achieved by use of the API to generate the Local Catalogue. The HPC

solution used for this project is Grid Ireland, which operates under the gLite system,

which requires that work be divided into grid jobs before it can be submitted to the grid

using JDL files.

These constraints together impose a Bottom-Up flavour on the consequent design.

From the Bottom-Up, the major components of the project are FITSIO routines run as

part of C programs, bundled together with gLite commands in BASH shell scripts,

which are run as part of grid jobs submitted by grid management scripts. The gLite

commands interact with the LFC, where data and software needed for the project are

stored. Data for the project is transferred into the LFC from the SDSS DAS by batch

data transfer processes. Input from the user and from SQL scripts run on the SDSS

CAS specify the behaviour of the grid management scripts.

From the Top-Down perspective, the project has two main components: the API and the

Pipeline, and four components which serve the main ones: Parameterisation, Grid

Management, SQL Queries to the CAS and Error Checking.

The API accesses SDSS data stored in the LFC, identifies the structure of that data with

the Diagnose program and generates the reduced data set of the Local Catalogue in the

Extract Program. This Local Catalogue is then stored in the LFC for use with the

Pipeline.

The Pipeline takes input from the user regarding observational conditions and from

CSV files generated by the CAS to identify the relevant Local Catalogue files. It then

processes this data to generate the Output Catalogue. The Pipeline operates in two

modes: Target List mode, in which the user supplies a list of targets, as was used to

generate the Quasar Catalogue as shown in Subsection 11.3; and Catalogue Traversal

mode, which was used to generate the Exoplanet Catalogue discussed in Subsection

11.4.

The Parameterisation software is, structurally, more like a set of modules used in both

the API and Pipeline. It generates parameter files (PRM and PPR) which are used to

manage job size in the two major components. In both cases, these parameter files list

142

the .fit files that are needed for that job. In the case of the PPR (Pipeline Parameter)

files, the file also includes a list of the targets that are to be processed by the Pipeline

job. These are generated based on user input and CSV files output by the SDSS CAS

based on input in the form of SQL queries. These SQL queries come in three different

varieties, one for each of the three modes of operation of the parameterisation software.

The Grid Management Software is a suite of tools which are used, with subtle

variations, to Generate, Submit, Call and Monitor grid jobs in the other three

components of the project. Each of those four script families is used as a module in the

grid enabling of the other project components.

Throughout the C programs used in the project, a suite of Error Checking software is

used to determine if and when any exceptions occur in the programs, and if they do, to

report on those errors.

As Jalote (2005) [144] suggests is true of most real software projects, this project

incorporates elements of both Top-Down and Bottom-Up design. The blending of these

two approaches allows for the incorporation of Bottom-Up requirements and

constraints, while the Top-Down structural approach creates a coherent design into

which modules can be placed over time as the project evolves.

143

8. Data Storage and Management

This Chapter discusses the data storage systems and structures under three headings

• Storage Devices

Section 8.1 discusses the nature of the various computing and data storage

devices used in this project, and how those elements interact with one another

and the user. These elements consist of the Development Environment, gridUI,

the LFC, the GMS and the individual WNs.

• Directory Structure

The data is stored in a hierarchical structure of directories as described in

Section 8.2. The same structure is used on every storage system within the

project. This structure is used to ensure that data can be reliably accessed on any

computing element of the project.

• Structure of files

The internal structure of each of the file types used in the project is fully

described in Section 8.3. Some of the file types used are defined externally (e.g.

CSV, FITS) and some are novel to this project, and are designed internally. (e.g.

PRM, PPR)

8.1. Data Storage Devices

There are five primary data storage environments used in this project, each with a

distinct function and set of interactions with the other elements. These devices are

listed below. The interactions between these elements are outlined in Figure 8-1 and

detailed below it.

• Development Environment (DE), which provides a structured environment

within which to develop software, particularly the C programs used in this

project

• gridUI, a dedicated computer located at ITTD which acts as a gateway through

which users could interact with the grid to upload data, run and monitor jobs and

retrieve output

• Grid Management System (GMS), a system which processes grid commands

and which allowes for data and grid jobs to be transferred between grid elements

144

• Logical File Catalogue (LFC), which is a distributed storage system which

permits long-term storage of large amounts of data which is discussed in

Subsection 8.1.1

• Worker Nodes (WNs), which process grid jobs.

Figure 8-1: The data storage and processing elements used within the project, and the interactions

between them.

The Development Environment (DE) is a VirtualBox Virtual Machine (VM) operating

Scientific Linux version 4.5 and running the Eclipse Europa Integrated Development

Environment (IDE.) Virtualisation of the DE permits it to be ported between physical

machines as needed. Programs are written and tested in this environment without grid

interactivity, and are not dependent on external resources. The interface between the

Development Environment and gridUI is provided by Secure Shell (SSH), a network

protocol which provides for secure transfer of both user input data and executable

programs. [162] The DE does not have direct access to any other storage elements.

The Grid Ireland User Interface (gridUI) is the means by which the user interacts with

the grid. It is usually operated through SSH from the DE, although, for convenience

throughout this project, user input transferred from the DE through SSH to is described

as user input to gridUI, unless explicitly specified otherwise, as this simplifies

explanations.

DE

gridUI

GMS

WN

LFC

programs

jobs

parameter &
job data

full data
catalogues

excerpted
data

jobs

lfc
commands

lfc
commands

JSS

SSH

user input

145

A communications link exists between gridUI and the GMS. Communication between

these two systems takes the form of one of the following two categories of command:

• Logical File Catalogue (LFC) commands mimic standard UNIX commands [7]

as discussed in 3.2.1, and are primarily used to copy data to and from the LFC.

• Job Submission System (JSS) commands are used to submit, monitor and

retrieve grid jobs.

WNs are the individual machines to which the GMS assigns grid jobs. WNs which are

part of Grid Ireland are hosted by a number of institutions around the country. Each has

a UNIX operating system and local storage space. Specific features of the WN are

specified as a requirement of a given grid job within the text of the JDL file submitted

to the GMS.

8.1.1. Logical File Catalogue

The purpose of the LFC in this project is to serve as a long-term archive. As discussed

in Subsection 3.2.1, the LFC is a distributed storage system used by a number of

projects in collaboration with Grid Ireland with 700 Terabytes of storage space. [93] It

is not necessary for the user to know the physical location of the storage elements used

for a piece of data. Rather, the GMS allows files to be managed and accessed by means

of their Logical File Name (LFN.) [7] LFNs must obey the naming conventions of the

UNIX directory and file name system.

Data on the LFC cannot be directly accessed by programs, scripts or the user. Instead,

requests are sent to the GMS, through a set of commands known as gLite commands,

which are incorporated into scripts for automated data retrieval and storage from either

gridUI or a WN as discussed in Subsection 7.2.4.

Finally, standard operating procedure for Grid Ireland is that users are granted

permissions for access only to specific Sections of the LFC by virtue of their

membership of a given Virtual Organization (VO.) Designated areas for a particular

VO are identified with parts of the LFC/LFN directory structure. The SCG are

members of Cosmo VO, and therefore /grid/cosmo/ is the working directory used.

146

8.1.2. Grid Data Transfers

Jobs submitted to the GMS are apportioned to WNs. Further JSS commands are used to

monitor the status of grid jobs and are used to retrieve the std.out and std.err

output from grid jobs, which are stored as files on the GMS. Files produced as output

from grid jobs are normally copied to the LFC, and are not accessible directly in this

way. [7]

Each grid job is a “clean” start – the WNs do not retain data or programs from one job

to the next. Data and programs therefore have to be copied from a remote location for

each grid job. In this project, data is stored on the LFC and copied to the nodes using

LFC commands incorporated into the scripts as and when the data is needed.

The std.out and std.err output from grid jobs are returned to the JSS as part of

the grid job process. [7] Output data files are copied to the LFC using LFC commands

for later retrieval.

The GMS acts as an intermediary between the LFC, gridUI and the WNs. The user

does not have direct control over or access to the GMS, but rather they submit requests

to it in accordance with the gLite users guide. [7] As with SSH access from the DE to

gridUI, the intermediary role of the GMS is usually not discussed in terms of LFC or

JSS commands. Instead, these commands are treated as direct interactions between the

three elements except where relevant.

As can be seen from this, data is regularly passed from one storage element to another.

Each of these elements has its own directory structure. This structure is not known to

the user at run-time ans had the potential to be different from one WN to another.

Therefore it is necessary to develop a solution for data access that works on many

nodes.

The solution, as described in Section 8.2, is to use a directory structure built on a

relative path from the working directory of the computing element. From that working

directory, a new directory tree is created in every instance to hold the data needed on

that occasion. By working with a relative path from the working directory, it is possible

to use the same file paths at every stage of the project without needing to know the

147

working directory. In addition, it makes unit testing easier as a completely new

environment can be simulated simply by creating a test directory and changing working

directory to that.

8.2. Directory Structure

A rigid directory structure allows any instance of a particular piece of data or program

to be stored in the same place in the structure regardless as to whether it is stored on

gridUI, a WN or in the LFC. Note that the entire data structure is not recreated in each

instance, just a subset of it as indicated Figure 8-1: those paths that are needed for that

job.

When a piece of data is copied to a storage element, the directory in which the data is to

be stored in has to be created first. The Unix command mkdir -p and its gLite

analogue lfc-mkdir -p are used to create the directory on that element before the

data is copied. [7] If the directory has already been created, these commands have no

effect, but they are required to prevent file copying failures.

8.2.1. Top Level Structure

At the top of the data structure is the physical storage. The exact nature of this physical

storage varies from element to element as outlined in Section 8.1. Each computing

element opens to a default working directory (e.g. /home/creanero/ on gridUI.)

By design, the user does not need to know this directory. Instead, the remainder of the

directory tree is constructed from there in each instance.

From the working directory, the first two layers of the directory structure are designed

for extensibility to future projects. The first is a directory for all ITTD SCG projects

called ittd. Beneath that, there is a subdirectory, namely grid_cdm, for this project

– Grid-based Catalogue Data Mining. Future projects established within the SCG may

expand upon this structure.

Within this project, there are five primary directories, workspace, scripts, test,

data and release. Those directories are each expanded upon in their own

Subsection below.

148

Figure 8-2 Top Level Directory Structure: This structure is used on all physical storage elements,

and constructed as needed below the working directory on that element.

8.2.2. Workspace

The workspace directory is where C code is developed, compiled, debugged and

stored. This directory is used primarily within the DE. Within this directory, individual

workspaces exist for each top level version of the code that was developed. When a

major new code revision is started, a new workspace is created and the files from the

previous edition are copied to that directory before being modified. This version

control allows for reversion to an older version of the software if needed as discussed in

Subsection 6.2.2.2.

Figure 8-3 Workspace Directory: The top level of subdirectories is used for overall version control.

Lower levels are automatically generated by the Eclipse IDE.

physical storage

ittd

grid_cdm

workspace scripts test data release

Working Directory

workspace

version_1_0 version_6_ version_n_

diagnose extract parameterisation locus_algorith

binaries include src debug

error_checking_6_1 extract_6_1 file_info_2_0

releas

149

Within these workspaces, the directory structure is the default structure created by the

Eclipse IDE. In each version, a directory is created for each of the C programs used in

the project. As can be seen from Figure 8-3, the final version (version 6.1) has four

main programs, and thus four subdirectories: parameterisation, diagnose,

extract and locus_algorithm.

As developed by Eclipse, each program has several directories of components used to

build the final executable as illustrated with the example of the extract program in

Figure 8-3. The binaries and includes folders are automatically generated by

Eclipse and are used when compiling the code. The src directory contains the source

code for the program. The debug folder contains a version of the compiled program

optimised for debugging, together with other debugging information such as

breakpoints. The release directory is where the final version of the program is

written to, after debugging is complete. It is this executable that is copied to the main

release directory (see 8.2.6) once the program is fully tested and ready for use.

8.2.3. Scripts

The Scripts folder is used to contain the scripts used for grid management as discussed

in Subsection 7.2.4. These scripts are organised into subdirectories for the various

functions they performed. For example, the directory shown in the diagram

(csv_management) is used to contain scripts used to manipulate and modify the

CSV files used in the project.

Figure 8-4: Scripts Directory: Subdirectories are used for families of scripts.

As discussed in Subsection 6.2.2.2, version control takes the form of modifying the file

names with the version numbers as and when a new version of the script is

implemented.

scripts

api csv_management jdl qso

make_small_1_0.sh read_and_small_1_0.sh

xop

150

8.2.4. Test

The test folder is used to test scripts, programs, data and other components of the

project on gridUI. This allows for tests to be carried out in an environment with access

to the GMS. The first sub-level of this directory is designed to be changed on a daily

basis to hold batches of tests carried out on a given date. Each individual test is given

its own “run” directory below that level and necessary files are copied into it depending

on the test. The test is then run by the user, and depending on the nature of the test, it

creates a partial replica of the overall directory structure below that run directory as

shown in Figure 8-5.

Figure 8-5: Test Directory: a partial directory tree for the test directory. A sample test (test 2 of 8-

6-2011) is shown with an expanded directory structure. As can be seen from this example, a given

test does not necessarily generate a full directory structure

Only the required components of the directory structure are copied in this situation, as

was the case during a grid job. Typically, for example, a test job does not require a test

folder underneath it.

In most cases a log file is created. For ease of access, the convention is that all logs for

a single day were redirected into that day’s directory, not to the individual test’s

directory, so that there is no risk of the log file being compromised by the run, or the

run by the log file.

test

5-11-2007 8-6-2011 dd-mm-yyyy

run_1 run_2 run_n run_1.log run_2.log run_n.log

ittd

grid_cdm

scripts data release

run_2.prm gen_jobs.sh

151

8.2.5. Data

The data directory is the largest directory in the overall structure. This directory

contains the catalogues, parameter files and output files that are used and generated in

the project, and each of these has its own corresponding subdirectory.

The catalogues subdirectory is designed for extensibility to other catalogues as

proposed in Subsection 14.1.5, however SDSS is the only catalogue in this project. The

original SDSS files are stored in a directory called raw, while the local catalogue

counterparts to each are stored in a directory called local. The unique SDSS

directory structure was retained for this project and is described in Subsection 8.2.5.1.

The directory structure is a deep, Top-Down structure that is defined by SDSS to allow

files to be found by using the CAS.

Figure 8-6: Data Folder: The SDSS Catalogue structure is shown in Figure 8-7. The subdirectory

structure of the parameter directories and the naming convention of the files are the same in the

jdl, prm and ppr directories. Output catalogues in test, xop and qso directories are typically stored

in a directory with their date, and may include further information in the directory or file name as

shown in Table 8-1.

The parameter files are generated automatically by the parameterisation program (see

Subsection 7.2.3) and stored in the parameters directory. Within that directory are

directories for PRM files (used in the API stage of the software, defined in Subsection

8.3.3.1), PRPR files (used in the pipeline phase of the software, see 8.3.3.2) and JDL

files (which are used to submit jobs to the grid see 8.3.6).

data

catalogues parameters output

sdss prm ppr

raw local dd-mm-yyyy

qso xop jdl

X_0_10.prm X_N_N+10.prm

test

run_name

152

Within the ppr and prm directories, separate directories are created by the user for

each set of parameters used for a given batch of jobs. These are usually identified by

date, and may include other information as needed, encoded in the file name (e.g. the

filenames for test parameter files were preceded with test_). As parameter files are

generated automatically, they are given sequential names to reflect the targets or fields

that their contents refer to.

FoV Resolution Max Magnitude
Difference

Max Colour
Difference

Colour band

0.25 degrees 1 arcsecond =
0.000277
degrees

2 mag 0.1 mag r

File name xop-0_25-0_000277-2_0-0_1-r-0-100_output.fit

Table 8-1: Illustration of the encoding of exoplanet job parameters in an output file name. Colours

are used to indicate the data components to which each component of the filename corresponds

JDL files are stored in a directory structure that mimics that of the PRM or PPR files

that they are generated to submit, but with the “ppr” or “prm” level of the directory

path replaced with “jdl” as shown in Figure 8-6. The name of a JDL file is the name

of the PRM or PPR file it corresponds to with the extension changed.

Output files are the results of the project. They are stored in the output folder, in an

appropriate subdirectory for the targets that they reflect. The two primary jobs are the

Quasar and Exoplanet jobs, labelled with qso and xop respectively. The outputs from

test jobs are stored in the test subdirectory. The names of the output files from a

particular job are typically encoded with the arguments used for that job as illustrated in

Table 8-1.

8.2.5.1 SDSS data structure

Within the data folder, the entire SDSS DR 5 object catalogue is stored in a directory

tree. This tree mimicks the SDSS data storage model, which allows for access to the

data by reference to the results of SQL queries submitted to the CAS as shown in

Subsection 7.2.5.

153

The SDSS model incorporates four pieces of critical information about a file into the

file name and the directory structure as shown below. [158] This model is retained in

this project, and used to store both the raw SDSS Catalogue and the Local Catalogue.

Excerpted from the SDSS Glossary (SDSS, 2007)

“Run: A Run is a length of a strip observed in a single continuous observing

scan. A strip covers a great circle region from pole to pole; this cannot be

observed in one pass. The fraction of a strip observed at one time (limited by

observing conditions) is a Run. Runs can (and usually do) overlap at the ends.

Rerun: A reprocessing of an imaging run. The underlying imaging data are the

same, just the software version and calibration may have changed.

Camcol: A Camcol is the output of one camera column of CCD's (each with a

different filter) as part of a Run. Therefore, 1 Camcol = 1/6 of a Run.

Field: A field is a part of a camcol that is processed by the Photo pipeline at one

time. A field consists of the frames in the 5 filters for the same part of the sky.

Fields overlap each other.” [158]

Figure 8-7: SDSS Directory structure: As is shown in this diagram, the same directory structure is

used for both Local Catalogue and Raw SDSS catalogue files.

SDSS

Raw Catalogue Local

R R

C

R R

C

RUN

CamCol

calibChunks

RUN RUN RUN

r r

f f f f

Rerun Rerun

field 1 field 2 field 3 field 4

c

CamCol

154

From these pieces of information it is possible to locate the position on the sky of any

given file, and conversely for a given position, to identify the file appropriate to that

position using the CAS. Each of the four pieces of information above takes the form of

an integer which is used to create the file paths as shown in Figure 8-8.

Figure 8-8: Definition of an SDSS tsObj File Path. Given Run (R), Rerun (r), Camcol (C) and

Field (F): Rerun and Field in the filename are padded with leading zeroes to the length illustrated,

but leading zeroes are not used in the directory names, nor are they used for Rerun or Camcol in

either the filename or the directory. [121] An arbitrarily selected example is shown.

8.2.6. Release

A version of the release directory is maintained on the LFC and contains the release

versions of the novel executables generated during the project. Each version of the

software is stored in a separate directory, and each program is stored in its own

subdirectory. When an executable file is required for a job, it is copied from the LFC to

a duplicate release directory on the computing element it is to be used on, and

executed from there using its relative path.

Figure 8-9 Release Folder

R/r/calibChunks/C/tsObj-RRRRRR-C-r-FFFF.fit

1458/40/calibChunks/4/tsObj-001458-4-40-0352.fit

release

version_1_0 version_6_1 version_n_n

extract_6_1 parameterisation_6_1 locus_algorithm_2_0

extract_6_1 parameterisation_6_1 locus_algorithm_2_0

155

8.3. Internal Structure of File Types

Throughout the project, a number of file types are used. For some of those file types,

the data models are original to this project, and others are externally defined. Knowing

the data model of each file type is essential to the development of code to access and

manipulate those files.

In this Section, each file type used in the project is described in both function and

composition. In some cases, the data structure is flexible, and may have permitted data

to be stored in several ways, for example, by use of data headers. In these cases, the

general model is described first, and then the specific structures used in this project are

individually described. The files used in this project can be categorised into two broad

categories: Binary data files, and text files.

The main types of binary data file used in this project were

• FITS files, (extension .fit or .fits) an international standard in the

astronomical community for transfer of data and images. [126]

• CTI files, (extension .cti) an internally defined file type used to describe the

contents of FITS files as part of the API

• Parameter files, a set of two internally defined file types: PRM and PPR

(extensions .prm and .ppr) used to control the operation of the software

developed for this project.

Text files are usually stored in ASCII encoding for portability. The text files used in

this project are categorised as

• Unstructured Text files, used to contain text for input to or output from

components of the project. Source code, shell scripts etc. are also encoded as

text files.

• CSV files, (extension .csv) a de facto standard [163] used to store data in a

table-like structure, where rows of the table are delineated by newline characters,

and where the columns of the table are defined in a header (the first row of the

file), and delimited by a distinctive character, usually a comma.

156

• JDL files, (extension .jdl) the standard format used to describe a grid job in

the gLite system [7], where requirements, executables and arguments for the

grid job are specified as a series of name-value pairs.

8.3.1. Flexible Image Transport System (FITS)

FITS stands for Flexible Image Transport System. FITS files are an international

standard in the astronomical community. [164] FITS files can be used for data tables,

images, data cubes or even higher-order data structures. FITS files are composed of

sequences of HDUs (Header Data Units.) These HDUs are split into headers followed

by data. FITS files are used for data transfer between organisations whose internal

formats, hardware etc. vary. [86]

Figure 8-10: General Structure of a FITS File. Each fits file consists of one or more HDU. The

HDU can be separated in to the Header and the Data Unit. The Header may contain zero or or

more name-value pairs which describe the data in the Data unit. The data unit consists of zero or

more rows each consisting of a series of column entries corresponding to the name-value pairs in

the Header. The data in these columns may be a single entry or a vector of multiple values.

Headers consist of keyword=value statements. Headers describe the organisation of the

data and the format of the contents. Headers may also include additional information

about the instruments used or the history of the data. [126]

Fits File

N HDUs Header

C Pairs
Name Value

Data Unit

R Rows

C Entries

V Values

Data

157

Data follows on from the header, and is structured as it is described in the header.

Although the “I” in FITS stands for Image, FITS files have been adapted to transfer

other types of data. [126] The first HDU in a FITS file must contain an array of one or

more dimensions, but subsequent HDUs, called extensions, may be structured

differently, within certain limits. A HDU need not contain any data at all. [126] The

Data in a FITS image or data array must be in one of five data types, shown in Table

8-2.

Note that in this Subsection, when defining the structure of a specific FITS file or group

of files, such as the SDSS object catalogue files discussed in Subsection 8.3.1.1, the

contents of the header are not usually explicitly described. Instead, the contents of the

header are considered to be implied by the description of the contents and structure of

the data unit.

As discussed in Subsection 3.3.2.2, CFITSIO is a library of file access and manipulation

routines for C which is designed to allow C programs to access FITS files. [164] It is

maintained by NASA to be up to date with current needs of the astronomical

community. CFITSIO is used extensively in this project. Similar libraries are available

for FORTRAN and interfaces exist for other languages as discussed in Subsection

3.3.2.2. [126]

Description Short name Detail

Unsigned integer unsigned int 8-bit unsigned binary integers

Signed integer int 16-bit two’s-complement signed binary integers

Large signed integer long 32-bit two’s-complement signed binary integers

Floating point number float 32-bit IEEE-754 standard floating point numbers

Large floating point number double 64-bit IEEE-754 floating point numbers

Table 8-2: FITS Data Types [126]

8.3.1.1 SDSS - tsObj

The FITS files supplied by SDSS for use in this project are the Object Catalogue files,

also known as tsObj files after the first five characters of the file name for each. [121]

Each object detected in an image taken by SDSS is recorded as a row in a table in the

Catalogue. The tsObj files had a measured mean size of 11.8MB, and the full SDSS

DR5 object catalogue was approximately 4.76 TB in size as stored in the LFC.

158

Object Catalogue files contain an entry for each observation recorded by SDSS, rather

than a unique entry for each astronomical object. In addition, SDSS fields overlap, due

in part to the shape of the sky, and for observational reasons. [43] As such, some

objects are detected in more than one field, and thus are present in more than one

catalogue entry. Finally, SDSS includes detections of objects which are not stars,

including galaxies and other extended objects, and also including false detections and

transient phenomena. [157]

For each object, there are 146 columns, which describe that observation of that object.

[121] In each of these columns is a varying amount of data, ranging from individual

long integers (e.g. to identify the field by run, rerun, camcol and field as

discussed in Subsection 8.2.5.1) to arrays of five double-precision floating point

numbers (e.g. to identify the five model magnitude values in each of the 5 SDSS colour

filters u, g, r, i and z.)

Integers (specifically status, flags and flags2) are used by SDSS as 32-bit

bitmasks of binary flags, which are used to describe each entry: for example, identifying

if an entry refers to the primary observation of a particular object or not. [157] These

flags were used by the Extract program as shown in Subsection 7.2.1.2 to identify the

entries that corresponded to what SDSS, 2006, defined as a clean sample of stars. [157]

Figure 8-11 SDSS tsObj*.fit File: Only one HDU is used, which contains a mean of 847 rows

and 146 columns of data. These columns contain entries which have either one value (referring to

the observation as a whole) or five values, one for each SDSS band filter

Object Catalogue file

Data Unit

R (mean 847) Rows

 146 Column Entries

1 or 5 values

double or
long

159

8.3.1.2 Local

In addition to being filtered to include only the clean sample of stars, only a particular

subset of information about each star is needed for the Locus Algorithm. Thus, Right

Ascension (RA), Declination (Dec) and Magnitude (Mag) are recorded in the Local

Catalogue, while the other values are discarded as part of the Extract process discussed

in Subsection 7.2.1.2.

RA and Dec have unique values per observation, but there are several options for Mag

in the SDSS Catalogue, each calculated using slightly different methods. SDSS

provides a “model” value for magnitude, which is defined by SDSS to be the better of

the De Vaucouleurs and exponential methods. [121] It is this value that is used

throughout this project, and except where the distinction is relevant, it is referred to as

“magnitude” or “mag” without qualification throughout this Thesis.

The reduction in both rows and columns provided for a substantial reduction in data

volume. While the mean number of rows in each SDSS fit file is 847, the mean number

of rows in a local catalogue file is 240. On occasion there are no entries in a local

catalogue file as the entire field is considered a “secondary” image. This typically

occurs towards the end of a stripe as fields began to overlap. [5]

Figure 8-12: Local Catalogue FITS File. The local catalogue files contain RA, Dec and a vector of 5

magnitude values for each star that passes the extract process shown in Subsection 7.2.1.2

As a result of this reduction, Local FITS files are measured to be 584 times smaller

(20.4kB as opposed to 11.8MB) on average than the original SDSS files they were

derived from, and the entire Local Catalogue was measured to be 6.89GB, as opposed to

Local Catalogue file

Data Unit

R (mean 240) Rows
5 values

double
Dec

double
RA

double
mag

160

4.76TB for the SDSS catalogue. These catalogue results are discussed further in

Chapter 11.

8.3.1.3 Output

The output files are used to store the output Quasar and Exoplanet Catalogues, the

primary products of this project, as discussed in detail in Chapters 11 and 12. Output

files are stored in FITS format for accessibility and portability, in keeping with standard

practice in Astronomy.

In the output files, the data for the chosen target or targets is presented in the same

manner as that in the Local fits files i.e. RA, Dec and Magnitude (as before, a vector of

5 values). The result for that target is presented in the form of the RA and Dec of the

pointing and the score for that pointing. These six values constitute a row of the output

catalogue.

Figure 8-13: Output FITS File: Output data included RA, Dec and an array of mag as per the

Local Catalogue. In addition, the RA and Dec of the pointing (av_ra and av_dec), and the score for

that pointing are given.

Each file in the Quasar Catalogue holds 1,000 such entries, and while entries in the

Exoplanet Catalogue vary between 0 and 175,688 there are an average of 41,955 entries

per Exoplanet output file. Each file in the Quasar Catalogue is 87.8 kB in size, while

the mean file size for the Exoplanet Catalogue is 3.22 MB. The Quasar Catalogue

consists of 40 such files, while the Exoplanet catalogue is composed of 1,598 files. The

total size of the Quasar Catalogue is 3.43 MB while the Exoplanet Catalogue totals 5.02

GB. More detailed data metrics on the output catalogues are provided in Subsection

13.1.3.

Output Catalogue file

Data unit

R Rows 5 values

double
Dec

double
RA

double
mag

double
av_Dec

double
av_RA

double
score

161

8.3.2. Catalogue Information (CTI)

CTI files describe the contents of FITS table files in such a way as to make their

contents readily accessible to the Extract program. They describe the FITS table in

terms of the number of rows and columns in it, and then list the column number, a 16-

character column name, and three pieces of information used in the FITSIO interface:

typecode, repeat and width.

CTI files are generated by the Diagnose program (7.2.1.1) and are used by the Extract

program (7.2.1.2) to find the relevant data from a submitted FITS file. CTI files form a

layer of abstraction, whereby the Extract program does not need to have the correct

column for the required variables hard-coded, but rather can search for them in the CTI

files, which may be useful for extensibility.

Figure 8-14: CTI File: each CTI file describes the contents of a FITS file. It lists the number of

rows in the file as a long int, the number of columns as an int. It then has a repeating structure for

each of the 146 columns in an SDSS fits file consisting of an int for the column number, and an

array of 16 characters for the column name, and three more integers for the typecode, repeat and

width of that column.

8.3.3. Parameter Files

Parameter files are generated by the parameterise program as described in Subsection

7.2.3. Parameter files are used to describe jobs to the executable files in the pipeline

and API stages of the program. There are two types of parameter file, API parameter

files, given the file type .prm, and pipeline parameter files, with the extension .ppr.

CTI (Catalogue Information) File

C (146) Columns

long int
num rows

int num
columns

16 characters

char
colname

int
column

int
typecode

int
repeat

int
width

162

8.3.3.1 API Parameters (PRM)

Figure 8-15 API Parameter Files (PRM): API parameter files consist of a long int representing the

number of files to be processed as part of the job the file represents, and an array whose entries are

arrays of characters – the path to each file. The length of these paths is a variable, defined to be

150

API Parameter files are used in two circumstances:

• To define batches of SDSS tsObj files used in the API to generate the Local

Catalogue as described in Subsection 7.2.3.1

• As part of the parameterisation stage to create PPR jobs by batch as described in

Subsection 7.2.3.3.

They control the job by listing the number of files to be processed in a long int

control variable, and a relative path to each file. The subsequent programs can thus

access the files using those paths, and iterate a number of times equal to the control

variable.

8.3.3.2 Pipeline Parameters (PPR)

Pipeline parameter files are used to define pipeline jobs used to generate output

catalogue files. They are used to convey the following information

• User parameters relating to the observation site the catalogue was optimised for

• Paths to the files needed to generate mosaics

• Information about the targets contained within those mosaics

API Parameter Files .prm

N files
long int
num
files

FILE_NAME_SIZE (150)

char
filename

163

Figure 8-16 Pipeline Parameter Files (PPR): PPR files consists of 4 observational parameters, and a

repeating structure for each mosaic to be generated, itself consisting of two repeating structures,

one listing the paths to the files to be aggregated into that mosaic, and the other listing the targets to

be analysed within that mosaic. Each repeating structure has a long int controlling variable.

8.3.3.3 Parameter Text Files (PRT)

BASH Shell scripts are used for grid job management in this project. Data from text

files is piped into these scripts to parameterise them as discussed in Subsection 7.2.4.

The PPR and PRM files are stored in binary format, which is not compatible for use

with shell commands.

Figure 8-17 Parameter Text Files (PRT): these files are ASCII text files used to list file paths

without requiring binary file access. They consist of a line for each file, terminated with a newline

character, and each line consists of a sequence of characters representing the path to that file

Pipeline Parameter File (.ppr)

long int
Mosaic
s

Double
Size

Double
Mag_diff

Double
Resolution

M Mosaics

N Files

FILE_NAME_SIZE (150)

char
filename

T Targets

Double
RA

Double
Dec

long int
Targets

long int
files

Double
col_diff

5 colours

Double
Mag

Parameter Text Files (.txt)

N files

C Characters

char
filename

char
newline

164

In order to allow for the scripts used in the project to access the files listed in the

parameter files, text versions of the Parameter files are generated in parallel with the

binary parameter files listed above. These text files, contain lists of file paths, with each

new path separated from the previous one by a newline character.

These files are referred to as PRT files in this project, to distinguish them from standard

text files, although the extension used was .txt.

8.3.4. Text (TXT)

Text files are files which contain a sequence of zero or more characters in some form of

encoding, [165] most commonly ASCII or Unicode. Text files are used for several

purposes in this project.

Firstly, text files can be readily viewed using text editors on most common platforms,

which makes them suitable for storing data in a user-accessible manner. Log files

storing output from the project at various points are stored in this way.

The Windows and Unix platforms used in this project use different conventions for the

end-of-line character. Utilities called “dos2unix” and “unix2dos” are used to

convert files from one to another as needed. [166]

Secondly, scripts, program source code and header files are created and encoded as text

files. The contents of these files are discussed under Software Design in Chapter 7.

Finally, some of the programs used in this project, such as the grid management shell

scripts discussed in Subsection 7.2.4, use text- rather than binary-encoded files for I/O.

These files can be viewed by the user with a text editor, but are more usually used in an

automated way within the project. Three text file types are used for this purpose:

Parameter Text files (PRT, Subsection 8.3.3.3) Comma Separated Variable files (CSV,

Subsection 8.3.5) and Job Description Language files (JDL, Subsection 8.3.6)

165

8.3.5. Comma Separated Value (CSV)

Comma Separated Value (extension .csv) files are two dimensional tables of any size

where the entries and the table structure are stored as text. Each line of the text file is a

new line in the table and some delimiter, often a comma, is used to separate columns

within each line. Both numerical and non-numeric data can be stored in this way. A

common, but not universal, convention is that the first row of a CSV file is the “header”

and includes the names of each of the columns, also separated by the standard delimiter.

[163]

An advantage of this structure is that CSV files, as with plain text, can be accessed and

edited using standard text editors. In addition, CSV files can be accessed by shell

scripts.

A disadvantage of CSV is observed when it is used for storing numerical data.

Numerical data is typically presented in the form of a decimal representation of the

number in ASCII characters. As such, each character is a byte of data, and the higher

precision to which a number is written, the more data storage is used. In addition, a

character is used to represent the decimal point, and leading or trailing zeroes also

require storage. This is in contrast with binary floating point numbers, which require a

constant amount of data storage.

Throughout this project, CSV files are used to transfer data from the CAS to other

computing resources used in the project. These files are used to reference the positions

of targets and files used in the project. Each file uses the header convention explained

above, which is used as a check to ensure that the CSV file submitted is the correct type.

In the diagrams illustrating these file types, the headers are not shown, but are implied

to be present unless otherwise specified

8.3.5.1 API CSV files

As part of the SDSS API, CSV files from the CAS are used as an input to the program

parameterise as discussed in Subsection 7.2.3.1. These CSV files contain lists of

run, rerun, camcol and field for each field in SDSS. They are used by the

parameterisation software to create batches of PRM files. (see Subsection 8.3.3)

166

Figure 8-18: API CSV File: These files consist of lists of run, rerun, camcol and field for each of the

fields to be processed. These numbers can be translated into file paths using the definition shown in

Figure 8-8

8.3.5.2 Target List Pipeline

As discussed in Subsection 7.2.2, the pipeline is used in two different ways. The first

method is to pre-select a number of individual targets to be processed. (e.g. the SDSS

Quasar List) SQL queries to the CAS are used to find the fields within a FoV of those

targets.

This generates a CSV list of targets as well as a list of the associated fields needed to

make a mosaic around them. This CSV list is used as an input to parameterise to

create PPR files.

Each line of the CSV file has:

• order information, consisting of

o objectID, a unique identifier for each target

o the number of fields that is needed to make the mosaic around that

object, which is used with an index to control the loop in the

parameterisation program (see Subsection 7.2.3).

• field information of one of the fields that are used to create the mosaic.

o run

o rerun

o camcol

o field

• target information pertaining to a specific target

o RA

o Dec

API CSV File

N fields

ASCII
camcol

ASCII
rerun

ASCII
run

ASCII
field

167

o Magnitudes (u, g, r, i, and z).

Once the index of the fields used to make the mosaic around a given target reaches the

number of fields, the next mosaic starts. The structure of each mosaic is of a series of

lines in the file, delimited by change in objectID as illustrated in Figure 8-19

Figure 8-19 Pipeline CSV File (Target List mode): These files consist of a number of sets of lines,

each corresponding to the mosaic of fields around a target in the target list. Within these groups,

each line corresponds to a field in the mosaic. Target information is repeated on each row within

the group.

8.3.5.3 Catalogue Traversal Pipeline

The second method of using the pipeline is to use the catalogue itself as a target list.

Again, the CAS is used to find the files, but this time each field is associated with those

fields which are within a FoV of any point of the target field.

This generates a CSV file containing a list of field descriptors for the target fields, as

well as a list of the associated fields needed to make a mosaic around them. This CSV

file is used as input to the parameterisation program to create PPR files as discussed in

Subsection 7.2.3.3.

Pipeline CSV File (Target List mode)

M Mosaics/Targets

N fields

ASCII
RA

ASCII
Dec

ASCII
FieldNum

ASCII
ObjId

5 colours
ASCII
Mag

ASCII
camcol

ASCII
rerun

ASCII
run

ASCII
field

Field info Target info Order info

168

As before, each target field is referenced on multiple rows, with each of its

neighbouring fields listed on those rows. Again, the number of rows is used as a control

for the loop. In this method all targets within the fields specified in the CSV and PPR

files are considered potential targets to be processed.

Figure 8-20: Pipeline CSV File (Catalogue Traversal mode): These files consisted of a number of

sets of lines, each corresponding to the mosaic of fields around a target field. Within these groups,

each line corresponded to a field in the mosaic. Target field information was repeated on each row

within group.

8.3.6. Job Description Language (JDL)

The Job Description Language is the means by which jobs are submitted to the grid in

the gLite system. [7] It works by specifying a number of attributes for a job. The

attributes of a job are specified as a series of key-value pairs, where the key is selected

from a pre-defined list of grid job attributes which can be specified, and the value is one

or more strings specifying that attribute for that specific grid job. [7]

These attributes include the executable to be run, any arguments to that executable, and

any files to be copied to the grid node from gridUI when the job is submitted. In

addition, any further requirements may be specified for the job, such as a required

amount of disk space, or a specific grid queue to submit the job to. All jobs for this

Pipeline CSV File (Catalogue Traversal mode)

M Mosaics/Targets

N fields

ASCII
FieldNum

ASCII
MosaicNo

ASCII
camcol

ASCII
rerun

ASCII
run

ASCII
field

Field info Target info Order info

ASCII
camcol

ASCII
rerun

ASCII
run

ASCII
field

169

project are automatically generated by Bash shell scripts, as described in Subsection

7.2.4.

Figure 8-21: Job Description Language (JDL) files: These files consist of a number of key-value

pairs specified in strings with specific formatting determined by the gLite User Guide [7].

Each JDL file describes a single job, and as such, each JDL refers to one set of data to

be processed. In this project, PRM and PPR files describe a given set of data, so each

JDL refers to a corresponding PPR or PRM file as arguments to the executable. In

addition, some jobs require more arguments, which are entered by the user when the

JDL is generated.

8.4. Summary

This project uses input data from diverse sources, and stores and processes that data on

a variety of computing elements, and generates output in a selection of formats. In

order to maintain control over the data and computing elements, this data is managed by

identifying firm communications links between data and computing elements of the

project, a well-defined data directory structure and a clear understanding of the internal

structure of the file types used in the project.

Five primary data storage and computing elements were used in the project:

• The Development Environment, a virtual machine used for software

development

• gridUI, a gateway machine used to access the grid infrastructure

• the GMS, which forms the backbone of the grid system

• the LFC, the large-scale distributed data storage system used to store catalogues

Job Description Language (.jdl)

1-N key-value pairs

1-V Values

String value String key

170

• Worker Nodes, the individual components of Grid Ireland which are used to

execute individual grid jobs.

The data stored on these data elements is stored in a directory structure which is

intended to maximise the portability of the data by ensuring that the data is stored in the

same relative path on all storage elements. As data is needed for a job, test or other

purpose, it is copied from the LFC to the corresponding location relative to the working

directory of the data element that job is operating from.

The top levels of the directory structure are designed to enable expansion within the

SCG beyond the scope of this project. Within the scope of this project, however, these

levels are static at ittd/grid_cdm/. This level forms the primary level for this

project. The principal subdirectories are listed below.

• Workspace: a set of directories in which source code for the C programs is

stored

• Scripts: a repository for the BASH shell scripts which are used primarily for

grid job management

• Test: a designated location where software testing is carried out with minimal

impact on other software

• Data: the storage for source, local and output data catalogues

• Release: the folder for storage of the final versions of the software prior to

submission for grid jobs

The data within these directories is structured in a variety of formats. The six formats

of note were:

• The Flexible Image Transfer System (FITS), an established standard in the

Astronomical community [164]

• The Catalogue Information Format (CTI) an internally defined format which is

used to identify the contents of FITS files

• Parameter files (PRM, PPR, and PRT), an internally defined set of related

formats, each of which specifies data required for a particular grid job

• Unstructured Text files

• Comma Separated Value (CSV) files, a portable file format used to store tabular

data in pure text format. [163]

171

• Job Description Language files (JDL) the standard format used to submit grid

jobs in the gLite system. [7]

This data management process allows for robust access to the data from a variety of

data storage elements, extensible systems suitable for use with future projects and a

flexible system which enables large-scale data to be accessible without requiring that

each grid job have full access to the stored catalogue data.

172

9. Implementation & Operations

This Chapter discusses the pragmatic methodology used to bring the project from

design to completion. Two key areas of operation are identified: the project

implementation process and the practicalities of grid operations.

The discussion of the project implementation in Section 9.1 begins by describing the

development environment in detail, with explanations of the effects this has on testing

and implementation phases of the project. The development testing cycle is then

discussed, emphasising the specific implementation of the cyclical design process

illustrated in Subsection 6.2.1.

Section 9.2 discusses the practical approach needed in dealing with a grid. Hardware

and software limitations on the grid which were encountered during this project are

discussed in detail. These limitations demand a grid management process which is

explained here.

9.1. Project Implementation

The process by which the project is transformed from the designs contained in Chapters

5-8 into the practical tool that produces results like those contained in Chapters 10-13

demands two elements.

The first is the development environment. Hardware resources available to the SCG

dictate the nature of the development environment. Subsection 9.1.1 explains the nature

of that environment and the restrictions this places on the project.

The project makes use of a variant of the Iterative and Incremental development

method, [150] where design specifics of the project evolve over time as part of a

development cycle discussed in Subsection 6.2.1. A critical element of this

development method is testing, and the various testing levels and cycles used in this

project are discussed in Subsection 9.1.2.

9.1.1. Development Environment

The primary development environment used throughout this project is a Virtual

Machine (VM). This VM was initially operated through Sun Virtual Box version 1.6.

173

Successive upgrades were used, and the version used at the completion of the

development phase was Oracle VM VirtualBox 4.2. This environment was initially

used on a Windows XP desktop computer at ITTD, which was successively replaced

with several newer model computers. The current environment is held within a laptop

running Windows 8.

The use of a VM permits the transfer of the development environment wholesale from

computer to computer over time as the project continues and hardware resources

available to the project change. This ensures continuity of service and a stable

environment for testing the project. In addition, the entire VM, 8GB in size, is backed

up to external physical and cloud storage for additional reliability.

The operating system of the development environment is Scientific Linux version 4.5.

The choice of Scientific Linux version 4.5 is dictated by the requirements of Grid

Ireland – software is thus developed in a compatible environment with the grid.

The Integrated Development Environment (IDE) chosen for the project is Eclipse

Platform version 3.3.1.1. This was selected on the recommendation of Tadhg O Briain

[167] as a suitable environment for developing C and C++ programs with user-friendly

debugging and compilation processes.

The use of virtualisation allows for shared directories to be established between the

Linux virtual machine and the Windows host machine, enabling intuitive transfer of

data from one to another for test purposes. However, the shared folder causes some

problems when used on a host with 64-bit architecture while the VM is configured to

simulate 32-bit architecture. For example, files opened by the project programs within

the shared directory can become corrupted, and some programs may crash after 1023

lines of output are written to a file. This is corrected by ensuring test programs are run

entirely within the virtual environment. From there they can later be copied to the host

for further tests as needed.

9.1.2. Software Testing

Four major levels of testing are used over the course of the project, and each set of tests

can be used to build upon the level below it. Firstly, functional testing uses dummy

data within the IDE debugging system to test the operation of a particular function or

174

group of functions. This technique is useful to evaluate whether a function was

operational or not, and can be used to highlight basic code bugs, but is not ideal for

identifying design flaws and problems pertaining to scalability.

Second is small unit testing, which consists of running a project program on a truncated

subset of test data (usually <200 lines), usually within the IDE. This technique is useful

for demonstrating larger scale issues with the program, while being at a scale that the

results can be double-checked using more primitive methods: e.g. repeating the

calculation of the score for a small, simulated field by hand. In addition, small unit tests

are quick and can be iterated rapidly as part of the development cycle.

Third is full unit testing – typically a slower process than the smaller scale tests but

constituting a more rigorous software test. Full tests are carried out with subsets of the

data comparable to those which are encountered in the release version of the project.

Full unit tests are able to reveal issues such as memory leaks or file I/O errors which

only became apparent with larger datasets. Unit tests included a number of worked

examples similar to that shown in Chapter 10, where each step was examined closely

for any faults. Successful testing at this level usually indicates a program that is ready

for release.

Grid tests are the final level of testing in this project. These tests have a slow response

cycle – a minimum of five minutes and a maximum of three days. Grid tests are only

used after all other tests are passed, thereby enabling them to reveal grid specific issues

as discussed in Subsection 9.2. Grid testing requires specific grid management scripts

to be designed and written (as discussed in Subsection 7.2.4) and act as both a test of

these scripts and a test of other project software operating in a grid environment. Grid

testing takes place at the second highest level of the project development cycle, after the

“live” grid use of the project.

Once a program has passed all of these tests it is considered a release version and

uploaded to the release directory in the LFC as per Subsection 8.2.6.

9.2. Practicalities of Grid Operation

Grid operations pose particular challenges not encountered in other computing

paradigms. This Section describes the nature of these issues and the solutions used to

175

mitigate the effect of them. These challenges can be categorised under the three

headings listed below.

Firstly, programs submitted to the grid cannot simply be executed from a GUI as they

would in a non-distributed computing system. Instead, they must be submitted to the

Grid Management System (GMS) using JDL.

Second, though Grid computing provides substantial computing power as described in

Section 3.2, that power is not infinite. The limitations of that power, and the constraints

thereby placed on this project are discussed in Subsection 9.2.2.

Finally, this project’s unusual nature placed additional constraints on the retrieval of

output data from the project. [134]

9.2.1. Grid Job Submission & Scripts

Instead of being executed from the command line, grid jobs are submitted to the GMS

which allocates jobs to the nodes. These grid jobs are created, managed and submitted

by scripts designed for the purpose. The design of these scripts is discussed in

Subsection 7.2.4. In addition to the additional software design and development load,

this submission protocol places the following limitations on the project.

9.2.1.1 Grid Job Runtime

Grid Jobs are limited to a maximum of three days runtime. [134] This places limits on

how many targets can be processed as part of a single job. Experimental submissions of

varying numbers of targets to the grid were used to evaluate the relationship between

file I/O, processing and output time, and thus to estimate the number of targets that

could reliably be processed per unit time.

Experimental results of unit testing which lead to the determination of this relationship

are discussed in Section 13.2. Because the grid jobs in the Exoplanet Catalogue are

selected by means of fields in the Local Catalogue, rather than by target, and Local

Catalogue fields themselves have a variable number of entries, significant variation in

the size of the grid jobs was observed in the generation of this catalogue.

176

As a practical solution, grid jobs are calibrated such that the expected processing time is

36 hours to permit a 100% margin for variance in processing time. Further discussion

of the metrics used to estimate grid runtime may be found in Section 13.3.

9.2.1.2 Simultaneous Jobs

A grid is, as discussed in Subsection 3.2.1, a large, but not infinite, collection of

computers. The number of nodes that form the grid therefore places an absolute limit

on the number of jobs the can be running simultaneously, in this case 768. [93]

However, unless the grid is made available to a particular project as a dedicated

resource, grid management must set limits on the number of nodes that can be assigned

to a particular user.

At peak use during the creation of the Exoplanet Catalogue, Grid Ireland made 400

processors available to this project. As a result, it was necessary to manage grid job

submissions in order to prevent the system from exceeding this limit using the

submit_jobs script defined in Subsection 7.2.4.

Submission of jobs to the GMS is estimated experimentally to take between 10 seconds

and 1 minute depending on grid workload. Since this project, at peak load, submitted a

total of 1,791 grid jobs, it was advised that jobs be submitted in batches of no more than

10 at a time, at intervals of 5 minutes, to prevent the GMS from being pushed beyond

capacity. The submit_jobs script also managed the issue of simultaneous job

submissions as discussed in Subsection 7.2.4.

9.2.2. Data Limitations of the Grid

Grid operations are limited by both hardware and software constraints imposed by the

grid architecture. Some of these are well documented and can be flagged in advance.

These were built into the design of the project as discussed in Subsection 7.1.2.2.

Others did not become apparent until revealed in practice by the project. Several data-

specific issues that were encountered in the process of running the project are discussed

below.

177

9.2.2.1 LFC Access times

As discussed in Section 8.1, files used for long-term storage within the grid

environment are stored in the LFC. Access to the LFC is provided using the gLite

grid software. gLite incorporates security and authentication protocols which are

necessary for secure grid operations. [7] These protocols cause two major issues with

projects like this one which use large numbers of small files.

The first is that a user’s grid security certificate expires after 12 hours, even during the

execution of a 3 day grid job. Therefore the certificate must be renewed at least that

often. A script was written to renew the security certificate every 10 hours to resolve

that issue.

The second issue proved more detrimental to the project. Using gLite to access files

in the LFC activates an authentication process for each individual file. [7] This

authentication process has been experimentally estimated as taking between one and

five seconds. For typical grid jobs with a small number of large input files, a process

that requires a few seconds for authentication does not pose a significant issue.

However, for projects like this one, this authentication and access time become a

dominant factor in grid job runtime as explained in Section 13.4. This issue was

mitigated for this project when a Network File System (NFS) to which WNs had direct

access to was installed on the Grid. The Local Catalogue was replicated on that system.

The grid management scripts were modified to access the NFS first, instead of the LFC,

and copy the data from that system to local storage. No other modifications were

needed to the data or software.

9.2.2.2 Data Corruption and Losses

The LFC and other Grid Ireland resources are not under the control of the SCG. Due to

the scale of the LFC, it was not fully backed up. This meant that when a disc containing

part of the Local Catalogue as stored on the LFC failed, that data could not be retrieved

from backups. Since Local Catalogue files are derived from source files, and given an

identical name with the suffix “_local” as defined in Subsection 8.3.1.2, it was possible

to identify the lost files by comparing the source catalogue with what remained of the

178

LFC. Then, it was decided to re-run the API on those files in the source catalogue

which were missing from the Local Catalogue.

On a number of occasions during the creation of the Exoplanet Catalogue, grid jobs

failed to complete due to a variety of reasons (e.g. exceeding the grid job time limits or

data storage capacity of the WN or GMS) and the data that they would have generated

was lost. In this case, a pragmatic attitude was taken: 67,043,579 stars had been

analysed and the data recovered, representing 78% of the Local Catalogue processed. It

was decided that this represented a sufficient data product for this project.

9.2.3. Result Generation & Collation

Over the course of this project, 77,429 quasars and ~86,000,000 stars were analysed

using the Locus Algorithm. For each, an attempt was made to give coordinates for the

optimal pointing for a telescope for the purposes of differential photometry, and a score

to represent how good that star is for that purpose. This process produces large

catalogues as discussed in Chapter 11.

Standard grid output would take the form of a set of log files created from the standard

output from the programs run as part of that grid. [7] For such a large output, this is not

viable as discussed in Subsection 9.2.3.1. Instead, this project made use of the large

storage facility available through the use of the LFC as explained in Subsection 9.2.3.2.

9.2.3.1 Logfile/Standard Grid Output

Previous practical experience in Grid Ireland involved the use of medium-large input

datasets, large processing demands, and very small amounts of output data. [134] This

meant that it was possible for programs running on the grid to send their output to

std.out, which was piped by the GMS into log files, which could be retrieved using

standard gLite commands. [7]

When this technique was tried with this project, it became necessary for management at

Grid Ireland to perform an emergency shutdown on the grid jobs as they greatly

exceeded the available storage space for the log files, and were disrupting grid

availability for other users.

179

In addition, the log files are ASCII files, while output from the project is numeric.

Therefore there was a risk of loss of precision in the output data which was

unacceptable.

In order to resolve the issues whereby the output files were overwhelming the GLS, grid

job scripts were split into verbose versions used for testing and silent versions used on

the grid. Instead of the log files, output from the project was saved in FITS files on the

LFC as defined in Subsections 8.3.1.3 and 9.2.3.2.

9.2.3.2 LFC Storage of Output

As explained in Subsection 8.3.1.3, output from this project is created in the worker

nodes on the grid and then copied to the LFC. The high capacity of the LFC makes it

an ideal environment for the storage of large files like those used to store the grid

output, as discussed in Section 13.1. In addition, since each job produces a single file

from many, the latency due to LFC access times as highlighted in Subsection 9.2.2.1 is

not a significant cost on any particular job when used for storage of output.

9.3. Summary

Implementation of this project largely follows the design laid out in Chapters 5-8. The

development environment, a virtual machine operating Scientific Linux version 4.5

enables portable development compatible with Grid Ireland requirements. By

developing in this environment, which was operated through a variety of versions of

VirtualBox on physical Windows devices, the project can have firm control over

environmental parameters.

The testing process in this project is carried out at four primary levels.

• Functional testing, which tests functions and other low-level components

• Small Unit testing, which tests programs and higher level components for

semantic errors

• Large Unit testing, which tests programs and higher level components for

operational errors such as memory leaks and timing issues

• Grid testing, which tests high level components of the project for issues specific

to the grid.

180

In addition, the full local, quasar and exoplanet catalogue generation systems can be

considered de facto tests of the system as a whole as these jobs were monitored to show

computing metrics for the overall system.

The implementation of this project also demanded a number of pragmatic decisions be

taken regarding operations on Grid Ireland. Firstly, Grid job submission has to be

monitored for a number of practical issues. The monitoring was required to:

• plan Grid jobs such that they do not exceed grid runtime limits. A margin of

error of 100% on a runtime limit of 72 hours leads to a scheduled runtime limit

of 36 hours.

• ensure that the number of jobs submitted did not exceed the maximum number

of jobs permitted

• limit the number of jobs submitted simultaneously

Secondly, the Grid has several issues related to data access and reliability.

• Access to the LFC for many small files as used in this project is dominated by

security and authentication procedures. The use of an NFS in place of the LFC

allows for more rapid, reliable access to the data

• Complete backups of all storage were not made available through the LFC.

Where possible, as with the Local Catalogue, data lost due to disc corruption

was replaced. Given the data volume in this project, when this was not possible,

it was determined that the remaining data constitutes a significant data product.

The production of large catalogues of output data as is the case with this project is not

typical of prior Grid Ireland projects. As a result, several protocols have to be

implemented to prevent disruption to the GMS.

• Operational programs and scripts suppress their output which would usually be

piped to std.out. Specific verbose versions were developed as needed for

testing purposes which do not suppress this output.

• Output data is exclusively stored in the LFC.

181

10. Individual Result

This Chapter provides a complete worked example of the project’s software solution in

operation on a single sample star, SDSS J113824.40+483457.8. This Chapter shows a

step-by-step description of the process which was used to generate pointings for that

star.

This same process was iterated 67,043,579 times to produce 61,662,376 pointings for

other stars in the Exoplanet Catalogue, as discussed from a broader perspective in

Section 11.4 and Chapter 12.

This particular star was selected as part of a follow-up observation series at Raheny

Observatory (Minor Planet Centre reference MPC #J41) [168] in the Spring of 2014.

SDSS J113824.40+483457.8 was selected from the catalogue on the following basis:

• It is sufficiently bright (r = 15.7938) that it was well within the capacity of the

0.35m telescope at Raheny to observe at high signal-to-noise ratio (SNR) with 1

minute exposures.

• Its position (RA 174.6017°, Dec 48.5828°) was visible above the useful visible

horizon from early in the night from Raheny Observatory during the Spring of

2014

• Its score of 10.4877 was approximately equal to the median for stars in its

magnitude range, and therefore constituted a typical example of a star in the

range which the telescope at Raheny Observatory could observe. This score,

was previously calculated as part of the Exoplanet Catalogue, as discussed in

Section 11.4, using the method shown in Figure 5-3, from the reference stars

shown in Table 10-1. This chapter provides a complete description of how this

score was calculated.

In the following Sections the process by which this target was analysed in the catalogue

creation phase of the project are repeated here and explained in detail. This process is

logically partitioned into three Sections: extraction of data from SDSS, identification of

candidate reference stars and application of the Locus Algorithm.

182

Finally, there is a brief discussion of an observing run of this target from Raheny

Observatory based upon the pointing indicated by the Locus Algorithm analysis.

Detailed analysis of the output from this observing run is in progress at time of writing.

10.1. Aggregate Data from SDSS

This first step shows how data for candidate reference stars was extracted from SDSS

for use in building a mosaic of fields around the target in this worked example. This

Section corresponds both to the API step of the project as described in Subsection 7.2.1

and the SQL query through the SDSS CAS which identifies fields within a FoV of a

target.

Figure 10-1 Fields required for target star SDSS J113824.40+483457.8 (dark green). All areas

which can be included in a FOV with the target are highlighted in bright green. The 14 fields

which must be accessed to create this area are highlighted in red. Image taken from SDSS Navigate

tool. [140]

In the course of this project, a complete set of SDSS Calibrated Objects

(tsObj*.fit) files was downloaded from SDSS. From these files the Local

183

Catalogue was extracted. The Local catalogue excludes any objects in SDSS other than

stars, and for each of those stars only lists its position (RA and Dec) and magnitude

(ugriz).

Each file in the local catalogue corresponds directly with a file in the SDSS source

catalogue. As a result, it is possible to identify which fields in SDSS are required to

show all stars that could potentially be used as a reference star for the target star. These

fields were identified by means of an SQL box search query through the SDSS CAS as

explained in Subsection 7.2.5. This query selected all distinct fields within 0.25° (the

size of the FoV) of the target in Declination, and, after applying the correction factor

defined in Section 5.1 (dividing 0.25° by the cosine of 48.5828°) within 0.3779° of the

target in Right Ascension.

As can be seen from Figure 10-1, 14 SDSS fields have at least some component within

these bounds. In the original SDSS files, there are 10,813 catalogue entries in these 14

fields. After the application of the API as shown in Subsection 7.2.1, the Local

Catalogue versions of the same files contain 2,447 stars. See Subsection 11.2 for

further analysis on the conversion between SDSS Source data and the Local Catalogue.

10.2. Identify Potential Reference Stars

This second step shows how all of the stars in the mosaic of fields close to the target are

compared with the target, and only those stars which are suitable are considered as

candidate reference stars. The suitability of these stars is determined by a series of

filters which are based on user-defined parameters. These filtration steps are carried out

by the Filter function which is part of the main data pipeline as shown in Subsection

7.2.2.1.1. Only the candidate reference stars which pass all of these filters are used in

the application of the Locus Algorithm itself.

The data from the 14 fields on all 2447 stars was read into memory from the

corresponding Local Catalogue files. This data was subjected to a series of filters to

screen out stars which were unsuitable to be used as references for the target.

The first filter excluded any star which more than the size of the field of view away the

target in North-South/East-West translation: i.e. it excludes any star North of Dec

48.8328°, South of Dec 48.3328°, West of RA 174.2238° or East of 174.9796°. 1457

184

stars remained that could be included in a FoV with SDSS J113824.40+483457.8, as

shown in Figure 10-2.

Figure 10-2, There are 10,813 entries (shown in red) in SDSS among the 14 fields required for

SDSS J113824.40+483457.8. Of these, 2447 met the criteria for a star (highlighted in orange.) Only

the 1457 stars marked in green could be included in a FoV with the target (white with black cross).

Second, to avoid field crowding, any stars which were too close to another star to be

clearly resolved were eliminated. In this case, in consultation with BCO and Raheny

Observatory, the resolution parameter was set at 1 arcsecond (0.0002777°.) [83] [23]

While this parameter is finer resolution than the seeing at either location would usually

permit, this parameter was chosen as it is intended to use this system in conjunction

with systems for Lucky Photometry as discussed in Subsection 2.2.3.4.2. Since Lucky

Imaging systems have the potential to permit near-diffraction limited imaging for

185

modest telescopes, [81] 1 arcsecond was selected as a suitable value slightly larger than

this limit. No star failed to meet this parameter.

Figure 10-3: Filters to identify reference star candidates. The 42 candidate reference stars,

highlighted in cyan boxes in the were selected from among all stars (green diamonds) within a FoV

of the target (white and black cross) by including only those which were of the correct magnitude

(white circles), and which matched the target on both g-r (magenta diamonds) and r-i (yelow

squares) colour indices.

The next filter removed stars which are too bright or too faint for use with the selected

target. Stars within ±2 magnitudes in r of the target were passed to the next filter. This

value was chosen in consultation with Niall Smith of CIT to ensure that the faintest stars

observed were observed with high SNR while the brightest stars were not saturated.

186

[23] This meant that stars with 13.7938 ≤ r ≤ 17.7938 were in the right magnitude

range. A total of 143 stars met this criterion

Two more filters were applied, based on colour indices: targets with g-r and r-i within ±

0.1 mag of that of the target (0.4662 and 0.1606 respectively) were passed. This limit

was selected to be well within the proposed colour variation proposed by Young (1991),

which suggests a limit of 0.3 mag difference in Johnson B-V colour index. [51] 170

stars passed the g-r filter and 273 stars had an r-i within the correct range.

Once a potential reference star passed these three filters, a rating was calculated for that

reference. This rating was composed of a triangular rating as discussed in Section 5.3.1

based on each of the two colour indices used above, i.e. g-r and r-i. These ratings were

combined by multiplying one by the other to form a final rating for each reference star.

The formula used is given in Equation 5-4.

IJqrMK = R − M = 	2s. 4tuv � 2u. v4ww � x. uxw2

IWrOR = M − y = 	2u. v4ww � 	2u. z{vs � x. 24{4

∆IJqrMK � IQLMR0K � IS0T0M0O10 � x. uzz4 � x. uxw2 � x. xs{2

∆IWrOR � IQLMR0K � IS0T0M0O10 � x. 2zxz � x. 24{2 � x. xt2s

SJqrMK � 2 � U∆IJqrMK∆INLV U � 2 � Ux. xs{2x. 2 U � 2 � x. s{2 � x. ux{

SWrOR � 2 � U∆IWrOR∆INLVU � 2 � Ux. xt2sx. 2 U � 2 � x. t2s � x. zvs

SWrOR � SJqrMKZSWrOR � x. ux{Zx. zvs � x. 4vx

Equation 10-1: Expansion of Equation 5-4 for one candidate reference star, SDSS

J113749.38+482307.1 showing how its rating of 0.280 was calculated

As a worked example, this equation was applied to one arbitrarily chosen candidate

reference star, SDSS J113749.38+482307.1. This star, located slightly south-west of

the target at RA 174.4558°, Dec 48.3853° is slightly brighter than the target at

u=16.4119, g=15.2348, r=14.8277, i=14.6986 and z=14.6667, and passed all three

filtering criteria. Equation 10-1 shows a step-by-step calculation of the rating of this

reference star. This process, applied to each reference, was used to form the basis for

the scores for each of the potential pointings in the Locus Algorithm.

187

Combining these three filters created a list of 42 potential reference stars – each of

which can be included in a field of view with the target, is not too close to another star,

is similarly bright, and of very similar colour to the target. This selection process is

illustrated in Figure 10-3.

10.3. Apply the Locus Algorithm to each Candidate

The third and final stage of the process to identify an optimised pointing for differential

photometry observation demonstrates the application of the Locus Algorithm to a set of

candidate reference stars. This step corresponds to the Locus Main function, part of the

data analysis pipeline as defined in Subsection 7.2.2.1.2

The Locus algorithm was applied to the set of 42 candidate reference stars to identify

the optimum pointing for SDSS J113824.40+483457.8. For each candidate reference

star, a boundary box was drawn, indicating the locus of points upon which the centre of

the field of view could be placed to include both the target and that reference.

Figure 10-4: Possible Intercepts. For a given corner point and locus (yellow) there are four relative

positions other cornerpoints can reside at. From each of these, Loci can be drawn North or South

and East or West. Loci that produce an intercept are shown in green, those that do not are shown

in red.

188

This boundary box was defined by a cornerpoint and a pair of Boolean variables as

discussed in Subsection 5.2.3. The cornerpoint is defined to be exactly half the size of

the field of view (i.e. 0.1250 degrees in Dec and 0.1890 degrees in RA) away from the

reference star in the direction of the target. The Boolean variables indicated the

direction from that point, along which a line was traced, North or South and another line

traced East or West, back in the direction of the candidate reference star to give the

correct locus of points.

In the case of the sample candidate reference star, SDSS J113749.38+482307.1, the

boundary box was defined by the cornerpoint at RA 174.6447 and Dec 48.5103. The

locus lines for this reference were drawn to the West and the South from this point.

Figure 10-5 The Locus algorithm applied to all 42 candidate reference stars, indicated by blue

diamonds. The Loci for each of the references are shown in red. The optimum pointing, and the

Field of View centred on that point are highlighted in Green. The reference stars used in this

optimum pointing are highlighted with yellow circles.

The repetition of this process for each of the candidate reference stars produced the

pattern of intersecting boundaries shown in Figure 10-5. As shown in Figure 5-1, the

189

score for a given pointing changed only at the interception points between these

boundaries. As described in Subsection 5.2.4, these interception points were defined by

the RA coordinate of one cornerpoint and the Dec coordinate of another. Whether

intersection existed between two boundary boxes was checked by the set_boundary

function, and was defined by the direction the boundary lines were drawn from those

points as illustrated in Figure 10-4.

In the case of the sample reference star SDSS J113749.38+482307.1, its boundary box

had a cornerpoint at RA 174.6447, Dec 48.5103 and boundary loci drawn to the West

and South. There were four possible cases when this locus was compared with the

locus about another reference star as described below and illustrated in Figure 10-4.

• No intercept existed for any boundary box whose cornerpoint lay to the North-

East of its cornerpoint.

• An intercept existed for any cornerpoint to the North-West of the sample

cornerpoint, if the North/South locus from that cornerpoint was drawn to the

South. That intercept lay at the RA of the other boundary box and the Dec of

the sample.

• An intercept existed for any cornerpoint to the South-East of the sample

cornerpoint, if the East/West locus from that cornerpoint was drawn to the

West. That intercept lay at the RA of the sample and the Dec of the other

boundary box.

• An intercept existed for any cornerpoint to the South-West of the sample

cornerpoint, if the loci from that cornerpoint were drawn to the North or East.

If the loci were drawn both North and East, two intercepts existed. The former

intercept lay at the RA of the other boundary box and the Dec of the sample.

The latter intercept lay at the RA of the sample and the Dec of the other

boundary box.

The process of identifying intercepts reduced the number of times the scoring process

had to be applied from a potential maximum of 1936 (422) to 947. At each valid

intercept, a score was calculated by adding together the rating for each candidate

reference star within half the size of the FoV of the intercept.

190

At each of the 947 iterations of this process, the score for that point was compared with

the highest score achieved for any pointing for this target so far. If the score was higher

than the best one so far, the current score was retained, otherwise it was discarded and

the process repeated for the next valid intercept.

Once this process was completed, the pointing shown in Figure 10-5 was identified.

That pointing lies at RA 174.5643°, Dec 48.4739°. The score associated with that

pointing is 10.4877. This score was calculated by combining the ratings for a total of 20

reference stars around that point. The positions, magnitudes (ugriz) and ratings of each

of these reference stars are shown in Table 10-1. The target itself is listed among the

references.

RA Dec u g r i z rating

174.3753 48.4623 15.7857 14.4585 14.0245 13.8799 13.8701 0.5697

174.3762 48.4905 18.4131 17.2971 16.9297 16.8015 16.7790 0.0079

174.4096 48.5857 16.1848 14.9651 14.5601 14.4239 14.4252 0.2935

174.4258 48.5764 17.6403 16.2228 15.7365 15.5762 15.5623 0.7975

174.4558 48.3853 16.4119 15.2348 14.8277 14.6986 14.6667 0.2800

174.4616 48.3907 19.1028 17.9124 17.4305 17.2351 17.1800 0.5502

174.5140 48.5127 17.2860 16.1655 15.7987 15.6661 15.6576 0.0049

174.5468 48.3489 18.6297 17.6274 17.1599 16.9873 16.9563 0.8691

174.5491 48.4722 17.0500 15.7185 15.2597 15.1151 15.0624 0.7775

174.5723 48.4585 16.1364 14.7226 14.2351 14.0891 14.0658 0.6727

174.5753 48.4736 19.0045 17.7761 17.2607 17.0743 16.9931 0.3776

174.6017 48.5828 17.4388 16.2600 15.7938 15.6332 15.5839 1.0000

174.6190 48.3779 17.0760 16.1191 15.6677 15.4716 15.4082 0.5490

174.6427 48.5287 15.7352 14.6496 14.2462 14.1495 14.1076 0.1343

174.6502 48.5429 17.0786 15.9560 15.5713 15.4439 15.4197 0.1236

174.6523 48.5631 17.9506 16.7423 16.2981 16.1474 16.1058 0.7021

174.6699 48.4605 16.5431 15.2885 14.8413 14.6840 14.6431 0.7832

174.6934 48.5036 18.1210 16.9843 16.5839 16.4509 16.4315 0.2478

174.7168 48.5963 19.0405 17.8163 17.3542 17.1977 17.1262 0.9195

174.7443 48.4498 17.5230 16.2742 15.8235 15.6608 15.6258 0.8276

Table 10-1: Table of reference stars for SDSS J113824.40+483457.8 (highlighted in yellow.) One of

the reference stars, SDSS J113749.38+482307.1, is shown in red and is used to provide a worked

example of the rating and scoring system

10.4. Observation of a Pointing

The results of this analysis were used to guide a series of observations. These

observations were made at Raheny Observatory using a 0.35m telescope and a linear

CCD camera (Kodak model SBIG-ST8XME.) This camera has an array of 1530 × 1020

pixels. The plate scale is 1.33arcseconds per pixel. [169] This gives a rectangular FoV

of 34 × 22.67 arcminutes, substantially larger than the 15 arcminute square FoV for

191

which the Exoplanet Catalogue analysis was originally designed. This permits

exploration of the effect of larger or smaller FoV on observation as discussed in

Subsection 14.1.3, by artificially increasing or reducing the FoV used.

On the night of 15-16th February, 2014, a series of 269 images were taken from Raheny

Observatory, each with a 60s exposure. A full suite of calibration frames were also

provided in the form of Dark Frames, Bias Frames and Flat Frames. A sample of one of

these images is shown in Figure 10-6.

Figure 10-6: Image taken from Raheny Observatory based on pointing for SDSS

J113824.40+483457.8 (circled in red). Reference stars are circled in blue. Note that the FoV for

Raheny Observatory is larger than the FoV for which the Exoplanet catalogue was originally

intended. The size and position of the original FoV and pointing is approximated in a green overlay.

A follow-on project is currently underway to attempt to use the images produced by this

observation to produce differential photometry lightcurves using the reference stars

shown. Further refinement to these lightcurves is expected to be possible by a series of

experiments as discussed in Subsection 14.3.2.1

10.5. Expansion to the Catalogue on the Grid

The process shown in this Chapter represents one iteration of the full data analysis

process, from data access to SDSS to the generation of an optimised pointing from

192

which observations can be planned and carried out. This iteration, however, represents

just one target star, in one field, in one job as part of the generation of the Exoplanet

Catalogue.

The Exoplanet Catalogue was generated using the same SDSS band (r), FoV (0.25°),

resolution (0.0002777°) and magnitude- (2.0) and colour-limit (0.1) arguments as were

used in this sample entry.

Each grid job consisted of identifying the pointings for each star in a collection of fields

in the Local Catalogue. These grid jobs were each represented by a JDL file which

defined the requirements of the job as shown in Subsection 8.3.6. A total of 1,791 such

grid jobs were submitted, of which 1,598 successfully produced output files.

For each of 200 fields in every grid job, a new mosaic was generated as shown in

Section 10.1: an SQL query to the CAS identified the filed needed from the Local

Catalogue to generate the mosaic around that field. These fields were then aggregated

into an array in memory as shown in Subsection 5.2.1.

Fields in the Local Catalogue ranged in size from 0 to 4,541 targets, with a mean of

420. For each target in a field, a new list of candidate reference stars was generated as

shown in Section 10.2. Those reference stars are used to generate each new pointing as

illustrated in Section 10.3.

The final Exoplanet Catalogue, as discussed in Chapters 11 and 12, consisted of

67,043,579 entries for targets which had been processed. Of these entries, optimum

pointings have been generated for 61,662,376.

10.6. Conclusions

This Chapter has shown the process by which a pointing can be generated for a given

sample star, SDSS J113824.40+483457.8. First, the SDSS fields which contain nearby

stars must be identified – in this case, there are 14 such fields. The Local Catalogue

files, containing only stars, corresponding to fields must be read into memory – 2447

stars are listed in those 14 files.

A series of five filters are applied to remove stars which are unsuitable as reference

stars: two correspond to position: one eliminates stars which cannot possibly be

193

included in a FoV with the target, while the other eliminates those which cannot be

resolved from one another. One filter corresponds to magnitude, excluding any stars

much brighter or much fainter than the target. Finally, there are two filters based on

colour indices, which exclude stars which do not closely match the colour index of the

target. Taken together, these five filters left 42 candidate reference stars.

Each candidate reference star is given a rating, and a boundary box is drawn about it.

The rating process was explained with reference to a sample candidate reference star,

SDSS J113749.38+482307.1. The boundary box is defined by a cornerpoint – literally

the corner of that box, and a pair of binary switches indicating which direction from the

cornerpoint a corresponding pair of lines should be drawn to complete the box.

The points of intersection between these boxes are identified mathematically and, where

they intersect, a score is calculated by adding together the ratings for each candidate

reference star that could be included in a FoV centred on that point. The point with the

highest score is designated the optimum pointing for that target for the given

parameters.

This pointing can be used to guide observations, such as the sample observation carried

out at Raheny Observatory on the night of the 15-16th February, 2014. These

observations can be used to expand upon the work of the project as discussed in

Subsection 14.3.2.1.

194

11. Catalogue Outputs & Analysis

This Chapter presents the main results of the project: the catalogues generated and the

analysis of the contents of one of those catalogues.

Section 11.1 first discusses what the catalogues consist of, in terms of the data

contained within them, as well as an explanation of the meaning of that data. It then

explains the value added to the data from SDSS by the generation of these catalogues.

Section 11.2 discusses the Local Catalogue. First, it discusses the generation and

contents of the local catalogue. The variance introduced by the use of the reduced

version of the clean sample of point stars algorithm in the generation of the Local

Catalogue is explained in this Section.

Sections 11.3 and 11.4 respectively discuss the Quasar and Exoplanet catalogues.

These two Sections first explain the inputs used to generate the catalogues, then give a

high level overview of the data processing and outputs of that catalogue, and finally

explain the purpose of their respective catalogues, both in terms of the role served

within the project, and the results generated in the astronomical context.

A phenomenological meta-analysis of the output data for the Exoplanet catalogue is

discussed in detail in Chapter 12. This analysis is intended to characterise the

relationship between input parameters such as magnitude and colour index and output

score. In addition, by providing detailed descriptive statistics of the output it allows

users to better interpret it.

11.1. Overview of the Catalogues Generated

The Catalogues presented in this Chapter form the primary output from this project.

These catalogues take the form of one or more FITS table files each with zero or more

rows, each with information pertaining to a target. The catalogues present, for each

target, its position in RA and Dec (stored as double-precision floating point numbers)

and its magnitude in each of the five SDSS bands (stored as a vector of 5 floating point

numbers.)

195

For a given set of input criteria as described in Subsection 7.2.2, the output catalogues

also present (RA, Dec) coordinates and a score for the optimised pointing, all stored as

double precision floating point numbers. In the catalogues generated by this project, as

in SDSS, RA and Dec are quoted in decimal degrees.

The score quoted here reflects the degree to which the target and the sky around it meet

the observational criteria set by the user, as calculated by the Locus Algorithm (See

Sections 5.3 and 10.3.) These scores can be compared to one another: a target with a

higher score meets the criteria better than one with a lower score.

As discussed in Subsection 5.3.2, these scores are intended to reflect the degree to

which the sky around a target is suitable for differential photometry by providing a

combined measure of the number and quality of reference stars located nearby. In the

additive system each point of score marks one “perfect” reference star, or a combination

of less closely matched reference stars whose scores add up to 1. Subsection 14.3.2

discusses in detail ways in which these criteria can be refined.

This comparison is intended to enable a user to determine which of a number of

otherwise similar targets would be most suitable for precise observation using

differential photometry. By this means, a user can plan an automated survey by

preferentially targeting objects from which the most precise photometry can be

obtained.

Subsection 11.3 describes a catalogue generated for all quasars in SDSS based upon

criteria determined by observational experts at Blackrock Castle Observatory (BCO).

Subsection 11.4 describes the Exoplanet catalogue, a catalogue generated for every star

in SDSS, again based upon a different set observational parameters of BCO. Samples

of these results are given in Appendix D.

Completion of these catalogues provides the following

• Direct guidance for future observations:

Future differential photometry from BCO or observatories with a similar

telescope and observational parameters can use the pointings generated in this

catalogue directly. These pointings and their scores indicate the best (and worst)

196

pointings for telescopes of this type, when observing the class of phenomena for

which they were created

• Demonstration of a repeatable system

Catalogues can be generated for other observatories or other target sets using the

system developed in this project. Section 14.1 discusses a number of ways in

which this project can be reused to generate multiple catalogues suitable for use

for individual observers or robotic surveys with observational criteria which do

not match those of BCO

• Scoring system for refinement

As discussed in Sections 5.3, the choice of scoring system was originally driven

by a requirement for computational simplicity and to meet initial criteria from

Young. [51] As discussed in Subsection 14.3.2, it is intended to refine the

scoring system based upon comparisons between the output of this project, and

the results of observations based upon that output.

11.2. Local Catalogue

The Local Catalogue, as shown in the excerpt in Table 11-1 contains only RA, Dec, and

mag information, as these are the criteria used in the Locus Algorithm. As the Locus

Algorithm and Local Catalogue design is intended for extensibility to other catalogues,

it includes only the information likely to be common to most photometric catalogues.

Position Magnitude

RA Dec u g r i z

7.1372 13.9543 19.3300 18.0661 17.5408 17.3283 17.2404

7.1568 14.1287 17.6221 15.7981 14.9408 14.6053 14.3804

7.1907 14.0482 17.0511 15.7541 15.2098 15.0463 14.9774

7.1918 14.0477 23.7024 21.4588 19.6197 18.8573 18.7838

7.2171 14.0830 15.5161 14.2971 13.8758 13.7773 13.7294

7.2488 14.0517 18.2661 16.7711 16.0948 15.8493 15.7224

7.2467 14.0517 25.4099 22.8482 22.1397 21.1464 20.9168

7.2496 13.9712 16.6331 15.0791 14.4748 14.3063 14.2374

7.2553 14.1072 17.0961 15.2991 14.5768 14.3693 14.2484

7.2574 14.1049 23.5485 20.7917 19.4447 18.9023 18.5960

Table 11-1: Excerpt from the Local Catalogue. Columns are RA, Dec and Magnitude (u, g, r, i, z)

SDSS contains a large number of duplicate entries, and entries for objects which are not

stars. The Local Catalogue is intended to contain only stars as potential references and

as candidates for the exoplanet catalogue.

197

To remove the data which is not needed, the Local Catalogue was created by applying a

reduced version of the SDSS clean sample of point sources algorithm as described in

Subsection 7.2.1.2. The Algorithm used to generate the Local Catalogue selects objects

based on a set of bit-flags as shown on Table 7-1. As a result, the Local Catalogue is

smaller in both number of rows and columns than the SDSS source data.

Table 11-2 shows the results of a SQL query to the CAS for DR7, comparing the SDSS

Clean Sample of Stars algorithm and the reduced version used to generate the Local

Catalogue. As can be seen the reduced version permits a small number of entries

(0.72%) to pass through to the local catalogue that would be excluded by the full

algorithm but does not exclude any stars that should be accepted.

Category of entry from Source Catalogue Count Percentage

Entries in SDSS Source Catalogue 585,634,220

Primary (unique) entries in SDSS 357,175,411 60.99%

SDSS Clean Sample of Stars algorithm 131,934,656 22.53%

Local Catalogue algorithm 136,135,985 23.25%

Clean Sample rejects, Local Catalogue includes 4,201,329 0.72%

Table 11-2: Comparison between Source Catalogue, Local Catalogue, and output from the SDSS

Clean Sample of Stars Algorithm based on SQL query to the CAS [6]

Generation of the Local Catalogue provided the following outputs

• Catalogue for use

This project made direct use of the local catalogue, both as a list of candidate

reference stars for all uses of the Pipeline, and as a target list for the Exoplanet

Catalogue.

• Test of API system

The Generation of the Local Catalogue demonstrated the utility of the API

system used in this project. The extensible design allows for modular changes to

the API to be made, allowing new local catalogues to be developed in future

projects.

• Test platform for Grid Operations

As discussed in 13.3.1, generation of the Local Catalogue was carried out as a

grid operation and as a result provided test metrics for grid operations, including

an assessment of optimal grid job size.

198

11.3. Quasar Catalogue

The Quasar Catalogue was intended to provide optimised pointings for all 77,429

quasars in the fourth SDSS quasar catalogue, itself based upon the DR5 SDSS

catalogue. [137] The list of quasars provided a target list. The following telescope

parameters were used:

Parameter Value

Field of View 10 arcminutes (0.16666 degrees)

Resolution 1 arcsecond (0.0002777 degrees)

Magnitude variance limit +/- 2 magnitudes

Colour variance limit +/- 0.1 magnitudes

SDSS colour band r

Table 11-3: Parameter list for Quasar Catalogue

The algorithm produced pointings for 23,697 out of the 77,429 quasars and gave null

responses to another 16,303, representing targets for which the algorithm could find no

satisfactory pointing. The output from the remaining 37,429 was lost due to data

storage failure as discussed in Subsection 9.2.2.2. An excerpt from the catalogue is

shown in Table 11-4.

Position Magnitude Pointing

RA Dec u g r i z Av_RA Av_Dec Score

256.0224 59.0204 19.350 19.193 19.173 18.920 18.907 255.9825 58.9371 1.2341

256.1418 59.2010 19.373 19.261 19.035 18.964 19.086 256.1441 59.1177 2.3484

255.5668 59.4488 19.537 19.411 19.085 19.053 19.034 255.6814 59.4744 1.8073

255.4656 59.3727 19.073 18.840 18.730 18.716 18.770 255.6291 59.3082 0.7637

255.5836 59.2607 20.266 19.816 19.314 18.778 18.482 0.0000 0.0000 0.0000

255.2419 60.3599 24.579 21.522 19.838 19.696 19.362 0.0000 0.0000 0.0000

255.2369 60.4444 19.766 19.138 18.783 18.554 18.241 255.3836 60.4569 1.8138

255.0467 60.0616 19.747 19.287 18.672 18.072 17.704 255.2137 60.0010 0.9387

256.0256 60.7983 18.560 18.643 18.292 18.201 18.191 255.9964 60.7384 4.1030

255.9825 60.7533 19.601 19.222 18.766 18.616 18.283 255.8417 60.7211 5.2643

Table 11-4: Excerpt from Quasar Catalogue. Columns are Right Ascension, Declination,

Magnitude (u,g,r,i,z), Pointing RA, Pointing Dec and Score. Highlighted in red are two quasars for

which no suitable pointings were possible for the given criteria. Highlighted in green is the quasar

with the best score in this small sample, SDSS J170355.79+604511.7

As discussed in Subsection 5.2.6, there are a variety of reasons a target may include no

pointing. According to Fan [170], many quasars can be selected from stars because

they are outliers from the stellar locus in colour space. Since this algorithm selects

reference stars based on proximity in that space, it follows that for many quasars; there

would be no suitable reference stars.

199

Parameter Number Percentage of Targets

Targets 77,429 100%

Processed targets 40,000. 51.7%

Pointings 23,697 30.6%

No Pointing Results 16,303 21.1%

Table 11-5: Summary of output from Quasar Catalogue

Descriptive statistics of the variables that contribute significantly to the quasar

catalogue are shown in Table 11-6. These statistics show the range of magnitudes SDSS

quasars are observed at, with most (~90%) in the range (18<r<20) The mean values for

both g-r and r-i for quasars are significantly lower (bluer) than those for the stars used in

the exoplanet catalogue, and these colour indices show a relatively narrow standard

distribution when compared with the stars shown in Table 11-10, corroborating Fan’s

statement. [170]

Figure 11-1: Distribution of scores in the Quasar Catalogue. This graph shows only the

distribution of scores for quasars for which a valid pointing could be identified.

As a result of the quasars’ colour distribution, and because the field of view used for the

quasar catalogue is small, (10 arcminutes compared with 15 for the exoplanet catalogue)

the scores for the quasar pointings are quite low.

200

In addition to a large number of quasars with no pointing, the median score for quasars

is just 1.33, slightly above that for a star with a single “perfect” reference, as discussed

in Subsection 5.3.1, with few quasars showing a score greater than 4. The distribution of

scores shows with a sharp peak close at a score between 0.9 and 1. As shown in Figure

11-1, scores show a long-tailed, right-tailed distribution skew of +2.0925.

Descriptive
Statistic

Magnitude Colour Pointing

g r i g-r r-i Score

Maximum 24.4310 22.3160 21.8350 2.8280 1.6910 14.1387
95th Percentile 20.6130 20.3470 20.1610 0.5981 0.3450 4.2493
Mean 19.4618 19.2263 19.0952 0.2355 0.1311 1.7070
Median 19.3920 19.1740 19.0470 0.2040 0.1190 1.3314
5th Percentile 18.2449 18.0350 17.9370 -0.0170 -0.0580 0.4759
Minimum 15.4320 15.2440 15.1840 -0.4240 -0.3020 0.0008
St. Dev. 0.7676 0.7202 0.6926 0.2252 0.1390 1.2226

Table 11-6: Descriptive statistics of the Quasar Catalogue, filtered to those quasars for which

pointings were available. The only magnitude (g, r, i) and colour parameters (g-r, r-i) which

contribute to the score are shown.

In summary, the quasar catalogue was valuable for the following reasons

• Optimised pointings for quasars

Pointings were generated for 23,697 quasars which met the required criteria

within SDSS for observation by BCO. While the score for many quasars is low,

the right-tailed distribution shown in Figure 11-1 indicates a number of quasars

for which many suitable reference stars are available: The 95th percentile is 4.25,

so 1,184 quasars have a score greater than this.

• Demonstrated the Pipeline

The Locus Algorithm pipeline operated successfully in target list mode to

generate the quasar catalogue. The techniques applied in the generation of this

catalogue can be applied to do this can be applied to other target lists as

proposed in Subsection 14.1.5

• Test platform for Grid Operations

As discussed in 13.3.2, the generation of the quasar catalogue permitted testing

of the pipeline in operation in a grid environment. These metrics were used to

plan the Exoplanet Catalogue generation.

201

11.4. Exoplanet Catalogue

The creation of the Exoplanet Catalogue is the primary objective of this project. It

represents an attempt to analyse all stars in SDSS for their suitability for differential

photometry. By maximising the suitability of the target for differential photometry, it

becomes easier to observe the minutes-timescale, millimagnitude variability needed to

observe Exoplanet transits. The Exoplanet Catalogue was created using the input

parameters shown in Table 11-7

Parameter Value

Field of View 15 arcminutes (0.25 degrees)

Resolution 1 arcsecond (0.0002777 degrees)

Magnitude variance limit +/- 2 magnitudes

Colour variance limit +/- 0.1 magnitudes

SDSS colour band r

Table 11-7: Summary of Input Parameters for Exoplanet Catalogue

For this project, no assumptions are made about the suitability of a given target: all stars

are treated equally. Therefore, the target list for this catalogue consists of all stars in

SDSS, as defined by the Local Catalogue algorithm, derived from the SDSS Clean

Sample of Stars Algorithm as discussed in Chapter 7. [157] Since the Local Catalogue

is used to identify reference stars, the Exoplanet Catalogue may be considered as the

result of comparing the Local Catalogue with itself. There are ~86,000,000 stars in the

local catalogue.

Parameter Number Percentage (overall/LC)

Unique targets (CAS) [6] 357,175,411 100%/n/a

Local catalogue ~86,000,000 24%/100%

Stars Analysed 67,043,579 18.8%/78%

Pointings 61,662,376 17.2%/71%

Null results 5,381,203 1.50%/6.3%

Targets in failed grid jobs ~19,000,000 5.32%/22%

Table 11-8: Summary of output from Exoplanet Catalogue. The percentage column compares

elements in the output catalogue with the number of unique objects in the overall catalogue and

with the number of objects in the local catalogue.

Note that there are fewer entries in the Local Catalogue than would be predicted by the

application of the algorithm to the CAS. This is because the Local Catalogue was based

on data in the calibrated object list (tsObj) files in the DAS. These files are based

upon the SDSS Legacy Survey. Application of the same algorithm to DR7 in the CAS

202

produces 136,135,985 targets as shown in Table 11-2. However, the CAS includes all

data for SDSS-II, including Legacy, SEGUE and a Supernova survey. [111]

Figure 11-2: Distribution of scores for a sample of 106 stars in the Exoplanet Catalogue. Not shown

in this sample are 57105 stars for which no pointing was observed

As discussed in Chapter 9, time limits on grid jobs caused ~22% of grid jobs to fail.

This left 67,043,579 stars for which an entry in the output catalogue is available, of

which, 61,662,376 produced a pointing while 5,381,203 produced a null result: as

before representing targets for which there is no viable pointing available. This output

is summarised in Table 11-8.

Descriptive statistics of a subset of 106 stars in the exoplanet catalogue are shown in

Table 11-10. Stars in SDSS show a wider distribution of magnitude than is present in

the quasar catalogue. Most stars (~90%) in SDSS fall in the range 16.5<r<23.5. It can

be noted that many stars in the catalogue are observed at fainter magnitudes than are

shown in the Quasar catalogue. Colour indices g-r and r-i also show wider distributions

and higher (redder) means than for quasars.

The larger area of the FoV for the exoplanet catalogue (15×15 = 225 square arcminutes

as opposed to 10×10 = 100 square arcminutes) would predict an increase of score by a

factor of ~2.25; however the mean (11.41) and median (6.73) scores are much higher

203

than the corresponding values in the quasar catalogue, even allowing for that correction.

In addition, extremely high scores are not uncommon

Position Magnitude Pointing

RA Dec u g r i z RA Dec Score

230.55 -1.59 19.19 17.46 16.73 16.42 16.24 230.50 -1.70 19.43

230.55 -1.59 24.29 21.15 19.80 19.12 18.65 230.42 -1.48 8.63

230.55 -1.74 18.64 16.78 16.00 15.69 15.50 230.43 -1.82 11.48

230.55 -1.55 19.41 18.12 17.52 17.25 17.08 230.64 -1.54 27.66

230.55 -1.67 19.30 18.16 17.67 17.43 17.29 230.68 -1.55 24.52

230.56 -1.74 19.54 18.51 18.01 17.77 17.62 230.68 -1.67 22.05

230.56 -1.63 19.77 18.69 18.21 17.99 17.85 230.68 -1.55 26.06

230.56 -1.63 23.76 20.82 19.31 17.98 17.28 230.63 -1.53 9.29

230.58 -1.60 18.48 17.06 16.47 16.21 16.08 230.57 -1.48 24.82

230.59 -1.65 18.46 17.01 16.38 16.10 15.94 230.52 -1.54 20.87

Table 11-9: Excerpt from Exoplanet Catalogue. Columns are Right Ascension, Declination,

Magnitude (u,g,r,i,z), Pointing RA, Dec and Score. Highlighted in green is the highest scoring

target in this sample

As shown in Figure 11-2, the distribution of scores shows a long-tailed, right-tailed

distribution. The distribution shows a broadened, irregular peak between 1.0 and 2.5,

after which the score trends downwards. The right-tail of this distribution is much more

prominent than that of the quasar catalogue, with a skew of +2.8691. This again

indicates that far more high scores are observed among stars than among quasars.

Descriptive
Statistic

Magnitude Colour Pointing

g r i g-r r-i score

Maximum 27.1639 27.6275 26.3621 8.4090 5.8135 117.7195
95th Percentile 24.8162 23.5021 22.5144 1.8639 1.6366 38.6017
Mean 21.8563 20.8017 20.1017 1.0546 0.7000 11.4125
Median 22.4006 21.2793 20.4899 1.1180 0.5946 6.7279
5th Percentile 17.2291 16.5447 16.2241 0.2750 0.0536 1.3971
Minimum 13.2870 12.7994 12.5214 -4.3389 -7.6566 0.0022
St. Dev. 2.3095 2.1428 1.9744 0.5406 0.5514 13.6401

Table 11-10: Descriptive statistics of a subset of 106 stars of the Exoplanet Catalogue, filtered to

include only those 942,895 stars for which pointings were available. Only the magnitude (g, r, i)

and colour parameters (g-r, r-i) which contribute to the score are shown.

Further analysis of the colour and magnitude distributions of the Exoplanet catalogue,

and the relationship between these distributions and score form the basis of Chapter 12

The Exoplanet catalogue provides the following

• Optimised pointings for stars

204

Pointings were generated for each of for 61,662,376 stars, each with a score

representing how each meets a set of criteria intended to reflect their suitability

for differential photometry from BCO.

• Demonstration of the pipeline

The generation of the Exoplanet Catalogue showed the pipeline software

working in catalogue mode. This mode, as discussed in Subsection 7.2.2 is used

when an entire catalogue is used as a target list. This is a more complex process

requiring grid-scale parameterisation and management of the grid load

• Scalability testing

This catalogue provided a test of the scalability of the program to larger datasets

in a grid context. Notably, as discussed in Subsection 13.3.3, it exposed some of

the limits of the grid system, and a number of changes were made to enable

completion of the catalogue.

11.5. Summary

The Quasar Catalogue consists of 23,697 quasar targets with their respective pointings

and a score indicating how well the 10 arcminute square field of view around that

pointing matches the quasar, with reference stars within ±2.0 magnitudes in r of the

quasar and colour indices g-r and r-i within ± 0.1.

The Exoplanet Catalogue consists of 61,662,376 targets from the Local Catalogue with

their respective pointings and a score indicating how well the 15 arcminute field around

that pointing matches the star, with reference stars within ±2.0 magnitudes in r of the

star and colour indices g-r and r-i within ± 0.1.

The Local Catalogue consists of ~86,000,000 stars which represent ~22% of the SDSS

Source catalogue. These targets were selected using a simplified version of the SDSS

clean sample of stars algorithm, with which it agrees over 99% of the time.

205

12. Meta-Analysis of the Exoplanet Catalogue

The catalogues produced in the course of this project consist of large lists of targets,

pointings, and scores for those pointings. Further analysis of this analysed data is

needed to provide context for the use of the output catalogues. This second analysis is

referred to here as “meta-analysis.” Any future catalogues should be subject to similar

meta-analysis to characterise their behaviour as discussed in Subsection 14.1.5

The Locus Algorithm used to produce the output catalogues generated in this project

used position and magnitude information on targets and candidate reference stars to

generate optimised pointings. Calculated colour indices, generated by calculating the

difference between two neighbouring magnitudes (e.g. g-r, r-i in ugriz) were used to

calculate the scores for those pointings.

The meta-analysis looks at the distribution of results in the Exoplanet catalogue when

plotted against magnitude and colour. The results of this meta-analysis are used to

guide suggested refinements to the project as discussed in Section 14.3.

This Chapter is broken into two Sections, Section 12.1 dealing with variations against

Magnitude and Section 12.2 with variations against Colour. SDSS, and thus the Local

and Output Catalogues, is not an all-sky survey, instead focussing on an area in the

North Galactic Cap. [111] As a result of this selection bias, the meta-analysis does not

consider the distribution of results by position.

Both Sections follow the same structure as shown below

• Analysis of source data

Distributions of magnitude and colour for the targets in SDSS are plotted to

demonstrate the limits of the source data, and indicate the regime in which good

results might be expected.

• Overall patterns of output

By plotting the variation against magnitude and colour of score and the

proportion of stars for which no pointing could be identified (referred to as

“failed targets”), it is possible to identify regions of the colour and magnitude

space which are most likely to provide optimum photometry

• Variations in descriptive statistics

206

Corroboration of the visual plotting is provided by calculating descriptive

statistics: Mean, Median, 5th and 95th percentile for each range of magnitude and

colour values. By plotting the variation of these descriptive statistics against the

source parameter they pertain to, it is possible to identify regions in which to

focus subsequent refinements to the scoring system as discussed in Subsection

14.3.2.

The observation of trends in data demands repeated examination of data from multiple

perspectives. Therefore meta-analysis on all 67,043,579 entries in the output catalogue

is computationally intensive and, as a result, highly time consuming. Therefore the

approach of pragmatic computing demanded that the meta-analyses be carried out on

subsets of the data.

Two main sizes of subset of the output were used in this project. First, a subset of

64,000 entries from an arbitrarily selected file in the output catalogue was used to plot

the data on a variety of parameters for exploratory analysis. Where a trend was

observed in this data, a larger subset of 1,000,000 entries selected from 17 arbitrarily

selected files from the output catalogue was used to provide improved precision and

allow more accurate results. Unless otherwise specified, all graphs and tables shown

below are based on this larger subset.

Due to the continuous nature of the data, trends in the data were identified by plotting

graphs of the count of stars in a given bin on one or more parameters. Unless otherwise

specified, all bins are defined by the following inequality: � ≤ | < � + �, where b is the

bin label, x is the value of the parameter for the given target, and s is the bin size. (e.g. a

bin of 0.1 magnitude labelled 17.6 would include all stars with magnitude greater than

or equal to 17.6 and less than 17.7) While Poisson errors are applied for these counts,

in many cases the data volume (1,000,000 records) ensures that the errors are too small

to display. This is noted in the captions on the plots.

12.1. Magnitude Variations

This Section examines the distribution of magnitudes in SDSS, and the relationship

between this distribution and that of scores and failed targets in SDSS. As the

Exoplanet catalogue was generated using SDSS r magnitude, this analysis focusses

primarily on that band

207

In any given photometric system, more stars are predicted to be observed at fainter

magnitudes than at brighter ones. Equation 12-1 shows a least-squares-fit equation for

the distribution of stars for the whole sky in Johnson V magnitude according to Allen

[171].

� = 10~.���	P	~.����	`	P	~.~~**��`�	X	~.~~~���`�

Equation 12-1: Prediction of the distribution of stars by Johnson V magnitude across the whole sky

according to Allen. [171]

Figure 12-1 shows a plot for SDSS showing the distribution magnitudes of stars across

all five sdss filters (u, g, r, i, and z), together with Allen’s prediction. Each observed

SDSS plot shows near-exponential growth over a characteristic range of magnitudes.

Unlike the prediction from Allen, there is also a distinctive sharp fall-off at high

magnitudes. The faint-magnitude drops are indicative of the limiting magnitude of the

SDSS telescope at Apache Point under the SDSS observing regieme (the limit at which

SDSS achieves 95% detection of point sources is 22.2 magnitude in r, for example.)

[172]

Figure 12-1: Distribution of Magnitudes for a sample of 106 stars from SDSS. The proportion of

the sample is plotted against the proportion of the distribution of stars in the whole sky as predicted

by Allen. [171] Errorbars are not included as the Poisson error is too small to be displayed.

208

At low magnitudes, the count of stars in the Local catalogue declines to 0. This drop-

off for bright stars is caused primarily by the saturation point of the SDSS catalogue.

The majority of SDSS entries brighter than 14th magnitude in r are flagged as saturated,

and SDSS photometry of saturated objects is questionable. [157] [173] Therefore

objects flagged as saturated are removed by the algorithm to produce the local

catalogue.

These two limits imply limitations on the utility of any results that depend on

photometry of stars outside the range 14 < r < 23.

12.1.1. Variation of Score with Magnitude

Figure 11-2 shows the overall distribtion of scores for the exoplanet catalogue as a

blunted peak from 1.0-2.5, followed by a steady decline as score increases. Exploratory

visual analysis demonstrated that this distribution was not constant across all

magnitudes. Figure 12-2 shows the distribution of scores as a proportion of the overall

number of targets in a set of r magnitude bins.

Figure 12-2: Distribution of scores as a proportion of overall targets in a given r magnitude bin.

The addition of a variable offset allows for separation of the magnitude binning. Errors shown are

given by Poisson statistics

209

Sets of stars of different magnitudes show different distributions of score in SDSS. The

distributions of scores in the magnitude range 14 < r < 20 appears similar, and each

shows a peak at a score of 5-6. Fainter objects show a peak score close to 1. As fainter

objects are more common, as shown in Figure 12-1, they dominate the overall

distribution curve shown in Figure 11-2.

These distributions indicate a higher peak score, and more stars with higher scores in

the region 14 < r < 19, with the highest peak at r ≈ 18. This suggests that a user seeking

high scoring targets using these parameters should focus on this part of the magnitude

space. The highest score for any single star was 117.7 for a star with r=17.70

12.1.2. Variation of Number of Failed Targets with Magnitude

Figure 12-3: Plot of failed targets against magnitude. Shown in grey in the background is the

overall distribution of stars by r magnitude. Errorbars are not included as the Poisson error is too

small to be displayed.

A score of exactly zero indicates a target for which no viable reference could be found,

known as a failed target as shown in Figure 5-9. Any target for which there are any

suitable reference stars for which a pointing can be generated will have a score greater

than zero. Therefore two different trends can be observed by observing trends in the

210

score variable. The proportion of scores of exactly zero indicates the number of failed

targets in a given bin magnitude.

A plot of failed targets as shown in Figure 12-3 against magnitude demonstrates a low,

fairly consistent, failure rate (~1.5%) in the range 14 < r < 21 which rapidly increases

above that magnitude, and becomes dominant above the SDSS limiting (95%)

magnitude of 22.2. Brighter than 14th magnitude, most objects are saturated, and few

are retained in the Local and Exoplanet catalogues, rendering statistical analysis of

failed targets impractical.

12.1.3. Variation of Descriptive Statistics

As shown in Figure 12-2, the distribution of scores varies considerably with magnitude.

Figure 12-4 shows a suite of descriptive statistics of these distributions for a sample of

106 stars from the exoplanet catalogue.

Figure 12-4: Distribution a set of descriptive statistics of scores for a sample of 106 stars in the

Exoplanet Catalogue, separated into magnitude bins and plotted against magnitude. Note that

Maximum and 95th percentile values are plotted on the left-hand y-axis, while other variables are

plotted on the right axis as the former have a much wider range of values.

211

Most of these measures show a broad peak at r ≈ 17.5, indicating the region of the

magnitude space in which the targets best match the observational criteria provided.

For the most part, the distributions fall off rapidly outside the range 16 < r < 20.

The significance of each of these descriptive statistics is as follows

• Maximum

This shows the single highest score for any star in the r magnitude range. These

can be individual outliers, but also indicate the best possible match to

observational criteria.

• 95th Percentile

The top 5% of scores in a magnitude bin. Can be used to highlight regions with

significant numbers of very high scores, which may be suitable for use with

automated surveys.

• Mean

Arithmetic mean of scores in the r magnitude bin. This parameter can be used to

determine if a particular star is “above-” or “below-average” when compared

with stars of its magnitude. Note that mean is strongly affected by skewed,

long-tailed distributions such as those shown in Figure 12-2

• Median

The central value of score in the r magnitude bin. Can also be used to determine

if a particular star is “above-” or “below-average” when compared with stars of

its magnitude. Median is not affected by outliers and other extreme values.

• 5th Percentile

Indicates the bottom 5% of scores in a magnitude bin. Used to demonstrate the

skew of the distributions, as the difference between the median and 5th percentile

is significantly smaller than that between the 95th percentile and the median.

• Minimum

Indicates the lowest score found which is not a “Failed target.” No significant

patterns are visible in this variable, but it is included for completeness.

• Count

212

This shows the distribution of stars by r magnitude in thousands of all stars in

the sample. Notably, the distribution of stars in r magnitude is not strongly

correlated with the distribution of the descriptive statistics of those variables

12.2. Colour Variation

As shown in Section 5.3, rating for a candidate reference star is calculated based on the

similarity of the colour index of the candidate reference star to that of the target for the

colour bands either side of the colour band for which the catalogue is generated. Score

for a pointing is calculated by adding together the ratings for all candidate reference

stars which can be included in a field of view centred on that pointing.

Figure 12-5: Colour Distribution of Stars in SDSS. All four colours using neighbouring magnitudes

are shown here. No errorbars are shown, as Poisson statistical variation would not be visible at this

scale.

Since the Exoplanet Catalogue was developed for the SDSS r band, the g-r and r-i

colour indices are used in the calculation of score in the Locus Algorithm. The meta-

analyses below demonstrate the variation in the distribution of score and failed targets

against the distribution of stars with these colour indices.

213

According to Fan, the colour distribution of stars in SDSS is not predicted to be flat, but

instead shows a bimodal pattern, with two peaks. [170] Fan suggests that stellar

metallicity is a major contributor to this variation, with stars with higher metal contents

being bluer, but detailed analysis of this pattern is not within the scope of this project.

Since there are more stars observed with colours close to the peaks of these

distributions, stars in these regions of the colour space are more likely to have

neighbours of similar colour, and therefore higher scores are predicted for stars with

colour close to these peaks.

Figure 12-5 shows the distribution of a sample of 106 stars from the Exoplanet

Catalogue by colour indices in the four neighbouring-colour indices in SDSS, counting

the number of stars in bins of 0.025 in colour index.

• u-g shows a broad, low distribution with a peak at u-g=1.175, with multiple

unresolved peaks in the distribution.

• g-r shows a sharp bimodal distribution. The primary peak is observed at g-

r=1.425, while a secondary peak is visible at g-r=0.45, with a local minimum

between these two values at g-r=0.90

• r-i shows a sharp primary peak at r-i=0.15, and a much lower, partially resolved

peak at r-i=1.125±0.075

• i-z shows a narrower overall distribution than the other indices. This distribution

is also bimodal, with a primary peak at i-z=0.075 and a secondary peak at i-

z=0.575

12.2.1. Variation of Score with Colour

As shown in detail in Section 10.3, in the Exoplanet Catalogue, score for a pointing is

calculated based on the g-r and r-i colour indices of the target and each candidate

reference star. As with the variation in the distribution of score with magnitude shown

in Subsection 12.1.1, the shape of the distribution of score varies significantly with

colour index. This allows a user of the catalogue to identify regions of the colour space

in which particularly high scores may be found

Figure 12-6 shows the complex distribution of the number of stars with a particular

combination of score and colour index. By comparing the distributions of scores in

214

each colour bin to the overall distribution of score shown in Figure 11-2 and the

distribution of colours shown in Figure 12-5 it is possible to observe some patterns.

Figure 12-6: Distribution of count of scores against score and g-r (left) and r-i (right) colour indices

for a sample of 106 stars in the Exoplanet Catalogue. Stars for which no pointing could be

determined are excluded from these plots. The distribution of scores against colour index can be

observed to be similar to the distribution of stars by colour index as shown in Figure 12-5. The

peak of each distribution is highlighted in green and red respectively.

The distribution of scores appears to be broadly similar to the overall distribution of

colour for both of the indices Most stars (~90%) in SDSS are in the region

0.27<g-r<1.86 and 0.05<r-i<1.63. Outside these regions, the peak in the distribution of

score lies at score=1, and the distribution in scores above that value trends down

rapidly. Within those regions, the number of targets with high scores becomes far more

significant, with the largest distribution near to the peaks of the distribution of stars by

colour index in both cases.

In the region 0.3<g-r<0.6, and 0.1<r-i<0.2, corresponding to the bluer peaks each of the

distributions of colour, there appear to be two peaks in the distribution of scores, a

primary maximum at score=1, and a smaller local maximum at score=7. The

distribution of scores in this region also shows a very long-tailed distribution, including

215

the highest score for any single target in the sample (117.7) being found in this region,

with g-r = 0.45 and r-i = 0.17. This suggests contributions from at least two separate

distributions as suggested by Fan [170]

12.2.2. Variation of Number of Failed Targets with Colour

As discussed in Subsection 5.2.6, no pointing can be found for a target for which there

are no reference stars. In the generation of the Exoplanet Catalogue, the colour of a

candidate reference star must be within 0.1 magnitudes of the colour of the target in

both g-r and r-i magnitudes.

Figure 12-7: Proportion of targets in a given bin of colour index that failed to find a pointing,

plotted against the proportion of stars in the sample in that bin.

If the target is in a region of either or both colour spaces which does not have many

candidate reference stars, it becomes more likely that a pointing cannot be found.

Conversely, if there are many candidate reference stars of a particular colour, it

becomes less likely that the Locus Algorithm will fail to generate a pointing.

Figure 12-7 demonstrates the proportion of failed targets by g-r and r-i colour indices.

Most stars (~90%) in SDSS are in the region 0.27<g-r<1.86 and 0.05<r-i<1.63. Outside

216

this region, the proportion of targets for which no pointing could be generated rises

rapidly as the number of stars per magnitude bin decreases.

The minimum number of failed targets when plotted against colour occurs, as predicted,

at or close to the peak of the overall distribution of stars with 1.01% of stars failing at

r-i=1.425 and 0.87% of stars failing at r-i=0.150. A local minimum of 1.87% of failed

stars appears close to the secondary peak for g-r at 0.500. A broad local maximum

occurs between these minima in g-r. No clear secondary minimum is observed in

failure rate against r-i.

12.2.3. Variation of Descriptive Statistics with Colour

A. Figure 12-8 demonstrates the dependence of a variety of descriptive statistics of the

distribution of score when plotted for various g-r colour index bins, while Figure 12-9

demonstrates the same variations against r-i colour index. The purpose of plotting the

variables is identical to that in Subsection 12.1.3 where the distribution of score was

plotted against the distribution of magnitude.

Figure 12-8: Distribution of a variety of descriptive statistics of scores against g-r colour index.

Note that Maximum and 95th percentile values are plotted on the left-hand y-axis, while other

variables are plotted on the right axis as the former have a much higher range of values.

217

In all cases, a stronger dependence of distribution of score on the distribution of stars in

the colour band is shown than was demonstrated between those measures and

magnitude, but the relationship appears to be closer for r-i than g-r.

Figure 12-9: Distribution of a variety of descriptive statistic of scores against r-i colour index. Note

that Maximum and 95th percentile values are plotted on the left-hand y-axis, while other variables

are plotted on the right axis as the former have a much higher range of values.

Notably, for g-r, the maximum values for maximum, mean, median and 95th percentile

of score distribution all occur close to the secondary (bluer) peak of the distribution at

0.450. This is associated with the long-tailed distribution of scores shown in Figure

12-6, which indicates a large number of stars with very high scores.

All of the descriptive statistics of score drop to near-zero outside the ranges of colour

for most SDSS stars i.e. 0.27<g-r<1.86 and 0.05<r-i<1.63, and as stars with colour

within ±0.1mag of the target are considered candidate reference stars, scores begin to

drop rapidly as they approach those boundaries as there are fewer available references.

12.3. Summary

Three variables pertaining to stars in the Local Catalogue are used in the generation of

the Exoplanet Catalogue – Position, Magnitude and Colour. Of these, position is not

218

evenly distributed across the sky, but instead focussed on the Northern Galactic Cap.

[111] As a result, distribution of score against position was not investigated. The

parameters of the Exoplanet grid job specified that it was generating a catalogue for use

with SDSS r band filters. Therefore variation of score against r magnitude and g-r and

r-i colour indices were investigated to identify regions of the SDSS magnitude and

colour space in which the best scores can be found.

At magnitudes of r<14, most SDSS stars are marked with the saturated flag and as

a result are discarded from the Local Catalogue, and are not used as targets or candidate

reference stars in the Exoplanet Catalogue. At magnitudes above the SDSS 95%

limiting magnitude for detection of point sources at r=22.2, the number of stars

observed drops rapidly. SDSS Source data is therefore considered reliable in the range

14 < r < 22.2. Any target outside this range may be considered unreliable and should

not be used.

For the Exoplanet catalogue, which used r ± 2 as the acceptable range for potential

reference stars, any target outside the range 16 < r < 20.2 would be expected to suffer

loss of reference stars and thus reduced score. Use of targets outside this range is

therefore discouraged.

The distribution of score shows the highest values in the region 17 < r < 18, but useable

scores are observed across the full range as long as one avoids the limits of SDSS. Job

failure rate remains low in the range 14 < r < 21, but becomes dominant at higher

magnitudes.

The colour distribution of the stars in SDSS shows that a majority (90% - 5th to 95th

percentile) of these stars have colour indices in the ranges 0.27<g-r<1.86 and

0.05<r-i<1.63. Significantly, the median colours for the quasars used in this project are

g-r=0.2040 (outside the 5th percentile) and r-i=0.1190 (close to the 5th percentile) which

explains the reduced number of reference stars available, and thus the low scores and

high failure rates achieved in the Quasar Catalogue.

g-r shows a sharply bimodal distribution showing peaks at 0.450 and 1.425, the latter

peak being higher. r-i shows a strong primary peak at r-i=0.15, and a lower, partially

resolved peak at r-i=1.125±0.075. As score in the Exoplanet catalogue is calculated

219

based on these parameters, it was expected that stars close to these peaks would show

high scores and low failure rates, while stars away from these peaks, and especially

outside the 90% range would show low scores and high failure rates.

Figure 12-10: SDSS Navigate image for J203733.62+001953.5, the target with the highest score of

any target in the sample of 106 stars from the Exoplanet Catalogue. Shown in green is the target, in

red are each of the 247 reference stars selected for use with that target to produce a score of 117.70,

in yellow is the pointing – the point at which the telescope should be aimed and in blue are the

boundaries of a 0.25 degree field of view centred on that pointing. This image may be contrasted

with Figure 10-6 to illustrate the increase in the number of reference stars for this “top” target.

The distribution of scores appears to correlate with the distribution of both g-r and r-i

colour of targets in the catalogue, however the distribution of score is higher for the

220

smaller peak in the distribution of g-r = 0.450, as shown in Figure 12-8. Low failure

rates are observed across the range of values of colour for most SDSS targets (i.e.

0.27<g-r<1.86 and 0.05<r-i<1.63) High failure rates and low scores are observed for

targets outside these ranges. As a result, use of targets outside those ranges is not

recommended.

Overall, the mean and median of score for targets in the Exoplanet Catalogue are

11.4125 and 6.7279 respectively. Targets could therefore be considered “above

average” if their score exceeds one or both of these values. However, target score

shows a strong dependence on colour and a weaker dependence on magnitude. Ideally,

targets should be selected with magnitude close to r ≈ 17.5 and colour indices close to

the blue peaks of both distributions (g-r = 0.450, r-i = 0.150), as the highest scores are

observed close to those values.

The individual star in the subset selected with the highest score given the parameters

SDSS Colour = r, FoV = 0.25°, resolution = 0.0002777°, |Δmmax| = 2.0 and |Δcmax| = 0.1

was SDSS J203733.62+001953.5, with a score of 117.7 from 247 reference stars, r =

17.70, g-r = 0.45 and r-i = 0.17. The FoV generated for this target is shown in Figure

12-10.

As discussed in Subsection 2.2.3.5 and Section 5.3, this score indicates a large number

of available reference stars within a narrow magnitude and colour range from the target.

This enables the reduction of many of the sources of error in the measurement of the

differential magnitude of this target. [69] [22] Exact analysis of the degree to which

precision of these measurements can be improved is the subject of future work as

discussed in Subsection 14.3.2. In addition, the 247 reference stars may all be

intercompared, providing 247 separate lightcurves from which an exoplanet transit may

be observed.

221

13. Computational Results

This Chapter presents the results of this project from a computational point of view.

The objectives of this project from a computing perspective, as stated in Section 4.2,

were as follows:

• Develop a system capable of meeting the Astrophysical objective of analysing

SDSS to identify optimum pointings for Differential Photometry

• Evaluate that system’s performance in unit testing

• Use that evaluation to plan and implement a grid solution

• Assess the performance of the grid solution when compared with predictions

from unit testing to identify grid-specific issues

• Produce large catalogues of output data and characterise that data

• Provide guidance for future development.

This Chapter examines the results of this approach from the perspective of three sets of

metrics:

• Data metrics, shown in Section 13.1, which consider the size of the data at

various stages of the project, in terms of entries in the various catalogues, the

number of files used to store that data, the number of directories etc.

• Processing metrics, as described in Section 13.2, which are based on the time

taken to download, process and analyse the data in unit testing.

• Grid metrics, as discussed in Section 13.3, which consider how well the

conversion from single processor to grid computing scaled up.

Finally, Section 13.4 provides an appraisal of issues arising within the project which

impacted its performance. This includes bottlenecks in grid jobs and observed

reliability issues with both processing and data. A number of mitigations for these

issues are suggested which are expected to be valuable as a guide for future work as

discussed in Section 14.1.

13.1. Data Metrics

As discussed in Chapter 8, this Thesis requires the download, processing and access of

large amounts of data, which must be carefully organised such that it can be accessed at

various stages of the project.

222

Table 13-1 shows a number of properties of the data at various stages in this project.

Each catalogue consists of many FITS data format files. As discussed in Subsection

8.3.1, each FITS file includes one or more HDUs, each consisting of a header that

describes the data and a data unit that contains said data. In the case of the fits files

used in this project, the data units are all fits tables, consisting of a row for each entry in

the catalogue and a column for each piece of data about that column. For example, the

Local Catalogue FITS files, as described in Subsection 8.3.1.2 has a double precision

floating point column for RA, a double precision floating point column for Dec and an

array of five double precision floating point columns for ugriz magnitudes.

 SDSS DR7
Catalogue [111]

Local
Catalogue

Quasar
Catalogue

Exoplanet
Catalogue

Entries 357,175,411 [6] ~86,000,000 40,000. 67,043,579
Files 421,388 358,076 40. 1,598
Directories 3,290. 2,609 1 7
Size on disk 4.76 TB 6.89 GB 3.43 MB 5.02 GB
Mean Size per file 11.8 MB 20.2 kB 87.8 kB 3.22 MB
Mean Size per entry 14.3 kB ~86 B 87.8 B 80. B
Mean Entries per file 847 240 1,000. 41,955

Table 13-1: Data Size for the various databases used and created during this project. Approximate

or rounded values are indicated with a tilde (~), while values with significant trailing zeroes are

indicated with a decimal point (.). The Mean Size per entry is calculated by dividing the total size of

the catalogue by the number of entries and as such includes contributions from header data spread

per entry.

The Entries row in Table 13-1 refers to the number of rows in the given catalogue

between all the files (second row on Table 13-1) combined. Those files are stored in

directories governed by the data organisation structure laid out in Subsection 8.2.5. The

number of directories listed on Table 13-1 thus varies, largely depending on whether the

catalogue was organised into the SDSS hierarchy comprised of run, rerun, camcol

and field as defined in Subsection 8.2.5.1 or whether other concerns, such as the

aggregation of results in output data files dominated the design requirements. The size

of the respective catalogues listed in Table 13-1 was measured experimentally by Grid

Ireland and the SCG.

Table 13-1 also lists a number of calculated values. The size per file is the mean size

given the size of the catalogue on disk and the number of files of the catalogue. The

size per entry is similarly calculated based on the aggregate number of entries in the

catalogue. This value is larger than might be expected by naively adding the size of the

data types for the columns in the catalogue: for example, the Local Catalogue might be

223

expected to use 56B per entry (2+5=7 double precision numbers, × 8

(sizeof(double)) = 56B) but they are in fact 86B per entry. This can be attributed

to the fact that for files with few entries, the size of the Header can be a significant

contribution to the overall file size. The much larger Exoplanet Catalogue output files

as defined in Subsection 8.3.1.3 hold 10 double precision numbers per entry, but

because there are many rows in the file, the contribution of the header to the size per file

becomes negligible.

13.1.1. Source Data Metrics

The source data for this project is the Sloan Digital Sky Survey Catalogue, Data Release

7. As described in Subsection 8.2.5.1, it was decided to store this data in a structure that

mimicked its structure in the SDSS DAS catalogue. This structure permitted the use of

SDSS search tools such as the CAS to be used to probe the data. For example, SDSS

maintains a correspondence between file path/name and location on the sky, which can

be accessed using the CAS SQL database.

A key concern in the early phase of the project was the transfer of data from SDSS to

Grid Ireland for processing. While the DAS made the data available online, it was a

concern that downloading the data en bloc would put a strain on communications links

either at source or in TCD.

Instead of placing strain on computing resources, the final decision was made based on

the fact that the software development phase of the project was not complete when the

data was being accessed. A script was developed by John Ryan at Grid Ireland to

download and access the data from the DAS in small batches at off-peak times over the

course of six months in 2008. [174]

As shown in Table 13-1, this data totalled 4.76 TB in 421,388 separate files. The full

directory tree used to store this data amounted to 3,290 directories, counting

subdirectories.

13.1.2. API Data Metrics

The API phase of the project, as described in Subsection 7.2.1, processed the source

data to produce the Local Catalogue. For each file in the source catalogue, a

224

corresponding Local Catalogue file was created in a grid job. Each file in the Local

catalogue retained the same path and file name convention, slightly modified as

discussed in Subsection 8.2.5.1.

This process eliminated any entries in the catalogue that did not represent a clean

sample of point sources (i.e. stars) as discussed in Sections 7.2.1.2 and 11.2. As a

result, the mean number of entries in a Local Catalogue file was calculated at just 28%

of that for a Source file due to the removal of rows and columns as discussed in Section

11.2. However, Local Catalogue files are highly variable in size, ranging from 0 to

4,541 rows, because SDSS Source files are not consistent in their size and because the

proportion of “clean point sources” is not consistent from one source file to another.

One example of the way the proportion of clean point sources changes is illustrated

using the primary flag, which must be set for an entry to pass the filter. This flag

exits because SDSS files overlap, sometimes to a considerable degree [5] as shown, for

example, in Figure 5-4. As a result, some objects will be listed twice or more. One

entry for an object is designated the “primary” reference, and all others

“secondary,” based on SDSS’s score for that field it is detected in – a measure of the

sensitivity of the imaging system when that observation was made. [175]

For some fields in the Source Catalogue, there are no “primary” entries recorded, as

all entries are included in other fields with higher SDSS scores. In these cases, no

entries will be passed to the Local Catalogue. These files contain no entries, just a

header which defines a “3×0” table – i.e. a table with 3 columns and 0 rows, which

together amount to 5.62kB of data. In some cases, multiple fields in the same directory

may produce “3×0” fields in this way, which may suggest a run, rerun, camcol

combination which has been entirely superseded.

The mean size for a Local Catalogue file is 240 entries, and 20.2kB, however others can

be as large as 4,541 rows, and 256kB. For every entry which passed this filter, the API

extracted a much reduced set of only the data that would be required for the project –

position (RA, Dec) and SDSS model magnitude values. (ugriz, designated as the better

of de Vaucouleurs and exponential fits by SDSS) [111]

225

The average storage space used per entry was reduced by a factor of 170 due to the

reduction in the number of columns. When combined with the reduction by a factor of

3.53 in the number of rows in the catalogue, this led to the Local Catalogue being 707

times smaller than the Source.

This reduction in data provides for the following advantages. Which advantage

dominates depends on the particular implementation: As discussed in Section 13.2,

network access dominates for the Quasar job, while for the Exoplanet job, processing

and network transfer are approximately balanced

• Reduced network transfer time

By reducing file size, the time taken to transfer data from the LFC to the WN is

reduced, though fixed components of this time such as authentication will

remain constant.

• Reduced demands on memory

Smaller files for each field permits more of them to be accessed simultaneously,

potentially allowing for larger grid jobs to be carried out on a given WN

• Reduced processing

By performing the “Extract” operation once and storing the results in the Local

Catalogue, this function to separate the clean sample of point sources from the

rest of SDSS does not have to be performed at every iteration of the program.

However, above all of these advantages, the most significant improvement to this

project provided by the generation of the Local Catalogue was that it simplified the

design of the Pipeline and provided a template for extensibility to other catalogues as

described in Subsection 14.1.5.

13.1.3. Pipeline Data Metrics

The Data Analysis Pipeline (cf. Subsection 7.2.2) produced data for two catalogues: the

Exoplanet Catalogue and the Quasar Catalogue. Each of these was created by means of

a series of grid jobs. In both cases, the pipeline was designed to create a single output

FITS file for each grid job, as described in Subsection 8.3.1.3. As a result, the data

stored in these files is structured differently to that stored in the Local or Source

Catalogues, and lacks the hierarchical structure of SDSS-model data. A project is on-

226

going to transfer this data to an SQL database to make access more convenient. Instead,

output files are stored in directories based on the date upon which the grid job is

executed, as shown in Subsection 8.2.5. The contents, of each of these catalogues are

different, based on the different requirements of the two catalogues. Each was

calibrated to optimise grid job runtimes as discussed in Subsection 9.2.1.1.

The Quasar Catalogue was produced based on a target list (i.e. the SDSS Quasar List

[137].) For each entry in the target list, an individual mosaic is created from all fields in

the vicinity of that target. The meant that many entries in the Local catalogue were

required for each target, and File I/O and transfer time massively dominated over job

processing time as discussed in Subsection 13.2.2.

In Target List mode, the output file size is directly governed by the number of entries in

the target list for a given grid job. In this regard, given that each grid job listed exactly

1,000 targets, for the quasar catalogue, each of the 40 output files contains 1,000 entries.

Each Quasar catalogue file is therefore the same size, occupying 87.8 kB of disc space.

The Exoplanet Catalogue, on the other hand, used the Local Catalogue in its entirety as

the target list. A mosaic around each field in turn was generated by combining the

neighbouring fields. Those stars in neighbouring fields were all used as potential

reference stars for each Local Catalogue entry in the original field.

As discussed in Subsection 9.2.1.1, grid job runtime was limited to three days. In order

to allow for a large margin of variance in job runtime, jobs length was calibrated against

processing metrics developed during unit testing as discussed in Subsection 13.3.3 such

that the expected mean runtime was 36 hours. In order to meet this requirement, 200

Local Catalogue files were combined to produce each grid job in this way.

The output files that comprise the Exoplanet Catalogue are highly variable in size. This

is because, as discussed in Subsection 13.1.2, Local Catalogue fits files used to generate

the target lists are variable in size (from 0 to 4,541 rows) because of variances in the

SDSS Source catalogue. In addition, fields in a job for the exoplanet catalogue are

compiled sequentially. Because of this, and since there are a number of run, rerun,

camcol combinations which have been entirely superseded, it is possible for an entire

Exoplanet Grid Job to be composed of empty Local Catalogue fields. Such a grid job

227

will produce an empty output table. As before, these files are completely empty except

for a header describing a “6×0” data table, but still occupy 5.62kB.

The average Exoplanet Catalogue file occupies 3.22 MB and has 41,955 entries relating

to stars and their pointings, if any. At the top end of the scale, the largest output file

occupies 13.4 MB and consists of 175,688 entries. There are a total of 1,598 output

files in the Exoplanet Catalogue.

The small number of files in the Quasar Catalogue, and their relative similarity make

extraction of data from this catalogue as shown in Section 11.3 relatively simple: all 40

files can be concatenated, and various analyses performed on the whole dataset using

MS-Excel.

The larger size of, and variability of the contents of Exoplanet Catalogue files makes

analysis more complex. Accessing all 67,043,579 entries in 1,598 files is impractical,

and concatenating these files into a single file would generate an unwieldy 5.02 GB file.

Instead, for the meta-analysis carried out in Chapter 12, 17 files with 106 entries were

selected arbitrarily from the catalogue, and used to provide a sample for analysis in MS-

Excel. A future development of this project is to load the full data for the Exoplanet

Catalogue into a relational database to provide for SQL access.

13.2. Processing Metrics

The production of the data at each phase of the project requires the use of a series of

programs connected by a number of scripts as discussed in Section 7.2. The results of

unit testing, in addition to demonstrating the functionality of the systems, as discussed

in Section 9.2, were also used to identify the performance characteristics of the

software.

By design, each phase of the project included a minimum work unit as shown in Table

13-2, which could not be further reduced, based on the design of the software. These

work units can be aggregated to provide larger grid jobs to maximise the efficiency of

the system, they cannot be subdivided between multiple worker nodes in multiple grid

jobs. Estimates relating to these work units were evaluated by running the relevant

software on test data on the GridUI. GridUI provided a suitable analogue for a worker

node – a computer of with access to the LFC and other grid resources.

228

Table 13-2 lists the average time to process a work unit based on the time taken to

process a small batch of work units, with locally stored data. Data Access time is

influenced by both the size of and number of input files per work unit, and was

overwhelmingly dominated by LFC access time. LFC Access was slowed considerably

by the security & authentication requirements as discussed in Subsection 9.2.2.1.

 API (Local
Catalogue)

Pipeline (Quasar
Catalogue)

Pipeline (Exoplanet
Catalogue)

Unit of Work
Source Catalogue

file
Quasar Field

No. of Units 421,388 77,429 358,076

Processing Time per
unit

0.02887 s 0.15 s 36.0 s

Average Input per unit
1 Source Catalogue

file
11.73 Local

Catalogue files
20.32 Local

Catalogue files

Data in per unit 11.8 MB 237.1 kB 410.5 kB

Access time per unit 4.5 s 23.5 s 40.6 s

Mean output per unit
1 Local Catalogue

file
1 output file entry 240 output entries

Data out per unit 20.2 kB 90 B 18.75 kB

Ratio of Access to
Processing time

156:1 157:1 1.12:1

Table 13-2: Assessment of processing elements of three phases of the project

The results of these unit tests are discussed in detail in the following Subsections. In

these discussions, the dominant contribution to work unit run time is identified, and any

reductions to unit run time which are possible are described. Additionally, any

“economies of scale” which may be available during the grid process are identified: for

example, in the case where a file which is accessed by more than one work unit, options

are considered to have those work units bundled together, such that the file need only be

retrieved from the LFC once.

The results of unit testing influenced the designed grid job sizes. In the case of a task

for which the run time for a single unit was long, the grid job was designed to be

composed of fewer work units, and vice versa as discussed in Section 13.3.

13.2.1. API Metrics

The API consists of the programs Diagnose (see Subsection 7.2.1.1), which identifies

the key data columns in the source files, and Extract (Subsection 7.2.1.2), which selects

229

the “clean sample of point sources” entries, and copies the key data to the Local

Catalogue files. These require a series of Grid Management Scripts (see Subsection

7.2.4) to download data and program files to the Worker Node, call the programs, and

upload the new files to the LFC. The work unit for the API is a single file from the

source catalogue, from which the output is a single file in Local Catalogue format.

Unlike with the other tasks discussed below each file to be processed in source

catalogue is only accessed once in the API step. This means that there are no economies

of scale which can reduce the time to access data from the LFC.

As shown in Table 13-2, this process is dominated hugely (156:1) by Data Access time.

Optimisation of the processing step of this element of the project, therefore, would not

significantly contribute to the overall job time.

Any improvements to unit run time must therefore come from improcements to data

access time. Much of this access time, however, is dominated by LFC security and

authentication, referred to as the “LFC bottleneck” in this project. Therefore, further

improvements to Data Access time are outside the remit of users of gLite-pattern grid

systems. [7] Administrators of such systems, however, may make other facilities, such

as the NFS discussed in 9.2.2.1, available to users. In cloud computing, according to

Fox & Gannon, the solution to this bottleneck is to move the computation to the data,

where possible. [176]

In conclusion, any improvements to the unit run time for the API must focus on

removing or reducing the LFC bottleneck.

13.2.2. Pipeline Metrics

The Data Analysis Pipeline, as defined in Subsection 7.2.2, consists of the Locus

Algorithm Program (See Subsection 7.2.2.1) and a series of grid wrappers (Subsection

7.2.4) which manage the transfer of data from the LFC to the WN for processing.

This software operates in two modes, which have significant differences in performance

and operational characteristics. These two modes are called the “Target List” mode and

the “Catalogue Traversal” mode. The choice of which mode to use is governed by the

230

Parameterisation system used to control the project as described in Subsections 7.2.3

and 8.3.3.

13.2.2.1 Quasar Pipeline Metrics

The Quasar Catalogue was generated by the Pipeline operating in Target List mode.

The work unit for this mode is the target. This meant that for each target (i.e. a quasar),

a list of fields is provided by SQL query to the CAS as shown in Subsection 7.2.5.

These queries list the fields that are needed to create a mosaic of files around that target.

With the mosaic in place, an optimised pointing is identified for each target before

moving on to the next.

As Table 13-2 shows, this process is also dominated by Data Access, with a ratio

similar to that for the API of 157:1, though this similarity is coincidental. Optimisation

of processing, therefore, would still provide limited benefit at this step in the process.

As with the API phase, optimisation of Data Access time was not possible during the

generation of the Quasar Catalogue.

However, with the pipeline operating in target list mode, there is not a direct

correspondence between the two elements of input data: the target list and the Local

Catalogue. In the case of the Quasar catalogue, each target required an average of 11.73

Local Catalogue files to be accessed to create the mosaic for that target. Any overlap

between the fields required would create a potential for an economy of scale, as the files

can be accessed once and used with multiple targets.

Multiplying the average files per target by the number of targets gives a figure of

908,242 for the number of times a field was accessed. However, as there are only

358,076 fields in the local catalogue, it follows that the mean number of times each field

was accessed was 2.54, assuming all fields were accessed at least once. In principle,

then, it is possible to reduce the data access overhead by approximately this factor of

2.54, by grouping together targets whose mosaics overlap.

However, developing a grouping strategy would require an additional development

cycle and potentially require further data processing. A pragmatic solution to this was

developed based on the fact that quasar target lists from SDSS are semi-sorted at source.

At every data access phase, a checking procedure compares the file that was to be

231

downloaded with existing files to check if the download is necessary, which avoids the

slow calls to the gLite system on occasions where targets in the same job have

serendipitously overlapping mosaics of fields around their position.

In conclusion, as Data Transfer dominates over processing time, improvement to Data

Transfer time must be emphasised. Improvements to the quasar catalogue should

therefore focus on the following factors:

• As with the API, the LFC bottleneck should be eliminated if possible

• Mitigation to the LFC bottleneck may achieve a speed-up factor of up to 2.54 if

all targets which share fields are grouped together

• A partial implementation of this solution was achieved by checking if a file had

already been copied to the WN before accessing the LFC

13.2.2.2 Exoplanet Pipeline Metrics

The Exoplanet Catalogue was created using the pipeline in Catalogue Traversal mode.

In Catalogue Traversal mode, the work unit is the field. A long target list is generated

by using the Local Catalogue as a whole. Instead of a single target with a mosaic made

up of multiple fields that could be included in a FoV with that target, all targets in a

field are listed together, and a slightly larger mosaic is created out of the fields that are

within a FoV of any point in the original field. Each of the targets in this field are then

compared against the mosaic to create that number of optimised pointings.

In the case of the Exoplanet Catalogue, Table 13-2 shows that while Data Access

remains the larger contribution to job runtime in unit testing, it no longer completely

dominates, with a ratio of 1.12:1. As a result, it would be beneficial to seek

optimisations and improvements to the both the processing and data access components

of this phase of the project.

Improvements to the data processing time would permit the project to be iterated faster

and allow more thorough exploration of the project parameter space as discussed in

Section 14.1. Three main areas of optimisation are suggested and discussed in more

detail in Subsection 14.3.3.2: (1) Search optimisations, which focus on improving the

process by which a score is assigned to a field, which is currently an O(n3) process over

232

the number of candidate reference stars; (2) Grouping improvements, whereby the size

of the groups of targets for which a single mosaic is generated are varied to determine

the optimum group size; and (3) Balancing calculation complexity, whereby the

calculations which are repeated most frequently are kept as computationally simple as

possible, to minimise their impact on overall run time.

Improvements to data access time must again focus on removing or mitigating the LFC

bottleneck. For each field, Table 13-2 indicates that the mean number of neighbouring

fields that were required to create an appropriate mosaic was 20.32. As a corollary the

mean number of times each field was accessed was also about 20.32 times. As with the

Quasar catalogue, it follows that a reduction in data access time of about this factor of

20.32 compared with unit testing could be achieved by grouping neighbouring fields

together, such that the fields needed to generate the mosaic around the neighbouring

fields need only be accessed once.

In the Exoplanet job as implemented, grid jobs in the Exoplanet phase consist of fields

listed sequentially. The Local Catalogue follows the SDSS Data structure shown in

Subsection 8.2.5.1. In this structure, sequential fields form a part of a run, which SDSS

defines as “a continuous scan of the imaging camera.” [158] As a result, sequential files

in a run, and thus in an exoplanet grid job, neighbour one another. This means that the

degree of overlap is already quite high.

As described for the Quasar job above, a “check” step was included in the Grid

Management Script to prevent files being accessed through the LFC if they have already

been transferred to the WN. This means that that files are accessed from the LFC less

frequently than is predicted by unit testing alone.

In conclusion, as Data Transfer and Processing time are approximately balanced,

improvement to either contribution to unit run time should show some improvement in

the overall unit run time. Improvements to the Exoplanet catalogue should focus on the

following factors:

• Improvements to Data

o As with the API and the quasar job, the LFC bottleneck should be

eliminated if possible

233

o Mitigation to the LFC bottleneck may achieve a speed-up factor of up to

20.32 if all targets which share fields are grouped together

o A partial implementation of this solution was achieved by checking if a

file had already been copied to the WN before accessing the LFC

• Improvements to processing

o Search optimisations, whereby the identification of the optimum pointing

is accelerated

o Grouping optimisation, whereby an optimum solution is determined for

the size of the grouping of targets with an associated mosaic

o Calculation optimisation, whereby the calculations involved in

determining factors such as rating, score, or the position of a cornerpoint

are simplified

13.3. Grid Metrics

 Grid computing, like any distributed computing solution, cannot provide 100% scale-

up efficiency: e.g. where doubling the number of computers doubles the speed. [177]

Distributed computing efficiency is impaired by the fact that some central system must

apportion work, distribute it to the WNs, monitor the progress of the grid job, and

retrieve the results. In this case, that role is taken on by the GMS supported by the Grid

wrapper software (See Subsection 7.2.4) [7] [93]

Ideally, the overhead from this management level can be minimised by creating larger

grid jobs: for example, the job submission process was observed to take approximately

5 minutes, regardless of the size of the grid job. For a job that takes 20 minutes, this

contribution would be 25% of the overall time, while for one that takes 1 day, the

contribution would be 0.37%. However, grid jobs cannot be increased indefinitely.

In Grid Ireland, for example, the maximum permitted run time for a Grid Job was 3

days. Any job running longer than this was automatically cancelled. Large grid jobs

may also require large amounts of data, and if the storage space on the Worker node is

not sufficient, there may be loss of data or the job may fail.

Finally, running many jobs simultaneously may cause contention for data access

resources. If there is a central data repository, either for input or output data, a large

234

number of jobs may cause a queue which leads to a slow down or even a stoppage in

data access. This may not be apparent until the job is running.

 Local Catalogue Job Quasar Job Exoplanet Job

Work Units per job 1,000 1,000 200
Input data per job 11.5 GB 231 MB 80.2 MB
No. of jobs 422 78 1791
No. successful jobs 359 40 1,598
Percentage successful 85.1% 51.3% 89.2%
Output data per job 19.7 MB 85 kB 3.22 MB
Nominal time per job 1.25 hours 6.57 hours 4.25 hours
Nominal overall time 21.9 days 21.2 days 317 days
Nodes used 40 40 400
Total time taken 2.09 days n/a 4.31 days
Observed time per job 5.6 hours n/a 1.07 days
Effective time per job 8.40 minutes n/a 3.85 minutes
Grid Efficiency 22.3% n/a 16.5%
Effective scale up factor 8.91 n/a 65.6

Table 13-3: Grid metrics for the three primary grid jobs. Timing data for the Quasar job is

unavailable at this time.

Table 13-3 therefore shows the number of work units per job that was chosen to provide

a balance between minimising the contribution of grid management overhead to the job

run time and preventing oversized jobs from causing failure.

• The nominal job lengths, as well as input and output data per job, are calculated

from unit testing. These figures are based on the average work units as shown in

Table 13-2.

• The effective time per job is the time taken overall divided by the number of

jobs completed.

• The observed time per job is the mean processing time taken per grid job,

including time spent waiting on submission or retrieval procedures, and allowing

for “dead time” on nodes that were assigned but not in use.

• The Grid Efficiency is the ratio of nominal time to observed time per job, which

is indicative of the proportion time dedicated to operations focussed on the

actual job rather than on grid operations and wait time.

• Scale up ratio is the ratio of nominal time to effective time per job. This

indicates how much faster it was possible to complete the job using the grid

compared with a single standard system of the same type as the WNs.

235

• The number of successful jobs is the number of jobs for which output data is

available. The loss of data is discussed in Section 13.4

The impact of each of these factors on the particular grid jobs are discussed in the

Subsections for those jobs below.

13.3.1. Local Catalogue Job

The Local Catalogue required large-scale file I/O as it involved the manipulation of

SDSS Source Data entries. As a result, the job size was calibrated for shorter jobs, such

that each individual job did not place too much strain on Data Access resources such as

the GMS, as fewer files were requested at the same time. The grid performance metrics

for this job are shown in Table 13-3.

By choosing to group 1,000 work units (source catalogue files) together per grid job, the

nominal time per job was calibrated at just 1.25 hours. Operating on a single WN, this

job would therefore be expected to take 21.9 days. Instead, in the grid system operating

with 40 WNs, this task took 2.09 days, a scale up factor of 8.91.

Figure 13-1: Distribution of Local Catalogue File creation times over 15 minute intervals from 25th-

27th August 2010

236

The Local Catalogue was generated by means of a grid job that ran from 13:30 on 25th

August 2010 until 15:45 on the 27th of August 2010. 359 grid jobs produced a total of

358,076 Local Catalogue files at a mean rate of 7140 files per hour, however this rate

fluctuated considerably as shown in Figure 13-1, up to 4,250 in one 15 minute interval.

Access to the LFC at the peak rate requests of 4.72 per second did not cause disruption

to grid operations, unlike the peak access rate of 19.5 per second during the generation

of the Exoplanet Catalogue as shown in Subsection 13.3.3. [178]

An irregular, cyclical pattern appears in the data. The troughs in this distribution may

occur at points where jobs are either downloading files or processing files, while the

peaks may be attributed to periods during which many jobs were finished processing

and were uploading output. However, since the only metrics available are the start and

finish times for each job, and from these the overall start, stop and count time for the

overall task, it is not possible to separate processing, network download and network

upload times for the grid job.

In order to further optimise the grid performance of software derived from this project,

more fine-grained metrics should be incorporated into future refinements of this project

as discussed in Subsection 14.3.3. These include the following

• Start and finish times for the data download phase of the grid job. Included at

this step should be a track of the number of file downloads which were

completed successfully

• Start and finish times for the processing phase of the grid job. Any errors or

exceptions which occur during the grid job should be captured here.

• Start and finish times for the data upload phase of the grid job. A count of the

number of files produced for upload should be made, and compared against the

files downloaded to identify any errors in processing.

13.3.2. Quasar Catalogue Job

The production of the quasar catalogue had two primary purposes. Firstly, the analysis

of the 77,429 quasars provided a list of 40,000 output results including 23,697 valid

pointings as discussed in Section 11.3.

237

In addition, this job formed a test bed and proof of concept platform for the pipeline. In

this sense, the purpose of this catalogue was to develop expertise within the SCG: for

example, most Grid scripts written for the Quasar job were directly reused for the

Exoplanet pipeline as shown in Subsection 7.2.4.

The quasar catalogue was generated over the course of the 5th of January, 2011. All

forty files were created over a 5 minute period between 15:35 and 15:40 on that day.

This narrow window indicates that all 40 jobs were launched and processed together.

Unlike with the Local Catalogue as indicated in Figure 13-1, the time taken to upload

the single output file was not be a significant contribution to grid run time. Since the

processing load is likely to be similar for each job, as they have the same number of

targets, all jobs concluded within a short period of one another and were uploaded

together.

13.3.3. Exoplanet Catalogue Job

The Exoplanet Catalogue is the primary result of this project. It consists of 67,043,579

entries and includes 61,662,376 optimised pointings for differential photometry

observations on stars in the Local Catalogue, as discussed in Subsection 11.4.

Production of this catalogue demonstrates the pipeline is capable of mining large

astronomical catalogues and producing large result sets. The job run time of 4.31 days

as shown in Table 13-3 indicates the viability of repeatedly running the software, as

required to iteratively explore the parameter space of this project as discussed in Section

14.1.

During the first attempt to run the Exoplanet Catalogue job, an issue arose whereby grid

jobs overwhelmed the LFC/GMS with repeated requests. Requests to the LFC were

estimated by Grid Ireland OpCentre personnel at approximately 19.5 requests per

second. [178] LFC requests typically take ~2s to process and authenticate, although a

number of simultaneous requests can be processed as shown in 13.3.1. As a result, LFC

access was not suitable for this grid job.

Instead, this bottleneck was removed by copying the Local Catalogue to a Network File

Server (NFS) as part of a LAN in TCD to which the majority of worker nodes in Grid

238

Ireland, but not gridUI, were attached. [93] [178] This restricted the Exoplanet Grid Job

to using TCD-based WNs, and prevented detailed unit testing of access time, as the test

environment, gridUI, was not connected to this LAN. However, primitive unit tests on

WNs demonstrated that NFS access was over an order of magnitude faster than LFC

access, thus reducing the Data Access contribution to overall job time. This made data

processing the dominant factor in the Exoplanet job run time.

Additionally, to prevent overloading of the GMS, a system of job submission scripts

was developed, as described in Subsection 7.2.4, to submit jobs in batches of 10 every

10 minutes. Jobs were only be submitted if there were fewer than 400 jobs running, and

if fewer than 10 jobs were at a status of “Scheduled” or lower. (These statuses define

grid jobs which are waiting for grid resources to become available before they can run.)

Figure 13-2: Exoplanet Catalogue output files generated over time in bins of 1 hour

The metrics shown in Table 13-3 are reflective of the Exoplanet job run under these

parameters. The job was launched at 17:23 on the 3rd of September 2012 and completed

at 00:57 on the 8th of September 2012 as illustrated in Figure 13-2, giving an overall

runtime of 4.31 days. When compared with the nominal run time on a single WN of

317 days, this gives a scale-up factor of 65.6.

239

As with Figure 13-1, the peaks and troughs in the distribution of output file creation

times are believed to indicate an irregular cycle between processing of jobs and writing

to the grid. Far fewer output files are generated in the Exoplanet Catalogue than in the

Local Catalogue, and as a result, write-based access to the LFC does not provide a

significant contribution to the runtime, nor is there any likelihood of exceeding limits on

simultaneous requests to the LFC due to output data.

The following can be concluded about the generation of the Exoplanet Catalogue, which

may prove significant to future reuse of the project as proposed in Section 14.1

• Operations of this scale using LFC authentications are not suitable in the setup

used at Grid Ireland. Some alternative must be available to avoid the LFC

bottleneck.

• With 400 WNs, a scale factor up of 65.5 is possible, allowing for the processing

of an entire catalogue traversal of the Local Catalogue in 4.31 days. This process

can therefore be repeated to allow for changes to input parameters as suggested

in Subsection 14.1.3

13.4. Issues Arising from Project

Prior experience at Grid Ireland emphasised complex calculations on data sets in few

files, whereas this project accessed many small files and performed relatively simple

calculations on each. This led to the dominance of data access time over processing as

indicated in Table 13-2. As a result, the nature of this project has been described as

“Data-rich, Processing-poor” [134] by analogy to the phrase “data-rich, information-

poor” common to data mining literature. A number of issues arose from this nature.

A major source of the dominance of data access was the “LFC bottleneck.” The LFC is

designed to permit secure access to files, but the authentication process required to

provide that security takes time and occurs on a per-file basis. This became a bottleneck

at all stages of the project. Data access dominated by a factor of 156:1 in Local

Catalogue and Quasar Catalogue generation jobs as shown in Table 13-2, and the

number of requests overwhelmed the GMS during the Exoplanet Catalogue job,

mandating its replacement with a NFS-based system.

240

Given the dominance of data access time in the Local and Quasar catalogue jobs, a

system similar to the NFS was seen to have improved the data access performance of

the Exoplanet Catalogue jobs by at least an order of magnitude, and would therefore be

expected to similarly improve the performance of the Local and Quasar catalogue jobs.

Future projects of a similar nature to this one must use a solution to the data access

problem which accommodates the data access demands as discussed in Subsection

14.3.3.1.

Data was lost in the course of this project at several points, as can be seen from Table

13-1 – not every file in the source catalogue has a corresponding Local Catalogue file,

and not every entry in the local catalogue has a pointing calculated for it. However, the

nature of this project means that the results are independent of one another: for example,

if a particular quasar does not have an entry in the Quasar catalogue, this does not

invalidate the results for the 40,000 that do.

Loss of data from the Local Catalogue does have an impact on output from the pipeline,

however, this impact is similar to that which would be expected from the fact that SDSS

is not an all-sky survey. For targets close to the edge of the SDSS footprint, or targets

for which the Local Catalogue is missing one or more fields that should be used to

create the mosaic around them; the pointing is expected to show a bias away from the

absent fields, and the pointing were assigned a score worse than or equal to the score

that could have been achieved with the missing part of the sky included. However,

these pointings are still valid – they are the best pointing for that target that can be

achieved with the data in the Local Catalogue, and their score is reflective of the

reference stars that are available.

This data loss occurred primarily through one of two mechanisms: Failed Grid Jobs and

Data Corruption.

Grid Jobs can fail for a number of reasons: the average success rate of user grid jobs is

generally considered to be about 80%. [179] Job runtime limits mean that any job that

exceeds the time limit (in this case 3 days) are automatically cancelled. This occurs

when job size has been incorrectly calibrated for the job queue to which the job is

submitted, or when interactive behaviour occurs during the job. Since grid, by its very

nature, is non-interactive, interactive jobs will wait until they timeout. Grid jobs may

241

also fail because of proxy certificate expiration, due to crashes caused by coding bugs or

other intermittent faults.

Resubmission of grid jobs may allow a failed job to run to completion if the failure was

caused by an intermittent fault. In the case where a job fails due to exceeding runtime

limits, because the job was too large for the WN to complete in the allotted time, it is

unlikely that resubmission will permit the job to succeed. In this case, the job must be

subdivided by the user and the sub-unit jobs resubmitted. In the current design, the

subdivision of a grid job is a complex process requiring the recreation of multiple

parameter files. It is recommended that subsequent projects developed from this one

incorporate procedures for subdivision and resubmission of failed grid jobs.

Data corruption occurred in the course of this project when a hard disc on which part of

the Local Catalogue was stored failed. This caused the loss of some files, as backup

was not available for the scale of data used in this project. These files were then

unavailable for the generation of the Quasar and Exoplanet Catalogues. Future projects

developed using cloud computing as discussed in Subsection 14.2 may be able to avail

of cloud storage solutions such as Amazon Web Services’ S3, which claims

99.999999999% data reliability, which should prevent loss of data via this route. [180]

Data can also be lost due to user action. During routine “clean-up” operations on

gridUI, the logfiles for the Quasar Catalogue generation job were deleted without

backup. As a result, detailed metrics on that job are unavailable, as discussed in

Subsection 13.3.2.

Finally, data may be discarded by design. The creation of the Local Catalogue greatly

reduced the data size from the SDSS Source Catalogue. This permitted a much smaller

data communications overhead. However, in reducing the data per entry from 14.6 kB

to 86 B, some data that may have been desired was discarded. For example, ObjectID, a

unique identifier for each object in SDSS, was not retained in the Local Catalogue.

Future projects may consider including more data from their source catalogue as

discussed in Subsection 14.3.2.2.

Unit testing is a powerful tool, but limited in its application. Unit testing does not reveal

scale-up issues, such as the LFC shutdown as discussed in Subsection 13.3.3. Repeated

242

full-scale testing on the same data takes time, and may be expensive, but some full-scale

testing is needed to fully characterise the distributed computing solution. A pragmatic

solution may be that when creating additional catalogues as discussed in Section 14.1, it

may be possible to use these jobs as full-scale tests of the software system

13.5. Conclusions

The Locus Algorithm software, defined in Chapter 5 and designed in Section 7.2

provided a software solution to the Astrophysical challenge, under the conditions of

square fields of view limited to North-South/East-West translations. It consisted of two

primary software components, the API (Subsection 7.2.1) and the Pipeline (Subsection

7.2.2.)

The API extracts data from the SDSS Source files to create the Local Catalogue. In unit

testing, this element was dominated by Data Access time. A work unit for the API was

identified as the source catalogue file, and was estimated from unit testing to take an

average of 4.5 seconds to process.

The Pipeline operated in two modes: target list mode (used to generate the Quasar

Catalogue) and batch mode (used to generate the Exoplanet Catalogue.) Target list

mode was, like the API, dominated by Data Access time. The work unit was

determined to be the individual target (i.e. a quasar) which was estimated to take 23.5s

to complete. In testing Batch mode on work units, each consisting of a Local Catalogue

field, the job time per work unit was determined to be 40.6s.

The grid implementation of both the API and the Pipeline in target list mode bundled

1000 work units into grid jobs, giving grid job run times predicted at 1.25 and 6.57

hours respectively. The API job runs took 5.6 hours on average, including time spent in

the queue. The entire Local Catalogue was complete in 2.09 days, representing a grid

scale up factor of 8.91. Metrics for grid performance are not available for the API in

target list mode.

The initial attempt to use the Pipeline in batch mode for the creation of the Exoplanet

Catalogue failed, but in doing so revealed a major bottleneck in data access times: i.e.

the LFC. An alternative was implemented whereby data was stored on an NFS attached

to the worker nodes via LAN. With this alternative in place, 1,791 grid jobs consisting

243

of 200 work units, predicted to take an average of 4.25 hours were submitted. 1,598 of

these jobs were completed over 4.31 days on 400 WNs. This indicates an average job

time, including queuing, of 1.07 days. Taken overall, a speed up factor of 65.6 was

achieved with 400 computers.

Three catalogues were generated over the course of this project, the Local Catalogue,

the Quasar Catalogue and the Exoplanet Catalogue. The Local Catalogue, as designed,

reduced the amount of data that must be transferred between nodes and LFC by a factor

of 707. This permitted repeat access to the data stored within the Local Catalogue

without requiring regular large-scale data transfer as would have been required, had the

Source Catalogue been used for the pipeline instead. The Quasar Catalogue has 40,000

entries, including 23,697 pointings in 40 nearly-identical files of 1,000 entries each.

The Exoplanet Catalogue, on the other hand, includes 67,043,579 entries and

61,662,376 pointings. Files in this catalogue ranged from 0 to 175,688 entries.

Several lessons for future projects were discovered. First, any future project must not

be dependent upon the LFC or a similar slow-access system for time-sensitive data.

Second, Data loss and corruption must be minimised, by choosing a high-reliability data

management system. Finally, future development of the testing regime must involve

the capability to test or simulate the impact of grid systems on job run time.

244

14. Future Use & Refinements of the Project

This Chapter considers future work for this project under two headings: Reuse, which

refers to ways the software solution to this project can be reused in a largely unchanged

form and Refinement, which is used to describe changes to the underlying functionality

of the project. Both reuse and refinements to the project would be assisted by migration

of the software system to a new, more modern HPC paradigm, for example Cloud

Computing. Although these headings are discussed separately here, it is envisaged that

future work based on this project would incorporate several or all of these suggested

expansions.

This project has developed a system capable of analysing large astronomical catalogues

to generate optimised pointings for particular sets of targets under particular sets of

observational requirements. Two specific target sets have been analysed, producing two

output catalogues as mandated in Subsection 4.1.2 – a Quasar Catalogue and an

Exoplanet Host Candidate Catalogue. It is possible to reuse this system to create new

catalogues for other target sets, or under other observational criteria. Section 14.1

therefore discusses options for the exploration of the full range possible for input data,

and provides suggestions for the relative utility of these options.

Section 14.2 discusses the suitability of the project for migration to a Cloud computing

paradigm. A move toward a cloud solution is made all the more relevant by the closure

of Grid Ireland, the High Performance Computing Centre upon which this project, and

software solution, was dependent. An assessment of the conceptual similarities the

Amazon Web Services and the gLite grid system provides an illustrative example of

how this might be implemented.

The core algorithm of the project was required to be computationally simple. This

requirement imposed boundaries on the utility of its output. The first refinement to the

project which is proposed in Subsection 14.3.1 is to incorporate changes which remove

or mitigate those boundaries.

The scoring system developed in Section 5.3 provides an estimate of the degree to

which a set of candidate reference stars show similar colour to a given target.

Subsection 14.3.2 proposes a system by which the scoring system can be calibrated, and

245

suggests improvements to that system by means of incorporating additional variables

into the score, or applying a non-linear system for combining ratings into scores.

Chapter 13 posits a number of conclusions about the computational performance of the

software system developed and the High Performance Computing solution implemented

in this project. Subsection 14.3.3 builds upon these conclusions by recommending a

number of ways by which Data and Processing performance might be optimised.

14.1. Reuse of the Project

Over the course of this project, the catalogues generated were focussed on particular

purposes – the Quasar and Exoplanet jobs. To do this, as discussed in Chapter 11, input

parameters were selected to suit those purposes. As a result, the exploration of the

possible parameter space – the range of possible values of input data – with the software

was relatively narrow.

By reusing the software solution developed in this project, it is possible to explore more

of the range of possible input data, parameters and arguments for the Locus Algorithm,

by changing some or all of the following input data

• Magnitude and Colour variation limits, and choice of SDSS magnitude band. As

shown in Chapter 12, these factors contribute directly to the score for a given

target. As such changes to these, as discussed in Subsection 14.1.1, are

predicted to cause significant changes in output.

• Observational parameters such as FoV size and Resolution, which vary from

observatory to observatory, allowing for the generation of output catalogues

suitable for telescopes of various capabilities as described in Subsection 14.1.3

• Target parameters, such as using the system in target list mode for objects of a

type which have not yet been tested such as variable stars as proposed in

Subsection 14.1.4

• Data Source: by making modular changes to the API, as suggested in Subsection

14.1.5, it is possible to use the software system with other existing catalogues or

new catalogues as they become available, which may cover magnitude, spectral

or positional ranges which SDSS does not.

246

This exploration of the parameter space may provide additional value to the project. To

this end, it is proposed to examine the impact of varying the parameters on the results of

the project. This impact may be assessed in a manner similar to the meta-analysis of the

catalogues as discussed in Chapter 12 – primarily by observing the change in the

distribution of score as parameters vary.

Note that an increase in score due to variation in parameters does not necessarily

indicate a more suitable target or reference star – the normalisation in the generation of

ratings means that scores are only comparable within a given catalogue. As a result,

variation in each parameter adds another dimension to the “refinement” task of

characterising the scoring system discussed in Subsection 14.3.2.

14.1.1. Magnitude and Colour Arguments

There are three parameters in this project based on SDSS magnitudes, as discussed in

Subsection 7.2.2.1: maximum permitted magnitude difference, maximum difference in

colour index and thirdly, the SDSS filter band for which the catalogue is designed.

As designed, maximum magnitude difference is treated as a binary limit – stars are

either accepted as potential reference or rejected based on whether their magnitude is

within the limit of that of the target. Therefore it is expected that increasing the limit

would increase the number of potential reference stars, and thus increase the score of a

given target.

This increase in score is predicted to be, on average, directly proportional to the increase

in the number of stars available as references. However as shown in Figure 12-1, the

number of stars in SDSS does not bear a linear relationship with magnitude, and as a

result a given change in the magnitude difference limit would not be expected to show a

linear response in score.

As defined in Section 5.3, the rating for a given candidate reference star is calculated by

measuring the difference between the colour indices of the reference and those of the

target. Those candidates for which this difference exceeds the maximum colour

difference given as an argument are excluded from consideration. Candidates that are

not excluded are assigned a rating between 1 and 0, with 1 identifying candidates with

247

an exact match to the target in a given band, and 0 indicating targets with a colour index

difference exactly equal to the maximum permitted.

Therefore, changes in maximum permitted colour index difference between target and

reference stars would be expected to cause substantial changes in ratings, as illustrated

in Figure 14-1. Since ratings are combined into scores and used to identify optimum

pointings, any changes to the maximum permitted colour difference would be expected

to have a significant impact on the score for a target.

Increasing the maximum permitted colour difference would increase the number of

potential reference stars, and increase the rating for the existing reference stars. As a

result, increasing this limit is predicted to lead to an increase in score. However, colour

indices for stars in SDSS have been measured to be multi-modal as illustrated in Figure

12-5. This multimodal behaviour, combined with the complex relationship between

rating and colour as illustrated in Figure 5-11 and described as the “Witch’s Hat

Pattern” in this project prompts the requirement of further, detailed investigation to

determine their impact on Score for given fields.

Figure 14-1: Effect of changing maximum colour index difference between target and reference star

on the rating. A candidate reference star with a colour index difference of 0.5 is shown as a

example. When the maximum permitted colour difference (ΔColmax) is 0.5, its rating is 0. When

ΔColmax is 1, its rating is 0.5, and when ΔColmax is 2, its rating is 0.75.

248

14.1.2. Choice of SDSS filter

Concerning the impact of spectral filters on Score, it is certain that choosing a different

spectral filter for a catalogue would change the scores and pointings for individual stars,

and this have an impact on the overall distribution of scores.

As an example on further investigations in this regard, the filter used for both catalogues

generated in this project was the SDSS r filter alone, suggesting that exploration of the

g and i bands would readily test the system under sufficiently similar conditions with

regard to how different filters affect the rating of stars and their associated scoring of

fields that a comparison between g, r and i would be possible.

In like fashion, examination of the more extreme u and z bands of SDSS [43] (where

there is only one neighbouring filter against which colour index can be calculated)

could be investigated on whether, as expected, fewer stars would be rejected as being

outside the limit of maximum colour difference.

The calculation of rating for a star in this band would use the linear rating system shown

in Figure 5-10, which has a mean for a random distribution of 0.5 as opposed to the

Witch’s Hat pattern illustrated by Figure 5-11 which has a mean for a random

distribution of 0.25. As a result of fewer stars being excluded, and a higher mean

rating, substantially higher scores can be expected from catalogues based on analysis of

the u and z bands.

14.1.3. Observational Parameters

The two observational parameters submitted as arguments to the software, as defined in

Subsection 7.2.2.1, are field of view size (FoV) and resolution. These parameters are

passed to the Locus Algorithm program as command line arguments. This makes them

amenable to changes at a user, rather than developer level.

14.1.3.1 Field of View Size

The field of view size is the length in degrees of the side of the square that forms the

usable area of the field of view. This value is calculated based on the particular

combination of telescope and camera at a given observatory. This means that each

catalogue is optimised for a particular observatory, and any observations made at a

249

different observatory are potentially problematic, unless the two observatories use

similar equipment.

Figure 14-2: Locus Algorithm with different FoV sizes. Target, references and pointing identical to

Figure 5-8. Blue outline shows the original pointing. Purple and Magenta show larger and smaller

FoV sizes respectively. Solid lines show results of using the originally calculated pointing. Dashed

lines show the optimal pointings for those FoV sizes. Circled stars indicate those references

affected by the size of FoV

The Locus algorithm, by definition, places at least two stars at the edge of the usable

field of view. This means that observations made with a narrower FoV than that for

which the catalogue was optimised automatically lose two, and possibly more,

250

designated reference stars, as shown in Figure 14-2, with the magenta squares,. As a

result, the photometry for the smaller field may be compromised, and therefore

pointings optimised for a FoV larger than that of the telescope at the observatory should

not be used.

On the other hand, if an observatory with a larger FoV uses the output of a catalogue

optimised for a smaller FoV, the FoV will automatically include all of the reference

stars included in the smaller one. However, the larger FoV may include stars which

would have been viable references, but which have been excluded from consideration

by the algorithm for the smaller FoV. In addition, it may have been possible to

reposition the larger field to include even more references as illustrated with the purple

squares in Figure 14-2.

It may therefore be concluded that in the absence of a perfectly optimised catalogue, the

pointings optimised for a smaller FoV may be used, and will work at least as well on a

telescope with a larger one, though they will not be optimised for that telescope.

It is therefore desirable to explore more of the FoV size parameter space to allow for

observatories with many sizes of FoV to benefit from the Locus Algorithm’s optimised

pointings. In the context of use of this system by an individual observatory to generate

optimised pointings for a particular target list, it is advised that the observers take

particular care to select a FoV parameter corresponding to the usable area of their

detector, which is smaller than the edge-to-edge size.

14.1.3.2 Resolution Parameter

As defined in Subsection 5.2.2, the resolution parameter defines a lower limit for

separation of point sources which is again dependent on the observatory for which the

catalogue is to be generated. Contributions to this limit include the Point-Spread

Function (PSF) for the telescope, the pixel scale of the camera, and atmospheric effects

such as seeing. Stars whose separation in RA and Dec is less than this value are

excluded from consideration as reference stars.

If the resolution for the telescope for which a catalogue is to be generated is poor (i.e.

the resolution parameter has a high value) then the separation at which stars are to be

excluded increases, and as a result the number of stars excluded increases.

251

If there are many objects in a field the likelihood of there being overlap between two or

more stars increases. If the mean separation between stars drops close to the resolution

parameter, this is known as a “crowded field.” In a crowded field, resolution may

become a dominant factor, as more and more stars are excluded from consideration as

references. Therefore, a field with a high score when generated for an observatory with

good resolution may be crowded when used with a telescope with poor resolution.

On the other hand, any observatory with better resolution than Apache Point

Observatory (APO) – the observatory used in the generation of SDSS – will be able to

resolve all resolved stars in SDSS and more besides. This means that a catalogue

generated for such an observatory may miss out on candidate reference stars which

APO could not resolve but which that site could. Catalogues generated for such

observatories cannot, therefore, be fully optimised based on a catalogue generated from

SDSS.

Further examination of this parameter would prove valuable for sites with resolution

poorer than that at APO, but not for sites with greater resolution. As with FoV, users

should take particular care to enter the resolution parameter that pertains to the

observing conditions for which they intend to generate optimised pointings.

14.1.4. Target List Options

This project operates on the basis of input data in two forms – target list and the local

catalogue, which contains the potential references. For each target in the target list

mosaics are excerpted from the Local Catalogue files surrounding those targets. These

are then used as a list of candidate reference stars.

The catalogues created for this project used two target lists. The Quasar Catalogue used

the list of all known quasars in SDSS as a target list. The Exoplanet Catalogue used the

Local Catalogue itself as the target list, and compared it against itself to produce

optimised pointings.

It may be possible to expand this parameter space by providing another target list, for

example, variable stars. This would allow the pipeline to be operated in target list

mode, and generate a new catalogue similar to the Quasar Catalogue, listing optimised

pointings for the new targets. For any set of variable targets in the SDSS footprint, it is

252

possible to generate a new catalogue of optimised pointings for differential photometry

by creating a new target list and running the pipeline in target list mode. No significant

changes need to be made to the system to provide for a changed target list.

14.1.5. Data Source Parameters

As discussed in Section 2.3, SDSS is the chosen catalogue for this project because at the

time the project was initiated, it was the largest photometric survey in the optical range.

[84] However, SDSS sky coverage is incomplete, even in the most recent data release,

DR12. [175]

Other catalogues have other advantages. Some offer wider sky coverage: for example,

the United States Naval Observatory (USNO) catalogues, including USNO-B: an all-

sky catalogue believed to be complete down to V=21. [181] Others are able to observe

fainter objects – the forthcoming Large Synoptic Survey Telescope (LSST), for

example, is expected to be able to map objects as faint as r ~ 27.5. [85]

As shown in Subsection 7.2.1, the API provides a layer of data abstraction, by providing

a template for generating a Local Catalogue from any existing catalogues. It is possible

to develop an API suitable for importing data from other sources such as LSST into

Local Catalogue format. This can be achieved by editing modular components of the

Diagnose and Extract programs to suit the structure of the new source catalogue.

Because of this abstraction, the pipeline should be able to operate on this new Local

Catalogue with a minimum of modification – ideally, none. Any new catalogue

generated in this manner would require a new series of meta-analyses modelled after

those in Chapter 12 to characterise its behaviour.

14.2. Migration to Cloud

Cloud Computing is a HPC solution which was in its infancy when this project was

under development, but which has since become a mature technology. Most Cloud

implementations are based on the concepts of Infrastructure- Platform- and Software as

a Service (IaaS, PaaS and SaaS) whereby the user interacts with remote services via an

internet connection, and pays for those services on a per-use basis. [177]

253

As cloud technology may be considered an evolutionary development of grid

computing, it may be possible for this grid computing project to evolve into a cloud

computing one. [88] In order for this project to migrate to any new platform, that

platform must replicate or replace each of the following core components of the existing

HPC solution, as discussed in Subsection 3.2.1

• User Interface

Any system used to replace the Grid Ireland system used in this project must

allow for an interface by which the user may upload data, initiate and monitor

jobs, and retrieve results. In the grid paradigm, this function is handled by

gridUI

• Storage

This project relied upon access to 10 TB of storage for access to source data

(4.76TB), the Local Catalogue (6.89 GB), and Output Catalogues (up to

5.02GB) as provided by the LFC. A replacement solution must provide similar

capacity, and ideally would have a more robust system for data access with

greater capacity for many simultaneous access requests.

• Apportionment

Much as in the current grid system, the Parameterisation program defines grid

jobs, and the Job Submission System (JSS) apportions those jobs to Worker

Nodes (WNs), any new solution which is provided must incorporate a system for

apportioning work over the new distributed execution system

• Execution

The WNs in this project acquired the data from the LFC, but then executed the

grid job by running standard programs which could be developed and tested on

conventional hardware without reliance on grid architecture for unit testing,

which rapidly accelerated the development cycle. Any solution to which this

system can be readily migrated should include a similar system for the execution

of distributed jobs which functions in a manner similar to a classic, serial

computer.

Migration to a Cloud computing paradigm is made possible by exploiting the modular

nature of the software solution and replacing grid-specific modules with corresponding

254

cloud-based systems. It is possible to demonstrate the close correspondence between

the existing system and a cloud implementation by using the Amazon Web Service

(AWS) as an illustrative example.

AWS is a cloud computing system developed by Amazon to allow third party users to

rent the use of distributed storage and computing facilities, amongst others. [182]

Figure 14-3 illustrates how AWS may be used in a similar conceptual manner to that in

which the grid is used in this project as was shown in Figure 3-3. This similarity of

design makes this project particularly amenable to conversion to AWS.

Figure 14-3: Conceptual structure of the AWS from the user perspective. The similarity of this

structure to the structure of the grid as shown in Figure 3-3 suggests that many components of the

software could be reused should the project be translated into a cloud computing paradigm

• User Interface

Access to the AWS is provided through a web front end, which provides a

Graphical User Interface to the various AWS systems, including storage,

Amazon S3

Amazon EC2

EC2 API

Amazon

Web

Service

Virtual

Server Virtual

Server Virtual
Server

Storage
Storage

Storage

User Input
S3 API

Storage
Storage

Storage

Virtual

Server Virtual

Server Virtual
Server

255

resource apportionment and job execution, as well as additional tools such as

developer tools which allow for software development and deployment. From

this website, cloud jobs can be managed just as grid jobs were managed from

gridUI.

• Storage

The Amazon Simple Storage Service (S3) is a distributed storage system

wherein data is stored redundantly on multiple physical servers. [183] Data may

be uploaded to S3 using the web interface, which supports parallel uploads from

multiple clients. [184] Data on the S3 may be accessed directly by other AWS

systems. This data is stored as objects in containers called buckets, which form

trees analogous to the directories in a file system. [182] Data in S3 is considered

immutable, and changes in that data take time to propagate, which makes it

unsuitable for interactive use. [182] For these reasons, S3 may be considered

analogous to the LFC in Grid Ireland.

Coincidentally, a subset (~5% - 180GB) of SDSS DR6 is available as a sample

public data set on S3, which may prove useful in testing the cloud

implementation of this project. [185] In principle, optimised cloud computing

design allows for the movement of programs to the storage location, rather than

the other way around. [177] If implemented correctly, this would avoid the data

I/O bottleneck highlighted with the use of the LFC in this project.

• Apportionment

Elastic Cloud Compute (EC2) is the computing element of the AWS. [183] It

operates by creating and running virtual machines (VMs) on demand. [182]

[183] These virtual machines can each be assigned particular elements of the

overall computational task by EC2 in the same way that WNs on the Grid were

assigned tasks by the GMS.

• Execution

The VMs generated by EC2 may be considered analogous to the physical WNs

on the grid. Much as each WN had access through the gLite interface to the

LFC, each VM has access to the data stored in the S3. When apportioning

resources to the VMs, the user can select from a series of options regarding the

virtual server including memory, storage, OS etc, in a manner analogous to the

256

way grid job requirements could be set using JDL . [183] The OS options

include UNIX systems similar to those used in the grid implementation of this

project, which should simplify the migration process. [184]

Although the detail of how AWS operates diverges significantly from that of Grid

Ireland, notably in its use of VMs instead of physical WNs, the similarities in

conceptual design are illustrated above.

This means that this project would not need a fundamental change in design in order

that a migration be viable. A proposal to carry out this migration in collaboration with

DIT School of Computing has recently been put forward. [186]

14.3. Refinement of the Project

While reuse of the project, for the most part, requires user-level changes in parameters

and input data, more significant refinements of the system may require modifications at

the program level. Some of these changes are relatively simple changes that are

described in full here, while others demand a more extensive redesign and development

process. In the latter case, a brief description of the design requirements is given here.

Three areas of refinement are highlighted – the first two are driven by astronomical

requirements and the last by a desire to improve computational performance. These

areas are broken down as follows

• Expanding the Locus Algorithm to remove certain limitations on its current

functionality, such as

o Errors which occur near to RA≈0°

o Approximations in the coordinate system which are inaccurate near the

poles

o Allowing for the rotation of the field of view of the telescope, in addition

to the translations permitted in the current algorithm

• Refining the scoring system based on experimental evaluation, perhaps by

incorporating additional parameters to the calculation of score, or by applying a

sliding scale for the value of potential references after the first reference

257

• Computational Optimisation of the software solution by implementing

improvements to the Data I/O and Data Processing time

14.3.1. Addition of Functions to the Algorithm

The current Locus Algorithm as discussed in Chapter 5 provides optimum fields for

observation using square CCDs locked on a North-South/East-West orientation. It

provides for translation of this field by adding or subtracting half the size of the field of

view from the RA and Dec coordinates of each of the reference stars in turn. The RA

term is corrected for spherical effects by dividing the adjustment by the absolute value

of the cosine of the declination of the target.

These operations are computationally very simple, but this simplicity imposes limits on

the functionality of the algorithm. In future expansion to the project, the additional

functions specified in the following Subsections may be added. When implementing

these functions, care must be taken to balance increased functionality with increased

processing time.

14.3.1.1 RA ≈ 0º Functionality

The first limitation is that the simple addition/subtraction technique ignores the fact that

RA “wraps around” at RA ≈ 0º. This means that when adding boundary boxes (cf.

Subsection 5.2.3) or counting whether a target is within half a field of view of a

pointing (cf. Subsection 5.2.5), stars at RA = 359.9º are treated as widely separated

from targets at RA = 0.1º.

Note that for the small FoV used in this project (0.166º and 0.25º for the Quasar and

Exoplanet catalogues respectively), this limitation only impacts a small strip of the sky

around RA ≈ 0º. Additionally, the SDSS Legacy survey upon which the data for this

project was based was focussed on the North Galactic Cap, with a distribution centred at

about RA ≈ 180º [111], diametrically opposite to the region in which this issue arises.

Out of 585,634,220 entries in SDSS, just 1,305,826 [6] entries are found within 0.25° of

the RA=0° line. This represents just 0.223% of the overall catalogue. As a result, this

limitation does not impact a large proportion of the results generated in this project.

258

In addition, as with the case of missing Local Catalogue files, or for stars near the edge

of the SDSS footprint as discussed in Section 13.4, the pointings for stars near RA ≈ 0º

are likely to be biased away from the missing candidate reference stars, but remain

viable pointings with usable references, even if those references do not include all

possible references.

However, a refinement which would improve these results would be to incorporate a

check to identify if a particular operation passes the first point of Aries should be

implemented at these two phases, and 360º added or subtracted as appropriate to ensure

comparability between neighbours to allow for general application of the software

solution.

This function is computationally simple and of constant time. As a result, the impact on

overall runtime for the project should be negligible.

14.3.1.2 Polar Fields & Large Fields

As discussed in Section 5.1, the use of a square detector and a catalogue defined in polar

coordinates demands correction for spherical effects – an east-west line of a given angle

of RA does not subtend the same true angular length at different values of Dec except at

the celestial equator. The relationship is given by Equation 14-1.

��� � �� "# = ��$� ��� �
cos((��)

Equation 14-1: Relationship between true angle and angle in RA

However, trigonometric functions are computationally intensive, especially when

iterated repeatedly as in this project. [187] As a result an approximation was used

whereby the same correction factor was used for all stars for a given target, by dividing

by the cosine of the Dec of the target instead of the individual references.

For small fields, such as those used in this project, this approximation is very close

outside the polar regions. (The difference between the correction factor for the upper

and lower edges of a 0.25º field such as those used in this project is just 1% at 66.5ºN.)

Within the polar region, and especially at Dec > 80º, this effect becomes much more

significant. As a result fields identified by the Locus Algorithm in the polar regions are

259

less reliable as shown in Figure 14-4. The variance between upper and lower edges of

the FoV is also more pronounced for larger FoVs.

Figure 14-4: Ratio of the spherical correction factor for the northern edge of a 15arcminute FoV to

that for the southern edge. As is shown, these values are very close to equal at low-medium Dec.

Given the focus of the SDSS Legacy survey used in this project on the North Galactic

Cap, very few stars are observed in the source catalogue North of Dec = 66.5º (1.884%)

and none are observed near the Southern Celestial Pole. [111] The impact of this

limitation on the output catalogues generated in this project is therefore small.

To enable the software to accommodate these regions would require that independent

spherical corrections be calculated for each star. However, as indicated by Hindriksen,

2012 [187], cosine calculations can be about 60 times as intensive as addition or

subtraction. This means that, should this solution be implemented, it must be done

carefully to minimise iterations of this function. See Subsection 14.3.3 for more

information on suggested optimisation strategies.

260

14.3.1.3 Allowance for Rotations

Rotating fields of view were not included in this project: the camera is assumed to be

mounted to the telescope on a locked North-South/East-West axis. The pointings and

FoV generated are thus best suited to use in an automated astronomical survey, where

the telescope system is mounted in such a way that telescope translations on those axes

are possible, while rotations about the length of the telescope are not permitted.

As with using a catalogue for a smaller FoV with a larger one as discussed in 14.1.3, the

output catalogues of this project are still useful, if not 100% optimised, for manual

systems, and automated systems in which rotating FoV are permitted. Firstly, the

pointings generated provide an improved set of reference stars to a direct pointing as

shown in Figure 14-5, and may be used as a base from which manual adjustments may

make improvements. Secondly, by providing a catalogue of pointings and scores, stars

which serendipitously have a large number of very similar neighbours are highlighted.

These stars will still have at least as many candidate reference stars in a rotated FoV as

in a locked one.

The reason that rotations are not accounted for in this implementation is the

computational complexity of rotational calculations, especially given the need to correct

for RA as Dec increases as discussed in Subsection 14.3.1.2. However, as shown in

Figure 14-5, rotation may be useful to further optimise the FoV for a given target.

A preliminary proposal is to expand upon the existing system based upon the guiding

principle of the Locus Algorithm. The Locus Algorithm is based on that premise that

the only points in the sky that need be considered as possible pointings for the telescope

are the points of intersection between the loci traced by the centre of a field of view that

will just include a given target. It is at these points that the number of stars that can be

included in the field changes.

The Locus Algorithm works by defining North-South/East-West boxes around stars,

then identifying and considering the points of intersection between those boxes. In the

Locus Algorithm, a series of pairwise comparisons with other candidate reference stars

are made to identify the points of intersection between those boxes.

261

Figure 14-5: Position and orientation of the Field of View (FoV) can maximise the number of

reference stars. Images: Stephen O’Driscoll, Dept. of Applied Physics & Instrumentation, CIT. [2]

(Duplicate of Figure 2-9)

262

The expansion (referred to as the “Spiderweb Algorithm” after the weblike pattern of

lines generated) applies this same principle to the orientation of the FoV – the only

orientations that matter are those where the number of available reference stars changes.

Figure 14-6: a Sketch of the Spiderweb Algorithm in simulation using the same simulated starfield

and colour scheme as in Figure 5-6. By drawing the possible orientations of the field such that one

target is at the corner and another on the edge of the FoV, it is possible to identify an optimum

pointing and rotation, shown in blue. This field includes 6 targets as opposed to the 5 shown in

Figure 5-6.

263

In the Spiderweb Algorithm, illustrated in Figure 14-6, the corner of the FoV is placed

at one of the potential reference stars. An orientation is then defined such that the edge

of the FoV includes another candidate reference star. If the two stars under

consideration are less widely separated than the length of the edge of the FoV, then this

orientation is defined by the line between those points – the edge of the FoV lies along

that line.

If the two candidates are more widely separated than the length of the edge of the FoV,

but less widely separated than the diagonal, then it is still possible to align the edges of

the FoV between the two targets, but the two stars will be on different edges, with a

corner in between.

Assuming a square FoV, and as one of the candidates is at one corner of the FoV, the

position of the corner between the two stars may be defined as the vertex opposite to the

hypotenuse of a right-angled triangle, where that hypotenuse is defined by the positions

of the two candidate reference stars, and where one of the edges is defined as the length

of the edge of the FoV.

In Cartesian coordinates, given two candidate reference stars at (|*, �*) and (|�, ��),

the position of that corner (|@ , �@) may be calculated given the length of the side of the

FoV, " as follows

• First, the length of the hypotenuse between (|*, �*) and (|�, ��) may be

calculated from the standard distance between two points formula.

� = �(|� − |*)� + (�� − �*)�

• From Pythagoras, the length of the other side, �, may then be calculated.

�� + �� = �� ⇒ "� + �� = �� ⇒ �� − "� = ��

• The position of the corner (|@ , �@) can therefore be defined any point r away

from one candidate and R away from the other.

• This can be calculated at either of the points of intersection between two circles

with formulae (| − |*)� + (� − �*)� = "� and (| − |�)� + (� − ��)� = ��

• Peterson gives the following solution to the simultaneous equations of two

circles. [188]

264

Let (|� − |*) = |\D>> and (�� − �*) = �\D>>

Let � = 5��P=�X8�<
�� ,

Where � is defined as the separation between (|*, �*) and the line joining the points of

intersection.

| = |* + �^�o���
� � + ���o��

� √"� − ��� and � = �* + ���o���
� � − �^�o��

� √"� − ���
or

| = |* + �^�o���
� � − ���o��

� √"� − ��� and � = �* + ���o���
� � + �^�o��

� √"� − ���

Equation 14-2: Definition of the position of a corner of the FoV in the Spiderweb Algorithm. This

position is either of the positions of the points of intersection between two circles, centred on two

candidate reference stars, with the radius of one being the length of the edge of the FoV. The two

radii form the sides of a right-angled triangle with the distance between the two centres as the

hypotenuse .

If the two candidates are more widely separated than the length of the diagonal of the

FoV (e.g. √2 times the FoV edge size for a square field), they cannot be included in an

FoV together, and no alignment is possible.

While the theoretical basis for the Spiderweb Algorithm has been shown to be sound, a

full implementation of the Spiderweb Algorithm has not yet been implemented. In

summary, the following are considered the key changes required for implementation of

this new algorithm

• Transformation of the mathematical solution given in Equation 14-2 to the Polar

Coordinate system in which stellar positions are recorded. It is likely that this

translation would not be able to use the correction factor used in the Locus

Algorithm due to the complexity of the equation

• Definition of algorithmic steps to identify stars which are in an FoV defined by

the Spiderweb Algorithm

• Design, development and implementation of a software module to replace the

Locus Algorithm module used in this project. Most other software modules

would remain unchanged.

• Evaluation of the impact on processing time of the evaluation of both positional

and rotational parameters. In addition to increasing the constant time per

265

calculation due t greater complexity, it is predicted that adding an additional

factor to the central algorithm would provide an O(n) multiplier to the

calculation of pointing from among n candidate reference stars.

• Comparison of the results of this evaluation with available computational

resources to determine whether a complete implementation of this revised

algorithm is possible, or whether some further computational optimisations must

be sought first.

14.3.2. Scoring

The scoring method used in this project provides a means by which pointings can be

compared by providing each candidate reference star with a rating, and adding the

ratings for those candidates together. The rating is based on how similar the colour of

the reference is to that of the target using two colour indices (g-r and r-i in the case of

the catalogues developed in this project.

Refinements to this scoring system are possible due to the modular nature of the

software solution. Improvements may be implemented by replacing one or more

modules in the Locus Algorithm program with new modules as described below.

Subsection 14.3.2.1 discusses a mechanism by which it is proposed to evaluate the

scoring mechanism experimentally, which may be used to test the effects of the

proposals in this Chapter.

Subsection 14.3.2.2 discusses some methods by which it may be possible to achieve a

better scoring system by incorporating the contribution of additional parameters to the

calculation of score.

Finally, Subsection 14.3.2.3 discusses a proposal to add a correction factor to the

calculation of score, to account for the possibility that additional reference stars do not

linearly contribute to photometric precision.

14.3.2.1 Experimental Evaluation

At time of writing, experiments are being carried out in association with CIT and

Raheny Observatory to extend upon the observations discussed in Subsection 10.4. It is

266

intended that these experiments would permit a more precise calibration for the scoring

system.

The experiments consist of on-going observations of a number of fields with targets that

have been processed as part of the Exoplanet Catalogue, and assigned pointings and

high scores. It is expected to be possible to use observations of high scoring fields to

calibrate the scoring system for both high and low scores – the low scores may be

simulated by deliberately excluding reference stars from processing.

By using a set of images taken at one particular time using the same device, other

contributory factors to photometric precision such as sky brightness can be held

constant. This will permit a comparison to be drawn between the number and predicted

quality of reference stars, and the observed photometric uncertainty.

In addition, the Algorithm as used in this project excluded many more star than were

considered potential reference stars. Observational data can thus be compared with the

effects of changing input and other parameters as discussed in Section 14.1.

14.3.2.2 Additional Variables

The scoring system at present assigns a score to a target based on how well the target

and the references are matched in two colour indices (e.g. g-r and r-i.) It may prove

valuable to include additional parameters when calculating score to achieve higher

precision.

The current Local Catalogue format includes astrometric (RA, Dec) and photometric (u,

g, r, i, and z) data from SDSS, but excludes much of the additional information present

in the catalogue. Within this data, three additional features exist which may be added to

the equation of rating.

• Position: A central tenet of differential photometry is that the atmosphere affects

stars that are close to one another in a similar manner. Burdanov et al. suggest

that the further apart the target and the reference, the worse this atmospheric

correlation would be, which becomes significant at separations greater than 7

arcminutes. [77] It may be beneficial to include a term to account for the

separation of target and reference into the scoring mechanism.

267

• Magnitude: According to Milone and Pel, an ideal reference star is similar to or

slightly brighter than the target. [1] The current algorithm accepts all stars within

a specified magnitude range of the target, and rejects any outside that range, but

makes no distinction within that range. If a calibration curve can be identified, it

may be better to weight the rating for references in favour of those slightly

brighter than the target.

• Colour: At present, the algorithm incorporates two colour indices to the scoring

mechanism, and thus accounts for three of the five SDSS magnitude bands.

Incorporating the other available colour indices may provide additional precision

in identifying the degree of similarity between the target and the references. It

may be necessary to weight the emphasis placed on colour indices based on the

magnitude band to be used in a particular observing run.

In addition, it has been proposed to extend the data incorporated in the Local Catalogue.

This extension would allow for more information to be used in calculating the score.

The following suggestions have been put forth for additional parameters that may be

valuable

• Known variability: A variable reference star introduces a systematic error in any

observations. Any star which is variable on the timescale of the phenomena to

be observed should therefore be excluded, if possible. [189] If this information

can be incorporated into the generation of the Local Catalogue, and known

variables removed by the Filter step the resulting photometry could be improved

• Full spectral match: A project is underway at ITTD to investigate the

relationship between broadband magnitudes in the SDSS colour space and the

full spectra available as part of the SDSS spectroscopic surveys. As part of this

new project, it is intended to investigate the relationship between spectrum and

ratings using the Locus Algorithm. It may be possible to build upon this to

provide fine-grained calibration of the ratings for particular references.

• Metallicity: According to Fan, the SDSS colour distribution shown in Figure

12-5 can be attributed in part to the metallicity of the stars in the catalogue.

[170] According to Buchhave et al., the formation of larger planets requires

268

high metallicity. [190] In order to facilitate the search for these planets,

adjusting the score based on metallicity may be advisable.

14.3.2.3 Diminishing Returns

At present, the scoring system works by adding together the ratings of all reference stars

in the final FoV to provide a score for that FoV. This system, therefore, makes the

assumption that adding more reference stars will always be equally beneficial, and that,

all other factors being equal, results should improve in direct proportion to the number

of reference stars.

It may be that this assumption is naïve – for example, while it can be predicted that 10

reference stars of equal value would permit better observations than 5, it may be

incorrect to assign a score twice as high. It is therefore necessary to consider adding a

correction factor to reduce the contribution of later references to the score for a given

ensemble.

14.3.3. Computational Optimisation

During the design phase of this project, a number of steps were taken to optimise

computational performance, however the emphasis has been on reliable functionality,

not maximising efficiency. As a result, there are areas in which there is scope for

improvement. Any future project which performs full-scale operation of the project

should incorporate a more thorough monitoring of overall performance to identify any

factors which do not become apparent in unit testing, as discussed in Section 13.3

Two areas are specified below – Processing efficiency and Data I/O times. In deciding

which functions should be improved upon, it is important to identify whether that

improvement would significantly affect performance. As was shown shown in Table

13-2, the dominant portion of the time for a job varies depending on the nature of the

job – for example, if file I/O is dominant, as it was for the Quasar catalogue (157:1),

then increases in processing efficiency will provide only marginal benefits. On the

other hand, for the Exoplanet catalogue the balance between data and processing was

more even (1.12:1), and as a result, improvements to either aspect would be expected to

provide marked improvements in performance.

269

14.3.3.1 Data I/O

Data I/O contributes a significant proportion of the overall job processing time. For

target-by-target processing as was used in the quasar catalogue, it dominates by a factor

of 156 as shown in Table 13-2 and discussed in Section 13.3. As a result it is important

to reduce this element of job processing. Data I/O can be considered under the

following three headings, listed in order of priority.

• Grid Access: Downloading files from the LFC takes about 2 second as

discussed in Subsection 3.3.2.3 – access authentication dominates hugely

compared with network I/O. A temporary solution was implemented during the

latter stages of the exoplanet catalogue run, where much of the contents of the

Local Catalogue were transferred to a Network File System (NFS) to which the

nodes had access. This permitted faster access to data and prevented the LFC

from being overwhelmed with I/O requests. Future implementations of this

project are likely to use cloud computing as discussed in Section 14.2. This will

eliminate this issue which is specific to grid computing. It is unknown at this

time whether comparable issues may arise when using equivalent cloud

solutions, such as the S3 component of the AWS.

• Disk I/O: In this project, files copied from the LFC are accessed locally by the

grid nodes. Fields are grouped together to produce jobs. For 0.25 degree FoV,

each field has approximately 20 neighbours which need to be included with it.

Conversely, therefore, each file must be accessed an average of 21 times (once

for its own field, and once for each of its neighbours) to create a mosaic as

discussed in Subsection 5.2.1. This creates a potential for improvement by a

factor of up to 21 in disk I/O if this inefficiency can be addressed by optimising

with an “open once” file I/O strategy.

• Memory Allocation: The repeated iterations of the Locus Algorithm make this

project particularly vulnerable to memory leaks. In addition, there are no

explicit limits set on the size of the input, intermediate or output arrays in the

program. This means that excessively large grid jobs have the potential to

exceed available resources. While the former issue can be prevented by proper

270

programing techniques, the latter requires a thorough assessment of the

resources consumed by the program while operating.

14.3.3.2 Processing

Processing optimisations take the form of minimising the time taken per star to calculate

optimum pointings. As discussed in Chapter 13, the time taken to process a single star

is relatively short; however the generation of catalogues requires that this process be

iterated many times. Three areas in which there is potential for optimisation have been

identified

• Searching: The process by which a score is assigned to a field is currently an

O(n3) process over the number of potential reference stars – Potential pointings

are identified by calculating the intersection between the boundary boxes for

each reference with each other reference, then observing whether each other

reference is within a FoV of that point. Optimisation of this segment, at the core

of the project, may take the form of a pre-processing step which might

potentially reduce unnecessary iterations of the search process.

• Grouping: In the Catalogue Traversal mode, the software groups targets by

field, to reduce redundant file read calls. Further savings in redundancies may

be possible by grouping targets in different sized batches, or by increasing the

number of functions carried out at the batch level of the process.

• Calculation: the arithmetic functions used in this project are relatively simple,

but the repeated iterations can lead to long processing times. It may be possible

to further improve the efficiency by optimising these calculations and avoiding

repetitions. In addition, some of the proposed modifications to the software,

especially the inclusion of rotational components as suggested in Subsection

14.3.1.3, would increase the computational complexity significantly. Should

these proposals be followed, it is imperative that a careful optimisation strategy

be implemented to minimise the complexity of the calculation, especially by

eliminating any unnecessary trigonometric calculations.

271

14.4. Conclusions

Proposed future Projects

Reuse of existing project systems
Proposed work Scope of work Deliverables Expected use

Sample analysis of
project outputs using
different input
parameters

Use of stratified
sample of existing
pointings for different
combinations of
factors

Metrics on impact of
source and user input
parameters on score

Contribution to
refinement of scoring
system (see below)

Generation of new
catalogue using
different input
parameters

Full scale run of
catalogue generation
pipeline for different
input or observational
parameters using
suitable HPC solution

Catalogue
comparable to the
existing Exoplanet
catalogue for further
bands or observatory
conditions

Enabling the use of
the catalogue with
telescopes under
conditions other than
those for which the
existing catalogue
was developed.

Incorporation of
additional data
sources to the data
analysis pipeline

Modification of SDSS-
specific software
modules to allow
them to incorporate
other data sources

System capable of
analysing data from
multiple source
systems

Expansion of the data
analysis pipeline to
incorporate data from
new catalogues such
as LSST or existing
all-sky catalogues
such as USNO

Migration to Cloud
Proposed work Scope of work Deliverables Expected use

Migration of grid-
based data storage
and pipelines to
cloud-based systems

Modification of grid
modules and
replacement with
suitable cloud-based
systems (e.g. AWS)

Cloud-based storage
and analysis system
which enables future
use of the data
analysis pipeline.

Enabling generation
of new catalogues
and analyses of the
output data.

Refinements of existing systems
Proposed work Scope of work Deliverables Expected use

Addition of
functionality to data
analysis systems

Accommodation of
exceptions which
arose from the design
of the software, and
removal of limits such
as near-polar fields
and allowance for
rotating FoV

System capable of
adapting to additional
user requirements for
ad hoc queries or
catalogue generation

Expanded capability
of existing systems
with regards to areas
of the celestial sphere
which were previously
unsuitable, capacity
to permit the user to
rotate their telescope
to further optimise
their pointings

Refinement of
Scoring system

Calibration of scoring
system by comparing
observed and
simulated lightcurves
with existing scoring
systems

More robust scoring
system which
provides improved
precision in
determination of
optimum pointings for
different requirements

Enables more
sophisticated analysis
using modular scoring
systems for different
roles if needed

Computational
optimisation

Algorithmic analysis
of the implemented
software systems to
enable optimisation to
performance

Refined software
system with faster
computational
performance and
runtime

Enable more
iterations of the
software system with
given computational
resource

Table 14-1: Summary of proposed expansions to this project

272

This project has demonstrated a system for analysing large astronomical catalogues to

produce ranked output catalogues of pointings and scores given particular input

parameters. To further develop that system, it will be necessary to implement a new

HPC model. AWS offers an example of a cloud computing model conceptually similar

to Grid Ireland to which this project might be migrated with minimal modifications.

With a suitable system in place, it is proposed to repeat the use of the software

generated for this project to generate new catalogues and pointings and explore the

parameter space of the system. This exploration must account for photometric

parameters of target and reference stars, observational parameters such as field of view

size, and input data parameters such as source catalogues.

It may also be possible, with a new computing paradigm, to explore potentially valuable

refinements to the software which were beyond the scope of this project. Additional

functions which were not included in the initial release of the software may be valuable,

including making allowance for areas of the sky excluded from the current edition of the

software. Addition of functions such as camera rotation must be balanced against the

additional computational demand imposed.

The original scoring system used in this project requires more rigorous calibration than

was possible within the scope of this project. This calibration will require experimental

support, and may be developed, with appropriate software modifications, to incorporate

such refinements as additional variables or a “law of diminishing returns” for densely-

populated fields.

Finally, the software component of the project should itself be subject to review for

efficiency and performance issues. The choice of emphasis between data-based and

processing-based performance issues is partly dependant on which component

dominates the overall job completion time in the mode of operation to be optimised.

Processor-based efficiencies depend on optimising search and grouping strategies, and

upon minimising processor-intensive operations such as trigonometry. Data-oriented

strategies depend in part upon the HPC strategy, upon careful planning of grid jobs to

ensure files are not accessed unnecessarily, and upon control of memory allocation.

273

15. Conclusions

This project developed a technique, known as the Locus Algorithm, to produce

optimised pointings for ensemble differential photometry for a given target, given

information from a catalogue on the stars around it. This technique was used in a

software and hardware system which repeated this analysis on large data sets using grid

computing.

Two output catalogues were generated, the Quasar Catalogue and the Exoplanet

Catalogue. The Quasar Catalogue analysed 77,429 quasars and produced optimised

pointings for 23,697 of those targets. The Exoplanet Catalogue analysed ~86,000,000

stars from SDSS and produced optimised pointings for 61,662,376 of them.

Statistically, it is likely that many of these stars play host to exoplanets

These two catalogues represent a resource that can guide observations on any of the

targets for which there are pointings. Further, the scores provided can suggest a

preference, for an observer who has a choice of targets but no other a priori preference

between them. The information in the Exoplanet Catalogue, for example, can guide an

otherwise “blind” search for exoplanets by indicating targets for which higher

photometric precision may be available due to the better set of reference stars.

Detailed meta-analysis of the Exoplanet Catalogue allowed for clearer interpretation of

the score for a target. Scores showed substantial variation. The mean score in the

Exoplanet Catalogue overall was 6.72, and therefore any target with a score higher than

this can be considered “above average.” However, the distribution of scores showed a

long tail. The star with the highest score that was analysed was SDSS

J203733.62+001953.5, with a score of 117.7. This indicated that a user looking to

select a field with a large number of very similar references can search for those with

serendipitously high scores. These fields may prove particularly useful for survey

work, as a single telescope can be used to monitor many very similar stars.

In addition, the meta-analysis set boundaries on the reliability of the output from the

Exoplanet Catalogue. It is not advised to use the pointings for stars which do not fall in

the r magnitude range 16 < r < 20.2 and use of stars with colour outside 0.27<g-r<1.86

274

and 0.05<r-i<1.63 is discouraged. Targets with r ≈ 17.5 and (g-r) ≈ 0.450 or 1.4 and

(r-i)≈ 0.150 show the best results.

Assessment of the computing solution provided some insight into the operation of grid

computing on the “Data Rich, Process Poor” nature of this project. By using unit

testing to guide grid job submission, it became clear that the Data Access component of

the project dominated over the processing aspect in the API and Quasar pipeline jobs by

a factor of 156:1 and 157:1 respectively.

Unit testing on the Exoplanet Catalogue indicated that it would not be as strongly

affected by this issue. Scaling up to full-scale grid deployment of the Exoplanet

pipeline led to a different conclusion, however. During the grid job, the GMS was

unable to handle the 19.5 requests per second that the grid jobs were submitting at their

peak. As a result, Data Access actually became a blocking issue. It was necessary to

implement an alternative Data Access method, by making the data available on a NFS

connected via LAN to the WNs. This provided much faster data access which led to

processing and grid management overhead becoming the primary contributors to grid

run time.

Grid jobs were observed to have a reliability on par with or better than the 80%

typically expected of user grid jobs [179], in the exoplanet (1598/1791 = 89.22%) and API

(359/422 = 85.1%) jobs, but fell down in the quasar job (40/78 =51%). It is thought that

loss of data on the quasar job may have occurred outside the grid jobs, which would

bring down this result.

The Locus Algorithm system has been demonstrated to operate in all of its designed

modes. It is proposed that this system be refined and reused. Migration to Cloud

Computing will provide additional challenges, but will provide up-to-date technology

with which to perform repeat analysis of the catalogue generation jobs. The phase

space of the various parameters used to define the catalogues that are produced, such as

target lists, FoV size, colour and magnitude limits, and bandpass used can be explored

in depth. This will allow the iterative refinement of the scoring system by experimental

assessment of the validity of results. Such refinement of the scoring system may also

incorporate additional data into the catalogue.

275

Finally, the availability of a cloud computing solution will allow the project to be tested

in different virtual server environments, which will help to guide changes to the code

that will optimise the computing performance

..

276

Appendix A Bibliography & References

A-a In-Text citations

[1] E. F. Milone and J. W. Pel, “The High Road to Astronomical Photometric Precision:

Differential Photometry,” in Astronomical Photometry, New York, Springer, 2011, pp.

38-68.

[2] S. O'Driscoll, private communication, Cork, 2007.

[3] O. Creaner, E. Hickey, K. Nolan, T. O Briain and N. Smith, “Large-Catalogue

Optimisation of Quasar Differential Photometry Fields by Grid Computing,” in

Astronomical Data Analysis Software and Systems XIX, 2010.

[4] S. Chakrabarti, M. Ester, U. Fayyad, J. Gehrke, J. Han, S. Morishita, G. Piatetsky-

Shapiro and W. Wang, “Data Mining Curriculum: A Proposal (Version 1.0),” Intensive

Working Group of ACM SIGKDD Curriculum Committee, 2006.

[5] R. Gal and S. Jester, “SDSS Sky Coverage notes for DR7,” Xeno Media, 1 August

2013. [Online]. Available: http://www.sdss2.org/dr7/. [Accessed 6 August 2014].

[6] Sloan Digital Sky Survey Team, “SDSS Query/CASJobs,” Alfred P. Sloan Foundation,

11 February 2013. [Online]. Available: http://casjobs.sdss.org/CasJobs/. [Accessed 14

February 2013].

[7] S. Sciaba, S. Burke, E. Campana, M. Lanciotti, P. Litmaath, V. Lorenzo, C. Miccio, R.

Nater and Santinelli, GLite 3.2 User Guide, CERN, 2011.

[8] A. H. Batten, “Two centuries of study of Algol systems,” Space Science Reviews, vol.

49, no. 3, pp. 1-8, 1989.

[9] I. Zolotukhin, F. Roques, J. Schneider, C. Chauvin, M. Mancini, P. Le Sidaner, A.

Sergeev, M. Chernyshov, R. Savalle, J. Normand and C. Dedieu, “The Extrasolar

Planets Encyclopaedia,” Observatoire de Paris, 24 January 2017. [Online]. Available:

277

http://exoplanet.eu/. [Accessed 25 January 2017].

[10] A. Giltinan, D. Loughnan, A. Collins and N. Smith, “Using EMCCD's to improve the

photometric precision of ground-based astronomical observations,” in Journal of

Physics: Conference Series, 2011.

[11] R. L. Gilliland and T. M. Brown, “Time-resolved CCD photometry of an ensemble of

stars,” Publications of the Astronomical Society of the Pacific, vol. 100, pp. 754-765,

1988.

[12] G. H. A. Cole, Wandering Stars: About Planets and Exo-Planets: An Introductory

Notebook, Hull: World Scientific, 2006.

[13] E. Budding and O. Demircan, Introduction to Astronomical Photometry, 2nd ed.,

Cambridge: Cambridge University Press, 2007.

[14] I. Robson, Active Galactic Nuclei, Chichester: J. Wiley & sons, 1996.

[15] N. N. Samus, O. V. Durlevich, E. Kazarovets, N. Kireeva, E. N. Pastukhova, A. V.

Zharova and e. al, “General Catalogue of Variable Stars, VizieR On-line Data Catalog:

B/gcvs,” Moscow, 2007-2012.

[16] J. Percy, Understanding Variable Stars, Cambridge: Cambridge University Press, 2007.

[17] M. Perryman, The Exoplanet Handbook, Cambridge: Cambridge University Press,

2011.

[18] A. Wolszczan and F. Dale, “A planetary system around the millisecond pulsar PSR1257

+ 12,” Nature, vol. 355, no. 6356, pp. 145-147, 9 January 1992.

[19] M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature, vol.

378, no. 6555, p. 355–359, 1995.

[20] D. Charbonneau, T. M. Brown, D. W. Latham and M. Mayor, “Detection of Planetary

Transits across a Sun-like Star,” The Astrophysical Journal, vol. 529, no. 1, pp. L45-

L48, 2000.

278

[21] G. W. Henry, G. W. Marcy, R. P. Butler and S. S. Vogt, “A Transiting “51-Peg-Like”

Planet, , 529:L41,” The Astrophysical Journal, vol. 529, no. 1, pp. L41-L44, 2000.

[22] N. Smith, C. Coates, A. Giltinan, J. Howard, A. O'Connor, S. O'Driscoll, M. Hauser and

S. Wagner, “EMCCD technology and its impact on rapid low-light photometry,” in

Optical and Infrared Detectors for Astronomy, 2004.

[23] N. Smith, 2007-2014.

[24] V. Trimble and M. J. Aschwanden, “Astrophysics in 2000,” Publications of the

Astronomical Society of the Pacific, vol. 113, no. 787, pp. 1025-1114, 2001.

[25] J. Lean, J. Beer and R. Bradley, “Reconstruction of solar irradiance since 1610:

Implications for climate change,” Geophysical Research Letters, vol. 22, no. 23, pp.

3195-3198, 1995.

[26] D. Hoffleit, “History of the Discovery of Mira Stars,” Journal of the American

Association of Variable Star Observers, vol. 25, no. 2, pp. 115-136, 1996.

[27] S. R. Wilk, “Mythological Evidence for Ancient Observations of Variable Stars,” The

Journal of the American Association of Variable Star Observers, vol. 24, no. 2, pp. 129-

133, 1996.

[28] J. Goodricke, “A Series of Observations on, and a Discovery of, the Period of the

Variation of the Light of the Bright Star in the Head of Medusa, Called Algol. in a

Letter from John Goodricke, Esq. to the Rev. Anthony Shepherd, DDFRS and Plumian

Professor at Cambridge,” Philosophical Transactions of the Royal Society of London,

vol. 73, pp. 474-482, 1783.

[29] A. S. Meltzer, “A Spectroscopic Investigation of Algol,” Astrophysical Journal, vol.

125, p. 359, 1957.

[30] D. M. Kipping, “Transit timing effects due to an exomoon,” Monthly Notices of the

Royal Astronomical Society, vol. 392, no. 3, pp. 181-189, 2009.

279

[31] I. D. Howarth, “On stellar limb darkening and exoplanetary transits,” Monthly Notices

of the Royal Astronomical Society, vol. 418, no. 2, pp. 1165-1175, 2011.

[32] Working Group on Extrasolar Planets (WGESP) of the International Astronomical

Union, “Position Statement on the Definition of a "Planet",” 28 February 2003.

[Online]. Available: http://astro.berkeley.edu/~basri/defineplanet/IAU-WGExSP.htm.

[Accessed 8 September 2014].

[33] T. P. Castellano, G. Laughlin, R. S. Terry, M. Kaufman, S. Hubbert, G. M. Schelbert, D.

Bohler and R. Rhodes, “Detection of Transits of Extrasolar Giant Planets With

Inexpensive Telescopes and CCDs,” The Journal of the American Association of

Variable Star Observers, vol. 33, no. 1, pp. 1-24, 2004.

[34] P. Sherrer, “NASA's SDO Satellite Captures 2012 Venus Transit,” NASA/SDO, HMI, 5

June 2012. [Online]. Available:

https://www.flickr.com/photos/gsfc/7158100537/in/photostream/. [Accessed 9

September 2014].

[35] L. Billings, “Exoplanets on the cheap (London) 470 (2011): 27-29.,” Nature, vol. 470,

no. 7332, pp. 27-29, 2011.

[36] A. Cox, Ed., Allen's Astrophysical Quantities, 4th ed., New York: Springer, 2000.

[37] D. Koch and A. Gould, “Characteristics of Transits,” NASA/Kepler, 30 June 2005.

[Online]. Available:

http://certificate.ulo.ucl.ac.uk/modules/year_one/NASA_Kepler/character.html.

[Accessed 9 September 2014].

[38] G. Chabrier, I. Baraffe, J. Leconte, J. Gallardo and T. Barman, “The mass-radius

relationship from solar-type,” AIP Conference Proceedings, vol. 1094, no. 1, pp. 102-

111, 2009.

[39] European Southern Observatory, “VLTI observations of the radii of four small stars,”

29 November 2002. [Online]. Available:

280

https://www.eso.org/public/australia/images/eso0232c/. [Accessed 25 January 2017].

[40] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R.

Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A.

Evrard, J. Colberg and F. Pearce, “Simulations of the formation, evolution and

clustering of galaxies and quasars,” Nature, vol. 435, no. 7042, pp. 629-636, 2005.

[41] N. Smith, A. Giltinan, A. O'Connor, S. O'Driscoll, A. Collins, D. Loughnan and A.

Papageorgiou, “EMCCD Technology in High Precision Photometry on Short

Timescales,” in High Time Resolution Astrophysics, D. Phelan, O. Ryan and A. Shearer,

Eds., Berlin, Springer, 2008, pp. 257-279.

[42] M.-P. Véron-Cetty and P. Véron, “A catalogue of quasars and active nuclei,” Astronomy

and Astrophysics, vol. 518, no. 10, 2010.

[43] K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, C. Allende

Prieto, D. An, K. S. J. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, C. A. L.

Bailer-Jones, J. C. Barentine, B. A. Bassett, A. C. Becker, T. C. Beers, E. F. Bell, V.

Belokurov, A. A. Berlind, E. F. Berman, M. Bernardi, S. J. Bickerton, D. Bizyaev, J. P.

Blakeslee, M. R. Blanton, Bochanski, John J., Boroski, William N., Brewington,

Howard J., Brinchmann, Jarle, Brinkmann, J., Brunner, Robert J., Budavári, Tamás,

Carey, Larry N., Carliles, Samuel, Carr, Michael A., Castander, Francisco J., Cinabro,

David, Connolly, A. J., Csabai, István, Cunha, Carlos E., Czarapata, Paul C., Davenport,

James R. A., de Haas, Ernst, Dilday, Ben, Doi, Mamoru, Eisenstein, Daniel J., Evans,

Michael L., Evans, N. W., Fan, Xiaohui, Friedman, Scott D., Frieman, Joshua A.,

Fukugita, Masataka, Gänsicke, Boris T., Gates, Evalyn, Gillespie, Bruce, Gilmore, G.,

Gonzalez, Belinda, Gonzalez, Carlos F., Grebel, Eva K., Gunn, James E., Györy,

Zsuzsanna, Hall, Patrick B., Harding, Paul, Harris, Frederick H., Harvanek, Michael,

Hawley, Suzanne L., Hayes, Jeffrey J. E., Heckman, Timothy M., Hendry, John S.,

Hennessy, Gregory S., Hindsley, Robert B., Hoblitt, J., Hogan, Craig J., Hogg, David

W., Holtzman, Jon A., Hyde, Joseph B., Ichikawa, Shin-ichi, Ichikawa, Takashi, Im,

Myungshin, Ivezić, Željko, Jester, Sebastian, Jiang, Linhua, Johnson, Jennifer A.,

Jorgensen, Anders M., Jurić, Mario, Kent, Stephen M., Kessler, R., Kleinman, S. J.,

281

Knapp, G. R., Konishi, Kohki, Kron, Richard G., Krzesinski, Jurek, Kuropatkin,

Nikolay, Lampeitl, Hubert, Lebedeva, Svetlana, Lee, Myung Gyoon, Lee, Young Sun,

French Leger, R., Li, Nolan, Lima, Marcos, Lima, Marcos, Lin, Huan, Long, Daniel C.,

Loomis, Craig P., Loveday, Jon, Lupton, Robert H., Magnier, Eugene, Malanushenko,

Olena, Malanushenko, Viktor, Mandelbaum, Rachel, Margon, Bruce, Marriner, John P.,

Martínez-Delgado, David, Matsubara, Takahiko, McGehee, Peregrine M., McKay,

Timothy A., Meiksin, Avery, Morrison, Heather L., Mullally, Fergal, Munn, Jeffrey A.,

Murphy, Tara, Nash, Thomas, Nebot, Ada, Neilsen, Eric H., Jr., Newberg, Heidi Jo,

Newman, Peter R., Nichol, Robert C., Nicinski, Tom, Nieto-Santisteban, Maria, Nitta,

Atsuko, Okamura, Sadanori, Oravetz, Daniel J., Ostriker, Jeremiah P., Owen, Russell,

Padmanabhan, Nikhil, Pan, Kaike, Park, Changbom, Pauls, George, Peoples, John, Jr.,

Percival, Will J., Pier, Jeffrey R., Pope, Adrian C., Pourbaix, Dimitri, Price, Paul A.,

Purger, Norbert, Quinn, Thomas, Raddick, M. Jordan, Re Fiorentin, Paola, Richards,

Gordon T., Richmond, Michael W., Riess, Adam G., Rix, Hans-Walter, Rockosi,

Constance M., Sako, Masao, Schlegel, David J., Schneider, Donald P., Scholz, Ralf-

Dieter, Schreiber, Matthias R., Schwope, Axel D., Seljak, Uroš, Sesar, Branimir,

Sheldon, Erin, Shimasaku, Kazu, Sibley, Valena C., Simmons, A. E., Sivarani,

Thirupathi, Allyn Smith, J., Smith, Martin C., Smolčić, Vernesa, Snedden, Stephanie A.,

Stebbins, Albert, Steinmetz, Matthias, Stoughton, Chris, Strauss, Michael A.,

SubbaRao, Mark, Suto, Yasushi, Szalay, Alexander S., Szapudi, István, Szkody, Paula,

Tanaka, Masayuki, Tegmark, Max, Teodoro, Luis F. A., Thakar, Aniruddha R.,

Tremonti, Christy A., Tucker, Douglas L., Uomoto, Alan, Vanden Berk, Daniel E.,

Vandenberg, Jan, Vidrih, S., Vogeley, Michael S., Voges, Wolfgang, Vogt, Nicole P.,

Wadadekar, Yogesh, Watters, Shannon, Weinberg, David H., West, Andrew A., White,

Simon D. M., Wilhite, Brian C., Wonders, Alainna C., Yanny, Brian, Yocum, D. R.,

York, Donald G., Zehavi, Idit, Zibetti, Stefano and Zucker, Daniel B., “The Seventh

Data Release of the Sloan Digital Sky Survey,” The Astrophysical Journal Supplement,

vol. 182, no. 2, pp. 543-558, 2009.

[44] A. U. Landolt, “Johnson Photometry and Its Descendants,” in Astronomical

Photometry: Past, Present and Future, E. F. Milone and C. Sterken, Eds., New York,

Springer, 2011, pp. 109-125.

282

[45] A. U. Landolt, “UBVRI photometric standard stars around the celestial equator,” The

Astronomical Journal, vol. 88, pp. 439-460, 1983.

[46] C. Sterken and J. Manfroid, Astronomical Photometry: A Guide, New York: Springer,

1992.

[47] C. W. Engelke, S. D. Price and K. E. Kraemer, “Spectral Irradiance Calibration in the

Infrared. XVII. Zero-magnitude Broadband Flux Reference for Visible-to-infrared

Photometry,” The Astronomical Journal, vol. 140, no. 6, pp. 1919-1928, 2010.

[48] M. Cohen, “Absolute Photometry: Past and Present,” in Astronomical Photometry: Past,

Present and Future, New York, Springer, 2011, pp. 179-188.

[49] H. Kjeldsen and S. Frandsen, “High-precision time-resolved CCD photometry,”

Publications of the Astronomical Society of the Pacific, vol. 41, no. 3, pp. 413-434,

1992.

[50] G. Bakos, R. W. Noyes, G. Kovács, K. Z. Stanek, D. D. Sasselov and I. Domsa, “Wide‐
Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet

Detection,” Publications of the Astronomical Society of the Pacific, vol. 116, no. 817,

pp. 266-277, 2004.

[51] A. T. Young, R. M. Genet, L. J. Boyd, W. J. Borucki, G. W. Lockwood, G. W. Henry,

D. S. Hall, D. P. Smith, S. L. Baliumas, R. Donahue and D. H. Epand, “Precise

automatic differential stellar photometry (1991): 221-242.,” Publications of the

Astronomical Society of the Pacific, vol. 103, no. 2, pp. 221-242, 1991.

[52] S. B. Howell, A. I. Warnock and K. J. Mitchell, “Statistical error analysis in CCD time-

resolved photometry with applications to variable stars and quasars,” Astronomical

Journal, vol. 95, pp. 247-256, 1988.

[53] G. H. Herbig, “Stellar Magnitudes 4 (1945): 386.,” Leaflet of the Astronomical Society

of the Pacific, vol. 4, no. 198, pp. 386-393, 1945.

[54] Hipparchus, Rhodes?, 127BC.

283

[55] C. Ptolemy, Algamest, Alexandria, 138.

[56] C. Sterken, M. E. F. and A. T. Young, “Photometric Precision and Accuracy,” in

Astronomical Photometry: Past, Present and Future, New York, Springer, 2011, pp. 1-

32.

[57] P. Bouguer, Traité d'optique sur la gradation de la lumière, 1760.

[58] J. B. Hearnshaw, The measurement of starlight: two centuries of astronomical

photometry, Cambridge: Cambridge University Press, 1996.

[59] N. Pogson, “Magnitudes of Thirty-six of the Minor Planets for the first day of each

month of the year 1857,” Monthly Notices of the Royal Astronomical Society, vol. 17,

pp. 12-15, 1856.

[60] G. P. Bond, “Stellar‐Photography,” Astronomische Nachrichten, vol. 46, no. 6-7, pp. 81-

100, 1859.

[61] I. Elliot, “Monck, William Henry Stanley,” in Biographical Encyclopedia of

Astronomers, New York, Springer, 2014, pp. 1510-1512.

[62] G. Minchin, “The Electrical Measurement of Starlight. Observations Made at the

Observatory of Daramona House, Co. Westmeath, in April, 1895. Preliminary

Report58.347-352 (1895): 142-154.,” Proceedings of the Royal Society of London, vol.

58, pp. 142-154, 1895.

[63] J. Stebbins, “The measurement of the light of stars with a selenium photometer, with an

application to the variations of Algol,” The Astrophysical Journal, vol. 32, pp. 185-214,

1910.

[64] T. Walraven, “On the light-variation of AI Velorum,” Bulletin of the Astronomical

Institutes of the Netherlands, vol. 11, p. 421, 1952.

[65] S. B. Howell, “High Precision Differential Photometry with CCDs: A Brief History,” in

Astronomical Photometry: Past, Present and Future, New York, Springer, 2011, pp. 71-

284

84.

[66] S. B. Howell, Handbook of CCD astronomy, vol. 5, Cambridge: Cambridge University

Press, 2006.

[67] A. R. Walker, “CCD observations of photoelectric standard stars,” Monthly Notices of

the Royal Astronomical Society, vol. 209, pp. 83-91, 1984.

[68] M. E. Everett and S. B. Howell, “A Technique for Ultrahigh‐Precision CCD

Photometry,” Publications of the Astronomical Society of the Pacific, vol. 133, no. 789,

pp. 1428-1435, 2001.

[69] R. K. Honeycutt, “CCD ensemble photometry on an inhomogeneous set of exposures,”

Publications of the Astronomical Society of the Pacific, vol. 104, no. 672, pp. 435-440,

1992.

[70] D. Tody, “The IRAF Data Reduction and Analysis System,” 1986 Astronomy

Conferences, pp. 733-748, October 1986.

[71] K. Venkataramani, S. Ghetiya, S. Ganesh, U. C. Joshi, V. K. Agnihotri and K. S.

Baliyan, “Optical Spectroscopy of Comet C/2014 Q2 (Lovejoy) from MIRO,” Monthly

Notices of the Royal Astronomical Society, vol. 463, no. 2, pp. 2137-2144, 2016.

[72] M. D. de La Peña, R. L. White and P. Greenfield, “The PyRAF Graphics System,”

Astronomical Data Analysis Software and Systems X, ASP Conference Proceedings, vol.

238, pp. 59-62, 2001.

[73] Space Telescope Science Institute, “PyRAF,” AURA for NASA, January 2017.

[Online]. Available: http://www.stsci.edu/institute/software_hardware/pyraf. [Accessed

4 February 2017].

[74] R. H. Lupton, Z. Ivezic, J. E. Gunn, G. Knapp, M. A. Strauss and N. Yasuda, “SDSS

imaging pipelines,” Astronomical Telescopes and Instrumentation, pp. 350-356, 2002.

[75] S. O'Driscoll and N. J. Smith, “The realization of an automated data reduction pipeline

285

in IRAF: the PhotMate system,” Astronomical Telescopes and Instrumentation, 2004.

[76] A. W. J. Cousins, “Atmospheric Extinction in Relation to Stellar Photometry,” Monthly

Notes of the Astronomical Society of South Africa, vol. 44, p. 10, 1985.

[77] A. Y. Burdanov, V. V. Krushinsky and A. A. Popov, “Astrokit-an efficient program for

high-precision differential CCD photometry and search for variable stars,”

Astrophysical Bulletin, vol. 69, no. 3, pp. 368-376, 2014.

[78] T. C. Hinse, H. Wonyong, J.-N. Yoon, C.-U. Lee, Y.-g. Kim and C.-H. Kim,

“Photometric defocus observations of transiting extrasolar planets,” Journal of

Astronomy and Space Science, 2015.

[79] A. Collins and N. Smith, A new Technique for Improving High Precision Photometry in

Turbulent Atmospheric Conditions, Cork, 2011.

[80] D. L. Fried, “Probability of getting a lucky short-exposure image through turbulence,”

Journal of the Optical Society of America, vol. 68, no. 12, pp. 1651-1658, 1978.

[81] S. Zhang, J. Zhao and J. Wang, “High resolution astronomical image restoration system

for large ground-based telescope,” Chinese Optics Letters, vol. 10, no. s2, pp. S21004-

1-S21004-4, 2012.

[82] E. F. Milone and A. T. Young, “The Rise and Improvement of Infrared Photometry,” in

Astronomical Photometry: Past, Present and Future, New York, Springer, 2011, pp.

127-143.

[83] D. Grennan, private communication, Dublin, 2012.

[84] K. Jordi, E. K. Grebel and K. Ammon, “Empirical color transformations between SDSS

photometry and other photometric systems,” Astronomy and Astrophysics, vol. 460, no.

1, pp. 339-347, 2006.

[85] Z. Ivezic, J. A. Tyson, E. Acosta, R. Allsman, S. F. Anderson, J. Andrew and D. Kirkby,

“LSST: from science drivers to reference design and anticipated data products,” arXiv

286

preprint, vol. 0805, no. 2366, 2008.

[86] W. D. Pence, L. Chiappetti, C. G. Page, R. A. Shaw and E. Stobie, “Definition of the

Flexible Image Transport System (FITS), version 3.0,” Astronomy and Astrophysics,

vol. 524, no. A42, pp. 1-42, 2010.

[87] J. Dongarra and A. Lastovetsky, “An overview of heterogeneous high performance and

grid computing." (2006): 1-25.,” in Engineering the Grid: Status and Perspective, 2006,

pp. 1-25.

[88] I. Foster, Y. Zhao, I. Raicu and S. Lu, “Cloud computing and grid computing 360-

degree compared,” Grid Computing Environments Workshop, November 2008.

[89] S. Ghosh, Distributed systems: an algorithmic approach, CRC Press, 2010.

[90] M. Dimitrijević and V. Litovski, “Virtual Machine Technology in Grid Computing,”

2008, pp. 240-243.

[91] A. L. Beberg, D. L. J. G. Ensign, S. Khaliq and V. S. Pande, “Folding@ home: Lessons

from eight years of volunteer distributed computing,” in Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International Symposium on Parallel &

Distributed Computing, 2009.

[92] W. Gropp, E. Lusk and A. Skjellum, “A High-Performance, Portable Implementation of

the MPI Message Passing Interface,” Parallel Computing, vol. 22, no. 6, pp. 789-828,

1996.

[93] School of Computer Science and Statistics, Trinity College Dublin, “Grid Ireland

Opcentre,” Trinity College Dublin, 15 June 2009. [Online]. Available:

http://grid.ie/opscentre.html. [Accessed 6 February 2012].

[94] B. Coughlan, J. Walsh and D. O'Callaghan, “The Grid-Ireland Deployment

Architecture,” European Grid Conference, pp. 354-363, 2005.

[95] V. Kunik, “Grid Data Management, Israeli Grid Workshop,” Israeli Grid NA3,

September 2006. [Online]. Available:

287

http://indico.cern.ch/event/a063283/session/s1/contribution/s1t3/material/0/0.ppt.

[Accessed 2014 September 23].

[96] C. Panagiotis, “ls man page,” 1994. [Online]. Available:

http://unixhelp.ed.ac.uk/CGI/man-cgi?ls. [Accessed 23 September 2014].

[97] B. Gambrel and K. Endsley, Introduction to Programming, C. A. Huchinson, Ed., Que

Publishing, 1992.

[98] D. Bell, I. Morrey and J. Pugh, Software engineering: a programming approach, 2nd ed.,

Prentice Hall, 1992.

[99] H. M. Deitel and P. J. Deitel, C How to Program, 3rd ed., Prentice Hall, 2001.

[100] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed., Prentice

Hall, 1988.

[101] H. Schildt, C The Complete Reference, Osborne McGraw-Hill, 1987.

[102] British Computer Society. Glossary Working Party, The BCS Glossary of ICT and

Computing Terms, 11th ed., Pearson: Prentice Hall., 2005.

[103] A. B. Tucker and R. E. Noonan, Programming Languages: Principles and Paradigms,

McGraw Hill, 2007.

[104] S. M. H. Collin, Dictionary of ICT, 4th ed., Bloomsbury, 2004.

[105] G. van Rossum, “Python Web Site,” Python Software Foundation, 2017. [Online].

Available: https://www.python.org. [Accessed 5 February 2017].

[106] H. H. Cheng, The Ch Language Environment, 2002.

[107] P. Tymann and C. Reynolds, Schaum's outline of principles of computer science,

McGraw-Hill, Inc., 2008.

[108] H. M. Deitel and P. J. Deitel, Simply C++ : An Application-Driven Tutorial Approach,

288

Pearson Prentice Hall, 2005.

[109] J. Hughes, “Why functional programming matters.,” The computer journal, vol. 32, no.

2, pp. 98-107, 1989.

[110] J. M. Spivey, An introduction to logic programming through Prolog, Prentice-Hall,

1995.

[111] Sloan Digital Sky Survey Team, “SDSS DR7 Home Page,” Alfred P. Sloan Foundation,

31 July 2012. [Online]. Available: http://www.sdss.org/DR7/. [Accessed 22 February

2013].

[112] M. Taylor, “TOPCAT, Tool for OPerations on Catalogues And Tables, Does what you

want with tables,” Astrophysics Group, Physics Department, University of Bristol, 23

September 2016. [Online]. Available: http://www.star.bristol.ac.uk/~mbt/topcat/.

[Accessed 12 February 2017].

[113] International Virtual Observatory Alliance (IVOA), “IVAO.net,” International Virtual

Observatory Alliance (IVOA), December 2016. [Online]. Available: http://ivoa.net.

[Accessed 12 February 2017].

[114] I. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasak, M. A. Nieto-Santisteban, M.

Ohishi, W. O’Mullane, P. Osuna, the VOQL-TEG and the VOQL Working Group,

“IVOA Astronomical Data Query Language, Version 2.0,” 30 October 2008. [Online].

Available: http://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf.

[Accessed 12 February 2017].

[115] The IVOA Virtual Observatory Query Language (VOQL) working group members, The

IVOA Data Access Layer (DAL) working group members, “Astronomical Data Query

Language, Version 2.1,” 2 May 2016. [Online]. Available:

http://www.ivoa.net/documents/ADQL/20160502/WD-ADQL-2.1-20160502.pdf.

[Accessed 12 February 2017].

[116] F. Ochsenbein, R. Williams, C. Davenhall, M. Demleitner, D. Durand, P. Fernique, D.

Giaretta, R. Hanisch, T. McGlynn, A. Szalay, M. Taylor and A. Wicenec, “VOTable

289

Format Definition Version 1.3,” 20 September 2013. [Online]. Available:

http://www.ivoa.net/documents/VOTable/20130920/REC-VOTable-1.3-20130920.pdf.

[Accessed 12 February 2017].

[117] G. van Rossum, “Glue It All Together With Python,” 8 January 1998. [Online].

Available: https://www.python.org/doc/essays/omg-darpa-mcc-position/. [Accessed 12

February 2017].

[118] E. Tollerud and G. Tremblay, “Astropy,” NumFOCUS, 9 January 2017. [Online].

Available: http://www.astropy.org/. [Accessed 6 February 2017].

[119] Sloan Digital Sky Survey Team, “SkyServer,” Alfred P. Sloan Foundation, [Online].

Available: http://skyserver.sdss.org/dr7/en/tools/search/sql.asp. [Accessed 29 September

2014].

[120] R. Lawrence, “The space efficiency of XML,” Information and Software Technology,

vol. 46, no. 11, pp. 753-759, 2004.

[121] Sloan Digital Sky Survey Team, “Calibrated Objects,” Alfred P. Sloan Foundation,

[Online]. Available: http://www.sdss.org/dr7/dm/flatFiles/tsObj.html. [Accessed 12

May 2012].

[122] Sloan Digital Sky Survey Team, “SDSS DAS Coordinate List Submission Form,”

Alfred P. Sloan Foundation, [Online]. Available:

http://das.sdss.org/www/html/post_coords.html. [Accessed 24 September 2014].

[123] Free Software Foundation, Inc., “GNU Wget 1.18 Manual,” 2015. [Online]. Available:

https://www.gnu.org/software/wget/. [Accessed 19 June 2016].

[124] Y. Sun, Z. Demirezen, M. Mernik, J. Gray and B. Bryant, “"Is My DSL a Modeling or

Programming Language?,” Domain-Specific Program Development, 2008.

[125] J. V. Ashby, “A comparison of C, Fortran and Java for Numerical Computation,”

[Online]. Available: http://www.stfc.ac.uk/cse/resources/pdf/jaspa.pdf. [Accessed 26

June 2014].

290

[126] W. D. Pence, "CFITSIO User's Guide.", 2006.

[127] A. P. Smale, R. Brissenden, P. Newman and M. Gibb, “CCFits Documentation,” 6

December 2011. [Online]. Available: http://heasarc.gsfc.nasa.gov/fitsio/CCfits/.

[Accessed 24 September 2014].

[128] M. Reillo, “JFITSIO Documentation,” 11 May 2007. [Online]. Available:

jfitsio.sourceforge.net. [Accessed 25 April 2014].

[129] HEASARC, FITSIO User's Guide, A Subroutine Interface to FITS Format Files, 3.0,

Ed., NASA, 2009.

[130] Space Telescope Science Institute, “PyFits,” NASA, 17 July 2014. [Online]. Available:

http://www.stsci.edu/institute/software_hardware/pyfits. [Accessed 6 February 2017].

[131] J.-J. Merelo-Guervós, I. Blancas-Álvarez and P. A. Castillo, “A comparison of

implementations of basic evolutionary algorithm operations in different languages,” in

Evolutionary Computation (CEC), 2016 IEEE Congress on, 2016.

[132] S. W. Haney, “Is c++ fast enough for scientific computing?,” Computers in Physics, vol.

8, no. 6, pp. 690-696, 1994.

[133] L. Prechelt, “An empirical comparison of C, C++, Java, Perl, Python, Rexx and Tcl,”

IEEE Computer, vol. 33, no. 10, pp. 23-29, 2000.

[134] J. Walsh, private communication, Dublin: Grid Ireland/TCD, 2008-2013.

[135] C. Newham, Learning the bash shell: Unix shell programming, O'Reilly Media, Inc.,

2005.

[136] A. W. Harris and B. Warner, A Practical Guide to Lightcurve Photometry and Analysis,

Colorado Springs: Springer, 2006.

[137] D. P. Schneider, P. B. Hall, G. T. Richards, M. A. Strauss, Vanden Berk, Daniel E., S.

F. Anderson, W. N. Brandt, X. Fan, S. Jester, Gray, Jim, Gunn, James E., SubbaRao,

Mark U., A. R. Thakar, C. U. Stoughton, Szalay, Alexander S., Yanny, Brian, York,

291

Donald G, N. Inada, G. R. Knapp, C. M. Krawczyk, Voges, Wolfgang, Bahcall, Neta

A., J. Barentine, Blanton, Michael R., Brewington, Howard, Brinkmann, J., R. J.

Brunner, F. J. Castander, I. Csabai, Frieman, Joshua A., Fukugita, Masataka, M.

Harvanek, D. W. Hogg, Ivezić, Željko, Kent, Stephen M, S. J. Kleinman, G. R. Knapp,

Kron, Richard G., J. Krzesinski, D. C. Long, Lupton, Robert H., A. Nitta, Pier, Jeffrey

R., Saxe, David H., Y. Shen, Snedden, Stephanie A., Weinberg, David H. and J. Wu,

“The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release,” The

Astronomical Journal, vol. 134, pp. 102-117, 2007.

[138] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke, “The data grid:

Towards an architecture for the distributed management and analysis of large scientific

datasets,” Journal of network and computer applications, vol. 23, no. 3, pp. 187-200,

2000.

[139] M. Redmond, “A Review of Coordinates,” [Online]. Available:

http://spiff.rit.edu/classes/phys440/lectures/coords/coords.html. [Accessed 3 October

2014].

[140] J. Gray, A. Szalay, M. Nieto-Santisteban and T. Budavari, “SDSS DR10 Navigate

Tool,” February 2004. [Online]. Available:

http://skyserver.sdss3.org/dr10/en/tools/chart/navi.aspx. [Accessed 3 September 2014].

[141] School of Electrical Engineering and Computer Science, “Top Down Design,”

Washington State University, 6 February 2001. [Online]. Available:

http://www.eecs.wsu.edu/~cs150/tdd.htm. [Accessed 16 November 2014].

[142] V. Volin, “Design Strategies: Top-Down vs. Bottom-Up,” 13 December 2010. [Online].

Available: http://superprofundo.com/2010/12/13/top-down-and-bottom-up-pros-and-

cons/. [Accessed 16 November 2014].

[143] T. Joachims, “Object-Oriented Programming - Lecture 7: Software Design,” 13

February 2012. [Online]. Available:

http://www.cs.cornell.edu/courses/cs2110/2012sp/lectures/07-SoftwareDesign_6up.pdf.

[Accessed 16 November 2014].

292

[144] P. Jalote, An Integrated Approach to Software Engineering, New York: Springer, 2005.

[145] N. Johansson and A. Löfgren, “Designing for Extensibility: An action research study of

maximizing extensibility by means of design principles,” University of Gothenburg,

Gothenburg, 2009.

[146] A. Kelly, “The Philosophy of Extensible Software,” ACCU, August 2002. [Online].

Available: http://accu.org/index.php/journals/391. [Accessed 17 November 2014].

[147] D. Hamlet and J. Maybee, The Engineering of Software: Technical Foundations for the

Individual, Boston: Addison Wesley Longman, 2001.

[148] R. S. Pressman, Software Engineering: A Practitioner's Guide, International ed., New

York: McGraw-Hill, 2010.

[149] F. Detienne, Software Design – Cognitive Aspect, F. Bolt, Ed., Springer, 2002.

[150] C. Larman and V. R. Basili, “Iterative and incremental development: A brief history,”

Computer, vol. 36, no. 6, pp. 47-56, 2003.

[151] P. Ralph and Y. Wand, “A proposal for a formal definition of the design concept,” in

Design requirements engineering: A ten-year perspective, Berlin Heidelberg, Springer,

2009, pp. 103-136.

[152] B. Thomas, T. Jenness, F. Economou, P. Greenfield, P. Hirst, D. S. Berry, E. Bray, N.

Gray, D. Muna, J. Turner, M. de Val-Borro, J. Santander-Vela, D. Shupe, J. Good, G. B.

Berriman, S. Kitaeff, J. Fay, O. Laurino, A. Alexov, W. Landry, J. Masters, A. Brazier,

R. Schaff, K. Edwards, R. O. Redman, T. R. Marsh, O. Streicher, P. Norris, S. Pascual,

M. Davie, M. Droettboom, T. Robitaille, R. Campana, A. Hagen, P. Hartogh, D. Klaes,

W. M. Craig and D. Homeier, “Learning from FITS: Limitations in use in modern

astronomical research,” Astronomy and Computing, vol. 12, pp. 133-145, 2015.

[153] B. Thomas, T. Jenness, F. Economou, P. Greenfield, P. Hirst, D. Berry, E. Bray, N.

Gray, D. Turner, M. de Val-Borro and J. Vela, “Significant problems in FITS limit its

use in modern astronomical research,” in Astronomical Data Analysis Software and

293

Systems XXIII, ASP Conference Series, Vol. 485, 2015.

[154] D. C. Price, B. R. Barsdell and L. J. Greenhill, “Is HDF5 a good format to replace

UVFITS?,” in Astronomical Data Analysis Software an Systems XXIV (ADASS XXIV),

Calgary, 2015.

[155] D. C. Price, B. R. Barsdell and L. J. Greenhill, “HDFITS: Porting the FITS data model

to HDF5,” Astronomy and Computing, vol. 12, pp. 212-220, 2015.

[156] SDSS, “SDSS Data Archive Server,” [Online]. Available:

http://das.sdss.org/www/html/. [Accessed 19 February 2016].

[157] Sloan Digital Sky Survey Team, “Understanding the image processing flags,” Alfred P.

Sloan Foundation, 6 December 2006. [Online]. Available:

http://classic.sdss.org/dr7/products/catalogs/flags.html. [Accessed 24 September 2014].

[158] Sloan Digital Sky Survey Team, “SDSS Glossary,” Alfred P. Sloan Foundation, 27 June

2007. [Online]. Available: http://classic.sdss.org/dr7/glossary/index.html. [Accessed 24

September 2014].

[159] E. Hickey, SQL queries to CAS, Private Communication, 2008.

[160] H. Wickham, “Tidy Data,” Journal of Statistical Software, vol. 59, no. 10, 2014.

[161] Sloan Digital Sky Survey, “Fourth edition of the SDSS Quasar Catalog,” Alfred P.

Sloan Foundation, 9 January 2008. [Online]. Available:

http://classic.sdss.org/dr6/products/value_added/qsocat_dr5.html. [Accessed 25 March

2016].

[162] T. Yolnen and C. Lonvick, “The secure shell (SSH) protocol architecture,” Network

Working Group of theIETF, 2006.

[163] Y. Shafranovich, “Common format and MIME type for Comma-Separated Values

(CSV) files,” ITEF, 2005.

[164] W. Pence, “CFITSIO, v2.0: A New Full-Featured Data Interface,” in Astronomical Data

294

Analysis Software and Systems VIII, ASP Conference Series, Vol. 172., 1999.

[165] IEEE and The Open Group, “The Open Group Base Specifications,” 2013. [Online].

Available:

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html.

[Accessed 11 September 2015].

[166] B. Lin, B. J. Wuebben, C. Wurll and E. Waterlander, “dos2unix - DOS/Mac to Unix and

vice versa text file format converter,” 9 June 2014. [Online]. Available:

http://www.unix.com/man-page/centos/1/unix2dos/. [Accessed 20 June 2016].

[167] T. O Briain, private communication, Dublin: ITT Dublin, 2007.

[168] M. Rudenko, T. Spahr, G. Williams, S. Keys, J. L. Galache and J. Davies, “List Of

Observatory Codes,” The Minor Planet Centre, 2013. [Online]. Available:

http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html. [Accessed 2 September

2014].

[169] D. Grennan, Data Specification of Observations from Raheny Observatory, Dublin,

2014.

[170] X. Fan, “Simulation of stellar objects in sdss color space,” The Astronomical Journal,

vol. V, no. 117, p. 2528, 1999.

[171] C. W. Allen, Astrophysical Quantities, 3rd ed., London: Athlone: Springer, 1976.

[172] Sloan Digital Sky Survey, “The Scope of DR10,” SDSS-III, 2013. [Online]. Available:

https://www.sdss3.org/dr10/scope.php. [Accessed 13 June 2016].

[173] D. G. York, J. Adelman, J. E. J. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, J. A.

Bakken, R. Barkhouser, S. Bastian, E. Berman, W. N. Boroski, S. Bracker, C. Briegel, J.

W. Briggs, Brinkmann, J., Brunner, Robert, Burles, Scott, Carey, Larry, Carr, Michael

A., Castander, Francisco J., Chen, Bing, Colestock, Patrick L., Connolly, A. J., Crocker,

J. H., Csabai, István, Czarapata, Paul C., Davis, John Eric, Doi, Mamoru, Dombeck,

Tom, Eisenstein, Daniel, Ellman, Nancy, Elms, Brian R., Evans, Michael L., Fan,

295

Xiaohui, Federwitz, Glenn R., Fiscelli, Larry, Friedman, Scott, Frieman, Joshua A.,

Fukugita, Masataka, Gillespie, Bruce, Gunn, James E., Gurbani, Vijay K., de Haas,

Ernst, Haldeman, Merle, Harris, Frederick H., Hayes, J., Heckman, Timothy M.,

Hennessy, G. S., Hindsley, Robert B., Holm, Scott, Holmgren, Donald J., Huang, Chi-

hao, Hull, Charles, Husby, Don, Ichikawa, Shin-Ichi, Ichikawa, Takashi, Ivezić, Željko,

Kent, Stephen;, Kim, Rita S. J., Kinney, E., Klaene, Mark, Kleinman, A. N., Kleinman,

S., Knapp, G. R., Korienek, John, Kron, Richard G., Kunszt, Peter Z., Lamb, D. Q., Lee,

B., Leger, R. French, Limmongkol, Siriluk, Lindenmeyer, Carl, Long, Daniel C.,

Loomis, Craig, Loveday, Jon, Lucinio, Rich, Lupton, Robert H., MacKinnon, Bryan,

Mannery, Edward J., Mantsch, P. M., Margon, Bruce, McGehee, Peregrine, McKay,

Timothy A., Meiksin, Avery, Merelli, Aronne, Monet, David G., Munn, Jeffrey A.,

Narayanan, Vijay K., Nash, Thomas, Neilsen, Eric, Neswold, Rich, Newberg, Heidi Jo,

Nichol, R. C., Nicinski, Tom, Nonino, Mario, Okada, Norio, Okamura, Sadanori,

Ostriker, Jeremiah P., Owen, Russell, Pauls, A. George, Peoples, John, Peterson, R. L.,

Petravick, Donald, Pier, Jeffrey R., Pope, Adrian, Pordes, Ruth, Prosapio, Angela,

Rechenmacher, Ron, Quinn, Thomas R., Richards, Gordon T., Richmond, Michael W.,

Rivetta, Claudio H., Rockosi, Constance M., Ruthmansdorfer, Kurt, Sandford, Dale,

Schlegel, David J., Schneider, Donald P., Sekiguchi, Maki, Sergey, Gary, Shimasaku,

Kazuhiro, Siegmund, Walter A., Smee, Stephen, Smith, J. Allyn, Snedden, S., Stone, R.,

Stoughton, Chris, Strauss, Michael A., Stubbs, Christopher, SubbaRao, Mark, Szalay,

Alexander S., Szapudi, Istvan, Szokoly, Gyula P., Thakar, Anirudda R., Tremonti,

Christy, Tucker, Douglas L., Uomoto, Alan, Vanden Berk, Dan, Vogeley, Michael S.,

Waddell, Patrick, Wang, Shu-i., Watanabe, Masaru, Weinberg, David H., Yanny, Brian

and Yasuda, Naoki, “The sloan digital sky survey: Technical summary,” The

Astronomical Journal, vol. 120, no. 3, p. 1579, 2000.

[174] J. Ryan, private communication, Dublin, 2007-2009.

[175] Sloan Digital Sky Survey, “Resolve,” Alfred P. Sloan Foundation, 2016. [Online].

Available: http://www.sdss.org/dr12/algorithms/resolve/. [Accessed 16 June 2016].

[176] G. Fox and D. Gannon, “Using Clouds for Technical Computing,” in Cloud Computing

and Big Data, C. Catlett, W. Gentzsch, L. Grandinetti, G. Joubert and J. L. Vasques-

296

Poletti, Eds., Amsterdam, IOS Press BV, 2013, pp. 81-102.

[177] K. Hwang, J. Dongarra and G. C. Fox, Distributed and cloud computing: from parallel

processing to the internet of things, Waltham: Morgan Kaufmann, 2013.

[178] D. O'Callaghan, private communication, Dublin: Grid Ireland/TCD, 2011-2013.

[179] R. Lambert, “Grid and data management,” TWiki, 4 June 2013. [Online]. Available:

https://twiki.cern.ch/twiki/bin/view/LHCb/GridAndDataManagement. [Accessed 2

October 2014].

[180] Amazon Web Services, Inc., “Amazon Simple Storage Service (S3) - Online Cloud

Storage for Data and Files,” Amazon Web Services, Inc., 2014. [Online]. Available:

http://aws.amazon.com/s3/. [Accessed 2 October 2014].

[181] D. G. Monet, S. E. Levine, B. Canzian, H. D. Ables, A. R. Bird, C. C. Dahn, H. H.

Guetter, H. C. Harris, A. A. Henden, S. K. Leggett, H. F. Levison, C. B. Luginbuhl, J.

Martini, A. K. B. Monet, Munn, Jeffrey A., Pier, Jeffrey R., Rhodes, Albert R., Riepe,

Betty, Sell, Stephen, Stone, Ronald C., Vrba, Frederick J., Walker, Richard L.,

Westerhout, Gart, Brucato, Robert J., Reid, I. Neill, Schoening, William, Hartley, M.,

Read, M. A. and Tritton, S. B., “The USNO-B Catalog,” The Astronomical Journal, vol.

125, no. 2, pp. 984-993, 2003.

[182] J. Murty, Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB,

O'Reilly Media, Inc., 2008.

[183] Amazon Web Services Inc., “Amazon Web Services (AWS) - Cloud Computing

Services,” 2014. [Online]. Available: http://aws.amazon.com/. [Accessed 24 September

2014].

[184] Amazon Web Services Inc., “Large Scale Computing and Huge Data Sets,” [Online].

Available:

http://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_largescale_05.pdf.

[Accessed 24 September 2014].

297

[185] Amazon Web Services Inc., “Sloan Digital Sky Survey DR6 Subset: Public Data Sets,”

20 January 2012. [Online]. Available: https://aws.amazon.com/datasets/2797. [Accessed

9 September 2014].

[186] P. Doyle, private communication, Dublin: DIT, 2012-2014.

[187] V. Hindriksen, “Stream Computing,” 16 July 2012. [Online]. Available:

http://streamcomputing.eu/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/.

[Accessed 26 July 2014].

[188] Peterson, “The Math Forum,” Drexel University, 16 January 2002. [Online]. Available:

http://mathforum.org/library/drmath/view/51836.html. [Accessed 1 October 2014].

[189] M. Hareter, P. Reegen, R. Kuschnig, W. W. Weiss, J. M. Matthews, S. M. Rucinski, D.

B. Guenther, A. F. J. Moffat, D. Sasselov and G. A. H. Walker, “Data Reduction

pipeline for MOST Guide Stars and Application to two Observing Runs,”

Communications in Asteroseismology, vol. 156, pp. 48-72, 2008.

[190] L. A. Buchhave, M. Bizzarro, D. W. Latham, D. Sasselov, W. D. Cochran, M. Endl, H.

Issacson, D. Juncher and G. W. Marcy, “Three regimes of extrasolar planets inferred

from host star metallicities,” Nature, vol. 509, no. 7502, pp. 593-595, 2014.

[191] D. Segransan, P. Kervella, T. Forveille and D. Queloz, “First radius measurements of

very low mass stars with the VLTI,” Astronomy and Astrophysics, vol. 397, no. 3, pp. 5-

8, 2003.

[192] W. H. S. Monck, “The Photo‐Electric Effect of Starlight,” Astronomy and Astrophysics,

vol. 11, p. 843, 1892.

[193] R. Gal and S. Jester, “SDSS Sky Coverage notes for DR5,” Xeno Media, 11 June 2008.

[Online]. Available: http://www.sdss2.org/dr6/. [Accessed 6 August 2014].

[194] National Solar Observatory – Sacramento Peak, “Magnitude,” 4 November 1997.

[Online]. Available: http://www.nso.edu/PR/answerbook/magnitude.html. [Accessed 6

February 2008].

298

[195] J. Bryant, S. E. and P. S. Bunclark, “Astronomy, Data and the Problem of Large File

Transfers,” in Astronomical Data Analysis Software and Systems XVII. Vol. 394., 2008.

[196] A. Odlyzko, “The many paradoxes of broadband,” First Monday, vol. 8, no. 9, 2003.

[197] Sloan Digital Sky Survey Team, “The Tenth SDSS Data Release (DR10) - SDSS-III,”

SDSS-III, 2010. [Online]. Available: https://www.sdss3.org/dr10/. [Accessed 24

September 2014].

[198] A. Huang, “education, Comparison of programming performance: Promoting STEM

and computer science,” in Integrated STEM Education Conference (ISEC), 2015.

299

A-b SDSS Acknowledgement

This project made use of the SDSS Catalogue

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan

Foundation, the Participating Institutions, the National Science Foundation, the U.S.

Department of Energy, the National Aeronautics and Space Administration, the

Japanese Monbukagakusho, the Max Planck Society, and the Higher Education

Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating

Institutions. The Participating Institutions are the American Museum of Natural

History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge,

Case Western Reserve University, University of Chicago, Drexel University, Fermilab,

the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins

University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle

Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of

Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for

Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico

State University, Ohio State University, University of Pittsburgh, University of

Portsmouth, Princeton University, the United States Naval Observatory, and the

University of Washington.

In addition to the works cited in particular cases above, the following works upon which

SDSS is built were used at various points during the project

Blanton, M.R., Lin, H., Lupton, R.H., Maley, F.M., Young, N., Zehavi, I., and Loveday,

J. 2003, AJ, 125, 2276

Fukugita, M., Ichikawa, T., Gunn, J.E., Doi, M., Shimasaku, K., and Schneider, D.P.

1996, AJ, 111, 1748

Gunn, J.E., Carr, M.A., Rockosi, C.M., Sekiguchi, M., et al. 1998, AJ, 116, 3040

Gunn, J.E., Siegmund, W.A., Mannery, E.J., Owen, R.E., et al. 2006, AJ, 131, in press

(astro-ph/0602326)

300

Hogg, D.W., Finkbeiner, D.P., Schlegel, D.J., and Gunn, J.E. 2001, AJ, 122, 2129

Ivezic, Z., Lupton, R.H., Schlegel, D., et al. 2004, AN, 325, 583

Lupton, R. 2006, AJ, submitted

Lupton, R.H., Gunn, J.E., and Szalay, A.S. 1999, AJ, 118, 1406

Padmanabhan, N., et al. 2008, ApJ, 674, 1217

Pier, J.R., Munn, J.A., Hindsley, R.B., Hennessy, G.S., Kent, S.M., Lupton, R.H., and

Ivezic, Z. 2003, AJ, 125, 1559

Richards, G.T., Fan, X., Newberg, H., et al. 2002, AJ, 123, 2945

Smith, J.A., Tucker, D.L., Kent, S.M., et al. 2002, AJ, 123, 2121

Tucker, D., Kent, S., Richmond, M.W., et al. 2006, AN, 327, 821

York, D.G., Adelman, J., Anderson, J.E., et al. 2000, AJ, 120, 1579

301

Appendix B Symbols and Terminology

A number of structural and stylistic conventions are followed within this document.

These are outlined here for reference.

B-a Hierarchy of the Thesis

This Thesis is divided into a hierarchical structure. Four key terms are used to define

this structure. The highest level is referred to as a Part, a conceptual structure which

refers to a grouping of several Chapters as laid out in 1.2. Parts are denoted by Roman

Numerals e.g. Part I. Beneath the Parts, each numbered Chapter addresses a specific

aspect of the project, such as Chapter 2 – Core Concepts of Photometric Variability.

Each Chapter is divided into Sections, which are identified by the Chapter number

followed by the Section number within that Chapter, e.g. Section 1.2. This convention

is followed further with Subsections which may be subordinate to a Section (e.g.

Subsection 1.2.3) or to another Subsection (e.g. 1.2.3.4.)

This hierarchy dictates a Top-Down, depth-first approach to each topic in the Thesis. In

each Chapter, an overview of the topic as a whole is given first. Then, each subject

within that topic is probed completely in its own Section, with layers of Subsections as

needed until the subject is exhausted before moving on to the next subject, and the next

Section.

B-b Text Conventions

A number of text styles and conventions are used throughout this Thesis. Each is used

for a specific purpose, as described below.

Citations and references to research documents are given in short parenthetical form

inline e.g. (Creaner et al., 2010) and using endnotes identified with square brackets text:

e.g. [3]. The parenthetical form is preferred for direct quotes.

In electronic copies of this Thesis, cross-references to Diagrams, Chapters etc are

typically hyperlink enabled. These may be activated by the usual method for following

hyperlinks for the system the reader is using.

302

Where the word "and" forms part of a heading, the word is replaced by the ampersand

symbol "&." The Ampersand is not used in other parts of the Thesis except in code

excerpts where it is used as part of a programming language.

Font Purpose

Times New Roman, 12 point Body Text

Times New Roman, 16 point, Bold Chapter Titles

Times New Roman, 12 point, Bold. Section and Lower Headings

Times New Roman, 10 point, Bold Captions for Tables, Figures etc.

Arial, 10 point Table or figure body text

white text Dark Backgrounds

Courier new, 12 point Code excerpts

Half sized text Documents recreated in figures

italics Emphasis

Figure 15-1: Table of Text Styles

B-c Design Symbols

Below are definitions of the symbols used in all design documents throughout the

project, as well as a description of their use. These symbols and terms are used

throughout this Thesis

Throughout the project and this Thesis, a given combination of shape and colour refer to

objects of the same type, for example orange rectangles refer to programs and scripts.

Within that scope, different shades of the same colour refer to different places within a

hierarchy. For example, the Data Access API, as defined in Section 7.2.1, is a script

which calls two programs, Diagnose (7.2.1.1) and Extract (7.2.1.2), within it. The

lighter shade would be used to denote the API as the calling program, while the two

called programs would be described in darker colours. Should a further call be made

within those programs, darker and darker shades would be used.

B-c-a Programs and Scripts

Orange rectangles indicate programs and scripts in the design documents. Programs

and scripts are the smallest component of the project that may be run on their own.

Each program or script may have arguments which are needed for the program to run

303

and may have data inputs and outputs. Programs typically include one or more

functions and one or more processes, and may call other programs.

Figure 15-2: Programs & Scripts

B-c-b Functions

Green rectangles indicate function calls within the design documents. Functions are

significant components of code that are incomplete on their own. A function can be a

modular component that can be used at several stages of the project, or may be a highly

specialised function which is only used once. Functions include one or more processes

and may call other functions or programs. As it is used in this project, this symbol is

not used to indicate calls to functions defined in external libraries such as CFITIO.

Figure 15-3: Functions

B-c-c Processes

Red rectangles indicate individual processes. Processes are individual tasks for the

computer, for example a mathematical expression or a data input or output call.

Processes comprise one or more lines of code which may call externally defined

functions (e.g. CFITSIO functions.)

Figure 15-4: Processes

B-c-d Loops

Yellow rectangles with rounded corners are used to indicate loops or repeating data

structures. The nature of the repetition is indicated in the top left corner: The loop

outer
inner 1

inner 2

outer
inner 1

inner 2

process

304

termination condition, or the number of repeated data elements is shown. Nested

repetition is indicated by darker shades.

Figure 15-5: Loops & Repeating Data Structures

B-c-e Logical Operations

Magenta diamonds are used to indicate single logical operations. Such logical

operations will be written within the symbol in short form. This short form is explained

in detail in the accompanying text. If both “true” and “false” produce non-trivial

results, “true” and “false” cases will be distinguished clearly. In most cases, only the

continuation if the result of the logical operation is “true” will be shown.

Figure 15-6: Logical Operations

B-c-f Computing Elements

Computing Elements, either individual machines or collections of machines, are

indicated using a horizontal stylised cylinder symbol in black. These elements include

Virtual Machines (VMs) and physical computers.

Figure 15-7: Computing Elements

B-c-g Storage Devices

Data storage devices are designated by a vertical stylised cylinder in dark grey. This

symbol represents non-volatile data storage systems, such as Hard Disks or other long-

loop

nested loop

nested loop 2

decision

Computer

305

term data storage solutions. It is not used to represent temporary data repositories such

as RAM.

Figure 15-8: Storage Devices

B-c-h Stored Data

Data is designated in various shades of blue. Data stored in memory is represented with

a parallelogram, while data stored on disk, either in the form of files or directories is

represented by the international standard stored data symbol. Directories are shown

with a darker shade than files. As can be seen in Chapter 8 there are many layers of

directories shown in this project. As a result, the convention of using darker shades to

represent deeper components is not used.

Figure 15-9: Stored Data

B-c-i Logical Catalogues

This standard symbol is used to designate entire catalogues of data, by implication in

multiple file. The same shade of blue is used as for files. Catalogues have a designated

directory structure, which is defined separately. The Catalogue symbol is used to

designate the catalogue as a whole.

Figure 15-10: Catalogues

B-c-j Data Flow

The flow of data within a program or function is designated with arrow symbols. These

symbols represent variables passed from function to function, or data being written to

files or memory locations.

Figure 15-11: Data Flow

HDD

disk data memory directory

catalogue

306

B-c-k Logical Operations

Input by the user is designated with an irregular cyan quadrilateral as shown. As part of

the project design, this project takes command-line input from the user to vary the

parameters and criteria of various programs.

Figure 15-12: User Input

B-c-l Developmental Tools

At various points during the development of the project, work-in-progress versions of

programs were designed and developed. At times, it was necessary to designate

prospective or planned components of the program with dashed arrows and symbols as

shown in Figure 15-13. In addition, during the development process, several versions

of a component were tested at the same time. When such components were in testing,

they would be designated by a symbol highlighted with a red outline as shown with the

function in the diagram.

Figure 15-13: Developmental Tools

B-c-m Documents

Documents, such as design documents or even this Thesis itself are denoted by the

standard document symbol in white. Individual components of these documents are

denoted by increasingly dark shades of grey.

Figure 15-14: Documents

user input

API function

Document
Part

Chapter

cccvii

Appendix C Code Sample

In the Subsections below are presented a number of code excerpts from particular

scripts, programs or functions as used in the course of this project. These code excerpts

are presented as representative examples of each of the programming languages used,

and are not exhaustive. Further code samples are available upon request.

C-a C

Shown here is the function sift which is used to determine whether a target can be

resolved based on the resolution parameter provided by the user as discussed in

Subsection 7.2.2.1.1.

int sift (struct star **p_input_array,

 long int *p_num_rows,

 long int current_index,

 double resolution,

 double resolution_ra,

 int colour_number)

{

 int sifting_index = 0;

 double mag_difference = 0;

 double dec_difference = 0;

 //for stars higher than the current index, within the

array and

 //within resolution of the current star in RA terms

 for (sifting_index = current_index +1;

 sifting_index < *p_num_rows &&

 resolution_ra > (((*p_input_array) + sifting_index) ->

ra)- (((*p_input_array) + current_index)->ra);

 sifting_index ++)

 {

cccviii

 dec_difference =

absolute_difference((((*p_input_array) + sifting_index) ->

dec), (((*p_input_array) + current_index)->dec));

 //if they are also within 5 FWHM of the current

star in

 //dec terms and within 5 magnitudes of it.

 if (resolution > dec_difference)

 {

 mag_difference = absolute_difference

(((*p_input_array) + sifting_index) -> mag[colour_number] ,

((*p_input_array) + current_index) -> mag[colour_number]);

 if(mag_difference < 5)

 {

 //sets both stars to error values to be

filtered

 //at the next step

 ((*p_input_array) + sifting_index) -

>rating = 0;

 ((*p_input_array) + current_index) -

>rating = 0;

 }

 }

 }

 return (ERR_NO_ERROR);

}

C-b BASH

Shown here is the Bash script call_xop_6_5.sh which is used to run the Exoplanet

job on the grid as discussed in Subsections 7.2.2.1 and 7.2.4.

cccix

##!/bin/bash -vx

#this is a script to call the Exoplanet stage of the

project

#call_xop_6_5.sh

#Version 6.5

#13th December 2011

#this script carries out the diagnose and extract

executables on the parameter file

#specified in the first argument, $1. and the text file

specified as argument $2

#it uses the colour specified with a character in the third

argument

#and copies the results to a directory in the LFC speficied

by the fourth

#It copies the executables, the parameter file

#the fits files and other relevant data to the node and

carries out the executables

#it then copies and registers theoutput fits files to the

LFC and cleans up

#names the parameter file fromt the first argument for

clarity of reading

PPR_FILE=$1

PRT_FILE=$2

COLOUR=$3

RUN_NAME=$4

DEBUG="no"

if ["x${DEBUG}" = "xyes"]; then

 echo $PPR_FILE

 echo $PRT_FILE

cccx

fi

#defines cosmo root directory

COSMO_ROOT=/grid/cosmo

#defines the root of the project directory structure

PROJ_ROOT=ittd/grid_cdm

#creates directories if no directories exist

if [! -d ${PROJ_ROOT}]; then

 mkdir -p ${PROJ_ROOT}

fi

LOCUS_ALGORITHM_DIR="${PROJ_ROOT}/release/locus_algorithm"

if [! -d ${LOCUS_ALGORITHM_DIR}]; then

 mkdir -p ${LOCUS_ALGORITHM_DIR}

fi

PPR_DIR=`dirname ${PPR_FILE}`

if [! -d ${PPR_DIR}]; then

 mkdir -p ${PPR_DIR}

fi

copies diagnose executable from permanent () to temporary

(test)

lcg-cp --vo cosmo

lfn:$COSMO_ROOT/${LOCUS_ALGORITHM_DIR}/locus_algorithm_6_5

file:${LOCUS_ALGORITHM_DIR}/locus_algorithm_6_5

#and makes it executable

chmod 755 ${LOCUS_ALGORITHM_DIR}/locus_algorithm_6_5

cccxi

#copies Parameter prm and txt files from permanent

(workspace/debug) to temporary (test)

lcg-cp --vo cosmo lfn:$COSMO_ROOT/$PPR_FILE file:$PPR_FILE

lcg-cp --vo cosmo lfn:$COSMO_ROOT/$PRT_FILE file:$PRT_FILE

#mkdir?

#this line gets the number of lines in the temp file

#this corresponds to the number of files in the directory

NUM_LINES=`wc $PRT_FILE | awk '{print $1}'`

NAME=Stranger

P=p

CP_FAIL_COUNT=0

#due to the layout of prm text files, it is necessary to

use lines 3 onward

for ((NAME_INDEX = 3 ; $NAME_INDEX <= $NUM_LINES+1;

NAME_INDEX++))

do

#this line gets the filename from the temp file and stores

it in the variable name.

#this name is the name of the PPR and TXT files

PRT_FITS_NAME=`sed -n $NAME_INDEX$P $PRT_FILE`

#this line gets the directory the original file is in

PRT_FITS_DIR_NAME=`dirname $PRT_FITS_NAME`

cccxii

#this line gets the root of the filename

PRT_FITS_NAME_BASE=`basename ${PRT_FITS_NAME} .fit`

#this line makes the name fo the local file

BASE_LOCAL_FITS_NAME=${PRT_FITS_NAME_BASE}_local.fit

#this line makes the local catalogue directory name

LFC_FITS_LOCAL_DIR_NAME=`echo

${COSMO_ROOT}/${PRT_FITS_DIR_NAME} | sed 's/raw/local/g'`

#this line si included even though it is unnecessary so the

code is easier to interpres

NODE_FITS_DIR_NAME=${PRT_FITS_DIR_NAME}

#this line makes the name fo the local file

NODE_FITS_NAME=${NODE_FITS_DIR_NAME}/${BASE_LOCAL_FITS_NAME

}

#this line makes the filename it is to be stored in in the

LFC

LFC_FITS_NAME=${LFC_FITS_LOCAL_DIR_NAME}/${BASE_LOCAL_FITS_

NAME}

#use mkdir and ls to make a dir if it isn't there

ls -d ${NODE_FITS_DIR_NAME} &> /dev/null

test_dir_exists=$?

if [x"${test_dir_exists}" != x"0"]; then

 mkdir -p ${NODE_FITS_DIR_NAME}

fi

cccxiii

#this line copies the named file (NAME)from source to

destination

lcg-cp --vo cosmo lfn:${LFC_FITS_NAME}

file:${NODE_FITS_NAME}

lcg_cp_status=$?

 if [x"${lcg_cp_status}" != x"0"]; then

 echo "lcg-cp --vo cosmo lfn:${LFC_FITS_NAME}

file:${NODE_FITS_NAME} failed with error ${lcg_cp_status}"

 CP_FAIL_COUNT=`expr ${CP_FAIL_COUNT} + 1 `

 fi

done

#executes algorithm

#and redirect its output to null

./${LOCUS_ALGORITHM_DIR}/locus_algorithm_6_5 ${PPR_FILE}

${COLOUR} &>/dev/null

LOCUS_ALGORITHM_EXIT=$?

LFC_OUT_DIR_NAME=${COSMO_ROOT}/${PROJ_ROOT}/data/output/${R

UN_NAME}

#this line gets the directory the file is in

PPR_DIR_NAME=`dirname $PPR_FILE`

#this line gets the root of the filename

PPR_NAME_BASE=`basename ${PPR_FILE} .ppr`

#this makes the short name of the output file

cccxiv

OUT_NAME=${PPR_NAME_BASE}_out.fit

#this line makes the full name fo the local file

NODE_OUT_NAME=${PPR_DIR_NAME}/${OUT_NAME}

#this line makes the filename it is to be stored in in the

LFC

LFC_OUT_NAME=`echo ${LFC_OUT_DIR_NAME}/${OUT_NAME}`

#use lfc-mkdir and lfc-ls to make a dir if it isn't there

lfc-ls -d ${LFC_OUT_DIR_NAME}

lfc_test_dir_exists=$?

if [x"${lfc_test_dir_exists}" != x"0"]; then

 lfc-mkdir -p ${LFC_OUT_DIR_NAME}

fi

#sets up a counter for the number of failed copy and

register results

CR_FAIL_COUNT=0

#use lfc-ls to make see if the file already exists

lfc-ls ${LFC_OUT_NAME}

lfc_test_file_exists=$?

if [x"${lfc_test_file_exists}" != x"0"]; then

 lcg-cr --vo cosmo -l lfn:${LFC_OUT_NAME}

file:${NODE_OUT_NAME}

 lcg_cr_status=$?

 if [x"${lcg_cr_status}" != x"0"]; then

 echo "lcg-cr --vo cosmo -l lfn:${LFC_OUT_NAME}

file:${NODE_OUT_NAME} failed with error ${lcg_cr_status}"

 CR_FAIL_COUNT=`expr ${CR_FAIL_COUNT} + 1`

 fi

fi

cccxv

#displays the various possible failure states of the

program at the end

echo "Locus Algorithm exit code ${LOCUS_ALGORITHM_EXIT}"

>logfile.out

echo "Number of failed lgc-cp commands ${CP_FAIL_COUNT}" >>

logfile.out

echo "Number of failed lcg-cr commands ${CR_FAIL_COUNT}" >>

logfile.out

#checks the error states and returns an error if needed.

if [x"${LOCUS_ALGORITHM_EXIT}" != x"0"]; then

 exit ${LOCUS_ALGORITHM_EXIT}

fi

if [x"${CR_FAIL_COUNT}" != x"0"]; then

 exit ${CR_FAIL_COUNT}

fi

if [x"${CP_FAIL_COUNT}" != x"0"]; then

 exit ${CP_FAIL_COUNT}

fi

exit 0

C-c JDL

Shown here is a sample JDL file two_4_950_1000.ppr which was used to describe

one of 1,791 grid jobs submitted as part of the Exoplanet job.

Executable = "call_xop_6_5.sh";

cccxvi

StdOutput = "std.out";

StdError = "std.err";

#Arguments = "two_4_950_1000.ppr two_4_950_1000.txt r 31-1-

2012/0_25-0_000277-2-0_1/r/";

Arguments = "ittd/grid_cdm/data/parameters/ppr/13-1-

2012/0_25-0_000277-2-0_1/two_4_950_1000.ppr

ittd/grid_cdm/data/parameters/ppr/13-1-2012/0_25-0_000277-

2-0_1/two_4_950_1000.txt r 31-1-2012/0_25-0_000277-2-

0_1/r/";

OutputSandbox = {"std.out","std.err","logfile.out"};

InputSandbox =

{"ittd/grid_cdm/scripts/xop/call_xop_6_5.sh"};

#InputSandbox =

{"ittd/grid_cdm/scripts/xop/call_xop_6_5.sh","ittd/grid_cdm

/data/parameters/ppr/13-1-2012/0_25-0_000277-2-

0_1/two_4_950_1000.ppr",

"ittd/grid_cdm/data/parameters/ppr/13-1-2012/0_25-0_000277-

2-0_1/two_4_950_1000.txt"};

VirtualOrganisation = "cosmo";

Requirements = other.GlueCEUniqueID ==

"gridgate.scg.nuigalway.ie:2119/jobmanager-pbs-threeday" ||

other.GlueCEUniqueID ==

"gridgate.cs.tcd.ie:2119/jobmanager-pbs-threeday" ||

other.GlueCEUniqueID == "gridgate.ucc.ie:2119/jobmanager-

pbs-threeday";

OutputSandbox = {"std.out","std.err","logfile.out"};

C-d SQL

Shown below is the SQL script find_reference_stars.sql which is used to

identify the coordinates for the reference stars for a given pointing and target, in this

case, the pointing for SDSS J203733.62+001953.5, the target with the highest score in

the sample of 106 targets from the Exoplanet Catalogue.

cccxvii

--sql query to locate reference stars for an entry in the

output catalogue, given pointing and target info

--variables used for SDSS J203733.62+001953.5 (top target

in sample)

--declare pointing coordinates

declare @pointing_ra float;

set @pointing_ra = 309.4971506647;

declare @pointing_dec float;

set @pointing_dec = 0.2737432692606;

--declare target g, r, i

declare @target_g float;

set @target_g = 18.15453338623;

declare @target_r float;

set @target_r = 17.69709205627;

declare @target_i float;

set @target_i = 17.52318382263;

--declare fov size

declare @fov_size float;

set @fov_size = 0.25;

declare @fov_size_ra float;

set @fov_size = 0.25/cos(@pointing_dec); --calculate fov

size in RA

--declare mag match limit

declare @mag_lim float;

set @mag_lim = 2.0;

--declare colour match limit

declare @col_lim float;

set @col_lim = 0.1;

cccxviii

select ra, dec from photoobjall

 where (--Local Catalogue clean stars

 mode = 1

 AND type = 6

 AND((flags_r & 0x10000000) != 0) --good flags

 AND ((flags_r & 0x80020) = 0) --bad flags_1

 AND ((CAST((flags_r/0x100000000) as INT) &

0x8100) = 0)--bad flags_2

)

 -- in FoV

 AND (ra<(@pointing_ra+(@fov_size_ra/2)))AND

(ra>(@pointing_ra-(@fov_size_ra/2)))

 AND (dec<(@pointing_dec+(@fov_size/2)))AND

(dec>(@pointing_dec-(@fov_size/2)))

 -- mag match

 AND (r<(@target_r+@mag_lim))AND (r>(@target_r-

@mag_lim))

 -- col match

 AND ((g-r)<((@target_g-@target_r)+(@col_lim)AND ((g-

r)>((@target_g-@target_r)-(@col_lim)

 AND ((r-i)<((@target_r-@target_i)+(@col_lim)AND ((r-

i)>((@target_r-@target_i)-(@col_lim)

cccxix

Appendix D Results Samples

A number of short excerpts from the various files and catalogues are provided here for

reference

D-a Distribution of SDSS flags

The flags for a sample of 62630 stars in the SDSS catalogue are shown in Table 15-1,

Table 15-2, and Table 15-3. These distributions were generated by taking an arbitrary

sample of data from SDSS and processing it into individual flags using MS-Excel.

FLAGS_1 Count Percentage

CANONICAL_CENTER 0 0.00%

BRIGHT 3420 5.46%

EDGE 3440 5.49%

BLENDED 12960 20.69%

CHILD 16843 26.89%

PEAKCENTER 286 0.46%

NODEBLEND 7275 11.62%

NOPROFILE 0 0.00%

NOPETRO 47520 75.87%

MANYPETRO 11657 18.61%

NOPETROBIG 0 0.00%

DEBLEND_TOO_MANY_PEAKS 77 0.12%

CR 8928 14.26%

MANYR50 0 0.00%

MANYR90 0 0.00%

BAD_RADIAL 0 0.00%

INCOMPLETE_PROFILE 0 0.00%

INTERP 26165 41.78%

SATUR 3148 5.03%

NOTCHECKED 1598 2.55%

SUBTRACTED 0 0.00%

NOSTOKES 0 0.00%

BADSKY 0 0.00%

PETROFAINT 0 0.00%

TOO_LARGE 0 0.00%

DEBLENDED_AS_PSF 6246 9.97%

DEBLEND_PRUNED 2564 4.09%

ELLIPFAINT 0 0.00%

BINNED1 61932 98.89%

BINNED2 1515 2.42%

BINNED4 357 0.57%

MOVED 12889 20.58%

Table 15-1: Distribution of flags bit in 62630 SDSS fits entries

cccxx

FLAGS_2 Count Percentage

DEBLENDED_AS_MOVING 1189 1.90%

NODEBLEND_MOVING 7555 12.06%

TOO_FEW_DETECTIONS 2201 3.51%

BAD_MOVING_FIT 4470 7.14%

STATIONARY 48457 77.37%

PEAKS_TOO_CLOSE 4037 6.45%

BINNED_CENTER 0 0.00%

LOCAL_EDGE 0 0.00%

BAD_COUNTS_ERROR 0 0.00%

BAD_MOVING_FIT_CHILD 1722 2.75%

DEBLEND_UNASSIGNED_FLUX 519 0.83%

SATUR_CENTER 1194 1.91%

INTERP_CENTER 7623 12.17%

DEBLENDED_AT_EDGE 900 1.44%

DEBLEND_NOPEAK 6785 10.83%

PSF_FLUX_INTERP 9080 14.50%

TOO_FEW_GOOD_DETECTIONS 22857 36.50%

CENTER_OFF_AIMAGE 14 0.02%

DEBLEND_DEGENERATE 49 0.08%

BRIGHTEST_GALAXY_CHILD 0 0.00%

CANONICAL_BAND 0 0.00%

AMOMENT_FAINT 0 0.00%

AMOMENT_SHIFT 0 0.00%

AMOMENT_MAXITER 0 0.00%

MAYBE_CR 2742 4.38%

MAYBE_EGHOST 126 0.20%

NOTCHECKED_CENTER 0 0.00%

27 0 0.00%

MEASURED 4 0.01%

GROWN_MERGED 0 0.00%

HAS_CENTER 0 0.00%

MEASURE_BRIGHT 0 0.00%

Table 15-2: Distribution of flags_2 bit in 62630 SDSS fits entries

STATUS

SET 62630 100.00%

GOOD 53525 85.46%

DUPLICATE 7633 12.19%

OK_RUN 49323 78.75%

RESOLVED 49323 78.75%

PSEGMENT 49323 78.75%

FIRST_FIELD 0 0.00%

OK_SCANLINE 46403 74.09%

OK_STRIPE 32186 51.39%

SECONDARY 17130 27.35%

PRIMARY 32161 51.35%

TARGET 3372 5.38%

Table 15-3: Distribution of status bit in 62630 SDSS fits entries

cccxxi

D-b Local Catalogue Data

Position Magnitude

Ra Dec u g r I z

226.7639 2.5577 18.80 16.94 16.17 15.89 15.75

226.7634 2.5596 25.54 21.85 20.36 19.58 19.22

226.7724 2.6026 22.72 22.73 21.63 21.11 20.40

226.7772 2.5441 18.79 16.56 15.69 15.38 15.22

226.8048 2.6495 19.77 18.72 18.51 18.43 18.39

226.8163 2.5217 23.65 21.14 19.70 18.77 18.33

226.8063 2.5153 25.45 25.10 22.30 24.36 21.61

226.8175 2.7015 17.79 16.23 15.64 15.43 15.33

226.8173 2.6724 19.29 17.54 16.84 16.58 16.46

226.8193 2.5936 18.88 18.05 17.71 17.57 17.52

226.8265 2.5613 19.96 18.91 18.42 18.22 18.16

226.8375 2.4936 19.08 18.07 17.64 17.46 17.41

226.8431 2.5740 20.95 18.29 16.85 15.98 15.53

226.8412 2.5769 18.82 17.74 17.33 17.14 17.06

226.8504 2.5801 23.36 20.67 19.19 17.75 16.97

226.8488 2.5789 20.24 19.21 18.90 18.79 18.75

226.8482 2.5749 21.86 20.23 19.58 19.26 19.25

226.8457 2.5826 23.49 21.65 20.16 19.36 19.00

226.8407 2.5782 26.10 23.03 21.82 20.41 19.99

226.8447 2.5705 23.77 24.31 24.78 22.91 20.81

226.8480 2.6235 19.40 18.37 18.00 17.85 17.77

226.8516 2.6637 17.96 16.69 16.21 16.03 15.94

226.8490 2.4946 19.49 16.98 15.89 15.51 15.31

226.8555 2.5743 19.53 18.40 17.93 17.73 17.65

226.8624 2.7002 19.11 17.17 16.38 16.10 15.95

226.8626 2.6332 18.45 17.41 17.10 16.99 16.97

226.8624 2.6007 18.78 17.55 17.10 16.94 16.88

226.8661 2.5724 19.20 18.24 17.81 17.63 17.55

226.8661 2.5630 21.68 19.08 17.63 16.16 15.38

226.8728 2.5287 17.78 16.58 16.69 16.81 16.91

226.8725 2.5307 19.57 18.22 17.70 17.52 17.43

226.8806 2.5130 18.26 16.06 15.18 14.87 14.72

226.8799 2.5123 19.96 18.83 18.38 18.22 18.24

226.8830 2.5125 25.74 23.66 22.16 20.74 19.80

226.8920 2.5051 17.27 15.70 15.13 14.93 14.86

226.9001 2.5214 20.19 19.05 18.70 18.70 18.43

226.9017 2.5206 24.63 25.11 21.32 21.43 22.83

226.8928 2.5152 22.07 20.96 20.48 20.21 20.23

226.9015 2.5242 24.63 25.11 22.48 21.59 22.83

226.9052 2.5191 24.63 21.88 24.59 21.34 22.66

226.9015 2.5235 24.63 25.11 21.91 21.69 21.62

226.9016 2.5224 24.63 25.11 22.01 21.42 22.83

226.9062 2.5191 24.02 22.55 21.73 22.26 21.32

226.9023 2.5582 19.55 17.39 16.56 16.30 16.16

226.7603 2.5592 21.43 19.71 18.87 18.59 18.45

226.7596 2.5336 23.68 20.71 19.27 17.86 17.13

226.7646 2.7022 21.02 20.06 19.62 19.45 19.26

226.7655 2.6959 19.98 18.32 17.65 17.39 17.25

226.7655 2.5735 20.88 19.46 18.89 18.63 18.52

226.7684 2.6177 21.73 18.84 17.39 16.41 15.88

Table 15-4: An arbitrary sample of 50 entries in the Local Catalogue

cccxxii

D-c Output Catalogues

Samples are shown of the top 40 targets by score in the Quasar Catalogue and the top 50

by score in the sample of 106 stars from the Exoplanet Catalogue. Also shown is the

reference stars that contribute to the pointing for SDSS J203733.62+001953.5, the

target with the highest score in the sample of 106 targets from the Exoplanet Catalogue

D-c-a Sample of Quasar Catalogue

Position Magnitude Pointing

RA Dec u g r i z RA Dec Score

313.05 -0.45 19.82 19.26 18.65 18.38 17.93 313.00 -0.46 14.14

236.54 6.13 19.22 19.05 18.61 18.43 18.15 236.46 6.20 13.33

255.25 20.15 20.12 19.63 19.26 19.15 19.18 255.31 20.20 13.27

238.76 3.65 19.67 19.49 19.05 18.84 18.89 238.78 3.74 11.08

252.80 25.14 19.53 19.21 18.81 18.62 18.45 252.72 25.06 11.04

116.24 36.92 19.68 19.54 19.08 18.89 18.82 116.33 36.94 10.72

234.34 2.88 19.89 19.75 19.40 19.24 19.25 234.39 2.86 10.72

252.53 34.54 19.10 18.59 18.27 18.16 17.94 252.62 34.49 10.61

248.07 48.37 19.23 18.92 18.57 18.45 18.40 248.09 48.40 9.99

246.31 40.98 19.56 19.56 19.18 19.06 19.18 246.36 40.99 9.94

253.99 32.30 18.38 18.00 17.61 17.52 17.49 254.01 32.31 9.87

247.80 29.16 19.06 19.08 18.65 18.51 18.53 247.83 29.09 9.51

222.30 3.55 20.84 20.62 20.33 20.20 20.15 222.38 3.50 9.48

262.17 55.06 19.12 19.00 18.59 18.43 18.42 262.24 54.99 9.41

254.80 20.62 20.61 20.02 19.29 19.02 18.89 254.88 20.61 9.37

135.06 2.79 20.46 20.04 19.66 19.50 19.34 135.14 2.81 9.34

249.69 41.09 19.30 19.17 18.82 18.69 18.68 249.61 41.01 9.22

246.50 38.55 20.17 19.85 19.32 19.10 19.02 246.44 38.50 9.18

259.69 56.41 19.39 19.34 19.02 18.87 18.89 259.70 56.49 9.14

237.84 3.00 20.26 19.95 19.60 19.43 19.46 237.80 2.98 9.07

232.62 0.93 19.35 18.93 18.58 18.48 18.41 232.55 0.89 9.07

232.65 4.01 19.68 19.57 19.25 19.12 19.15 232.73 3.97 9.02

240.60 2.71 25.02 18.24 17.85 17.72 17.69 240.59 2.75 9.01

117.67 43.43 19.00 18.83 18.45 18.32 18.27 117.78 43.47 8.95

254.00 32.02 21.83 19.49 19.17 19.01 19.06 254.09 32.09 8.88

254.35 20.77 19.45 19.29 19.00 18.87 18.96 254.27 20.85 8.79

135.02 3.93 18.15 18.06 17.75 17.63 17.69 134.94 4.00 8.75

249.98 37.61 19.43 19.31 19.01 18.87 18.80 250.04 37.67 8.75

247.63 29.33 19.60 19.47 19.21 19.09 19.22 247.55 29.28 8.72

188.92 12.61 25.53 20.71 20.09 19.88 19.79 188.91 12.56 8.67

217.13 4.81 20.20 19.64 19.37 19.24 18.97 217.08 4.77 8.67

264.34 55.06 18.91 18.71 18.30 18.11 17.73 264.40 55.13 8.62

215.43 7.01 19.40 19.02 18.67 18.51 18.43 215.40 7.08 8.59

232.07 32.11 19.40 19.05 18.66 18.52 18.46 232.13 32.09 8.57

258.56 57.95 19.29 18.81 18.37 18.22 18.17 258.48 58.04 8.47

220.62 4.55 19.96 19.68 19.28 19.15 19.19 220.63 4.50 8.43

249.88 37.04 19.06 19.05 18.71 18.57 18.53 249.82 37.10 8.37

212.17 -2.25 21.91 19.84 19.39 19.24 19.09 212.10 -2.17 8.35

215.23 59.45 20.53 20.48 20.17 20.05 20.06 215.13 59.51 8.28

148.15 36.13 19.20 19.15 18.87 18.78 18.82 148.23 36.17 8.28

Table 15-5: The top 40 quasars in the Quasar Catalogue

cccxxiii

D-c-b Sample of Exoplanet Catalogue

Position Magnitude Pointing

RA Dec u g r i z RA Dec Score

309.39 0.33 19.38 18.15 17.70 17.52 17.47 309.50 0.27 117.72

309.85 -0.14 19.95 18.52 18.02 17.84 17.81 309.83 -0.10 117.56

309.84 -0.01 19.74 18.38 17.87 17.68 17.60 309.83 -0.09 117.16

309.43 0.23 20.01 18.65 18.16 17.99 17.91 309.50 0.27 116.93

309.72 -0.01 19.56 18.34 17.86 17.69 17.61 309.71 0.08 116.73

309.65 0.73 19.07 17.81 17.34 17.16 17.11 309.58 0.65 116.58

309.91 0.00 19.15 17.80 17.30 17.11 17.00 309.83 -0.10 116.54

309.71 -0.15 19.89 18.60 18.10 17.91 17.86 309.83 -0.10 116.21

309.40 0.27 19.77 18.61 18.15 17.98 17.95 309.50 0.25 116.21

309.50 0.63 19.19 17.89 17.42 17.25 17.17 309.58 0.65 116.14

309.78 -0.15 20.01 18.75 18.26 18.09 17.99 309.74 -0.21 116.05

309.60 0.27 19.94 18.67 18.21 18.03 17.93 309.50 0.25 116.01

309.74 0.32 19.93 18.79 18.32 18.15 18.07 309.86 0.19 115.98

309.34 1.04 19.40 18.07 17.58 17.40 17.34 309.44 0.92 115.74

309.74 0.33 20.17 18.90 18.41 18.24 18.18 309.86 0.21 115.26

309.69 -0.10 19.31 17.93 17.43 17.25 17.22 309.82 -0.09 115.24

309.71 -0.07 19.67 18.31 17.79 17.61 17.55 309.83 -0.09 115.24

309.48 -0.60 20.05 18.67 18.14 17.94 17.88 309.43 -0.70 115.06

309.61 0.30 19.50 18.24 17.80 17.63 17.56 309.50 0.27 114.95

309.67 -0.10 19.07 17.80 17.31 17.14 17.09 309.78 -0.10 114.94

309.65 0.77 19.42 18.20 17.73 17.55 17.48 309.58 0.65 114.76

309.61 0.70 19.30 18.06 17.58 17.40 17.33 309.58 0.65 114.73

309.57 0.38 20.23 18.92 18.43 18.26 18.21 309.50 0.27 114.72

309.83 0.25 19.48 18.28 17.82 17.66 17.61 309.72 0.21 114.69

309.49 -0.60 20.12 18.71 18.17 17.97 17.82 309.43 -0.70 114.68

310.68 0.42 19.65 18.36 17.89 17.71 17.63 310.65 0.30 114.67

309.70 -0.19 19.57 18.24 17.74 17.54 17.47 309.83 -0.09 114.64

309.72 0.24 19.75 18.48 17.99 17.82 17.73 309.72 0.15 114.62

309.39 -0.59 19.63 18.37 17.84 17.64 17.56 309.43 -0.70 114.59

309.46 0.41 20.13 18.76 18.30 18.12 18.02 309.50 0.29 114.49

309.98 0.26 19.93 18.58 18.10 17.91 17.83 309.86 0.19 114.45

309.82 -0.01 19.25 18.00 17.51 17.32 17.24 309.83 -0.09 114.39

309.62 -0.09 19.37 18.07 17.60 17.43 17.37 309.74 -0.21 114.38

309.58 0.36 20.06 18.73 18.28 18.11 18.05 309.50 0.25 114.37

310.15 0.81 19.32 18.09 17.61 17.43 17.38 310.08 0.90 114.30

309.57 0.66 19.32 18.11 17.63 17.45 17.39 309.58 0.65 114.16

309.34 0.28 19.93 18.64 18.16 17.98 17.91 309.40 0.25 114.12

309.98 0.30 20.03 18.69 18.20 18.01 17.97 309.86 0.19 113.91

309.82 0.26 19.53 18.20 17.73 17.56 17.49 309.72 0.21 113.82

309.77 -0.14 19.32 18.19 17.69 17.49 17.40 309.83 -0.09 113.75

309.41 0.22 19.39 18.17 17.72 17.56 17.53 309.50 0.27 113.72

310.69 0.31 19.43 18.10 17.62 17.46 17.41 310.64 0.23 113.58

309.66 -0.10 20.10 18.73 18.25 18.08 18.01 309.74 -0.21 113.54

309.85 0.77 19.65 18.38 17.89 17.71 17.70 309.87 0.82 113.54

309.73 -0.11 19.53 18.32 17.86 17.70 17.61 309.74 -0.19 113.50

309.82 0.28 19.59 18.34 17.88 17.70 17.63 309.72 0.21 113.36

310.52 0.30 19.66 18.43 17.96 17.78 17.71 310.65 0.30 113.35

309.47 0.79 19.64 18.31 17.84 17.67 17.60 309.44 0.91 113.32

309.86 -0.20 19.23 18.00 17.52 17.35 17.31 309.83 -0.09 113.25

310.56 0.70 19.43 18.19 17.72 17.55 17.41 310.44 0.82 113.25

Table 15-6: the top 50 stars by score in the sample of 106 targets from the Exoplanet Catalogue

cccxxiv

D-c-c Reference Stars for SDSS J203733.62+001953.5

RA Dec RA Dec RA Dec RA Dec RA Dec

309.3921 0.3144 309.3801 0.3421 309.4268 0.2207 309.4044 0.2798 309.3693 0.3190

309.3924 0.2865 309.3811 0.3607 309.5267 0.3194 309.4486 0.3943 309.4208 0.3627

309.4655 0.2916 309.3822 0.3217 309.5782 0.2427 309.4499 0.3903 309.4209 0.2948

309.4670 0.1528 309.4355 0.1843 309.3969 0.3986 309.5014 0.3767 309.4706 0.3572

309.5175 0.3597 309.4364 0.2143 309.3973 0.1945 309.5017 0.1980 309.4706 0.3673

309.5179 0.3724 309.4375 0.2174 309.3975 0.2899 309.5521 0.3413 309.5194 0.2898

309.5180 0.3569 309.4875 0.3552 309.3978 0.3891 309.5529 0.2958 309.5197 0.3241

309.5807 0.3319 309.4876 0.3861 309.3979 0.2988 309.6072 0.3807 309.6158 0.3698

309.5810 0.2215 309.4883 0.2068 309.4528 0.1813 309.6087 0.2081 309.6160 0.3638

309.3826 0.3397 309.4883 0.2043 309.5062 0.1596 309.4064 0.1920 309.6161 0.3839

309.3829 0.1837 309.5875 0.1596 309.5069 0.3598 309.4584 0.1970 309.6162 0.1664

309.4317 0.2707 309.4083 0.3413 309.5575 0.2317 309.5085 0.1487 309.6174 0.2546

309.4324 0.2027 309.4090 0.2176 309.6063 0.2972 309.5090 0.3955 309.3758 0.2589

309.4785 0.3906 309.4095 0.3860 309.3995 0.2591 309.5093 0.3895 309.3764 0.2358

309.4786 0.2713 309.5451 0.2768 309.4002 0.3714 309.5097 0.1637 309.3780 0.3379

309.4787 0.1673 309.5458 0.3810 309.4004 0.2867 309.5618 0.1913 309.4290 0.2759

309.4795 0.3260 309.5464 0.3437 309.4910 0.3218 309.5621 0.2785 309.4299 0.1561

309.4798 0.3300 309.3933 0.1598 309.4910 0.3080 309.6095 0.2062 309.4301 0.3880

309.5309 0.3900 309.4424 0.2759 309.4919 0.2002 309.6096 0.2334 309.4302 0.2254

309.5312 0.3125 309.5387 0.2151 309.5503 0.3064 309.6099 0.3768 309.4310 0.2307

309.5815 0.2203 309.5391 0.3830 309.5980 0.3952 309.6104 0.3866 309.4760 0.1588

309.5824 0.3559 309.5922 0.3294 309.5983 0.2043 309.4121 0.2040 309.4762 0.3880

309.3721 0.2969 309.4512 0.2194 309.4022 0.3125 309.4123 0.2558 309.4762 0.3484

309.3723 0.3027 309.5042 0.3817 309.4033 0.1857 309.4130 0.2082 309.4773 0.1564

309.3729 0.1496 309.5051 0.3839 309.4563 0.3175 309.4130 0.2041 309.4778 0.1558

309.3736 0.2567 309.5053 0.1722 309.4982 0.3035 309.4997 0.2913 309.5703 0.1984

309.3737 0.3493 309.5055 0.3987 309.5469 0.1725 309.5005 0.1671 309.5709 0.3939

309.4269 0.2052 309.5615 0.3254 309.5478 0.2037 309.5007 0.2607 309.6199 0.3590

309.4273 0.2106 309.3866 0.3697 309.5479 0.1829 309.5553 0.2741 309.6203 0.1942

309.4273 0.3964 309.3879 0.3714 309.6011 0.2703 309.5555 0.3375 309.3852 0.3491

309.4275 0.2784 309.4849 0.2064 309.6012 0.1814 309.5557 0.2320 309.3862 0.1607

309.4276 0.3636 309.4851 0.2118 309.6015 0.2674 309.6133 0.3531 309.4808 0.2505

309.4276 0.2413 309.4859 0.2509 309.6019 0.3656 309.6134 0.3228 309.4818 0.1993

309.4282 0.2001 309.5337 0.3545 309.6020 0.3304 309.6138 0.1734 309.5761 0.2336

309.4837 0.3320 309.5341 0.3289 309.6024 0.1603 309.6151 0.3521 309.5767 0.3606

309.4843 0.3056 309.5350 0.2406 309.6024 0.3570 309.4151 0.2415 309.6221 0.2480

309.5328 0.3951 309.5353 0.1634 309.6025 0.3265 309.4622 0.3732 309.6222 0.2002

309.3952 0.2323 309.5949 0.3002 309.6026 0.3556 309.5126 0.2900 309.6225 0.3069

309.3954 0.3128 309.5957 0.3951 309.4098 0.3574 309.5135 0.1524 309.6238 0.3838

309.4406 0.3501 309.5965 0.3202 309.4103 0.1877 309.5671 0.3767 309.3748 0.3971

309.4416 0.1943 309.3885 0.3914 309.4111 0.2266 309.5678 0.2951 309.4228 0.3324

309.4421 0.2776 309.3900 0.2860 309.4630 0.3008 309.6126 0.2994 309.4230 0.2032

309.4890 0.1528 309.3901 0.3315 309.4634 0.2525 309.6128 0.1790 309.4236 0.3191

309.4893 0.1752 309.3902 0.3660 309.4636 0.3415 309.6129 0.1837 309.4237 0.3289

309.4902 0.3698 309.4949 0.1546 309.4636 0.2703 309.4690 0.3068 309.5729 0.1847

309.5402 0.2820 309.4950 0.2586 309.5102 0.2132 309.5162 0.3034 309.5730 0.2886

309.5412 0.3787 309.4969 0.2284 309.5551 0.3067 309.5652 0.2653 309.5733 0.1918

309.5418 0.3431 309.5442 0.2039 309.6046 0.2935 309.5654 0.2348

309.5888 0.3845 309.5989 0.3229 309.4043 0.2709 309.6186 0.2646

309.5899 0.1586 309.5994 0.3227 309.4044 0.3429 309.3682 0.2699

Table 15-7: Coordinate (RA, Dec) list for all 247 references for SDSS J203733.62+001953.5, the

target with the highest score in the sample of 106 targets from the Exoplanet Catalogue

cccxxv

Appendix E Index

Absolute Photometry, 25

Abstraction, 48

airmass, 32

API, 109, 111, 112, 119, 129, 131, 151, 161, 162, 165, 166, 303

argument, 106, 113, 114, 117, 119, 130, 135, 246, cccx

Assembly Language, 49

Astrometry, 17, 18, 19

Astronomical Catalogues, 38

Bottom-Up, 108, 142

C, iv, 15, 29, 45, 49, 50, 51, 55, 56, 58, 59, 60, 99, 105, 107, 108, 111, 119, 125, 138,

140, 141, 142, 143, 148, 149, 154, 157, 170, 173, 195, 300, cccviii

C++, 50, 51, 55, 56, 99, 173

camcol, 54, 106, 116, 127, 130, 131, 137, 153, 158, 165, 166, 222, 224, 226

Catalogue, 147, 157, 306

Charge Coupled Device, iv, 29

Cloud Computing, 244, 252, 274

colour, iv, 1, 32, 33, 35, 36, 38, 39, 62, 67, 73, 79, 80, 84, 86, 87, 88, 98, 108, 114, 117,

119, 121, 122, 123, 127, 158, 185, 186, 187, 193, 194, 198, 199, 200, 201, 203, 204,

205, 206, 212, 213, 214, 215, 216, 217, 218, 219, 220, 244, 246, 247, 248, 262, 265,

266, 267, 273, 274, 303, cccviii, cccix, cccx, cccxviii

cccxxvi

colour index, 36, 86, 87, 123, 127, 186, 193, 194, 212, 213, 214, 215, 216, 217, 246,

247, 248

Comparison-Check Photometry, iv

Cornerpoint, 80

csv, 130, 149, 165

Data Mining, i, 1, 38, 147

Declination, iv, 1, 75, 112, 159, 183, 198, 203

Differential Photometry, 1, 4, 26, 30, 31, 221

Direct Imaging, 17, 18, 19

Elastic Cloud Compute, iv, 255

exoplanet, 17, 110, 152

Extensibility, 91, 94, 101

Extinction, 32

Extrasolar Planets, i, 88

field, vii, 1, 37, 38, 54, 62, 63, 66, 73, 74, 78, 79, 82, 88, 106, 111, 116, 117, 118, 120,

127, 130, 131, 133, 134, 137, 138, 153, 158, 159, 165, 166, 167, 168, 174, 183, 184,

187, 188, 192, 199, 204, 212, 219, 222, 224, 225, 226, 230, 231, 232, 242, 248, 249,

250, 251, 256, 257, 258, 260, 262, 264, 269, 270, 272, 273

Field of View, 1, 37, 76, 188, 198, 201, 248, 261

filter, 36, 86, 99, 100, 114, 115, 121, 123, 153, 158, 159, 183, 185, 186, 193, 200, 203,

224, 246, 248, cccix

FITS, 99, 103, 157

Flexibility, 91, 101

Fortran, 55

cccxxvii

gLite, v, 43, 46, 47, 57, 59, 68, 107, 108, 109, 119, 128, 141, 145, 146, 147, 156, 168,

169, 171, 177, 178, 229, 231, 244, 255

grep, 136

Grid Computing, i, 1, 43

Grid Management System, v, 45, 143, 175

HDU, 157

Imperative Language, 50

Interpreter, iv, 58

Java, 49, 55, 56

Job Description Language, v, 46, 106, 164, 168, 169, 171

Job Submission System, v, 45, 107, 145, 253

Language Level, 48

Layering, 94, 101

LFC, 145, 146, 147, 157

LFN, 145

Local catalogue, 159

Local Catalogue, 69, 70, 91, 105, 109, 111, 114, 115, 118, 119, 120, 131, 134, 141, 153,

159, 160, 162, 175, 177, 178, 180, 183, 192, 194, 196, 197, 201, 204, 217, 218, 222,

223, 224, 225, 226, 228, 229, 230, 231, 232, 234, 235, 236, 237, 239, 240, 241, 242,

243, 251, 252, 253, 258, 266, 267, 269, cccxix, cccxxii

Locus, vii, 1, 5, 73, 74, 75, 76, 77, 80, 82, 89, 103, 105, 116, 119, 120, 123, 124, 131,

140, 159, 178, 181, 182, 183, 187, 188, 195, 196, 200, 205, 212, 215, 229, 242, 245,

248, 249, 250, 256, 257, 260, 264, 265, 267, 273, 274, cccxvi

cccxxviii

Locus Algorithm, vii, 1, 5, 73, 74, 75, 76, 77, 82, 89, 103, 105, 116, 119, 120, 131, 140,

159, 178, 181, 182, 183, 187, 195, 196, 200, 205, 212, 215, 229, 242, 245, 248, 249,

250, 256, 257, 260, 264, 265, 267, 273, 274, cccxvi

Logical File Catalogue, v, 45, 144, 145

Magnitude, 12, 36, 78, 112, 121, 152, 159, 160, 196, 198, 200, 201, 203, 205, 206, 208,

209, 217, 245, 246, 267, cccxxii, cccxxiii, cccxxiv

Microlensing, 17, 18, 19

Noise, vi, 32, 33, 34, 39

optimised pointing, vii, 5, 35, 64, 71, 187, 191, 195, 198, 205, 230, 231, 237, 244, 250,

251, 273

Output Catalogue, 69, 116, 141, 205, 253, cccxxiii

parameter, 8, 9, 57, 70, 78, 93, 101, 106, 110, 111, 112, 117, 125, 126, 127, 128, 130,

131, 134, 141, 151, 152, 161, 162, 164, 184, 206, 211, 231, 237, 241, 245, 246, 250,

251, 272, cccviii, cccx

Parameter files, 161

Parameterisation, 96, 111, 125, 126, 127, 128, 129, 131, 132, 133, 134, 136, 139, 141,

230, 253

Photometry, iv, 1, 4, 25, 26, 30, 31, 221

Pointing, 82, 124, 190, 198, 199, 200, 203, cccxxiii, cccxxiv

Point-Spread Function, vi, 250

prm, 130, 162

Pulsar Timing, 17

Quasar, 64, 65, 71, 116, 141, 152, 160, 166, 194, 198, 199, 200, 202, 204, 218, 222,

225, 226, 227, 228, 230, 232, 234, 236, 237, 239, 240, 241, 242, 243, 244, 245, 251,

257, 268, 273, 274, cccxxiii

cccxxix

Radial Velocity, 16, 17, 18, 19

rating, 62, 63, 79, 81, 84, 85, 86, 87, 88, 89, 94, 120, 121, 122, 123, 186, 189, 190, 193,

212, 233, 246, 247, 248, 265, 266, 267, cccix

Reference Stars, 183, cccxxv

Relative Photometry, 26

rerun, 54, 106, 116, 127, 130, 131, 137, 158, 165, 166, 222, 224, 226

Right Ascension, vi, 1, 75, 76, 112, 159, 183, 198, 203

run, 43, 49, 53, 54, 56, 58, 71, 105, 106, 107, 110, 111, 116, 118, 126, 127, 130, 131,

135, 136, 137, 141, 143, 146, 150, 153, 158, 165, 166, 168, 173, 178, 182, 222, 224,

226, 228, 229, 232, 233, 234, 237, 238, 241, 242, 243, 267, 269, 274, 303, cccix

Scintillation, 33

score, vii, 1, 62, 63, 66, 67, 71, 74, 81, 82, 83, 84, 88, 89, 121, 125, 160, 174, 178, 181,

189, 190, 193, 194, 195, 198, 200, 202, 203, 204, 205, 208, 209, 211, 212, 213, 214,

216, 217, 218, 219, 220, 224, 231, 233, 240, 245, 246, 247, 251, 256, 265, 266, 267,

268, 270, 273, cccxvii, cccxxiii, cccxxiv, cccxxv

SDSS, 95, 109, 110, 111, 113, 130, 151, 152, 153, 157, 158, 161, 165

Secondary Eclipse, 16

sift, 121, 122, cccviii

Simple Storage Service, vi, 255

Sloan Digital Sky Survey, vi, vii, 2, 25, 38, 223

Source Catalogue, 197, 224, 225, 228, 241, 243

struct, 121, cccviii

Supernova, 202

syzygy, 23

cccxxx

Top-Down, 141, 142

Transit Method, 20, 60

Transit Time Variation, vi

Translation, 49, 56

Unix, v, vi, 44, 136, 147, 164

Variable Star, 13

Virtual Machine, vi, 49, 144, 305

Volunteer Computing, 42

wc, vi, 136, cccxii

wget, 54, 59, 105, 109

Worker Node, vi, 144, 170, 229, 253

	Data Mining by Grid Computing in the Search for Extrasolar Planets
	Recommended Citation

	Microsoft Word - Thesis Draft final amended acknowlegements.docx

