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Abstract criteria for multiple solutions to
nonlinear coupled equations involving

magnetic Schrödinger operators
(To appear in Journal of Differential Equations)

M. Enstedt, M. Melgaarda,∗

aSchool of Mathematical Sciences, Dublin Institute of Technology, Dublin 8, Ireland

Abstract

We consider a system of nonlinear coupled equations involving magnetic Schrödinger
operators and general potentials. We provide a criteria for the existence of mul-
tiple solutions to these equations. As special cases we get the classical results on
existence of infinitely many distinct solutions within Hartree and Hartree-Fock
theory of atoms and molecules subject to an external magnetic fields. We also
extend recent results within this theory, including Coulomb system with a con-
stant magnetic field, a decreasing magnetic field and a “physically measurable”
magnetic field.
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1. Introduction

Quantum mechanics has its origin in an effort to understand the properties
of atoms and molecules. Its first achievement was to establish the Schrödinger
equation by explaining the stability of the hydrogen atom. When we pro-
ceed to a molecule, the full quantum mechanical problem cannot be solved.
Within the Born-Oppenheimer approximation, a molecule consisting of N elec-
trons interacting with K static nuclei in an external magnetic field B, de-
fined via a vector potential A = (A1, A2, A3), is in quantum theory described

by the following Hamiltonian, acting on the space
∧N

L2(R3) of antisymmet-

ric functions, HN,Z,A =
∑N
n=1−∆A,xn + VC, where ∆A,xn is the square of

∇A,xn = (P
(1)
xn , P

(2)
xn , P

(3)
xn ), P

(m)
xn = ∂

x
(m)
n

+ iAm(xn), and the Coulomb poten-

tial VC is given by

VC = −
K∑
k=1

N∑
n=1

Zk|xn −Rk|−1 +
∑
m<n

|xm − xn|−1

with xn, Rk denoting the coordinates of the nth electron and kth nucleus re-
spectively, and Zk > 0 the charge of the kth nucleus.

The ”must” of computational quantum chemistry, needed before addressing
other questions, is to determine the ground state and the ground state energy,
i.e., the minimum of the spectrum of HN,Z,A or, equivalently,

EQM = inf{ EQM(Ψe) : Ψe ∈ He, ‖Ψe‖L2(R3N ) = 1 },

where

EQM(Ψe) := 〈Ψe, HN,Z,AΨe〉L2(R3N ), Ψe ∈ He :=

N∧
H1
A(R3) ;

H1
A being the “magnetic” analogue of the standard Sobolev space H1; see Sec-

tion 2. If the minimum is attained, then the minimizer Ψe is called a ground
state.

Quantum theory, in particular determining EQM, is however too complicated
for both theoretical and numerical studies. One of the classical approximation
methods for determining EQM is the Hartree-Fock (HF) theory, introduced by
Hartree [16] and improved by Fock [13] and Slater [27] in the late 1920s, which
consists of restricting attention to simple wedge products Ψe ∈ S, where

S =

{
Ψe ∈ He : ∃Φ = {φn}1≤n≤N ∈ C, Ψe =

1√
N !

det (φn(xm))

}
with

C := {φ ∈ H1
A(R3)N : 〈φn, φm〉L2(R3) = δnm}. (1.1)
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If Ψe ∈ S then the magnetic Hartree-Fock (MHF) functional EMHF(·) is defined
by

EMHF(φ1, ..., φN ) := EQM(Ψe) =

N∑
n=1

∫
R3

|∇Aφn(x)|2 dx+

∫
R3

Ven(x)ρ(x) dx

+
1

2

∫
R3

∫
R3

ρ(x) ρ(x′)− |τ(x, x′)|2

|x− x′|
dxdx′. (1.2)

where Ven(y) = −
∑K
k=1 Zk/|y − Rk|, ρ(x) =

∑N
n=1 |φn(x)|2, and τ(x, x′) =∑N

n=1 φn(x)φn(x′). In contrast to the linear Schrödinger theory finding the
Hartree-Fock energy, defined as

EMHF := inf
{
EMHF(Ψe) : Ψe ∈ S

}
, (1.3)

is a nonlinear variational problem; a possible minimizer is called a magnetic
Hartree-Fock ground state.

When no magnetic field is present, the Hartree-Fock minimization problem
was studied by Lieb and Simon in [22]. Under the condition that the total

charge Z =
∑K
k=1 Zk of the molecular system fulfills Z + 1 > N , they proved

the existence of a minimizer, i.e., a Hartree-Fock ground state. The mathemat-
ical requirement Z + 1 > N expresses that the total charge of the nuclei should
be sufficiently positive to ensure that the N electrons are localized in their
vicinity. Prior to [22], the Hartree-Fock equations were studied by more direct
approaches yielding less general results; see, e.g., the references in [5]. Later,
Lions [23] studied both minimal and nonminimal solutions (“excited states”) to
the nonrelativistic Hartree-Fock equations by using critical point theory in con-
junction with Morse data. For the standard Hartree-Fock model, Lions verifies
a Palais-Smale type (compactness) condition which, roughly speaking, amounts
to“being away from the continuous spectrum” or, equivalently, when the Morse
information is taken into account, showing that certain Schrödinger operators
with Coulomb type potentials have enough negative eigenvalues. Below we elab-
orate on Lions’s method.

For the molecular system above, an initial investigation of MHF theory based
upon the Hamiltonian HN,Z,A is found in [5, 6], wherein the objective is to
establish existence, respectively non-existence, of a MHF ground state.

In the present paper we improve, complement and go beyond the results
found in [5]. We consider general classes of vector potentials and scalar poten-
tials and not just classical potentials such as the Coulomb potential. In addition
to proving existence of a ground state, we establish existence of infinitely many
distinct solutions of the magnetic Hartree-Fock type equations for the following
three kinds of external magnetic fields:

• A constant magnetic field;

• Decreasing magnetic fields;

• “Physically measurable” magnetic fields.
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Except for some spectral properties, which have to be established separately
for each of these three applications, it turns out that it is possible to prove the
existence results in an unified framework, wherein appropiate parameters and
potentials are introduced in the Hartree-Fock functional. The main result, The-
orem 3.2, is valid under fairly general conditions formulated in Assumption 3.1.
The conditions correspond roughly speaking to a natural assumption on the
structure of the spectrum of the Schrödinger operator involved in the equa-
tions. The results are analogues to the results obtained by Lions [23]; wherein
no magnetic fields are present. Few results exist on the magnetic Hartree-Fock
model. In the case of a constant magnetic field, Esteban-Lions [8] proved ex-
istence of a ground state by applying Lions’s ”second minimality condition”
strategy. To be able to conclude existence of infinitely many solutions in this
case there are several obstacles to overcome.

We proceed to sketch the proof of Theorem 3.2, starting with the existence
of a ground state. We consider the C2-functional E on a complete analytic
Riemannian manifold C (see Chiumiento and Melgaard [2]) defined in (1.1).
Since E is bounded from below, we may try to find a critical point at the level
l = infC E by determining whether the infimum is achieved. As we shall see,
it is easy to find an almost critical sequence at the level l, that is, a sequence
{h(j)} in C satisfying

lim
j→∞

E(h(j)) = l, and lim
j→∞

E|′C (h(j)) = 0. (1.4)

The hard part is to prove existence of a converging subsequence of {h(j)}. To
make sure that we can extract a convergent subsequence, we use second order
information of E .

We invoke a direct method developed by Fang and Ghoussoub [9, 10] to
address the existence of infinitely many nonminimal solutions. Since we are
looking for nonminimal (or unstable) critical points, we consider a collection H
of compact subsets of C which is stable under a specific class of homotopies and
then we show that E has a critical point at the level

l = lE,H = inf
M∈H

max
h∈M
E(h).

As we shall see, the method by Fang and Ghoussoub gives us an almost critical
sequence at the level l, that is, a sequence {h(j)} in C satisfying (1.4), with
additional Morse information (as mentioned above) which is crucial for proving
that the sequence is convergent. Let us emphasize that this is the first time
that the critical point theory by Fang and Ghoussoub is applied to the magnetic
Hartree-Fock equations.

Related work on the application of critical point theory to semilinear elliptic
equations includes: existence of solutions with finite Morse indices established by
Dancer [4], de Figueiredo et al [11], Flores et al [12], and Tanaka [28], existence
of multiple solutions established by Cingolani-Lazzo [3] and Ghoussoub-Yuan
[15], “relaxed” Palais-Smale sequences as in Lazer-Solimini [19] and Jeanjean
[17] and problems on noncompact Riemannian manifolds found in Mazepa [24],
and Tanaka [29].
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2. Preliminaries

Throughout the paper we denote by C (with or without indices) various
constants whose precise value is of no importance.
Operators. Let H be a separable complex Hilbert space. We denote its scalar
product and norm by 〈·, ·〉H and ‖·‖H, respectively. Let T be a linear operator on
H with domain D(T ), range Ran (T ) and kernel Ker (T ). Its (Hilbert) adjoint
(when it exists) is denoted T ∗. The spectrum and resolvent set are denoted
by spec (T ) and ρ(T ), respectively. Given a Hilbert space H we define HN ,
to be the N -fold (Cartesian) product of H, equipped with the scalar product

〈f , g〉 =
∑N
n=1〈fn, gn〉H. Given Banach spaces X and Y, we say that h ∈ X +Y

if there exists f ∈ X and g ∈ Y such that h = f + g. This is a Banach space,
e.g., when equipped with the norm ‖h‖X+Y = inf(‖f‖X + ‖g‖Y). We need the
following abstract operator result by Lions [23, Lemma II.2].

Lemma 2.1. Let T be a selfadjoint operator on a Hilbert space H, and let H1,
H2 be two subspaces of H such that H = H1 ⊕ H2, dimH1 = h1 < ∞ and
P2TP2 ≥ 0, where P2 is the orthogonal projection onto H2. Then T has at most
h1 negative eigenvalues.

Functions. Let R3 be the three-dimensional Euclidean space, wherein points are
denoted by x = (x(1), x(2), x(3)), and let |x| = (

∑3
m=1(x(m))2)1/2. We set

BR = {x ∈ R3 : |x| < R }, B(x,R) = { y ∈ R3 : |x− y| < R }.

By Sn−1 we will denote the unit sphere in the Euclidean space Rn. For 1 ≤
p ≤ ∞, we let Lp(R3) be the space of (equivalence classes of) complex val-
ued functions φ which are µ-measurable and satisfy

∫
R3 |φ(x)|p dµ < ∞ if

p < ∞ and ‖φ‖L∞(R3) = ess sup |φ| < ∞ if p = ∞. When the measure is
the standard Lebesgue measure and the undelying set is R3 we will sometimes
simply write Lp. For any p the Lp(R3) space is a Banach space with norm
‖ · ‖Lp(R3) = (

∫
R3 | · |p dx)1/p. In the case p = 2, L2(R3) is a separable Hilbert

space with scalar product 〈φ, ψ〉L2(R3) =
∫
R3 φψdx and corresponding norm

‖φ‖L2(R3) = 〈φ, φ〉1/2L2(R3). Similarly, L2(R3)N , the N -fold Cartesian product of

L2(R3), is equipped with the scalar product 〈φ, ψ〉 =
∑N
n=1〈φn, ψn〉L2(R3) and

the norm defined by ‖φ‖ = 〈φ, φ〉1/2.

The Sobolev spaces H1
A(R3). Define

H1
A(R3) :=

{
φ ∈ L2(R3) : ∇Aφ ∈ L2(R3)

}
for ∇A := ∇ + iA, in which ∇φ is taken in the distributional sense, endowed
with norm

‖φ‖H1
A

:=
(
‖φ‖2L2 + ‖∇Aφ‖2L2

)1/2
.

When A ∈ L2
loc(R3)3, then D(R3) is dense in H1

A(R3), and the following well-
known diamagnetic inequality is valid (see [18, 26, 20]).
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Theorem 2.2. Let A ∈ L2
loc(R3)3. If φ ∈ H1

A(R3), then

|∇|φ|| ≤ |∇Aφ| . (2.1)

As a consequence of Theorem 2.2 we have that φ 7→ |φ| maps H1
A(R3)

continuously into the Sobolev space H1(R3), which implies the existence of a
continuous embedding

H1
A(R3) ↪→ Lq(R3), q ∈ [2, 6]. (2.2)

Homotopic families. Let Ω be a compact subset of Rn, n ≥ 1 and let M be
a complete C2-Riemannian manifold . Assume that G is a compact Lie group
acting freely and differentiably on M and Ω. A family F of the sets of the form

{f(Ω) : f ∈ CG(Ω,M)}

is called a G-homotopic family of dimension n. Here CG(Ω,M) is the set of all
G-equivariant continuous f : Ω → M , that is, a continuous function such that
f(gx) = gf(x), g ∈ G and x ∈ Ω.

Kato space. We denote by K the Kato space

K := {V : ∀ε > 0 ∃V1 ∈ L
3
2 ∧ V2 ∈ L∞ : ‖V2‖L∞ < ε ∧ V = V1 + V2},

and we recall that this space has Banach structure with, e.g., the norm
‖ · ‖L3/2+L∞ introduced above.

The admissible set C. To apply abstract critical point theory we need the
following facts established in [2].

Theorem 2.3. The admissible set C is a complete analytic Hilbert-Riemann
manifold.

3. General setting and main result

Henceforth we will consider a family of functionals, which will be defined
on the Stiefel type manifold in (1.1). Throughout the paper we assume that
V ∈ L2

loc(R3,R), A ∈ L2
loc(R3)3, γ ∈ [0,∞) and W ∈ Lp(R3) + Lq(R3), with

2 ≤ p ≤ q ≤ 4. We also assume that W is nonnegative, radial symmetric and it
tends to 0 in the (weak) sense that µ ({x : |W | > t}) <∞ for all t > 0, where µ is
the Lebesgue measure. The kinetic energy will be denoted by l0[φ] := ‖∇Aφ‖2L2 .
We introduce

sV : H1
A(R3)→ R by φ 7→

∫
R3

V (x)|φ(x)|2dx, (3.1)

6



along with (arising from the direct Coulomb energy)

JW (ψ, φ) :=

∫
R3

∫
R3

ψ(x)φ(y)W (x− y)dxdy,

and (arising from the exchange energy)

KW (ψ, φ) :=

∫
R3

∫
R3

ψ(x, y)φ(x, y)W (x− y)dxdy,

defined whenever it makes sense. We consider the following family of functionals
Em : H1

A(R3)N → R defined by

φ := (φ1, · · · , φN ) 7→
N∑
n=1

(l0[φn] + sV [φn]) +
1

2
JW (ρφ, ρφ)

−1

2
KW (|Dφ(x, x′)|, |Dφ(x, x′)|)− γ‖φ‖2L2(R3)N ,

where the subscript m := m(A, V, γ,W1,W2) indicates that the functional de-

pends on A, V , W and γ. Here Dφ(x, x′) :=
∑N
n=1 φn(x)φn(x′) and ρφ(x) =∑N

n=1 |φn(x)|2. At the place we do not focus on whether the functionals are
well defined or not, this will be discussed in detail in the sequel. Furthermore,
given φ ∈ C we introduce

fφm : H1
A(R3)×H1

A(R3)→ R by

(ψ,ψ) 7→ l0[ψ] + sV [ψ] + JW (ρφ, ψ)−KW (Dφ(x, y), ψ(y)ψ(x))

−γ〈ψ,ψ〉L2 . (3.2)

Standard arguments show that this form can be associated with a selfadjoint
operator, which we denote by Fφm. We impose the following conditions:

Assumption 3.1. If the following two conditions hold, then we write m ∈ Nγ .
For any weakly convergent (with respect to the topology on H1

A(R3)N ) sequence
{φ(j)}∞j=1 ⊂ C we have that

(i) The quadratic form εl0+sV : H1
A(R3)→ R is uniformly bounded from below

on C for some ε ∈ [0, 1) and weakly lower semi-continuous for some ε ∈ [0, 1].
(ii) The essential spectra of the following family of Schrödinger operators

−∆A + V +W ∗ ρφ(j)

equal the semi-axis [γ,∞) and that the operators has infinitely many eigenvalues
strictly below γ.

The main result is the following theorem.

Theorem 3.2. Suppose that m ∈ Nγ .
1. Then every minimizing sequence of the functional Em(·) is relatively compact
in C. In particular, there exists a minimizer ϕ of Em(·) on C and (up to unitary

7



transformations) the components of ϕ = (ϕ1, . . . , ϕN ) satisfy the Hartree-Fock
type equations {

Fϕn + λnϕn = 0,
〈ϕm, ϕn〉L2(R3) = δmn,

(3.3)

where F is the Fock type operator defined via (3.2). Moreover, the numbers −λn
are the N lowest eigenvalues of F .

2. There exists a sequence {ϕ(k)}∞k=1, with entries ϕ(k) = (ϕ
(k)
1 , . . . , ϕ

(k)
N ), of

solutions (on different levels of energy) of the Hartree-Fock type equations (3.3)

which satisfy the constraints 〈ϕ(k)
m , ϕ

(k)
n 〉L2(R3) = δmn for all 1 ≤ m,n ≤ N and,

furthermore, the Lagrange multipliers λ
(k)
n are positive. Moreover, the following

properties are valid as k →∞:
λ
(k)
n → λn,

Em(ϕ(k))→ 0,

ϕ(k) → 0 weakly in H1
A(R3)N .

4. Proof of main result

We are ready to prove the main theorem.

Proof of Theorem 3.2. The idea of the proof is to find levels of the functional on
which we can find critical points. We will create infinitely many distinct levels

with such properties. We will use the notation φ(j) := (φ
(j)
1 , . . . , φ

(j)
N ) when

there are no possibility of confusion and also drop the index on the functional.
For the first level we start out with the obvious global minimum, that is

l0 := inf E|C .

Assumption 3.1 and the Cauchy-Schwarz inequality imply that l0 > −∞. We

may therefore extract a minimizing sequence, say {φ̃
(j)
}∞j=1 ⊂ C. Given a

complete metric space (X, d) we introduce Q as the set of functions that can be
written as

q(x) =
1

2

∞∑
k=1

αkd(x, vk)2,

for some convergent sequence {vk}∞k=1 and αk ≥ 0 such that
∑∞
k=1 αk = 1.

Now an application of the Borwein-Preiss smooth variational principle which
can be found in [1, Theorem 2.6] provides us with a new minimization sequence

{Φ(j)}∞j=1 corresponding to the same level and such that

‖Φ(j) − Φ̃
(j)
‖H1

A(R3)N −→ 0.

We will also have that Φ(j) minimizes

E(·) + µ(j)qj(·),

8



on C with {qj}∞j=1 ⊂ Q and µ(j) ↘ 0. From this we can, after some direct
calculations, conclude that

lim
j→∞

E(φ(j)) = l0,

for a sequence {λ(j)}∞j=1 ⊂ RN (the Lagrange multipliers) we get that

‖Fφ
(j)

m φ(j) + λ(j)φ(j)‖L2(R3)N → 0, (4.1)

and there exists a sequence δ(j) > 0, δ(j) → 0, such that(
N∑
n=1

fφ
(j)

m [ψn, ψn] + (λ(j)n + δ(j))‖ψn‖2L2

)

−
∫
R3×R3

W (x− x′)|ν(x, x′)|2 − ν(x, x)ν(x′, x′)W (|x− x′|)dxdx′ ≥ 0,

holds on (ψ1, . . . , ψN ) ∈Mφ(j) . Here we define

ν(x, x′) :=
1√
2

N∑
n=1

φ(j)n (x)ψn(x′) + φ(j)n (x′)ψn(x)

and Mφ(j) is the set of all (ψ1, . . . , ψN ) ∈ H1
A(R3)N such that

〈φ(j)k , ψl〉L2 = 0 ∀k, l

and
〈ψk, ψl〉L2 = 0 ∀k 6= l.

Therefore

l0[ψ] + sV [ψ] + JW (ρφ(j) , |ψ|2) + (λ(j)n + δ(j) − γ)‖ψ‖2L2 ≥ 0

is satisfied on {
ψ ∈ H1

A(R3) : 〈φ(j)k , ψ〉L2 = 0 ∀k
}
.

We will call these properties level-information, first-order information and
second-order information of this Palais-Smale type property, respectively. We
will now create more levels on which we can find this kind of information. We
begin by making some observations concerning symmetry and structure. The
functional E(·) is obviously even and C is a complete C2-Riemannian manifold
according to Theorem 2.3. We note that Z2 := {−1, 1} equipped with multipli-
cation as binary operation and the discrete topology can be considered to be a
compact Lie group. Choose k ≥ N and let Z2 act on the manifolds C and Rk
by the actions

(±1, φ) 7→ ±φ, φ ∈ C,

9



and
(±1, x) 7→ ±x, x ∈ Rk.

Note that the Lie group is acting freely on C and Rk. Under the previously
stated Lie group actions on the manifolds C and Rk we define

Hk := {M = f(Sk−1) : f ∈ CZ2
(Sk−1, C)}

and observe that this is a Z2-homotopic family of dimension k (see Section 2 for
the definition). We define

lk := inf
M∈Hk

max
φ∈M
E(φ).

We note that from the definition of lk above that {lk}∞k=1 will be a nondecreasing
sequence. From Assumption 3.1 we infer that

l0[φ] + sV [φ]− γ ≤ −εk,

for some εk > 0 on a k-dimensional subspace, say Hk, of H1
A(R3) such that

‖φ‖L2(R3) = 1 for all φ ∈ Hk (the unit sphere in this subspace will be de-

noted by S̃k−1). Now let g− : Hn → Rk be a continuous and linear such that

g−(Sk−1) = S̃k−1. Let e be the natural embedding of S̃k−1 into C. Note that
g− ◦ e ∈ CZ2

(Sk−1, C) and also note that since the global minimum is finite
(proved above) we get that

E|C ≥ C. (4.2)

Therefore {lk}∞k=1 ⊂ (−∞, 0]. Thus we may therefore find Mk ∈ Hk such that

lk ≤ max
Mk
E < lk

2
< 0. (4.3)

Let {ψm}∞m=1 be a basis of H1
A(R3)N . Denote byWk the linear hull of {ψm}km=1.

Define Vk as the orthogonal complement ofWk−1 and assume that Mk∩Vk = ∅.
Let πk be the orthogonal projection from H1

A(R3)N onto Wk. Then (note that
Vk+1 = Ker (πk) ⊂ Vk)

πk−1(Mk) ⊂ Wk−1 \ {0} ∼= Rk−1 \ {0}.

Since Mk = f(Sk−1), for some f ∈ CZ2
(Sk−1, C) we have existence of a con-

tinuous and odd map from Sk−1 to Rk−1 \ {0}. From the Borsuk-Ulam the-
orem we will now get existence of two antipodal points on Sk−1 which maps
(due to symmetry) to 0, a contradiction. For each k fix some ϕ(k) ∈ Mk ∩ Vk
and extract a H1

A(R3)N -weakly convergent subsequence {ϕ(k)}∞k=1. Note that
E(ϕ(k)) ≤ (lk/2) < 0 = E(0) and ϕ(k) → 0 weakly in H1

A(R3)N . In E(·) the
term (1/2)JW (·) − (1/2)KW (·) is weakly lower semicontinuously (as a conse-

quence of Fatou’s lemma because ϕ
(j)
n → ϕn pointwise a.e. and, by hypothesis

on W , the integrand is nonnegative) and, in conjunction with Assumption 3.1(i)
we deduce that E(·) + γ‖ · ‖2(L2)N is weakly lower semicontinuous. Using this we
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obtain 0 = E(0) ≤ lim infk

(
E(ϕ(k)) + γ‖ϕ(k)‖2(L2)N

)
which, in view of (4.3),

implies that limk lk = 0.
We can now use abstract critical point theory results by Fang and Ghous-

soub [10] (see also [14, Theorem 11.1 and Remark 11.13]) to extract a sequence
on each level lk with the same type of information as for the ground state (the
second-order information will hold on a subspace of H1

A(R3) with finite codi-
mension which is independent of j). We proceed to prove relative compactness
of such a sequence. We have that(

Fϕ
(j)

m I + Λ(j)
)
ϕ(j) → 0 (4.4)

in L2(R3)N . Here Fϕ
(j)

m is the operator associated with the form in (3.2), I is the
N × N identity matrix, and Λ(j) is a diagonal matrix with diagonal elements

{λ(j)n }Nn=1 (here we use that Em is unitary invariant, see e.g. [22]). We will

now prove existence of a λ > 0 such that λ
(j)
n ≥ λ > 0. Assumption 3.1(i),

the boundedness of E(ϕ(j)) and the Cauchy-Schwarz inequality ensure that the
Palais-Smale sequence {ϕ(j)} is bounded in H1

A(R3)N . The boundedness of
E(ϕ(j)), in combination with (4.4) and the Cauchy-Schwarz inequality, also

implies that {λ(j)n } is bounded, and hence we may assume – by extracting a

subsequence if necessary – that ϕ
(j)
n converges weakly in H1

A(R3) (and a.e. in

R3) to some ϕn and (using the Bolzano-Weierstrass theorem) that λ
(j)
n converges

to some λn. Now, using the Assumption 3.1, the level information and first-

order information we conclude that we have an upper bound on |λ(j)n | ≤ C
independent of (j and n) and we may therefore assume, perhaps after going to

a subsequence, that λ
(j)
n converge for each n to some λn. Passing to the limit

in (4.1) we deduce
Fϕmϕn = −λnϕn

From the second-order information and an application of Lemma 2.1 we get
that −∆A + V + W ∗ ρφ(j) − γ has at most a finite number of eigenvalues

below −λ(j)n − δ(j)n . On the contrary we know by Assumption 3.1 that these
operators have infinitely many eigenvalues, with the only possible cluster point
located at 0. We may therefore conclude, perhaps after going to a subsequence,

the existence of a λ > 0, independent of j and n (recall that δ
(j)
n → 0 in the

standard Euclidean metric for each n) such that

λ(j)n ≥ λ > 0

and, consequently, λn > 0. Using the weak lower semicontinuity of the func-
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tional E(·) + γ‖ · ‖2(L2)N (and (1/2)JW − (1/2)KW ) we have that

lim sup
j

N∑
n=1

(γ + λ(j)n )‖ϕ(j)
n ‖2L2

= − lim inf
j

{
N∑
n=1

l0[ϕ(j)
n ] + sV [ϕ(j)

n ]

+JW (ρϕ(j) , ρϕ(j))−KW (|Dϕ(j)(x, x′)|, |Dϕ(j)(x, x′)|)

−γ
N∑
n=1

‖ϕ(j)
n ‖2L2 + γ

N∑
n=1

‖ϕ(j)
n ‖2L2

}

= − lim inf
j

{
E(ϕ(j)) + γ

N∑
n=1

‖ϕ(j)
n ‖2L2

+
1

2
JW (ρϕ(j) , ρϕ(j))−

1

2
KW (|Dϕ(j)(x, x′)|, |Dϕ(j)(x, x′)|)

}
≤ −

{
E(ϕ) + γ

N∑
n=1

‖ϕn‖2L2

+
1

2
JW (ρϕ, ρϕ)− 1

2
KW (|Dϕ(x, x′)|, |Dϕ(x, x′)|)

}
=

N∑
n=1

(γ + λn)‖ϕn‖2L2 ≤ lim inf
j

N∑
n=1

(γ + λ(j)n )‖ϕ(j)
n ‖2L2 .

We conclude that ‖ϕ(j)
n ‖L2 → ‖ϕn‖L2 and, consequently, ϕ

(j)
n converges strongly

to ϕn in L2(R3).
We have already seen when we made the construction of the levels that we

may , without loss of generality, assume that −∞ < lk < lk+1 < 0 and therefore
that

−∞ < lk−1 < lk = E(ϕ(k)) < lk+1 < 0. (4.5)

Here ϕ(k) corresponds of course to the critical point on level lk. We conclude
that E(ϕ(k))→ 0.

5. Applications

We give several applications of Theorem 3.2. We will use W = 1
|x| . We need

a few auxiliary facts before we proceed to our examples.

Lemma 5.1. Assume that A ∈ L2
loc(R3)3 and V ∈ K. Then, given ε > 0, there

exists a constant Cε > 0 such that

E(ϕ) ≥ (1− ε)
N∑
n=1

‖∇Aϕn‖2L2 − Cε
N∑
n=1

‖ϕn‖2L2

12



for all ϕ ∈ H1
A(R3)N . In particular, E is bounded from below on C, and mini-

mizing sequences are bounded in H1
A(R3)N .

We refer to [5] for details. Next we establish weak continuity of the electron-
nuclei potential.

Lemma 5.2. Let A ∈ L2
loc(R3)3 and V ∈ K. Then the functional sV :

H1
A(R3) → R, defined in (3.1), is weakly continuous on H1

A(R3). Moreover,
the estimate

sV [φ] ≥ −1

2

∫
R3

|∇Aφ(x)|2dx+ C‖φ‖2L2

holds on H1
A(R3) for some constant C.

Proof. Let ψn → ψ in the weak topology on H1
A. By a combination of Sobolev’s

embedding theorem and the diamagnetic inequality we conclude that

‖ψn‖Lp ≤ C‖ψn‖H1
A
, p ∈ [2, 6]. (5.1)

Hence, we may assume strong convergence locally in e.g. L2 and therefore
without loss of generality that

ψn → ψ a.e..

Thus, using (5.1) again, it is standard that

|ψn|2 ⇀ |ψ|2

in Lp, where p ∈ (1, 3]. It remains to show weak continuity for sV ′ , where

V ′ ∈ K. For any ε > 0, we may choose V ′′ (here V ′′ := V ′ − g, some g ∈ L 3
2 )

such that ‖V ′′‖L∞ < ε. We note that∫
R3

|Vf ′′ |
∣∣|ψn|2 − |ψ|2∣∣ ≤ ε(sup

n
‖ψn‖2L2 + ‖ψ‖2L2),

and we are done. It is well-known (cf. [25]) that∫
R3

V (x)|φ|2dx ≥ −1

2

∫
R3

|∇Aφ(x)|2dx+ C‖φ‖2L2

holds for A ∈ L2
loc(R3)3, V− ∈ L3/2(R3) and V ∈ L1

loc(R3).

The following fact is also well-known (see, e.g., [5]).

Lemma 5.3. Assume that A ∈ L2
loc(R3)3 and V ∈ K. Then E(·) is weakly

lower semicontinuous on H1
A(R3)N .

With these preparations we are ready to give examples. Lemma 5.1, Lemma 5.2,
and Lemma 5.3 are all necessary in order to apply Theorem 3.2.
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Example 5.4. In the first application we consider the Hartree-Fock model of N
electrons and K nuclei in a constant magnetic field. We establish existence of
infinitely many solutions to the Hartree-Fock equations for this system provided
the total nuclear charge Ztot =

∑K
k=1 Zk satisfies Ztot > N ; cf. [23, 7]. To the

best of our knowledge this result is new.

Corollary 5.5 (Constant magnetic field). Let B := (b1, b2, b3), with bj ∈ R and
Ven with as in Section 1. Note that, without loss of generality, we may after
suitable rotations, assume that b1 = b2 = 0 and b3 = 1. Then m ∈ N1 and
Assertion 1 of Theorem 3.2 along with Assertion 2 of Theorem 3.2 hold.

Proof. We may choose the Coulomb gauge, i.e. A := 1
2 (−x2, x1, 0). In view of

Assumption 3.1 and Lemma 5.2 we only need to prove existence of infinitely
many eigenvalues of the corresponding magnetic Fock operator below 1. This
spectral property was proved by Esteban and Lions [8, Theorem 5.1]. Therefore,
m ∈ N1 and the corresponding assertions 1 and 2 of Theorem 3.2 hold.

The condition Ztot ≥ N and Ztot > N − 1 are identical for the relevant
applications in Physics.

Example 5.6. Next we consider the Hartree-Fock model with N electrons and
K nuclei in the presence of an external magnetic field which belongs to a class
of fields which decrease at infinity.

Corollary 5.7 (Decreasing magnetic fields). Suppose that A ∈ Lp + Lq, 2 ≤
p ≤ q < 6 and that V ′ ∈ La + Lb, 1 ≤ a ≤ b < 3 with V ′− ∈ L3/2. Write
V = Ven + V ′. Then m ∈ N0 and the assertion 1 and 2 of Theorem 3.2 hold.

Proof. We need to prove that m ∈ N0. In view of Lemma 5.2 it is evident that
Assumption 3.1(i) holds and, therefore, it remains to be shown that Assump-
tion 3.1(ii) is satisfied. Take f ∈ H1

A(R3)N , put µ := |f |2dx, where dx is the
Lebesgue measure. Assume that µ(R3) ≤ N . Then we claim that the operator

LA,V,µ = −∆A + V + µ ∗ 1

|x|
,

has infinitely many negative eigenvalues. The operator LA,V,µ is associated
with the canonical quadratic form l which is to be defined below. We note that
µ ∗ 1

|x| ∈ K. Indeed, 1
|x| ∈ K and by the generalized Minkowski inequality

‖g ∗ µ‖Lr ≤ Ztot‖g‖Lr .

holds for any g ∈ Lr(R3), r ∈ [1,∞].
Write A = A1 +A2, where A1 ∈ Lp(R3) and A2 ∈ Lq. We claim that

lim
|y|→∞

∫
B1(y)

A2 + V + µ ∗ 1

|x|
dx = 0.

We note that it is enough to prove that

lim
|y|→∞

∫
B1(y)

g dx = 0.
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for g ∈ Lp, 1 ≤ p < 3. Let ε > 0 and take h as a smooth function with compact
support such that ‖g − h‖Lp ≤ ε. Using this we get that

lim
|y|→∞

∫
B1(y)

|g|dx ≤ Cε.

Hence we conclude that specess(LA,V,µ) = [0,∞) by [21, Theorem 2.5]. Write

V ′ = W1 + W2, where W1 ∈ La and W2 ∈ Lb. Define φ(x) := g(1−|x|2)
‖g(1−|x|2)‖L2

,

where g(t) = e−1/t for t > 0 and g(t) = 0 otherwise, and the rescaled family

φλ := λ−3/2φ(·/λ), λ > 0.

Furthermore, define

V λen(x) := −
K∑
k=1

Zk
|x−Rk/λ|

and µλ := λ3µ(λ·). Then, for λ sufficiently large, we have that

l[φλ] ≤ 1

λ2

∫
B1

|∇φ(x)|2dx+ C

(
1

λ6/β
(
‖A1‖2Lp + ‖A2‖2Lq

+ ‖A1‖Lp‖A2‖Lq
)

+
1

λ1+p
(
‖A1‖Lp + ‖A2‖Lq

)
+

1

λ3/q
(
‖W1‖Lα + ‖W2‖Lβ

))
+

1

λ

∫
B1

(
V λen(x) + µλ ∗

1

|x|

)
|φ(x)|2dx.

It is also easy to prove that∫
B1

(
V λen(x) + µλ ∗

1

|x|

)
|φ(x)|2dx < 0

uniformly in λ perhaps after increasing λ further. Thus we have constructed
a subspace with infinite dimension (again we might have to increase λ further)
such that l[·] < 0 holds on this subspace (except at 0 of course). Thus, we are
done by a direct application of Glazman’s Lemma which can be found in e.g.,
[25, Lemma A.3].

Example 5.8. In a paper by Enstedt-Melgaard [5] existence of a ground state
was established for the Hartree-Fock model in the presence of a wide class
of physically measurable magnetic fields which, roughly speaking, decrease at
infinitely. We refer to the paper for the full characterization of the fields. Here
we merely point out that an application of Theorem 3.2 allows us to conclude
the existence of infinitely many solutions to the Hartree-Fock equations (in the
case Ztot > N with the same remark as above concerning extensions) for the
class of magnetic fields considered in [5].

Corollary 5.9 (Physically measurable fields). If Assumptions 1.1 in [5] are ful-
filled, then m ∈ N0 and the assertions 1 and 2 of Theorem 3.2 hold true.
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It is worth to mention that one of the assumptions in [5] can be relaxed;
the proofs in [5] still apply and the main theorems, Theorem 1.4 and Theorem
1.5, remain true. More specifically, Assumption 1.1(iv) can be replaced by, for
instance, the existence of some R > 0 such that A is dominated by a positively
homogeneous function of degree d ∈ (−∞, 0) for |x| > R (i.e., at infinity).
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