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A numerical method for a nonlinear singularly
perturbed interior layer problem using an approximate
layer location

J Quinn
School of Mathematical Sciences, Dublin Institute of Technology, Ireland.

Abstract

A class of nonlinear singularly perturbed interior layer problems is examined
in this paper. Solutions exhibit an interior layer at an a priori unknown
location. A numerical method is presented that uses a piecewise uniform
mesh refined around numerical approximations to successive terms of the
asymptotic expansion of the interior layer location. The first term in the
expansion is used exactly in the construction of the approximation which
restricts the range of problem data considered. Denote the perturbation
parameter as € and the number of mesh intervals to be used as N. The
method is shown to converge point-wise to the true solution with a first order
convergence rate (overlooking a logarithmic factor) for sufficiently small ¢ <
N1 A numerical experiment is presented to demonstrate the convergence
rate established.

Keywords: Singularly Perturbed, Interior Layer, Nonlinear, Shishkin Mesh
2000 MSC: 65L11, 65112, 65L20

1. Introduction

Singularly perturbed nonlinear interior layer problems typically exhibit
interior layers at a priori unknown locations (e.g. [12]). This scenario poses
a difficulty when designing numerical methods for such problems as it is not
initially known where to refine a mesh to resolve any interior layers. In this
paper, we establish a numerical method for a class of nonlinear interior layer
problems using an asymptotic expansion of the interior layer location as a
sufficient approximation to the true location for sufficiently small values of
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the perturbation parameter €. Successive terms in the asymptotic expansion
may not be explicitly known and hence must be approximated numerically.

In [4], Nefedov et. al examine a problem class containing nonlinear prob-
lems of the form

(ev” +uu —bu)(x) = q(z), z€(-1,1), u(—-1)<0<u(l). (1.1)

Under certain conditions on the problem data, the solution exhibits an inte-
rior layer centred around an a priori unknown point d. € (—1,1). In [4], an
asymptotic expansion of d. is constructed. The objective in this paper is to
establish a numerical method for a problem class containing (1.1) based on
the asymptotic analysis given in [4].

The numerical method we present consists of constructing numerical ap-
proximations to the first three terms in the asymptotic expansion of the
interior layer location. We then solve nonlinear finite difference schemes on
a piece-wise uniform Shishkin mesh to the left and right of the numerical
approximation to the layer location at which the fine mesh is centred and
numerical solutions are set to zero. The numerical method is shown to admit
a point-wise error estimate for approximations U™ of (1.1) of the form

|(u—UM)(2;)] < CN7'In(N), fore <CN7, (1.2)

where x; are mesh points on the proposed mesh and C represents a generic
positive constant independent of € and N throughout the paper.

In [9], Shishkin presents a numerical method for a class of problems con-
taining (1.1). In the classical case where ¢ > N~%/  a finite difference scheme
is solved globally on a uniform mesh and a point-wise error estimate is pre-
sented, establishing a sufficient convergence of the method for increasing V.
In the singularly perturbed case where ¢ < N~%/°, numerical approximations
UN of (1.1) are set to zero at a numerical approximation " to the lead-
ing term of the asymptotic expansion of the interior layer location. Finite
difference schemes are solved to the left and right of this point at which a
Shiskin mesh is centred. The error estimate for the singularly perturbed case
is presented as follows:

(u— TV) ()| < CNV(N)Y2, [z, — dyV| > m,
fulay + (d — dg™)) = TV (@) < ONTP (V)2 | — d| < 2m,

where m is described as a sufficiently small constant independent of €. We
note, for mesh points in a neighborhood of d;", the error estimate is not
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point-wise. The main difference between the numerical analytic methods
used here and in [9] is that we consider higher order terms in the asymptotic
expansion of the interior layer location. However, here we consider a signif-
icant restriction on the problem data in (1.1) described as follows. The left
and right reduced solutions associated with problem (1.1) when ¢ = 0 are
the functions u;, and up satisfying the first order nonlinear problems:

uLuL, —bur = q, LS (_17 1]7 uL(_]') = U,(—l), (13&)
upur — bugr = q, re[-1,1), ur(1l) = u(1). (1.3b)

In [4], Nefedov et. al define the layer location d. as the point where the
solution of problem (1.1) satisfies u(d.) = (ur, + ug)(d:). The leading term
dp in the asymptotic expansion of d. is defined as the solution of the equation

(up +ugr)(dy) = 0. (1.3c)

The error estimate (1.2) holds for any approximation d)Y of the leading term
dy satisfying
dy — dY| < CeN7L. (1.4)

Given that we are considering the problem (1.1) for any arbitrary small value
of the perturbation parameter ¢, the required accuracy of df motivates the
following restriction on the problem data in (1.1):

Assumption: The problem data in (1.1) is such that (1.3) is explicitly
solvable.

Hence, under this assumption, we choose d} = dj.

For problem (1.1), it can be shown that there exists a unique point 7 s.t.
u(7:) = 0. In [7], a theoretical numerical method is presented based on the
assumption of the existence of a close approximation T} of 7.. The numerical
method sets the numerical approximation UY of (1.1) to zero at the point
T. and solves two discrete problems to the left and right of T.. The error
estimate presented in [7] is of the form

|(u — U)(mz)| <CON'In(N) +Ce YT, — 7.

It follows that to obtain a sufficiently accuarate point-wise approximation to
(1.1) using the proposed method, one needs an approximation 7; to 7. closer

than Ce.



The problem class containing (1.1) studied in [4] is a time-periodic prob-
lem for which (1.1) corresponds to the steady-state problem for specific prob-
lem data. Both the time-periodic problems and steady state problems consid-
ered in [4] were previously considered by Vasil’eva in [10] and [11]. The algo-
rithm used to find successive terms in the asymptotic expansion of the layer
location in the three articles ([4], [10] and [11]) is identical and corresponds
to imposing a Cl-matching condition on the left and right decompositions of
the solution at the layer location.

We consider the approximation bound of the asymptotic expansion given
in [4] as the most employable in the numerical analysis in this paper and
hence focus on the results therein.

The paper is structured as follows. In §2, we state the problem under
study and describe the assumptions on the problem data.

In §3, we establish existence and uniqueness of the continuous solution.
In §3.1, the terms in the asymptotic expansion of the interior layer location
are presented and their numerical approximations are specified. In §3.2, we
analyse the continuous problem to the left and right of the numerical ap-
proximation to the layer location by decomposing the solution on either side
into a sum of a smooth regular component and a singular layer component.

In §4, we state the discrete problem and analyse the corresponding left
and right discrete problems on either side of the numerical approximation to
the layer location in a similar manner to the continuous problem.

In §5 we perform a numerical experiment. In Appendix A, for the sake
of completeness, we perform the algorithm described in [4] to find successive
terms in the asymptotic expansion of the layer location for the problem under
study and establish properties of these terms required in the continuous and
discrete analysis.

Finally, in Appendix B, we establish an algorithm to approximate the
second term in the asymptotic expansion of the layer location.



2. Statement of problem and assumptions on problem data

Consider the following problem class: find a function y. € C?[Q.] such
that

(5yg + (F(ya», - bye)(x> = Q(x)v YIS QE = (_17 1)7 (2'18‘)
ye(-1) = A <0, y.(1)=B>0, (2.1b)

b,g€C? blx) >0, b#£0, v€Q., FecC U Ut (2.1c)

U~ = A—3y/maxq_{0,¢(z)}, ¥T:=B+3y/|ming {0,¢(z)}] . (2.1d)

We consider this problem for the boundary conditions A, B and the function
F satistying

A2 — 4(A[|[p]| + [ ming {0, q(x)}) > %, 7> 0,
B2 — 4(B|jb]| + maxq {0, q(x)}) > vk, R >0,

f(s):=F'(s), f(0)=0, [f(s)|=]s], sf(s)>0, se€[¥ "]
(2.1f)

(2.1e)

By assuming (2.1f), we may analyse (2.1a) in the same manner as (1.1). The
left and right reduced solutions, r; and rg respectively, of ((2.1); e = 0)
satisfy

((F(TL\R))/ - bTL\R)@) =q(z), r(-1)=A, rp(l)=0B. (2.2)

We now place additional restrictions on f below so that the problem (2.1)
is contained within the problem class considered in [4] and hence the results
therein may be applied to the problem (2.1). Assume that

f(=s)=—f(s) V se ¥, 0], (2.3a)
1 dy € (—1, 1) s.t. (T‘L + TR)(do) =0, (23b)
b(dg) >0, rr(dy) > L. (2.3¢)

These assumptions are sufficient to ensure that the solution of (2.1) exhibits
an interior layer at a point d. € (—1, 1), which has an asymptotic expansion
with leading term dy defined in (2.3b).

Remark 1. In [4], it is required that I(x) = fTZR(S;) f(s) ds has a root dy.
The assumption that f is odd in (2.3a) provides a relatively simple expression



to obtain this root i.e. the root is the same as the solution to rr(x) = —rp(z).
Moreover, it is required that I'(dy) < 0. Using (2.2) along with the assump-
tion that f is odd allows us to simplify this requirement to that given in
(2.3¢).

Furthermore, the assumption that f is odd is convenient later in that it
allows us to simplify the expressions for successive terms in the asymptotic
expansion of the layer location.

The numerical approximation to the interior layer location established later
includes the term dy explicitly. We now assume the following:

Assumption 1. The problem data in (2.1) is such that the solution dy of
((2.2), (2.3b)) can be solved explicitly.

Remark 2. A subclass of problem (2.1) for which dy is solvable explicitly
is the problem with f(s) = G'(s)s, G(s) € C? is odd, g(s) := G'(s) > 1
for s € (W, 0" and b(x) = H'(x) where H has an explicitly known inverse
H=Y. In which case

do = H™'(3(H(~1) + H(1) - G(A) - G(B))).

1
2
Note that the error bound established for the numerical method given in

§4 holds when dy is approzimated by dY s.t. |dy — d)Y| < CeN~'. However,
we do not analyse an algorithm to obtain such an approzimation of dy in this

paper.

3. Analysis of the continuous problem

We first establish existence and uniqueness for the solution of (2.1). We
use the method of upper and lower solutions (see [1, §1.5]) in the same manner
as for the problem studied in [8].

Lemma 1. Assuming (2.1c), (2.1d) and (2.1f), there exists a unique solution
y. € C?[Q.] of the problem (2.1) satisfying

VT <pe(e) SUT, 0 epll@)l <O zeq,

where U are defined in (2.1d).



Proof. Define the functions

(o) = A= frxl0.@Ha+25 - 9(0) = Bt flmin{0. ) (2—2).

(3.1)
Clearly y < 0 and 3" < 0. Using (2.1f), we have ey” + f(y)y' — by —q =
y ¥ — |min{0,q(z)} > 0. Hence, y is a lower solution of (2.1). We can
vy - ¥

similarly establish that the function 7(z) is an upper solution of (2.1).

Suppose y; and y, are two solutions of (2.1). Then y < y1,92 <7 and x :=
y1 — Yo satisfies the linear problem ex” + (x fol fltyr + (1 —t)ye) dt)'—bx =0,
x(£1) = 0. Clearly 0 is both a lower and an upper solution, hence the
solution of (2.1) is unique.

Since y. € C?, by the mean value theorem there exists z € (=1, —1 + ¢)
s.t. yl(2) = e Hy(—1+¢€) —y(—1)). It follows that e|y’(z)] < 2max |[UE|.
Integrate both sides of (2.1a) from —1 to z, to obtain the bound on |y’ (x)|
in the Lemma statement. ]

The following Lemma establishes bounds on the reduced solutions.

Lemma 2. Assuming (2.1c)-(2.1f), the reduced solutions of ((2.1);e = 0)
defined by (2.2) uniquely exist and satisfy

U < TL(:E) < =7 < 07 0< TR < TR(:E) < \I[+> YIS Qa-
where W= are defined in (2.1d).

Proof. Note the definition of upper and lower solutions for initial value prob-
lems in [5]. Using a suitable transform, we can easily extend the definition
to the case of terminal value problems. Using (2.1e)-(2.1f), it can be checked
that the function y in (3.1) and the function g~ defined as

g7 (x) == —/A? = 2(JA[[b]] + | ming, {0, g(2)})(z + 1) < =y,  (3.2a)

are lower and upper solutions of ((2.2); r1) respectively. In the same manner,
we can show that the functions 7 in (3.1) and g* defined as

g™ (x) := \/B?+ 2(B||b]| + maxg_{0,¢(x)})(z — 1) > 7x, (3.2b)
are upper and lower solutions of ((2.2); rg) respectively. We can establish
uniqueness in the usual manner. O



3.1. Interior layer location

Define the function ¢(z) := 1(rp, 4+ rg)(z) and the point d. s.t. y.(d.) =
¢(d.). From [4], the point dy in (2.3b) is the first term in the asymptotic
expansion of d. = dy + ed; + - - -. Denote the truncated expansion as dé’“) =
d0+€d1—|—"'—|—€kdk.

The algorithm to evaluate the d;’s for ¢ = 0,1,2 in the expansion of d. is
performed in Appendix A. It is found that d? = dy + ed; + €%dy where

di = _er}](rR) - J;(l;i) (v1g +vig) oedy (3.3a)
|do| < C, (3.3b)
ly=(d?)] < Ce, (3.3¢)

where ¢, b and f are the problem data in (2.1a), 7.\ g and dy are the solutions
of (2.2)-(2.3b) and the functions v, p satisfy the linear problems:

fro)vi + (f(re)) = b)oi, = —r], wvip(=1)=0; (3.4a)
frr)oir" + ((f(rr)) = b)vig = 1%, vig(l) = 0. (3.4b)

Note, using (2.2) and the assumptions on the problem data in (2.1), we can
show that
[vip\rll < C. (3.5)

Using Assumption 1 and the Numerical Algorithm in Appendix B and (3.3b),
we can generate approximations dY and d¥ s.t.

DY = dl + edy; dY = dy; dy —dY¥| < ON7, (3.6a)
1d® — DN < Ce(e7Ydy — dY |+ N7t +6) < Ce(N! 4 ¢). (3.6b)

Hence, using Lemma 1, we can show that
[y-(DI)] < [ye(dP)] + lyell|d® — DF| < Cle + N7H). (3.7)

We now analyse (2.1) to the left and right of the point DY to establish
bounds on the solution and it’s derivatives required for the error analysis of
the proposed numerical method.



3.2. Analysis of left and right problems

Noting (3.7), we consider the problem (2.1) as left and right boundary
value problems defined either side of DY as follows:

ve() ={yr(z), 2 < DYy y (DY), 2=DY;  ygr(z), x> DN}

(3.8a)
eyl + (Fyr)) —byr = q, eyt + (F(yr)) — byr = q,
x€<_1>DéV)7 ; I'E(Dév,l),
yL(=1) = A, y (DY) =y(DY),  yr(DY)=y.(DY), yr(l) = B.
(3.8b)

Lemma 3. Assuming (2.1¢c)-(2.1f), if y. is the solution of (2.1), then for
sufficiently small € and sufficiently large N, the solutions yr, and yr of (3.8)
uniquely exist and satisfy

U <yp(e) <Ce+ N, zel-1,D]],
~Cle + N7V < ygle) < T,z e [DY,1],
where U are defined in (2.1d).

Proof. As with (2.1), construction of upper and lower solutions of (3.8) suf-
fices to prove existence. We can show that the functions y and ¥ in (3.1)
are lower and upper solutions for ((3.8); 1) and ((3.8); yr) respectively.
Consider the functions ¢gF in (3.2) and the solutions §F to the second order
terminal /initial value problems:

gt "+ fGT)T = flgT)gT (3.9a)
JT(DY) =£C(e+ N7, eyt (DY) = F(g7) = F(FT(DY)).  (3.9b)

Integrating both sides from any x in the respective problem domain to the
point DY we can show that §¥ satisfy

gt '+ F(GT) - F(gT) =0 forzst. F(z— DY) >0, (3.10a)
T (DY) =+C(e+ N7Y). (3.10b)

Substituting g7 = +C(e + N ') into (3.10) and using (2.1f), for sufficiently
small € and large N, we have

F(57) = F(g%) = [ f(s) ds = [y f(s) ds+ O((e + N71)) < 0.

9



Hence 7 is an upper/lower solution for the tvp/ivp (3.10). Since g¥' > 0,
we can see that g are lower and upper solutions for (3.10; y~) and (3.10;
§ ") respectively. Hence we have A < g~ (z) <y~ < C(e+N7') and —C(e +
N7 <yt <g'(z) <B.

Using (2.1f), (3.2a) and (3.9) we can show that
(9™ "+F(57)) by~ —a(x) < f(g7)g™ +lbl|Al=a(z) < g9~ +[bll[A]—g(z) < 0.

Hence ¢y~ is an upper solution for (3.8; y;). We may analogously show that
g" is a lower solution for (3.8; yz) and the bounds in the Lemma statement
follow. Uniqueness may be established in the same manner as in the proof
of Lemma 1. ]

We decompose each solution yp\ g of (3.8) into a regular component v\ p and
a layer component wr\g. The regular components satisfy

(eviyr + (F(viyg)) = boryp)(x) = g(z), @ € (0,DX\(DF, 1), (3.11a)
UL<—1) = A, UL\R(D?[) = (TL\R + €U1L\R)<DN), UR(l) = B, (311b)

where the rp\g and vip g are the solutions to (2.2) and (3.4) respectively.
Note the following identity for any k& € C'[a, b]:

k(a) — k(b) = (a—b) [} K (ta + (1 —t)b) dt . (3.12)

We can use this to show that the left and right layer components wp\ g :=
yr\r — v\ g satisfy the problems

(ewp\ g +&nrwinr) —bwpnr =0, =€ (0, DM\ (DX 1), (3.13a)
wL\R(DN) = (ya — vL\R)(DN), wr\r(F1) =0, (3.13b)
fL\R fO tyL\R —|— (1 — t)'UL\R([E)) dt . (313C)

Lemma 4. Assummg (2.1c)-(2.1f), for k = 1,2, the solutions vi\r and wi\gr
of (3.11) and (3.13) respectively satisfy the bounds

v < UL(x) < —YL, T € [_17Dév]7 TR g UR(x) < \IIJF) YIS [Dé\[?l]a

(3.14a)

lwpr(2)| < max{|U*[} e~ TEIDY sl e 21, DM\z € [DY, 1], (3.14b)
loilpll < C(1+*7H), (3.14c)

WiVl < ke B g e L1, DM\ € [DY, 1], (3.14d)

10



where UF and yp\g are defined in (2.1d)-(2.1e) and z® := Zz—i where z is
any of the functions vi\r or wWi\R.

Proof. Using Lemma 2 and (3.5) with (3.11), we have v\ p(DY)| = |y1\&]
for sufficiently small €. Repeat the method used in Lemma 3 but replacing
the terminal/initial condition in (3.10) to §¥ (DY) = Fy,\r to establish the
bounds in (3.14a).

Using the identity in (3.12), we can show that the functions v,y p defined
by 62112L\R = UL\R — TL\R — €V11\p Satisfy the problems

evl + f(v)vy + B(x)vy = Q(x) := —v} — f'(r)vv] — (r +ev1)'To?, (3.15a)
z € (=1, DX)\(DY,1), vyp\p(F1) = v2p\r(DY) =0, (3.15b)
P(x):= ((r+ev) (f'(r)+ (v —r+ev))Z) — b)(x) (3.15¢)

I(z) = foltfol f"(r+ st(v—r)) ds dt. (3.15d)

Note, we have omitted the left and right subscripts on the functions v, r, vy,
vg, P and @ in (3.15). Using (2.1f), Lemma 2 and (3.4), we can show that

—_ el 2maxtllPIA) (541)
U= mmgerye —1)

((3.15); vgy ) respectively. We bound vy in the same manner.

We can establish that s\vg’L\ gl < C using the same method to bound
the derivative of y. in Lemma 1. It follows from (2.1c) and (3.15) that
SIUQZ\R\ < C/e. Hence, writing vr\r as vp\r = rL\r + €VIL\R + €2U2L\R, and
noting the smoothness of the problem data in (2.1c), we can establish the
bounds in (3.14c).

and —v are upper and lower solutions for

We now prove the bound on the left layer component wy. Since wr, (DY) =
(y. —v)(DY) = v — C(e + N7') > 0 for sufficiently small € and large N,
we can show that 0 is a lower solution of ((3.13); wy).

Consider the function w(z) = wr(d.) exp(fféV €r(t) dt) > 0, which is
composition of C? functions. Substitute w(z) into ((3.13); wy) to verify that
it is an upper solution. Hence 0 < wy(z) < w(z) on x € [—1, DY].

We now bound @ by Ce~C/=PY =l by showing that £, < —C' < 0. Recall
from Lemma 3 that ¥~ < yz(z) < C(e + N71). At points z s.t. yz(z) <0,
using (2.1f) and vy (x) < —y. we can show that

Eu(x) = [y fltyn(z) + (1= tyor(x)) dt
< [l tyr(e) + (1 —top(e) dt = 3(yr +v1)(@) < =371

11



At points z s.t. 0 < yz(z) < C(e + N71), using the identity (3.12) we can
show that

@) < f) (A~ tos(@)) dt + Hy@)IIF] < 3

Hence wy,(z) < w(x) := wr(DY)e~ S (DX =) We can the solution of ((3.13);
wg) in the same manner.

Since wy, € C?, by the mean value theorem there exists z € (=1, -1+ ¢)
st ewl(z) =wrp(—1+¢) —wp(—1) =wr(—1+¢) <wW(-1+4¢) < Cw(-1)
in an e-neighbourhood. Integrating both sides of (2.1a) from —1 to z, we
obtain |ew) (—1)] = |ew) () + (Exwr)(2) — 7, (bwr) (B)] < CT(~1).

Integrating both sides of (2.1a) from —1 to any z < DY yields e|w/ (x)| <
Cw(—1)+ Cw(z) < Cw(x). Use ((3.13); wr) and Lemma 1 to establish the
bound e|w (x)| < C/ew(x). Complete the proof by bounding wf and w}
using the same method. O

4. The discrete problem and error analysis

We approximate the solution of (2.1) by the discrete mesh function Y
defined around the point DY in (3.6a) as follows:

Yo(x;) = {Yo(2), @ < Div§ 0, x; = Dévs Yr(xi), x; > Dév}§

(4.1a)
D_[ED+YL + F(YL)] —bY; = q, D+[€D_YR + F(YR)] —bYR = q,
LIZ’Z'G(—LD?[), ; xiE(DéV,l),
YL<_1) = A: YL(DZ?V> =0, YR<D£$V> =0, YR(1> = B,
(4.1b)

12



where ; are points on the piecewise-uniform mesh QY = QN \ {zo, 2y}
centred at the point DY (in (3.6a)) defined as

op = min {5(DY +1), ZIn(N)}, og:=min{5(1 - DY), 2 In(N)},

(4.2a)
HL = %(DéV—O'L—i—l), hL\R = %UL\Ra HR %(1—DN )
(42b)
SN _ xi:DéV—O'L—FhL(Z'—%), %<Z’<%,
Q) = qx; —"DN 4+ hpli - ), ¥ (4.2¢)
DN+UR+HR(1—M), < i <N,

Qg\R ={x; € Q£V|7, < %\z > 7}, QN L\R ‘= QL\R \ {zo,w%,x]v}. (4.2d)
Immediately, from (3.7), we have
(ye = Y)(DI)| < Cle+ N7 < CONTL

Throughout this section, we use the notation h; := x; —x;_1. Note from (4.2)
that h; = h for all i € [N/4 4 1,3N/4] and

h/e < CN~'In(N) (4.3)
which is sufficiently small for sufficiently large N.

For the discrete problem (4.1), we can establish the method of discrete upper
and lower solutions in the same manner as for the discrete problem in [8].

Lemma 5. Assuming (2.1c)-(2.1f), if Y\ g are the solutions of (4.1), then
(/A < YL<131) < 0, x; € Q]LV, 0 < YR(xl) < \Ier, x; € Qg

Proof. Using (2.1f), we can show that the linear functions y and 7 in (3.1) are
discrete lower and upper solutions for ((4.1); Y7) and ((4.1); Yg) respectively.

The notion of discrete upper and lower solutions for first order difference
equations D*Z; = f(x;,Z;) can be defined analogously as for the corre-
sponding continuous problem (see [5]) using an extension of the proof in [6,
Theorem 4].
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Consider the functions g% in (3.2) and the solutions Y'¥ to the discrete ter-
minal/initial value problems:

eDYYF 4+ F(YF)—F(¢7) =0 for z; st. T (z;— DY) >0, YF(DN)=o0.
) (4.4)
Substituting Y'F = 0 into the left hand side of (3.10) and using (2.1f), we have
eD*YF + F(YTF) — F(g7) = fgo f(s) ds < 0. Hence YT is an upper/lower
solution for the tvp/ivp (3.10). Slnce gt > 0, we can see that ¢T are
lower and upper solutions for (4.4; V=) and (4.4; Yt) respectively. Hence
A<g(z)<Y~ <0and0<Y+<g (r) < B.
Using the identity D~[(g7)(x:)*] = (¢~ (i) + ¢~ (xi1)) D~ [g~ (;)] with
(2.1f) and (3.2a) we can show that

eD" DY+ D F(Y™)—bY™ —q(z)
<(g™ (@) + 9™ (2i1)) D™ g™ ()] + [[b]|[A] = ¢(z) < 0.
Hence Y~ is an upper solution for (4.1; Y). We analogously show that v+

is a lower solution for (4.1; Yz) and the bounds in the Lemma statement
follow. [

We decompose each discrete solution Yz, g of (4.1) into the sum of a regular
components V\g and a layer component Wp\g. The left and right regular
components are defined as the solutions of the following discrete problems:

D:F[gD:tVL\R + F(VL\R)] — bVL\R =q, ;€ Q]LV\R, (45&)
Vie(F1) = A\B,  Vg(DY) = vpr(DY). (4.5b)

The left and right discrete layer components are defined as the solutions of
the following discrete problems

D:F[ED:EWL\R + fJLV\RWL\R] - bWL\R = O, T; € QL\R7 (46&)
Wir(DY) = =V r(DY), Wir(F1) =0, (4.6b)
ENr(@) = [ (Yo g(z:) + (1 — O Vir(z:) dt - (4.6¢)

We now determine bounds on Vi\g, Wiz and on the error |V g — vp\g|.
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Lemma 6. Assuming (2.1c)-(2.1f), If vp\r and wp\g are the solutions of
(3.11) and (3.13) and Vi\r and Wi\g are the solutions of (4.5) and (4.6)
respectively then we have the bounds

U™ < Vi(r) < =7, Yyv< Vg ( ) Ut o€ QL\R,
[(Vinr — UL\R)(%)| <CN™, =€ QL\R,
Winr(z:)| < max{ U} =Pl gy e QN .

(Winr(z:)| < max{|UF N~ for i<I\i= 3 if opp= VL\R In(N).

Proof. To bound Vp\g, repeat the method used in Lemma 5 but replacing
the terminal /initial condition in (4.4) by YF(DN) = Fyr\r to establish the
bounds on Vi\p given in the Lemma statement. Using (3.11) and (4.5), we
can show that the error Fy := V; —wvy satisfies the following discrete problem:

D7 [eDTEy + &Y Ey] —bEy =7, x; € QY (4.7a)
Ey(—1) = Eyv(DY) =0, (4.7b)

& () = fo F(tVi(z;) + (1 —t)vp(a;)) dt (4.7¢)

v () == [de — D™ D% (z;) + [ — D7|F(vg(2)). (4.7d)

We first estimate the truncation error 7i,. Note the following for any k € C*:

Ti[k<l'l)] = (% — Di>k($z) = :i:hiJri\hi j::il k/(l'z) — A’}/(t) dt , (48&)
Tv(2;) = eD 7 v (z)] + 7 [(F(vr) + evh)(w5)]. (4.8b)

Using (2.1c), the equation ((3.11); vy) and (3.14c), we have
I(E (o))" < [IF"[Ll1P + 1 F vl < C; e nax ]Slvﬁ(ﬂfz’) — vy ()] < Ch,.

Hence, using (4.8), we can show that
|mv(2;) — eD™ 1 ug(2,)]] < ON7 g (z)] KON (4.9)

Consider the mesh functions E* satisfying the discrete terminal value prob-
lems:

eDYEF +§YE* = -T*, 2, < DY, E=(DY)=0, (4.10a)
TF = e(E|| 7 [vp(x)]]] — 7 v (z3)]) £ C’N‘l(l + ;). (4.10Db)
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Clearly 7% > 0 and from (4.9) we have || T#|| < CN~. Since Vi, vy, < —vL,
using (2.1f), we can show that & < —~,. With this, we can easily show that
0 and CN~!/, are lower and upper solutions of ((4.10); ET) respectively
and that —C'N~!/v; and 0 are lower and upper solutions of ((4.10); E~)
respectively. Hence

D7 [eDTET +&YET) —bET — 1
:—D_[T+]—bE+—TV CN +|€D T [UL<«T1>]_7—V| <0

and E* is an upper solution for (4.7). We can show that E~ is a lower
solution in the same manner. We may bound Vi — vi analogously.

We now prove the bound on the left discrete layer component Wy. Since
Wi(DY) = =V (DY) = ~ > 0 we can show that 0 is a lower solution of
((4.6); Wy). Consider the function W (z;) defined for 0 < i < & as

N/2

W) = Wid) 11 (1 - "€ (2)) >0, Wa

j=i

) = WL(dE)'

M‘Z

Substitute W into ((4.6); Wp) to verify that it is an upper solution. Hence
0 < Wi(x;) < Wia;) for 0 < i < N/2. We now bound W by Cle~C/elP ~al
by showing that Y < —C < 0. Recalling from Lemma 5 that ¥~ <Y, <0
and using V;, < —v, and (2.1f), we can show that

& (i) = fo F@Yr () + (1 =) Vi(ay) dt < 5(Y + Vi) (z) < =371 -
(4.11)
Note the following inequalities:
It <e, t>0, e <142t t€][0,0.5]; (4.12a)
eIl —t<e P <1 —t/2, t€][0,0.5]. (4.12b)

Using these with (4.11) and (4.3) we can establish the exponential bound
on the left discrete layer component in the Lemma statement, and hence
it’s negligibility outside the fine mesh in the case where o, = Celn(N) (see
(4.2)). We may bound the solution of ((4.6); Wg) in a similar manner. [

A bound on the error Y, — 3. is given in the following lemma.
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Theorem 7. If y. is the solution of (2.1) and Y; is the solution of (4.1)-
(4.2), then
VY =y < CNT'In(N)

where 75 is the linear interpolant of Yz and ||k|| = max,e—1 17 |k(t)].

Proof. We first bound Yy, — yr. If op = 2/v.e1In(N) then for i < %, using
Lemma 4, Lemma 6 and (4.2) we have

(Ve — o) (@) < W)l + lwe (@) + (Ve — v ) ()| < ONTL

Consider all mesh points in (z;, D¥)NQY where J = e ifop, = 2/yLeln(N)
or J = 0 otherwise for which by (4.3), we have h;/e < CN-'1n N. The error
Ey =Y, —yp over (z, Dév ) satisfies the following discrete problem:

D7 [eDTEy + &Y Ey] —bEy =1y, x; € QY N (x5, DY), (4.13a)
|Ey(z;)| < CN™', |By(DY)|=CN™, (4.13b)

& (x) = [} ftVi(z) + (1 —tyy(z)) dt | (4.13c)

Ty () == e[fts — D™Dy () + [ — D7IF (yo (). (4.13d)

Using (2.1c), the equation ((3.8); y.) and Lemma 4, we have

max |yi(t)] < O(1+ e Fem P m))

tE[z‘i,l,Ii]C[IJ,DéV]

for k = 0,1,2. Hence, using (4.3), (4.8) and (4.12) for sufficiently large N,
we can show that

Iy ()] < Ch(lyy| + |y, 2 + [yi]) < Ch(1 + &2 2 (DX -2y
<Ch(1+e2 (1+20) ) < Ch(l + e D~ (14 20) Y
= Ch(1 +e'D™A(gy)).

Using (3.7) and Lemma 4 and considering the cases z < DY — Ce and
DY — Ce < o < DY separately for sufficiently small € and large N, we can
show that

yr(z) = vp(x) + wi(z) < vp(x) — v (DN)e P82 4 |y (DY)

< —'VQ (1— e #=@Y-2) 4 ON-L = B(z) + CN.
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Using this and rewriting £ we have
&Y (x;) fo F@Yp(x;) + (1 —t)yp(x;)) dt
fo F@Yr(x;)) dt + yr(x;) fol (1—1) fol (YL + s(1 = t)yp)(x;))dsdt.

Hence, using (2.1f) and Y7, < 0, we have

< { yr(z;) < B(x) + CNTY yp(z) <0,
= >

& (@) CN, yr(z;) > 0.

Hence, for sufficiently small € and large N, we can show that

eD* Blai) + € () Blai) > 1. (4.15)

Consider the mesh functions E* satisfying the discrete terminal value prob-
lems:

eDTE* + ¢NFE* = —T% .= FCh(1 + z; + e ' A(xy)), (4.16a)
E*(DNYy=+CN™. (4.16b)

Clearly £7* > 0, it follows that 0 is a lower/upper solution for ((4.16);
E7). Using (4.3), we have ||T*| < CN~'In N. Consider the mesh functions
E* :=F5(CN"'"InN + C||fIN")B(z) £ CN~'. Using (4.15) and (4.16),
L
we can show that
eDYEY 4+ ET 4+ T
(=2 [eD*Blas) + & () B(2)] + DICN I N + C|If [N~ < 0.

Thus _E_’+ is an upper solution of ((4.16); ET). We may analagously check
that ET is a lower solution of ((4.16); E~). Hence

D7 [eDTET +&YET] —bET — 1y
= — D [T*] —bE* — 1y < —Ch(1+ e 'D™A(x))) + |7y (23)] < 0.

Hence E™ is an upper solution for (4.13). We can show that E~ is a lower
solution in the same manner. We may bound Yz — yr in the same manner.

The global bound follows as in [6, pg. 381]. O
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5. Numerical examples

5.1. Example 1

Consider the following example problem case of (2.1):

e +yy —b(x)y=0, xe(-1,1), blz)=1/8(x+ 1)61/4(”1)2, (5.1a)
y(—1) = A= -325y(1) =B =235+ 1/4(e" — 2¢"/'9). (5.1b)

For this problem data, we can show that

1 1
r(r) = A+ Hea®™ ™ 1) rp(a) = B+ L™ —el) dy = 0.5,
(5.2a)
x  b(t 1 v v d
o) = — [, 200t wpx)= [} EQar, 4 = - Cafumi),

2b)

(5.
VA AAb] > 1.25 =1, V/BE— 4B > 1.75 =k, (5.2¢)

where 7\ and dy are defined in (2.2)-(2.3) and v\ g and d; are defined in
(3.3)-(3.4) and 1\ are as defined in (2.1e). For this particular example, to
approximate d;, we use a standard numerical integration method to obtain
an estimate dV¥ s.t. |d; — dY| < CN~L. The finite difference scheme in (4.1)
is nonlinear. Note that

D™ [5Yp(2:)?]
D™[3Yp(x:)%] =

(Vi (i) + Yi(2io1)) D™ Yi(21), (5.32)

D= D=

We choose to approximate the discrete solution of (4.1) using the adap-
tive time-step algorithm described in [2, pg. 196] with linearised difference
schemes motivated by the identities (5.3) as follows.

Numerical Scheme 1. Approximate the discrete solutions Y and Ygr of
(4.1) each with a sequence of mesh functions L;V and R;V where L§V satisfies
the linear difference scheme:

eD"DYLY 4+ (LN (2) + LY (w;1)) D LY — LN = L

y (LN - LN 1)(xi)7
ey, LY-1)=4, YD) -0,

=

(5.4)
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where x; are meshpoints on the mesh QY in (4.2) with mesh parameters in
(5.2) and where Rév satisfies an analogous difference scheme. Motivated by
the bounds in Lemma 4, we choose the initial conditions

L) (x:) = (@) +lro (DY) ]e™ = P20 RY (2;) = rp(wi)—rp(DY)e 2 =P,

See [2, pg. 196] for a description of how the iterative step size k; is chosen.
Construct an approzimation of Y2V in (4.1) with a specified tolderance €, as
follows:

UN(z;) ={LY (;), = <DY; 0, z;=DY; LY (z;), x> DN},
(5.5a)

)(@i)] < €tol- (5.5Db)

where  max ——|(LN\RY
x; “JI\R

Ji\r LN\RNJL\R—l
Fig. 1 (a) displays a sample numerical solution generated from Numerical
Scheme 1. Fig. 1 (b) displays sample numerical solutions when DY = dj
is used instead of DY = dy + d} in the mesh (4.2), along with cases when
DY = dy+ed) isused. Note the slight displacement of the layer for increasing
N in Fig. 1 (b), which is negligible however compared to the displacement

when DY = dj is used.

) (@) 3t(b) * X:’w;_w

! |=%-DN =dy; N =128

/ DY =dy+edY; N =32
,’( ——DN =dy+ed’; N=064 ||
——DN =dy+ed; N =128
—— DY =dy+edY; N =256 | |

-0.5 —-0.495

-4 . . .
-1 -05 0 0.5 1

Figure 1: (a) Numerical solution over [—1, 1] constructed with Numerical Scheme 1 with
e =2%and N = 128; (b) Numerical solutions over [—0.512, —0.492] constructed with
Numerical Scheme 1 with ¢ = 278 and a selection of choices for the point DY in the mesh

((4.2)-(5.2)).
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We estimate the orders of convergence using the double mesh principle ([2]).
For sample values of N and e, we construct numerical solutions UY as in
(5.5). We construct the computed orders of global convergence pY and the
computed orders of uniform global convergence p” as follows:

—N  —2N mN max{mX}
mé\f = _max |U€ - Us |’pé\/' = 10g2 (@) 7pN = 10g2 (E—) ) (56>

max{m2N
QéVUQgN P { 5 }

where Uf, K = N,2N are the linear interpolants of Uf onto the mesh
QNUQY. Table 1 displays the computed orders of global and uniform global
convergence defined in (5.6) which demonstrate the first order convergence
rate (with a logarithmic factor) established in Theorem 7.

Table 1: Computed orders of global and uniform global convergence defined in (5.6) gen-
erated from numerical solutions of Numerical Scheme 1 for example problem ((5.1)-(5.2)).

pY
¢ —32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
273 102 1.0l 100 096  0.76 1.01 1.00 1.00
274 107 1.04 103  1.02 101 0.97 0.81 0.83
2-5 097 077 085 104  1.02 1.01 1.01 1.00
276 097 087 081 088 087 0.87 0.88 0.88
2-7 097 087 081 088 087 0.87 0.88 0.88
2-8 097 087 08l 088 087 0.87 0.88 0.88
279 097 087 08 088 087 0.87 0.88 0.88
2-10 097 087 081 088  0.87 0.87 0.88 0.88
220 097 087 081 088  0.87 0.87 0.88 0.88
230 097 087 081 088  0.87 0.87 0.88 0.88
pN 097 077 0.85 094 0.87  0.87 0.88 0.88

We now demonstrate a distinction between numerical solutions of (4.1) gen-
erated over the mesh (4.2) centred at the appropriate point DY = dy + ed)¥
and at the point dy for all values of € and N. For the same sample values of
N and &, we construct numerical solutions W2 as in (5.5) on the mesh QN
((4.2)-(5.2)) centred at dy as opposed to dy + ed¥. For each sample value of
g, we construct a fine mesh numerical solution U2%¥* in (5.5) on the mesh
QL6384¢ ((4.2)-(5.2)) centred at dy + ed}Y with N = 2. Table 2 displays the

quantities
—N  —16384
EYN = max [W. -U."|,
Qé\]’OUQ;6384’E

(5.7)
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—N 16384 : : .
where W, and U 2638 are the linear interpolants of the mesh functions W2V
and U263 onto the mesh QN0 U (163842,

Table 2: Computed errors (5.7) between numerical solutions generated from Numerical
Scheme 1 on mesh ((4.2), (5.2)) centred at the leading term dy of the asymptotic expansion
of the layer location and a fine mesh numerical solution generated on the mesh ((4.2), (5.2))
centred at dy + ed) where d¥ is an approximation to the second term in the asymptotic
expansion of the layer location.

EY
€ N=32 N=64 N=128 N=256 N=512 N=1024 N=2048
273 5.310 5.317 5.351 5.380 5.402 5.417 5.427
24 5.303 5.309 5.341 5.368 5.390 5.403 5.412
2-5 5.300 5.304 5.335 5.362 5.383 5.396 5.404
2-10 5.296 5.299 5.329 5.355 5.375 5.389 5.396
2715 5.296 5.299 5.329 5.355 5.375 5.388 5.396
2720 5.296 5.299 5.329 5.355 5.375 5.388 5.396
2725 5.296 5.299 5.329 5.355 5.375 5.388 5.396
2730 5.296 5.299 5.329 5.355 5.375 5.388 5.396

Note, some sample values of ¢ used to construct Tables 1-2 are hidden.

5.2. Example 2
In this example, we consider the following case of the time-periodic prob-
lem analysed in [4]:

e(Uge — up) +ut, —b(t)u=0, =ze(-1,1), (5.8a)

u(—1,t) = A(t) = =6 + ;sin(4nt), w(l,t) = B(t) = 5.25 — L sin(4rt),
(5.8b)
b(t) =1+ 5cos(4nt), w(z,t)=u(z,t+T). (5.8¢)

For this problem data, we can show that

rr(z,t) = A(t) + b(t)(z + 1), rr(z,t) = B(t) + b(t)(z — 1), (5.9a)

1 3 +sin(4nt)
do(t) = =555 (A+ B)(t) = 87 Tooslant)’ (5.9b)
ng(r,t) = Z52 (1 + 42 (@ + 1) + EInd)](z + 1), (5.9¢)
(e, 1) = ST (1 + 52 (x — 1)) + &)z — 1), (5.9d)
di(t) = le( )<2d’( )+ (V1 + v1g)(do(1), 1)), (5.9¢)
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where 7\ are the reduced solutions, vy, g are the O(e) regular components
and dy(t) s.t. (rp +7r)(do(t),t) = 0 and d;(t) are the leading and first terms
respectively of the asmyptotic expansion of the layer location d.(t) of the
solution of (5.8). We consider the example problem (5.8) for 0 < ¢ < 1.5 and
construct a numerical approximation for the solution u. We estimate u(z, 0)
with the solution of the problem

eg" +99 —b(0)g =0, =€ (-11), (5.10a)
g(—1) = A(0) = =6, g(1) = B(0) =5.25, b(0) = 1.5, (5.10Db)
¢ has interior layer at d.(0) sufficiently close to dy(0) + ed;(0).  (5.10c)

We construct a numerical approximation G of (5.10) using Numerical Scheme
(1) on the mesh ((4.2),y.\r = 1) centred at the point D, (t) := do(t) + edi(t)
when t = 0. We consider the problem (5.8) as left and right problems
around the curve D.(t) for all time and set numerical approximations to
zero along the curve D.(t). The left and right problem domains are non-
rectangular hence we consider these problems under the change of variables
Enva(z,t) == mpgr(t)(x £1) F 1 where mp\g(t) = (D:(0) £ 1)/(D(t) £1)
st. &o(—=1,t) = =1, {nr(Da(t),t) = D.(0), €r(1,t) = 1. The left and right

transformed problems can be written as follows:

m (ke — 90) + (m(B)y — PO+ D)ye — BBy =0, (5.11a)
y(_lvt) = A(t)a yL\R(De(O)’ t) =0, y<+1a t) = B(t)’ (5'11b)
y(x,0) = g(x), (5.11c)

where here, we have ommitted the left and right subscripts of m, £ and y. We
approximate the solutions y;, and yg of the problems (5.11) with the linear
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finite difference schemes

5(mL(tj)25§YL — Dt_YL) + I_/(Zti,tj,tj_l)D;YL(lL'i,tj) — b(t]’)YL(ﬁi, tj) = 0,
(5.12a)
L(wirtjoti1) = (m(t)Ye (i, t51) — £ 208 (a; + 1)), (5.12b)
0<i<N/2, Yi(=1,t)=A(t), Yi(D0),t,) =0, (5.12¢)
e(mp(t)*0;Yr — Dy Yr) + R(wi, t;,t;-1) Dy Yr(xi, t;) — b(t)Yr(2i, ;) = 0,
(5.12d)
R(wi,tj, 1) = (mp(t) V(e tj 1) — 2808 (2, — 1)), (5.12¢)
N/2<i<N, Yg(D.(0),;)=0, Yg(Lt,)=B(t), (5.12f)
Y (2;,0) = G (29), (5.12¢)

where (z;,t;) are nodes on the grid Q x {t;|t; = j12} where Q is the same
mesh used to construct the approximation GY of (5.10), that is ((4.2),DY =
do(0) + €d1(0), yr\r = 1). Figure 2 displays a numerical solution generated
from the difference scheme (5.12) and transformed to the variables (z,t).
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0 1

Figure 2: Numerical approximation transformed to the x and ¢ variables of the solution of
the example case ((5.8),(5.9)) of time-periodic problems studied in [4] generated from the
difference scheme (5.12) using an approximation of (5.10) constructed from the Numerical
Scheme (1) as an in initial condition.

Appendix A. Algorithm to construct the asymptotic expansion of
the layer location

Here, we perform the algorithm as described in [4] to find the first three
terms in the asymptotic expansion of d. and simplify the expressions for these
terms using the assumptions on the problem data ((2.1f), (2.3)).

Decompose the solution of (2.1) into left and right boundary value problems
whose solutions y* are to be further decomposed into the asymptotic expan-
sions of a regular component U* in the variable  and a layer component QF
in the stretched variable £ = (z — d.)/e:

( ) { ( )’ T < dg; ¢<d5), T = dg; y+($)a x> d. }
ey +(Fly)) —by =q, ey™ + (F(y") — byt =q, .
( ) A: Y (de>:¢(ds)7’ ( ) (6) ) ()ZBv’
y(@) = U(2) + Q&) = ) _ (UF (@) + QF(9)).
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Note, the left and right layer components are solutions to problems defined

over the domains £ < 0 and £ > 0 respectively. It is assumed in [4] that
dQF
g
to QF(0) is determined by using a standard Taylor series expansion to expand
y*(x) and ¢(x) around = = d. (or £ = 0) as follows:

(£00) = 0. The choice of the appropriate boundary conditions to assign

yH(d) = 3¢ (U(d) + QF(0)

= (Ui (do) + QF(0)] + e[di U (do) + Ut (do) + QF(0)]+
e2[daUg (do) + 3diU5 " (do) + daUT (do) + Uy (do) + Q3 (0)] + -+ ;
o(d.) =[¢(do)] + e[d1¢/ (do)] + €*[da (do) + %d7¢" (do)] + -+ .

Hence obtain the appropriate value of Qi (0) by equating each term in the
expansions by powers of €. Moreover, the d; are determined by using the
Taylor series expansion to expand ey*'(z) around z = d. (or & = 0) as
follows:
ey (de) = =30 & (UF1(2) loma, +e7'Q51(6) leo)

i=0

= [Q*0(0)] + £[U5 (do) + Q*1(0)] + (U5 + U) (do) + Q*5(0)] - -

The left and right C''-matching condition for the O(1) terms reads Q~((0) =
Q*;(O), the same for the O(e) terms reads U, (do) + Q~1(0) = Uy (do) +
Q7171(0) and so on. We now find explicit values for dy and d; below. The O(1)
left and right regular and layer components satisfy:

U (z) = rpgr(2);

Q4 (&) + [F(rnr(do) + QF (€)' = 0, (A.1)
QF (Fo0) =0, QF(0) = (¢ — r1\r)(do),

where 71\ are the reduced solutions defined in (2.2). Note, the assumption
in (2.3) predetermines that ¢(dyg) = 0. Using the method of upper and lower
solutions with (A.1), we can show that solutions exist which satisfy

Q¥ (6] < UG (do)| (1 — tamh (Lel®le)) e >0 (A2)

Note that in the fundamental subclass of problems (2.1), where f(s) = s, the
inequality in (A.2) can be replaced by an equality.
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Using (2.1f) and Lemma 2 and integrating both equations in (A.1) from 0

to £00, we can show that (Q~\*,)(0) = ;(L\};(do f(t) dt. The C! matching
condition reads

Q7 (0) =Q(0) < / —0 & rr(do) = —rL(do).

(A.3)

The assumption on the problem data in (2.3) ensures that (A.3) has a solution

n (—1, 1) which satisfies (r, + rg)(do). Define the function Q such that

QF(€) =1 —Q(—¢€), since f is odd and r.(dy) = —rg(dy), we can use the

equatlons for Q~\*, to show that Q(f) Qo (), V £ < 0. Hence Qf (§) =
—Qo (=&), ¥V £ > 0 and it follows that

e Qo (&) d+ [T QY (€) dg =0 (A4)

which will be used momentarily to simplify the expression for d;.

The O(e) left and right regular and layer components satisfy
FUSUE + (FUDHUG" = 0)UF = =05, |

U (£1) =0, ’ (4.5)
QH(©) + [/ (U5 (d) + Q5 (€)Q* (E))
= b(do) Qi () + L[((dr + &)Uy (do) + Ui (do)) (f(Ugt (do)) — f(UgE (do) + Q2 ()],
QF(o00) =0, QE(0) = dy(¢f — Ui')(do) — UE(dy). o)
.6

From [4, pg. 95], solutions to (A.6) exist satisfying
QF(FEI < Ce™, >0 (A7)
Integrating both equations in (A.6) from 0 to +00, we can show that
1(0) = b(do) [, Q*o(t) dt + (U5 (do) + Ui (do)) f (Ug' (do)) -
Using (2.1f), (A.1) and (A.4), it follows from the C'-matching condition that

r,—r +frr)-UT f(r
i (do) + Q71(0) = rhldo) + Q71(0) & dy = Ipon S

7"Lf("'L)_TRf(TR) r=do ’

Using (2.1f), (2.2) and (A.3), we can simplify the expression for d; to

b=t TR

b?”Rf(TR) 2b7°R (A8)

z=dy
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Remark 3. For the fundamental subclass of problems of (2.1) where f(s) =
s, if these problems are homogeneous (q(x) = 0) then from (2.2) we have

rpr(@) = b(z) and hence from (A.5) we can solve for U™ explicitly as
Ut (z) = — [1,(U" /Uy (t)dt. Hence, for b constant, observe from (A.8)
that dl =0.

Finally, before reviewing the main result in [4], we verify that ds is a bounded
quantity for the problem (2.1). The O(g?) left and right regular and layer
components satisfy:

FUNT + (U = 0)Uy = =U" = GUS F(U7))s
UF(£1) =0, ’

Q*5(&) + [ (U +Qo( )Q%,(8)]
= (dy + V'Qq (€) + bQY(€)

4 (U + 3(d + 20Uy " + (d + U + U (F(U5) — FIUF + Q5 (€)))

£ |5 ((d + Oy + U2 F"(Uy)
= 3 + U + Ui + QE ()PP (U + QF(9))]

Q3 (£00) =0, Q5(0) = da(¢' — Uy )(do) + 3d3(¢" — Ug™")(do) — <d1U(f’ )

A9

Note, for brevity, all occurrences of the functions b, U and their derivatives
n (A.9) represent those functions evaluated at x = dy. Also, using the
differentiability assumptions of b, ¢ and F' stated in (2.1), we can show that
||UjE(2 ])|| < C for j = 0,1,2. Integrating both equations in (A.9) from 0
to 00, one can write down the C''-matching condition and use (A.2), (A.4)

and (A.?) to find that
i 2—j
[dal <Cma|da " IF11 1P 10 IO 1)
+2bl|max | [} QF(1) dt |+ 2V|| [iTtQF(t) dt < C
fori=1,2and j =0,1,2.
At the point z = dg), when n = 1, the asymptotic error bound in [4, Theorem
2.1] reads

[ye(d?) = [(Ug (d®) + Q5 (0)) + & (UF (d2) + Q7 (0))]] < Ce.

Using the boundary conditions @, (0) and @7 (0), we can easily rewrite this
error bound to show that |y.(d”)| < Ce.
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Appendix B. Numerical Algorithm to construct an approximation
for the second term in the asymptotic expansion of
the layer location

Step 1: If not known explicitly, approximate the reduced solutions rp\g in
(2.2) with mesh functions LY and R" satisfying the linearised difference
schemes:

M= {zjlz; = =1+ (2/N)i, 0<i< N}, TV :=TY\{zg,zn} (B.1a)
(FILY(2im))D™LY = bLY) (i) = q(x), @i € TV \ {wo}, L¥(20) = 4;
(B.1b)
(f(RY(2i41)) DY RY — bRY)(2:) = q(2), @i € TV \ {an}, RY(xn) = B;
(B.1c)

Step 2: Approximate v1 ) in (3.4) with mesh functions V'~ and V* satisfying
the linear difference schemes:

(F(LNYD™ + (£ (LMD" LY — b))V~ = —5°L"Y, (B.2a)
z; € TN\ {zo}, V() =0, (B.2b)
(f(RMYDY + (f(RM)DTRN — b))V = —5°R", (B.2¢)
v € I\ {zn}, VT(zn)=0. (B.2d)

Step 3: Construct dY¥ as follows

RN —
&Y = — iy — S (V- + V) o (B.3)
Ti=d,

where dj is the greatest mesh point x; € I'V satisfying z; < dY = d.

We now proceed to prove that d in (B.3) is a sufficient approximation to d;
in (3.3a). Consider the general family of discrete problems in which (B.1c)
is contained: find a mesh function Z on the arbitrary mesh {y;}3 s.t.

D¥[F(Z(y)] = k(i Z(w:)),  wi€{wi}o ' Zyn)=B>0. (B4)
Theorem 8. If there exists mesh functions Z and Z st. 0< Z < Z,

Z(yn) < B < Z(yn) and DY[F(Z)] — k(y;, Z) = 0 > D*[F(Z)]
then there exists a mesh function Z s.t. Z < Z < Z which satisfies (B.4).
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Proof. We establish existence at the last internal mesh point from the bound-
ary, that is yy_1. Define the map ' : R — R : z — F(B) — (F(2) +
9(yn—1,2)(yn — yn-1)). Using (3.12), we have

T(Z(xn-1)) =F(B) — (F(Z(yn-1)) + 9(yn—1, Z(yn—1)) (yn — yn-1))
>F(B) — F(Z(yn))
=(B—Z(yn)) [y f(Z(yn) +t(B — Z(yx))) dt > 0.

Similarly, T'(Z(yn-1)) < 0. Hence, there exists a value Z(yn_1) €
[Z(yn), Z(yn)] st. T(Z(yn_1)) = 0. Complete the proof inductively. O

Lemma 9. If LY and RY are the discrete solutions of (B.1) and ri, and rg
are the solutions of (2.2) then
max{|(L" —rp)(@:)], (RY —rp)(z)[} <CNT' 2 €T,
max{|(D™LY — ) (x;)], (DTRY — ) (x;)|} <K ONY, 2, € TV,
max{|(0°LY — v} ()], |[(8*RY — ) (x)|} K CN™', 2, €TV,

Proof. We can show that 3 and gt defined in (3.1) and (3.2b) respectively
are upper and lower solutions of ((B.1c)) according to Theorem 8. Define the
mesh function LY over the meshpoints ty_; := —x; as LY (tn_;) := — LV (x;).

Using (B.1b), we can show that LV satisfies the following discrete terminal
value problem

F(=LN(tn—i31)) DL (tN D)+ 0=ty ) LV (tn—) = q(—tn-s),  (B.5a)
LN(ty) = —A >0, (B.5b)

which is a subclass of (B.4). We can show that Li=—A+t | min{0, —¢}|(2—

ty—i) and L s.t. = A2+ 2(]Al]|6]] + max{0, —¢})(tx—; — 1) are upper and
lower solutions of (B.5).

The error By, := LY — r;, satisfies the following linear problem

f(LN(2;21)) D" Ep + K(Ep — hi D-LY) = bEp = f(LN (2-1))7 " [r

Eu(~1) =0, 77[rg):= (D" — L)ry(x,)
=( ) (1= t)re(z) +tLN<xi_1>> dt )l (). (B.6c)
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Using (2.2), (B.1b) and standard truncation error estimates, we can complete
the proof. O

Lemma 10. If V~ and V't are the discrete solutions of (B.2) and vy, and
v are the solutions of (3.4) then

max{|(VT —vipg)(z)|} <CN7', ;€N
Furthermore, dy and dY as defined in (3.3a) and (B.3) satisfy
|di —dy'] <ON7

Proof. Use the same method of proof as in that of [8, Lemma 2.2] to establish
the error estimate.

Subtract the expressions for d; and d¥ in (3.3a) and (B.3) and use the error
estimates for |[RY — rg| and [(VF — v\ )(2;)| to complete the proof. [
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