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Introduction
Materials subject to electromagnetic fields or me-

chanical deformation processes, with constitutive equa-
tions involving memory effects, necessarily exhibit ener-
gy dissipation, so that thermo dynamical concepts [1-4] 
are required to describe their behavior.

It has been known for several decades that the free en-
ergy of a material with memory is not in general unique-
ly determined by the constitutive equations (for example 
[5-14,18-22,27-30,33]). For a given free energy, the total 
dissipation in the material over a given time period and 
the rate of dissipation are not uniquely determined ei-
ther.

It can be shown in a very general context ([5,6] and 
later references [7-10], which are based on the earlier 
work) that the free energies corresponding to a given 
state of a physical (electromagnetic or viscoelastic, for 
example) system form a convex set, which is bounded 
and thus has a maximum and minimum value. The min-
imum free energy of a given state is equal to the maxi-
mum amount of work that can be recovered from that 
state. The maximum free energy of a state is equal to the 

minimum amount of work required to achieve that state.

An expression for the minimum free energy of a 
material with a linear memory-dependent constitutive 
equation was given for the scalar case in [11], in the con-
text of mechanics and related to linear viscoelastic ma-
terials. This method was adapted to a dielectric material 
with memory in [12]. A generalization of [11] to tensor 
constitutive equations was given in [13]. This approach 
was developed over the last fifteen years to give explicit 
forms for the minimum, maximum and a family of in-
termediate free energies, mainly in a mechanics context. 
Most of these papers were based explicitly on a founda-
tion of non-equilibrium thermodynamics of materials 
with memory, as developed in [1-4], and referred to as 
Rational Thermodynamics.

Abstract
A general tensor isothermal theory of free energies and free enthalpies for dielectrics is presented, corresponding to linear 
constitutive relations with memory. Starting from the general equations of continuum thermodynamics, various properties 
of and constraints on free energy/enthalpy functionals in dielectric media are noted. It is well-known that free enthalpies 
are particularly convenient in that their properties are closely analogous with those of free energies in mechanics, though 
different in crucial ways.

General constitutive equations with memory are determined from a given free enthalpy. The form of the relaxation 
function, which occurs in these constitutive equations, is discussed from a general viewpoint. Also, various forms of the 
work function are given.

Tensor formulae are derived for the minimum free energy and corresponding rate of dissipation for arbitrary and also 
sinusoidal histories of the electric and magnetic fields. Both the similarities with mechanics and the important differences, 
leading to different physical predictions, are emphasized throughout this work.
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Indeed, thermodynamical concepts and language are 
explicitly used throughout the present work. In partic-
ular, constraints which are consequences of the laws of 
thermodynamics are presented and their physical conse-
quences explored. We discuss the minimum free energy 
in a manner which generalizes [12] and also [14]. Ten-
sor formulae are derived for this and related quantities 
of interest. An expression for the minimum free energy 
in the case of sinusoidal histories is derived for a general 
material.

The developments in this work are similar to the 
corresponding theory for mechanics and heat flow, de-
scribed in [10] and references therein. These similarities 
are rendered clear by means of references to the rele-
vant mechanics literature, usually [10]. However, there 
are various important differences and the exploration of 
these is at the core of what is new about the present work. 
The major difference derives from the formula (3.2) for 
the rate of work done on the material, which differs from 
the mechanics formula. This leads to important physical 
differences in material behavior, but also in the mathe-
matical description of these materials.

This paper constitutes part I of a two part work, the 
remainder being referred to as part II. A new family of 
free energies is derived in the latter paper.

Some results in this context were given independently 
[15-17] for dielectric materials with memory, but with 
quite different methods, notation and terminology. 
These papers emerged out of ongoing work over a decade 
or so, exploring various physical issues in optics, quite 
distant from the continuum thermodynamics environ-
ment which generated the papers referred to in the above 
paragraphs.

We seek to bring these two streams together; in par-
ticular, the correspondence between the two terminolo-
gies is clarified.

The work discussed above refers to free energies de-
rived from extremum conditions (minimum, maximum 
etc). Other functionals which are free energies only for 
materials with kernels obeying monotonicity conditions 
are discussed in [14,18,19] for example. With one excep-
tion [18], these emerge from the older literature. They 
are less relevant for dielectrics than in mechanics, in that 
the required monotonicity restrictions may not so fre-
quently apply.

On the matter of notation, vectors and tensors are 
denoted by lowercase and uppercase boldface characters 
respectively and scalars by ordinary script. The real line 
is denoted by  , the non-negative reals by +  and the 
strictly positive reals by ++ . Similarly, -� is the set 
of non-positive reals and --� the strictly negative reals. 

We will be dealing with spaces of scalar quantities with 
values in   or + , vector quantities in 3  and second 
order tensors. Let one of these spaces, or a composite of 
more than one (for example 3 3×  ), be denoted by 
. The space of linear operators      is denoted by 

( )Lin  . The dot product will indicate an ordinary scalar 
product 3 3   ×     and 6 6    ×    .

Complex quantities arise in the frequency domain so 
we have complex vector spaces for which the dot prod-
uct involves using the complex conjugate of objects in 
the dual space. The magnitude squared, denoted by 

2.  
refers to the dot product of objects with their complex 
conjugates.

General Relations
Consider a rigid dielectric material, subject to a vary-

ing electromagnetic field. Let the body under consid-
eration occupy a volume 3  ⊂  . A typical point in 
  is x while t is a given time. The electric field on this 
region is E(x,t), with electric displacement denoted by 
D(x,t). The magnetic field is H(x,t) and the magnetic in-
duction B(x,t). Let us introduce a convenient compact 
notation [12]. The quantities 3 6 :   × Λ     and 

3 6 :   × ∑    , respectively the electromagnetic 
vector and the electromagnetic induction, are defined by

 = ( , ),  = ( , )D BΛ Ε Η ∑ . 			         (3.1)

We shall denote 6  by   in what follows for a slight 
gain in brevity but also to emphasize that the general de-
velopments apply to an arbitrary finite vector space. The 
quantity Λ  will be treated as the independent variable. 
We will generally omit the space variable x and some-
times t also. It is assumed that ( )sΛ ,  < s t  is continu-
ously differentiable with respect to time. The rate of work 
done by the electromagnetic field on the body, per unit 
volume, is ([14] and references therein)

 =   = p ⋅ ∑ Λ ∑ ΛT , 			        (3.2)

Where the dot product here represents a scalar prod-
uct in   and ∑T  is the transpose of ∑ . Of these two 
alternative notations, the first will be used in the present 
work, as in previous related papers on similar problems 
in mechanics. The internal energy per unit mass and the 
entropy per unit mass at (x,t), both scalar quantities, are 
denoted respectively by ( )x, t∈  and ( )x, tη . The local 
absolute temperature is ( )x, tθ ∈ + . The heat flux vec-
tor is ( ) 3q x, t ∈  .

The energy balance equation or first law of thermody-
namics has the form

 = 0p rρ ρ- ∈ - ⋅ +q ∇ , 			        (3.3)

Where p is defined by (3.2) and the differential op-
erator ∇  is with respect to x. The quantity ( )xρ  is the 
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( ) = ( ),  t s t s s +- ∈Λ Λ  . 			        (3.9)

We assume that these belong to a real Hilbert space 
  of functions with values in  , possessing a suitable 
inner product and norm. The norm is understood to 
have a fading memory property, in the sense that values 
of field quantities at times in the distant past contribute 
negligibly to its value. Equation (3.9) gives the history 
and current value of Λ . A given future continuation is 
denoted by

( ) = ( ),  t s t s s --- ∈Λ Λ  . 			     (3.10)

Let us define the free enthalpy as

 =  ψ - ⋅∑ Λ , 				       (3.11)

which is analogous to the Gibbs free energy in me-
chanics. The quantity ⋅∑ Λ  is of course unique, so that 
to each free energy, there is a corresponding free enthal-
py. In terms of this quantity, (3.7) and (3.8) become

+  = - ⋅ ∑ ΛD  				    (3.12a)

0≥D  					     (3.12b)

the latter being the second law. A constitutive as-
sumption is now made by requiring that the free enthal-
py   depends in a specified way on the history and cur-
rent value of Λ . We putb

( )
0

( ) = ( ), ( )t

s
t s t

>



Λ Λ  . 			      (3.13)

Details and more general insights of the develop-
ments now briefly summarized may be found in [1-4]. 
Assuming that   is differentiable with respect to ( )tΛ  
and Fréchet-differentiable with respect to tΛ  within  , 
we can apply the chain rule to obtain

( ) ( )( )0 0

0

( ), ( )  = ( ), ( )

( ), ( )  ( )

t t
ts s

t t

s

d s t s t
dt

s t s
t

δ

> >

>

∂ ⋅

 ∂ 
+  ∂ 

 





ΛΛ Λ Λ Λ Λ

Λ Λ Λ

 


,   (3.14)

where ( )t∂Λ  indicates the derivative of   with respect 
to the current value ( )tΛ  and δ   is the Fréchet-differ-

ential of   at tΛ  in the direction t

t
∂
∂

Λ  where, from 
(3.9),

( ) = ( )t ts s
t s

∂ ∂
-

∂ ∂
Λ Λ . 			      (3.15)

These derivatives with respect to field quantities are 
assumed to be continuous in their arguments. Within the 
context of Rational Thermodynamics, it can be shown 
that ( )tΛ  may be chosen to have any desired value, so 
that it follows from (3.14), combined with (3.12b), that

mass density, which can depend on position but not time 
and ( )x,r t  is the external heat supply absorbed per unit 
time, per unit mass at (x,t). We write the second law of 
thermodynamics as

1+ q rη
ρ θ θ

 ⋅ ≥ 
 

 ∇ . 				         (3.4)

Which is a statement that the rate of entropy produc-
tion is non-negative. The superimposed dot notation in 
(3.3) - (3.4) and below, indicates a time derivative.

Remark III.1: Equations (3.3), (3.4) are generalizations 
to electromagnetic fields of the classical laws of thermody-
namics. If we neglect r and integrate (3.3) over a volume 
large enough so that no heat is passing through the bound-
ary, the term involving q vanishes by Green’s theorem, and 
the other terms yield a simple statement of conservation of 
energy for a finite body subject to electromagnetic forces.

The Helmholtz free energy per unit mass is defined by

 = ψ θη∈ - . 				          (3.5)

with the aid of (3.5) and a simple identity, (3.3) can be 
rewritten in the form

1 ( ) q = p ψ ηθ θ
ρ ρθ

- - - ⋅

 ∇ D , 		       (3.6)

 = + 0q rθθη
ρ θ

 ⋅ - ≥ 
 

 ∇D ,

Where, in the second relation, we have invoked (3.4).

Let us now consider the isothermal case where θ  is 
independent of space and time variables, q is zero and r is 
assumed to be negligible. Also, we take ρ  to be constant 
and put it equal to unity. Thus, (3.6) becomes

+  =  ψ ⋅ ∑ ΛD  				       (3.7a)

 = ηθD . 					        (3.7b)

The second law is imposed through the requirement that

 =  0ψ⋅ - ≥

∑ ΛD . 			        (3.8)

Remark III.2: In a mechanics context, the time dif-
ferentiation in (3.7) would be on the Λ , corresponding 
to the strain tensor, rather than on the ∑ , correspond-
ing to the stress tensor. Thus, the theory developed here 
is analogous to the case in mechanics where the stress is 
treated as the independent variable and, as we shall see, 
the memory functions involved will behave similarly to 
creep rather than relaxation functions, in the sense that 
they tend to increase rather than decrease with time.

Let  :   t R+
 Λ  be defined bya

aThis quantity would be denoted as ( )t s-Λ  in [15-17], while the 
future continuation, defined by (3.10), would be written as ( )t s+Λ . 
The future continuation is referred to in [15] as the recovery field.

bIn the notation of [15], we would write ( )t  as ( )-  
t t Λ  

(recalling footnote a).
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( , ( )) ( ( ))t
a a e at t≥ Λ Λ Λ  , 		     (3.24)

which is (3.21).

P3: Condition (3.12) holds.

These will be referred to as the Graffi conditions by 
analogy with those for a free energy in mechanics (for 
example [10], page 115).

Remark III.3: For materials with memory, there are 
in general an infinity of choices of   (and the corre-
sponding ψ  given by (3.11)) that have the required 
properties. Each of these has a corresponding rate of dis-
sipation D, obeying (3.7a). These are different versions of 
the first law, one of which is the correct version, giving 
the physically observed rate of dissipation. The others 
can be seen as approximations and in some cases bounds 
on the physical quantities. A proposed physical free en-
ergy is presented in [20,21]. The general question of how 
to determine the physical rate of dissipation is discussed 
in [10], page 131 and [22].

A Linear Memory Model
We expand (3.22) to second order in a functional 

Taylor expansion, dropping the linear term because of 
positivity requirements and also neglecting higher order 
terms [21], to obtain

( ) ( ) ( ) ( ) ( )
0 0

1 = + ,
2

t t
e r rt t s s u u dsdu

∞ ∞
⋅∫ ∫ Λ Λ  , (4.1)

Where ( ) :  x   Lin+ +
    can be taken to obey 

the relation 

( ) ( ),  = ,s u u s T , 			         (4.2)

without loss of generality. A dependence in the kernel 
  on ( )tΛ  has also been neglected [21].

Remark IV.1: The integral term in (4.1) must be 
non-negative by virtue of (3.24). By considering much 
localized histories, we can see that a necessary condition 
for this property to hold is that

( ), 0,  s s s +≥ ∈  , 			        (4.3)

which corresponds to the condition on diagonal com-
ponents in non-negative matrices.

Remark IV.2: The integral in (4.1) is a quadratic 
functional of tensor quantities, which can be expressed 
as sums of scalar quadratic functionals by using appro-
priate eigenspaces [10].

Quadratic functionals of this kind are the simplest 
forms which include memory effects and on which we 
can impose a positivity requirement. Such a requirement 
is essential for energy related quantities, including, be-
cause of the second law, dissipation. These observations 
are also relevant to (4.15) and (4.23) below.

( )( ) 0
( ) = ( ), ( )t

t s
t s t

>
- ∂



Λ∑ Λ Λ ,		     (3.16)

which are the constitutive equations of the material; also,

0
( ) = ( ), ( )  ( )t t

s
t s t s

t
δ

>

 ∂ 
-  ∂ 



Λ Λ ΛD  . 	    (3.17)

Thus, we see that dissipation in the material is associ-
ated with the dependence of   and ψ  on the past histo-
ry of the field variables (including limiting cases such as a 
dependence on time derivatives of these variables). If no 
such dependence on past values of field variables exists, 
the rate of dissipation is zero.

We can also write (3.13) in the form

( )
0

( ) = ( ), ( )t
d r

s
t s t

>



Λ Λ  , 			      (3.18)

where the relative history t
rΛ  is defined by

( ) = ( ) ( )t t
r s s t-Λ Λ Λ . 			     (3.19)

A relative future continuation is also defined by (3.19) 
for s --∈ .

We define the equilibrium free enthalpy ( )e t  to 
be given by (3.13) for the static history ( ) ( )t s t-Λ Λ
, s +∈  or equivalently by (3.18) with ( ) = 0t

r sΛ , 
s +∈ . This quantity depends only on ( )tΛ , so that

( ) = ( ( ))e et t Λ  . 				       (3.20)

It can be deduced from (3.12), by means of a fading 
memory argument [3], that

( ) ( ),  e t t t≤ ∀ ∈   , 			      (3.21)

giving that the equilibrium free enthalpy is less than 
or equal to the free enthalpy for an arbitrary history. The 
notation ( )e t  will be used in most cases rather than 

( ( ))e t Λ .

We can write (3.18) in the form

( )( ) = ( ) ( ), ( )t
e M rt t s t+  Λ Λ   , 		     (3.22)

where the second term on the right must be non-neg-
ative by virtue of (3.21). It contains the memory contri-
butions.

Required properties of a free enthalpy
Let us state the characteristic properties of a free en-

thalpy, provable within a general framework [3,4,12]:

P1:
( )  = ( )
( )
t t
t

∂
-

∂
∑

Λ


, 				       (3.23)

which is (3.16).

P2: For any history t
aΛ  and current value ( )a tΛ ,
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( )( ) ( ) ( )( )
( )

 =  = e
e e

d t
t t

d t
-





Λ
∑ Λ ∑

Λ


, 	 (4.11a)

( ) ( )( ) ( ) ( )0 0 =  + et t t∞-  ∑ ∑ Λ Λ . 	 (4.11b)

The quantity ( )s  is the electromagnetic relaxation 
function. It is shown below (see (5.18)) that ∞  is a posi-
tive definite matrix. The quantity 0� is the instantaneous 
modulus and, on the basis of physical evidence [12],

0  0> . 					        (4.12)

It will be assumed here, as in earlier work (in mechan-
ics) on tensor constitutive relations [10], that

( ) ( ) = ,  u u u +∈ T  . 			      (4.13)

By analogy with viscoelasticity, the quantity 0� is 
the instantaneous modulus, while ∞  is the equilibrium 
modulus [12]. We are assuming that ( ) ( ) = t-∞ ∞Λ Λ  
vanishes. It follows from (4.6c) (though for large u rather 
than large s) and (4.10a) that

( ) ( ) ( ) = ,  = 0,  = s∞ ∞ ∞ ∞    . 	    (4.14)

We deduce from (3.12), (4.8) and the time derivative 
of (4.7b) that

( ) ( ) ( ) ( ) ( )1 20 0

1 = ,  + ,  
2

t t

D t s s u s u u dsdu
∞ ∞

⋅   ∫ ∫
 

 Λ Λ ,   (4.15)

Where the subscripts indicate partial differentiation 
with respect to the first and second arguments, as in 
(4.6a). This expression results from two partial integra-
tions. These manipulations are equivalent in this context 
to the functional differentiation involved in (3.17).After 
further partial integrations, using (4.8), the rate of dissi-
pation can also be expressed as

( ) ( ) ( ) ( ) ( )112 2120 0

1 = , + ,  
2

t t
r rD t s s u s u u dsdu

∞ ∞
⋅   ∫ ∫  Λ Λ .  (4.16)

Relation (4.9) allows for general nonlinear behavior 
in the equilibrium term e∑ . We now however specialize 
to the case of linear behavior. Following [12,14], we write 
(4.9b) as

( ) ( ) ( ) ( )0 0
 =  + tt t u u du

∞
′∑ ∫ Λ Λ , 	    (4.17)

So that, from (4.11b)

( ) ( ) = e t t∞∑  Λ , 				       (4.18)

and equations (4.9a) and (4.9c) become

( ) ( ) ( ) ( )
0

 = + t
rt t u u du

∞

∞ ′∑ ∫ Λ Λ  	 (4.19a)

( ) ( )
0

 
t

u u du
∞

= ∫


 Λ , 			   (4.19b)

Relation (4.19b) is analogous to the Boltzmann Su-
perposition Principle in mechanics [23]. It follows from 
(4.11a) and (4.18) that

( ) ( ) ( )1 = 
2e t t t∞- ⋅Λ Λ , 		     (4.20)

We shall see below that such a quadratic functional for 
the free enthalpy leads to linear constitutive relations for 
the material. Let us define ( ) :  x   F Lin+ +      
by

( ) ( )1, 2 1 2,  =  
s u

s u t t dt dt
∞ ∞

∞ - ∫ ∫   , 		       (4.4)

where ∞  is a constant tensor in ( )Lin  , to be de-
termined, but assumed to be symmetric so that

 =  ∞ ∞ T . 					         (4.5)

It follows that

( ) ( ) ( )
2

12,  = ,  = ,s u s u s u
s u
∂

-
∂ ∂

   , 	     (4.6a)

( )lim ,  = ,  
s

s u u +
∞→∞

∈   , 		     (4.6b)

( )lim ,  = 0,  
s

s u u
u

+

→∞

∂
∈

∂
  , 		     (4.6c)

( )lim ,  = 0,  
s

s u u
s

+

→∞

∂
∈

∂
  , 		     (4.6d)

( ) ( ),  = ,s u u s T , 			      (4.6e)

with similar limits at large u holding for fixed s. Using 
relevant relations from (4.6) and partial integrations, we 
can write (4.1) as

( ) ( ) ( ) ( ) ( )120 0

1 = ,
2

t t
e r rF t t s s u u dsdu

∞ ∞
- ⋅∫ ∫ Λ Λ , (4.7a)

( ) ( ) ( ) ( )
0 0

1=  ,
2

t t

e t s s u u dsdu
∞ ∞

- ⋅∫ ∫
 

Λ Λ , (4.7b)

Where

( ) ( ) ( ) ( ) =  =  = 
t

t t t
ru u u u

t u u
∂ ∂ ∂

- -
∂ ∂ ∂



Λ Λ Λ Λ , (4.8a)

( ) ( ),  = ,s u s u ∞-   . 			      (4.8b)

Relation (3.23) gives

( ) ( )( ) ( ) ( )
0

 = + t
e rt t u u du

∞
′∫ ∑ ∑ Λ Λ ,         (4.9a)

( ) ( ) ( )0 0
+ tt u u du

∞
′∫ = ∑ Λ , 		     (4.9b)

( )( ) ( ) ( )
0

 +
t

e t u u du
∞

= ∑ ∫



Λ Λ , 		    (4.9c)

Where

( ) ( ) = 0,u u  , 				    (4.10a)

( ) ( )0  = 0,0  = 0   , 			   (4.10b)

( ) ( ) = u u ∞-   , 			   (4.10c)

( ) ( ) = u u
du

′  , 			   (4.10d)

and
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The physical content of (4.17) is hidden to some de-
gree by the generality of the notation. It is worthwhile 
writing out in detail the relations implied by this expres-
sion. These are the most general within the category of an 
isothermal linear constitutive relation. We have

( ) ( ) ( )0 H0 = G  + GEt t t/ /D E H

( ) ( ) ( ) ( )
0 0

+ G  + Gt t
E Hu u du u u du

∞ ∞
′ ′/ /∫ ∫E H ,

( ) ( ) ( )0 0 =  + E Ht t tB E H 

( ) ( ) ( ) ( )
0 0

+  + t t
E Hu u du u u du

∞ ∞
′ ′∫ ∫E H  , (4.28)

( )3
0 H0 0 0G ,G , ,E E H Lin/ / ∈  R ,

 ( )3G ,G , ,  : E H E HE Lin+′ ′ ′ ′/ /   R ,

( ) ( )0 H0 HG   G 0 ,     G   G 0E E/ = / / = / ,

( ) ( )0 0  0 ,          0E E H H= =    .

It follows from (4.13) that

( ) ( )0 0G   G ,     G   GE E E Eu u′ ′/ = / / = /  
TT

,

( ) ( )0 0  ,     H H H Hu u′ ′= =       TT ,    (4.29)

( ) ( )H0 0G   ,     G   ,  E H Eu u u +′ ′/ = / = ∈    TT R .

Examples of these relationships should be experi-
mentally verifiable, supporting or otherwise the assump-
tion (4.13).

Minimal states
Different histories may be members of the same min-

imal state. This is based on a concept of state originated 
by Giles and Noll [24,25], elaborated for the linear case 
in [9,13,26-28] and later work. The fundamental defini-
tion of the state of a material with memory at time t is the 
history of the independent field variable and its current 
value ( )( ),  t tΛ Λ . The concept of a minimal state is based 
on an equivalence class of states. Two states ( )( )1 1, ,t tΛ Λ  

( )( )2 2,t tΛ Λ  are equivalent, or in the same minimal state 
if from a time t onwards, we have

( ) ( ) ( ) ( )1 2 1 2 =       if        = ,     0t s t s t s t s s+ + + + ≥∑ ∑ Λ Λ (4.30)

Where 1 2,  ∑ ∑  are defined by (4.19) for these states. 
Note that the quantities in the second relation can be 
written as ( )1

t s-Λ  and ( )2 -t sΛ . It follows that

( ) ( ) ( )( )1 20
  = 0,     0t ts u u u du s

∞
′ + - ≥∫  Λ Λ . (4.31)

A fundamental distinction between materials is that 
for certain relaxation functions, namely those with only 
isolated singularities (in the frequency domain), the set 
of minimal states is non-singleton, while if some branch 

provided we add the condition that ( )e t  must van-
ish when ( )  = 0tΛ . Relation (4.7a) becomes

( ) ( ) ( ) ( ) ( ) ( )120 0

1 1 = ,
2 2

t t
r rt t t s s u u dsdu

∞ ∞

∞- ⋅ - ⋅∫ ∫ Λ Λ Λ Λ  (4.21a)

( ) ( ) ( ) ( )0
1= 
2

t t t t⋅ - ∑ ⋅Λ Λ Λ  		  (4.21b)

( ) ( ) ( )120 0

1 ,
2

t ts s u u dsdu
∞ ∞

- ⋅∫ ∫ Λ Λ .

Since the integral term in (4.21b) is independent of 
( )tΛ , it follows that

( ) ( ) ( ) ( ) ( ) ( )0
1  = 
2

t t t t t
t

∂  ⋅ - ∑ ⋅ - ∑ ∂  
Λ Λ Λ

Λ
,   (4.22)

which is easily checked. From (3.11) and (4.21), we 
deduce that

( ) ( ) ( ) ( ) ( )0 120 0

1 = ,
2

t tt t s s u u dsduψ φ
∞ ∞

- ⋅∫ ∫ Λ Λ
  
(4.23a)

( ) ( ) ( ) ( )120 0

1= ,
2

t t
rU t s s u u dsdu

∞ ∞
- ⋅∫ ∫ Λ Λ ,    (4.23b)

Where
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0

1 1 = ,   = 
2 2

t t t U t t t t tφ ∞⋅ ∑ ⋅ - ⋅ Λ Λ Λ Λ Λ .   (4.24)

The first term on the right of (4.23a) is non-negative 
by virtue of (4.12). This is not true of the first term on 
the right of (4.23b). From remark IV.1, we conclude that 
both integral terms, with the negative signs included, are 
non-negative.

It is of interest to compare the relations (4.23) with 
the corresponding expressions in mechanics ([10] page 
127, for example). There are obvious important differ-
ences, but also more subtle ones, relating to the behavior 
of the kernel. In particular, the kernel of the constitutive 
relation (4.9), defined by (4.10a) is shown in subsection 
5.1 to have different behavior from the corresponding 
quantity in mechanics.

From (3.2), it follows that the total work done by the 
electromagnetic field up to time t is

( ) ( ) ( ) = 
t

W t u u du
-∞

⋅∫


∑ Λ  		  (4.25a)

( ) ( ) ( ) ( )  
t

t t u u du
-∞

= ⋅ - ⋅∫


∑ Λ ∑ Λ . 	 (4.25b)

It is assumed here and below that field quantities van-
ish at large negative times sufficiently strongly so that 
various required integrals exist. Integrating (3.7a) on 
( ,  ]t-∞ , we have

( ) ( ) ( )+  = t D t W tψ , 			      (4.26)

Where

( ) ( ) =  0
t

D t D u du
-∞

≥∫ , 			      (4.27)

is the total dissipation up to time t.
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where the bar denotes the complex conjugate. For 
complex values of ω, (5.2) becomes

( ) ( ) = F Ff f −ω ω . 				         (5.3)

A time domain function defined on +  is identified 
with a function on   which vanish identically on --�. In 
such cases,

( ) ( ) ( ) ( ) =  = F c sf f f if+ −ω ω ω ω , 	      (5.4)

Where ,  c sf f  are respectively the Fourier cosine and 
sine transforms. Inverse transforms are given by

( ) ( )1 = 
2

i s
Ff s f e d

π
∞

−∞∫
ωω ω, 		       (5.5)

or similar formulae with Ff  replaced by f±  or ,  c sf f . 
In particular, the sine transform inversion formula is

( ) ( ) ( )
0

2 =  sf s f sin d
π

∞

∫ ω ωs ω. 		       (5.6)

One property of Fourier transforms which will be 
used later is the following. Let ( )0f  be non-zero. Then, 
we have

( ) ( ) ( ) ( )
  

0 0
,  so that s

f f
f f

i+ → ∞ → ∞→ →ω ωω ω
ω ω

. (5.7)

The kernel ( )u
We can write the Fourier transforms of '  and   in 

(4.9) as

( ) ( ) ( ) = ' ' '
c si+ −ω ω ω  

( ) ( ) ( ) = si+ −  ω ω ω  
, 		                     (5.8)

By partial integration, one can show that

( ) ( ) ( )0
 = ' i+ ∞ +− − + ω ω ω    , 	       (5.9)

giving, in particular, that

( ) ( ) = c
'
s −ω ω ω 



. 			      (5.10)

The notation '
F  will be reserved for a somewhat 

different use in (6.5) below. Observe that

( ) ( ) 00
0     ' ' s ds

∞

∞+ = = -∫    . 	    (5.11)

If the system is in a given state at time t0 and returns to 
this state at time 0t T+  then we refer to this as a cycle. In 
fact, for materials with memory, this situation can only 
exist if the independent variables have exhibited periodic 
behaviour over a sufficiently long period of time to allow 
transient effects to die away so that the system is in a fully 
periodic state. In particular, ( )t∑ , ( )tψ  and ( )t  will 
be periodic functions. Integrating (3.8) or (3.12) over a 
cycle gives

( ) ( )0

0

 . 
t T

t
u u du

+ ≥∫ 0∑ Λ , or 		  (5.12a)

( ) ( )0

0

 . 
t T

t
u u du

+
≤∫ 0∑ Λ , 			   (5.12b)

cuts are present in the relaxation function, the materi-
al has only singleton minimal states ([10,18], page 342). 
For relaxation functions with only isolated singularities, 
for example, sums of pole terms, there is a maximum free 
energy that is less than the work function ( )W t  and also 
a range of related intermediate free energies. This case 
is explored for dielectrics in part II. On the other hand, 
if branch cuts are present, the maximum free energy is 

( )W t . An example of a branch cut would be if the relax-
ation function in the frequency domain (see (5.8) below) 
were an integral over pole terms, as for continuous spec-
trum materials in mechanics [29].

It can be shown that if the material has minimal states 
that are non-singleton then the free energy functional is 
positive semi-definite ([10], page 152).

Note that the statement that ( )( ),  t tΛ Λ  and ( )( )2 2,t tΛ Λ  
are equivalent is the same as the assertion that ( ),  0t

dΛ  is 
equivalent to the zero state (0,0), where 0 is the zero in   
(and also the zero history), while

( ) ( ) ( )1 2 = t t t
d s s s-Λ Λ Λ . 			      (4.32)

A functional of ( )( ),  t tΛ Λ  which yields the same val-
ue for all members of the same minimal state will be 
referred to as a functional of the minimal state or as a 
minimal state variable. Let ( )( )1 1,t tΛ Λ , ( )( )2 2,t tΛ Λ  be any 
equivalent states. Then, a free energy is a functional of 
the minimal state if

( )( ) ( )( )1 1 2 2,  = ,t t tt tψ ψΛ Λ Λ Λ . 		     (4.33)

It is not necessary that a free energy have this proper-
ty, though it holds for the minimum and other free ener-
gies introduced in both parts of this work.

Kernels and Field Variables in the Frequency 
Domain

For any ( )2f L R∈ , we denote its Fourier transform 
( )2

Ff L R∈  byc

( ) ( ) ( ) ( ) = = i
Ff f e d f fξξ

∞ −
+ −−∞

ξ +∫ ωω ω ω , 	      (5.1)

( ) ( ) ( ) ( )
0

 = ,   = i if f e d f f e dξ ξξ ξ ξ ξ
∞ ∞− −

+ − −∞∫ ∫ω ωω ω .

The quantities ( )f± ω  are important in this work be-
cause of their analyticity properties noted in the para-
graph before (5.20), among other reasons. For real val-
ued functions in the time domain, we have

( ) ( ) = ,  FFf f R− ∈ω ω ω , 			        (5.2)

cThe quantity ( )Ff ω , defined by (6.1), would be denoted in 
[15-17] by ( )ˆ2 fπ ω-  or ( )ˆ2 fπ ω  for real ω . Alternatively, 

it could be given by 2 fπ  , while (5.5) could be written as 

( ) ( ) ( )1 1ˆ =  = 
2

Ff s f fω ω
π

- -  .
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cluding and excluding the real axis, respectively.

The quantities f± , defined by (5.1), are analytic in 
( )Ω   respectively ([10], page 547). Thus, the quantity 

'
+  is analytic on -Ω . It will be assumed that '

+  is 
analytic on   and thus on -Ω , or more precisely, on an 
open set containing -Ω . It is further assumed for sim-
plicity to be analytic at infinity in the present treatment as 
in earlier work, though this assumption must be dropped 
for materials with finite memory, or with contributions 
to '

+  that have finite support in the time domain [30]. 
It is defined by analytic continuation in regions of +Ω  
where the Fourier integral does not converge. The quan-
tity '

s  has singularities in both ( )+Ω  and ( )-Ω  that are 
mirror images of each other. It goes to zero at the origin 
and must also be analytic there. A quantity central to our 
considerations is defined by

( ) ( ) ( )2 =  = ,c
'
s − ω ω ω ω ω    	                  (5.20)

where (5.10) has been invoked. It is a non-negative, 
even tensor function of the frequency, which vanishes 
quadratically at = 0ω . The relation (see (5.7))

( ) ( ) ( )0 lim   = lim  = ' ' '
si

→∞ →∞+ω ω
ω ω ω ω    	    (5.21)

Yields

( ) ( )0  = =  '
∞∞  � . 			      (5.22)

For the detailed model of non-magnetic dielectrics 
considered in the second part of the present work, the 
quantity ( )0'  vanishes, so that ( )ω  goes to zero at 
large ω; see also [15,17].

Remark V.1: We shall adopt the convention that a 
subscript + on any quantity defined on the frequency 
domain, not necessarily specified to be a Fourier trans-
form, is analytic on an open set including -Ω , while a 
similar observation applies to a quantity with subscript 
- and +Ω .

The independent field variable Λ

The Fourier transforms of the history and continua-
tion are denoted by ( )t

+ ωΛ  and ( )t
− ωΛ  respectivelyd. The 

quantity t
+Λ  is analytic on ( )-Ω  and t

-Λ  is analytic on ( )+Ω
. Both are assumed to be analytic on an open set including 
 . It is further assumed that they are analytic at infinity.

The derivative of t
+Λ  with respect to t will be required. 

Assuming that ( )1  t C +∈Λ R  we have, from the integral 
definition of t

+Λ  (see (5.1)),

( ) ( ) ( ) = t td i t
dt + +− +ω ω ωΛ Λ Λ . 	 	   (5.23)

which is a statement of the second law of thermody-
namics and, in the present context, defines a passive me-
dium.

Consequences of these inequalities can be derived 
([10,14,19], page 140, which also include the original ref-
erences), by considering the case where ( )tΛ  has sinu-
soidal behaviour. Let us temporarily drop the assump-
tion (4.5) and (4.13). It can be shown by this method that

0 0  ,    Τ Τ
∞ ∞= =    . 			      (5.13)

Both these relationships are special cases of (4.13), 
while the second is (4.5). It also follows that

( ) ( )0 0 00 or 0,  0 <c
'
s > < < ∞ω ω ω  , 	    (5.14)

which are equivalent by virtue of (5.10). Somewhat 
less general versions of (5.14) are quoted in [12,14]. 
These inequalities have the opposite sign to those for the 
relaxation function in mechanics [10,19]. We now rein-
state (4.13) for all times.

The integrated form of (5.6) gives [14]

( ) ( ) ( ) ( )
0

1 cos20  = 0'
s

u
u d

π
∞ −

− >∫
ω

ω ω
ω

   , (5.15)

so that

( ) ( ) 00   u ≥ =   . 			                   (5.16)

In particular,

( ) ( ) ( )
0 0

20  = 0
'
s d

π
∞

∞∞ − − >∫
ω

ω
ω


    .      (5.17)

Then, from (4.12) and (5.17), we also have that

 0∞ > . 					        (5.18)

Relations (5.16) and (5.17) indicate that ( )u  be-
haves similarly to a creep function in mechanics rather 
than a relaxation function (see remark III.2). It is inter-
esting to note that this follows from (5.14) which itself 
is a consequence of (3.2), leading to the negative sign 
on the left-hand side of (3.12) and more specifically the 
non-positivity of the integral in (5.12b).

Special cases of the inequality (5.17) should be check-
able by experiment.

The complex frequency plane and the function 
( )ω
We will be considering frequency domain quantities, 

defined by analytic continuation from integral defini-
tions, as functions on the complex ω plane, denoted by 
Ω , where

{ }
( ) { }
 = |

 = | .

Im R

Im R

+ +

+ ++

Ω ∈Ω ∈

Ω ∈Ω ∈

ω ω

ω ω
 		     (5.19)

Similarly, -Ω  and ( )-Ω  are the lower half-planes in-

dReferring to footnote a, we see that ( )t
± ωΛ  would be denoted 

in [15-17] by ( )ˆ2 tπ −


ωΛ .
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( )W t  can be cast in the form (4.23b) by putting

( ) ( )12 12,   = s u s u-   			      (6.2a)

( )
2

2 d s u
ds

= - -
				      

(6.2b)

( )
2

2 d s u
du

= - - . 			      (6.2c)

We can write ( )W t  in terms of histories as follows:

( ) ( ) ( ) ( ) ( )0 120 0

1  
2

t tW t t s u u s dudsφ
∞ ∞

= - - ⋅∫ ∫  Λ Λ  (6.3a)

( ) ( ) ( ) ( )0 12

1= 
2

t tt s u u s dudsφ
∞ ∞

-∞ -∞
- - ⋅∫ ∫  Λ Λ , (6.3b)

Where (6.3b) requires that ( )t uΛ  vanishes for  < 0u . Re-
lations (6.3a) and (6.1b) are special cases of (4.23). As for 
the latter equation, it is interesting to consider the differ-
ences between (6.3) and the corresponding relations in 
mechanics (for example [10], page 153).

In terms of frequency domain quantities, we find that

( ) ( ) ( ) ( ) ( ) ( )1  
2

t t
r r rW t U t dω ω ω ω ω

π
∞

+ + +-∞
= + ⋅∫ Λ Λ Λ  (6.4a)

( ) ( ) ( ) ( )0
1 

2
t tt dφ ω ω ω ω

π
∞

+ +-∞
= + ⋅∫ Λ Λ .     (6.4b)

These relations follow from application of the Con-
volution theorem and Parseval’s formula, together with 
the fact that the Fourier transform of the even function 

( )
2

2

d s
ds

  (see also (6.2b) and (6.2c)) for s R∈ , is given 

by ( )  ( )2
Fiω ω-   ([10], page 154),where

 ( )  ( ) ( )
2  2   2F c
ω

ω ω
ω

= = -


  . 	      (6.5)

Relations (6.4) correspond to (6.1) and (6.3), respectively.

The quantity ( )  - ( ) . ( )W t t t∑ Λ  can be shown to obey 
the properties of a free enthalpy with zero dissipation, 
as specified in subsection IIIA. Condition (3.23) follows 
from (6.3) and (4.22) for example, while (3.24) is an im-
mediate consequence of (6.4). Relation (3.12b) is trivially 
seen to be equality, by differentiating (4.25). Thus, ( )W t  
may be regarded as a free energy with zero dissipation.

Because of the vanishing dissipation, it must be the maxi-
mum free energy associated with the material or greater than 
this quantity, an observation which follows from (4.26). De-
pending on the material, both of these situations can occur. 
Of course, zero dissipation is non-physical for a material with 
memory. However, the property of ( )W t  that it provides an 
upper bound for the free energies is of interest.

The Minimum Free Energy

Observe that (cf. (5.7))

( ) ( ) lim   = ti t+→∞ω
ω ωΛ Λ . 			      (5.24)

The Fourier transform of the relative history ( )t
r s+Λ , 

  s +∈ R  is given by

( ) ( ) ( ) = t t
r

t
i+ −−ω ω
ω

Λ
Λ Λ , 			      (5.25)

Where ω- indicates -  > 0i , α αω . The parameter α  is 
assumed to tend to zero after any integrations have been 
carried out ([10], page 551). Similarly, the quantity ω+, 
which indicates  +  > 0,i , α αω  will be used below.

Constitutive equations in terms of frequency do-
main quantities

Relations (4.19) can be expressed in terms of frequen-
cy domain quantities by applying Parseval’s formula. Us-
ing arguments from [10], page 146, for example, we can 
express the constitutive equation (4.19a) in the form

( ) ( ) ( ) ( ) ( )1 = 
2

'
t
r

't t d
π

∞
+∞ +−∞ +

+ + ∫ ω ω ω ω ∑ Λ Λl , (5.26)

Where l  is any complex constant. Indeed, the term 
proportional to l  can be seen to be zero by closing the 
contour on ( )-Ω . Choosing  = -1l  yields

( ) ( ) ( ) ( ) = t
r

it t d
π

∞

∞ +−∞
+ ∫

ω
ω ω

ω


∑ Λ Λ

( ) ( ) ( )0= tit d
π

∞

+−∞
+ ∫

ω
ω ω

ω


 Λ Λ

       (5.27)

Where (5.17) and (5.25) have been used in writing the 
last form.

The detailed form of the dielectric relaxation function 
corresponds directly to the singularities of this quantity 
in the frequency domain, as discussed for the mechanics 
case in [10], page 146, and as may be seen by determin-
ing ( ) ,' s  using ( )'

+ ω  in the version of (5.5) with ( )f+ ω
. The contour must be closed on +Ω . In part II, we shall 
focus on materials where ( )'

ω  has only isolated singu-
larities at finite points and is analytic at infinity.

The Work Function
The integral term in (4.25b) has exactly the mechanics 

form, so that, by virtue of the developments of [10], page 
153 for example, we obtain

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
12

1 =   
2

t t

W t U t u s u t s t dsdu
-∞ -∞

- - - ⋅ -∫ ∫  Λ Λ Λ Λ  (6.1a)

( ) ( ) ( ) ( )120 0

1=    
2

t t
r rU t u s u s dsdu

∞ ∞
- - ⋅∫ ∫  Λ Λ    (6.1b)

( ) ( ) ( ) ( )
12

1   
2

t t
r r= U t u s u s dsdu

∞ ∞

-∞ -∞
- - ⋅∫ ∫  Λ Λ ,   (6.1c)

in terms of relative histories, where ( )U t  is defined 
by (4.24) and where the last relation presumes that 

( )t
r uΛ  vanishes for  < 0u . We see from (6.1b) that 
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current time. Equation (7.4d) follows from (7.4c) just as 
(6.4) follows from (6.1c) and (6.3). The recoverable work 
from the state at time t is given by

( ) ( ) ( ) ( ) ( ) = -  .  = R
t

W t u u du W t W
∞

- ∞∫ Σ Λ .         (7.5)

To obtain the minimum free energy, we seek to max-
imize this quantity ([5-7,10], page 105 and earlier refer-
ences therein). The optimization is carried out by varying 
the future continuation. Equivalently, one can minimize 

( )W ∞ , given by (7.4), since ( )W t  is not affected by the 
optimization process.

With the aid of the Plemelj formulae [32] (see also 
[10], page 542), we write

( ) ( ) ( ) ( ) ( ) =  = t t t tω ω ω ω ω- + - +-q qQ  Λ  (7.6a)

( ) ( )q  = lim qt t

z ω
ω± → 

z  			      (7.6b)

( ) ( )1 = 
2

t
t d s

i
ω

ω
π ω

∞

-∞

′
′

′ -∫q z
z

Q
, 		      (7.6c)

where ( )t ω-q  is analytic on ( )+Ω , going to zero at large 
ω  as 1ω-  and ( )t ω+q  is analytic on ( )-Ω  with similar be-
haviour at large ω . The quantities ( )t ω±q  are analytic on 
an open region including   ([10], page 242). In ( )-Ω
, away from singularities, ( )t ω-q  is defined by analytic 
continuation from +Ω , while ( )t ω±q  is correspondingly 
defined in ( )+Ω . We will write them as

( ) ( )1 = ,    
2

t
t d

i
ω

ω ω ω
π ω ω

∞

±
-∞

′
′ ∈

′ -∫q


Q
 .                    (7.7)

The following proposition about function on the 
complex plane will be useful below. Firstly, we recall that 
if ( )F ω  is analytic in ( )+Ω  ( )( )-Ω  then its complex conju-
gate ( )F ω  will be analytic in ( )-Ω ( )( )+Ω .

Proposition 1: Let ( )F z  be analytic in ( )+Ω  and ( )G z  

in ( )-Ω . Let both go to zero as 
p-

z , 1
2

p >  at large z . 
Then

( ) ( ) ( ) ( ) =  = 0F s G s ds F s G s ds
∞ ∞

-∞ -∞
∫ ∫ ,                 (7.8)

So that they are orthogonal in an L2 scalar product.

Proof: It follows from Cauchy’s theorem by closing 
the first integral on ( )-Ω  and the second on ( )+Ω . Note 
that, from (6.4b) and (7.6a)

( ) ( ) ( ) ( ) 2

0
1 = 

2
t tW t t dφ ω ω ω

π

∞

- +
-∞

+ -∫ q q             (7.9a)

( ) ( ) ( )2 2

0
1

2
t tt dφ ω ω ω

π

∞

- +
-∞

 + +  ∫ q q ,	    (7.9b)

since the cross terms vanish by virtue of proposition 1.

The derivation of the form of the minimum free en-

The tensor   can be regarded as a matrix in × �  . 
According to a result derived in [13] (see also [10], page 
236), based on a theorem of Gohberg and Krein [31], the 
quantity ( )ω  can always be factorized as followse

( ) ( ) ( ) ( ) ( )* = ,    = ω ω ω ω ω+ - ± 

     ,	      (7.1)

where all the zeros of det ( )( )ω±  and the singular-
ities of ( )ω±  are in ( )±Ω , respectively. The factoriza-
tion is unique up to multiplication by a constant unitary 
matrix on the right of ( )ω+ . The quantity ( )ω  is 
even in ω  so that it is a function of 2ω . It has an iso-
lated singularity at a point 2 2 = -ω α  if any one of its 
elements has a pole at this point. Then ( )ω+  has a 
pole at   iω α= ±  respectively. Also, ( )ω  may have 
non-isolated singularities, i.e. branch cuts. The quanti-
ty det ( )( )ω  will be zero at the point ω  if at least 
one element in each row (column) of ( )ω  is zero at 
this point. In (6.1), ( )* ω



  is the hermitian conjugate 
of ( )ω



 .

The quantity ∞ , defined by (5.22), is given by

( ) ( ) =  = ∞ + - +∞ -∞∞ ∞     . 		      (7.2)

If ±∞  can be chosen to be hermitian, which is possi-
ble at least in the commutative case considered later, then 
they are both equal to the square root of the non-nega-
tive tensor ∞ . We therefore put

 =  = sr+∞ -∞   . 				        (7.3)

The quantity ∞  vanishes, as noted earlier, for the 
dielectric discussed in part III. 

It will be assumed that ( )  = 0∞Λ . From (6.1a), one ob-
tains

( ) ( ) ( ) ( ) ( ) =  .  = -  . W u u du u u du
∞ ∞

-∞ -∞

∞ ∫ ∫ Σ Λ Σ Λ            (7.4a)

( ) ( ) ( )12
1 -  . 
2

s u u s duds
∞ ∞

-∞ -∞

= -∫ ∫  � Λ Λ  	                  (7.4b)

( ) ( ) ( )12
1 -  . 
2

t ts u u s duds
∞ ∞

-∞ -∞

= -∫ ∫  � Λ Λ  	                  (7.4c)

( ) ( ) ( )1  . 
2

t t
F F dω ω ω ω

π

∞

-∞

= ∫ Λ Λ  	                  (7.4d)

( ) ( )( ) ( ) ( ) ( )( )1  . 
2

t t t t dω ω ω ω ω ω
π

∞

+ - + -
-∞

= + +∫ Λ Λ Λ Λ ,   (7.4e)

since ( )U ∞  vanishes. In (7.4c), the quantity t is now 
an arbitrary parameter, which can be re-identified as the 

eIt is pointed out in [29] and [10], page 322 that this factorization 
problem is equivalent to what is termed in [32] a homogeneous 
Hilbert problem or indeed a homogeneous Riemann-Hilbert prob-
lem, for the half plane. In [15-17], the term Riemann-Hilbert prob-
lem is used in a corresponding context. Regarding such terminol-
ogy, a remark before (7.10) below, is also of interest.
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( ) ( ) ( )( )lim  = t
sri t t−→∞

−q K
ω

 ω ω  Λ , 	 (7.18b)

( ) ( )1 1 =
2 2

t d t
π

∞

+−∞
± −∫ q Kω ω , 		  (7.18c)

( ) ( ) ( )( )1 1 = 
2 2

t
srd t t

π
∞

−−∞
± −∫ q Kω ω  Λ . (7.18d)

From (7.9), (7.15), (7.16) and (4.26), we deduce that 
the total dissipation corresponding to the minimum free 
energy is given byf

( ) ( ) ( ) ( )
21 =  =  = 0

2
t t

m mt u du d W
π

∞

+−∞ −∞
∞ ≥∫ ∫ q optD D ω ω . (7.19)

Differentiating this relation with respect to t and us-
ing (7.17a), (7.18c), gives

( ) ( ) 2
 = m t tKD . 				       (7.20)

From (7.14) and (7.18b), it follows that

( ) ( ) [ ] ( )1
srt

m

t t
i

−

− →∞

−
→−

K
ωω

ω

Λ
Λ ,               (7.21)

which indicates a discontinuity between the history 
( )t sΛ , s +∈R , leading to ( )tΛ  and the optimal contin-

uation ( )t sΛopt
, at 0s = , given by

( ) ( ) [ ] ( )10  = t
srt t-- KΛ Λopt  . 		     (7.22)

This discontinuity has the form

( ) ( ) [ ] ( )10 0  = t t
sr t-- KΛ Λopt  , 		     (7.23)

and is related to the rate of dissipation (7.20).

If sr  vanishes (which is true for the case dealt with 
in part III) then the discontinuity, as given by (7.23), be-
comes infinite. Such a continuation cannot of course be 
implemented, but can be approximated to whatever ac-
curacy desired, at least in principle. The associated free 
energy, given by (7.16), and rate of dissipation, given by 
(7.20), are finite quantities, however.

Also, by considering the limit   0ω → , correspond-
ing to large times, one can deduce, as in [11] and subse-
quent papers, that the optimal continuation at infinity 

( )t -∞Λopt  does not vanish, though the trial continu-
ations used to obtain the optimum did vanish at large 
future times.

We can re-express these results in terms of relative 
histories, in a manner closely analogous to that outlined 
in [10], page 242. Instead of (7.6), we write

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =  =  = t t t t t
r t

i
−

− + − +− −P p p
ω

ω ω ω ω ω ω
ω


 Λ ΛQ

( ) ( ) ( ) ( )
( ) ( )1 1 =  = 

2 2

t
t td d t

iπ π
∞ ∞ −

± ±−∞ −∞

′ ′
′ ′+

′ − ′ ′ −∫ ∫



P
p q

ω ω
ω ω ω ω

ω ω ω ω ω


Λ

,  (7.24)

ergy was given in [11,13] or [10], page 241, by means of 
a variational argument and equivalently in [8,9] (see also 
[10], page 245) by solving a Wiener-Hopf equation. This 
latter method can also be expressed as a Hilbert (or Rie-
mann-Hilbert) problem for the half-plane ([29] and [10], 
page 320).

A simpler argument is used here, similar to that de-
scribed in [10], page 245. With the aid of (7.1), let us 
write (7.4e) as

( ) ( ) ( ) ( ) ( ) 21 = 
2

t t tW dω ω ω ω ω
π

∞

- + - -
-∞

∞ - +∫ q q  Λ . (7.10)

Putting

( ) ( ) ( ) ( )1  = t t tω ω ω ω- - - -+q q  Λ , 	    (7.11)

where ( )1
t ω-q  is analytic on ( )+Ω , we have

( ) ( ) ( ) 2

1
1 = 

2
t tW dω ω ω

π

∞

- +
-∞

∞ -∫ q q

( ) ( )2 2

1
1= 

2
t t dω ω ω

π

∞

- +
-∞

 +  ∫ q q , 	    (7.12)

by proposition 1. Only ( )1
t ω-q  depends on ( )t ω-Λ . 

Therefore, the minimum must be given by choosing a 
value of ( )t ω-Λ  such that

( )1   0t ω- =q , 				      (7.13)

as the optimal continuation ( )t
m ω-Λ . It follows that

( ) ( ) ( ) ( ) ( ) ( )
1

1
 = -  = -

2

t
t t
m d

i
ω ω ω

ω ω ω ω
π ω ω

- ∞
- - -

- - - +
-∞

  ′ ′+  ′   ′ -∫q
Λ

Λ
 

 . (7.14)

The resulting minimum value of ( )W ∞  is

( ) ( )
21 = 

2
t d

π
∞

+−∞
∞ ∫ ω ωqoptW . 		    (7.15)

The maximum value of ( )RW t  is the minimum free 
energy and has the form

( ) ( ) ( )
2

0
1 = 

2
t

m t t dψ φ
π

∞

−−∞
+ ∫ q ω ω 	 (7.16a)

( ) ( ) ( ) ( )0
1

2
t t
m mt dφ

π
∞

− −−∞
= + Λ ⋅ Λ∫ ω ω ω ω ,   (7.16b)

which follows from (7.5), (7.9) and (7.15).

With the aid of (5.23) and (7.7), we obtain [11,13]

( ) ( ) ( ) = - qt td i t
dt + + −q Kω ω ω , 		  (7.17a)

( ) ( ) ( ) ( ) ( ) = -t td i t t
dt − − −− +q q Kω ω ω ω Λ , (7.17b)

( ) ( ) ( )1 = 
2

t
rt d

π
∞

− +−∞∫K ω ω ω Λ . 		  (7.17c)

and

( ) ( )lim   = t i t+→∞
q K

ω
ω ω , 			   (7.18a) fThe quantities ( )m tψ  and ( )m t�  are the same as those de-

scribed in [15,17] as the recoverable and irrecoverable ener-
gies, respectively.
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contour on -Ω , since ( )ω+  and ( )ω+
tΛ  have no singu-

larities in the lower half plane. This allows us to write 
(7.28a) in the explicitly convergent form

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2
0 1 22

1 2

. , ,
 = 

4

t t
m m

m
it t d d

ω ω ω ω ω ω
ψ φ ω ω

π ω ω
∞ ∞ + +

-∞ -∞

Λ -  +
-∫ ∫

  Λ . (7.34)

The integral term remains non-negative, so the quantity

( ) ( ) ( ) ( ) ( )( )1 2 2 1
1 2

1 2

,  = i
ω ω ω ω

ω ω
ω ω

+ - + --

-

   
  (7.35)

must have the property of ensuring this. By using very 
localized choices of ( )t ω+Λ , we deduce that the “diago-
nal elements” of ( )1 2,ω ω  are non-negative, as in remark 
IV.1. Using a prime to denote differentiation, we can 
write these as

( ) ( ) ( ) ( ) ( )( )' ' = 0 i Rω ω ω ω ω ω+ - + -- ≥ ∈     . (7.36)

The quadratic functional representations (7.28) (7.29) 
and (7.30) are generalized in [33] to apply to any free 
energy. This treatment is for the scalar case, but is easily 
extended to tensor formulae.

The minimum free enthalpy corresponding to the 
minimum free energy may be deduced from (3.11), 
(4.24), (7.16a) and (7.27) to be

( ) ( ) ( ) ( ) ( ) ( )
21 = .  = -

2
t

m mt t t t S t dψ ω ω
π

∞

--∞
- + ∫ q∑ ΛF  (7.37a)

( ) ( )
21= -

2
tt dφ ω ω

π
∞

∞ --∞
+ ∫ p , 		  (7.37b)

Where (see (4.20))

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0
1 = . ,      = .  = -
2 eS t t t t t t t tφ φ∞ ∞-∑ Λ Λ Λ F . (7.38)

The function ( )S t  was first introduced in [11], in a 
scalar mechanics context. The quantities ( )0 tφ  and ( )tφ∞  
also appear in that work, the latter being the equilibrium 
(elastic) energy. 

It is easy to show that ( )m tF  obeys the Graffi con-
ditions listed in subsection III A. Property P2 is im-
mediately apparent while P3 is equivalent to (3.7). The 
relation (4.26) holds for the minimum free energy, as 
observed after (7.32). The time derivative of (4.26) gives 
(3.7), on recalling the derivation of (7.20). Property P1 
can be proved with the aid of (7.37b), by showing that

( )
( ) ( ) = 

S t
t

t
∂
∂Λ

∑ . 				       (7.39)

Remark VII.1: It was shown in [13] that ( )qt ω-
, defined by (7.7), is a function of the minimal state in 
the sense defined after (4.32). This result transfers to the 
present context without alteration. From (7.16), we de-
duce that ( )m tψ  is a function of the minimal state, as 
defined by (4.33).

We seek a representation for some quantities that 
contribute to the minimum free energy, given by (7.16), 
in terms of time domain quantities. Let us first define the 

By closing the contour on +Ω , we find that

( ) ( ) ( ) ( ) ( ) ( ) = ,          = t t t tt
i

ω
ω ω ω ω

ω
-

+ +- - -p q p q


Λ .  (7.25)

With the aid of (6.4), relation (7.9) is replaced by

( ) ( ) ( ) ( )2 21 =  
2

t tW t U t dω ω ω
π

∞

- +-∞
 + +  ∫ p p . (7.26)

The minimum free energy has the form

( ) ( ) ( )
21 = 

2
t

m t U t dψ ω ω
π

∞

--∞
+ ∫ p , 	    (7.27)

which is an alternative form of (7.16a). Equations 
(7.19) and (7.20) are unchanged. Using (7.16a) and 
(7.27), we can write ( )m tψ  in the form

( ) ( ) ( ) ( ) ( )1 1 2 2
0 1 22

1 2

. ,
 = 

4

t t
m

m
it t d d

ω ω ω ω
ψ φ ω ω

π ω ω
∞ ∞ + +

+ --∞ -∞

Λ
+

-∫ ∫
 Λ  (7.28a)

( ) ( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
 

4

t t
r m riU t d d

ω ω ω ω
ω ω

π ω ω
∞ ∞ + +

+ --∞ -∞

Λ
= +

-∫ ∫
 Λ , (7.28b)

( ) ( ) ( )1 2 1 2,  = m ω ω ω ω+ -   , 	  	 (7.28c)

by carrying out the integration with respect to ω  over 
+Ω  or over -Ω . The notation in the denominator of the 

integral in (7.28) means that if we integrate first over 1ω
, it becomes ( )1 2 - ω ω-  or if 2ω  first then it is ( )1 2 - ω ω+ . 
Also, ( )mD t , given by (7.20), can be expressed as

( ) ( ) ( ) ( )1 1 2 2 1 22

1 = . ,
4

t t
m r m rD t d dω ω ω ω ω ω

π
∞ ∞

+ +-∞ -∞
Λ∫ ∫  Λ . (7.29)

From (7.19), we deduce that

( ) ( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
 = -

4

t t
m

m
iD t d d

ω ω ω ω
ω ω

π ω ω
∞ ∞ + +

- +-∞ -∞

Λ
-∫ ∫

 Λ  (7.30a)

( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
= -

4

t t
r m ri d d

ω ω ω ω
ω ω

π ω ω
∞ ∞ + +

- +-∞ -∞

Λ
-∫ ∫

 Λ .  (7.30b)

Using the Plemelj formulae on the integral over ω1, 
one can write (7.28a) as

( ) ( ) ( ) ( ) ( )1 1 2 2
0 1 22

1 2

. ,
 = 

4

t t
m

m
it t p d d

ω ω ω ω
ψ φ ω ω

π ω ω
∞ ∞ + +

-∞ -∞

Λ
+

-∫ ∫
 Λ

( ) ( ) ( )1 .
4

t t dω ω ω ω
π

∞

+ +-∞
+ Λ∫  Λ  		     (7.31)

where P indicates a principal value integral with re-
spect to 1ω  and (6.4) has been used. Also, (7.30a) gives

( ) ( ) ( )( )0
1 = 
2mD t W t tφ-

( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
4

t t
mi p d d

ω ω ω ω
ω ω

π ω ω
∞ ∞ + +

-∞ -∞
-

-∫ ∫
Λ Λ . (7.32)

Adding these two equations, we retrieve (4.26) for the 
minimum free energy. One also finds that

( ) ( ) ( )1 2 1 2
1 2

1 2

. ,
 = 0

t t
m d d

ω ω ω ω
ω ω

ω ω
∞ ∞ + +

+ --∞ -∞

Λ
-∫ ∫

 Λ ,    (7.33)

by integrating over 2ω  for example and closing the 
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ever, which are apparent on comparison with the formu-
lae below. Consider a history and current value ( )( ),t tΛ Λ  
defined by

( ) ( ) ( ) = Ce ,   = i t i t tt Ce s t s− − ++ −ω ωΛ Λ Λ ,     (8.1)

Where C∈  is an amplitude and C  its complex 
conjugate. Furthermore,

0 0 = ,   = ,  ,  niη ++
− + −− ∈ ∈ ω ω ω ω ω . 	     (8.2)

The quantity η  is introduced to ensure finite results 
in certain quantities. The Fourier transforms of the histo-
ry and relative history (see (5.25)) are given by

( ) ( ) ( )
 = 

i t i t
t e e

i i

− +−

+
− +

+
+ −

C C
ω ω

ω
ω ω ω ω

Λ ,               (8.3a)

( ) ( ) ( )
 = 

i t i t
t
r

e e
i i

− +−
− +

+ − −
− +

− +
+ −

C C
ω ωω ω

ω
ω ω ω ω ω ω

Λ . (8.3b)

From (4.17), the quantity ( )t∑  has the form

( ) ( ) ( ) ( )0 = C Ci t i tt t e e− +−
+ − + +′ ′+ + −ω ωω ω  ∑ Λ . (8.4)

The work ( )W t  done by the electromagnetic field to 
achieve the state ( )( )t tΛ , Λ , given by (4.25), takes the form

( ) ( )0 = W t tφ

( ) ( )2 21 C C C C
2

i t i te e− +−
+ − + +′ ′ + ⋅ + ⋅ − 

ω ωω ω 

( ) ( )
( )

( )
C C

i te − +−

− + − + + +
− +

′ ′+ ⋅ − −   −

ω ω

ω ω ω ω
ω ω

 
      (8.5)

where the symmetry of ( )+′ ω  has been used. Note 
that ( )W t  diverges as   0η → , as would be expected on 
physical grounds. Taking the limit   0η →  in the terms 
which are convergent, we can write this in the form 

( ) ( )0 = W t tφ

( ) ( )0 02 2
0 0

1 C C C C
2

i t i te e−
+ + ′ ′ + ⋅ + ⋅ − 

ω ωω ω 

( ) ( ) ( ) ( ) 0
0 0 0 0 0 0

0

C 2 Cc c s st
η

 ∂′ ′ ′ ′+ ⋅ + + ∂ 
+

ω
ω ω ω ω ω ω

ω
   

  (8.6)

on using (5.8). The divergence is associated with 
( )s′ ω , which is physically reasonable. We shall require 

the relation

( ) ( ) = ± ± −ω ω  . 			        (8.7)

for complex ω ([10], page 257). Closing the contour 
on ( )+Ω , we obtain

( ) ( ) ( ) ( ) ( ) = - C
i t i t

t e e
i i

− +−

+ − − − +
− +

 
− + + -

q C
ω ω

ω ω ω
ω ω ω ω

  . (8.8)

Thus,

( ) ( )
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−
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quantities ( )Y ,t s±
 ( )Y   :t s ∈ 

( ) ( )1 = ,   
2

t ts e d sω ω
π

∞ -
- --∞

∈∫Y q iws          (7.40a)

 0,  s ++= ∈ , 				    (7.40b)

( ) ( )1Y  = - ,   
2

t ts e d sω ω
π

∞ +
+ +-∞

∈∫ q iws       (7.40c)

 0,  s --= ∈ , 				    (7.40d)

( ) ( ) ( )1Y  = ,   
2

t ts e d sω ω ω
π

∞

- +-∞
∈∫  Λ iws   (7.40e)

( ) ( ) t ts s+ -= +Y Y . 				     (7.40f)

The second and fourth relations follow from the analyt-
icity properties of ( )qt ω±

. Since ( ) ( )2q   t Lω± ∈  , it follows 
that ( ) ( )2  t s L ±

+ ∈Y  . Also, since ( ) ( ) ( )2  t Lω ω- + ∈ Λ , 
we have ( ) ( )2t s L∈Y  . Thus, we have

( ) ( ) ( ) ( ) = ,    s ,          = ,    st t t ts s s s-
- +∈ ∈ +Y Y Y Y  . (7.41)

Recalling Parseval’s formula, we have, from (7.40e) 
and (6.4b) that 

( ) ( ) ( )
2

0 0
 =  YtW t t s dsφ

∞

∫  		  (7.42a)

( ) ( ) ( )
2 2

t tt s ds s ds
∞

-∞
= + +∫ ∫Y Y , 	 (7.42b)

which is of course the time domain version of (7.9b). 
We deduce from (7.16) that

( ) ( ) ( )
2

0 = t
m t t s dsψ φ

∞

-∞
+ ∫ Y , 		     (7.43)

and, from (7.19)

( ) ( )
2

0
 = t

mD t s ds
∞

∫ Y . 			      (7.44)

Relations (7.42b) - (7.44) are generalizations of equa-
tions (39) and (42) of [15]. These quantities and others 
introduced in [18] and [10], page 269, allow us to con-
struct the kernels in (4.23), for the minimum free energy.

We assume that the eigenspaces of ( )  do not de-
pend on t. Then, a direct extension to the tensorial case of 
the method used in [11] for a scalar constitutive relation, 
in particular a simple direct construction of ( )ω+  and 

( )_ ω , is possible. Also, ( )ω+  and ( )_ ω  commute. 
These developments are presented in [13] and [10], pag-
es 134, 256. In particular, an example developed in detail 
for mechanics. This is closely analogous to the case of 
an isotropic dielectric, namely the special case of (4.28) 
where all matrices acting on the electric and magnetic 
fields are proportional to the unit matrix.

The Minimum Free Energy for Sinusoidal 
Histories

The developments outlined here are similar to those 
in [10], page 258. There are significant differences how-
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core of what is new and physically important about the 
present work. The free enthalpy is introduced to enhance 
the analogy between the two theories.

The thermodynamically based approach yields very 
general constitutive equations for the materials, namely lin-
ear relations between electromagnetic fields and inductions.

Physical consequences of the laws of thermodynam-
ics are explored. In particular, the qualitative behavior of 
the relaxation function can be deduced.

General tensor formulae are derived for the minimum 
free energy and related quantities of interest, which gen-
eralizes earlier work. An expression is given for the min-
imum free energy for sinusoidal histories, which are the 
most physically interesting.

Finally, it is emphasized that the continuum thermo-
dynamics and optics based approaches, while seemingly 
very different, are in fact that the same.
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gives the average over a time cycle. We have

( ) ( )0 2 = ψ ⋅ + ⋅
0

C C C Cm av
ω . 		     (8.13)

Note that ( )2 ω  must be a non-negative quantity in 
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with respect to t.
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