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a b s t r a c t

Vitamin D deficiency (VDD) is highly prevalent worldwide. The classical role for vitamin D is to regulate
calcium absorption form the gastrointestinal tract and influence bone health. Recently vitamin D re-
ceptors and vitamin D metabolic enzymes have been discovered in numerous sites systemically sup-
porting diverse extra-skeletal roles of vitamin D, for example in asthmatic disease. Further, VDD and
asthma share several common risk factors including high latitude, winter season, industrialization, poor
diet, obesity, and dark skin pigmentation.

Vitamin D has been demonstrated to possess potent immunomodulatory effects, including effects on T
cells and B cells as well as increasing production of antimicrobial peptides (e.g. cathelicidin). This
immunomodulation may lead to asthma specific clinical benefits in terms of decreased bacterial/viral
infections, altered airway smooth muscle-remodeling and efunction as well as modulation of response
to standard anti-asthma therapy (e.g. glucocorticoids and immunotherapy).

Thus, vitamin D and its deficiency have a number of biological effects that are potentially important in
altering the course of disease pathogenesis and severity in asthma. The purpose of this first of a two-part
review is to review potential mechanisms whereby altering vitamin D status may influence asthmatic
disease.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Asthma is a disease characterized by variable airway obstruc-
tion, respiratory symptoms, bronchial hyper-responsiveness and
airway inflammation [40]. It represents a major public health
problem, affecting ~300 million people worldwide [164]. Due its
prevalence, asthma costs the US health care system an estimated
$56 billion annually [17].

The exact cause of asthma remains unknown. For reasons not
completely understood, asthma prevalence and severity has
increased markedly since the ~1960s [39,69]. Further, asthma
prevalence continues to increase in both children and adults and
across ethnicities [164,178]. However, this increase does appear
related to industrialization [9,38,164,229] and increased adiposity

[23,221,231]. Additionally, asthma seems to be more prevalent at
higher latitude [117,134]. Furthermore, the severity of asthma
symptoms appears related to winter season [117,129,221] and
darker skin pigmentation [9,102,121,177,187]. Finally, asthma is
associated with exposure to cigarette smoke [103,254], pollution
[190,278] and physical inactivity [256]. Although there is a complex
interaction between these factors and asthma pathogenesis, one
hypothesis that could potentially partially explain these associa-
tions is vitamin D deficiency (VDD).

This first part of a two-part review will introduce vitamin D
metabolism and physiology. However, the main focus will be an
exploration of the diverse mechanisms by which vitamin D may
influence asthmatic disease. We have reviewed the evidence link-
ing vitamin D and asthmatic disease from human studies in part
two of this review [127].

2. Methods

References were identified by searches of MEDLINE, CINAHL,
EMBASE and online Cochrane databases through January 2015.

* Corresponding author. Respiratory and Sleep Diagnostics Department, Connolly
Hospital, Blanchardstown, Dublin 15, Ireland. Tel.: þ353 831458796.

E-mail addresses: conorkerley@gmail.com (C.P. Kerley), basil.elnazir@amnch.ie
(B. Elnazir), doctorfaul@gmail.com (J. Faul), liamcormican@rcsi.ie (L. Cormican).

Contents lists available at ScienceDirect

Pulmonary Pharmacology & Therapeutics

journal homepage: www.elsevier .com/locate/ypupt

http://dx.doi.org/10.1016/j.pupt.2015.02.004
1094-5539/© 2015 Elsevier Ltd. All rights reserved.

Pulmonary Pharmacology & Therapeutics 32 (2015) 60e74



Author's personal copy

Keywords used included vitamin D and asthma, wheezing, airway
inflammation, airway smooth muscle, and respiratory infection.
Only manuscripts published in English are included. Articles were
chosen according to their relevance for this review and their bib-
liographies were also searched for further references.

3. Results and discussion

3.1. Metabolism & physiology of vitamin D

Vitamin D can be described as a pre-prohormone. Vitamin D,
either orally ingested or from ultraviolet B (UV-B) exposure is
mostly inactive and must be dihydroxylated to its metabolically
active form: 1,25-dihydroxyvitamin D (1,25D), also known as cal-
citriol. In the first step vitamin D is hydroxylated in the liver to form
25-hydroxyvitamin D (25(OH)D), also known as calcidiol. 25(OH)D
is the storage form of vitamin D, which reliably indicates systemic
vitamin D status [94,105,106]. The second hydroxylation to produce
1,25D occurs primarily in the kidney, but also extrarenally [99,282].
Unlike extrarenal production of 1,25, renal production of 1,25D is
tightly regulated by serum levels of parathyroid hormone, calcium

and phosphorus. However, tissue and intracellular 1,25 regulation
is independent of serum 25(OH)D levels [151,222]. 1,25D has sys-
temic endocrine, paracrine and autocrine effects.

3.1.1. 1a-hydroxylase
Animal and human studies demonstrate that the enzyme

responsible for the second hydroxylation (1a-hydroxylase or
CYP27B1) i.e. converting 25(OH)D into active 1,25D is present in
many immune cells such as macrophages [83,151,193,194],
including monocytes [132]; pulmonary alveolar macrophages [3], T
cells [290], B cells [51] and dendritic cells [100,232] as well as many
sites relevant to asthma for example lung fibroblasts [189], airway
smooth muscle cells [15] and airway epithelial cells [91]. The
presence of 1a-hydroxylase at these sites enables local hydroxyl-
ation of 25(OH)D into 1,25D and potentially enables high concen-
trations of 1,25D to increase the expression of vitamin D regulated
genes with important immune functions. This however, depends
on substrate availability (i.e. 25(OH)D). Supporting active hydrox-
ylation of 25(OH)D to 1,25D in atopy/asthma airways, it has
recently been demonstrated that 1,25D levels were low in airways
but increased after allergen challenge and the increase correlated

Abbreviations list

1,25D 1,25-dihydroxyvitamin D
25(OH)D 25-hydroxyvitamin D
AAR allergic rhinitis þ allergic asthma
ACT asthma control test
AMP antimicrobial peptide
AR allergic rhinitis
ASM airway smooth muscle
BALF bronchoalveolar lavage fluid
BMD bone mineral density
BMI body mass index
CI confidence interval
COX-2 cyclooxygenase-2
CRTAM class I MHCerestricted T celleassociated molecule

gene
d day
DBRCT double-blind, randomized, placebo controlled trial
DC dendritic cell
FoxP3 forkhead box P3
GCS glucocorticoids
GM-CSF granulocyte macrophage colony-stimulating factor
h hour
H2O2 hydrogen peroxide
HBECs human bronchial epithelial cells
hCAP-18 human cathelicidin antimicrobial peptide-18
ICS inhaled corticosteroid
IFN g interferon gamma
IgE immunoglobulin E
IgG immunoglobulin G
IL interleukin
IL1RL1 interleukin 1 receptor-like 1
IP-10 interferon gamma-induced protein 10 is a protein that

in humans is encoded by the CXCL10 gene and is a
small cytokine belonging to the CXCchemokine family.

IU international unit
LL-37 the protein precursor to hCAP-18 which undergoes

extracellular cleavage to generate a 37-residue active
cationic peptide

LPS lipopolysaccharides
MAP mitogen-activated protein
MKP-1 mitogen-activated protein kinase 1
NF-kB nuclear factor kappa-light-chain-enhancer of activated

B cells
NK natural killer
OCS oral corticosteroid
OR odds ratio
PBMCs peripheral blood mononuclear cells
PGE2 prostaglandin E2
RANTES regulated on activation, normal T cell expressed and

secreted. RANTES is also known as Chemokine (CeC
motif) ligand 5 (also CCL5).

RORC retinoid-related orphan receptor C
ROS reactive oxygen species
RSV respiratory syncytial virus
RTI respiratory tract infection
RXRa retinoid X receptor-a
SIT specific immunotherapy
SNP single nuclear polymorphism
SR steroid resistant
SS steroid sensitive
sST2 soluble decoy receptor for Il-33
T-regs regulatory T cells
TGF transforming growth factor
Th T helper
TLRs the toll-like receptors
TNF-a tumor necrosis factor alpha
UV-B ultraviolet-B radiation
VDBP vitamin D binding protein
VDD vitamin D deficiency
VDI vitamin D insufficiency
VDR vitamin D receptor
VDRE vitamin D response element
WBCs white blood cells
gd T cells gamma delta T cells
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with the inflammatory response and increases in cathelicidin [149]
e see section 3.2.3.1.

3.1.2. Vitamin D receptor
The vitamin D receptor (VDR) is a member of the steroid re-

ceptor superfamily. Over 3000 genes are responsive to 1,25D [29]
and its biological effects are mediated through binding to the
VDR and inducing either genomic or non-genomic effects [59,182].
Upon 1,25D binding, VDR translocates from the plasma membrane
to the nucleus where it transcriptionally activates genes via the
vitamin D response element (VDRE), thereby affecting transcription
of other genes [59]. VDR interacts with multiple proteins including
the retinoid X receptor-a (RXRa) to mediate its transcriptional ef-
fects [22,202].

VDR is expressed in most tissues and regulates cellular differ-
entiation and function in many cell types. VDRs were initially
described in lymphocytes as far back as 1983 [201]. Since this
discovery, VDR has been described in a variety of immune cells
[258] for example macrophages [201], dendritic cells [4,34] as well
as B- and T-cells [95,155,156] such as CD4þ and CD8þ T-lympho-
cytes [258] and natural killer (NK) T-cells [5]. VDR is also present at
further locations relevant to asthma pathogenesis, including res-
piratory epithelial cells [91], fibroblasts [205,206] and in substantial
quantities in airway smooth muscle [15,35,36]. Upon VDR activa-
tion, the expression of multiple target genes is altered, which has
the potential to modify cellular processes for example inflamma-
tion and immune defense [151,220]. Once formed inside a cell/tis-
sue, 1,25D will be metabolized and degraded inside that cell/tissue.
Therefore, the presence of both 1a-hydroxylase and the VDR in
these specific locations suggests local effects of 1,25D in these cells/
tissues.

Despite recent advances in our understanding of vitamin D, its
deficiency is highly prevalence worldwide [104] with many po-
tential systematic effects. Recently, intense interest has focused on
the influence of vitamin D for respiratory diseases, particularly
asthma.

3.2. Potential mechanisms by which vitamin D may modulate
asthmatic disease

There are multiple potential mechanisms based on both in vitro
and in vivo research by which increasing vitamin D status may in-
fluence asthmatic disease. These mechanisms include: effects on
lung development, immunomodulation, airway smooth muscle
modulation, genetic effects, and altering the effect of anti-
asthmatic therapy. This section is intended to summarize the
existing mechanistic data regarding vitamin D and asthma
pathways.

3.2.1. Structural effects
Early investigations in 50 day old rats born to mothers deprived

of dietary vitamin D showed reduced lung compliance compared to
rats born to mothers whose diet was supplemented with vitamin D
[76]. Vitamin D regulated genes are found to be over-represented in
developing human and mouse lung transcriptomes [128]. This
finding suggests a significant association between early lung
development and asthma related phenotypes for vitamin D
pathway genes. Further, animal models have shown that VDD alters
lung structure and creates deficits in lung function [287]. The same
group used a community-based prospective birth cohort to show
that forced vital capacity Z-scores in human children of both sexes
at age 6 were positively associated with maternal 25(OH)D. This
effect was not apparent at 14 years of age, however maternal VDD
was positively associated with asthma at 6 years of age but only in
males only [288]. Indeed, children who were on inhaled

corticsteroids had poorer lung growth if they were VDD compared
to those that were not VDD [274].

Using an in vivo rat model, it was recently determined that VDD
was associated with increased airway resistance following meth-
acholine challenge and that this defect was blocked by vitamin D3
supplementation [280]. Therefore, it is plausible that transient and/
or consistent VDD in early life may lead to permanent susceptibility
to poorer respiratory outcomes, which may be independent of
atopy. Additional studies suggest that vitamin D is an important
regulator of lung growth in utero [68,188,189]. 1,25D has been
shown to suppress features of inflammation-induced airway
remodeling in fetal airway smooth muscle cells, suggesting the
importance of 1,25D in preventing and treating detrimental struc-
ture changes in developing lungs [35,36]. See also section 3.2.5 on
airway smooth muscle.

3.2.2. Anti-inflammatory effects
The broad spectrum anti-inflammatory effect of vitamin D on

various pathologies, including asthma, was recently reviewed
[271,277]. Briefly, Vitamin D has been shown to inhibit the pro-
duction of pro-inflammatory cytokines such as interleukin-6 (IL-6)
and tumor necrosis factor alpha (TNF-a) by monocytes via the in-
hibition of p38MAP kinase [285]. NF-kB is a ubiquitously expressed
transcription factor. Free NF-kB translocates to the nucleus where it
activates transcription of pro-inflammatory cytokines, anti-
apoptotic factors as well as of enzymes involved in the generation
of pro-inflammatory mediators such as COX-2 [125,247]. Activation
of VDR inhibits NF-kB activation and signaling. Further, it has been
shown that 1,25D down-regulates NF-kB levels in lymphocytes
[279].

Compared to control airway epithelial cells from adult asthmatic
during exacerbation, lipopolysaccharides (LPS) stimulated airway
epithelial cells demonstrated increased reactive oxygen species
(ROS), TNF-a, NFkB expression and phosphorylation as well as
increased DNA damage. However, the addition of 1,25D blunted
these effects significantly. Further, stimulation with hydrogen
peroxide (H2O2) induced ROS production and decreased glucocor-
ticoid receptor nuclear translocation as compared to untreated
cells. Pre-treatment with 1,25D significant blunted this in a dose-
dependent manner and enhanced the dexamethasone induced
glucocorticoid receptor nuclear translocation in H2O2 stimulated
cells [139].

3.2.3. Immunomodulation
Vitamin D has numerous effects on the immune system [56],

many of which are of relevance to the respiratory system [162]. For
example, vitamin D has potential to inhibit inflammation and in-
fections [151,263,276] by modulation of both the innate and
adaptive immune systems [60].

3.2.3.1. Innate immune. The addition of 1,25D to humanmonocytes
inhibits their expression of the toll-like receptors (TLRs) 2 and 4
leading to reduced production the pro-inflammatory cytokine TNF-
a [220,223]. In vitro studies have shown that 1,25D increases the
proliferation and maturation of monocytes into macrophages
[133,192]. Further studies have shown that VDD is associated with
defective macrophage function, including impaired chemotaxis,
phagocytosis and increased production of pro-inflammatory cyto-
kines [193,194].

Antimicrobial peptides (AMPs) are a group of highly diverse
micropeptides, which exert potent antimicrobial effects [74] and are
key modulators of lung inflammation and infection risk in asthma
[98]. Human cathelicidin antimicrobial peptide-18 (hCAP-18) is the
only known member of the cathelicidin family of antimicrobial
peptides that is expressed by humans [163]. LL-37 is a 37-residue

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e7462
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active cationic peptide and is the cleavage product of cathelicidin
[237]. VDR activation by 1,25D regulates genes encoding for cath-
elicidin and other cationic peptides such as human defensin 2 and 4
by human cell lines [80,261], and multiple human cells including
monocytes/macrophages and epithelial cells [81,226,261,263] and
hence triggers their expression [80,150,151,261] at multiple sites
including the airways of healthy individuals [91,276] and cystic
fibrosis patients [276].

Additionally, the in vitro induction of hCAP-18 by 1,25D in
various human cells, including monocytes, neutrophils and respi-
ratory epithelial cells enhances antimicrobial activity against mul-
tiple respiratory pathogens including Mycobacterium tuberculosis,
Bordetella bronchiseptica and Pseudomonas aeruginosa
[151,163,261,276].

A cross sectional analysis 650 mostly black smokers revealed
that participants with low cathelicidin had significantly lower
forced expiratomy volume in 1 s compared to higher cathelicidin, a
relationship which remained after adjusting for confounders
(p ¼ 0.035). Although, 25(OH)D was associated with cathelicidin
levels, lung function decrements associated with low cathelicidin
were greatest among individuals with lower 25(OH)D levels [138].

25(OH)D did not correlate with serum LL-37 levels in healthy
individuals, but did correlate with the in vitro capacity to induce
monocyte hCAP-18 expression [2]. Further, a positive correlation
between serum 25(OH)D and cathelicidin levels has been noted
among healthy adults [24,62], subjects in intensive care [116], as
well as asthmatic children and adults [79]. Further, a significant
change in LL-37 levels was observed in subjects after vitamin D
supplementation, but only in those with the greatest increase in
serum 25(OH)D [24]. Liu et al. assessed 1,25D and ll-37 responses to
allergen exposure in bronchoalveolar lavage fluid (BALF) of allergic
human. Compared to saline control, exposure to allergen resulted
in significantly increased 1,25D (p ¼ 0.0006) as well as significantly
increased LL37 (p¼ 0.0005). Increases in 1,25D and LL37 correlated
with each other (P < 0.0001) and with inflammatory cellular
changes (p < 0.0001) [149]. These reports highlight a potential for
vitamin D to influence cathelicidin and related peptide and
potentially exert broad antimicrobial effects, which may have po-
tential to affect infection risk and hence susceptibility to asthma
exacerbation (see section 3.2.4).

3.2.3.2. Adaptive immune system. In contrast to its effect on the
innate immune system,1,25D seems to induce immunosuppressive
effects on the adaptive immune system through inhibition of IL-12
secretion [57], inhibition of lymphocyte proliferation and immu-
noglobulin synthesis [86] as well as impairment of dendritic cell
(DC) maturation, leading to the generation of tolerogenic DCs and
T-cell anergy [4].

3.2.3.3. B lymphocytes (B cells). 1,25D has multiple effects on B
cells, including inhibition of B cell proliferation, differentiation to
plasma cells, and production of immunoglobulins [51].

Healthy adults supplemented with oral vitamin D3 during the
winter months (2000e8,000 IU/d) for 12 weeks had increased
frequencies of circulating CD38 expressing B cells in peripheral
blood but not CD23 expressing B cells. This effect was confirmed
with in vitro experiments [66]. This is the first evidence that
vitamin D supplementation targets peripheral B lymphocytes.

3.2.3.4. T lymphocytes (T cells). T lymphocytes have a central reg-
ulatory role in the pathogenesis of asthma. It has been known since
1985 that 1,25D has potential to inhibit T cell cycle and proliferation
[212]. 1,25D directly targets T lymphocytes [257] and can act
directly on T cells inhibiting the development and function of

multiple T-helper (Th) cells including Th1, Th9 and Th17 cells while
favoring the development of regulatory T-cells [122,243].

The role of vitamin D on Th2 cells is not consistent. Some have
suggested a direct signaling effect of vitamin D on naive CD4þ T
cells toward Th2 differentiation or maintenance [135,165]. Indeed,
murine evidence suggests that vitamin D shifts the Th1eTh2
cytokine balance toward Th2 [27,135,142,165,166,169,193,194]; and
thus potentially increases risk of asthma [264] and allergy [165].
However a recent animal model study demonstrated that peri-
natal VDD in mice resulted in Th2 skewing and reduced IL-10-
secreting regulatory T cells. These effects were augmented by
exposure to house dust mite. In contrast, vitamin D supplementa-
tion was associated with significantly reduced serum IgE levels,
pulmonary eosinophilia and peri-bronchiolar collagen deposition
[253]. These contradictory reports regarding the effects of 1,25D on
Th2 responses are based mostly on animal or in-vitro models
[118,140,165]. In vitro work with human cord blood cells has
demonstrated inhibition of both Th1 and Th2 differentiation with
1,25D [198], whereas 1,25 decreased Th1 cytokines and increased
Th2 cytokines in stimulated peripheral blood mononuclear cells
(PBMCs) from subjects with inflammatory bowel disease [12].

The inconsistences regarding the effect of vitamin D on Th2
responses probably reflect varying protocols and differing doses of
1,25D, which may potentially explain the observation that both
high and low 25(OH)OD levels have been associated with increased
aeroallergen sensitization [216], elevated IgE levels [109], and
adverse changes in lung function [245], raising the possibility that
an optimal level of 25(OH)D exists regarding asthma and that levels
above or below may be detrimental. However in this context, it is
noteworthy that existing reports suggest that increasing 25(OH)D
did not enhance Th2 cytokine levels in human peripheral blood
[155,156,251].

3.2.3.5. T-helper cells. Asthma is considered mainly as a Th2
mediated disease, characterized by production of IL-4, IL-5, and IL-
13 together with eosinophilic infiltration of the bronchial mucosa.
However, a CD4þ Th17 mediated response has also been observed
in asthmatics with chronic inflammation [8,171,195].

At the molecular level, 1,25D has been shown to be involved in
the suppression of DC maturation and consecutive Th1 cell devel-
opment [11,19,174]. In fact, vitamin D may suppress the production
of IL-12, thereby reducing the production of Th1 cells and poten-
tially leading to increased proliferation of allergy-associated Th2
cells [19,118]. Additionally, studies in mice have shown that treat-
ment with 1,25D results in reduced secretion of the Th1 cytokines
IL-2 and interferon gamma (IFN-g) and an increase in Th2 type IL-4
[165].

CD4þ T cells, and associated Th2 cytokines are thought to have a
pivotal role in the recruitment and activation of the effector cells of
the allergic response [146]. It has been known since the late 1980s
that 1,25D has modulatory effects regarding the function of CD4þ T
cells [257].

Healthy adults supplemented with oral vitamin D3 during the
winter months (2000e8,000 IU/day) for 12 weeks had no effect on
T cell subsets. However, in stimulated CD4þ T helper cells there
were significant decreases of both IFN-g producing T cells and IL-17
producing T-17 cells in the vitamin D group compared to the control
group (both p < 0.001) [66]. Th9 cells are important in the asthma
pathogenesis. In vivowork has demonstrated 1,25D is additive with
dexamethasone in decreasing inflammatory cytokine production
from Th-9 subsets, which are implicated in asthma [126].

Th17 cells constitute a subset of effector T helper cells func-
tioning distinctly from other T helper cells. The pro-inflammatory
role of Th17 cells and Th17 associated cytokines (IL-17A and IL-
17F) is widely recognized [55]. There is an increased number of
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Th17 cells in both blood and induced sputum in childhood asth-
matics compared to non-asthmatics [90]. Chang et al. [47] observed
a dose dependent reduction in IL-17A productionwhen naive CD4þ
Tcells were culturedwith transforming growth factor alpha (TGFa),
IL-6 and increasing concentrations of 1,25D. A recent in vitro study
demonstrated that stimulation of naive CD4þT cells under Th17
polarizing conditions in asthmatics showed a higher Th17 cell dif-
ferentiation than healthy controls. The addition of 25(OH)D
significantly inhibited Th17 cell differentiation dose-dependently,
both from asthmatic (p < 0.001) and non-asthmatic children
(p ¼ 0.001). Further, 25(OH)D inhibited RORC, IL-17, IL-23R, and
CCR6 gene. Additionally, treating DCs from asthmatics with 25(OH)
D significantly inhibited IL-17 production (p ¼ 0.002) and
decreased the percentage of CD4(þ)IL-17(þ) (p ¼ 0.007). Overall,
these findings suggest that vitamin D3 has an inhibitory effect on
Th17 responses and this response is mediated via both T cells and
DCs [289].

3.2.3.6. Gamma delta T cells (gd T cells). gd T cells represent a small
number of T cells, which appear important in allergic airway
inflammation. gd T cells have been reported to be decreased in the
blood of asthmatics compared to controls [49,130,239]. Decreased
peripheral gd T cell populations are thought to be due to their
enhanced capacity to migrate from peripheral blood through the
endothelium to the inflamed airways [14,239]. Moreover, gd T cells
have been demonstrated to be increased in the BALF of patients
with allergic asthma and 1,25D has been found to significantly
inhibit the proinflammatory activity of gd T cells in a dose-
dependent fashion [50].

3.2.3.7. Regulatory T-cell (T-regs). T-regs inhibit (effector/antigen
specific) T cells by several inhibitory mechanisms to suppress
overzealous immune responses and regulate immune responses
[48,227,259]. Current evidence suggests that many of these inhib-
itory pathways are mediated through altered IL-10 and TGF-b
production. Reduced T-reg number and function has been linked
with glucocorticosteroid resistance [61,213]. VDD has been associ-
ated with reduced T-reg number and function both directly and
indirectly through antigen presenting cells [46,61,92].

25(OHOD levels correlated with T-reg number and function in
patients with multiple sclerosis [217,234,235]. In asthmatic human
airway lymphocytes, Foxp3(þ) and IL-10(þ) T-reg numbers were
correlated with 25(OH)D levels [250]. T-regs from steroid resistant
(SR) asthmatics have been found to secrete less of the anti-
inflammatory cytokine IL-10 in response to dexamethasone.
However, culturing such T-regs in the presence of both dexa-
methasone and 1,25D seems to reverse this defect [275]. Further,
1,25D has been shown to increase the production of T-regs
[46,84,85,251,275] and T-reg function [47,115,179], which may
prove to be an additional mechanism for its immunomodulatory
role.

3.2.3.8. Forkhead box P3 (FoxP3). FoxP3 is a transcription factor and
is specifically expressed by CD4þCD25þ T-regs. FoxP3 controls
CD4þCD25þ T-reg development and function [207]. 1,25D en-
hances the frequency of human Foxp3þ T-reg cells in vitro and
directly enhances the production of T-regs from CD4þFoxP3þ T-
regs [115]. 1,25D has been shown to promote a tolerogenic
phenotype in human DCs, leading to the induction of FoxP3 T-regs
[196]. Further, 25(OH)D levels have been found to correlate posi-
tively with CD4(þ)FoxP3(þ) T-cell numbers in moderate/severe
asthmatics [44]. The effect of 1,25 on FoxP3 (þ) T-reg cells seems to
be magnified in the presence of certain cytokines, particularly TGF-
b [45].

3.2.3.9. Interleukins. Interleukins are a subtype of cytokine that are
secreted by white blood cells (WBCs). Many interleukins are rele-
vant in asthma but we will limit our discussion to two main in-
terleukins which can be influenced by vitamin D:

3.2.3.9.1. Interleukin-10 (IL-10). IL-10, which is produced by
monocytes and to a lesser extent lymphocytes, including T-regs, is
an anti-inflammatory and immunosuppressive cytokine. Its anti-
inflammatory mechanisms include inhibition of antigen present-
ing cell function [176], inhibition of cytokine production by mac-
rophages and DC [176], inhibiting T-cell, mast cell and eosinophil
activation as well as inhibition of pro-inflammatory cytokine pro-
duction [93,191]. This combination leads to profound inhibition of
Th1 cell-mediated immunity [176].

Several studies have noted an inverse relationship between IL-
10 levels and asthma severity [28,147]. In addition, alveolar mac-
rophages from asthmatic subjects secrete lower IL-10 levels than
non-asthmatic subjects [28,119,147]. Hence, it is widely believed
that IL-10 has an important role in controlling the magnitude of
human immune responses and in controlling airway inflammation.

Active vitamin D response elements have been identified in the
IL-10 gene [96,167,168]. Cord blood 25(OH)D has been inversely
associated with IL-10 concentration [286]. 1,25D administration has
been associated with increased IL-10 gene expression in
CD3þCD4þT cells from steroid refractory asthmatics [251]. Addi-
tionally, 1,25D has also been reported to increase IL-10 secretion
from B cells in vitro [96]. Further, 1,25D has been demonstrated to
potentiate the beneficial effects of allergen immunotherapy in an
animal model of asthma through modulating of IL-10 and TGF-b
[242]. Human in vitro evidence suggests that vitamin D supple-
mentation could potentially increase the therapeutic response to
glucocorticoids by restoring the impaired steroid-induced IL-10
response [275]. Clinical support was provided by a double-blind,
randomized, placebo controlled trial (DBRCT) in heart failure
patients demonstrating that daily supplementation with 2,000 IU
vitamin D3/day for 9 months increased plasma IL-10 [224].
Together these data suggest that sufficient 25(OH)D levels may be
associated with increased IL-10 expression and/or function, which
seems important for asthma control.

3.2.3.9.2. Interleukin 33. IL-33 is a cytokine that acts onmultiple
cells, including Th2 lymphocytes, to promote Th2 cytokine secre-
tion and airway inflammation [75,146]. The genes IL33 and inter-
leukin 1 receptor-like 1 (IL1RL1) have been identified as
predisposing to asthma risk [87]. A 2014 in vitro study assessed IL-
33 and IL1RL1 expression from human bronchial epithelial cells
(HBECs), CD4 lymphocytes, CD8 lymphocytes, eosinophils, and
mast cells when cultured in the presence or absence of 1,25D.
Addition of 1,25D significantly increased expression of the gene
hCAP as well as the total number of IL1RL1 mRNA transcripts
expressed by HBECs and CD4 and CD8 lymphocytes but not in
primary eosinophils or mast cells. Further, HBECs cultured with
100 nmol/L 25(OH)D resulted in increased expression of both
IL1RL1 and the soluble decoy receptor for IL-33 sST2 (which in-
hibits the actions of IL-33). The authors suggest that ‘the capacity of
vitamin D to augment the synthesis of an inhibitor of IL-33 … is of
potential benefit in the limitation of asthmatic mucosal inflam-
mation’ [197]. Clinical support comes from a 2014 human study
demonstrated higher 25(OH)D in healthy controls compared to
subjects with allergic rhinitis (AR) or asthma þ allergic rhinitis
(AAR), while plasma IL-31 and IL-33 were lower in subjects with AR
or AAR. However, there was no correlation between 25(OHOD and
either IL-31 or IL-33 [26].

3.2.4. Decreasing infection risk and/or severity
Early life respiratory tract infections (RTIs) have been associated

with increased risk of asthma development [18,107,112]. Although
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there is no evidence that asthmatics are more prone to RTIs than
non-asthmatics, RTIs are a powerful trigger of asthma exacerba-
tions [41,159] and typically lead to more severe symptoms
compared to non-asthmatics [53,65]. Any intervention, which
could decrease the susceptibility to either bacterial or viral RTIs,
could potentially significantly decrease the frequency of asthma
exacerbations and flairs.

Considering the immunomodulatory effects of 1,25D, it is
plausible the vitamin D status could alter susceptibility and effects
of RTIs [43] and it has been suggested that vitamin Dmay represent
an important link between RTIs and asthma [77,78]. The association
between RTIs and vitamin D can be seen with several studies
associating rickets (classical vitamin D deficiency) with increased
risk of RTIs [180,183,210] and wheezing [70]. In Hawaiian children
(<5y), viral bronchiolitis, respiratory syncytial virus (RSV), and
pneumonia vary with both season and skin pigmentation [82]
suggesting a role for vitamin D. Additionally, single nucleotide
polymorphisms in four of the innate immunity genes, including the
VDR, seem to increase susceptibility to RSV bronchiolitis [113,131]
and general lower RTI [215].

Vitamin D has potent bactericidal effects [101] and virucidal
effects [157,249]. However, 1,25D appears to have little effect on
virus replication in airway epithelial cells. Rather the anti-infective
properties of 1,25D appear related to potentiation of CXCL8 and
CXCL10 secretion from both infected or uninfected cells and alter-
ation of cell morphology, including thickening of the cell layers
(p < 0.01) and proliferation of cytokeratin-5-expressing cells.
Indeed, any potential anti-viral effect of vitamin D appears due to
altered growth and differentiation of airway epithelial cells as
opposed to direct effects on viral load [37].

Recent observational studies have reported that low 25(OH)D is
associated with increased incidence [77,78,124,137,219]; and
severity of RTIs [143,172,262]. One study suggested that a serum
level of 25(OH)D 95 nmol/L was associated with decreased RTI
incidence compared to lower levels [219]. A detailed retrospective
analysis from the UK, demonstrated a seasonal pattern of infection,
which closely mirrored 25(OH)D levels [21]. Indeed, solar UV-B
radiation exposure (a proxy for vitamin D) has been inversely
associated with diverse respiratory tract symptoms [244], RSV
incidence [265,281] and risk of invasive pneumococcal disease
[267]. However, subsequent vitamin D supplementation DBRCTs
have yielded conflicting results, with some reporting decreased risk
[10,13,42,136,249,252], some reporting decreased duration [161]
but others still reporting no difference [145,160,181].

These observed discrepancies may be partly be accounted for by
differences in vitamin D dosing, interventional period, definition of
RTI as well as baseline and endpoint 25(OH)D levels. Further, the
protective effect of vitamin D against RTIs may be specific to high-
risk populations, such as wheezing children [114] or those with
asthma [32,77,78,157,249,252]. Indeed, two small intervention tri-
als of vitamin D supplementation in pediatric asthma have
demonstrated decreased RTI risk and hence decreased asthma ex-
acerbations [157,249]. Therefore, increasing vitamin D as a RTI
prevention strategy, particularly in asthmatics, warrants further
investigation.

3.2.5. Airway smooth muscle
Airway smooth muscle (ASM) cells play a central role in asth-

matic disease. ASM cells modulate bronchomotor tone in the
airway lumen and airway resistance is primarily influenced by
airway diameter. Therefore, small changes in airway radius can
greatly influence airflow. Increased ASM hypertrophy and hyper-
plasia have been demonstrated in endobronchial biopsies from
children with severe asthma and are significantly related to bron-
chodilator responsiveness [209]. Further, phenotypic changes to

ASM, mediated by pro-inflammatory cytokines, are important for
the airway remodeling process [63].

To date, there is little evidence that standard asthma therapies
affect airway remodeling. However, vitamin D is a potential mod-
ifier of this process. Not only do ASM cells possess the enzymatic
machinery to form 1,25D from 25(OH)D [15,30] and contain the
VDR [15], but 1,25 modulates the synthetic activity of ASM cells and
decreases expression of inflammatory chemokines. Treating ASM
cells with TNF-a and/or IFN-gmimics the inflammation of an acute
asthmatic flare and facilitates the in vitro examination of the effi-
cacy of potential anti-inflammatory therapies. TNF-a and/or IFN-g
treated ASM cells exposed to 1,25D had a dose-dependent decrease
in inflammatory cytokine production [15]. In addition, both
RANTES (a pro-inflammatory molecule that attracts monocytes,
eosinophils, and T-cells) and IP-10 (a pro-inflammatory mediator
that recruits activated Tcells, NK cells, andmast cells) were noted to
be significantly decreased with 1,25D treatment [15].

A potentially important effect of vitamin D on asthma is a strong,
direct anti-inflammatory effect in ASM, evident from the suppres-
sion of both bronchial ASM proliferation, as well as mucus and
matrix metalloproteinase secretion by cultured human bronchial
cells [6,236], potentially because 1,25D downregulates the
expression of MMP9 and ADAM33 (both known modulators of
airway remodeling). Vitamin D treatment also increases ASM cell
VDRs and at physiologic concentrations partially prevents ASM
cells from becoming passively sensitized by exposure to asthmatic
serum [236]. Further in vitro studies have demonstrated that 1,25D
has a direct inhibitory effect on both passively sensitized ASM cells
[236] as well as the growth of human ASM cells (both asthmatic
and non-asthmatic)via growth factor-induced phosphorylation of
retinoblastoma protein and checkpoint kinase 1 [58]. Clinical evi-
dence was observed by Gupta et al. who, using endobronchial bi-
opsies, demonstrated that 25(OH)D levels were inversely related to
ASM mass in children with severe asthma [89].

In vitro, 1,25D has been demonstrated to attenuate the pro-
inflammatory and pro-fibrotic effects of pro-inflammatory cyto-
kines (TNFa and TGF-b) in terms of extracellular matrix formation
and cell proliferation in human fetal ASM and to suppress features
of inflammation-induced airway remodeling in fetal ASM cells
[35,36]. A recent study demonstrated that when human bronchial
epithelial cells were stimulated with TGF-b1 or TGF-b2 cell motility
was increased. However, the addition of 1,25D appeared to inhibit
both migration and invasion induced by TGF-b1 and TGF-b2 [73].

Tissue repair and remodeling, a key feature of asthma, is
partially mediated through fibroblasts which modulate tissue
repair by producing and modifying extracellular matrix compo-
nents and by releasing mediators that act as autocrine or paracrine
modulators of tissue remodeling. Vitamin D, 25(OH)D and 1,25D all
significantly reduced prostaglandin E2 (PGE2) production by hu-
man lung fibroblasts and stimulated an enzyme responsible for
prostaglandin E2 degradation [152]. These findings suggest that
vitamin D can regulate PGE2 synthesis and degradation which can
modulate fibroblast-mediated tissue repair function. Further,
fibroblast proliferation upon treatment with TGF-b1 (an important
driver of many fibrotic disorders, including asthma) was inhibited
by 1,25D in a dose-dependent fashion. Similarly, TGF-b1-induced
upregulation of mesenchymal cell markers and abnormal expres-
sion of epithelial cell markers were blunted by 1,25D [205,206].
These observations suggest that under TGF-b1 stimulation, 1,25(D
inhibits the pro-fibrotic phenotype of lung fibroblasts and epithe-
lial cells.

Taken together, these findings suggest 1,25D may be a novel,
important agent for the prevention and treatment of detrimental
structure changes in the airways. The link between vitamin D and
airway remodeling has recently been reviewed [20].

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e74 65



Author's personal copy

3.2.6. Vitamin D as an adjunct to anti-inflammatory therapy in
asthma

Twomajor pharmacological treatments for asthma currently are
glucocorticoids and immunotherapy. The anti-inflammatory and
immunomodulatory effects of vitamin D, suggest potential to
improve the efficiency of these anti-inflammatory therapies.

3.2.6.1. Immunotherapy. Allergen-specific immunotherapy is a
unique form of therapy capable of changing the course of disease in
allergen-sensitive rhinitis and asthma. This form of treatment in-
creases allergen-specific immunoglobulin G (IgG) 1 and 4, induces
T-regs and thereby peripheral tolerance leading to clinical
improvement [1,7].

In murine models, pretreatment with 1,25D has the capacity to
enhance the inhibitory effects of immunotherapy on allergic airway
inflammation [97,153,242,255]. These preliminary results preceded
human intervention work, whereby pre-treatment or adjuvant
therapy with vitamin D, improved the efficiency of immunotherapy
[16,157,158] e see section 3.1.6 in part two of this review [127].

3.2.6.2. Glucocorticoids. Glucocorticoids (GCS) are the first line
anti-inflammatory treatment for asthma and are the most effective
anti-inflammatory treatment currently available [248]. Their mul-
tiple inhibitory properties include inhibition of Th2 cytokine syn-
thesis and enhanced IL-10 production by stimulated T cells [211]
and airway cells [119]. Most patients with asthma respond to
standard therapy with inhaled bronchodilators and GCS. However,
approximately 15% of asthmatics fail to benefit from GCS. This is
termed steroid resistant (SR) asthma [54]. SR asthma is associated
with in vitro and in vivo alterations in cellular responses to exoge-
nous GCS, including decreased IL-10 secretion by CD4þ T cells [92].
Despite the use of multiple high dose medications, individuals with
SR asthma experience frequent exacerbations [266] and contribute
excessively to the asthma-related morbidity and mortality [218]. In
addition to SR asthma, GCS side effects e which have been shown
to be strictly dose-dependent [214] e frequently limit long term
GCS application. Therefore, it is desirable to lower the dose of GCS
treatment while maintaining the anti-inflammatory effect.

3.2.6.2.1. Vitamin D status is associated with steroid response.
An inverse association between 25(OH)D and the use anti-
inflammatory medication (either inhaled corticosteroids or leuko-
triene inhibitors) has been noted in asthmatic children in Costa Rica
[32] and America [228]. Conversely, vitamin D insufficiency (VDI)
may lead to down-regulation of GCS pathways and thus a greater
need for steroids, particularly in children. For example, there was
an association between lower 25(OH)D and decreased in vitro ste-
roid response in a small cohort (n ¼ 54) of mild-moderate adult
asthmatics [241]. However, GCS requirements and in vitro steroid
responsiveness were significantly inversely associated with 25(OH)
D level in childhood asthmatics. While trends for association were
also seen for adult asthmatics, these did not reach statistical sig-
nificance, suggesting a stronger that effect in childhood asthmatics
[79]. Although the sample size was small (50 adult asthmatics and
53 childhood asthmatics), this study was the first to compare
corticosteroid responsiveness and vitamin D status between chil-
dren and adults. Further, it has been shown in vitro [275] and in vivo
[184,275]. that co-administration of 1,25Dwith GCS couldmodestly
improve GCS responsiveness in SR asthma.

3.2.6.2.2. Vitamin D may attenuate steroid resistance and work
synergistically with steroids. An early report of the effect of
dexamethasone þ differing concentrations of 1,25D on PBMCs,
demonstrated that 1,25D could act synergistically with dexa-
methasone to decrease Th1 cytokines (IFN g) but increase Th2 cy-
tokines (IL-5, IL-13) compared to dexamethasone alone [118].

T-regs from SR asthmatics have been found to secrete less of the
anti-inflammatory cytokine IL-10 in response to dexamethasone. A
subsequent in vitro investigation with CD4þ T cells from patients
with SR asthma showed that the addition of 1,25D could potentially
increase the therapeutic response to GCS by restoring the impaired
steroid-induced IL-10 response [275]. Interestingly, they showed
that oral administration of vitamin D3 reversed steroid resistance in
3 adult asthmatics through induction of IL-10-secreting T-regs.
1,25D. Further, it is known that corticosteroids modulate ASM
chemokine secretion in vitro. However, co-administration of both
1,25D and corticosteroids resulted in additive inhibition of che-
mokine secretion suggesting a synergistic relationship [15].

In a randomized trial of inhaled budesonide versus nedocromil
versus placebo, VDI was associated with increased risk for severe
asthma exacerbations leading to emergency department visits or
hospitalizations. In this study, the group with the lowest risk for
exacerbations was the group who had 25(OH)D levels >75 nmol/L
and whowere on inhaled corticosteroids (ICS), further suggesting a
synergistic effect between vitamin D status and corticosteroids
[33].

Increased expression of mitogen-activated protein kinase 1
(MKP-1), a protein involved in directing cellular responses to a
diverse array of stimuli, leads to more effective corticosteroid
induced anti-inflammatory and immunosuppressive effects. MKP-1
expression can be used as a marker of responsiveness to GCS.
Another mechanism of GCS resistance involves the ability to
regulate inflammatory gene expression and GCS receptors. In vitro,
physiologic concentrations of 1,25D added to dexamethasone
significantly enhanced MKP-1 expression in PBMCs compared with
dexamethasone alone, suggesting that the addition of vitamin D
could decrease the dexamethasone dose requirement bymore than
10-fold. Interestingly, this relationship was stronger in patients
who were steroid naıve [228].

Corticosteroid-exposed airway cells and PBMCs from asthmatics
treated with 1,25D exhibited enhanced induction of MKP-1 and IL-
10. Further, increased 25(OH)D levels were associated with
improved lung function in vivo and with improved corticosteroid
responsiveness in vitro [228]. The inability to trigger production of
MKP-1 is one of the known mechanisms of SR, which is interesting
because MKP-1 is considered a vitamin D target gene [285]. Indeed,
it has been demonstrated that MKP-1 levels increase in parallel
with 25(OH)D levels suggesting that vitamin D may improve GCS
response [241].

Both 25(OH)D and 1,25D dose dependently inhibited LPS-
induced p38 phosphorylation at physiologic concentrations as
well as IL-6 and TNF-a production by human monocytes. MKP-1
expression was significantly upregulated in human monocytes
and increased binding of the VDR was observed [285]. 1,25D
stimulated GCS induction of MKP-1 and enhanced GCS inhibition of
LPS-induced IL-6 signaling enhanced GCS responses in human
PBMCs [284]. PBMCs from 11 SR asthmatics and 8 steroid sensitive
(SS) asthmatics were pre-incubated with 1,25 D followed by
dexamethasone treatment and LPS stimulation. Dexamethasone
significantly inhibited LPS-induced phosphorylated p38 mitogen-
activated protein kinase in monocytes from patients with SS
asthma but not those from patients with SR asthmatics (p < 0.01).
However, 1,25D inhibited LPS-induced phosphorylated p38
mitogen-activated protein kinase in monocytes from both patient
groups (p < 0.01). Further, 1,25D enhanced dexamethasone sup-
pression of LPS-induced phosphorylated p38 mitogen-activated
protein kinase in monocytes, but only from patients with SS
asthma (p < 0.01). 1,25D induced MKP-1 expression and enhanced
dexamethasone induction of MKP-1 in SS asthmatics and SR asth-
matics. However, the responses to GCS in SR asthmatics remained
significantly lower than those with SS asthma (p < 0.05).
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VitaminDandcorticosteroids synergistically induce a tolerogenic
DC phenotype [72] that may be important for immunomodulation
and decreased responsiveness to self and external antigens (e.g. al-
lergens). This study investigated differential protein pathways in
human CD14þ monocytes that were differentiated toward mature
DCs, in the presence or absence of vitamin D and/or dexamethasone.
VitaminDwasmorepotent thandexamethasone in skewing thecells
from the pro-inflammatory phenotype seen in the untreated DCs.

Both dexamethasone and 1,25D have the ability to inhibit pro-
duction of pro-inflammatory cytokines (e.g. TNF, IL-6) from LPS
stimulated PBMCs in cell culture. However, when administered
concurrently the effects were additive. The mechanism was shown
to involve stimulation of dexamathasone induction of MKP-1.
Granulocyte macrophage colony-stimulating factor (GM-CSF) was
shown to mediate the enhancement of dexamethasone-induced
MKP-1 production in monocytes via increased production of
mediator complex subunit 14 [284].

An in vitro study of PBMCs from SR asthmatics, SS asthmatics
and healthy controls demonstrated that asthmatics produced
higher levels of Th17-associated cytokines (IL-17A and IL-22).
Stimulation of PBMCs with dexamethasone did not inhibit IL-17A
cytokine expression. However, treatment of PBMCs with 1,25D,
both in the presence and absence of dexamethasone significantly
reduced both IL-17A and IL-22 levels. The inhibitory effect of 1,25D
was evident in all patients studied, irrespective of their clinical
responsiveness to steroids identifying novel steroid-enhancing
properties of vitamin D in asthmatic patients [185]. In vivo work
has demonstrated that 1,25D is additive with dexamethasone in
decreasing inflammatory cytokine production from T-cell subsets
implicated in asthma [126].

A recent animal study lends support to these in vitro studies.
Monotherapy with vitamin D or dexamethasone attenuated the
increased WBC count, serum IgE, nitric oxide and IL-5 levels
observed among rats with ovalbumin-induced airway inflamma-
tion. However, combination therapy with vitamin D þ dexameth-
asone was shown to be superior to either alone [173].

Several human studies have suggested a beneficial synergistic
effect between vitamin D and GCS in asthma outcomes
[33,79,157,228,274]. Possible mechanisms whereby vitamin D may
mediate increased steroid responsiveness include inhibition of
fractalkine secretion [15] and increased T-reg production and
function (reviewed above) as well as increased GCS bioavailability
in ASM cells induced by 1,25D [30].

Vitamin D supplementation may potentiate the anti-
inflammatory function of corticosteroids in asthmatic patients.
The evidence that vitamin D has additive effects on the adminis-
tration of corticosteroids is reviewed fully elsewhere [148].

3.2.6.2.3. Vitamin D may prevent the adverse effects of anti-
inflammatory therapies in asthma. Majak et al. conducted a
double-blind, placebo controlled trial to assess specific immuno-
therapy (SIT) in combination with ICS (prednisone 20 mg daily) þ
either placebo or vitamin D3 (1000 IU/week) [158]. Early adminis-
tration of ICS prevented the benefits of SIT. However, the addition of
low dose vitamin D (143 IU/day) preserved the benefits of SIT,
despite concomitant ICS use. Indeed, all negative clinical- and
immunological-effects of prednisone were prevented by the
administration of vitamin D3.

Children who were on ICS had poorer lung growth if they were
VDD compared to those that were not VDD [274]. According to
cross-sectional data from National Health and Nutrition examina-
tion survey (2001e2006), GCS users seem to be at higher risk of
VDD (OR, 2.36; 95% CI, 1.25e4.45) compared to non-users. It was
concluded that GCS use is independently associated with VDD, and
the need for screening patients with chronic steroids usage was
suggested [233].

These human studies are supported by a recent animal study.
Dexamethasone-induced hyperglycemia, hyperlipidemia, and
behavioral abnormalities in allergic rats but these effects were
attenuated with vitamin D co-administration [173]. These studies
suggest that optimizing vitamin 25(OH)D levels may be of impor-
tance in increasing the effectiveness of anti-inflammatory therapies
and decreasing potential side-effects.

3.2.7. Interplay of the genome and vitamin D status to influence
asthma

It is recognized that asthma may develop as a consequence of a
variety of gene-environment interactions. Vitamin D synthesis,
transport and degradation are controlled by several genes, partic-
ularly genes encoding for the vitamin D binding protein (VDBP) and
the vitamin D receptor (VDR). Polymorphisms in these genes may
affect both 25(OH)D status and the effects of 1,25D. For example,
human genome-wide linkage evaluation has shown strong genetic
regulation of serum 25(OH)D levels, but not 1,25D levels [268].

3.2.7.1. Vitamin D receptor (VDR). The biological effects of 1,25D are
mediated via the VDR [182]. VDR polymorphisms have been
significantly associated with asthma in studies of Chinese [218],
American [200,203], AfricaneAmerican [199] and Tunisian [154]
populations. However, further studies have failed to confirm this
association among Chinese [71] and German [260,270]) pop-
ulations. Indeed, a large cross sectional study in the UK found that
25(OH)D was not related to forced expiratory volume in 1 s and
VDR genotypes were unrelated to lung function and did not modify
the effects of dietary vitamin D intake or 25(OH)D concentrations
on lung function [230]. However, a recent meta-analysis of case-
control studies demonstrated that FokI polymorphisms were
marginally associated with asthma risk (OR 1.187; p ¼ 0.088) and
that both TaqI polymorphisms (OR 1.488, p ¼ 0.040) and BsmI k
polymorphisms (OR 2.017; p ¼ 0.017) were significantly associated
with asthma [246]. Gender and age modified the association of
these single nuclear polymorphisms (SNPs) with asthma, poten-
tially explaining some of the discrepancies displayed from exiting
observational and interventional research e see part two of this
review [127].

A 2014 Greek study assessed, for the first time, potential asso-
ciations between VDR polymorphisms (FokI, BsmI, ApaI, and TaqI)
and asthma control as assessed with Global Initiative for Asthma
score and Asthma Control Test (ACT) score. Although, there was no
association between VDR polymorphisms and asthma prevalence,
asthmatic children with the VDR ApaI-aa genotype had signifi-
cantly higher ACT scores compared with asthmatic children car-
rying the Apal aa/ac genotypes (p ¼ 0.011). The frequency of VDR
ApaI-aa genotype was significantly higher in controlled asthmatics
(n ¼ 92) compared to uncontrolled asthmatics (p ¼ 0.001). Further,
VDR ApaI-aa genotype was negatively associated with limitation in
daily activities because of asthma (p ¼ 0.004) but positively asso-
ciated with well-controlled asthma [110]. This study has provided
the first evidence that VDR SNPs may modulate both asthma con-
trol and response to vitamin D in asthma.

3.2.7.2. Vitamin D binding protein (VDBP). VDBP is a serum protein
that binds the majority of circulating 25(OH)D and 1,25D with high
affinity [238]. Bioavailable vitamin D is that 25(OH)D which is not
bound to VDBP. VDBP possesses independent immunomodulatory
functions, which predominantly relate to macrophage activation
and neutrophil chemotaxis [52]. These immunomodulatory func-
tions appear of particular relevance to RTIs [208] and inflammation
[25,272]. VDBP variants have been associated with asthma sus-
ceptibility in a Chinese population [144]. Additionally, a recent
study of 463 Hispanic children at 6 and 36 months of age
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demonstrated that a specific genotype of VDBP might confer pro-
tection against the development of asthma [186].

Compared to non-asthmatic controls and moderate asthmatic
children, children with SR asthma had significantly higher levels of
VDBP in BALF but not in serum. Further, VDBP concentration in
BALF correlated negatively with asthma control and percentage of
predicted forced expiratory volume in 1 s but positively with ICS
usage [88]. A recent study analysed the regulation of factors of the
vitamin D axis during the early and late-phase reaction of asthma in
15 patients. A significant increase in VDBP and 25(OH)D3 but not
1,25D in the BALF from mild asthmatics 24 h after allergen chal-
lenge was noted [31].

Specific VDBP- and VDR SNPs were significantly associated with
pediatric asthma development in a case-control study among
Egyptian children [111]. Other studies have associated non-VDR
genetic variation to paediatric asthma [269], including 25-
hydroxyalse [199]. There is evidence that SNPs in genes encoding
for 25-hydroxylase can directly affect presence of asthma, and SNPs
in the VDR gene can affect asthma morbidity and lung function, as
well as number of positive allergen tests and IgE elevation [199].

3.2.7.2.1. Additional studies of vitamin D genetics relevant to
asthma. A genome wide association analysis provided mixed con-
clusions regarding vitamin D-asthma genetics [141]. However, a
subsequent genome-wide study of geneevitamin D interactions in
asthma exacerbations identified 3 common variants in the class I
MHCerestricted T celleassociated molecule gene (CRTAM) that
were associated with an increased rate of asthma exacerbations
based on the presence of low 25(OH)D. These findings suggest an
important gene-environment interactionwhereby vitamin D status
can influence CD8þ and NK T cells, as well as asthma exacerbation
[67]. A 2013 study observed that vitamin D regulated genes were
markedly over-represented in normal human and mouse devel-
oping lung transcriptomes [128]. This finding suggests a significant
association between early lung development and asthma related
phenotypes for vitamin D pathway genes, supporting a genomic
mechanistic basis for the epidemiologic observations relating
maternal and neonatal vitamin D intake/25(OH)D and childhood
asthma susceptibility [175,204].

When human bronchial ASM cells were stimulated with 1,25D
over 400 genes e including genes implicated in asthma were
regulated [30]. The same research group went on to demonstrate
modest associations of asthmawithmultiple genes in the vitamin D
metabolism pathway, and multiple genes regulated by 1,25D [29].
Further, a recent DBRCT of low (400 IU/d) vs. high (2,000 IU/d) dose
vitamin D3 supplementation for 8 weeks demonstrated that
improved 25(OH)D status was associated with at least a 1.5 fold
alteration in the expression of 291 genes involved in expression of
WBCs [291], which may be of relevance to asthma. A recent
microarray analysis of adult non-smokers revealed that the
expression of thirteen candidate genes from small airway epithelial
cells were significantly altered by serum 25(OH)D (p < 0.05), and a
genome-wide significant expression quantitative trait loci associ-
ationwas detected for sphingosine-1-phosphate phosphatase 2e a
gene associated with lung function [294]. Similarly to children,
these finding suggests a significant association between lung
function, immune homeostasis and vitamin D pathway genes,
supporting a genomic mechanistic basis for the epidemiologic ob-
servations relating intake/25(OH)D and adult asthma susceptibility.

These interesting observations suggest a role for VDR, VDBP and
potentially other genes as well 25(OH)D in asthma pathogenesis.
The apparent discrepancies in vitamin D-asthma-genetic studies
may be due to differences in phenotypes related to age or asthma
duration and/or sample size issues. Nevertheless, the preponder-
ance of currently available data suggest that genetic abnormalities

may be an additional pathway by which inadequate 25(OH)D levels
are linked with asthma pathogenesis and severity.

3.2.8. Additional health benefits for the asthmatic population? bone
health

GCS are a mainstay of anti-asthmatic therapy. The current
consensus indicates that long term treatment with GCS is associ-
ated with detrimental effects on bone [64,273,283]. Further, both
airway hyper-responsiveness and asthma were related to clinically
meaningful decreased bone mineral density (BMD) in a recent
study of 7034 Korean individuals [123]. It is possible this finding
may be explained by concomitant GCS use.

VDI is associated with a decreased response to GCS and there-
fore greater use (reviewed above). Vitamin D is best known for its
beneficial effects of bone metabolism. During treatment with oral
corticosteroids (OCS), VDI has been associated with decreased bone
mineral accrual whereas vitamin D sufficiency seems to protect
asthmatic children from loss of bone calcium [292].

The combination of vitamin D3 (1,000 IU/day), calcium
(1,000 mg/day) and ethane-1-hydroxy-1,1-diphosphonate (0.5 mg/
kg body weight), has been shown to prevent decreases in BMD and
perhaps increase BMD [273]. Because of the combination of thera-
pies, it is impossible to assess the independent role of vitamin D
based on this preliminary study. However, the addition of 600 IU
vitamin D3/day to inhaled budesonide (400 mg/d) for 4 weeks to
asthmatic children did not affect short-term growth or markers of
bone despite a significant increase in serum 25(OH)D [225]. Simi-
larly, a subsequent DBRCT did notfind any benefit of 1,25D (0.5mcg/
day) on bone health [170]. A small DBRCT (n ¼ 62) of 50,000 IU
vitamin D/week þ 1,000 mg calcium/d in a diverse group of corti-
costeroid users demonstrated that although vitamin D þ calcium
blunted the initial decrease in BMD, there was no observable long-
term benefit and differences between vitamin D þ calcium vs. pla-
cebo did not reach statistical significance at any point [293]. How-
ever, the addition of 800 IU vitamin D3 daily to 24 weeks of steroid
therapy in children was associated with improvement in both cal-
ciumephosphorus balance and collagen turnover [240]. These dis-
crepancies may potentially be explained by serum 25(OH)D levels,
differing vitamin D dose and intervention period.

The CochraneDatabase of Systematic Reviews evaluated the data
supporting the recommendation to use calcium and vitamin D as
preventive therapy in patients receiving GCS [108]. The authors
concluded that because calciumand vitaminDhave low toxicity and
are inexpensive and that all patients starting GCS should also take a
calcium and vitamin D supplement prophylactically. Therefore, in
addition to any effect of vitamin D on asthma parameters, adequate
serum 25(OH)D may prove to be beneficial for bone health and
mitigate the effects of long term anti-asthmatic therapy. However,
further research is required among asthmatics to determine the
effect, if any, of vitamin D therapy on bone health in asthmatics.

4. Conclusions

It is clear that vitamin D influences diverse influences immu-
noregulatory and anti-inflammatory. To better understand the
relationship between vitamin D and asthma, data from human
studies is required. The second part of this two-part review sum-
marizes the existing epidemiological, case-control, cross-sectional,
prospective and intervention studies regarding asthma and vitamin
D [127].

Funding information

CK is supported by funding from the Asthma Society of Ireland,
National Children's Hospital Foundation, Irish Thoracic Society, and

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e7468



Author's personal copy

the Irish Lung Foundation. The funding bodies had no involvement
in study design, data collection, analysis or interpretation.

Author contributions

! CK made substantial contributions to review design and
manuscript collection and interpretation of data; has drafted the
submitted article; has provided final approval of the version to
be published; and has agreed to be accountable for all aspects of
the work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated
and resolved.

! BE revised the submitted article critically for important intel-
lectual content; has provided final approval of the version to be
published.

! JF revised the submitted article critically for important intel-
lectual content; has provided final approval of the version to be
published.

! LC revised the submitted article critically for important intel-
lectual content; has provided final approval of the version to be
published and has agreed to be accountable for all aspects of the
work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated
and resolved

Role of the sponsors

The sponsors were not involved in the design, analysis or
reporting of the current manuscript.

Acknowledgments

Guarantor statement: CK and LC guarantee the accuracy and
completeness of the reported data, and for the fidelity of the study.

References

[1] Abramson MJ, Puy RM, Weiner JM. Injection allergen immunotherapy for
asthma. Cochrane Database Syst Rev 2010:Cd001186.

[2] Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, et al. Vitamin
d-directed rheostatic regulation of monocyte antibacterial responses (Balti-
more, Md: 1950) J Immunol 2009;182:4289e95.

[3] Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-
hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in
sarcoidosis. J Clin Invest 1983;72:1856e60.

[4] Adorini L, Penna G, Giarratana N, Uskokovic M. Tolerogenic dendritic cells
induced by vitamin D receptor ligands enhance regulatory T cells inhibiting
allograft rejection and autoimmune diseases. J Cell Biochem 2003;88:
227e33.

[5] Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in
immunomodulation by vitamin D receptor agonists. Hum Immunol 2009;70:
345e52.

[6] Agrawal T, Gupta GK, Agrawal DK. Calcitriol decreases expression of importin
alpha3 and attenuates RelA translocation in human bronchial smooth muscle
cells. J Clin Immunol 2012;32:1093e103.

[7] Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy.
J Allergy Clin Immunol 2007;119:780e91.

[8] Al-Ramli W, Prefontaine D, Chouiali F, Martin JG, Olivenstein R, Lemiere C,
et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma.
J Allergy Clin Immunol 2009;123:1185e7.

[9] Aligne CA, Auinger P, Byrd RS, Weitzman M. Risk factors for pediatric asthma.
Contributions of poverty, race, and urban residence. Am J Respir Crit Care
Med 2000;162:873e7.

[10] Aloia JF, Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol Infect
2007;135:1095e6. Author reply 7e8.

[11] Annesi-Maesano I. Perinatal events, vitamin D, and the development of
allergy. Pediatr Res 2002;52:3e5.

[12] Ardizzone S, Cassinotti A, Trabattoni D, Manzionna G, Rainone V,
Bevilacqua M, et al. Immunomodulatory effects of 1,25-dihydroxyvitamin D3
on TH1/TH2 cytokines in inflammatory bowel disease: an in vitro study. Int J
Immunopathol Pharmacol 2009;22:63e71.

[13] Avenell A, Cook JA, Maclennan GS, Macpherson GC. Vitamin D supplemen-
tation to prevent infections: a sub-study of a randomised placebo-controlled
trial in older people (RECORD trial, ISRCTN 51647438). Age Ageing 2007;36:
574e7.

[14] Bai Y, Lin Y, He W, Chen Y, Ma Y. Analysis of the T cell receptor V delta region
gene repertoire in bronchoalveolar lavage fluid (BALF) and peripheral blood
of asthmatics. Chin Med J 2001;114:1252e7.

[15] Banerjee A, Damera G, Bhandare R, Gu S, Lopez-Boado Y, Panettieri Jr R,
et al. Vitamin D and glucocorticoids differentially modulate chemokine
expression in human airway smooth muscle cells. Br J Pharmacol 2008;155:
84e92.

[16] Baris S, Kiykim A, Ozen A, Tulunay A, Karakoc-Aydiner E, Barlan IB. Vitamin D
as an adjunct to subcutaneous allergen immunotherapy in asthmatic chil-
dren sensitized to house dust mite. Allergy 2014;69:246e53.

[17] Barnett SB, Nurmagambetov TA. Costs of asthma in the United States:
2002e2007. J Allergy Clin Immunol 2011;127:145e52.

[18] Beigelman A, Bacharier LB. The role of early life viral bronchiolitis in the
inception of asthma. Curr Opin Allergy Clin Immunol 2013;13:211e6.

[19] Benson AA, Toh JA, Vernon N, Jariwala SP. The role of vitamin D in the
immunopathogenesis of allergic skin diseases. Allergy 2012;67:296e301.

[20] Berraies A, Hamzaoui K, Hamzaoui A. Link between vitamin D and airway
remodeling. J Asthma Allergy 2014;7:23e30.

[21] Berry DJ, Hesketh K, Power C, Hypponen E. Vitamin D status has a linear
association with seasonal infections and lung function in British adults. Br J
Nutr 2011;106:1433e40.

[22] Bettoun DJ, Burris TP, Houck KA, Buck 2nd DW, Stayrook KR, Khalifa B, et al.
Retinoid X receptor is a nonsilent major contributor to vitamin D receptor-
mediated transcriptional activation (Baltimore, Md) Mol Endocrinol
2003;17:2320e8.

[23] Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a
meta-analysis of prospective epidemiologic studies. Am J Respir Crit care
Med 2007;175:661e6.

[24] Bhan I, Camargo Jr CA, Wenger J, Ricciardi C, Ye J, Borregaard N, et al.
Circulating levels of 25-hydroxyvitamin D and human cathelicidin in healthy
adults. J Allergy Clin Immunol 2011;127:1302e1304.e1.

[25] Binder R, Kress A, Kan G, Herrmann K, Kirschfink M. Neutrophil priming by
cytokines and vitamin D binding protein (Gc-globulin): impact on C5a-
mediated chemotaxis, degranulation and respiratory burst. Mol Immunol
1999;36:885e92.

[26] Bonanno A, Gangemi S, La Grutta S, Malizia V, Riccobono L, Colombo P, et al.
25-Hydroxyvitamin D, IL-31, and IL-33 in children with allergic disease of
the airways. Mediat Inflamm 2014;2014:520241.

[27] Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O'Garra A. 1alpha,25-
Dihydroxyvitamin d3 has a direct effect on naive CD4(þ) T cells to enhance
the development of Th2 cells (Baltimore, Md: 1950) J Immunol 2001;167:
4974e80.

[28] Borish L, Aarons A, Rumbyrt J, Cvietusa P, Negri J, Wenzel S. Interleukin-10
regulation in normal subjects and patients with asthma. J Allergy Clin
Immunol 1996;97:1288e96.

[29] Bosse Y, Lemire M, Poon AH, Daley D, He JQ, Sandford A, et al. Asthma and
genes encoding components of the vitamin D pathway. Respir Res 2009;10:
98.

[30] Bosse Y, Maghni K, Hudson TJ. 1alpha,25-dihydroxy-vitamin D3 stimulation
of bronchial smooth muscle cells induces autocrine, contractility, and
remodeling processes. Physiol Genomics 2007;29:161e8.

[31] Bratke K, Wendt A, Garbe K, Kuepper M, Julius P, Lommatzsch M, et al.
Vitamin D binding protein and vitamin D in human allergen-induced
endobronchial inflammation. Clin Exp Immunol 2014;177:366e72.

[32] Brehm JM, Celedon JC, Soto-Quiros ME, Avila L, Hunninghake GM, Forno E,
et al. Serum vitamin D levels and markers of severity of childhood asthma in
Costa Rica. Am J Respir Crit care Med 2009;179:765e71.

[33] Brehm JM, Schuemann B, Fuhlbrigge AL, Hollis BW, Strunk RC, Zeiger RS,
et al. Serum vitamin D levels and severe asthma exacerbations in the
Childhood Asthma Management Program study. J Allergy Clin Immunol
2010;126:52e58 e5.

[34] Brennan A, Katz DR, Nunn JD, Barker S, Hewison M, Fraher LJ, et al. Dendritic
cells from human tissues express receptors for the immunoregulatory
vitamin D3 metabolite, dihydroxycholecalciferol. Immunology 1987;61:
457e61.

[35] Britt Jr RD, Faksh A, Vogel ER, Thompson MA, Chu V, Pandya HC, et al.
Vitamin d attenuates cytokine-induced remodeling in human fetal airway
smooth muscle cells. J Cell Physiol 2014.

[36] Britt Jr RD, Faksh A, Vogel ER, Thompson MA, Chu V, Pandya HC, et al.
Vitamin d attenuates cytokine-induced remodeling in human fetal airway
smooth muscle cells. J Cell Physiol 2014.

[37] Brockman-Schneider RA, Pickles RJ, Gern JE. Effects of vitamin D on airway
epithelial cell morphology and rhinovirus replication. PloS One 2014;9:
e86755.

[38] Buka I, Koranteng S, Osornio-Vargas AR. The effects of air pollution on the
health of children. Paediatr Child health 2006;11:513e6.

[39] Burr ML, Butland BK, King S, Vaughan-Williams E. Changes in asthma
prevalence: two surveys 15 years apart. Archiv Dis Child 1989;64:1452e6.

[40] Busse WW, Lemanske Jr RF. Asthma N Engl J Med 2001;344:350e62.
[41] Busse WW, Lemanske Jr RF, Gern JE. Role of viral respiratory infections in

asthma and asthma exacerbations. Lancet 2010;376:826e34.

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e74 69



Author's personal copy

[42] Camargo Jr CA, Ganmaa D, Frazier AL, Kirchberg FF, Stuart JJ, Kleinman K,
et al. Randomized trial of vitamin D supplementation and risk of acute res-
piratory infection in Mongolia. Pediatrics 2012;130:e561e7.

[43] Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, et al.
Epidemic influenza and vitamin D. Epidemiol Infect 2006;134:1129e40.

[44] Chambers ES, Nanzer AM, Richards DF, Ryanna K, Freeman AT, Timms PM,
et al. Serum 25-dihydroxyvitamin D levels correlate with CD4(þ)Foxp3(þ)
T-cell numbers in moderate/severe asthma. J Allergy Clin Immunol
2012;130:542e4.

[45] Chambers ES, Suwannasaen D, Mann EH, Urry Z, Richards DF,
Lertmemongkolchai G, et al. 1alpha,25-dihydroxyvitamin D3 in combination
with transforming growth factor-beta increases the frequency of Foxp3(þ)
regulatory T cells through preferential expansion and usage of interleukin-2.
Immunology 2014;143:52e60.

[46] Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T
cells. Curr Allergy Asthma Rep 2011;11:29e36.

[47] Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN. 1,25-Dihydroxyvitamin D3
inhibits the differentiation and migration of T(H)17 cells to protect against
experimental autoimmune encephalomyelitis. PloS One 2010;5:e12925.

[48] Chatenoud L, Salomon B, Bluestone JA. Suppressor T cellsethey're back and
critical for regulation of autoimmunity! Immunol Rev 2001;182:149e63.

[49] Chen KS, Miller KH, Hengehold D. Diminution of T cells with gamma delta
receptor in the peripheral blood of allergic asthmatic individuals. Clin Exp
Allergy: J Br Soc Allergy Clin Immunol 1996;26:295e302.

[50] Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF.
Transcriptional profiling of gamma delta T cells identifies a role for vitamin D
in the immunoregulation of the V gamma 9V delta 2 response to phosphate-
containing ligands (Baltimore, Md: 1950) J Immunol 2005;174:6144e52.

[51] Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of
1,25-dihydroxyvitamin D3 on human B cell differentiation (Baltimore, Md:
1950) J Immunol 2007;179:1634e47.

[52] Chishimba L, Thickett DR, Stockley RA, Wood AM. The vitamin D axis in the
lung: a key role for vitamin D-binding protein. Thorax 2010;65:456e62.

[53] Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, et al.
Frequency, severity, and duration of rhinovirus infections in asthmatic and
non-asthmatic individuals: a longitudinal cohort study. Lancet 2002;359:
831e4.

[54] Corrigan CJ, Brown PH, Barnes NC, Szefler SJ, Tsai JJ, Frew AJ, et al. Gluco-
corticoid resistance in chronic asthma. Glucocorticoid pharmacokinetics,
glucocorticoid receptor characteristics, and inhibition of peripheral blood T
cell proliferation by glucocorticoids in vitro. Am Rev Respir Dis 1991;144:
1016e25.

[55] Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 cells: new
players in asthma pathogenesis. Allergy 2011;66:989e98.

[56] Coussens AK. Immunomodulatory actions of vitamin D metabolites and their
potential relevance to human lung disease. Curr Respir Med Rev 2011;7:
444e53.

[57] D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, et al.
Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of
NF-kappaB downregulation in transcriptional repression of the p40 gene.
J Clin Invest 1998;101:252e62.

[58] Damera G, Fogle HW, Lim P, Goncharova EA, Zhao H, Banerjee A, et al.
Vitamin D inhibits growth of human airway smooth muscle cells through
growth factor-induced phosphorylation of retinoblastoma protein and
checkpoint kinase 1. Br J Pharmacol 2009;158:1429e41.

[59] Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer:
potential for anticancer therapeutics. Nat Rev Cancer 2007;7:684e700.

[60] Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB
J: Off Publ Fed Am Soc Exp Biol 2001;15:2579e85.

[61] Dimeloe S, Nanzer A, Ryanna K, Hawrylowicz C. Regulatory T cells, inflam-
mation and the allergic response-the role of glucocorticoids and vitamin D.
J steroid Biochem Mol Biol 2010;120:86e95.

[62] Dixon BM, Barker T, McKinnon T, Cuomo J, Frei B, Borregaard N, et al. Positive
correlation between circulating cathelicidin antimicrobial peptide (hCAP18/
LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res Notes
2012;5:575.

[63] Doherty T, Broide D. Cytokines and growth factors in airway remodeling in
asthma. Curr Opin Immunol 2007;19:676e80.

[64] Dore RK. How to prevent glucocorticoid-induced osteoporosis. Clevel Clin J
Med 2010;77:529e36.

[65] Douville RN, Bastien N, Li Y, Simons FE, HayGlass KT. Adult asthmatics
display exaggerated IFNgamma responses to human metapneumovirus and
respiratory syncytial virus. Biochem Cell Biol Biochim Biolog Cell 2007;85:
252e8.

[66] Drozdenko G, Heine G, Worm M. Oral vitamin D increases the frequencies of
CD38þ human B cells and ameliorates IL-17-producing T cells. Exp Dermatol
2014;23:107e12.

[67] Du R, Litonjua AA, Tantisira KG, Lasky-Su J, Sunyaev SR, Klanderman BJ, et al.
Genome-wideassociation study reveals class IMHC-restrictedT cell-associated
molecule gene (CRTAM) variants interactwith vitaminD levels to affect asthma
exacerbations. J Allergy Clin Immunol 2012;129:368e73. 73.e1-5.

[68] Edelson JD, Chan S, Jassal D, Post M, Tanswell AK. Vitamin D stimulates DNA
synthesis in alveolar type-II cells. Biochim Biophys Acta 1994;1221:159e66.

[69] Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med 2006;355:
2226e35.

[70] El-Radhi AS, Majeed M, Mansor N, Ibrahim M. High incidence of rickets in
children with wheezy bronchitis in a developing country. J R Soc Med
1982;75:884e7.

[71] Fang WL, Gao LB, Liang WB, Xue H, Bai P, Lv ML, et al. Association analysis of
vitamin D receptor gene polymorphisms in chinese population with asthma.
Iran J Allergy Asthma Immunol 2009;8:141e7.

[72] Ferreira GB, Kleijwegt FS, Waelkens E, Lage K, Nikolic T, Hansen DA, et al.
Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexa-
methasone modulated tolerogenic human dendritic cells. J Proteome Res
2012;11:941e71.

[73] Fischer KD, Agrawal DK. Vitamin D regulating TGF-ss induced epithelial-
mesenchymal transition. Respir Res 2014;15:146.

[74] Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev
Immunol 2003;3:710e20.

[75] Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the
future. Immunity 2013;39:1003e18.

[76] Gaultier C, Harf A, Balmain N, Cuisinier-Gleizes P, Mathieu H. Lung me-
chanics in rachitic rats. Am Rev Respir Dis 1984;130:1108e10.

[77] Ginde AA, Mansbach JM, Camargo Jr CA. Association between serum 25-
hydroxyvitamin D level and upper respiratory tract infection in the Third
National Health and Nutrition Examination Survey. Archiv Intern Med
2009a;169:384e90.

[78] Ginde AA, Mansbach JM, Camargo Jr CA. Vitamin D, respiratory infections,
and asthma. Curr Allergy Asthma Rep 2009b;9:81e7.

[79] Goleva E, Searing DA, Jackson LP, Richers BN, Leung DY. Steroid requirements
and immune associations with vitamin D are stronger in children than adults
with asthma. J Allergy Clin Immunol 2012;129:1243e51.

[80] Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial
peptide (CAMP) gene is a direct target of the vitamin D receptor and is
strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB
J: Off Publ Fed Am Soc Exp Biol 2005;19:1067e77.

[81] Gombart AF, O'Kelly J, Saito T, Koeffler HP. Regulation of the CAMP gene by
1,25(OH)2D3 in various tissues. J Steroid Biochem Mol Biol 2007;103:552e7.

[82] Grant WB. Variations in vitamin D production could possibly explain the
seasonality of childhood respiratory infections in Hawaii. Pediatr Infect Dis J
2008;27:853.

[83] Gray TK, Maddux FW, Lester GE, Williams ME. Rodent macrophages
metabolize 25-hydroxyvitamin D3 in vitro. Biochem Biophys Res Commun
1982;109:723e9.

[84] Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L.
Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and myco-
phenolate mofetil treatment mediate transplantation tolerance (Baltimore,
Md: 1950) J Immunol 2001;167:1945e53.

[85] Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini LA. 1alpha,25-
dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests
autoimmune diabetes in NOD mice. Diabetes 2002;51:1367e74.

[86] Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R. Dendritic
cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a
vitamin D receptor-dependent pathway that promotes a persistent state of
immaturity in vitro and in vivo. Proc Natl Acad Sci U S A 2001;98:6800e5.

[87] Grotenboer NS, Ketelaar ME, Koppelman GH, Nawijn MC. Decoding asthma:
translating genetic variation in IL33 and IL1RL1 into disease pathophysi-
ology. J Allergy Clin Immunol 2013;131:856e65.

[88] Gupta A, Dimeloe S, Richards DF, Bush A, Saglani S, Hawrylowicz CM.
Vitamin D binding protein and asthma severity in children. J Allergy Clin
Immunol 2012;129:1669e71.

[89] Gupta A, Sjoukes A, Richards D, Banya W, Hawrylowicz C, Bush A, et al.
Relationship between serum vitamin D, disease severity, and airway
remodeling in children with asthma. Am J Respir Crit care Med 2011;184:
1342e9.

[90] Hamzaoui A, Maalmi H, Berraies A, Abid H, Ammar J, Hamzaoui K. Tran-
scriptional characteristics of CD4 T cells in young asthmatic children: RORC
and FOXP3 axis. J Inflamm Res 2011;4:139e46.

[91] Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW.
Respiratory epithelial cells convert inactive vitamin D to its active form:
potential effects on host defense (Baltimore, Md: 1950) J Immunol 2008;181:
7090e9.

[92] Hawrylowicz C, Richards D, Loke TK, Corrigan C, Lee T. A defect in
corticosteroid-induced IL-10 production in T lymphocytes from
corticosteroid-resistant asthmatic patients. J Allergy Clin Immunol 2002;109:
369e70.

[93] Hawrylowicz CM. Regulatory T cells and IL-10 in allergic inflammation. J Exp
Med 2005;202:1459e63.

[94] Heaney RP. Serum 25-hydroxyvitamin D is a reliable indicator of vitamin D
status. Am J Clin Nutr 2011;94:619e20. Author reply 20.

[95] Heine G, Anton K, Henz BM, Worm M. 1alpha,25-dihydroxyvitamin D3 in-
hibits anti-CD40 plus IL-4-mediated IgE production in vitro. Eur J Immunol
2002;32:3395e404.

[96] Heine G, Niesner U, Chang HD, Steinmeyer A, Zugel U, Zuberbier T, et al. 1,25-
dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur J
Immunol 2008;38:2210e8.

[97] Heine G, Tabeling C, Hartmann B, Gonzalez Calera CR, Kuhl AA, Lindner J,
et al. 25-hydroxvitamin D3 promotes the long-term effect of specific
immunotherapy in a murine allergy model (Baltimore, Md: 1950) J Immunol
2014;193:1017e23.

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e7470



Author's personal copy

[98] Herr C, Shaykhiev R, Bals R. The role of cathelicidin and defensins in pul-
monary inflammatory diseases. Expert Opin Biolog Ther 2007;7:1449e61.

[99] Hewison M, Burke F, Evans KN, Lammas DA, Sansom DM, Liu P, et al. Extra-
renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and dis-
ease. J Steroid Biochem Mol Biol 2007;103:316e21.

[100] Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Eliopoulos AG, et al.
Differential regulation of vitamin D receptor and its ligand in human
monocyte-derived dendritic cells (Baltimore, Md: 1950) J Immunol 2003;170:
5382e90.

[101] Hewison M. Antibacterial effects of vitamin D. Nat Rev Endocrinol 2011;7:
337e45.

[102] Hill TD, Graham LM, Divgi V. Racial disparities in pediatric asthma: a review
of the literature. Curr Allergy Asthma Rep 2011;11:85e90.

[103] Ho G, Tang H, Robbins JA, Tong EK. Biomarkers of tobacco smoke exposure
and asthma severity in adults. Am J Prev Med 2013;45:703e9.

[104] Holick MF. Vitamin D deficiency. N. Engl J Med 2007;357:266e81.
[105] Holick MF. Vitamin D status: measurement, interpretation, and clinical

application. Ann Epidemiol 2009;19:73e8.
[106] Hollis BW, Wagner CL, Drezner MK, Binkley NC. Circulating vitamin D3 and

25-hydroxyvitamin D in humans: an important tool to define adequate
nutritional vitamin D status. J Steroid Biochem Mol Biol 2007;103:631e4.

[107] Holt PG, Strickland DH, Sly PD. Virus infection and allergy in the develop-
ment of asthma: what is the connection? Curr Opin Allergy Clin Immunol
2012;12:151e7.

[108] Homik J, Suarez-Almazor ME, Shea B, Cranney A, Wells G, Tugwell P. Calcium
and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database
Syst Rev 2000:Cd000952.

[109] Hypponen E, Berry DJ, Wjst M, Power C. Serum 25-hydroxyvitamin D and IgE
e a significant but nonlinear relationship. Allergy 2009;64:613e20.

[110] Iordanidou M, Paraskakis E, Giannakopoulou E, Tavridou A, Gentile G,
Borro M, et al. Vitamin D receptor ApaI a allele is associated with better
childhood asthma control and improvement in ability for daily activities.
Omics J Integr Biol 2014;18:673e81.

[111] Ismail MF, Elnady HG, Fouda EM. Genetic variants in vitamin D pathway in
Egyptian asthmatic children: a pilot study. Hum Immunol 2013;74:1659e64.

[112] Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al.
Wheezing rhinovirus illnesses in early life predict asthma development in
high-risk children. Am J Respir Crit Care Med 2008;178:667e72.

[113] Janssen R, Bont L, Siezen CL, Hodemaekers HM, Ermers MJ, Doornbos G, et al.
Genetic susceptibility to respiratory syncytial virus bronchiolitis is pre-
dominantly associated with innate immune genes. J Infect Dis 2007;196:
826e34.

[114] Jartti T, Ruuskanen O, Mansbach JM, Vuorinen T, Camargo Jr CA. Low serum
25-hydroxyvitamin D levels are associated with increased risk of viral
coinfections in wheezing children. J Allergy Clin Immunol 2010;126:1074e6.
6.e1-4.

[115] Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, et al. 1,25-
Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of in-
flammatory cytokines and promote development of regulatory T cells
expressing CTLA-4 and FoxP3 (Baltimore, Md: 1950) J Immunol 2009;183:
5458e67.

[116] Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR, et al.
Alterations in vitamin D status and anti-microbial peptide levels in patients
in the intensive care unit with sepsis. J Transl Med 2009;7:28.

[117] Ji J, Hemminki K, Sundquist K, Sundquist J. Seasonal and regional variations
of asthma and association with osteoporosis: possible role of vitamin D in
asthma. J Asthma: Off J Assoc Care Asthma 2010;47:1045e8.

[118] Jirapongsananuruk O, Melamed I, Leung DY. Additive immunosuppressive
effects of 1,25-dihydroxyvitamin D3 and corticosteroids on TH1, but not
TH2, responses. J Allergy Clin Immunol 2000;106:981e5.

[119] John M, Lim S, Seybold J, Jose P, Robichaud A, O'Connor B, et al. Inhaled
corticosteroids increase interleukin-10 but reduce macrophage inflamma-
tory protein-1alpha, granulocyte-macrophage colony-stimulating factor, and
interferon-gamma release from alveolar macrophages in asthma. Am J Respir
Crit Care Med 1998;157:256e62.

[121] Joseph CL, Ownby DR, Peterson EL, Johnson CC. Racial differences in physi-
ologic parameters related to asthma among middle-class children. Chest
2000;117:1336e44.

[122] Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H, Rohowsky-Kochan C, et al. 1,25-
dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional.

[123] Jung JW, Kang HR, Kim JY, Lee SH, Kim SS, Cho SH. Are asthmatic patients
prone to bone loss? ANNALS of allergy. Asthma Immunol: Off Publ Am Coll
Allergy Asthma Immunol 2014;112:426e31.

[124] Karatekin G, Kaya A, Salihoglu O, Balci H, Nuhoglu A. Association of sub-
clinical vitamin D deficiency in newborns with acute lower respiratory
infection and their mothers. Eur J Clin Nutr 2009;63:473e7.

[125] Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol
2002;3:221e7.

[126] Keating P, Munim A, Hartmann JX. Effect of vitamin D on T-helper type 9
polarized human memory cells in chronic persistent asthma. Ann Allergy
Asthma Immunol: Off Publ Am Coll Allergy Asthma Immunol 2014;112:
154e62.

[127] Kerley CP, Elnazir B, Faul F, Cormican L. Vitamin D as an adjunctive therapy
in asthma. Part 2: a review of human studies. Pulm Pharmacol Ther 2015.

[128] Kho AT, Sharma S, Qiu W, Gaedigk R, Klanderman B, Niu S, et al. Vitamin D
related genes in lung development and asthma pathogenesis. BMC Med
Genomics 2013;6:47.

[129] Kimbell-Dunn M, Pearce N, Beasley R. Seasonal variation in asthma hospi-
talizations and death rates in New Zealand (Carlton, Vic) Respirology 2000;5:
241e6.

[130] Krejsek J, Kral B, Vokurkova D, Derner V, Touskova M, Parakova Z, et al.
Decreased peripheral blood gamma delta T cells in patients with bronchial
asthma. Allergy 1998;53:73e7.

[131] Kresfelder TL, Janssen R, Bont L, Pretorius M, Venter M. Confirmation of an
association between single nucleotide polymorphisms in the VDR gene with
respiratory syncytial virus related disease in South African children. J Med
Virol 2011;83:1834e40.

[132] Kreutz M, Andreesen R, Krause SW, Szabo A, Ritz E, Reichel H. 1,25-
dihydroxyvitamin D3 production and vitamin D3 receptor expression are
developmentally regulated during differentiation of human monocytes into
macrophages. Blood 1993;82:1300e7.

[133] Kreutz M, Andreesen R. Induction of human monocyte to macrophage
maturation in vitro by 1,25-dihydroxyvitamin D3. Blood 1990;76:2457e61.

[134] Krstic G. Asthma prevalence associated with geographical latitude and
regional insolation in the United States of America and Australia. PloS One
2011;6:e18492.

[135] Kuo YT, Kuo CH, Lam KP, Chu YT, Wang WL, Huang CH, et al. Effects of
vitamin D3 on expression of tumor necrosis factor-alpha and chemokines by
monocytes. J food Sci 2010;75:H200e4.

[136] Laaksi I, Ruohola JP, Mattila V, Auvinen A, Ylikomi T, Pihlajamaki H. Vitamin
D supplementation for the prevention of acute respiratory tract infection: a
randomized, double-blinded trial among young Finnish men. J Infect Dis
2010;202:809e14.

[137] Laaksi I, Ruohola JP, Tuohimaa P, Auvinen A, Haataja R, Pihlajamaki H, et al.
An association of serum vitamin D concentrations <40 nmol/L with acute
respiratory tract infection in young Finnish men. Am J Clin Nutr 2007;86:
714e7.

[138] Lambert AA, Kirk GD, Astemborski J, Neptune ER, Mehta SH, Wise RA, et al.
A cross sectional analysis of the role of the antimicrobial peptide cathelicidin in
lung function impairment within the ALIVE cohort. PloS One 2014;9:e95099.

[139] Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-hydroxyvitamin
D3-deficiency enhances oxidative stress and corticosteroid resistance in
severe asthma exacerbation. PloS One 2014;9:e111599.

[140] Lange NE, Litonjua A, Hawrylowicz CM, Weiss S, Vitamin D. the immune
system and asthma. Expert Rev Clin Immunol 2009;5:693e702.

[141] Lasky-Su J, Lange N, Brehm JM, Damask A, Soto-Quiros M, Avila L, et al.
Genome-wide association analysis of circulating vitamin D levels in children
with asthma. Hum Genet 2012;131:1495e505.

[142] Lemire JM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of
1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr
1995;125:1704se8s.

[143] Leow L, Simpson T, Cursons R, Karalus N, Hancox RJ, Vitamin D. Innate im-
munity and outcomes in community acquired pneumonia. Respirology
2011;16:611e6 (Carlton, Vic).

[144] Li F, Jiang L, Willis-Owen SA, Zhang Y, Gao J. Vitamin D binding protein
variants associate with asthma susceptibility in the Chinese Han population.
BMC Med Genet 2011;12:103.

[145] Li-Ng M, Aloia JF, Pollack S, Cunha BA, Mikhail M, Yeh J, et al. A randomized
controlled trial of vitamin D3 supplementation for the prevention of
symptomatic upper respiratory tract infections. Epidemiol Infect 2009;137:
1396e404.

[146] Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the
new kid in the IL-1 family. Nat Rev Immunol 2010;10:103e10.

[147] Lim S, Crawley E, Woo P, Barnes PJ. Haplotype associated with low
interleukin-10 production in patients with severe asthma. Lancet 1998;352:
113.

[148] Litonjua AA. Vitamin D and corticosteroids in asthma: synergy, interaction
and potential therapeutic effects. Expert Rev Respir Med 2013;7:101e4.

[149] Liu MC, Xiao HQ, Brown AJ, Ritter CS, Schroeder J. Association of vitamin D
and antimicrobial peptide production during late-phase allergic responses in
the lung. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 2012;42:383e91.

[150] Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor
triggering of a vitamin D-mediated human antimicrobial response. Sci (New
York, NY) 2006;311:1770e3.

[151] Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated
human antimicrobial activity against Mycobacterium tuberculosis is
dependent on the induction of cathelicidin (Baltimore, Md: 1950) J Immunol
2007;179:2060e3.

[152] Liu X, Nelson A, Wang X, Farid M, Gunji Y, Ikari J, et al. Vitamin D modulates
prostaglandin E2 synthesis and degradation in human lung fibroblasts. Am J
Respir Cell Mol Biol 2014;50:40e50.

[153] Ma JX, Xia JB, Cheng XM, Wang CZ. 1,25-dihydroxyvitamin D(3) pretreat-
ment enhances the efficacy of allergen immunotherapy in a mouse allergic
asthma model. Chin Med J 2010;123:3591e6.

[154] Maalmi H, Sassi FH, Berraies A, Ammar J, Hamzaoui K, Hamzaoui A. Associ-
ation of vitamin D receptor gene polymorphisms with susceptibility to
asthma in Tunisian children: a case control study. Hum Immunol 2013;74:
234e40.

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e74 71



Author's personal copy

[155] Mahon BD, Gordon SA, Cruz J, Cosman F, Cantorna MT. Cytokine profile in
patients with multiple sclerosis following vitamin D supplementation.
J Neuroimmunol 2003a;134:128e32.

[156] Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of vitamin D
depend on the differentiation and activation status of CD4 positive T cells.
J Cell Biochem 2003b;89:922e32.

[157] Majak P, Jerzynska J, Smejda K, Stelmach I, Timler D, Stelmach W. Correlation
of vitamin D with Foxp3 induction and steroid-sparing effect of immuno-
therapy in asthmatic children. Ann Allergy Asthma Immunol : Off Publ Am
Coll Allergy Asthma Immunol 2012;109:329e35.

[158] Majak P, Rychlik B, Stelmach I. The effect of oral steroids with and without
vitamin D3 on early efficacy of immunotherapy in asthmatic children. Clin
Exp Allergy: J Br Soc Allergy Clin Immunol 2009;39:1830e41.

[159] Mallia P, Johnston SL. How viral infections cause exacerbation of airway
diseases. Chest 2006;130:1203e10.

[160] Manaseki-Holland S, Maroof Z, Bruce J, Mughal MZ, Masher MI, Bhutta ZA,
et al. Effect on the incidence of pneumonia of vitamin D supplementation by
quarterly bolus dose to infants in Kabul: a randomised controlled superiority
trial. Lancet 2012;379:1419e27.

[161] Manaseki-Holland S, Qader G, Isaq Masher M, Bruce J, Zulf Mughal M,
Chandramohan D, et al. Effects of vitamin D supplementation to children
diagnosed with pneumonia in Kabul: a randomised controlled trial. Trop
Med Int Health: TM IH 2010;15:1148e55.

[162] Mann EH, Chambers ES, Pfeffer PE, Hawrylowicz CM. Immunoregulatory
mechanisms of vitamin D relevant to respiratory health and asthma. Ann N Y
Acad Sci 2014;1317:57e69.

[163] Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW,
Skolimowska K, et al. IFN-gamma- and TNF-independent vitamin D-induc-
ible human suppression of mycobacteria: the role of cathelicidin LL-37
(Baltimore, Md: 1950) J Immunol 2007;178:7190e8.

[164] Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive
summary of the GINA Dissemination Committee report. Allergy 2004;59:
469e78.

[165] Matheu V, Back O, Mondoc E, Issazadeh-Navikas S. Dual effects of vitamin D-
induced alteration of TH1/TH2 cytokine expression: enhancing IgE produc-
tion and decreasing airway eosinophilia in murine allergic airway disease.
J Allergy Clin Immunol 2003;112:585e92.

[166] Mathieu C, Casteels K, Waer M, Laureys J, Valckx D, Bouillon R. Prevention of
diabetes recurrence after syngeneic islet transplantation in NOD mice by
analogues of 1,25(OH)2D3 in combination with cyclosporin A: mechanism of
action involves an immune shift from Th1 to Th2. Transplant Proc 1998;30:
541.

[167] Matilainen JM, Husso T, Toropainen S, Seuter S, Turunen MP, Gynther P, et al.
Primary effect of 1alpha,25(OH)(2)D(3) on IL-10 expression in monocytes is
short-term down-regulation. Biochim Biophys Acta 2010a;1803:1276e86.

[168] Matilainen JM, Rasanen A, Gynther P, Vaisanen S. The genes encoding cy-
tokines IL-2, IL-10 and IL-12B are primary 1alpha,25(OH)2D3 target genes.
J Steroid Biochem Mol Biol 2010b;121:142e5.

[169] Mattner F, Smiroldo S, Galbiati F, Muller M, Di Lucia P, Poliani PL, et al. In-
hibition of Th1 development and treatment of chronic-relapsing experi-
mental allergic encephalomyelitis by a non-hypercalcemic analogue of 1,25-
dihydroxyvitamin D(3). Eur J Immunol 2000;30:498e508.

[170] McDonald CF, Zebaze RM, Seeman E. Calcitriol does not prevent bone loss in
patients with asthma receiving corticosteroid therapy: a double-blind pla-
cebo-controlled trial. A journal established as result of cooperation between
the European Foundation for Osteoporosis and the National Osteoporosis
Foundation of the USA Osteoporos Int 2006;17:1546e51.

[171] McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, et al. TH17
cells mediate steroid-resistant airway inflammation and airway hyper-
responsiveness inmice (Baltimore, Md: 1950) J Immunol 2008;181:4089e97.

[172] McNally JD, Leis K, Matheson LA, Karuananyake C, Sankaran K,
Rosenberg AM. Vitamin D deficiency in young children with severe acute
lower respiratory infection. Pediatr Pulmonol 2009;44:981e8.

[173] Mehta AA, Agrawal AD, Appanna V, Chaudagar KK. Vitamin D improves
corticosteroid efficacy and attenuates its side-effects in an animal model of
asthma. Can J Physiol Pharmacol 2015;93:53e61.

[174] Meyts I, Hellings PW, Hens G, Vanaudenaerde BM, Verbinnen B, Heremans H,
et al. IL-12 contributes to allergen-induced airway inflammation in experi-
mental asthma (Baltimore, Md: 1950) J Immunol 2006;177:6460e70.

[175] Mirzakhani H, Al-Garawi A, Weiss ST, Litonjua AA. Vitamin D and the
development of allergic disease: how important is it? Clin Exp Allergy: J Br
Soc Allergy Clin Immunol 2015;45:114e25.

[176] Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the
interleukin-10 receptor. Annu Rev Immunol 2001;19:683e765.

[177] Moorman JE, Rudd RA, Johnson CA, King M, Minor P, Bailey C, et al. National
surveillance for asthmaeUnited States, 1980e2004 (Washington, DC: 2002)
Morb Mortal Wkly Rep Surveillance Summ 2007;56:1e54.

[178] Moorman JE, Zahran H, Truman BI, Molla MT. Current asthma prevalence e
United States, 2006e2008 (Washington, DC: 2002) Morb Mortal Wkly Rep
Surveillance Summ 2011;60(Suppl.):84e6.

[179] Morales-Tirado V, Wichlan DG, Leimig TE, Street SE, Kasow KA, Riberdy JM.
1alpha,25-dihydroxyvitamin D3 (vitamin D3) catalyzes suppressive activity
on human natural regulatory T cells, uniquely modulates cell cycle pro-
gression, and augments FOXP3 (Orlando, Fla) Clin Immunol 2011;138:
212e21.

[180] Muhe L, Lulseged S, Mason KE, Simoes EA. Case-control study of the role of
nutritional rickets in the risk of developing pneumonia in Ethiopian children.
Lancet 1997;349:1801e4.

[181] Murdoch DR, Slow S, Chambers ST, Jennings LC, Stewart AW, Priest PC, et al.
Effect of vitamin D3 supplementation on upper respiratory tract infections in
healthy adults: the VIDARIS randomized controlled trial. Jama 2012;308:
1333e9.

[182] Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor
ligands. Endocr Rev 2005;26:662e87.

[183] Najada AS, Habashneh MS, Khader M. The frequency of nutritional rickets
among hospitalized infants and its relation to respiratory diseases. J Trop
Pediatr 2004;50:364e8.

[184] Nanzer AM, Chambers ES, Ryanna K, Freeman AT, Colligan G, Richards DF,
et al. The effects of calcitriol treatment in glucocorticoid-resistant asthma.
J Allergy Clin Immunol 2014;133:1755e1757.e4.

[185] Nanzer AM, Chambers ES, Ryanna K, Richards DF, Black C, Timms PM, et al.
Enhanced production of IL-17A in patients with severe asthma is inhibited
by 1alpha,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion.
J Allergy Clin Immunol 2013;132:297e304. e3.

[186] Navas-Nazario A, Li FY, Shabanova V, Weiss P, Cole DE, Carpenter TO, et al.
Effect of vitamin D-binding protein genotype on the development of asthma
in children. Ann Allergy Asthma Immunol: Off Publ Am Coll Allergy Asthma
Immunol 2014;112:519e24.

[187] Nelson DA, Johnson CC, Divine GW, Strauchman C, Joseph CL, Ownby DR.
Ethnic differences in the prevalence of asthma in middle class children. Ann
Allergy Asthma Immunol: Off Publ Am Coll Allergy Asthma Immunol
1997;78:21e6.

[188] Nguyen M, Trubert CL, Rizk-Rabin M, Rehan VK, Besancon F, Cayre YE, et al.
1,25-Dihydroxyvitamin D3 and fetal lung maturation: immunogold detec-
tion of VDR expression in pneumocytes type II cells and effect on fructose 1,6
bisphosphatase. J Steroid Biochem Mol Biol 2004;89e90:93e7.

[189] Nguyen TM, Guillozo H, Marin L, Tordet C, Koite S, Garabedian M. Evidence
for a vitamin D paracrine system regulating maturation of developing rat
lung epithelium. Am J Physiol 1996;271:L392e9.

[190] North ML, Alexis NE, Ellis AK, Carlsten C. Air pollution and asthma: how can a
public health concern inform the care of individual patients? Ann Allergy
Asthma Immunol: Off Publ Am Coll Allergy Asthma Immunol 2014;113:
343e6.

[191] O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of
IL-10 or its antagonists in human disease. Immunol Rev 2008;223:114e31.

[192] Ohta M, Okabe T, Ozawa K, Urabe A, Takaku F. 1 alpha,25-Dihydroxyvitamin
D3 (calcitriol) stimulates proliferation of human circulating monocytes
in vitro. FEBS Lett 1985;185:9e13.

[193] Overbergh L, Decallonne B, Valckx D, Verstuyf A, Depovere J, Laureys J, et al.
Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hy-
droxylase in murine macrophages. Clin Exp Immunol 2000a;120:139e46.

[194] Overbergh L, Decallonne B, Waer M, Rutgeerts O, Valckx D, Casteels KM, et al.
1alpha,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/
T-helper 2 immune shift in NOD mice immunized with GAD65 (p524-543).
Diabetes 2000b;49:1301e7.

[195] Pene J, Chevalier S, Preisser L, Venereau E, Guilleux MH, Ghannam S, et al.
Chronically inflamed human tissues are infiltrated by highly differentiated
Th17 lymphocytes (Baltimore, Md: 1950) J Immunol 2008;180:7423e30.

[196] Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, et al.
Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable
for induction of CD4þFoxp3þ regulatory T cells by 1,25-dihydroxyvitamin
D3. Blood 2005;106:3490e7.

[197] Pfeffer PE, Chen YH, Woszczek G, Matthews NC, Chevretton E, Gupta A, et al.
Vitamin D enhances production of soluble ST2, inhibiting the action of IL-33.
J Allergy Clin Immunol 2014.

[198] Pichler J, Gerstmayr M, Szepfalusi Z, Urbanek R, Peterlik M, Willheim M. 1
alpha,25(OH)2D3 inhibits not only Th1 but also Th2 differentiation in human
cord blood T cells. Pediatr Res 2002;52:12e8.

[199] Pillai DK, Iqbal SF, Benton AS, Lerner J, Wiles A, Foerster M, et al. Associations
between genetic variants in vitamin D metabolism and asthma character-
istics in young African Americans: a pilot study. J Invest Med: Off Publ Am
Fed Clin Res 2011;59:938e46.

[200] Poon AH, Laprise C, Lemire M, Montpetit A, Sinnett D, Schurr E, et al. As-
sociation of vitamin D receptor genetic variants with susceptibility to asthma
and atopy. Am J Respir Crit Care Med 2004;170:967e73.

[201] Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin
D3 receptors in human leukocytes. Science (New York, NY) 1983;221:
1181e3.

[202] Prufer K, Barsony J. Retinoid X receptor dominates the nuclear import and
export of the unliganded vitamin D receptor (Baltimore, Md) Mol Endocrinol
2002;16:1738e51.

[203] Raby BA, Lazarus R, Silverman EK, Lake S, Lange C, Wjst M, et al. Association
of vitamin D receptor gene polymorphisms with childhood and adult
asthma. Am J Respir Crit care Med 2004;170:1057e65.

[204] Rajabbik MH, Lotfi T, Alkhaled L, Fares M, El-Hajj Fuleihan G, Mroueh S, et al.
Association between low vitamin D levels and the diagnosis of asthma in
children: a systematic review of cohort studies. Allergy Asthma Clin
Immunol: Off J Can Soc Allergy Clin Immunol 2014;10:31.

[205] Ramirez AM, Wongtrakool C, Welch T, Steinmeyer A, Zugel U, Roman J.
Vitamin D inhibition of pro-fibrotic effects of transforming growth factor

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e7472



Author's personal copy

beta1 in lung fibroblasts and epithelial cells. J Steroid Biochem Mol Biol
2010a;118:142e50.

[206] Ramirez AM, Wongtrakool C, Welch T, Steinmeyer A, Zugel U, Roman J.
Vitamin D inhibition of pro-fibrotic effects of transforming growth factor
beta1 in lung fibroblasts and epithelial cells. J Steroid Biochem Mol Biol
2010b;118:142e50.

[207] Ramsdell F. Foxp3 and natural regulatory T cells: key to a cell lineage? Im-
munity 2003;19:165e8.

[208] Randolph AG, Yip WK, Falkenstein-Hagander K, Weiss ST, Janssen R,
Keisling S, et al. Vitamin D-binding protein haplotype is associated with
hospitalization for RSV bronchiolitis. Clin Exp Allergy: J Br Soc Allergy Clin
Immunol 2014;44:231e7.

[209] Regamey N, Ochs M, Hilliard TN, Muhlfeld C, Cornish N, Fleming L, et al.
Increased airway smooth muscle mass in children with asthma, cystic
fibrosis, and non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med
2008;177:837e43.

[210] Rehman PK. Sub-clinical rickets and recurrent infection. J Trop Pediatr
1994;40:58.

[211] Richards DF, Fernandez M, Caulfield J, Hawrylowicz CM. Glucocorticoids
drive human CD8(þ) T cell differentiation towards a phenotype with high IL-
10 and reduced IL-4, IL-5 and IL-13 production. Eur J Immunol 2000;30:
2344e54.

[212] Rigby WF, Noelle RJ, Krause K, Fanger MW. The effects of 1,25-
dihydroxyvitamin D3 on human T lymphocyte activation and proliferation:
a cell cycle analysis (Baltimore, Md: 1950) J Immunol 1985;135:2279e86.

[213] Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy: J Br Soc Allergy
Clin Immunol 2009;39:1314e23.

[214] Rosen J, Miner JN. The search for safer glucocorticoid receptor ligands.
Endocr Rev 2005;26:452e64.

[215] Roth DE, Jones AB, Prosser C, Robinson JL, Vohra S. Vitamin D receptor
polymorphisms and the risk of acute lower respiratory tract infection in
early childhood. J Infect Dis 2008;197:676e80.

[216] Rothers J, Wright AL, Stern DA, Halonen M, Camargo Jr CA. Cord blood 25-
hydroxyvitamin D levels are associated with aeroallergen sensitization in
children from Tucson, Arizona. J Allergy Clin Immunol 2011;128:1093e9.
e1-5.

[217] Royal 3rd W, Mia Y, Li H, Naunton K. Peripheral blood regulatory T cell
measurements correlate with serum vitamin D levels in patients with
multiple sclerosis. J Neuroimmunol 2009;213:135e41.

[218] Saadi A, Gao G, Li H, Wei C, Gong Y, Liu Q. Association study between vitamin
D receptor gene polymorphisms and asthma in the Chinese Han population:
a case-control study. BMC Med Genet 2009;10:71.

[219] Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum
25-hydroxyvitamin d and the incidence of acute viral respiratory tract in-
fections in healthy adults. PloS One 2010;5:e11088.

[220] Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, et al. Vitamin
D3down-regulatesmonocyte TLRexpression and triggers hyporesponsiveness
to pathogen-associated molecular patterns. Eur J Immunol 2006;36:361e70.

[221] Schatz M, Zeiger RS, Zhang F, Chen W, Yang SJ, Camargo Jr CA. Overweight/
obesity and risk of seasonal asthma exacerbations. J Allergy Clin Immunol
Pract 2013;1:618e22.

[222] Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, et al. Injury
enhances TLR2 function and antimicrobial peptide expression through a
vitamin D-dependent mechanism. J Clin Invest 2007;117:803e11.

[223] Scherberich JE, Kellermeyer M, Ried C, Hartinger A. 1-alpha-calcidol modu-
lates major human monocyte antigens and toll-like receptors TLR 2 and TLR4
in vitro. Eur J Med Res 2005;10:179e82.

[224] Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R.
Vitamin D supplementation improves cytokine profiles in patients with
congestive heart failure: a double-blind, randomized, placebo-controlled
trial. Am J Clin Nutr 2006;83:754e9.

[225] Schou AJ, Heuck C, Wolthers OD. Does vitamin D administered to children
with asthma treated with inhaled glucocorticoids affect short-term growth
or bone turnover? Pediatr Pulmonol 2003;36:399e404.

[226] Schrumpf JA, van Sterkenburg MA, Verhoosel RM, Zuyderduyn S,
Hiemstra PS. Interleukin 13 exposure enhances vitamin D-mediated
expression of the human cathelicidin antimicrobial peptide 18/LL-37 in
bronchial epithelial cells. Infect Immun 2012;80:4485e94.

[227] Schwartz RH. Natural regulatory T cells and self-tolerance. Nat Immunol
2005;6:327e30.

[228] Searing DA, Zhang Y, Murphy JR, Hauk PJ, Goleva E, Leung DY. Decreased
serum vitamin D levels in children with asthma are associated with
increased corticosteroid use. J Allergy Clin Immunol 2010;125:995e1000.

[229] Seaton A, Godden DJ, Brown K. Increase in asthma: a more toxic environ-
ment or a more susceptible population? Thorax 1994;49:171e4.

[230] Shaheen SO, Jameson KA, Robinson SM, Boucher BJ, Syddall HE, Sayer AA,
et al. Relationship of vitamin D status to adult lung function and COPD.
Thorax 2011;66:692e8.

[231] Shore SA. Obesity and asthma: possible mechanisms. J Allergy Clin Immunol
2008;121:1087e93. quiz 94e5.

[232] Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, et al. DCs
metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the
epidermal chemokine CCL27. Nat Immunol 2007;8:285e93.

[233] Skversky AL, Kumar J, Abramowitz MK, Kaskel FJ, Melamed ML. Association
of glucocorticoid use and low 25-hydroxyvitamin D levels: results from the

National Health and Nutrition Examination Survey (NHANES): 2001-2006.
J Clin Endocrinol Metab 2011;96:3838e45.

[234] Smolders J, Menheere P, Thewissen M, Peelen E, Tervaert JW, Hupperts R,
et al. Regulatory T cell function correlates with serum 25-hydroxyvitamin D,
but not with 1,25-dihydroxyvitamin D, parathyroid hormone and calcium
levels in patients with relapsing remitting multiple sclerosis. J Steroid Bio-
chem Mol Biol 2010;121:243e6.

[235] Smolders J, Thewissen M, Peelen E, Menheere P, Tervaert JW, Damoiseaux J,
et al. Vitamin D status is positively correlated with regulatory T cell function
in patients with multiple sclerosis. PloS One 2009;4:e6635.

[236] Song Y, Qi H, Wu C. Effect of 1,25-(OH)2D3 (a vitamin D analogue) on
passively sensitized human airway smooth muscle cells (Carlton, Vic)
Respirology 2007;12:486e94.

[237] Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al.
Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-
37 by extracellular cleavage with proteinase 3. Blood 2001;97:3951e9.

[238] Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects
of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin
Chim Acta Int J Clin Chem 2006;372:33e42.

[239] Spinozzi F, Agea E, Bistoni O, Forenza N, Monaco A, Falini B, et al. Local
expansion of allergen-specific CD30þTh2-type gamma delta T cells in
bronchial asthma (Cambridge, Mass) Mol Med 1995;1:821e6.

[240] Stelmach I, Olszowiec-Chlebna M, Jerzynska J, Grzelewski T, Stelmach W,
Majak P. Inhaled corticosteroids may have a beneficial effect on bone
metabolism in newly diagnosed asthmatic children. Pulm Pharmacol Ther
2011;24:414e20.

[241] Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DY. Vitamin D levels,
lung function, and steroid response in adult asthma. Am J Respir Crit care
Med 2010;181:699e704.

[242] Taher YA, van Esch BC, Hofman GA, Henricks PA, van Oosterhout AJ.
1alpha,25-dihydroxyvitamin D3 potentiates the beneficial effects of allergen
immunotherapy in a mouse model of allergic asthma: role for IL-10 and TGF-
beta (Baltimore, Md: 1950) J Immunol 2008;180:5211e21.

[243] Tang J, Zhou R, Luger D, Zhu W, Silver PB, Grajewski RS, et al. Calcitriol
suppresses antiretinal autoimmunity through inhibitory effects on the Th17
effector response (Baltimore, Md: 1950) J Immunol 2009;182:4624e32.

[244] Termorshuizen F, Wijga A, Gerritsen J, Neijens HJ, van Loveren H. Exposure
to solar ultraviolet radiation and respiratory tract symptoms in 1-year-old
children. Photodermatol Photoimmunol Photomed 2004;20:270e1.

[245] Thuesen BH, Skaaby T, Husemoen LL, Fenger M, Jorgensen T, Linneberg A.
The association of serum 25-OH vitamin D with atopy, asthma, and lung
function in a prospective study of Danish adults. Clin Exp Allergy: J Br Soc
Allergy Clin Immunol 2015;45:265e72.

[246] Tizaoui K, Berraies A, Hamdi B, Kaabachi W, Hamzaoui K, Hamzaoui A. As-
sociation of vitamin D receptor gene polymorphisms with asthma risk:
systematic review and updated meta-analysis of case-control studies. Lung
2014;192:955e65.

[247] Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks
regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006;38:1654e61.

[248] Umland SP, Schleimer RP, Johnston SL. Review of the molecular and cellular
mechanisms of action of glucocorticoids for use in asthma. Pulm Pharmacol
Ther 2002;15:35e50.

[249] Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized
trial of vitamin D supplementation to prevent seasonal influenza A in
schoolchildren. Am J Clin Nutr 2010;91:1255e60.

[250] Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabrysova L, et al.
The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the promotion
of distinct Foxp3þ and IL-10þ CD4þ T cells. Eur J Immunol 2012;42:
2697e708.

[251] Urry Z, Xystrakis E, Richards DF, McDonald J, Sattar Z, Cousins DJ, et al.
Ligation of TLR9 induced on human IL-10-secreting Tregs by 1alpha,25-
dihydroxyvitamin D3 abrogates regulatory function. J Clin Invest
2009;119:387e98.

[252] Uysalol M, Mutlu LC, Saracoglu GV, Karasu E, Guzel S, Kayaoglu S, et al.
Childhood asthma and vitamin D deficiency in Turkey: is there cause and
effect relationship between them? Ital J Pediatr 2013;39:78.

[253] Vasiliou JE, Lui S, Walker SA, Chohan V, Xystrakis E, Bush A, et al. Vitamin D
deficiency induces Th2 skewing and eosinophilia in neonatal allergic airways
disease. Allergy 2014;69:1380e9.

[254] Valsamis C, Krishnan S, Dozor AJ. The effects of low-level environmental
tobacco smoke exposure on pulmonary function tests in preschool children
with asthma. J Asthma: Off J Assoc Care Asthma 2014;51:685e90.

[255] Van Overtvelt L, Lombardi V, Razafindratsita A, Saint-Lu N, Horiot S,
Moussu H, et al. IL-10-inducing adjuvants enhance sublingual immuno-
therapy efficacy in a murine asthma model. Int Archiv Allergy Immunol
2008;145:152e62.

[256] Vangeepuram N, McGovern KJ, Teitelbaum S, Galvez MP, Pinney SM, Biro FM,
et al. Asthma and physical activity in multiracial girls from three US sites.
J Asthma: Off J Assoc Care Asthma 2014;51:193e9.

[257] VanhamG,Ceuppens JL,BouillonR.T lymphocytesandtheirCD4subsetaredirect
targets for the inhibitory effect of calcitriol. Cell Immunol 1989;124:320e33.

[258] Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin
D(3) receptor in the immune system.Archiv BiochemBiophys 2000;374:334e8.

[259] Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev
Immunol 2008;8:523e32.

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e74 73



Author's personal copy

[260] Vollmert C, Illig T, Altmuller J, Klugbauer S, Loesgen S, Dumitrescu L, et al.
Single nucleotide polymorphism screening and association ana-
lysiseexclusion of integrin beta 7 and vitamin D receptor (chromosome 12q)
as candidate genes for asthma. Clin Exp Allergy: J Br Soc Allergy Clin
Immunol 2004;34:1841e50.

[261] Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge:
1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene
expression (Baltimore, Md: 1950) J Immunol 2004;173:2909e12.

[262] Wayse V, Yousafzai A, Mogale K, Filteau S. Association of subclinical vitamin
D deficiency with severe acute lower respiratory infection in Indian children
under 5 y. Eur J Clin Nutr 2004;58:563e7.

[263] Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H,
Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human
skin. J Invest Dermatol 2005;124:1080e2.

[264] Wegmann M. Th2 cells as targets for therapeutic intervention in allergic
bronchial asthma. Expert Rev Mol Diagnos 2009;9:85e100.

[265] Welliver Sr RC. Temperature, humidity, and ultraviolet B radiation predict
community respiratory syncytial virus activity. Pediatr Infect Dis J 2007;26:
S29e35.

[266] Wenzel S. Physiologic and pathologic abnormalities in severe asthma. Clin
Chest Med 2006;27:29e40.

[267] White AN, Ng V, Spain CV, Johnson CC, Kinlin LM, Fisman DN. Let the sun
shine in: effects of ultraviolet radiation on invasive pneumococcal disease
risk in Philadelphia, Pennsylvania. BMC Infect Dis 2009;9:196.

[268] Wjst M, Altmuller J, Braig C, Bahnweg M, Andre E. A genome-wide linkage
scan for 25-OH-D(3) and 1,25-(OH)2-D3 serum levels in asthma families.
J Steroid Biochem Mol Biol 2007;103:799e802.

[269] Wjst M, Altmuller J, Faus-Kessler T, Braig C, Bahnweg M, Andre E. Asthma
families show transmission disequilibrium of gene variants in the vitamin D
metabolism and signalling pathway. Respir Res 2006;7:60.

[270] Wjst M. Variants in the vitamin D receptor gene and asthma. BMC Genet
2005;6:2.

[271] Wobke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front
Physiol 2014;5:244.

[272] Wood AM, Bassford C, Webster D, Newby P, Rajesh P, Stockley RA, et al.
Vitamin D-binding protein contributes to COPD by activation of alveolar
macrophages. Thorax 2011;66:205e10.

[273] Worth H, Stammen D, Keck E. Therapy of steroid-induced bone loss in adult
asthmatics with calcium, vitamin D, and a diphosphonate. Am J Respir Crit
Care Med 1994;150:394e7.

[274] Wu AC, Tantisira K, Li L, Fuhlbrigge AL, Weiss ST, Litonjua A. Effect of vitamin
D and inhaled corticosteroid treatment on lung function in children. Am J
Respir Crit Care Med 2012;186:508e13.

[275] Xystrakis E, Kusumakar S, Boswell S, Peek E, Urry Z, Richards DF, et al.
Reversing the defective induction of IL-10-secreting regulatory T cells
in glucocorticoid-resistant asthma patients. J Clin Invest 2006;116:146e55.

[276] Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. Induction of cath-
elicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin
D(3). J Cyst Fibros: Off J Eur Cyst Fibros Soc 2007;6:403e10.

[277] Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res
2014;7:69e87.

[278] Young MT, Sandler DP, DeRoo LA, Vedal S, Kaufman JD, London SJ. Ambient
air pollution exposure and incident adult asthma in a nationwide cohort of
U.S. women. Am J Respir Crit Care Med 2014;190:914e21.

[279] Yu XP, Bellido T, Manolagas SC. Down-regulation of NF-kappa B protein
levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc
Natl Acad Sci U S A 1995;92:10990e4.

[280] Yurt M, Liu J, Sakurai R, Gong M, Husain SM, Siddiqui MA, et al. Vitamin D
supplementation blocks pulmonary structural and functional changes in a
rat model of perinatal vitamin D deficiency. Am J Physiol Lung Cell Mol
Physiol 2014;307:L859e67.

[281] Yusuf S, Piedimonte G, Auais A, Demmler G, Krishnan S, Van Caeseele P, et al.
The relationship of meteorological conditions to the epidemic activity of
respiratory syncytial virus. Epidemiol Infect 2007;135:1077e90.

[282] Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, et al.
Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin
Endocrinol Metab 2001;86:888e94.

[283] Zhang L, Prietsch SO, Ducharme FM. Inhaled corticosteroids in children with
persistent asthma: effects on growth. Cochrane database Syst Rev 2014;7:
Cd009471.

[284] Zhang Y, Leung DY, Goleva E. Vitamin D enhances glucocorticoid action in
human monocytes: involvement of granulocyte-macrophage colony-stimu-
lating factor and mediator complex subunit 14. J Biolog Chem 2013;288:
14544e53.

[285] Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, et al. Vitamin
D inhibits monocyte/macrophage proinflammatory cytokine production by
targeting MAPK phosphatase-1 (Baltimore, Md: 1950) J Immunol 2012;188:
2127e35.

[286] Zittermann A, Dembinski J, Stehle P. Low vitamin D status is associated with
low cord blood levels of the immunosuppressive cytokine interleukin-10.
Pediatr Allergy Immunol: Off Publ Eur Soc Pediatr Allergy Immunol 2004;15:
242e6.

[287] Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart PH. Vitamin D defi-
ciency causes deficits in lung function and alters lung structure. Am J Respir
Crit care Med 2011;183:1336e43.

[288] Zosky GR, Hart PH, Whitehouse AJ, Kusel MM, Ang W, Foong RE, et al.
Vitamin D deficiency at 16 to 20 weeks' gestation is associated with impaired
lung function and asthma at 6 years of age. Ann Am Thorac Soc 2014;11:
571e7.

[289] Hamzaoui A, Berraïes A, Hamdi B, Kaabachi W, Ammar J, Hamzaoui K.
Vitamin D reduces the differentiation and expansion of Th17 cells in young
asthmatic children. Immunobiology 2014;219:873e9.

[290] Cadranel J, Garabedian M, Milleron B, Guillozo H, Akoun G, Hance AJ.
1,25(OH)2D2 production by T lymphocytes and alveolar macrophages
recovered by lavage from normocalcemic patients with tuberculosis. J Clin
Invest 1990;85:1588e93.

[291] Hossein-Nezhad A, Spira A, Holick MF. Influence of vitamin D status and
vitamin D3 supplementation on genome wide expression of white blood
cells: a randomized double-blind clinical trial. PLoS One 2013;8:e58725.

[292] Tse SM, Kelly HW, Litonjua AA, Van Natta ML, Weiss ST, Tantisira KG, et al.
Corticosteroid use and bone mineral accretion in children with asthma: ef-
fect modification by vitamin D. J Allergy Clin Immunol 2012;130:53e60.

[293] Adachi JD, Bensen WG, Bianchi F, Cividino A, Pillersdorf S, Sebaldt RJ, et al.
Vitamin D and calcium in the prevention of corticosteroid induced osteo-
porosis: a 3 year follow up. J Rheumatol 1996;23:995e1000.

[294] Reardon BJ, Hansen JG, Crystal RG, Houston DK, Kritchexsky SB, Harris T,
et al. Vitamin D-responsive SGPP2 variants associated with lung cell
expression and lung function. BMC Med Genet 2013;14:122.

C.P. Kerley et al. / Pulmonary Pharmacology & Therapeutics 32 (2015) 60e7474


	Vitamin D as an Adjunctive Therapy in Asthma. Part 1: A Review of Potential Mechanisms
	Recommended Citation

	YPUPT1436

