
The ITB Journal The ITB Journal

Volume 5 Issue 2 Article 4

2004

Voice Activated Command and Control with Speech Recognition Voice Activated Command and Control with Speech Recognition

over Wireless Networks over Wireless Networks

Tony Ayres

Brian Nolan

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Ayres, Tony and Nolan, Brian (2004) "Voice Activated Command and Control with Speech Recognition
over Wireless Networks," The ITB Journal: Vol. 5: Iss. 2, Article 4.
doi:10.21427/D78F2X
Available at: https://arrow.tudublin.ie/itbj/vol5/iss2/4

This Article is brought to you for free and open access by
the Journals Published Through Arrow at ARROW@TU
Dublin. It has been accepted for inclusion in The ITB
Journal by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301304016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol5
https://arrow.tudublin.ie/itbj/vol5/iss2
https://arrow.tudublin.ie/itbj/vol5/iss2/4
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol5/iss2/4?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ITB Journal

Issue Number 10, December 2004 Page 37

Voice Activated Command and Control with Speech Recognition
over Wireless Networks

Mr. Tony Ayres, Dr. Brian Nolan
Institute of Technology Blanchardstown

E-mail tony.ayres@itb.ie brian.nolan@itb.ie

Abstract

This paper presents work conducted to date on the development of a voice activated

command and control framework specifically for the control of remote devices in a

ubiquitous computing environment. The prototype device is a Java controlled Lego

Mindstorm robot. The research considers three different scenario configurations. A

recognition grammar for command and control of the robot has been created and

implemented in Java, in part in the recognition engine and in part on the robot. The physical

topology involves Java at each node endpoint, that is, at the handheld PC (iPaq), the PC

workstation, the Linux server and onboard the robot (including its Java based Lejos OS).

Network communications is primarily WLAN with an element of IR where the robot is

concerned. The speech recognition software used includes Sphinx4, Microsoft SAPI and the

Java Speech API. We compare these speech technologies and present their benefits in the

context of this research. For each given scenario we present and discuss the implementation

challenges encountered and their corresponding solutions. We outline our future plans to

create additional grammars to extend the frameworks range of devices.

1. Introduction

This research project is concerned with building a framework with applications for command

and control of a remote device by voice activation with speech recognition from a local

control station over a wireless network in three different scenario configurations. In each

scenario Java plays a critical role.

The first of these scenarios or configurations is based on a PC workstation under the

Windows operating system connected via a wireless network to a PC-based server. The

server issues commands to a remote device. The second scenario will involve developing a

distributed speech recognition engine, between an iPaq pocket PC and a PC based server

which will issue the commands to the remote device. The third scenario will involve a mobile

device, specifically an iPaq Pocket PC that will connect over a wireless network to a PC-

based server. The server will, again, issue commands to the remote device.

ITB Journal

Issue Number 10, December 2004 Page 38

For purposes of this research project the remote device will be a Java controlled Lego

MindStorms robot that will move and undertake certain actions under instructions relayed to

it over a wireless interface. The robot could be replaced with practically any computing or

electronic device which has a Java Virtual Machine installed. As part of this research it is our

intention to develop a speech recognition engine using the Java programming language.

2. Technology Review

2.1 Applications of Speech Technology

The applications for speech recognition can be grouped into three distinct categories; these

are command and control, dictation and authentication

Command and Control applications are concerned with providing the user of these systems

the means to control items within their environment with voice commands appropriate to the

domain. The appliance of command and control technology may manifest itself in the control

of user interface menus in personal computing desktop applications or the control of large

scale mechanical or electronic and computing devices.

Dictation applications allow the user to speak to the system and have it generate a transcript

of what has been said. This is particularly useful in legal or medical arenas where

information is recorded in real time and making written notes would be too slow. Specialized

dictation grammars exist for application domains such as this. Furthermore dictation and

command/control functionality can be combined in word processing applications such as

Microsoft Word.

Speech technology can also be used for authentication purposes as part of a security system.

The signal analysis algorithms employed as part of a speech recognition front end generate a

feature vectors which can be matched to a pre recorded sample of a users voice. Given that

each person has a unique voice print this can be used for authentication purposes.

2.2 Types of Speech Recognition Systems

Speech Recognition systems can be classified according to whether they are speaker

dependent or speaker independent. Speaker dependent speech recognition engines require the

user to train a profile of their voice for the engine to use when performing recognition. This

process typically involves reading sample passages of text to the engine. Conversely speaker

ITB Journal

Issue Number 10, December 2004 Page 39

independent systems do not require the user to train them before achieving high recognition

accuracy. In this instance a pre recorded corpus of words is compared to the input speech

vectors to generate recognition result.

In general terms speaker dependent systems achieve greater recognition accuracy given that

the engine will be customized for a specific users voice, however speaker independent

systems can achieve comparable accuracy levels where the grammar is constrained and as

such are ideally suited for applications which may have a large number of users.

2.3 Process of Speech Recognition

The components of speech recognition systems include a speech corpus (database), a

frontend processing system and a speech decoding unit. The frontend is responsible for

analyzing the speech input and extracting feature vectors which will be used in the decoding

process (figure 1). The speech corpus, in the case of speaker independent recognition engines

will contain acoustic information for all the words and phonemes which the corpus contains.

The speech decoding process compares input features generated by the frontend with those in

the corpus, the result is usually a probability score, representing the engines confidence in the

accuracy of any match found.

Figure 23 Speech Recognition Process

ITB Journal

Issue Number 10, December 2004 Page 40

Modern speech recognition systems use stochastic techniques to model and decode speech

signal data. Hidden Markov Models (HMM) have become the most successful statistical

method for speech recognition. The HMM phase of speech recognition comes after an initial

analysis and feature extraction process on the incoming speech signal. The feature extraction

process generates feature vectors which are used as the input to the HMM.

A Markov model is specified by the states Q, the set of transition probabilities A, defined

start and end states and a set of observation likelihood's B. A Hidden Markov Model formally

differs from a Markov model by adding two other requirements. Firstly it has a set of

observation symbols which is not drawn the from the same alphabet as the state Q. Secondly

the observation likelihood function B is not limited to the values 1 and 0, in the HMM the

probability can take any value between 0 and 1. The parameters needed to define a HMM are

as follows:

o A set of states

o Transition probabilities

o Observation likelihood's

o Initial distribution

o Accepting States

In order to extract a suitable output for speech recognition we must parse the representation

which the markov model contains.

Figure 2 shows the HMM graph for the words “one” and “two” according to the Sphinx4

speech decoder. HMMs are generated for each phoneme that constitutes a word. Each HMM

has a transition from to various nodes in the graph and to itself. The Viterbi [1] algorithm is

used to find the best path through the graph based on the highest score of each transition.

Figure 24 HMM Decoding of Phones (Taken From Sphinx4)

ITB Journal

Issue Number 10, December 2004 Page 41

2.4 Selecting a Speech Engine

The Java Speech API [2] is used to provide a platform independent speech recognition and

synthesis interface for Java applications. Sun Microsystems supply a reference standard for

the Java Speech API, but they do not provide an implementation. The Java Speech API

implements no speech processing functionality of its own but allows Java applications to

plug into functionality available on the host operating system.

Recent advances in signal processing algorithms coupled with the development of HMM

based decoding techniques, has led to the development of many highly accurate speech

recognition engines. The majority of these speech engines are commercial products which

include text to speech capabilities in tandem with their recognition functionality. These

products include Microsoft Speech API version 5 [3] (SAPI5), IBM Via Voice [4] and

Dragon Naturally Speaking [5]. One defining characteristic of all these engines is that they

are speaker dependent.

In the open source domain the Sphinx project is the only suitably large candidate. The Sphinx

project is concerned with developing HMM based speaker independent recognition systems.

The project has 3 engines available as source code downloads, namely Sphinx2, Sphinx3 and

Sphinx4. Sphinx2 is a real time speech decoder, its feature include continuous speech

decoding, can provide a single best or several alternative recognition's, support for bigram,

trigram, or finite-state grammar language models. Sphinx3 is a state of the art speech

decoder written in C. While it has a slower decoding speed than Sphinx 2, it provides more

accurate recognition. Initially it was developed to perform batch speech decoding from audio

files but is now capable of live decoding.

Sphinx4 is the latest speech decoder to be released by the project, initially it started as a port

of Sphinx3 to the Java programming language; however the engine evolved to become more

flexible than Sphinx3. A defining characteristic of Sphinx4 is the configuration of the engine,

which is achieved through an XML configuration file. Each Java object in the Sphinx4

system can be instantiated through this file, this helps keep application code which

implement Sphinx4 clear of Sphinx4 code which makes for easier debugging. Sphinx4 also

includes an implementation of the Java Speech API. Its object oriented structure and easy

XML configuration make it an ideal choice for conducting research

This research project defines a number of application scenarios [section 3]. A different

speech engine is implemented in each of the scenarios, Scenario 1 uses Microsoft SAPI5 with

ITB Journal

Issue Number 10, December 2004 Page 42

the Cloudgarden JSAPI [6] implementation; Scenario 2 uses the Sphinx4 speech recognition

engine which includes its own JSAPI implementation, Scenario 3 which is still in

development, will use a lightweight Java/C++ based speech decoder based on the Sphinx

engine.

We tested the performance of the Java Speech API with Sphinx4 and SAPI5 in the context of

developing this framework for command and control. The test provided an insight into the

characteristics of speaker dependent and speaker independent recognition engine and

presented and opportunity to compare the current state of the art of both approaches to speech

recognition.

2.4.1 Performance Analysis under the Java Speech API

Under Windows XP, the setup time for a JSAPI recognizer under both speech engines is in a

similar range, although SAPI5 is marginally faster. Most notable is the length of time Sphinx

takes to process the first command; after this initial command has been processed the time

drops back to just over 3 seconds for each subsequent command. The SAPI5 configuration is

extremely quick for all commands; although SAPI could be prone to a high number of errors,

this occurred under JDK1.4 where the average error rate was 1.5 (accuracy of 63%). The

graph shown in Figure 2 highlights the speed of the SAPI engine in processing the

commands.

SAPI5/J1.4/PM

SAPI5/J1.5/PM
SPHINX/J1.4/PM

SPHINX/J1.5/PM

Figure 3 SAPI VS Sphinx Windows XP

Figure 3 also shows that Java 1.5 is faster than 1.4; this is most noticeable with the Sphinx4

test. While the setup times are almost identical, the time recognition time drops to around 2

seconds in comparison to 3 seconds with 1.4. The SAPI5 test also ran faster with JDK1.5,

although the difference is marginal when compared to performance gain Sphinx4 achieves.

ITB Journal

Issue Number 10, December 2004 Page 43

Sphinx encountered a trough in recognition accuracy with the Pentium IV/1.4 configuration,

with at least one error occurring in the majority of tests, thus yielding an average of 1.4 errors

which translates to an accuracy of 65%. In addition, the recognizer setup time was much

longer than those on the Windows XP test machine. With JDK 1.5 Sphinx4 yielded a

recognition accuracy of 93%, with only 0.2 errors. One noticeable difference is the

recognition times under JDK 1.5, we encountered numerous spikes where decoding of

commands took between 8 and 30 seconds, this occurred on 3 occasions while issuing the

“Backward” command. As a result the average command time for JDK1.5 on the Windows

2000 machine is slower than JDK1.4. In figure 3 the graph shows the sharp peaks and troughs

in the Sphinx performance under JDK1.5.

SAPI5/J1.4/P4

SAPI5/J1.5/P4

Sphinx/J1.4/P4

Sphinx/J1.5/P4

Figure 4 SAPI VS Sphinx on Windows 2000

The SAPI5 results on this machine were inline with the previous test, recognition time

averages below 500ms and the setup time averages around 1 second. As with the Sphinx tests

on this machine, the SAPI performance under JDK1.5 was not faster than JDK1.4.2.

ITB Journal

Issue Number 10, December 2004 Page 44

Accuracy

0
20
40
60
80

100
120

SAPI5/
J1

.4/
PM

SAPI5/
J1

.5/
PM

SPHIN
X/J1

.4/
PM

SPHIN
X/J1

.5/
PM

SAPI5/
J1

.4/
P4

SAPI5/
J1

.5/
P4

Sph
inx

/J1
.4/

P4

Sph
inx

/J1
.5/

P4

Test

A
cc

ur
ac

y
%

Series1

Figure 5 Accuracy Percentage

Figure 5 presents a bar graph indicating the recognition accuracy of test configuration. SAPI5

under Windows 2000 under JDK1.5 was the most accurate with a score of 98%, Sphinx4 on

the same system and the same JDK received the second highest score with 95%. SAPI also

holds the lowest score of 63% on Windows XP with JDK1.4. The average accuracy for both

engines was 84%. Both engines had one trough of poor performance where the accuracy

dropped considerably and as a result both engines received the same average accuracy

percentage. If we ignore the trough values, then SAPI5 achieves the highest average score of

91% with Sphinx scoring 89%.

Setup Forward Backward Left Right
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Linux PM 1Gb RAM JDK 1.5

Row 17

Command Issued

Ti
m

e
(m

s)

Figure 6 Linux Performance Results

We tested the Sphinx4 engine under Mandrake Linux 10.1 running the release version of

JDK 1.5. This allows us to compare the performance of the Java runtime environment on a

second operating environment for the purposes of speech recognition. Furthermore, Sphinx4

is one of the few large scale speech recognition engines available for the Linux operating

system. In comparison to the Windows based tests the Linux test achieved the greatest

accuracy with a score of 97%. Again the initial engine setup time is longer than

ITB Journal

Issue Number 10, December 2004 Page 45

SAPI5/Windows, however it does perform better than Sphinx4 on Windows in both

recognition processing time and accuracy.

The results of these tests show the relative strengths of both speech engines, performance

wise there is little to separate them. There are significant differences between them, SAPI5 as

a speaker dependent engine using a speech profile to decode speech input has the ability to

recognize any speech utterance from the user who trained the profile. Sphinx4 is limited to

recognizing only those words which are contained within the language model. This limitation

in Sphinx4 makes it less suitable for dictation applications, but its high accuracy and open

source code make it excellent for conducting research and building command and control

applications. SAPI5 is an excellent engine for both dictation and command and control, but it

is less adaptable for research purposes as it a closed system.

3. Application Topology

3.1 Scenario One

To date we have been developing the overall system architecture and evaluating speech

technologies which will meet our requirements. Figure 1, illustrates the architecture of

scenario one. In scenario one, we propose to develop a speech recognition application in Java

using the Cloudgarden implementation of the Java Speech API. Cloudgarden provides JSAPI

functionality in conjunction with a SAPI 4/5 compliant speech engine on the host operating

system, supported SAPI speech engines include Microsoft SAPI, IBM Via Voice and Dragon

Naturally Speaking.

The client application accepts speech input via microphone and performs speech recognition

using the JSAPI. A successful output from the speech recognition process is one or more

string tokens. The application delivers the recognized speech strings to a Java based server

application over TCP/IP via a wireless network. The server application is running on a Linux

operating system. The server processes the recognized speech strings in order to determine if

they match terms in the robot control grammar. If a match is found, that particular command

is issued to the robot over a wireless network.

ITB Journal

Issue Number 10, December 2004 Page 46

The robot will be fitted with a camera and we are investigating the possibility of using Java

API’s including the Java Twain and the Java 3D API to capture and process images returned

to the client application from the robot.

3.2 Scenario Two

Scenario two offers an alternative approach. The PC workstation is replaced by a PDA with

wireless networking capabilities, in this case an HP iPaq 5550 running Pocket PC 2003. The

configuration of the HP iPaq Pocket PC 5550 is:

Processor Intel XScale 400mhz

Memory 128mb RAM

ROM 48mb ROM

Networking 802.11b WLAN and Bluetooth

Operating System Pocket PC 2003

The application on the PDA is concerned with capturing a speech input signal and sending it

through the wireless interface to the server. The server hosts a processing engine for the robot

Figure 7 Scenario One

ITB Journal

Issue Number 10, December 2004 Page 47

grammar as in scenario one, however it also has an additional layer of functionality, namely,

the speech recognition engine.

The PDA provides mobility but has limited processing power. In order to lessen the load on

the PDA the speech recognition engine is distributed between the server and PDA. The PDA

has the Jeode runtime environment installed on it. Jeode is a Personal Java compatible

runtime environment.

Personal Java [7] is fully compatible with JDK 1.1, however JDK 1.1 does not have sufficient

libraries to perform signal capture or speech recognition. To circumvent this obstacle, the

Java Native Interface will be used to plug into the sound capture functionality of the PDA

hardware; a digitized speech signal will be returned. This digitized speech will be sent to the

server application where the remainder of the speech recognition process will take place.

Processing of the speech signal is the most processor intensive activity in the recognition

process, therefore this function is assigned to the server, thus memory and processing power

on the mobile device become of less importance. This approach presents greater complexity

Figure 8 Scenario Two

ITB Journal

Issue Number 10, December 2004 Page 48

in acquiring the signal, sending it over the network and reading it back into the speech

processing engine.

3.3 Scenario Three

In scenario three we port the speech recognition engine from the PC workstation in scenario

one to the PDA. Given the resources of the PDA, a simple copy of the speech engine from

scenario one is not feasible. The Cloudgarden JSAPI implementation requires a SAPI

compliant engine and Java Development Kit 1.3 or better, as these are not available on the

PDA an alternative is needed. The open source Sphinx 2 can be used to provide speech

recognition functionality on the device. Sphinx2 is written in C, therefore the Java client

application will use the Java Native Interface to plug into the methods which are provided by

Sphinx.

The recognized speech will be sent over a WLAN link (TCP/IP) to the server application. As

with Scenario 1 the server processes the recognized speech strings in order to determine if

they match terms in the robot control grammar. If a match is found, the command is issued to

the robot over a wireless network.

Figure 9 Scenario Three

ITB Journal

Issue Number 10, December 2004 Page 49

4. Design

4.1 Distributed Speech Recognition under Scenario 2

Scenario 2 requires a distributed speech recognition application topology. The architecture of

this design is shown in figure 10.

The process begins with the client application installed on the iPaq, presently the client is

written in C#, but will be converted to Java in due course. The application records and

streams speech audio data from the client over the iPaqs wireless network interface to the

server application.

The server application consists of two Java classes namely DASRManagerServer and

SphinxASREngineServer. DASRManagerServer is responsible for receiving client

connections and subsequently audio data send from the client. The class buffers the audio

data before sending it to SphinxASEngineServer for speech recognition processing. The

recognition result is send back to the Manager class and the notification process begins. If a

command has been detected in the speech, this is sent to the robot (or other end device) a

notification of the command is returned to the client.

Figure 10 Distributed Speech Recognition under Scenario Two

ITB Journal

Issue Number 10, December 2004 Page 50

4.2 Grammar Design

The commands appropriate to the target device are defined in a JSGF grammar file; this is

used by the speech recognition engine to define what words the application can recognize.

These commands are also built as methods into a Java interface. The interface is used by

classes which wish to implement the real world functionality of a particular device.

The prototype device for this is a Lego Mindstorm [8] robot and we have devised a grammar

which maps its functionality to software. The robots range of movements include forward,

backward, left turn and right turn. We can enhance this further by specifying a distance or a

number of degrees for the robot to move, the grammar is robust enough to cater for this. Code

fragment 1 shows the JSGF grammar and the Java interface which defines the methods in

code.

The implementation of the methods will vary depending on the application of the robot

device, but the range of motions will be the same for the any application involving this robot.

#JSGF V1.0;

/**

 * JSGF Robot Grammar

 */

grammar robots;

public <forward> = forward | forward <distance>;

public <backward> = backward | reverse;

public <turn_left> = (turn left <distance>) | (left <distance>);

public <turn_right> = (turn right <distance>) | (right <distance>);

public <distance> = (five {five}) | (fifty {fifty}) | (ninety {ninety});

public interface RobotGrammarInterface {

 public int moveForward();

 public int moveBackward();

 public int moveForward(int distance);

 public int moveBackward(int distance);

 public int turnLeft();

 public int turnRight();

 public double turnLeft(int degrees);

 public double turnRight(int degrees);

 public void stop();

}

Code 1 JSGF Grammar and Java Interface

ITB Journal

Issue Number 10, December 2004 Page 51

5. Implementation Challenges

5.1 Ipaq Audio Capture

A suitable Java runtime environment must be installed on the Ipaq in order to run Java

applications. The environment used in this research is Jeode, which provides JDK 1.1.8

compatibility and support for Java applets. The sand box security model implemented in Java

prevents code from access to underlying system hardware, this has many security advantages

but creates problems for application developers wishing to use low level device functionality,

in our case access to the sound card. More recent versions of Java(1.3 and better) include the

Java Sound API [9] which provides access to this functionality on more powerful desktop

computers.

In order to gain access and record audio from the sound card the Java Media Framework

(JMF) [10] was downloaded and a customized Java only version was built specifically for the

device. The ability to customize the JMF is a relatively unknown and at this time, poorly

documented feature of the software. Following numerous unsuccessfully attempts to record

audio through the JMF, it was ascertained from other users that the sound functionality was

not available to the JMF on the iPaq.

A pure Java solution to this problem does not currently exist. Under Scenario 2 the client is

developed using C# and the Microsoft .NET Compact Framework [11] which includes low

level access to the iPaq audio capabilities. The C# code is similar to Java and the runtime

characteristics are identical i.e. the code is interpreted not compiled as is the case with Java.

Scenario 3 which is currently being developed, will use C++ code to capture the audio and

populate a Java object with the data, this will be returned to a Java program using the Java

Native Interface.

5.2 Robot Movement

The robots movement is controlled by timers which activate the motors for a specified time

before stopping. In order to move the robot accurately, the timings of the motor movements

must be synchronized properly. The robot moves on two caterpillar tracks each controlled by

a separate motor, therefore in order to move forward both motors must be engaged in the

forward direction, the same is true for reversing.

ITB Journal

Issue Number 10, December 2004 Page 52

Turning is more complicated, in order to turn left, the left motor must be stopped while the

right motor continues to move forward and vice versa when dealing with right turns. To allow

for a greater degree of control, a distance to turn can also be specified, to execute such a

command the time to pause the motor must be calculated. The equation to calculate this is

show equation 1.

The time it takes the robot to complete a 360 degree turn was measured and found to be a

10000ms (10 seconds), this is set as a constant value in the code.

5.3 Robot Communication Protocol

The Java control program installed on the Lego Mindstorm robot acts a server which listens

for incoming data packets from its control PC. The control program simply uses the built in

data port functionality to do this. In order to send commands successfully to the robot a

protocol for communication needed to be designed and implemented.

Specific byte values within the RCX computer are allocated to perform certain tasks related

to motor and sensor control , therefore these values needed to be avoided to ensure

interoperability between the RCX and the Java control program. The byte range of values

from 70 to 79 were found to be free for external use.

Formula:

 (Degrees_To_Turn / 360) * Robot 360 Time

Code Implementation

public double turnRight(int degrees)

{

 return (degrees / 360) * FULL_CIRCLE_TIME;

}

Equation 1 Calculating the turning of the robot to left or right

ITB Journal

Issue Number 10, December 2004 Page 53

Binary Value Byte Value Function

1000110 70 Turn Right

1000111 71 Turn Left

1001000 72 Move Forward

1001001 73 Reverse

Table 1Robot Communication Protocol Functions

In the case of each function an additional value can be follow the function value, this value

indicates a distance or degree parameter for the function. If this value is not present the

execution continues with the default values. This allows the protocol to comply with the

application grammar.

6. Conclusions and Future Work

The successful implementation of scenario one indicates that a framework for the command

and control of remote devices is both feasible and practical when considerable computing

power is available. The distributed speech recognition and command and control model

described in scenario two is almost complete, upon completion it will be clear how the

framework fits within the ubiquitous computing paradigm, however the initial results during

development are positive that the distributed model of speech recognition will be succeful in

the context of the overall application. Scenario two will also be developed further to

incorporate a Java client to augment the current C# client implementation.

The framework can be easily extended and moulded to suit a variety of devices or

applications. We propose to conduct further development of the framework utilizing

additional software and hardware end devices specifically the voice activated remote control

of a web camera. Incorporating additional devices will demonstrate the flexibility of the

command and control framework and extensibility of the grammar.

The development scenario three will move the speech recognition even closer to the

ubiquitous computing paradigm. A usable and easily programmable speech recognition

engine which can run efficiently on a mobile device with limited resources will spawn

endless possibilities for the development of mobile command and control applications.

ITB Journal

Issue Number 10, December 2004 Page 54

7. References

1. Jurafsky D. & Martin J.H. , Speech and Language Processing An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition, 2000, Prentice
Hall, New Jersey.

2. Sun Microsystems Ltd, Java Speech API, [online at] http://java.sun.com/products/java-
media/speech/

3. Microsoft Corporation, Microsoft Speech and SAPI 5, [online at]
http://www.microsoft.com/speech/

4. IBM, Via Voice [online at] http://www-306.ibm.com/software/voice/viavoice/
5. ScanSoft, Dragon Naturally Speaking, [online at]

http://www.scansoft.com/naturallyspeaking/
6. Kinnersley J, Cloudgarden Java Speech Api Implementation, [online at]

http://www.cloudgarden.com
7. Sun Microsystems Ltd, Java 2 Micro Edition: Personal Java [online at]

http://java.sun.com/products/cdc/index.jsp
8. Lego Mindstorm Robots
9. Sun Microsystems, Java Sound API [online at] http://java.sun.com/products/java-

media/sound/
10. Sun Microsystems, Java Media Framework [online at] http://java.sun.com/products/java-

media/jmf/
11.Wigley A., Sutton M., MacLeod R., Burbidge R., Wheelwright S., Microsoft .NET

Compact Framework (Core Reference), 2003, Microsoft Press.

	Voice Activated Command and Control with Speech Recognition over Wireless Networks
	Recommended Citation

	Microsoft Word - itb journal-december-0.doc

