
The ITB Journal The ITB Journal

Volume 5 Issue 2 Article 2

2004

Interactive 2D and 3D Graphics over the World-Wide Web with Interactive 2D and 3D Graphics over the World-Wide Web with

ActionScript ActionScript

Hugh McCabe

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
McCabe, Hugh (2004) "Interactive 2D and 3D Graphics over the World-Wide Web with ActionScript," The
ITB Journal: Vol. 5: Iss. 2, Article 2.
doi:10.21427/D7HX7T
Available at: https://arrow.tudublin.ie/itbj/vol5/iss2/2

This Article is brought to you for free and open access by
the Journals Published Through Arrow at ARROW@TU
Dublin. It has been accepted for inclusion in The ITB
Journal by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol5
https://arrow.tudublin.ie/itbj/vol5/iss2
https://arrow.tudublin.ie/itbj/vol5/iss2/2
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol5/iss2/2?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ITB Journal

Issue Number 10, December 2004 Page 4

 Interactive 2D and 3D Graphics over the World-Wide Web
with ActionScript

Hugh McCabe

School of Informatics and Engineering

Institute of Technology Blanchardstown

hugh.mccabe@itb.ie

Abstract

Many efforts have been made to provide a mechanism for delivering interactive 3D

content over the World-Wide Web. The majority of the solutions put forward require the

use of a proprietary plug-in on the client browser and none of these required plug-ins have

so far become part of the standard browser installation package. The Macromedia Flash

player has however achieved near ubiquitous status as the standard plug-in for displaying

interactive multimedia and graphics content. Flash does not provide native support for 3D

graphics but the recent addition of the Shape Drawing API opens up the possibility of

developers using ActionScript for this purpose. This paper describes the development of an

ActionScript graphics library that consists of a set of reusable classes for adding

interactive 2D and 3D graphics to Flash content. We describe these classes in detail, show

examples of programs developed using them, and discuss the advantages of this approach

1 Introduction

The World-Wide Web (WWW) was initially developed as a means of providing hyperlinked

textual information over wide area networks but quickly evolved into a medium that was

capable of handle numerous forms of non-textual multimedia content as well; such as

bitmapped images, video, and audio [2]. These are typically handled by encoding them into

external files adhering to standardised formats whose goal is to ensure efficient coding and

playback [11]. In the case of bitmapped images, the browser itself is capable of decoding and

displaying the content, and hence the images can be directly embedded in web pages. In the

case of video and audio, an external application is often invoked by the browser to handle the

playback. It is increasingly common that this external application is developed as a plug-in

for the browser. In this case seamless embedding of the content within the web page is made

possible.

ITB Journal

Issue Number 10, December 2004 Page 5

The nature of these content forms mean they are essentially non-interactive, in that user input

at most comprises of choosing whether to view or play the content or not. Interactive

graphics on the other hand is a form of multimedia content that is by definition fully

interactive [8][9]. In this case the visual content is stored internally as a set of mathematical

or quasi-mathematical representations1 and the display software (or renderer) is responsible

for generating images for display. A wide variety of interaction is now made possible as

mouse and keyboard input can be used to manipulate the internal representations of the

objects that make up the scene and the renderer can, in real time, display the results to the

user. Interactive graphics is the technology that drives such diverse applications as games

[3], computer animation [19], computer-aided design [10], architectural walkthroughs [1],

and scientific visualisation [15].

For various reasons, this form of media has not made the same inroads into the World-Wide

web as its non-interactive counterparts. The hypertext interface upon which the web is based

is unsuited for the sorts of precise mouse and keyboard interactions required, and therefore

most attempts to introduce it have revolved around the use of external plug-ins to view and

interact with the content. This has been reasonably successful in the case of 2D graphics. The

Macromedia Flash system for example [13], provides an effective way of delivering a form

of 2D graphics over the web and the associated viewer plug-in, the Flash player, has

achieved near total penetration of the browser market2. The various ways of delivering 3D

graphics however still rely on the presence of plug-ins that the average user is extremely

unlikely to have installed in their browser.

In this paper we describe how the Macromedia Flash system can be extended to handle 3D

graphics as well as the 2D graphics that it is intended for. The motivations for doing this are

as follows:

• Macromedia Flash is a near ubiquitous means of adding multimedia content to the

web and its player is installed on the vast majority of the world’s web browsers.

• The majority of web-based multimedia developers use Flash and hence they are more

likely to experiment with 3D functionality if it is presented in the context of an

application they are already familiar with.

1 As opposed to bitmapped images which comprise of a two-dimensional array of pixel colour values
and contain no direct representation of the content.
2 Macromedia report that an independent survey by NPD research carried out in June 2003 found that
97.4% of web browsers had a version of the Flash player installed.

ITB Journal

Issue Number 10, December 2004 Page 6

• Interactive Flash applications are built using the ActionScript language which is

relatively simple to learn. From an educational point of view, this work provides an

opportunity to get students to experiment with building 3D applications without

having to learn complicated high-level graphics languages such as OpenGL or

Java3D

This extension is made possible by building a graphics library in ActionScript that uses the

Shape Drawing API to render objects on the screen in real time [6]. The rest of this paper

consists of the following. Section 2 reviews the methods of delivering interactive graphics

over the web and pays particular attention to those that aim to handle 3D graphics. Section 3

describes the Shape Drawing API upon which our library is built and the overall architecture

of our system. Section 4 describes the extensions to the Shape Drawing API that our library

includes in order to provide a full interactive 2D graphics system. Section 5 details the

classes that constitute the 3D part of the graphics library. Section 6 evaluates the system by

presenting some sample programs and tests. We finish in Section 7 by outlining what we see

as the advantages of this approach and potential applications.

2 Web Graphics Technologies

We now examine what is currently available in terms of technologies for delivering

interactive graphics over the web. We will look at technologies for 2D graphics first and then

examine the options for 3D.

2.1 2D Graphics

The most important technologies that exist for delivering 2D graphics on the web are

Macromedia Flash and Scalable Vector Graphics (SVG) [7]. Flash is a proprietary system

developed by Macromedia that has enjoyed widespread adoption across the web. It is a vector

graphics system that includes capabilities for doing animation and interactivity. The core

element of most Flash content (or movies as the Flash system calls them) is the movie clip.

This is a static rectangular bitmap which can be created by using drawing tools within Flash

or by importing graphics or images3. These movie clips exist within a 2D coordinate system

and can be animated or scripted to behave interactively based on mouse or keyboard input

from the user. The scripting language which can be used to control the interactivity is called

ActionScript and it provides a rich set of tools for building 2D interactive applications. These

applications can be exported in Macromedia’s proprietary SWF format and then either

ITB Journal

Issue Number 10, December 2004 Page 7

embedded in web pages or else ran as standalone applications across the web. Flash has

proved ideal for delivering animated content on the web and easily lends itself to more

complex tasks such as implementing web-based games.

Scalable Vector Graphics (SVG) [7] has been designed as a non-proprietary alternative to

Flash. It effectively defines a standardised XML format for graphical content. There are

numerous advantages to encoding graphical content as XML rather than a binary format such

as Macromedia SWF. The most important is that it allows developers to freely build

applications to create or display this content and therefore could facilitate the development of

graphics over the web in the same manner that HTML did for hypertext. SVG is a rich fully

featured system but so far plug-ins to view the content have not become nearly as ubiquitous

as those for the Macromedia SWF format.

2.2 3D Graphics

There are many options available for the 3D graphics case. Broadly speaking these fall into

three categories: systems which convert 3D content into a 2D format such as Flash or SVG;

systems which require a custom plug-in or application to view the content; and systems that

are built on the basis of using Java applets embedded in web pages. We will look at each of

these in turn.

A renderer that is capable of displaying 3D content effectively has to convert this content

into a 2D equivalent since ultimately it has to be displayed on a 2D device (the screen). A

system such as a 3D game engine has to do this approximately 40 times per second as the

state of the world it is rendering is continually updated in real time. However if we are

producing a piece of computer animation then there is no such speed requirement as the

conversion can be carried out offline. There is no reason why we cannot create a 3D

animation in some appropriate application , use another application to convert this into a

sequence of 2D bitmaps or 2D vector graphics, and then use a third application to display the

results.

3 The concept of a movie clip is not unlike that of a sprite, which was in common usage among early 2D
arcade game developers [3].

ITB Journal

Issue Number 10, December 2004 Page 8

Create 3D Content
(3DS Max)

Convert to SWF
(Swift3D)

Display
(Flash Player)

User Input

Figure 1: The Swift3D Workflow

This is exactly what systems such as Electric Rain’s Swift3D do [5]. This allows the

developer to create 3D animated content in an application such as 3DS Max [4] and then use

Swift3D to convert that content into the Flash SWF file format (see Figure 1). This means it

is viewable on any browser with the Flash player installed. This produces excellent results

but the drawback is that since the player can only access the 2D version of the original 3D

content no meaningful interaction is possible between the user and that content. Therefore it

effectively produces a non-interactive form of 3D graphics. Numerous other products exist

that work on the same basis and suffer from the same drawbacks.

The second approach involves systems that require a specialised application to view the 3D

content. Because this application is built specifically for this purpose it can be designed as a

3D renderer and hence provide full interaction with the 3D content at the user end. This

application can then be designed as stand-alone, in which case it is invoked by the browser

when content of this form is encountered, or else it can work as a plug-in inside the browser.

An early example of this approach is the Virtual Reality Modelling Language (VRML) [20].

This is a tag-based ASCII file format for describing 3D worlds. VRML content can be

created by editing by hand or else by using some sort of authoring tool4. VRML is an open

standard and hence several companies have produced VRML browsers [16] which can be

invoked to view the content at the user end. Since the browser the user employs to view the

graphics has direct access to the 3D content a rich array of functionality can be provided

allowing users to explore 3D worlds and interact with and manipulate the objects therein

(Figure 2).

4 In fact most of the major 3D modelling software packages such as 3DS Max incorporate the
functionality to export content as VRML.

ITB Journal

Issue Number 10, December 2004 Page 9

Create 3D VRML Content
(3DS Max, or Notepad, or

Authoring Application)
Display 3D VRML Content

(VRML Browser)

User Input

Figure 2: The VRML Process

Despite its technical advantages, VRML (and indeed its successor X3D [21]) has not become

a widespread means of delivering 3D graphics mainly due once again to the fact that the

browsers needed to access the content have not achieved sufficient market penetration.

Another disadvantage of the VRML approach is that the developer has relatively little

control over how the eventual viewer can interact with the content. The forms of interaction

allowed come pre-packaged as it were with the browser.

Macromedia’s Director software is a high-end Multimedia authoring environment that

includes support for developing 3D content [12]. With the help of the Shockwave plug-in this

content can be viewed and interacted with through a web browser also. Crucially the

developer has full control over what form these interactions will take as the powerful Lingo

scripting language can be used to specify this. Unsurprisingly the usual problem remains that

the necessary Shockwave plug-in does not come as a standard component with web

browsers.

The third category of web-based 3D graphics is based on the idea of using a Java applet to

display the graphics content. This is a powerful idea as Java includes a 3D graphics library

called Java3D [18] that can be used to program more or less any form of 3D graphics

interaction we might wish for and modern web browsers are capable of handling Java applets

easily. Programming graphics in Java3D is a difficult business however and requires a

thorough knowledge of high-level programming concepts. It seems unlikely that multimedia

practitioners or students will be willing to invest the time necessary to master these concepts.

An interesting alternative is to build an application that provides some sort of straightforward

graphical or programmatic interface that allows the user to create the 3D content, and then

translates it into a Java 3D program for display in a web browser. An example of this is the

Processing language [17] which comprises of a simple and intuitive scripting language whose

output is converted into Java applets. This allows the creation of 3D objects through a set of

simple classes that have much in common with the work described in this paper.

ITB Journal

Issue Number 10, December 2004 Page 10

3 Graphics Library Architecture

Our graphics library is structured as shown in Figure 3.

3D ActionScript Classes

2D ActionScript Classes

Shape Drawing API
Commands

Classes for creating and rendering 3D
objects - boxes, spheres, 3D polygons
etc.

Classes for creating and rendering 2D
objects - 2D polygons, triangles,
rectangles etc.

Existing ActionScript commands for
drawing lines and simple filled shapes.

Figure 3: Structure of the Graphics Library

The system is built upon the existing ActionScript Shape Drawing API commands. These

were introduced in the most recent version of ActionScript (ActionScript 2.0) and represent a

significant development of the language’s capabilities. As mentioned earlier Flash graphics

are based on the idea of manipulating predefined bitmapped shapes called movie clips. The

Shape Drawing API however allows the developer to programmatically draw shapes on the

screen dynamically. The commands provided in the Shape Drawing API are quite limited and

are summarised in Figure 4.

linestyle(thickness,rgb,alpha)

moveTo(X,Y)

lineTo(X,Y)

beginFill(rgb,alpha)

endFill()

Set the thickness, colour and
transparency for subsequent drawing
commands

Move the current drawing position to the
point (X,Y)

Draw a line from the current drawing
position to the point (X,Y)

Set the fill colour and alpha value and
begin a fill

Finish the fill

Figure 4: ActionScript Shape Drawing API Commands

Effectively these commands allow the developer to do two things:

• Draw lines on the screen of varying thicknesses, colours and transparencies.

• Draw filled shapes on the screen of varying colours and transparencies

ITB Journal

Issue Number 10, December 2004 Page 11

Lines are drawn using the moveTo and lineTo commands. Filled shapes are drawn using

beginFill to set the fill properties, a sequence of line commands to draw a shape that

encloses some space on the 2D plane, and then the endFill command to invoke the fill.

These commands can be issued from ActionScript scripts and hence combined with all of the

usual programmatic elements such as conditional statements and loops and also carried out in

response to user mouse or keyboard input.

As it stands the Shape Drawing API can carry out sophisticated work but this requires a large

amount of programming on the part of the developer. The first task in building our graphics

library was to use the basic Shape Drawing commands to create a set of reusable classes for

drawing 2D shapes on the screen (see Figure 3). This extends the functionality of the API

greatly and allows developers to quickly write code to draw and manipulate 2D graphics. The

second stage was to use the 2D drawing classes as a means of implementing a set of 3D

classes. We now describe these two stages in more detail.

4 2D ActionScript Classes

There are three basic 2D classes in the library, each of which corresponds to a fundamental

graphics primitive. These are Point2D, Triangle2D, and Polygon2D.

4.1 The Point2D class

Objects are defined in terms of their vertices and hence we need a data structure suitable for

representing points on a 2D plane. The class is described in Figure 5.

Figure 5: Class diagram for Point2D

The attributes of a Point2D object are X and Y coordinates. Various methods have been

implemented including the normal transformations (translation, rotation and scaling), a

ITB Journal

Issue Number 10, December 2004 Page 12

constructor method, and an examine method which prints out the values of the attributes on

the screen and is primarily intended for debugging purposes. The drawline() method is

the fundamental drawing operation of the graphics library and when invoked on a Point2D

instance, draws a line from this to another Point2D instance supplied as an argument. Line

thickness, colour and alpha value can also be specified. Colour is represented as a

hexadecimal string in the graphics library. This may seem an unintuitive choice to graphics

programmers but it is the form that web and multimedia developers are likely to be most

familiar with.

#include "graphics.as"

p1 = new Point2D();
p2 = new Point2D();
width = _root.width // width of screen/window
height = _root.height // height of screen/window

for(i=0;i<500;i++)
{
 p1.x = Math.random()* width - (width/2);
 p1.y = Math.random()* height - (height/2);
 p2.x = Math.random()* width - (width/2);
 p2.y = Math.random()* height - (height/2);
 col = convert(Math.random()*255,Math.random()*255,Math.random()*255);
 thickness = Math.random()*5;
 alpha = Math.random()*100;
 p1.drawline(p2,thickness,col,alpha);
}

Figure 6: Example program using the Point2D class

Figure 6 shows an example ActionScript program that uses this class5. The results of running

the program are shown in Figure 7.

5 Math.random is the ActionScript method for generating random numbers and the convert
function converts three integer colour component values into a single hexadecimal colour string. The
class definitions are contained in the file graphics.as.

ITB Journal

Issue Number 10, December 2004 Page 13

Figure 7: Results of running program in Figure 6.

4.2 The Triangle2D Class

Now that we have defined points within our two-dimensional space we can construct a class

to represent triangles (see Figure 8).

Figure 8: The Triangle2D Class

The Triangle2D class has four attributes. Three of these represent the vertices of the

triangle and each is an instance of the previously defined Point2D class. This means that

methods to carry out transformations can be easily implemented by calling the transformation

methods of the Point2D class. The fourth attribute represents the colour of the triangle.

This can be reset at any time using the setcolour method. Two drawing methods are

provided. One of them draws a wire-frame triangle and the other draws a filled triangle, using

ITB Journal

Issue Number 10, December 2004 Page 14

the colour of the triangle as the fill colour. The fill is implemented using the ActionScript fill

commands described earlier.

4.3 The Polygon2D class

The final 2D class provides a way of specifying and manipulating two-dimensional polygons

and is shown in Figure 9. This class allows for polygons of an arbitrary number of vertices.

The vertices of the polygon are represented as Point2D objects and the usual drawing and

transformation methods have been implemented.

Figure 9: The Polygon2D class

The polygon class is extremely similar to the triangle class with the only significant

difference being that since a polygon has an arbitrary number of vertices we store the vertex

information in an array6.

5 3D ActionScript Classes

There are a number of classes to support 3D objects in the library. Obviously the mechanics

of implementing these classes are somewhat more complex as we have to take care of issues

such as projection from 3D to 2D, and lighting and shading.

5.1 The Point3D Class

Once again the basic unit in three-dimensional space is the point and hence we construct a

class to support this. The Point3D class is shown in Figure 10.

6 It is worth pointing out that in ActionScript an array is not a fixed size data structure and hence has
more in common with what would be called dynamic array in a high-level programming language.

ITB Journal

Issue Number 10, December 2004 Page 15

Figure 10: The Point3D Class

Points in 3D space are represented as three numbers. There is a drawline method used for

drawing a line from one point to another. Note that the implementation of this drawline

method has to include a projection operation in order to convert from 3D coordinate space

into a 2D coordinate system for screen display. The projection provided is the standard

perspective projection parallel to the Z-axis of the 3D coordinate system [8]. The specifics of

the projection are controlled by two parameters to a setupcamera function which would

usually be invoked at the start of the program. These parameters are the position of the centre

of projection along the Z axis and the distance from the centre of projection to the projection

plane. These parameters can be used to simulate the full range of focal lengths and fields-of-

view for the projection. A project method is also supplied which directly projects the

point according to this projection. Since we are dealing with three-dimensional space we

provide three rotation methods, for rotating about the three principal axes.

5.2 The Vector3D Class

A vector class is shown in Figure 11. This class contains the methods one would expect for

carrying out vector arithmetic. A similar class, Vector2D, exists for doing 2D vector

arithmetic but is omitted for brevity’s sake.

ITB Journal

Issue Number 10, December 2004 Page 16

Figure 11: The Vector3D class

5.3 The Triangle3D Class

3D triangles are at the heart of the graphics library and we support the rendering of both

wire-frame and shaded triangles. Given the existence of a Triangle2D class the algorithms

for rendering 3D triangles are quite simple. The process involves projecting the vertices of

the 3D triangle and forming a 2D triangle from the results. This 2D triangle can then be

drawn on the screen using the methods from the Triangle2D class.

We also need to take care of the problem of hidden surface removal. This involves detecting

those triangles that are not visible to the viewer and declining to render them accordingly.

Our library currently supports backface removal [9][8] which uses vector arithmetic to

determine if a triangle is facing away from the viewer. If the triangle is facing away from the

viewer then, as long as the object is convex, it must be at the back and therefore hidden. The

algorithm for rendering a wire-frame 3D triangle is shown in Figure 12.

Figure 12: Algorithm for rendering wire-frame triangle

The library also supports the rendering of filled 3D triangles. We use the constant shading

[8] algorithm to calculate colour values for the projected triangles. To support this, the library

allows the user to introduce an arbitrary number of point light sources into the scene. For

ITB Journal

Issue Number 10, December 2004 Page 17

each light source we add a colour component to the polygon which is calculated as

proportional to the strength of the light source and the cosine of the angle between the

surface normal and the vector towards the light source. Effectively this technique calculates

diffuse reflection from the object.

Figure 13: Rendering a Filled Triangle

The complete class diagram for the Triangle3D class is shown in Figure 14.

Figure 14: Class diagram for Triangle3D

5.4 The Polygon3D Class

Once again the triangle is basically a specialisation of the polygon. A polygon contains an

arbitrary number of vertices and these vertices are held in an array in our implementation.

ITB Journal

Issue Number 10, December 2004 Page 18

The same methods are provided as for the Triangle3D class thus allowing the rendering of

both wire-frame and filled polygons.

5.5 The Mesh Class

For convenience sake it is necessary to introduce a higher level object representation method.

Our library accomplishes this by providing a mesh class. The Mesh class is designed to

handle polygonal meshes. These are collections of polygons that approximate the surfaces of

3D objects. A mesh can be represented as an array of polygons but it is more normal to insist

that these polygons are restricted to being triangles. The attributes of a mesh object are:

• An array of 3D triangles

• An array of vertices

• An array of normal vectors

• A colour attribute

The array of vertices consists of a non-repeating list of the vertices of the triangles in the

triangle array and can be derived from this. This is provided to speed up the rendering

process. We also store an array of normal vectors to the triangles in order to avoid having to

recalculate them each time we want to do rendering or lighting calculations with them. The

class diagram is shown in Figure 15.

Figure 15: Class diagram for the Mesh class

To go with the Mesh class a number of functions are provided in the library for generating

meshes. These include functions for primitive shapes such as spheres and octagons, and also

functions to import vertex information from 3DS Max models.

ITB Journal

Issue Number 10, December 2004 Page 19

6 Test Programs

We now briefly present some results of test programs that demonstrate the use of the various

classes in the graphics library. The first program uses the Triangle3D class to create

twelve 3D triangles arranged in the shape of a box. The fill method is used to render the

triangles and therefore constant shading is employed. Some ActionScript code was written to

respond to key presses to that the user can rotate the box on the screen around the three

principal axes. A screenshot is shown in Figure 16.

Figure 16: 3D Box created from the Triangle3D class

As can be seen the constant shading technique proves an effective method in this case. The

rendering is carried out quickly and smooth motion results when the rotations are applied.. It

is also possible to create a box shape from the Polygon3D class. In this case only six

polygons would be necessary as opposed to the twelve triangles used above.

The next program serves as a demonstration of the Mesh class. A mesh is constructed which

represents a diamond shape and is shown in. Figure 17.

ITB Journal

Issue Number 10, December 2004 Page 20

Figure 17: Using the Mesh class

Once again a set of keyboard controls are provided which allow the user to rotate the object

but also translate the object and move the camera. High frame rates and smooth motion were

found to be possible in this example also.

A final example was constructed in order to test the efficiency of the rendering system when

using larger numbers of polygons. In order to facilitate this a library function was written

which generates a mesh approximating the surface of a sphere. The input parameters to this

algorithm include the radius of the sphere and the level of recursion that the algorithm should

use. A larger number of recursion levels results in a finer polygonal mesh and a greater

number of polygons. The results of rendering such a spherical mesh object are shown in

Figure 18. The faceted nature of the sphere is caused by the use of the constant shading

algorithm which makes polygon edges visible. We discuss this issue further in the

conclusions section to this paper.

As would be expected the higher number of triangles involved here places extra demands on

the processor. A series of tests were carried out by instructing the sphere generation

ITB Journal

Issue Number 10, December 2004 Page 21

algorithm to generate spheres of increasing polygon counts7. The results of this are shown in

Figure 19.

Figure 18:The sphere mesh

Number of Poylgons Acceptable Frame Rate

8 Yes

32 Yes

128 No

512 No

Figure 19: Results of sphere generation test

An acceptable frame rate was deemed to be a situation where the program responded

immediately to key presses to rotate the sphere and was capable of producing smooth motion.

The 128 polygon case only fell slightly short of these criteria and hence the exact number of

polygons that the system can handle is closer to this upper limit than the lower one of 32.

7 These tests were carried out on a laptop computer with a Pentium-M 1.5 GHz processor, 512MB of
RAM and a 64MB graphics card.

ITB Journal

Issue Number 10, December 2004 Page 22

7 Conclusions

We have demonstrated that it is possible to use the ActionScript Shape Drawing API as a

basis for developing a graphics library that Flash developers can use to easily program

interactive 2D and 3D graphics. We presented a set of classes that encapsulate the

fundamental 2D and 3D graphics primitives and contain appropriate methods for rendering

and manipulating these primitives. We conclude by discussing the advantages and

disadvantages of this approach and suggesting some avenues for future work in this area.

From the point of view of programming 2D graphics, the library is extremely successful. The

functionality of the Shape Drawing API is hugely increased as the developer can now easily

add shapes such as triangles and polygons, and also make use of the various transformation

methods to manipulate these shapes. Perhaps more importantly, it grounds the 2D graphics

elements within the well understood framework of standard coordinate geometry for

computer graphics, and this results in a far more powerful and flexible approach than the

rather ad hoc methods of doing things which Flash developers typically employ.

The 3D part of the library also provides greatly extended functionality as at present

ActionScript offers no 3D functionality at all. The library allows the developer to create

various forms of 3D shapes, including a polygonal mesh. These shapes can be rendered in

either wire-frame or shaded form, and the full set of transformations for manipulating these

shapes interactively within the 3D space are also provided. Some limitations of this aspect of

the work should be addressed however.

• Polygon Count. As we saw earlier polygonal objects with three figure polygon counts prove

too prohibitive in terms of computational expense to render in shaded form. This is

unsurprising as the nature of the Flash system means that programs written with ActionScript

are unable at present to take advantage of the hardware graphics acceleration that is necessary

to carry out tasks such as this. It is likely that careful optimisation of the graphics library will

improve this situation somewhat.

• Hidden Surface Removal. The backface removal algorithm which has been implemented

has the advantage of being extremely fast but it does suffer from obvious and well-known

limitations. These are, that it will not correctly remove hidden surfaces in the situation where

multiple objects are obscuring each other, and it will not work correctly with non-convex

objects. The nature of the program that the developer is trying to write will dictate whether

these limitations are important or not. If, for example, the objects are being rendered in wire-

ITB Journal

Issue Number 10, December 2004 Page 23

frame mode anyway then it is likely that this will not be important. This problem could be

solved by implementing a full hidden surface removal algorithm such as Z-Buffer [8]. This is

only really feasible however if we can take advantage of hardware acceleration. Similar

problems were grappled with in the graphics research community in the 1970’s, before

hardware acceleration became the norm, and the algorithms proposed are now being

investigated to determine their potential suitability in the present situation.

• Shading. Filled objects are shaded using the constant shading technique, with the assumption

that surfaces exhibit diffuse reflection only. This works perfectly well for shapes where the

polygons represent the actual surfaces of the object, but less well for curved surfaces where

the polygons are an approximation of the surface of the object. Once again this problem

could be easily solved by implementing a more sophisticated algorithm, such as Gourand

shading [9]. The computational demands of Gourand are not significantly higher than the

present algorithm but in this case we run into a practical difficulty regarding the Shape

Drawing API. Gourand shading advises that projected triangles are interpolatively shaded

scan-line by scan-line but the fill methods of the Shape Drawing API do not allow for this. A

form of Gourand shading could be implemented by shading on a pixel-by-pixel basis but it is

likely that the computational demands of this would be so much that the visual advantages

would be far outweighed by the speed disadvantages.

It should be noted that most of the issues raised above are only really important if the

developer is seeking to implement realistic looking 3D graphics. Realism is not going to be

achieved by a graphics library in ActionScript due to the computational limitations and the

lack of it should not be regarded as a serious problem.

Perhaps the chief advantage of providing a way of doing this kind of graphics through

ActionScript is that the developer can freely mix this form of media with all of the others

provided by Flash. The concept of layers within the Flash movie means that on one layer we

can have 3D graphics, and can then combine this with multiple other layers containing text,

sprites, video, drawings, bitmaps, and so on. These layers can be overlaid and composited

together with various levels of transparency perhaps, or used to provide different forms of

media on different segments of the screen. Due to the ubiquity of the Flash player the results

can be viewed across the World-Wide Web. We believe that creative Flash developers can

potentially use this library to create exciting new forms of 2D and 3D graphics applications.

ITB Journal

Issue Number 10, December 2004 Page 24

Acknowledgements

The work described in this paper benefited enormously from numerous discussions with Matt

Smith on Macromedia Flash and ActionScript. A prototype version of this library was used

for teaching graphics to the National Diploma in Computing class of 2003/2004 at the

Institute of Technology Blanchardstown. The comments and input of the students proved

extremely valuable.

References

[1] Aliaga, D.G., and Lastra, A.A. Architectural Walkthroughs using Portal Textures. In
Proceedings of 8th IEEE Visualization ’97 Conference, Phoenix, AZ, 1997.

[2] Berners Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret, A. The World-Wide
Web. Communications of the ACM archive Volume 37, Issue 8 (August 1994), pages 76-
82, 1994.

[3] DeMaria, R., and Wilson, J.L. High Score! The Illustrated History of Electronic Games. 2nd
Edition, McGraw-Hill Osborne Media, 2003.

[4] Discreet, Autodesk, Inc. 3DS Max. http://www.discreet.com/products/3dsmax
[5] Electric Rain. http://www.erain.com
[6] Ewing, R. Introduction to Macromedia Flash MX Drawing Methods. Available at

http://www.macromedia.com/devnet/mx/flash/articles/precision_drawing.html
[7] Ferraiolo, J. Scalable Vector Graphics (SVG) 1.0 Specification, 4 September 2001.

Available at http://www.w3.org/TR/SVG. 2001.
[8] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. Computer Graphics, Principles

and Practice. 2nd Edition in C, The Systems Programming Series, Addison-Wesley, 1996.
[9] Hearn, D., and Baker, M.P. Computer Graphics with OpenGL. 3rd Edition, Prentice-Hall,

2003.
[10] Hoschek, J. Fundamentals of Computer Aided Geometric Design. A.K. Peters, Ltd., 1993.
[11] Le Gall, D. MPEG: A Video Compression Standard for Multimedia Applications.

Communications of the ACM archive, Volume 34, Issue 4 (April 1991), pages 46-58, 1991.
[12] Macromedia. http://www.macromedia.com
[13] Macromedia, Inc. Flash Software Documentation. Available at

http://www.macromedia.com/flash., 2004.
[14] Macromedia, Inc. Flash Player for Developers and Publishers. Available at

http://www.macromedia.com/software/flash/survey/whitepaper_jul03.pdf, 2003
[15] Nielson, G.M., Shriver, B.D., and Rosenblum, L.J. Visualization in Scientific Computing.

Los Alamitos, Calif., IEEE Computer Society Press, 1990.
[16] Parallel Graphics. http://www.parallelgraphics.com
[17] Processing. http://www.processing.org
[18] Sun Micorsystems, Inc. Java 3D 1.1 API Specification. Mountain View, CA, December

1998. Available at http://www.javasoft.com
[19] Thalman, N.M. Computer Animation: Theory and Practice. Springer-Verlag New York,

1985.
[20] The VRML Consortium. VRML International Standard ISO/IEC 14772-1:1997. Available

at http://www.vrml.org
[21] The Web3D Consortium. http://www.web3d.org
[22] Wallace, G. K. The JPEG Still Picture Compression Standard. Communications of the

ACM archive, Volume 34, Issue 4, (April 1991), pages 30-44, 1991

	Interactive 2D and 3D Graphics over the World-Wide Web with ActionScript
	Recommended Citation

	Microsoft Word - itb journal-december-0.doc

