
The ITB Journal The ITB Journal

Volume 3 Issue 2 Article 10

2002

Web Services Technology Infrastructure Web Services Technology Infrastructure

Geraldine Gray

Kieran O’Connor

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Gray, Geraldine and O’Connor, Kieran (2002) "Web Services Technology Infrastructure," The ITB Journal:
Vol. 3: Iss. 2, Article 10.
doi:10.21427/D7MB20
Available at: https://arrow.tudublin.ie/itbj/vol3/iss2/10

This Article is brought to you for free and open access by
the Journals Published Through Arrow at ARROW@TU
Dublin. It has been accepted for inclusion in The ITB
Journal by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301303982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol3
https://arrow.tudublin.ie/itbj/vol3/iss2
https://arrow.tudublin.ie/itbj/vol3/iss2/10
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol3%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol3%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol3/iss2/10?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol3%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ITB Journal

December 2002 Page 95

Web Services Technology Infrastructure
Geraldine Gray & Kieran O’Connor (2002)

School of Informatics and Engineering
Institute of Technology Blanchardstown, Dublin, Ireland

Kieran.O’Connor@itb.ie

Abstract

Web Services using eXtensible Markup Language (XML) based standards are becoming the
new archetype for enabling business to business collaborations. This paper describes the
conceptual architecture and semantics of constructing and consuming Web Services. It
describes how Web Services fit into the enterprise application environment. It discusses Web
Services security. Finally, it outlines the flaws of Web Services in their current state.

Introduction to Web Services

 �A Web Service is an application that accepts requests from other systems

across the Internet or an Intranet, mediated by lightweight, vendor-neutral

communication technologies� [Kao, 2001, section II: Introduction]

Web Services expose business functionality over a network. It is not the exposed

functionality that makes Web Services revolutionary; it is the lightweight, vendor neutral

communication technologies. XML based standards to which vendors and developers will

comply such as SOAP1.1 (and soon SOAP1.2) makes the process of inter-system

communication easier. Particularly from a business-to-business perspective, Web Services as

they stand today offer a huge technology leap in web enabling back end business logic.

Usually, for two businesses to share data, complex systems and communication agreements

would potentially have to be developed because of the differing proprietary applications

within each company. With Web Services the interaction layer is abstracted away so that

developers can concentrate in providing back end functionality with the knowledge that such

functionality can potentially be web enabled because Web Services will define the

communication mechanisms in an interoperable way.

The most important industry defined standards that allow for interoperable communication

are as follows:

• SOAP and WSDL: World Wide Web Consortium (W3C).

• UDDI: UDDI.org.

ITB Journal

December 2002 Page 96

These standards define how to publish, describe and invoke a Web Service irrespective of the

underlying operating system. SOAP (see page 5) defines how messages are transmitted.

WSDL documents define how services are described. UDDI defines how to maintain Web

Services and company information within an XML based registry.

Market Place

The market place today is influenced by many diverse companies. The contenders include

Sun, IBM, Microsoft, and IONA among others. All these companies offer either Web

Services toolkits or are involved in developing application servers that work with Web

Services. These toolkits and Web Services compliant application servers are based upon the

standards such as SOAP and WSDL. Each has its own implementation but because of the

interoperable nature of Web Services most development should be portable between different

proprietary software.

Sun has its SunONE Web Services architecture based on XML and Java, including its own

Integrated Development Environment (IDE) and incorporating the iPlanet server family. This

provides Web Services functionality to the J2EE environment. Microsoft has developed its

.NET framework which provides support for web services using Microsoft specific

technologies such as Visual Basic, C#, and the Microsoft server family. Other application

servers have been developed with Web Services in mind, including Macromedia�s JRun4.0,

BEA�s WebLogic, and Systinet WASP Server for Java to name but a few. There could be as

many as twenty five or more SOAP APIs on the market today judging by the interoperability

tests carried out by Apache AXIS. Open source projects supporting Web Services include:

Apache�s SOAP API AXIS and the JBoss application server.

Companies that have already implemented Web Services solutions include Amazon and

Google. Amazon has produced a service that allows programmatic access to their catalogue,

search engine, shopping cart and merchandising tools. Google has produced a service that

allows programmatic access to their World Wide Web search engine. These services allow

their functionality to be incorporated into any Web Service application.

Benefits & Shortcomings

There are a number of advantages and disadvantages to using Web Services over other

similar architectures such as CORBA. Web Services claim to be platform independent,

loosely coupled and can navigate firewalls over the HTTP transport protocol. Web Services

ITB Journal

December 2002 Page 97

have industry backing which will facilitate their evolution. CORBA IIOP on the other hand is

not platform independent. CORBA IIOP usually requires an infrastructure which includes a

CORBA ORB; this limits developers to vendors who support CORBA [Monson-Haefel,

2002, p3]. A distributed application using CORBA is tightly coupled meaning that A must

know about B and vice versa for the creation of Interface Definition Language (IDL) files to

map data types. CORBA IIOP has no protocol specification for firewall navigation [De Jong,

2002, p4]. Disadvantages of Web Services include performance and security. Web Services

rely on XML parsers to understand a particular message. This process can be slow depending

on the size of the message being parsed. HTTP can be slow and unreliable as a method for

transporting SOAP messages. Security is not yet well defined for Web Services. Some

standards have been released and others are in the pipeline; it could be some time however

before vendor support for these standards is realised. There are multiple SOAP engine

implementations which can result in non portable code. Apache run tests to check how the

popular SOAP implementations respond to AXIS clients which highlight these

incompatibilities. Thus, Web Service code is not truly portable despite the standardisation of

SOAP.

A Conceptual Model

The classic Web Services architecture defines three roles [Chappell & Jewell, 2002, pp 14-

23].

• Service Requester

• Service Provider

• Service Registry/Broker

The Service Provider is the organisation responsible for creating the Web Service. First the

business logic which possibly accesses databases and/or legacy/ERP systems is created. They

then expose this functionality as a Web Service by publishing the organisation and Web

Service details to a global registry (UDDI or ebXML). The Service Requester is the

organisation that requires the use of the functionality exposed by the Web Service in

question. This organisation queries the global registry to find and use a suitable Web Service.

The Service Registry/Broker is an XML based data store for information including company

name, contact information, and pointers to a Web Services Description Language (WSDL)

file that details how to use a particular service.

ITB Journal

December 2002 Page 98

Service Registry/Broker

Service Provider

Service Requester

1. Publish2. Discover

3. Invoke

4. Response (possibly)

Figure 1 – Web Service Publish & Discovery Architecture.

Standards Overview

There are three major technologies that have enabled the development of Web Services and

more importantly, enabled them to address the problems posed with integrating remote

systems. These standards define the data transport mechanisms, how to describe what is

being transported, and how to make it easy to locate Web Services. These standards are XML

based, which is a universally accepted textual data format.

SOAP

The Simple Object Access Protocol is a lightweight distributed computing protocol that

allows information to be exchanged in a decentralised environment [Hendricks et al., 2002,

pp 33-61]. SOAP ensures interoperability between differing application environments by

defining a messaging standard. A C++ client (for example) could create a SOAP message and

send it to a remote Java Web Service over HTTP, invoking a remote procedure call (RPC) on

that service. The Java Web Service would understand this request as it understands SOAP

and could return a result, again encoded within a SOAP message.

Java Web Service

SOAP over HTTP

C++ Client

SOAP
Engine

Servlet

(AXIS)
EJB

Enterprise
Systems

(or any other
language)

Figure 2 – Web Services Integration, through SOAP, with Enterprise Applications.

A SOAP message can have four basic sections:

ITB Journal

December 2002 Page 99

• Transport Information: Transport protocol specific information. This section also

contains a SOAPAction element. This element defines the intent of a Web Service

call. However, the first section of the HTTP header, i.e., the POST section, also

defines the intent of the service call. Hence, the SOAPAction is generally left blank.

The use of this SOAPAction element is still an on-going debate.

• <soapenv:Envelope>: The SOAP envelope (mandatory) defines SOAP message

boundaries, i.e., where the SOAP message begins and ends. The envelope usually

contains the following format directives. The <soapenv:encodingStyle> specifies the

structure of the SOAP message. The <xmlns:soapenv> specifies the structure of the

envelope element of a SOAP message. <xmlns:xsd> and <xmlns:xsi> specify the

XML schema instance namespace and XML schema namespace respectively. These

namespaces will define tag meaning etc.

• <soapenv:Header>: SOAP header (optional) provides directives for the SOAP

processor, there are no rules as to what should be included in this section. Seen as a

way to add features such as basic security, transaction management, and payment

services to a SOAP message [Hendricks et al., 2002, p 111].

• <soapenv:Body>: The SOAP body (mandatory) contains the actual data such as

service name, parameter values and method names.

<soapenv:Envelope>
<soapenv:Header>

Transport Protocol Information

<soapenv:Body>

Figure 3 – SOAP Message Structure.

The following is an example of a SOAP request over HTTP. This message sends a complex

type (Java Bean) called Widget consisting of two strings to the Web Service called

ServiceName invoking the method processWidget on class WidgetService.

POST /axis/servlet/AxisServlet HTTP/1.0
Host: localhost
Content-Type: text/xml; charset=utf-8
SOAPAction: ""
Content-Length: 800

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

ITB Journal

December 2002 Page 100

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<soapenv:Body>

<ns1:processWidget xmlns:ns1="ServiceName">
<arg1 href="#id0"/>

</ns1:processWidget>
<multiRef id="id0" SOAP-ENC:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Widget" xmlns:ns2="urn:WidgetService">

<colour xsi:type="xsd:string">Blue</colour>
<size xsi:type="xsd:string">24</size>

</multiRef>
</soapenv:Body>

</soapenv:Envelope>

WSDL

The Web Services Description Language describes a Web Service in a universally

understandable way [Hendricks et al., 2002, p 148]. The WSDL file associated with a Web

Services describes where the service is located, what operations are available, how to invoke

those operations (parameters), and what transport protocol to use. WSDL is based on XML to

ensure interoperability between platforms. An example is a Java Web Service exposing a

WSDL file describing itself; a C++ (or any other language) client that is XML/WSDL aware

can parse and understand this document and hence understand how to invoke the Web

Service.

A WSDL file can have seven basic sections:

• <definitions>: Like the SOAP envelope, this delimits the beginning and end of a

WSDL file. XML namespaces are also defined. These include namespaces to define

the WSDL framework, WSDL SOAP binding, and the XML schemas.

• <types>: The data types used.

• <message>: The request and response messages exchanged.

• <operation>: Defines the actual methods to be invoked and the invocation style to

use. This element contains the <input> and <output> tags which define how the

request and response messages are to be encoded.

• <portType>: Collection of related operations.

• <binding>: Defines the communication protocol to be used, e.g., SOAP over HTTP.

• <service><port>: Location of Web Services, i.e., the endpoint Uniform Resource

Indicator (URI).

ITB Journal

December 2002 Page 101

<definitions>

<types>

<message>

<portType>
<operation>

<binding>

<service>
<port>

Figure 4 – WSDL Message Structure

The following is an example of a WSDL file. The request parameters consist of an integer

and a string. The response is an integer. There is one operation available: reserve, which

takes the two parameters as input. The invocation style will be RPC over HTTP. The service

is accessible through the endpoint: http://127.0.0.1:8101/compass/services/Reservation.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions

targetNamespace="http://127.0.0.1:8101/compass/services/Reservation"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:intf="http://127.0.0.1:8101/compass/services/Reservation"
xmlns:impl="http://127.0.0.1:8101/compass/services/Reservation-

impl" xmlns:SOAP- ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="reserveRequest">
<wsdl:part name="in0" type="xsd:int"/>
<wsdl:part name="in1" type="xsd:string"/>

</wsdl:message>
<wsdl:message name="reserveResponse">

<wsdl:part name="return" type="xsd:int"/>
</wsdl:message>
<wsdl:portType name="Reservation">
<wsdl:operation name="reserve" parameterOrder="in0 in1">

<wsdl:input message="intf:reserveRequest"/>
<wsdl:output message="intf:reserveResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ReservationSoapBinding"

type="intf:Reservation">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="reserve">

<wsdlsoap:operation soapAction="" style="rpc"/>
<wsdl:input>

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://127.0.0.1:8101/compass/services/Reservation"/>
</wsdl:input>
<wsdl:output>

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://127.0.0.1:8101/compass/services/Reservation"/>
</wsdl:output>

</wsdl:operation>

ITB Journal

December 2002 Page 102

</wsdl:binding>
<wsdl:service name="ReservationService">
<wsdl:port name="Reservation"

binding="intf:ReservationSoapBinding">
<wsdlsoap:address
location="http://127.0.0.1:8101/compass/services/Reservation"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

UDDI

The Universal Description Discovery and Integration specification provides a framework for

publishing Web Services and for the discovery and consumption of those services by

interested parties [Hendricks et al., 2002, pp 151-193]. The UDDI specification defines a

global registry structure for holding XML based data. UDDI is not designed specifically with

Web Services in mind; it is also a registry for general company information. Note also that

while UDDI is the current leader in XML based registries, electronic business XML

(ebXML) is fast gaining ground. This is a superset of the UDDI specification and includes

more features such as Business Process Management. A provider can publish a Web Services

to a registry by providing business information such as the company name and a technical

specification of the Web Service(s) provided including the location of a defining WSDL file.

A Web Service requester can then discover a Web Service based on search criteria.

The publish and discovery process can be done manually or using the Java API for XML

Registries (JAXR) developed by Sun. Registry�s can be accessed manually, e.g., a website,

(IBM�s test registry: http://www.ibm.com/services/uddi/testregistry/protect/registry.html), or

using some other proprietary tool. JAXR provides programmatic interfaces through which

access to XML based registries are possible. Private registries can be used and are useful for

intranets and local corporate networks where Web Services are not being made globally

available.

The following is an example of the information contained within a SOAP message to query a

registry and the returned result. The query can be created and executed using the JAXR API.

For brevity, some of the result information and the SOAP message specifics have been

omitted. The query on the UDDI registry is done on business name �Microsoft�. This returns

an XML representation of all the information contained about Microsoft in the particular

registry. While the query given in this instance is find_business, other queries can be given

such as find_service and find_relatedBusiness.

ITB Journal

December 2002 Page 103

Query:
<uddi:find_business generic="1.0" xmlns="urn:uddi-org:api">

<uddi:name>Microsoft</uddi:name>
</uddi:find_business>

Result:
<businessList generic="1.0 operator="Microsoft Corporation”
truncated="false" xmlns="urn:uddi-org:api">
<businessInfos>
<businessInfo businessKey="0076B468-EB27-42E5-AC09-

9955CFF462A3">
<name>Microsoft Corporation</name>
<description xml:lang="en">

. . .
</description>
<serviceInfos>

<serviceInfo
businessKey="0076B468-EB27-42E5-AC09-99"
serviceKey="1FFE1F71-2AF3-45FB-B788-0A4">

<name>. . .</name>
</serviceInfo>

</serviceInfos>
</businessInfo>

</businessInfos>
</businessList>

The structure of the data held within a UDDI registry consists of five elements [Chappell &

Jewell, 2002, pp 104-106]:

• <businessEntity>: The items contained within this element describe business information

such as name and address.

• <businessService>: Describes the services offered by the business.

• <bindingTemplate>: Contains pointer to technical descriptions of services, their

associated URL, and possibly a textual description of the service.

• <tModel>: Contains the specifics of how to interact with a Web Service including a

pointer to the WSDL file.

• <publisherAssertion>: Outlines business-to-business relationships.

<definitions>

<businessService>
<bindingTemplate> <tModel>

<businessEntity>

reference

reference <publisherAssertion>

n1

1

n

Figure 5 – UDDI Data Structure.

ITB Journal

December 2002 Page 104

Clients

Currently there are two workable ways for a client wishing to use a Web Service to invoke

that service.

Local stub

This involves using a tool to generate proxy stubs [Chappell & Jewell, 2002, p 166]. The tool

typically reads a WSDL file and outputs the required proxy/stub files for interaction with the

Web Service. This is probably the most common and convenient method used. Almost all

vendors will provide such tools with their Web Services toolkits.

The use of stubs allows us to interact with a remote object, through the stub, as if they were

local to our runtime. The stubs take care of details such as connecting to the remote machine

and data types. Essentially the stub class would act as the Web Service and we can just call

methods directly on this class. Using the same tools, skeleton files can also be created for use

on the server side. Example tools include:

� proxygen: IBM

� xrpcc: Sun

� wsdl2java: Apache (AXIS)

SOAP Message

Client

Stub

Remote Web Service

Skeleton

Figure 6 – Stub File Web Service Interaction.

Dynamic Invocation Interface (DII)

DII uses the javax.xml.rpc.Call object, which is part of the JAX-RPC, to build up parameters

to be sent to a web service [Chappell & Jewell, 2002, pp 166-171]. Method name, method

parameters, service endpoint, and return type are all set in the object and an invocation takes

place. Generic objects are passed between the client and the servers and cast to the more

specific objects on arrival. This is less efficient than the local stub method which deals with

ITB Journal

December 2002 Page 105

actual objects. Clients are more difficult to code, debug, and test. However it is useful for one

way RPC, for when services are discovered dynamically, or where stub creation tools may

not be available.

SOAP Message
Client Remote Web Service

Figure 7 – Dynamic Web Service Invocation.

Security

One of the main concerns with any application made available over a network is security.

There are many efforts aimed at developing security standards for various aspects of Web

Services. However it should be noted that these standards are immature and clear standards

for securing web standards are still a thing of the future.

Concern

Web Services expose many obvious security risks, particularly due to the fact that SOAP

using HTTP on port 80 can send requests through corporate firewalls. Hence many traditional

security measures are bypassed.

Solutions

Current efforts are aimed at standardising the way in which Web Services will be secured.

These efforts include SOAP Digital Signature and XML Encryption. However these

standards have either been released recently or are still at the specification stage meaning

vendor support may not be realised for some time to come. For example, the IBM Security

Toolkit provides an implementation of the XML Encryption standard, but this is just an

experimental reference implementation.

Web Services security can be broken down into two distinct areas:

1. Back end web application security: can leverage existing application security

frameworks such as the Java Authentication and Authorisation Service (JAAS).

2. Communication layer security: focuses on the transmission of data and hence

incorporates such security mechanisms as data encryption/decryption and transport

layer security protocols such as Secure Sockets Layer (SSL).

ITB Journal

December 2002 Page 106

While organisations such as W3C and the Organisation for the Advancement of structured

Information Standards (OASIS) work on Web Service security standards, Web Services will

be secured using traditional transport layer protocols such as SHTTP and SSL. Also,

although SOAP can navigate through firewalls, a certain level of intelligence can be built into

firewalls to check the content of the SOAP message and do authentication/authorisation

based on that.

For the big players with big budgets, packages exist that offer Web Services security

�frameworks� providing a patchwork of security features specifically tweaked for use with

Web Services. For example, Quadrasis has an Enterprise Application Security Integration

system called EASI Security Unifier which does just that. However, these proprietary

security systems are often expensive. Some organisations will require such stringent

identification, authentication, authorisation, integrity, privacy and non-repudiation checks for

securing critical data, others will either carefully review what their Web Services expose, or

wait for security standards definitions to advance.

Future

Web Services are the way forward for many organisations wanting to expose functionality to

a wider audience over a network. Through its standards based approach it will receive

widespread buy-in from vendors and developers. However, in its current immature state, it

has its flaws. Many of the security standards are still at specification stage.

OASIS has formed a technical discussion group to open up the floor to the WS-Security

standard as a trusted means for applying security to Web Services. First published in April

2002 as part of a working partnership between Microsoft, IBM, and VeriSign, the WS-

Security specification defines a standard set of SOAP extensions, or message headers, which

can be used to set security technologies such as encryption and digital signatures, for

instance, onto Web Services applications. The first meeting of the technical committee was

held during the first week of September.

Liberty Alliance is another movement towards defining web application security. As outlined

on the Liberty Alliance Project website, the objectives of the project are to:

• Develop specifications that enable service providers to protect consumer privacy.

ITB Journal

December 2002 Page 107

• Provide an open single sign-on specification that includes federated authentication

from multiple providers operating independently.

• Enable organisations to control, maintain and enhance relationships.

• Create a network identity infrastructure that supports all current and emerging

network access devices.

Bloor Research [July 2002], identifies seven outstanding issues that need to be addressed

before Web Services can be considered an enterprise class distributed systems architecture.

These are: security/privacy, messaging/routing, quality-of-service/reliability, transaction

processing, management, performance, interoperability. While these are stumbling blocks for

the advancement of Web Services, generally there exist vendor products and solutions to

address these problems [Bloor Research, 2002, p11].

Also on the horizon is the concept of �smart� Web Services. These are services that can

maintain a shared context, have multinet capabilities and have quality of service metrics. A

shared context involves understanding under what conditions it was invoked. Multinet

capabilities relate to a Web Services ability to receive requests from multiple device types,

e.g., PDAs, mobile phones, and so on. Quality of service metrics relates to the reliability of

communicated information; this encroaches upon the territory of security and reliable

messaging [Hendricks et al., 2002, p 471].

Research

As Web Services are still in such an early stage of development, producing real-world

applications of this technology is a current challenge within the IT community. Web Services

opens up many areas of possible research including streamlined integration and web enabling

legacy applications. Industries that have traditionally stayed away from technological

advancement may be convinced to adopt Web Services as a means of simplifying many paper

driven processes and legacy systems integration. For example, sections of the financial

services sector will look to reduce cost by automating as many of their business processes as

possible. Web Services are the ideal technology to allow businesses to provide services to

outside parties thus delegating work elsewhere resulting in reduced operating costs. Web

Services are also the ideal technology for allowing disparate systems integration.

ITB Journal

December 2002 Page 108

Conclusion

With Web Services we are moving to service oriented development. Among the main

principals of Web Service oriented development [Bloomberg, 2002, all] are:

• Dynamic services replace static components. Through WSDL the location of

particular services can change dynamically without disruption.

• Service exposure replaces traditional systems integration. Through WSDL and

UDDI multiple services, with their own specific functionality, can be assembled to

produce a system.

• Scalability handled differently. Registries can be used to hold lists of backup

services.

• Platform irrelevance. Theoretically, because of SOAP standardisation, disparate

platforms will interact seamlessly.

• Federated application development. Applications will be composed of several

modular Web Services components that each provides a different piece of

functionality.

For example, with the Federation Model we move towards application development that

incorporates functionality aspects from multiple organisations within a group. This could

open up numerous opportunities for companies to develop applications at a fraction of the

effort and cost.

The shift towards such a development environment comes about because of the standards

outlined within this paper. The SOAP specification forms the basis for interoperable

communication. The WSDL defines interoperable Web Service descriptions. The UDDI (and

other registry implementations) specification defines Web Service publishing and discovery.

These standards are currently well defined but they are still advancing. It is up to vendors to

keep pace with these developments to produce suitable APIs to ensure Web Services continue

their evolution. However, for now, there are also stumbling blocks to using Web Services

such as performance and security, which must be addressed.

References

Bloomberg (2002). Bloomberg, J., The Seven Principles of Service-Oriented Development. Retrieved
August 26, 2002, from XML & Web Services Magazine website
http://www.fawcette.com/xmlmag/2002_08/magazine/focus/jbloomberg/default.asp
Bloor Research (2002). Web Service Gotchas. Retrieved August 30, 2002 from IBM website
ftp://www6.software.ibm.com/software/developer/library/wsgotchadoc.pdf

ITB Journal

December 2002 Page 109

Chappell & Jewell (2002). Chappell, D.A., & Jewell, T., Java Web Services. O�Reilly
De Jong (2002). De Jong, I., Web Services/SOAP and CORBA. Retrieved September 2, 2002, from
http://www.xs4all.nl/~irmen/http://www.xs4all.nl/~irmen/comp/CORBA vs SOAP.doc
Hendricks et al. (2002). Hendricks, M., Galbraith, B., Irani, R., Milbery, J., Modi, T., Tost, A.,
Toussaint, A., Basha, J., Cable, S., Professional Java Web Services. Wrox
Kao (2001). Kao, J., Developer�s Guide to Building XML-Based Web Services with the Java 2
Platform Enterprise Edition. Retrieved August 7, 2002, from TheServerSide.com website
http://www.theserverside.com/resources/article.jsp?l=WebServices-Dev-Guide
Monson-Haefel (2002). Monson-Haefel, R., EJB2.1 Web Services: Part 1. Retrieved August 20, 2002,
from TheServerSide.com website
http://www.theserverside.com/resources/article.jsp?l=MonsonHaefel-Column2
Security: ebXML, SAML, XACML, WS-Security http://www.oasis-open.org/
Security: Application Security Company http://www.quadrasis.com/
Security: Liberty Alliance Security Project http://www.projectliberty.org/
SOAP 1.1 http://www.w3.org/TR/2000/NOTE-SOAP-20000508
SOAP 1.2 Messaging Framework http://www.w3.org/TR/2002/WD-soap12-part1-20020626
SOAP 1.2 Adjuncts http://www.w3.org/TR/2002/WD-soap12-part2-20020626
SOAP-DSIG, XML Encryption, XML Signature, XKMS http://www.w3.org/
SOAP Interoperability Tests http://www.apache.org/~rubys/ApacheClientInterop.html
WSDL 1.1 http://www.w3.org/TR/2001/NOTE-wsdl-20010315
UDDI 3.0 http://uddi.org/uddi-v3.00-published-20020719.htm

Appendix A - Web Service Standards Status

General

Technology Name Ve Release Date
Web Services Description Language (WSDL) 1.1

1.2
W3C Released 15-3-2001
W3C Working Draft 9-7-2002

Simple Object Access Protocol (SOAP) 1.1
1.2

W3C Released 8-5-2000
W3C Working Draft 26-6-2002

Universal Description Discovery & Integration (UDDI) 3.0 UDDI.org Released 19-7-2002

Security

Technology Name Ver Release Date
SOAP Digital Signature (SOAP-DSIG) n/a W3C Released 6-2-2001

XML Encryption Syntax and Processing n/a W3C Candidate Recommendation 2-8-2002
XML Signature Syntax and Processing n/a W3C Recommendation 12-2-2002
XML Key Management Specification (XKMS) n/a W3C Released 30-3-2002
Security Assertions Markup Language (SAML) 1.0 OASIS Standard Maturity Level 5-11-2002
XML Access Control Markup Language (XACML) n/a OASIS Working Draft 15, 12-7-2002
Liberty Alliance Project 1.0 Liberty Alliance 11-7-2002
WS-Security 1.0 IBM, Microsoft and VeriSign released in April

2002. Now taken over by OASIS for discussion.

Appendix B - Glossary

AXIS
Apache eXtensible Interaction System. An open-source implementation of the SOAP
specification. It is a follow on from the Apache SOAP project and represents a complete re-
architecture.

ebXML
electronic business eXtensible Markup Language. Modular suite of specifications that provides
standards for message exchanges between businesses.

HTTP
Hyper Text Transport Protocol.

ITB Journal

December 2002 Page 110

J2EE
Java based component oriented enterprise application development environment.

JAXR
Java API for XML Registries. Provides a standard way to use different kinds of XML
registries.

JAX-RPC
Java API for XML based Remote Procedure Calls. Enables developers to build remote
procedure call functionality into SOAP requests.

Liberty Alliance Project
Single sign-on standard based on SAML which lets users who sign on to one Web Service
carry over that authenticated status when moving to other Web sites. A more feature-rich
second phase is expected in the near future.

OASIS
Organisation for the Advancement of Structured Information Standards. OASIS is a non-profit,
global consortium that drives the development, convergence and adoption of e-business
standards.

SAML
Secure Assertion Markup Language, Allows organisations to exchange authentication,
authorisation, and profile information securely with their partners. Currently two Java
specification requests (JSR 115 and JSR 155), which are associated with SAML. SAML not
included as part of WS-Security which may prove a stumbling block.

SOAP
Lightweight standard that facilitates the transport of XML data over an underlying network
protocol.

SOAP-DSIG
SOAP digital signature specifies the syntax and processing rules of a SOAP header entry to
carry digital signature information.

UDDI
Provides a framework for publishing Web Services and for the discovery & consumption of
those services by interested parties.

WS-Security
Extensions to the SOAP designed to make Web Services applications confidential and secure.

WSDL
Provides a way to describe a Web Service in a universally understandable way.

XACML
XML Access Control Markup Language. Expected to complement SAML. Implemented in
IBM�s XML Security Suite.

XKMS
XML Key Management (submitted to the w3c in March 2001). Protocols for distributing and
registering public keys, resolution/retrieval of public key, and association and retrieval of
attributes in the form of �trust assertions� with public keys.

XML
eXtensible Markup Language. Subset of the Standardised General Markup Language.

XML Encryption
Process for encrypting and decrypting XML documents. JSR 106 is a community request for
the XML Digital encryption API. Part of WS-Security initiative.

XML Signature
XML compliant syntax used for representing the signature of Web Services and portions of
protocol messages and procedures for computing and verifying such signatures.

	Web Services Technology Infrastructure
	Recommended Citation

	tmp.1447686651.pdf.HaioA

