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Abstract 

This paper is concerned with the quasi-optical design and analysis of the Heterodyne 

Instrument for the Far Infrared (HIFI) on board the European Space Agency’s Herschel 

Space Observatory, which is due for launch in 2007.  The paper begins with an introduction 

to astronomy at submillimetre wavelengths followed by the science that will be carried out by 

HIFI.  The optical layout of HIFI is presented and the quasi-optical techniques used in the 

analysis of band 5 of the instrument are discussed, in particular, issues associated with the 

design and performance of the integrated lens antenna for this band.  A power coupling 

efficiency calculation is carried out and the overall performance of the telescope is analysed.  

1.  Introduction 

The Herschel Space Observatory is named after Sir Frederick William Herschel (1738 – 

1822) who is, in a sense, the father of infrared astronomy (although he is probably most 

famous for his discovery of the planet Uranus in 1781).  Herschel discovered the non-visible 

part of the electromagnetic spectrum while trying to determine whether different colours of 

light contained different amounts of heat by using a thermometer and a prism to disperse 

sunlight.  To his surprise, he found that the region just beyond the red light seemed to have 

the highest temperature of all, a region supposedly devoid of sunlight. 

 
Fig. 1.1: Schematic diagram of the electromagnetic spectrum. 

 

It is now known that the electromagnetic spectrum extends from long wavelength radio waves 

(λ~20m) to extremely high-energy gamma rays (λ~10-6nm), as illustrated in Fig.1.1.  The 
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visible region of the spectrum is very narrow ranging from 400nm to 700nm.  The millimetre 

and submillimetre region, in which this paper concentrates, lies between the radio and 

infrared wavelengths.  Strictly speaking, submillimetre refers to electromagnetic emissions at 

frequencies in the range of 300GHz to 1000GHz.  The term terrahertz is now used to refer to 

frequencies greater than 1000GHz. 

 
In 1932, Karl Jansky detected radio emissions from our own galaxy, the Milky Way [14].  

This new phenomenon of observing non-visible radiation from space created a whole new 

branch of astronomy.  Previously unseen objects in the universe could now be observed.  In 

the last few decades the techniques of radio astronomy have been vastly improved and 

observable wavelengths have been getting shorter, which is technically more difficult.  At the 

same time in optical astronomy the observable wavelengths have been getting longer, 

extending well into the infrared.  It is only in the past twenty years that the area between these 

wavelengths, the submillimetre region, has been focused on and it is now possible to observe 

those wavelengths for which radio techniques become very difficult and optical techniques 

begin to break down.  Sometimes this region is also referred to as the far infrared.   

 
The continuum emission from dust clouds in the cold interstellar medium (ISM), produced by 

thermal radiation, can be viewed at submillimetre wavelengths.  This emission has quite a 

broad band spectrum and has the characteristics of blackbody radiation.  It therefore follows 

Wein’s displacement law, 

 
mKT
2

max
102898.0

!
"=#     (1.1) 

 
Thus the emission intensity peaks at a wavelength that is characteristic of the equilibrium 

temperature T.  The temperature of interstellar dust clouds, 10K to 100K [5], is such that the 

intensity peaks in the submillimetre region.  This is of great interest to astronomers as it is 

from these dust clouds that stars and planets are formed.  This occurs when self-gravity 

overcomes thermal, turbulent and magnetic pressures and causes the cloud to collapse [10].  

By observing these clouds at submillimetre wavelengths astronomers can investigate the very 

early stages of star birth.  This continuum emission is most sensitively detected using 

bolometers, which are devices that simply absorb incident radiation and warm up.  This 

changes their resistance so that when fed with a constant bias current a change in voltage is 

produced across the device [10].  They are usually held in a liquid helium cryostat at the focus 

of a large reflector to improve sensitivity to the levels required for doing useful astronomy.  

 
Another type of radiation observed at submillimetre wavelengths has the form of line 

emission.  This is associated with rotational transitions in ions, atoms and molecules with the 
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emission of photons when these species drop to a lower energy state.  By examining the 

wavelength spectrum of the emitted radiation, astronomers can identify constituent elements 

of a source, or by measuring the Doppler shift can calculate the corresponding velocity.  

 
Synchrotron radiation is yet another form observed at submillimetre wavelengths.  It is caused 

by streams of particles moving at relativistic speeds through a magnetic field.  Matter 

spiralling towards a black hole generates such emissions as does our own Sun as charged 

particles are ejected outward through its magnetic field.  A group at NUI Maynooth has 

observed this radiation at sub-100GHz frequencies.  Astronomers use synchrotron radiation to 

detect distant stars from Earth based observatories.   

 
In conclusion, submillimetre astronomy is mainly used to observe the distribution, 

temperature and motion of dust, atoms and molecules in the universe and the very early stages 

of star formation in ‘stellar nurseries’, the dust and gas clouds in the interstellar medium often 

referred to as ‘molecular’ clouds.  There are many telescopes that have been designed 

specifically for these observations.  The James Clerk Maxwell Telescope (JCMT), the Caltech 

Submillimetre Observatory (CSO) and the Submillimetre Array (SMA), all of which are 

located on Mauna Kea at 4000m above sea level in Hawaii, and the Swedish-ESO 

Submillimetre Telescope (SEST) are all designed specifically for submillimetre wavelengths. 

 

            
Fig. 1.2:  The James Clerk       Fig. 1.3:  Wavelengths and altitudes at which the 

Maxwell Telescope on top of       atmosphere becomes opaque. 

Mauna Kea, Hawaii.           

    
Although ground based observatories are extremely useful, the Earth’s atmosphere places 

limits on the amount of radiation we can detect.  Fig. 1.3 shows how the atmosphere is opaque 

to some wavelengths at different altitudes above sea level.  For this reason it is desirable to 

take measurements as high above the ground as possible.  Telescopes and detectors have been 
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flown in aircraft at very high altitudes and taken up to thirty-five kilometres above ground 

level in balloons, but the best solution is an orbiting satellite. 

 
The Herschel Space Observatory is one such satellite.  This ambitious project by the 

European Space Agency (ESA) will solve the mystery of how stars and galaxies are born.  It 

will be launched on board an Ariane-5 from French Guiana and will be placed in an orbit at 

the 2nd Lagrangian point, L2, one and a half million kilometres away from Earth, a distance at 

which only one other space telescope has previously been placed (MAP arrived there on the 

1st October 2001).  It will observe wavelengths never comprehensively covered before.  The 

satellite is approximately 7m high and 4.3m wide with a launch mass of around 3.25 tonnes.  

It will carry the Ritchey-Chrétien telescope, which has a primary mirror with a diameter of 

3.5m, the largest satellite IR telescope ever built, and three focal plane experiments: 

 
 

 

• PACS  –  Photoconductor Array 

Camera  

       and Spectrometer 

• SPIRE  –  Spectral and Photometric   

       Imaging Receiver 

• HIFI  –  Heterodyne Instrument for the  

       Far Infrared 

 
 
Fig. 1.4: An artist’s impression of the ESA’s Herschel Space Observatory (HSO). 

 
These instruments will be cooled down to below 1K in a cryostat of superfluid liquid helium.  

This paper is mainly concerned with the science, operation and design of the HIFI instrument 

on the Herschel Space Observatory. 

2.  Science with HIFI 

HIFI’s superb spectral resolution (103 up to 107 or 300 – 0.03Km/s) coupled with its ability 

to observe thousands of molecular, atomic and ionic lines at submillimetre wavelengths 

makes it the instrument of choice to probe many of the key questions in modern astrophysics 

related to the cyclic interaction of stars and the interstellar medium.  The instrument combines 

the high spectral resolving power of the radio heterodyne technique with quantum noise 

limited detection based on superconducting devices and state-of-the-art microwave 

technology.  This makes it possible to provide continuous coverage from frequencies of 
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480GHz to 1250GHz in five separate bands.  Two additional bands will also observe at 

1410GHz to 1910GHz at an unrivalled spectral resolution.  The table below (Table 2.1) shows 

the band number and its corresponding frequency coverage. 

 

Band Number 1 2 3 4 5 6L 6H 

Frequency 

(GHz) 

480 – 

642 

640 –

802 

800 – 

962 

960 – 

1122 

1120 – 

1250 

1410 – 

1660 

1660 – 

1910 

Table 2.1: Frequency coverage by different bands on HIFI. 

 
One of the major molecules in the universe not observable from ground-based telescopes is 

H2O.  HIFI will obtain a complete inventory of the most important rotational lines of water 

and its isotopomers, therefore providing the possibility of tracing the evolution of the water 

molecule from its origins to its dissociation.  The different water lines observed will probe 

vastly different environments, such as the atmosphere of Mars (Fig. 2.1), and the Orion 

Molecular Cloud (Fig. 2.2). Since H2O is the major coolant in star forming regions, HIFI will 

explore the physics, kinematics and energetics of these regions. 

 

         

 

 

 

 

 

 

 

                                

 

 

 
Apart from H2O, HIFI will also investigate the origin and evolution of other molecules in the 

universe.  This will be carried out by searching for low-lying ro-vibrational transitions of 

complex species such as polycyclic aromatic hydrocarbons.  A survey of the molecular 

inventory of diverse regions will also be carried out, including shocked molecular clouds, 

comet tails, dense Photon-Dominated Regions (PDR’s), hot cores and protoplanetary disks 

around newly formed stars, winds from dying stars and toroids interacting with Active 

Galactic Nuclei (AGN) engines.  

 

Fig. 2.2: SWAS observations of water 

Towards a region of high-mass star 

formation in the Orion Molecular 

Cloud. 

Fig. 2.1:  SWAS observations 

of the 557GHz ground state 

line of water in the 

atmosphere of Mars. 
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Analysis of the interstellar medium (ISM) will also be undertaken by HIFI.  It will measure 

the mass-loss history of stars from stellar winds and mass outflows which, rather than nuclear 

burning, dominate the gas and dust mass balance of the ISM, as well as regulating stellar 

evolution after the main sequence.  The pressure of the interstellar gas throughout the Milky 

Way will also be measured, which will solve the puzzle of the intense galactic [CII] 158µm 

emission measured by COBE.  The ratios of the 12C/13C and 14N/15N isotopes as a function of 

galactic radius will be determined for the Milky Way and other galaxies.  This will constrain 

the parameters of the Big Bang and explore the nuclear processes that enrich the ISM. 

 
To understand more about galaxies, HIFI will measure the far-infrared line spectra of nearby 

galaxies, such as Centaurus A, as a template for distant and possibly primordial galaxies.  All 

of this science and astronomy would not be possible were not for the increasing advancement 

in technology and the use of heterodyne techniques. 

 

3.  Quasi-Optical Analysis Using Gaussian Beam Modes 

To begin with, it is appropriate to give a brief explanation as to what quasi-optics or long 

wavelength optics actually entails.  Quasi-optics deals with the propagation of a beam of 

radiation that is reasonably well collimated but has relatively small dimensions, transverse to 

the axis of propagation, when measured in wavelengths [2].  It spans the middle ground 

between geometrical optics, where the wavelength is assumed to be zero, and diffraction 

dominated propagation, where the wavelength is approximately equal to the systems 

dimensions.  Quasi-optics therefore includes the situation of a beam of radiation whose 

diameter is only moderately large when measured in wavelengths.   

 
For different regions of the electromagnetic spectrum, different approaches to understanding 

the physics involved in propagation are appropriate.  Metallic conducting and dielectric 

waveguides are often used at microwave frequencies to guide the electromagnetic beam, but 

these structures become lossy at high frequencies because of the materials involved.  The 

power loss per unit length of dielectric materials generally increases at least as fast as 

proportional to frequency, but loss proportional to the square of frequency is found in the 

millimetre and submillimetre range [2].  For a rectangular, metallic waveguide, the loss 

increases as frequency to the power of 1.5.  This is where quasi-optics makes its appearance.  

It takes advantage of the essentially loss-less nature of propagation in free space.  Lenses and 

mirrors are still used for focusing the propagating beam, but they are relatively well separated 

from each other and are quite thin so that the loss per unit length over which the beam travels 

is greatly reduced. 
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One quasi-optical analysis technique is the use of Gaussian beam mode theory, which was 

developed for the analysis of laser cavities in the 1960’s.  It was found to be both 

conceptually and computationally superior to diffraction integral techniques in the analysis of 

millimetre/submillimetre-wave quasi-optical systems [11].  Consider a monochromatic 

spatially coherent beam represented by the complex scalar field ( )zyxE ,, .  This beam is 

composed of a linear sum of independently propagating complex modes represented by 

( )zyxi ,,! , of the form, 

  ( ) ( )!
"

#=

0

,,,, zyxAzyxE ii    (3.1) 

where 
i
A  are the mode coefficients and each mode has a transverse amplitude distribution 

whose envelope is a Gaussian function [7].  The sum of these amplitudes squared is a measure 

of how good a fit a synthesised beam is to the beam being analysed [4].  The modes are 

solutions to the wave equation appropriate to quasi-optical propagation. 

 
In the derivation of Gaussian beam modes two important assumptions are made [11].  Firstly, 

the radiation is assumed to be moving as a paraxial beam whose cross-sectional size is not 

sufficiently large that it can be treated as an infinite plane parallel wave.  By ‘paraxial’ we 

mean that the beam is essentially moving along a given axis but with some diffraction taking 

place, so the beam spreads out into a small opening angle.  Secondly, we assume the radiation 

can be represented as a scalar field. 

 
The Gaussian beam modes are derived by finding modal solutions to the electric and magnetic wave 

equations in free space appropriate to paraxial propagation.  It is always true that [8], 

 

2

2

2

2 1

tc !

!
"=#

E
E   (3.2)   

2

2

2

2 1

tc !

!
"=#

B
B    (3.3) 

 

If the source of the radiation is monochromatic, then the wave equation for the case of the 

electric field reduces to the Helmholtz equation, 

0
22

==! EE k     (3.4) 

 

where, 
c

f
k

!2
=  (f is the frequency of the radiation and c is the speed of light).  Assuming the 

electric field may be written in terms of independent scalar distributions ),,( zyxE , the three 

components of the electric field may be treated as scalar versions of the wave equation and 

therefore Eqn. 3.4 may be written as, 
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0
22

=+! EkE     (3.5) 

 
If a wave is propagating in the z-direction then a solution of the form, 

 

       )exp(),,( jkzzyxE !"=    (3.6) 

 
is appropriate, where ),,( zyx!  is a slowly varying function with respect to z.  If we 

substitute this into Eqn. 3.5 we get, 

        02
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   (3.7) 

or in polar co-ordinates, 
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where ! varies so slowly with respect to z that its second derivative can be neglected 

(paraxial approximation).  The solutions to these equations are a set of modes analogous to 

the set of modes that characterise the propagation of radiation in a metallic waveguide.  The 

precise nature of the modal solutions depends on the symmetry conditions governing the 

system and the co-ordinate system chosen [15]. 

 
For a system of Cartesian co-ordinates, the solution to this equation is given by a set of modes 

called Hermite-Gaussian modes, which are generally written as, 

             ( )mnnm j
R

jkr

W

y
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where m and n are transverse mode numbers and r2 is the radial off-axis distance from the 

beam centre (i.e. 222
yxr += ).  R and W are slowly varying functions of z and how they 

evolve with z will be discussed further on.  
mn
!  is called the ‘phase slippage’.  It is mode 

dependent and is given by the equation, 

    ( ) !
!
"

#
$
$
%

&
++= '

2

1
tan1

o

mn

W

z
nm

(

)
*     (3.10) 

 
where 

o
W  is the beam waist radius.  The Hermite-Gaussian beam modes are orthonormal in 

the sense that, 

       
'''' nnmmnmmn dxdy !!=""##    (3.11) 
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Therefore, for convenience we define the normalised Hermite-Gaussian function to be, 
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 (3.12) 

 
where ( )!

m
H  is a Hermite polynomial of order m in !  (as defined in Gradsteyn et al [3]). 

 
Alternatively, for a system of cylindrical polar co-ordinates, the solution to the wave equation 

can be written in terms of a set of modes called Laguerre-Gaussian modes, which are given 

by, 
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where,  
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with ( )!m

n
L  being an associated Laguerre polynomial of order m and degree n in !  [3].  In 

this case c

mn
!  and s

mn
!  are orthonormal as are the Hermite-Gaussian modes.   

For a cylindrically symmetric system the solution to the Laguerre-Gaussian modes can be 

written as, 
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where  ( )!0

m
l  is a normalised zeroth order Laguerre polynomial of degree m.  Again we must 

take into account the phase slippage when propagating the Laguerre-Gaussian modes and this 

can be written as, 
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where z is the axis of propagation.    
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For propagation, we consider the fundamental mode of the Hermite-Gaussian mode set.  It has 

a Gaussian profile and is the simplest mathematical solution to the Helmholtz equation.  This 

mode is given by, 
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  (3.18) 

 
and represents a Gaussian beam propagating in the z-direction, whose intensity profile does 

not change as it propagates except for a re-scaling factor as shown in Fig. 3.1 & Fig. 3.2. 

 

 

Fig. 3.1: Profile of the 

fundamental Gaussian as it 

propagates in free-space.  

 

 

 

Fig. 3.2: Propagating 

fundamental Gaussian 

beam mode showing both 

the change in width and 

the radius of curvature. 

 

 

The off-axis distance at which the amplitude is equal to e/1  is given by the beam width 

parameter, W .  This parameter varies as the beam propagates along the z-axis and at some 

distance z away from the waist is given by, 
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where 

o
W  is the radius at the waist at which W  is a minimum, which is known as the beam 

waist radius.   

 



ITB Journal 

Issue Number 11, May 2005                                                                                                                   Page 14 

 

Another property of the beam that varies as it propagates is called the phase front radius of 

curvature, R , which describes the curvature of the equiphase surface of the beam [15].  The 

expression for R  is written as, 

       ( )
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#
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$

%
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(
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,
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2
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1
z

W
zzR

o

-

.    (3.20) 

 
At the beam waist, the radius of curvature is infinite and the beam is similar to a plane wave 

(Fig. 3.3).  At a large distance from the waist radius, the radius of curvature is just equal to 

that distance, so that the beam looks like a spherical wave spreading from a point source at the 

waist (Fig. 3.4). 

 

Variation of ( )
with 

R z

z

Beam size variation 
with .z

At beam waist plane( =0),
( )=Infinity.

z

R z Point
source

Spherical
waves

Radius of curvature at
large distance, .z

 
            Fig. 3.3:  Variation in R(z) as the                    Fig. 3.4:  At large values of z, the radius 

          beam propagates along the z-axis.                of curvature has the same value as z.   

 
When propagating several modes, it is very important to include the effects of the phase 

slippage.  Effectively different modes, 
mn

! , have different phase velocities.  If a field consists 

of a sum of modes, the relative phase between component modes varies along the axis of 

propagation since the phase slippage term (Eqn. 3.17) is a function of z and is mode number 

dependant.  This results in the amplitude distribution of the composite field altering shape (or 

form) with z, as in diffraction theory [9]. 

 
As an example of the application of Gaussian beam mode analysis we consider the diffraction 

pattern produced by a straight edge placed in the path of a plane wave, 

)exp(),,( 0 jkzEzyxE != .  This can clearly be regarded essentially as a one-dimensional 

problem.  We use a Hermite-Gaussian modal set and consider an expansion of the form [9], 
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In this case the phase slippage term is not incorporated into the amplitude coefficients.  If we 

are only interested in the plane where the obstruction lies, and we are taking this to be the 

position of the beam waist, then 0=z  and the expression reduces to, 

 

         !=
m

omm
WxhAxE ),()(    (3.22) 

where the 
m
A  values are calculated by, 

          !
"

=

0

),()( dxWxhxfA omm    (3.23) 

 
letting 1)( =xf  for a plane wave.  In this case the straight edge is placed at 0=x  and lies 

along the y-axis.  Depending on the number of modes used to reconstruct the field, the 

reconstruction will fail beyond a certain value of x since modes only reach a finite distance off 

axis (determined by mode number and W).  Therefore, it is essential to use the correct number 

of Hermite-Gaussian modes. 

 
A reconstruction of a field with a waist of 1mm and wavelength of 0.1mm is shown in Fig. 

3.5.  The field is shown at the plane of a straight edge along the y-axis as described above and 

sixty Hermite-Gaussian modes were used.  Clearly because of the finite number of modes 

used the edge is not a discontinuity.  The clear ringing seen is similar to that seen in Fourier 

Series when reconstructing sharp edges.  The ringing period depends on the number of modes 

used. 

 
Clearly, sharp edges are difficult to reconstruct in any modal approach.  However, away from 

planes where fields are clipped the modal method approaches a very good approximation to 

the diffracted field.  It does underline however, that an appreciation of the limitations of the 

numerical approach (i.e. only a finite number of modes being used in the modal sum) is 
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Fig.3.5:  Reconstruction 

of a field at the plane of a 

straight edge which lies 

along the y-axis (waist = 

1mm, ! = 0.1mm). 
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important to any analysis.  A similar approach was used to analyse a system of a circular 

aperture with a stop, analogous to the layout of a Cassegrain telescope, the results of which 

are shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8. The beam was assumed to have a wavelength, ! , 

of 1mm and a waist radius of 9mm with one hundred Laguerre-Gaussian modes being used in 

the reconstruction.  The circular aperture had a radius of 10mm and the stop a radius of 2mm. 

 

 

 

 

 
In conclusion, both the straight edge and the circular aperture are examples of how Gaussian 

beam mode analysis proves very useful.  We can easily switch from Cartesian co-ordinates, as 

in the case of the straight edge, to polar co-ordinates for systems with circular symmetry.  It is 

also possible to analyse focussing optical components such as curved mirrors and lenses, 

which allows Gaussian beam modes to be used in the analysis of a complete optical system.  

 
Other techniques used for quasi-optical analysis include ray tracing, Fresnel diffraction and 

physical optics.  Each method has its own advantages and disadvantages but used together 

form a powerful set of tools for analysing different properties of the optics in question.  For 

this reason, in the analysis of a complete system, many different methods must be used for a 

full understanding of the underlying processes.  The following sections will show how these 

techniques of quasi-optical analysis were put to use in the design and analysis of the 

integrated lens antenna on the HIFI instrument. 

 

Fig. 3.8 (bottom): Reconstruction of the field at a distance of 200mm (200! ) from the 

plane of the circular aperture. This is the far field. 
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Fig. 3.6 (top left): Reconstruction of the field 

at the plane of the circular aperture. 

 

Fig. 3.7 (top right): Reconstruction of the 

field at a distance of 20mm (20 ! ) from 

the plane of the circular aperture. 
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4.  The Optical Layout of HIFI 

 
Alongside the Herschel Space Observatory inside the launch vehicle will be another satellite 

called PLANK.  Therefore, due to the small size of the Ariane-5 vehicle and the enormous 

cost of putting satellites into space, the size of the HSO is restricted and therefore so too is the 

size of the HIFI optics.  As the initial optical design was undertaken by TPD (TNO, the 

Institute of Applied Physics, Delft) using ray tracing and geometrical optics in the limit where 

0=! , it was crucial to analyse the system more realistically, taking the long wavelength of 

the submillimetre radiation into account.  The geometric analysis is not completely adequate 

to describe the propagation of beams where diffraction effects need to be considered.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This paper is mainly concerned with the integrated lens antenna and mirror system in band 5 

of HIFI.  Since this band has the lowest frequency of all those channels containing lens 

antennas, it will suffer more severely from diffraction problems and therefore, if the design 

can be verified at this wavelength, it can be adapted to the other bands.  The full HIFI focal 

plane optical system consists of a number of distinct subsystems: the Common Optics 

Assembly (COA), the Local Oscillator (LO) Optics and the Mixer Assembly (MA).  The 

COA is basically a relay system directing radiation to seven different mixer assemblies 

corresponding to the  

M3

M5

M7

M10-1
L5-1

L3-1

L4-7

M11-7

M8

C1

C2C3

Fig. 4.1: A 3D layout of 

the HIFI optical system. 
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Fig. 4.3:  The channel splitting optics and cold LO optics HIFI’s channel 4. 

Fig. 4.2:  Horizontal cross-section of the common optics and cold LO optics of HIFI 
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channels of HIFI.  Within the mixer assemblies (Fig. 4.4), the collimated telescope beam, B 

CHTEL (Beam Channel TELescope), and the local oscillator beam, B CHLO (Beam Channel 

Local Oscillator), are coupled and directed to two mixer subassemblies.  In channels 5, 6L 

and 6H, a silicon lens focuses the beam to the submillimetre receiving planar antenna glued to 

the back surface of the lens.    

 

 

5.  Design and Analysis of the Integrated Lens Antenna 

The initial design concept for the integrated lens antenna for band 5 of HIFI was proposed by 

Caltech (California Institute of Technology).  This system consisted of a hyperhemispherical 

silicon lens with a double-slot feed antenna.  The lens had a diameter of 5mm and with a 

refractive index of 3.14 for silicon, it required an extension length of 0.7316mm using the 

equation, 

 

r

S

h

r
L

!
=     (5.1) 

 
where 

S
r  is the radius of the spherical portion of the lens and 

r
!  is the relative permittivity of 

the material.  The operating frequency was assumed to be 1185GHz.  To reduce reflection 

losses the lens had a quarter-wavelength matching layer.  The double-slot planar feed had a 

length ml µ4.77= , a separation of mµ2.44  and the width of the slots was set at mµ4 .  This 

BS2
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B CHTEL
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MAM2

P

MAM1

MAM3

Fig. 4.4: The Mixer 

Assembly (MA) optics for 

channels 5, 6L and 6H of 

HIFI. 

Only one mixer subassembly 

is shown, which consists of 

mirrors MAM1, MAM2 and 

MAM3.  The beam is then 

propagated to the integrated 

lens antenna.  



ITB Journal 

Issue Number 11, May 2005                                                                                                                   Page 20 

 

system produces a beam with an f-number of 2.5 or, from Eqn. 5.2, an opening angle of 
o
6.22 .   

 

!
"

#
$
%

&
==='

2
tan2

1

sec
(ondary

s

primary

eff

D

l

D
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numberf   (5.2) 

 
One problem with this f-number is that because it is quite short, it gives rise to a 

proportionally small focal spot, causing difficulty in the alignment process of the optical 

system.  Bands 1 to 4 have a have a longer f-number of 4.25.  Having the same f-number for 

band 5 would make for easier testing and would allow the same optical design to be used for 

all channels.  However, by having a longer f-number, the system would suffer from a 

reduction in the coupling efficiency and an increase in reflection loss at the matching layer 

and air interface.  To investigate this further, two new lens designs were analysed, both of 

which were elliptical and produced a beam with an f-number of 4.25, which is shown in Table 

5.1. 

 
Lens Type Hyperhemispherical Elliptical Elliptical 

F-Number 2.5 4.25 4.25 

Half Short Axis 2.5mm 2.819mm 2.439mm 

Half Long Axis 2.5mm 2.846mm 2.496mm 

Diameter 5.0mm 5.638mm 4.878mm 

Extension 0.731mm 0.851mm 0.673mm 

Matching Layer Quarter-wavelength None None 

Lens Name 

(for referral in 

paper) 

HypHem Ell#1 Ell#2 

Table 5.1: Lens data for a hyperhemispherical lens and two elliptical lenses. 

 
In reality the system will be receiving radiation, however, in its analysis we made use of the 

Theorem of Reciprocity [6], which allowed it to be treated as a transmitter rather than a 

receiver.  The first step in this procedure was to produce the far field radiation patterns of 

each of the integrated lens antennas, which was carried out using a program called PILRAP 

(written by Van der Vorst [13]).  This software allows the user to input both the lens and 
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antenna specifications and then uses ray tracing inside the lens followed by physical optics to 

generate the far field.  The far field patterns for all three lenses are shown below (Fig. 5.1).   

 
Although the far field patterns had the required beam width, it was important to ensure that 

there was no refocusing of the beam in the near field, which could lead to a mismatch with the 

optics.  To check qualitatively for any such effects a ray tracing analysis of the lens designs 

was also carried out using a  

Fig. 5.1: The far field radiation patterns generated by PILRAP for all three lens systems. 

 

commercially available software program called ZEMAX®.  This program treats the optical 

system in question as a system of different ‘surfaces’ whereby the first is the object surface 

where the source is located and the final surface is the image surface.  For each of these and 

the surfaces in between, the user may input a ‘thickness’, a radius of curvature, a conic 

constant and a material from which the surface, i.e. the component, is made.  By giving the 

surface a radius of curvature and a thickness, the radius of the dielectric lens can be defined, 

as can the thickness of the extension length.  The ray tracing may then be carried out from the 

object surface to the image plane.   

 
Surface Type Radius Thickness Glass Semi-Diameter Conic Const. 

OBJ STANDARD 0.00E+00 1.00E-05  2.86E-02 0.00E+00 

STO STANDARD 0.00E+00 8.51E-01 SILICON_3.416 2.50E-03 0.00E+00 

2 STANDARD 0.00E+00 2.85E+00 SILICON_3.416 2.82E+00 0.00E+00 

3 STANDARD -2.79E-01 2.87E+01  2.82E+00 -1.89E-02 

IMA STANDARD 0.00E+00 0.00E+00  2.97E+00 0.00E+00 

Table 5.2: Surface data as defined in ZEMAX for the elliptical lens Ell#1. 
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Since the ray tracing showed that there were no unwanted focusing properties (Fig. 5.2) for 

the three lenses, a Gaussian beam mode analysis was carried out to reproduce the waist field, 

given the far field pattern from PILRAP.  The first step in this is to calculate the Gaussian 

beam mode coefficients and then synthesise the far field pattern to confirm the results of the 

calculation.  Using the Gaussian beam expansion, the near field can then be produced quite 

simply.  However, there is one subtlety with this approach.  The phase front radius of 

curvature in the far field is not flat with respect to a spherical wave at the PILRAP reference 

surface in the lens antenna.  Thus when the near field is reproduced at the reference surface, it 

will not be the field at the true beam waist.  To overcome this problem, the phase variation in 

the far field as output by PILRAP was matched to a spherical phase error, which was then 

subtracted to ‘flatten out’ the phase.  This effectively meant that the new reference plane, with 

respect to which the beam pattern was calculated, was very close to the true waist position [1].  

Both the far field and near field patterns are shown in below as calculated using a Gaussian 

beam analysis.  The total power contained in the fundamental mode, 
0
P , was also calculated 

using the equation 

      100)(/)0(%)(
2

0 !
"
"

#

$

%
%

&

'
= (

m

mAAinP    (5.3) 

 
which of course is also a measure of the Gaussicity of the beam.  The results of this 

calculation are shown in the table below.        

Fig. 5.2:  3D image of the ray tracing 

analysis carried out on lens Ell#2. 
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Lens Name Waist Radius θ0 

(rad) 

Power in Fundamental (as 

% of total power) 

HypHem 0.175 87.95 

Ell#1 0.130 94.82 

Ell#2 0.140 95.4 

Table 5.3: The value of 
0

!  and the total power in the fundamental mode for each of the lens 

types. 

 
Having generated the field at the beam waist plane it then had to be propagated through the 

three mirrors of the mixer subassembly of HIFI’s band 5.  This was achieved by using a 

program called GLAD® (General Laser Analysis and Design).  Unlike geometrical optical 

codes, which represent the optical beam as rays, GLAD® represents the optical beam by the 

complex amplitude of the optical wavefront.  However, it is not specifically designed for the 

submillimetre region of the spectrum and some functions such as calculating aperture 

Fig. 5.4: Real far field and reproduced far 

field of HypHem along with a Gaussian 

function.  
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Fig. 5.5: Real far field and reproduced far 

field of Ell#1 along with a Gaussian 

function.  

Fig. 5.6: Real far field and reproduced far 

field of Ell#2 along with a Gaussian 

function.  

 

Fig. 5.3: Near field pattern of all three 

lenses as calculated using Gaussian beam 

mode theory. 
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efficiencies and coupling efficiencies are not possible.  To propagate the beam, a starting 

point and arbitrary output plane are entered, as well as the geometrical parameters of the 

optical system.  The components of the system are then modelled in 3D space with the correct 

orientation and the desired field (in this case the beam waist field calculated earlier) is 

imported.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To compute the telescope aperture efficiency we need to determine the coupling between the 

telescope signal beam (from the sky), as calculated by N. Trappe [12], with the beam from the 

lens antenna, having been propagated through the mixer subassembly optics as shown in Fig. 

5.8.  For two fields, ! mm
A "  and ! mm

B " , which are not normalised, the total fractional 

power coupling efficiency is calculated by, 
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#    (5.4) 

 

Mirror 1 

Mirror 2 
Mirror 3 

Mirror 1 rotated 116.56° from initial z 

axis 

Mirror 2 rotated -77° from initial z axis 

Mirror 3 rotated 90° from initial z axis 

z axis 

x axis 

y axis 

Fig.5.7: Mirror layout of the mixer 

subassembly of band 5 as set in GLAD [12]. 
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This calculation was carried out for the sky beam with the beam from the hyperhemispherical 

lens and both beams from the elliptical lenses, with and without aberrational effects.  The 

power coupling results are shown in Table 5.4 

 

 

 

Calculated Power Coupling Efficiencies 

 Excluding Aberration % Including Aberration % 

HypHem with Sky 80.79 71.59 

Ellipse Ell#1 with Sky 77.64 76.40 

Ellipse Ell#2 with Sky 74.20 71.68 

Table 5.4: Power coupling efficiencies as calculated using Gaussian beam mode coefficients. 

 

6. Conclusion 

In this paper we discussed the function of the HIFI instrument on board the Herschel Space 

Observatory and the astronomy that will be carried out at submillimetre wavelengths.  The 

techniques used in the analysis of quasi-optical systems were discussed with a particular 

emphasis on Gaussian Beam Mode Theory.  These techniques were then applied to the mirror 

and lens antenna configuration found in HIFI’s band 5, with attention given to three different 

lens designs.  
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Fig. 5.8: Graphs showing the beams from 

the hyperhemispherical and two elliptical 

lens antennas as propagated to the 

diplexer plane by GLAD.  The beams are 

shown with and without aberration. 
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As shown in the previous section, the different lens designs produce beams that couple with 

different efficiencies to the beam from the sky.  In the case of the original hyperhemispherical 

lens, a coupling efficiency of 80.79% is achieved when neglecting aberration effects.  This 

coupling efficiency is greater than that for either of the other two lens designs, which produce 

beams with 77.64% and 74.20% efficiency, again neglecting aberration.  However, if we 

examine the efficiency of the beam produced by the elliptical lens Ell#2 and the original 

hyperhemispherical lens, and take into account the effects of aberration, then clearly there is 

not much difference between their coupling efficiency values of 71.59% and 71.68% 

respectively.  A difference of 0.9% is obtained, whereas elliptical lens Ell#1 produces a beam 

with an efficiency of 76.40% (including aberration), yielding a difference of approximately 

5% from the other two designs. 

 
This analysis has shown that all three lenses produce beams with quite a high power coupling 

efficiency.  It has also proved that the effects of aberration in the mixer subassembly optical 

system are large enough not to be neglected, as they will affect the performance of the 

telescope.  Therefore, on choosing a lens design for band 5 of HIFI, it must be noted that it is 

the elliptical lenses that produce beams with the longer f-number.  This was one of the main 

reasons for changing the original lens design.  It can therefore be placed directly into an 

optical system with the same mirror configuration as the lower frequency bands and will 

couple as effectively as the lens with the shorter f-number, that is, the original 

hyperhemispherical lens as proposed by Caltech, in the optical system currently being used in 

band 5.       
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