View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Arrow@dit

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH
TECHNOLOGICAL
UNIVERSITY DUBLIN e O u rn a

Volume 5 | Issue 1 Article 29

2004

Developing Real-Time Multimedia Conferencing Services Using
Java and SIP

Gavin Byrne
Institute of Technology Blanchardstown, Ireland., gavin.byme@itb.ie

Declan Barber
Institute of Technology Blanchardstown, Ireland., declan.barber@itb.ie

Follow this and additional works at: https://arrow.tudublin.ie/itbj

b Part of the Computer Engineering Commons

Recommended Citation

Byrne, Gavin and Barber, Declan (2004) "Developing Real-Time Multimedia Conferencing Services Using
Java and SIP" The ITB Journal. Vol. 5: Iss. 1, Article 29.

doi:10.21427/D70Q8G

Available at: https://arrow.tudublin.ie/itbj/vol5/iss1/29

This Article is brought to you for free and open access by
the Journals Published Through Arrow at ARROW@TU
Dublin. It has been accepted for inclusion in The ITB
Journal by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN

https://core.ac.uk/display/301303788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol5
https://arrow.tudublin.ie/itbj/vol5/iss1
https://arrow.tudublin.ie/itbj/vol5/iss1/29
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol5/iss1/29?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ITB Journal

Developing Real-Time Multimedia Conferencing Services
Using Java and SIP

Gavin Byrne and Declan Barber
Institute of Technology Blanchardstown, Ireland
gavin.byrne@itb.ie declan.barber@itb.ie

Abstract

This paper examines Java’s suitability in creating real-time multimedia communications-based
applications in Next Generation Networks (NGNs). We investigate some of the current enabling
technologies provided by the Java platform which are concerned with the rapid development of real-
time communications-based products and services. In particular, we look at creating a multiparty
conferencing and collaboration service using the Session Initiation Protocol (SIP) and the JAIN
Framework and present an approach which models multiparty conferencing applications by
separating signaling and media transfer functionality. We map our model through the design stage to
an implementation in Java. This paper is based on real experiences derived from work on an applied
research project which is concerned with the development of a collaborative system which allows
multiple distributed scientists to graphically analyse a common set of data obtained from mobile
sensors in a virtual conference environment. Potential applications areas include education,
emergency response services, gaming and any general collaborative application

Introduction

The Internet is steadily becoming more capable of providing real-time media distribution (voice
or video) between participants. This functionality represents a significant enhancement to more
traditional asynchronous conferencing functionality typified in message boards and chat rooms.
One reason for this improvement is the increased bandwidth availability arising from
broadband access and the promise of 3G mobile systems such as the Universal Mobile
Telecommunications Systems (UMTS). This increase in bandwidth will continue to be a key
factor in the increased use of media rich real-time conferencing. Another reason is the
increasing support for real-time media transfer and signaling made possible by the trend
towards convergence in previously diverse networks. Another third reason is the increasing
support for real-time media transfer and signaling provided by open and standard Internet
Protocols. Although Java has already been widely adopted for developing high-level business
applications which leverage widespread Internet protocols such as HTTP, the complex and
proprietary nature of underlying network technologies has meant that the creation of more
flexible and granular communications services is still largely the domain of service provider or
network equipment vendor personnel using highly specialised languages. This is changing with
the emergence of new internet protocols and the Java Intelligent Networks Framework (JAIN),
which increasingly allows third party developers to develop and deploy lower level

communications services using high-level programming techniques.
This article suggests that Java is an excellent choice for developing end-to-end applications and
services for the NGN (Next Generation Network) and will enable third party developers to

offer new and innovative services independently of service providers. We describe our

Issue Number 9, May 2004 Page293

ITB Journal

approach to the creation of one such service using Java and the JAIN Framework and make

observations on our experiences that may be more generally applicable to a range of other

created services. This paper makes certain assumption:

o Bandwidth availability will steadily increase from end-to-end and decreasingly represent a
technical constraint

o Convergence in the NGN will be based firmly on open standards and the TCP/IP protocol
stack in particular

o Applications leveraging existing and emerging Internet Protocols will dominate

The JAIN Framework

The objective of the Java Intelligent Networks Framework (JAIN) [3, 5] is to provide service
portability, convergence and secure access to integrated networks. JAIN builds on Java
portability by standardizing the signaling layer of the communications networks into Java
language and defining a framework in which services can be created, tested, and deployed. The
JAIN initiative brings new opportunities for both developers and service providers, enabling
them to create services (without rewriting) for the different network implementations and
interfaces in a multi-vendor environment. The JAIN initiative proposes to do this by specifying
Application Programming interfaces (APIs) which provide access to functional objects such as
Call Control or User Location Objects as well as underlying signaling objects (e.g. SIP, H.323
and MGCP). This essentially allows application developers easy access to functional and
signaling interfaces. In the context of our multiparty conferencing service, the direct access to

signaling using SIP was a critical feature in service development.

Fundamental Design Issues

Our analysis of design principles and functional requirements is summarized in the following
description of our conceptual model. Our conferencing system had the following general design
aims:

o Scalability in the number of (distributed) users

o Efficiency in its use of network and node resources

o Simplicity in the entire service creation process and especially implementation

o Extensibility for the easy and rapid deployment of modifications or new services

o Interoperability of applications and underlying services based on NGN models.
Specific conferencing functional requirements include:
o Peer-to-peer and multiparty conferencing in a distributed NGN environment.

o Dynamic and flexible conference signaling and media transfer

Issue Number 9, May 2004 Page294

ITB Journal

o Real-time Voice/Video Support: it must allow effective real-time conferencing.

o Application platform independence

The adoption of open and standard internet protocols for real-time media transfer and signaling
(specifically the Real-Time Protocol, RTP, the Real-Time Control Protocol, RTCP, and the
Session Initiation Protocol, SIP) combined with the convergence of public and private
networking technologies towards the internet protocol stack in general ensures that most of our
design principles are achieved. From an application developer’s perspective, these protocols
are highly accessible through Java and its associated Application Programming interfaces
(APIs). The two main functions within a conferencing system are Signaling (for call
establishment, the addition/deletion of call parties and call termination) and Media Transfer.
For simplicity and efficiency, our design further separates the signaling functionality into User
Registration and Call functions. Consequently, our preferred approach uses a hybrid signaling
architecture (Figure 1): a centralized signaling architecture supports user registration and
directory support while a distributed signaling architecture allows peer-to-peer and peer-to-
multi-peer calls. A distributed architecture supports peer-to-multipeer media delivery. This is
scalable for large numbers of participants and makes efficient use of bandwidth and

processing.

Signaling (Registration & Name) Signaling (Call) Media Transfer

je
@

Centralised Distributed Distributed

Figure 1: Conferencing Model based on Unicast Signaling and Multicast Media

Evaluating Java Technologies for Multiparty Conferencing

Java strongly supports the development of new applications and services which leverage the
functionality of the new powerful Internet signaling and media transmission protocols. Java's
platform independence, downloadability, mobility and object oriented structure has already led
to its adoption for use in telecommunication applications and is destined to play a critical role
in the development of internet-based electronic commerce systems. Java provides support for a
wide variety of internet protocols such as HTTP (within applet/servlet packages), SIP (within
JAIN Framework), RTP (within JMF package), IP (within net package), which allow
development of inter-networked applications. The Java API’s of most importance in creating

multimedia conferencing applications are:

Issue Number 9, May 2004 Page295

ITB Journal

The Java Network package (java.net.*): Through the java.net package, Java provides the
ability to create both unicast and multicast sockets for the transmission and receipt of data.
The ability to create multicast sockets will be an advantage in our conferencing and
collaboration application where identical data is being sent to multiple recipients as multicast is
far more bandwidth and processor efficient (and therefore scalable) than having to open up
multiple unicast sockets for the same data.

The Java Media Framework (including javax.media.*, javax.sound.*): The Java Media
Framework (JMF) is a set of Java APIs for developing multimedia applications. In this project
JMF provides the necessary methods for the transmission and receipt of real-time media
streams using Real Time Protocol (RTP) and the Real Time Control Protocol (RTCP).

The Java Intelligent Network Framework (including javax.sip.*, javax.sdp.*): The Java
Intelligent Network Framework (JAIN) includes a set of Java technology based APIs which
enable the rapid development of Next Generation communications-based applications and
services on the Java platform. By providing a new level of abstraction and associated Java
interfaces for service creation across point-to-point, circuit-switched (PSTN, ISDN), and
packet/cell-switched (X.25, Frame Relay, ATM) networks. Importantly for us, JAIN provided
the only practical means of accessing the signaling using a high-level language and of

separating the registration aspect of the signaling from the call-establishment.

Session Initiation Protocol (SIP)

SIP [9] is an application layer signalling protocol which provides call set-up, modification, and
termination, as well as other services. Importantly, participants can communicate using
multicast, unicast or a combination of both. As an application layer signaling protocol used in
a distributed architecture, SIP is best suited to meet our scalability, real-time, simplicity and
extensibility design requirements. The Session Description Protocol (SDP) is used in
conjunction with SIP for exchanging session capabilities (ability to send/receive audio or video,

supported codecs, etc.).

We believe that SIP will be the protocol of choice for Next generation Networks and we have
chosen SIP to develop our multimedia conferencing application because of its easy integration
with existing IETF protocols, simplicity, mobility, scalability, ease of development,
extensibility and deployment in the core and at the edge of the enterprise and support for

multicast, unicast or a combination of both (all documented and discussed in [4, 8, 9, 10]).

Issue Number 9, May 2004 Page296

ITB Journal

From Analysis to Design

In order to map our Unicast/Multicast model to a design and implementation we have used
Sties and Keller’s Independent Service Description Model [11] which consists of abstract
descriptions for endpoints, communication channels, and communication relations. This is an
abstract service model that allows the standardized description of the specific characteristics of

a service while abstracting from any network and implementation dependant details.

Real-i’me Medithannel
Intemcﬁhn‘@)’mel

- _3_”‘> -

Setup/Teardown
Call STATE

i Send/Receive
L IM STATE

A - B Al - B
82 s
‘:_ -
A3 o a3 C
Media Stream Media Transmission
Transmission STATE & Send/Receive
IM STATE

Figure 2: Finite State Machine

This approach begins by determining the functions of the service from the user’s point of view:
peer-to-peer call, conference call or instant messaging (labeled as A', A*and A’ respectively in
Figure 2), and then determining the endpoints needed within the service: a conference server
(labeled C) and another human participant (labeled B). The next step is the identification of
communications channel types. There are three identified in our service, as shown below. The
final step is to identify all Single Communication Relations, i.e. Endpoint - Communication
Channel relations that might occur in our service (identified as the states in Figure 2). We then
summarise the Single Communication Relation States found into an FSM (Finite State

Machine that summarises our system).

We now employ the State pattern described in [13] which can be used to translate an FSM into

a set of high level abstract classes and relationships. We begin with a class named UserAgent,

Issue Number 9, May 2004 Page297

ITB Journal

which creates and manages ‘manager’ classes for each of the areas of functionality which we
can now identify using our FSM (call setup/teardown, media transfer, and Instant Message
exchange). The UserAgent class passes events and method calls to the appropriate manager to
deal with, then simply updates a global state variable and awaits further events. Figure 3

illustrates these classes in a UML diagram.

Implementation

From our analysis and design, we have identified what states our SIP user agent can be in at
any one time, as well as what classes and objects need to be implemented. Our SIP user agent
is implemented as a pure Java applet, which is digitally signed to enable the applet some
permissions which are usually outside the Java security sandbox (such as access to hardware

like microphones and web cams), allowing it to be used in thin web clients.

The key features implemented in our user agent thus far are the ability to A) Register with a
SIP proxy/registrar server, B) to make voice and video calls, C) to send and receive Instant
messages (Interoperable with MSN Messenger, etc.), D) to add contacts to a buddy list with
presence capabilities (which informs the user when contacts are on or offline), E) to make
conference calls using unicast call signaling to the conference server and multicast media
transmission, and F) to collaboratively analyse remote sensor data stored in a web server
database through graphs and charts with other users in either conference calls or peer-to-peer
calls allowing users to highlight (by drawing on the graph) interesting findings which is

replicated to all interested parties.

Through the JAIN SIP 1.0 and JAIN SDP APIs we have been able to harness the simplicity of
SIP for call signaling, as well as buddy lists [6, 7] and Instant Messaging [1] (using the SIP
MESSAGE and SUBSCRIBE extensions) in our conferencing system. The user agent and
conference server are developed on top of the publicly available NIST (National Institute of

Standards and Technology) pure java sip stack implementation [12].

Issue Number 9, May 2004 Page298

ITB Journal

- Message currentMessage

+ ssndll\ﬁ (Message mes)

VA

v A\d

Message

InstantMesManager UserAgent SipManager
— | - 1nt state
< - SipManager sipManager _> - Call currentCall
_> - MediaManager mediaManager + calling (Call call
+ imReceived (Message mes) - InstantMesManager imManager Sl N (C::llgl egc(ei\i: dC(aCa)ll call)
+ calling (Call call) + callTermmat‘ed (C:ill call)
+ callReceived (Call call)
+ callTerminated () VA
+sendIM (Message mes) v
+ imReceived (Message mes) Call
+ streamReceived (Stream str) - String from
+ sendStream (Stream str) — - String to

- String from
- String to <—
- String message

+ getFrom ()

Instead of developing our

which

+ getFrom
+ getTo ()() + getTo ()
+ getMessage()
P IncomingStream . x -
)) MediaManager
Codec << interface >> - String from - .)

St - IncomingStream incStream
~ String name ream + getFrom () <_ - OutgoingStream outStream
- int quality - Codec codec .

- String type + streamReceived (Stream str)
. + sendStream (Stream str)
~getName () 4 OutgoingStream
+ getQuality () + getCodec ()
+ getType () - String to
+ getTo ()

Figure 3: UML Class Diagram

own SIP proxy server at this stage, we are using a proxy server

was freely available, again from NIST.

=t
Menu _Help
[A = | ST s 1 il - x
biain | Gall Resards | Gailahoration] =lol |
e Menu Help
Buddy List: YO -are curk — —=— —
Main | Gall Records | Collaboratian |
|3 sipicanor@10.0.0 | e 7
T fod — | Buddy List: | g[8 Youare currently: ONLINE
| B send Message | l B — ﬁ_n_z_nn_' L T e
= = | | & sipiconor |zip: 0.0 3
| vt o Contorence] | S EmEmmE@HOB0208 s cono@rvoozve |l (]
1 | |
- e Jls Jle]
; - = e Jle Il e |
I__ Call Status | re—— s _I
|Reacy _ L_EJL = ul l ot .
| | canstatus | Marne | Address |
|Connected conor sip:conorg@10.0.0.200 |

Figure 4: Implementation Screenshots

Users wishing to join the conference can simply send a standard SIP INVITE message to the

conference server which in turn can choose to authenticate the user or simply send an

immediate ACK reply to set-up the call. Users currently participating in a conference who

would like to invite other users into the conference can send a SIP REFER message with the

URI of the conference server, inviting them into the call (this REFER message could

alternatively be sent to the conference server with the intended recipient’s URI). Each

Issue Number 9, May 2004 Page299

ITB Journal

participant makes a normal peer-to-peer SIP call to the conference server using unicast

signaling to register initially or to resolve a SIP name to an IP address. A unicast call is then

made to the peer. Once the call is established, media is sent and received on a multicast

connection. Other registered peers can be invited or proactively join the established multicast

conference. The role of the conference server is to act as the centralized manager of the

conference, and to maintain a signaling dialog with each participant in the conference

Summary of Observations on Using Java & JAIN for Conferencing services

Strengths and limitations of using Java technologies for conferencing service creation include:

o

o

Java’s ability to send and listen for data on multicast sockets was a major benefit.

The JAIN framework provides a solid set of APIs for the implementation of new
communications-based services and will increasingly enable developers to rapidly create
and deploy new services without specialist knowledge.

The real-time streaming abilities provided by the JMF are slow to initialize and begin
streaming, but once started provide a perfectly adequate solution. It compares poorly to
similar Java telephony applications which make use of native code for access to hardware,
for example the DLL (Dynamic Link Library) for the windows platform. These manage
almost instantaneous responses. The use of native code in our clients would contradict our
platform independent model, but in order to provide realistic response times, we may have

no choice.

Conclusions

o

Java's platform independence, downloadability, mobility and object oriented structure has
already led to its adoption for use in telecommunication applications and is destined to play
a critical role in the development of internet-based electronic commerce systems. But it is
Java’s ability to leverage existing and emerging internet-based open protocols, and the fact
that it is now enabling third party developers with little or no knowledge of underlying
network infrastructures to develop and offer new services independently of service
providers, that will no doubt make it the language of choice for developing applications
and services for the NGN.

The ability to replicate multimedia conferencing capabilities currently available in the
circuit-switched environment will not be a sufficient driver for the enterprise to adopt IP
based multimedia conferencing. The ability to rapidly develop and deploy enhanced, and
previously unavailable, services which leverage IP and related intelligence will be the
driving force behind the evolution of NGNs. Java and the JAIN framework with its power

to implement emerging internet protocols such as SIP is a key catalyst in this evolution.

Issue Number 9, May 2004 Page300

ITB Journal

References

(1]

— e ———
01N DN b WK
[l T Sl i S S |

(9]
[10]

[11]
[12]

[13]

B. Campbell et al., “SIP Extensions for Instant Messaging”, IETF DRAFT, work in progress,
2002.

Sun Microsystems, “JAIN Service Creation Environment (SCE) API Specification”.

Sun Microsystems, “Java Advanced Intelligent Network, The JAIN API’s”.

I. Miladinovic, J. Stadler, “Multiparty Signalling using the Session Initiation Protocol”

P. O’Doherty, M. Ranganathan. “JAIN SIP tutorial”.

J. Rosenberg, “The Future of SIP and Presence”, 2003.

J. Rosenberg et al., “SIP Extensions for Presence”, IETF DRAFT, work in progress, 2001.

J. Rosenberg, H. Schulzrinne, “Modles for Multi Party Conferencing in SIP”, IETF DRAFT,
work in progress, 2001.

H. Schulzrinne et al., “SIP: Session Initiation Protocol”, IETF DRAFT, November 2000.

H. Schulzrinne et al., “Centralized Conferencing using SIP”, IETF DRAFT, November
2000.

P. Sites, W. Keller, “A Generic and Implementation Independent Service Description
Model”.

National Institute for Standards and Technology, “SIP Reference Implementation”,
http://snad.ncsl.nist.gov/proj/iptel/

R. Martin, UML Tutorial: Finite State Machines, Engineering Notebook Column, 1998.

Issue Number 9, May 2004 Page301

	Developing Real-Time Multimedia Conferencing Services Using Java and SIP
	Recommended Citation

	Untitled

