View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Arrow@dit

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH
TECHNOLOGICAL
UNIVERSITY DUBLIN e O u rn a

Volume 5 | Issue 1 Article 28

2004

Web Enabled Embedded Devices

Anthony Keane
Institute of Technology Blanchardstown, anthony.keane@itb.ie

Brian Myler
School ofinformatics and Engineering, Institute of Technology Blanchardstown, Dublin 15.

Follow this and additional works at: https://arrow.tudublin.ie/itbj

b Part of the Computer Engineering Commons

Recommended Citation

Keane, Anthony and Myler, Brian (2004) "Web Enabled Embedded Devices," The ITB Journal: Vol. 5: Iss. 1,
Article 28.

doi:10.21427/D74J1B

Available at: https://arrow.tudublin.ie/itbj/vol5/iss1/28

This Article is brought to you for free and open access by

the Journals Published Through Arrow at ARROW@TU

Dublin. It has been accepted for inclusion in The ITB

Journal by an authorized administrator of ARROW@TU

Dublin. For more information, please contact

yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,

brian.widdis@tudublin.ie. T

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D U B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN

https://core.ac.uk/display/301303777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol5
https://arrow.tudublin.ie/itbj/vol5/iss1
https://arrow.tudublin.ie/itbj/vol5/iss1/28
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss1%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss1%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol5/iss1/28?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol5%2Fiss1%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ITB Journal

Web Enabled Embedded Devices
Brian Myler and Dr. Anthony Keane

School of Informatics and Engineering, Institute of Technology Blanchardstown, Dublin 15

Anthony.Keane@itb.ie

Abstract

The trend in manufacturing of computerised control systems has been to miniaturise the components
while increasing the functionality of the systems. This has led to the development of small inexpensive
hand-held computer devices coupled with the availability of a user friendly application development
language, Java and public cost-effect communication networks has given the developer a
programmable web-enabled embedded device. This paper investigates the steps involved in
programming the Tiny InterNet Interface platform and analyses the limitations imposed by
miniaturisation on this device.

Introduction

Historically we have seen the early stand-alone computational machines quickly gave way to
large and expensive central processing computers that allowed many users to run programs and
communicate using remotely connected dumb terminals. In time, the microcomputer answered
the demand for generalised computing with cheap processing power under the control of the
individual. Networking these microcomputers allowed the individuals to communicate via
email and to share files, like on the expensive mainframes. The programs and technology
protocols that were developed to allow networking of computers has evolved into a global
system, called the Internet, where any web-enabled device can participate, Manders et al.
(2002). Embedded devices are small computing control systems that have many parts in
common with computers like the CPU, memory, circuitry, power source and interfaces, among
others. The main differences lie in the limitations of the components and the purpose of the
device. Many computers are designed as general purpose machines offering multipurpose
usage whereas embedded devices are often designed as stand-alone control systems with a
particular simple role, like an alarm system, control of a washing machine, fridge, etc.
Advanced embedded control systems are used by car manufacturers, military and

manufacturing industry, especially where automation is required.

Today, over 90% of all microprocessors are used for real-time and embedded applications.
Manufactures have long recognised the convergence of technologies and communications but
have been prevented for exploiting it due to the unavailability of low-cost high bandwidth
networks. Also there was no standardisation across the industry of hardware or software
development tools. And embedded systems require real-time programming skills which tend to
be found on specialist courses for systems engineers. Recently, some manufacturers are
starting to provide a simple, flexible and cost effective means to design a wide variety of
hardware devices able to connect directly to corporate and home networks by using a

combination of a small but powerful chipset with a Java programmable runtime environment.

Issue Number 9, May 2004 Page286

ITB Journal

These platforms of embedded devices can now easily be networked using Ethernet interfaces or
using a built-in serial port that can drive an external modem. By allowing them to attach to the
Web, client browser screens can be indirectly interfaced with sensors and other embedded
systems for management and control. One such communication service is the GSM network
where embedded systems can send notification messages via short message service (SMS) or
receive data the same way. SMS is well suited for interactions of mobile and ubiquitous
computing devices when the input from users can be restricted to simple decisions,
confirmations, or input that is based on a set of predefined answers. Sun Microsystems
originally developed Java (Arnold at al. 2000) to address the need of a high-level programming
language with build-in tools (Application Programming Interfaces) for web-enabled devices.
Combining the flexibility of Java with the Web technologies gives the industry and developers a
standard set of tools to easily and cheaply create web-enabled embedded monitoring and

control systems.

Description of Tini-InterNet Interface (TINI)

Dallas Semiconductor created a microcontroller chipset to provide system designers and software
developers with a software development platform to interface with wide variety of hardware
devices and to be able to connect directly to networks. TINI is based on the DS80C390
microcontroller which integrates support for several distinct forms of I/O including serial, 1-
Wire and Controller Area Network (CAN) bus. The chipset contains flash ROM for the
runtime environment and static RAM for system data file storage. The hardware is accessed
by the software developer using Java’s application programming interfaces while the chipset

provide for processing control, communication and networking capabilities, see figure 1.

RTOS
Emblfadded ' TCP/IP Stack
DSE(9{ &m0 e . |
2 Java Virtual
Serial Machine
CAN -
1-Wire T
Parallal Application

Figure 1: Components of the embedded system

The TINI platform allows everything from small sensors and actuators to factory automation
equipment and legacy hardware access to the network. The combination of broad-based I/O

capability, a TCP/IP network protocol stack and object-oriented programming environment

Issue Number 9, May 2004 Page287

ITB Journal

enables programmers to easily create applications that provide local and remote control of

TINI-based devices through standard network applications such as Web browsers, see figure 2.

Browser

Request For Temp Response
temp

TINI

Figure 2: Software components of system

Developing on TINI

Remote Temperature Sensor Monitoring and Reporting System

To investigate the TINI platform, it was decided to build a simple temperature monitoring
system that would allow remote monitoring to take place via any browser on the Internet and
also for the system to inform the user of exception events, like a temperature above a threshold,
using the SMS service. This project involved interfacing several hardware devices to the TINI
platform, programming the board to accept the signals, analyse the signals and create an output

signal informing of the results.

Configuration of TINI

The TINI platform consists of a €50 chipset consisting of a 33MHz processor, IMB RAM,
and various interfaces including RS232 DTE and DCE, Ethernet 10Mbps, 1-wire and iButton,
see figure 3. TINI requires a 6V DC power supply which allows it to be battery operated.
Initially, the firmware and operating system are downloaded to the TINI board from a PC using
the RS-232 interface. Once this is completed you can give an ip address to TINI and access

the board via TELNET and the Ethernet interface.

Issue Number 9, May 2004 Page288

to

temperature

sensor

ITB Journal

= JIN] SOCKEYT ENENEE

Figure 3: TINI board with attachments

The TINI OS incorporates a FTP server which allows applications to be developed on a host
machine and the class files copied to the TINI board for execution. Although TINI supports
java, it will not run class files, instead it uses another format called tini files. The difference is a
class file will hold the compiled bytecode of a single Java class or interface whereas the tini file

can contain several Java classes, the TINI native libraries, and associated resource files.

The tini file is created by converting the Java classes from class and jar files, and copying in
other resources. Converting Java classes mainly involves modifying the constant pool. Many
UTFS8 strings are removed, including the class names that would otherwise support Java's
dynamic classloading and reflection features. The memory space constraint imposes the need
for compact code thus requiring the support for the bytecode verifier and the debugging

information to be removed.

Two utilities provided by Dallas Semiconductors for creating tini files are the TINIConvertor
and the BuildDependancy. The TINIConvertor is used to build the TINI binary and can be
used directly if the program does not depend on any classes that are not included in the
standard TINI API, otherwise BuildDependency must be used. This process builds in extra
dependencies before calling TINIConvertor to build the binary.

Issue Number 9, May 2004 Page289

Ethernet

connection

to

wireless modem

ITB Journal

Another way of automating the build process of TINI applications is to useTiniAnt, which is an
extention to Apache Ant the cross platform build tool. TiniAnt adds a new task type to ant for
building large TINI projects with complex dependencies.

Choosing a Web Server

Servertec Internet Server TINI Edition is a full-featured Application/Web Server written
entirely in Java designed to run on Dallas Semiconductor TINI boards. It has the following
features that make it a good choice; it is platform independence and uses open standards, gives
high performance using multi-threading and has a full-featured Servlet engine. Fault tolerance
is provided as crash protecting and recovery technology automatically traps, recovers from and
logs exceptions. Additionally Servertec Internet Server TINI Edition protects the integrity of
the server environment by preventing exceptions occurring in one request handler from
affecting other requests that the server is processing. The other advantages are the size, less

than 50KB, and is easy to install.

Figure 4 is a screen capture image showing the client browser screen that is remotely connected
with the TINI web server and temperature data from the sensor is relayed. This is an example
of remote monitoring. The application running on the TINI board can analyse the temperature
to see if it is within a range and activate an exception message if the measured data exceeds a
threshold value. The exception report can be sent either by landline connection or wireless via
SMS should the fixed line not be available. This is an example of affordable redundancy in
communication links.

3 http://192.168.1.5:0080/ Lestit PAction=Get+Mem-+Temp - Micrasolk Internet Explorer _15(x]
Fle Edt Vew Favortss Toos Help |

Gk ~ = - @ A A Qoeach GaFavortes Fveda (3| B S - F

Address [@] http:fi192.168.1 =Get-+Men+Temp = @e |Unks »

Tinimon.com

RETEN |

il

|i&] Dane [[|4 mterne
{#fstart “ e s > H (i tniws... | SciTesting | BT TextPad - . | @Macromed.. | @ciwan, .| BNCiwinT .| Flcommandi... |[E e/ Rﬂ@ 10:27

Figure 4: Web browser page

Issue Number 9, May 2004 Page290

ITB Journal

Limitations of TINI

The development limitations of the TINI platform were mainly due to the hardware
configuration where the small memory and slow processor speed were easily saturated if
multiple signals from different sensors and multiple applications are competing for the
resources. Application developers today are used to the generous resources available on PCs
and can afford to ignore the bounds of memory and processing power since the typical
application’s requirements falls short of the limits. When confronted with an embedded system
with limited physical resources and only a subset of the JDK API’s available, the developer is
forced to tighten up their coding design and become more efficient in implementing their
application. This can be achieved by building and debugging the application in stages rather
than trying the whole thing at once. TINI has proved to be an excellent inexpensive networked
development platform where proof-of-concept ideas could be tried out, inexpensively and
quickly. Also, the modular nature of the TINI platform could be used to increase available
resources by daisy chaining several TINI boards together, with each board being responsible

for a different sensor.

Conclusions

The TINI platform’s integrated I/O demonstrates the flexibility that web-enabled embedded
chipsets with ease in programming using the Java technology can dramatically increase the
development cycle. Many manufacturers have followed this approach by providing
development platforms of their own, similar to TINI but increasing the capacity of the
resources provided on the chipset. The common thread with all the platforms is Java and Web
availability. Recent developments in the mobile communication networks have opened a new
affordable public gateway to the services that can be provided by and from embedded systems.
We have demonstrated the usefulness of having a programmable inexpensive web enabled
embedded device that can easily be configured and interfaced to a sensor. Coupling this with
the available access using multiple public communication links allows for an effective

monitoring, information and control system.

Acknowledgements

The authors wish to thank Declan Barber for the loan of the wireless modem in the testing of
this project and Conor Gildea for the useful discussions and helpful advice regarding the
configuration of the TINI board system.

Issue Number 9, May 2004 Page291

ITB Journal

References

K. Arnold, J.Gosling and D.Homes
The Java Language, Boston: Addison-Wesley, 2000
M.F.A.Manders, P.J.F.Peters, J.J.Lakkien and L.M.G.Feijs
Taxonomy, Architecture and Protocols for Web-enabled Embedded System
Proceedings of PROGRESS Embedded Systems Symposium 2002
http://www.ibutton.com/TINI/

http://www.maxim-ic.com/TINIplatform.cfm

Issue Number 9, May 2004

Page292

	Web Enabled Embedded Devices
	Recommended Citation

	Untitled

