
The ITB Journal The ITB Journal

Volume 7 Issue 2 Article 5

2006

A Survey of Procedural Techniques for City Generation A Survey of Procedural Techniques for City Generation

George Kelly

Hugh McCabe

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Kelly, George and McCabe, Hugh (2006) "A Survey of Procedural Techniques for City Generation," The ITB
Journal: Vol. 7: Iss. 2, Article 5.
doi:10.21427/D76M9P
Available at: https://arrow.tudublin.ie/itbj/vol7/iss2/5

This Article is brought to you for free and open access by
the Journals Published Through Arrow at ARROW@TU
Dublin. It has been accepted for inclusion in The ITB
Journal by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol7
https://arrow.tudublin.ie/itbj/vol7/iss2
https://arrow.tudublin.ie/itbj/vol7/iss2/5
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol7/iss2/5?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol7%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ITB Journal

Issue Number 14, December 2006 Page 87

A Survey of Procedural Techniques for City
Generation

George Kelly, Hugh McCabe
george.kelly@itb.ie, hugh.mccabe@itb.ie
School of Informatics and Engineering,

Institute of Technology, Blanchardstown, Dublin.

Abstract
The computer game industry requires a skilled workforce and this combined with the
complexity of modern games, means that production costs are extremely high. One of the
most time consuming aspects is the creation of game geometry, the virtual world which the
players inhabit. Procedural techniques have been used within computer graphics to create
natural textures, simulate special effects and generate complex natural models including
trees and waterfalls. It is these procedural techniques that we intend to harness to generate
geometry and textures suitable for a game situated in an urban environment. Procedural
techniques can provide many benefits for computer graphics applications when the correct
algorithm is used. An overview of several commonly used procedural techniques including
fractals, L-systems, Perlin noise, tiling systems and cellular basis is provided. The function of
each technique and the resulting output they create are discussed to better understand their
characteristics, benefits and relevance to the city generation problem. City generation is the
creation of an urban area which necessitates the creation of buildings, situated along streets
and arranged in appropriate patterns. Some research has already taken place into recreating
road network patterns and generating buildings that can vary in function and architectural
style. We will study the main body of existing research into procedural city generation and
provide an overview of their implementations and a critique of their functionality and
results. Finally we present areas in which further research into the generation of cities is
required and outline our research goals for city generation.

1. Introduction
As technology evolves and computing power increases, the consumer appetite
for more detail, realism and scale is ever growing. The modern media
industry, including games, films, advertising and television, is struggling to
meet the expectations set by the largest projects and everyday production
costs are spiralling out of control.

The traditional approach to meet consumer demand has been to simply
increase the number of artists working on a project to produce larger, more
detailed and realistic content. However, increasingly the artistic pipeline is
not scaling, meaning that additional artist numbers do not generate a

ITB Journal

Issue Number 14, December 2006 Page 88

proportional yield of content. The additional costs incurred add to the
already high development costs and are paid by the consumer. The result of
this is that time and money that could have been allocated to improving
game play or adding innovative features has been lost on content creation. As
a consequence of high development costs, a barrier of entry into the market is
created and new fledgling companies find it difficult to get a foothold thus
stifling innovation.

A potential solution for the content creation problem is the application of
procedural techniques. These techniques have been used for over 20 years in
the field of computer graphics [23] for a wide range of applications: adding
noise to existing textures [6], creating 3D textures of natural materials such
as marble and wood [10], visualising life-like models of various tree and
plant species [8] and generating detailed cellular textures such as skin or
bark [23]. Entire procedural worlds are now possible and this is
demonstrated in the MojoWorld [33] application, where assets including
realistic natural features such as terrain, lakes, trees and shrubs are all
generated using procedural techniques. Recently procedural applications
have been expanded further to simulate special effects including particle
systems, water, and even the natural physical movements of assets [32].
Complex scenes containing many different models would normally take
months to manually construct, now vast section of these scenes can be
created using specialist procedural generation packages [27] that can
generate detailed and varied models in minutes. Procedural generation is a
time saving method of rapidly and efficiently generating content that can
help to alleviate and potentially solve the problems of escalating content
creation costs.

Existing procedural solutions primarily apply procedural techniques to the
generation of natural phenomena, but many of the same techniques have
obvious applications in the generation of man-made artificial phenomena.
Our work focuses on the creation of procedurally generated cities for use in
games and other graphical applications that are situated in urban landscapes.

ITB Journal

Issue Number 14, December 2006 Page 89

Cityscapes are difficult to model. They are rich in visual and functional
complexity and are a result of development and evolution over hundreds of
years under the influence of countless factors. Some of the major influential
factors affecting cities include population, transport, environment, elevation,
vegetation, geology and cultural influence. It is a formidable challenge for
researchers and developers to create a realistic model of such a large and
complex system. We aim to develop an accessible interactive software system
that can automatically generate a realistic, detailed and varied model of a
city suitable for use in real-time rendering.

In this paper we present a survey of procedural generation techniques and of
attempts to apply these techniques to the city generation problem. In Section
2 we provide an overview of procedural generation in general and present a
number of key techniques and algorithms. In Section 3 we describe how
researchers have attempted to apply procedural techniques to city generation.
Section 4 concludes with an outline of our proposed approach for creating a
city generation system.

2. Procedural Techniques
The key property of procedural generation is that it describes the entity, be it
geometry, texture or effect, in terms of a sequence of generation instructions
rather than as a static block of data. The instructions can then be called on
when required to create instances of the asset and the description can be
parametrised to allow the generation of instances with varying
characteristics. A typical example of this approach would be the population
of a forest with procedurally generated unique trees [32].

Procedural techniques can thus be employed to produce varied assets. One of
the most basic techniques that can be used is the generation of 3d primitives
with random parameters, for example a cuboid with random height. Simple
algorithms utilizing pseudo random functions can be employed to generate
noise for use in texturing and natural formations [6] more complex recursive
algorithms such as fractals or L-systems can be used to recreate organic
structures found in nature like snow flakes and trees [8]. Ebert et al. [23]
identify the following as important features of procedural techniques:

ITB Journal

Issue Number 14, December 2006 Page 90

• Abstraction: Geometric and texture data is not specified in the
conventional sense, instead details are abstracted into an algorithm or set
of procedures. These procedures are then handled by the computer and
called on when needed. Minimal details are required and the operator can
manipulate the model data easily without requiring intimate knowledge
of the implementation.

• Parametric Control: Parameters are defined and adjusted that directly
correspond to a specific behaviour in the procedural generation. The
developer can define as many useful controls as required for the artists to
operate effectively. Examples of parameters include the height of the
mountains in a terrain algorithm or the number of segments in a
procedural sphere.

• Flexibility: It is possible to capture the essence of an entity without
explicitly bounding it within real-world limits. Parameters can then be
varied to produce a wide range of results which are not necessarily
limited to the constraints of the original model.

Procedural techniques have been applied successfully in the generation of
numerous complex phenomena in computer graphics and have proved
beneficial for a number of reasons.

Textures, geometry or effects abstracted into procedural algorithms are not
fixed at a set resolution or number of polygons. Procedural techniques are
therefore inherently multi-resolution in nature and can vary the complexity
of their output. This capability is of particular interest to computer graphics.
For example level of detail (LOD) is important in any 3D rendering system
and essential to real-time rendering applications [16]. The concept behind
LOD is to use more simple versions of an entity if it contributes less to the
final rendered image. So for an object that occupies only 4 pixels in the final
image, 10,000 polygons are not required and a basic representation using 10
polygons would be sufficient. The multi-resolution nature of procedural
techniques allows the possibility of automatically generating models at
multiple levels of detail [23].

ITB Journal

Issue Number 14, December 2006 Page 91

Concise descriptions for generated objects are possible and can often be
expressed in the terms of a few simple parameters. These small descriptions
can be used to create large amounts of detailed textures and geometry, this
effect is known as data amplification [23] and provides developers with the
means to create an entire game world that is easily distributable over low-
bandwidth network connections. The conciseness of procedural techniques
are exploited by Demo Scene creators who create and distribute scenes that
are complex and rich in detail in the form of tiny executable files as small as
2KB [26].

The flexibility and control provided by procedural techniques give the
designer a platform for artistic freedom and experimentation. New visual
effects and original objects can be created by experimenting with parameter
values that exceed normal boundaries. [27]

Typically procedural algorithms are implemented in software; however recent
advances in graphics hardware have opened up the possibility of executing
them directly on the GPU. For example, complex procedural techniques like
volumetric textures that were previously impossible to run real-time can now
be implemented in this manner [15][22]

We now go on to describe a number of fundamental procedural techniques
and algorithms that have been successfully employed within the domain of
computer graphics.

2.1 Fractals
Natural shapes are not easily described by conventional geometric methods.
Clouds are not spheres and mountains are not cones. Natural shapes tend to
be irregular and fragmented and exhibit a complexity incomparable to
regular geometry [5]. However these shapes can be described using a branch
of mathematics called fractal mathematics. Benoît Mandelbrot, regarded as
the 'father of fractals', coined the term fractal in 1975 [5] from the Latin
fractus meaning broken.

ITB Journal

Issue Number 14, December 2006 Page 92

Figure 1: The first four iterations of the Koch snowflake

The basic concept of fractals is that they contain a large degree of self
similarity. This means that they usually contain little copies of themselves
buried deep within the original like the stars embedded in the Koch
Snowflake[23] shown in Figure 1. Also, fractals possess infinite detail, so for
any given fractal the closer we look at it the more detail it can reveal. [14]

Like any procedural technique, a fractal shape is defined by an algorithm for
generating the shape. In the case of fractals these algorithms are recursive
and successive recursions yield more detailed versions of the basic shape. The
example of the Koch snowflake in Figure 2 shows four such recursions. Self-
similarity is achieved by generating the same shapes or patterns at smaller
and smaller scales as the recursion progresses, a property often referred to as
scale invariance. There is no theoretical limit to the amount of recursion that
can be done and hence infinite levels of detail exist within the shape.

Visualizing fractals manually is repetitive, tedious and limited and therefore
computer-based implementations of fractal algorithms have been present
from the start. Mandelbrot utilized computers while an employee at IBM to
visualise complex fractals including the Mandelbrot Set [5] (see Figure 2).

ITB Journal

Issue Number 14, December 2006 Page 93

Figure 2: Mandelbrot Set.
 © Wiki public domain.

Figure 3: IFS Fractal Ferns [9]

Fractal-like shapes such as trees or ferns can be procedurally generated using
relatively simple recursive algorithms. In fact a wide range of natural
structures from simple plants to terrain can be generated in this manner [9].
Fractal algorithms provide effective abstraction from the structural
complexity of the natural objects they represent and can utilize recursion to
provide varying levels of detail. These techniques also provide the key
property of data amplification in that complex models can be generated from
the recursive application of simple equations.

Fractals are limited however to self similar structures and the objects we are
seeking to model may not necessarily contain this self-similarity. They are
superseded in many contexts by other more flexible algorithms like formal
grammars such as L-systems.

2.2 L-Systems

Lindenmayer systems, or L-systems for short, are a formal grammar devised
by biologist A. Lindenmayer as a mathematical theory for biological
development. L-systems were originally developed to study bacteria
replication and the growth patterns of simple organisms such as Algae
described by Lindenmayer in the Journal of Theoretical Biology in 1968 [2].
The system and its applications have evolved and are now applied in the field

ITB Journal

Issue Number 14, December 2006 Page 94

of computer graphics and in particular to the generation of fractals and the
realistic modelling of plants.
The central concept of L-systems is that of rewriting [7]. In general, rewriting
is a technique for defining complex objects by successively replacing parts of
a simple initial object using a set of rewriting rules or productions. The
components of an L-system are as follows:
•V (the alphabet) is a set of symbols containing elements that can be
replaced (variables)

•S is a set of symbols containing elements that remain fixed (constants).

•ω (start, axiom or initiator) is a string of symbols and constants that define
the initial state of the system.

•P is a set of rules or productions defining the way variables can be replaced
with combinations of constants and other variables. A production consists
of two strings - the predecessor and the successor.

An initial state or axiom, ω, is provided which is then rewritten using a series
of rewriting rules or productions, P. The productions are applied iteratively,
allowing large complex objects to be defined using a simple set of
productions.

 V = {a, b} ω : a
 ω = a n=1 : ab
 P1 : a → ab n=2 : abba
 P2 : b → ba n=3 : abbabaab

Figure 4: The Thue-Morse system

L-systems can be used to visualise structures by embedding graphical symbols
within the string that can be used later to render it. Turtle commands can be
used to describe and visualize a wide range of L-systems including Koch's
snowflake, plants and branching structures. The concept behind Turtle
Graphics is that the 'turtle' is given instructions relative to its current position
and as it moves it leaves a pen line mark behind it. Using turtle graphics:
shapes, drawing and structures can be defined in the terms of a L-system.

ITB Journal

Issue Number 14, December 2006 Page 95

Using a bracket extension to Turtle Graphics, L-systems can support the
branching structures such as trees that are predominant in nature. [2] Figure
5 illustrates the application of such an L-system used here to recreate a
complex tree.

 F : forward 1 unit
 + : turn left δ degrees
 - : turn right δ degrees
 [: push the current state of the turtle onto a FILO stack
] : restore the state of the turtle from the stack

n=5, δ=22.5◦
ω = X
P1 : X→F-
[[X]+X]+F[+FX]-X
P2 : F→FF

Figure 5: Tree formation generated with via the turtle graphics L-system
interpreter. [8]

L-systems were designed to define and visualize sophisticated plants and
other natural structures. As academic research has continued into their
application in botany it has also continued in the realm of procedural
generation. Significant advances have been made and packages are now
available commercially that apply L-systems to generate rich landscapes of
detailed flora covering a wide range of different species.

ITB Journal

Issue Number 14, December 2006 Page 96

Figure 6: Speed Tree [32] screenshot demonstrating procedurally generated and
real-time rendered trees.

L-systems are a good example of procedural techniques for a number of
reasons. They allow complex models and organic structures to be defined,
modelled and visualised using a concise set of productions. A varying level of
complexity can be supported by parameters such as the recursion level of the
L-system [21]. The algorithms can be defined in a compact and intuitive
manner and can effectively abstract the recursive structure of many natural
phenomena. L-system generation can be adjusted easily via external
parameters and are extensible by nature similar to other formal grammars.

2.3 Perlin Noise

Perlin Noise was initially developed to help create more “natural looking”
textures. The technique was developed by Ken Perlin for use in the film Tron
in 1982. As a result from his work in Tron, Dr. Perlin received an Academy
Award for Technical Achievement in 1997 [10]. Noise is created by first
using a pseudo random function to generate a series of values which are then
interpolated into coherent noise. Several layers of this coherent noise are
then composited together using different ratios to create a “natural looking”
texture with fractal like detail.

ITB Journal

Issue Number 14, December 2006 Page 97

Noise Function
A noise function generates random data. So each time the function is called a
new number is returned. This is useful however does not allow control of the
results obtained. In order obtain parametric control from the noise
generator a seeded random function is used.

Figure 7: A seeded random generator will produce the same result when given the

same input number or seed but still produces numbers in a random pattern.

Interpolation Function

Interpolation is a process of curve fitting in which a function is constructed
that intersects exactly through the data points. This function can generate
new data points given known data points, in this case the input points are
those generated by the noise function. For a finite set of data points a
function can be generated that allows us to obtain an infinite range of points.
Several different algorithms are available to perform this interpolation. The
algorithms vary in the number of data points they take as input, the accuracy
they provide, their computational complexity and the smoothness of the
curve that they generate. The graphs below demonstrate just two of the many
different methods used for interpolation using data from Figure 7. Figure 8
shows the most basic linear interpolation and Figure 9 the more complex
cubic interpolation.

ITB Journal

Issue Number 14, December 2006 Page 98

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seed

Figure 8: Linear interpolation is one of the simplest methods used and is often

selected when speed is important and quality is of secondary importance.
 Linear interpolation only takes two points and the interpolant is calculated using

the weighted mean.

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seed

Figure 9: Cubic interpolation is quite computationally intensive. It is used when
quality not speed is of particular importance and it outputs a continuous curve

unlike linear interpolation. Cubic interpolation requires four points.

Turbulence

Results produced from interpolated noise have random properties but appear
quite artificial rather than natural. In nature, there are many different scales
of detail present. For example take a mountain range: large details are
present with giant peaks and troughs, medium scale details are present
through the smaller hills and crests, small details present through boulders
and rocks, etc.

+ + +
=

Figure 10: Combination of several layers of noise.

To provide a more useful texture source that resembles nature more
turbulence is applied by combining several noise textures of differing scales.
Each layer of noise is referred to as an Octave and layers are combined with

ITB Journal

Issue Number 14, December 2006 Page 99

different amplitudes and frequencies. The variation of amplitude and
frequency can be expressed a Persistence value. Persistence can help describe
the effect successive octaves have on the previous iterations by defining the
amplitude between octaves as a fraction. Perlin Noise generated with a low
ratio of persistence is typical smooth with very fine detail; Perlin Noise
generated with a high persistence is more jagged with less fine detail.

Figure 11: Photo realistic scenery and rendered using Terragen with procedural

geometry generation and procedural texturing. © 2003 M. GIULI Terragen Artist.

Terragen[25] uses the Perlin Noise algorithm to generate photo realistic
terrain, clouds and seas. Figure 11 showcases the details and scale of output
that can be achieved using the Terragen procedural generation software.
Parametric control is vital to the procedural generation process as it allows
the generation to be easily managed and enables vastly detailed scenes to be
defined in the terms of a few parameters. The Perlin noise algorithm also

provides a mechanism by which the height for
any point or region can be calculated on the
terrain without the need to store the massive
terrain geometry data.

In addition to 2D textures, Perlin Noise can be
used to generate 3D textures, often referred to as
volumetric or solid textures. Volumetric texture
differ from conventional 2D textures in that they
do not require bindings to geometry coordinates
but allow objects to be virtually carved from the
texture as if they were a solid block [10]. The

Figure 12: Marble vase
textured with a Perlin
procedural volumetric

texture[10]

ITB Journal

Issue Number 14, December 2006 Page 100

example shown in Figure 12 shows a vase carved out of a volumetric marble
texture created using Perlin noise. The texture manages to replicate the veins
running through the marble and achieves a higher level of realism than is
possible using 2D texturing techniques.

Volumetric textures are computationally expensive to render, but the real
barrier for their widespread use is their memory and storage requirements.
Compression such as S3TC can partly alleviate the memory problems of 3D
textures but do not go far enough. Perlin Noise requires minute storage due
to its procedural nature thus removing any storage burden, and can even by
used to render volumetric textures in real-time using the pixel-shader
hardware on recent GPU's [15].

As a procedural generation technique Perlin Noise provides a comprehensive
set of benefits. Parametric control provides the developer with flexibility to
control the output through high level parameters. Reproducible geometry and
textures created using the algorithm have minimal storage requirements, can
be generated efficiently and can be defined in the terms of a few simple
parameters. Textures of any size and detail can be produced providing an
innate level of detail. The output created is tile-able, allowing seamless joins
suitable for techniques like repeating and layering which are common place
in multi-texturing. It can also be used as method to enable real-time
volumetric textures on modern graphics hardware. [15] Perlin Noise has
proven to be one of the most useful procedural techniques and is beneficial in
wide range of computer graphics applications.

2.4 Tiling

Tiling is one of the most basic procedural techniques and has traditionally
been applied in game development. It is used in many classic games including
titles such as Sonic, Mario and R-Type. Originally tiling was used by creating
small sections of 2D graphics that could be repeated on screen and assembled
together to create the virtual world. Games such as the Shoot Em Up
Construction Kit [31] released in 1987 by Sensible Software allowed the user
to construct and edit game maps using a library of tiles and a simple
interface.

ITB Journal

Issue Number 14, December 2006 Page 101

More recently tiling techniques have evolved and are used in the form of
multi-texturing to create highly detailed and varied textures from layers of
base textures. New materials are created by combining a set of detailed
textures, colour maps and blending maps. Using this technique terrain can be
procedurally textured by applying several layers of detailed tile-able
textures.[25] Examples of texture layers could include rock, grass, sand and
snow. These texture layers can be combined with varying degrees of
influence on the final texture. Textures are applied to the terrain according a
variety of specified parameters, they can be selected according to height,
slope or specified explicitly using an image map. This solution allows vast
areas to be textured in detail which is not possible using a single high
resolution texture.

Figure 13: Warcraft® III uses stochastic information to procedurally generate

Textures. © 2002 Blizzard Entertainment

Extended algorithms exist that use stochastic information such as probability
distribution maps to procedurally texture landscape. An image map for the
terrain area is supplied that stores the probability of using various tiles.
Constraints can be specified to state which tiles can be joined under what
conditions and whether they may be joined directly or require transitional
tiles. Using a pseudo random function thousands of different permutations of
worlds is possible from a single probability map. Each possible world can be
stored and recalled by simply taking note of the seed used to create the world
[20].

ITB Journal

Issue Number 14, December 2006 Page 102

Tiling systems provide several advantages for graphics applications. Vast and
detailed landscape or terrain for virtual worlds can be created from stochastic
information and small set of texture tiles. These maps and game worlds can
then be easily distributed for on-line gaming which is of particularly useful
for massively multi-player on-line role-playing games (MMORG) and other
on-line applications where game resources are shared. Storage and memory
requirements are minimised so it is possible to optimally store and render
worlds of vast dimensions in real-time on commodity hardware. Tiling is a
good example of how a simple procedural technique can be applied and
extended to provide benefits for graphics applications.

2.5 Voronoi Texture Basis

Voronoi diagrams were demonstrated as a method of procedural generation
by S. Worley in his paper titled 'A Cellular Texture Basis Function', in which
he detailed an algorithm that partitions space into a random array of cells
creating cellular looking textures. The technique was devised to complement
existing procedural techniques such as Perlin Noise and provide a method of
procedural generation for cellular surfaces such as skin or bark. Voronoi
diagrams have long preceded their application in procedural generation and
have traditionally been used in a wide range of scientific applications
including spacial analysis, planning, urban settlement analysis, geology,
robotics and ecology.

Figure 14: Voronoi Diagram with coloured cells

A Voronoi diagram is the decomposition of some metric space determined by
distances to a specified discrete set of objects in the space. Figure 14 shows

ITB Journal

Issue Number 14, December 2006 Page 103

an area partitioned into cell by lines which are plotted using the points on
the map. Each boundary line is positioned equidistant between each pair of
neighbouring points. The resulting Voronoi diagram is a result of the position
of the original points. A wide range of cellular patterns can be created by
using different configurations to place the points used to create the diagram,
also this data can be interpreted and rendered in many different ways for
different effects.

Figure 15: Photo-realistic surfaces procedurally created using
Worely's cellular basis algorithm. [30][23]

The Worley algorithm achieves effective abstraction for the generation of
cellular surfaces by providing a small set of parameters termed the 'Worley
constants' that can control of the algorithms operation yet allow great
variance of the output. [30] Natural surfaces such as paper, skin, cobblestone,
tree bark and sun baked mud are prime targets for this algorithm and can be
recreated effectively with little input data required. [23] Figure 15 shows
examples of Worleys algorithm applied to procedurally generate natural
textures. The algorithm has been used successfully in procedural generation
creating a variety of richly detailed cellular surfaces which can be concisely
defined in the terms of a few simple parameters.

3 Procedural City Generation
The procedural methods outlined in the previous section have largely been
applied to the generation of natural objects and textures. Only recently have
researchers turned their attention to their application in the context of
generation of man-made phenomena such as an urban area. In this section we
shall review and evaluate research that has been carried out on procedural
generation of cities. City generation is achieved through a series of stages that

ITB Journal

Issue Number 14, December 2006 Page 104

each uses a number of techniques to create roads, lots, building structure and
building faces.

Road networks are a key aspect of city character and identity. Road networks
are difficult to generalize since they are an interwoven component of a
complex system. When viewing road networks from a map or city plan a
number of patterns can be observed. It is these patterns that are key for
procedural generation as they encode the structure of the road network.
There are numerous road network patterns deployed in cities ranging from
the tightly structured grid plan network with perpendicular roads in a regular
chequerboard structure to the hierarchical network with sprawling secondary
and tertiary roads feeding into arterial roads in a branch like system. The
patterns applied within a city are a result of numerous factors including
location, geography, cultural influences, planning trends, etc. Cities can be
categorised by the road patterns they contain: modern US cities like New
York are arranged in a chequerboard or raster pattern, some European cities
like Paris are structured with a radial or concentric pattern most evident.
However most cities contain a number of patterns, with different patterns
prevalent in different regions or neighbourhoods within the city. [1][3]

City buildings are difficult objects to procedurally generate because of their
individuality. The buildings present in a modern city display a diverse range
in both function and style. Buildings as functional units serve a specific
purpose or role within each neighbourhood, borough, district and city. The
number of roles for buildings is many and combined with the geographic
composition within a city make for an extremely complex system. Such a
complex system is difficult to model, but a simplified solution can be used,
similar to that used in statistical analysis, that uses classes or groups to model
building function. Usage groups such as commercial, residential and
industrial can be used as select generalizations for the numerous building
roles and a simple mechanism for modelling function within cities. The style
of a building and in particular its geometry and materials are often the result
of numerous architectural and cultural influences. Such a complex form is
difficult to model and an approximation or substantially reduced model is
needed to limit the complexity of the generation system.

ITB Journal

Issue Number 14, December 2006 Page 105

To effectively evaluate the generation systems we have identified a number
of key criteria:

1. Realism – Does the generated city look like a real city?

2. Scale – Is the urban landscape at the scale of a city?

3. Variation – Can the city generation system recreate the variation of road
networks and buildings found in real cities or is the output homogeneous?

4. Input – What is the minimal input data required to generate basic output
and what input data is required for the best output?

5. Efficiency – How long does it take to create the examples shown and on
what hardware are they generated? How computational efficient is the
algorithm?

6. Control – Can the user influence city generation and receive immediate
feedback on their actions? Is there a tactile intuitive method of control
available or is the control restricted? To what degree can the user
influence the generation results?

7. Real-time – Can the generated city be viewed in real-time? Are there any
rendering optimisation techniques applied to enable real-time exploration?

An overview will be presented of each of the city generation systems and an
insight provided into the functioning of the techniques and algorithms
applied in the systems. Following each outline of the system we discuss and
evaluate each system according to our criteria. Realism, Scale, Variation,
Input, Efficiency, Control and Real-time optimisations.

3.1 Grid Layout & Geometric Primitives

Stefan Greuter et al.[13][19][24] outline a solution to procedurally generate
a city in real-time. The techniques applied to generate the city are discussed
in a number of papers and demonstrated in a virtual city application titled
Undiscovered City. The application creates a road network using a simple
grid layout upon which it can place buildings generated using a combination
of simple geometric primitives. The research is specifically targeted for real-
time applications and the Undiscovered City serves as a proof of concept
running in real-time at interactive frame rates.

ITB Journal

Issue Number 14, December 2006 Page 106

Road Network: Grid Layout

The roads of the city are created in the pattern of a uniform grid in a similar
fashion to the centre of a modern planned American city like New York. The
grid is regular and size of each block is constant but can be adjusted globally.

Figure 16: Screen shot at street level in the Undiscovered City demo

Figure 17: Screen shot from the Neverland demo

The grid based road network generation has been improved in the Neverland
demo, a more recent work from Greuter et al., shown in Figure 17. This
system extends some of the buildings over more than one grid block creating
a more disjointed road network and giving the city a more realistic
appearance. A paper detailing the Neverland demo has yet to be published.

Buildings: Geometric Primitives

The building generation system uses the location of buildings in the form of a
grid coordinates as a seed for building generation. The appearance of each
building is determined by this seed including properties such as height, width
and number of floors. Generating buildings using a similar set of numbers
such as neighbouring grid coordinates can result in similar looking buildings,

ITB Journal

Issue Number 14, December 2006 Page 107

so to overcome this a hashing function shown in Figure 18 is implemented
in order to provide more random distribution.

Figure 18: Grid Layout Coordinates & Hashing [19]

Building geometry is generated using the concept of combining geometric
primitives to form building sections. Each building section is constructed
using a different floor plan. The top most section of buildings are created by
extruding a three dimensional volume from the most basic of floor plans,
composed from only a few primitive shapes. In subsequent sections below,
another primitive shape is added to the previous floor plan and a three
dimensional volume is extruded in the same fashion. Figure 19 illustrates
how the creation of consecutive sections is combined to form the complete
geometric model of a building. Figure 20 shows the generated buildings with
their textured faces which are not procedurally generated but are selected
from a set of 10 building window textures.

Figure 19: Floor Plan Generation [19]

ITB Journal

Issue Number 14, December 2006 Page 108

Figure 20: Screen shot from the Undiscovered City demo

The Undiscovered City is designed with
real-time applications in mind and
implements optimisations such as a
geometry caching and view frustum
culling. The culling technique, referred
to as View Frustum Filling [19], renders
only the buildings visible within the
view frustum as shown by Figure 21. By
loading and rendering a reduced set of
buildings the amount of memory

required to store the scene and the graphical processing power required to
render the scene are minimised enabling the real-time rendering of a large
data set like a city. The regular grid road network allows easy detection of
building visibility within the view frustum and hence provides a
computationally efficient method to cull superfluous buildings from view.

In addition to culling building geometry, a building cache is also
implemented. Buildings are generated in advance and defined as OpenGL
display lists that can be stored in the building cache. The cache employs a
LRU(least recently used) algorithm: recently accessed buildings are kept in
the cache while older less recently accessed items are replaced. As a result of
using the building cache memory use is optimized and buildings can be
recalled from cache for display an order of magnitude faster (up to 8x) than
they can be generated from scratch.

Figure 21: View frustum filling. [19]

ITB Journal

Issue Number 14, December 2006 Page 109

Discussion

1. Realism: The single grid pattern used does not reflect real cities that are
constructed from a number of patterns and the resulting road network
appears artificial and homogeneous. Buildings appear angular and modern
and are somewhat realistic but unconvincing. Simple windowed faces are
used and the buildings are not geometrically detailed.

2. Scale: The grid layout system can create road networks on a very large
scale and is limited only by the size of the integer based coordinates. At 232
cells wide, the size is not a practical restriction for city generation.

3. Variation: The road network provides little variation, a single regular
grid pattern is used and only the grid spacing can vary from city to city.
The grid system is required for the real-time optimizations and so is largely
inflexible. Only a single building type is constructed, an office skyscraper
with 10 different window textures, no other type of building is supported.
Although the geometry for each building is different the amount of
variation insufficient to emulate a real city.

4. Input: No input maps or geo-statistical data is required. No external
image maps are required and the application is standalone.

5. Efficiency: Road network and building generation take place in real-time
and figures are provided for the generation and rendering of the
Undiscovered City.

6. Control: Grid spacing can be adjusted using short-cut keys in the
application and the changes can be viewed in real-time. The building
generation process is not interactive and all buildings are generated using
a random seed created using a set of building coordinates from the road
grid network.

7. Real-time: The system is designed for real-time applications and can
render views of large scale cities in real-time on commodity hardware from
2003 at interactive frame rates. [Performance for numbers of buildings
being displayed on screen: 200 buildings @60fps, 500 buildings @20fps,
1000 buildings @5fps].

ITB Journal

Issue Number 14, December 2006 Page 110

3.2 L-systems
Parish and Müller[11] presented the CityEngine in a paper titled Procedural
Modeling of Cities at SIGGRAPH 2001. The CityEngine consists of a suite of
components including road generation, building construction and building
face creation that unite to form a pipeline for city generation. L-systems are
selected as the key technique for procedural generation in the CityEngine.
Lindenmayer-systems have traditionally been used to model natural
phenomena but are also suitable for the generation of cities due to their
concise nature, computational efficiency and data amplification properties.

Road Network: L-systems

L-systems have been used to model natural phenomena and the generation of
plants and other branching structures provide some similarities to the
generation of road networks. The CityEngine uses an extended form of L-
systems titled Self-sensitive L-systems to construct road networks in a manner
which takes existing growth into account.

Input is taken in the form of 2D image maps. Geographical information on
elevation, vegetation and water boundaries is required and additional socio
statistical image maps can also be included specifying information such as
population density, land usage, street patterns and maximum building
heights. A road network generation application, shown in Figure 23, is used
to manage the generation of roads and allow the operating user to specify
extra parameters such as the smoothing angle of road network edges, road
width, etc. Although only a geographical input map is required the examples
included in the paper, such as Virtual Manhattan in Figure 27, utilize a
number of different input maps.

Road generation is accomplished through the use of two rule sets: the Global
Goals and the Local Constraints. Road segments are initially plotted
according to the Global Goals which are similar to the goals that a city
designer may have. These tentative plans are then refined by the Local
Constraints which reflect the practical constraints of the real world and the
state of the existing road network.

ITB Journal

Issue Number 14, December 2006 Page 111

Global Goals

• There are two different types of roads: highways or major roads connect
population density centres which can be identified from the population
density map supplied at input, small roads connect to the nearest
highway.

• Streets follow some super imposed geometric pattern.

• Streets follow the path of least elevation.

Local Constraints

• Road segments are pruned to fit inside a legal area: line segments
extending into water are pruned.

• Roads are rotated to fit inside a legal area: a road to the coast bends
around the coastline like a coastal road.

• Highways are allowed to cross an illegal area of a certain distance: a
highway approaching a limited span of
water will cross over it like a bridge.

• Roads segments are checked to see if they
intersect with existing roads or if they
come within a certain distance of an
existing road junction: Figure 22 shows
how proposed road segments are modified
to satisfy the self-sensitive rules.

Figure 23: CityEngine GUI displaying Virtual Manhattan after 100 steps. [29][11]

Figure 22: Self-sensitive road L-system

[11]

ITB Journal

Issue Number 14, December 2006 Page 112

Buildings: L-systems

The CityEngine constructs buildings on the road network in a series of
distinct stages: define building allotments, create building geometry and
generate textured faces. To define building allotments the CityEngine utilizes
data from the previous road network generation stage. Figure 24 outlines the
stages of allotment generation. Allotments or lots are calculated by first
extracting blocks from the road network using the roads of the network as the
dividing borders. Each basic extracted block is then divided into a series of
potential lots via randomized subdivision. Lots that are too small or have no
immediate street access are culled and removed from the system. The final
lots generated by the CityEngine are shown in the right-most image of Figure
24 and appear both varied and practical.

Figure 24: Lot Division Stages [11]

Building geometry is generated through the use of a parametric L-system.
Several different building styles are implemented including: skyscrapers,
commercial and residential with each type using a different set of L-system
productions. The building type is determined from a zone map which can be
passed in as an image map input.

Figure 25: L-System building refinement from bounding box of the Empire State

Building [29]

The initial state or axiom of the building L-system is a bounding box
generated from the lot footprint and a building height image map if available.
L-system operations consist of transformations (scale and move), extrusions,

ITB Journal

Issue Number 14, December 2006 Page 113

branching and termination, and the use of geometric templates for roofs,
antennae, etc. L-systems allow for the addition of more productions and
provide an extensible solution. A basic level of detail implementation is
possible since each iteration of the building L-system is a refinement of a
basic building bounding box as shown above in Figure 25.

Figure 26: Building face construction [11]

Building faces are created procedurally by generating textures using an over-
laid series of grid-like structures. Several layers of grid-like structures are
used with functions that define how the layers are combined. The functions
dictate which cells from what layer are selected to create the final face and
can use conditional and statistical information to select cells. Cells typically
contain doors or windows but can contain any building face feature. Shown
in Figure 26 is the construction of a face: the red layer influences the
selection of cells from the green layer. The resulting face is a conditional
combination of multiple layers.

Figure 27: CityEngine - Virtual Manhattan – Maya render

The CityEngine produces data that can be imported into Maya, a commercial
3D package, for final rendering. The sample shown in Figure 27 illustrates
such a rendering from Maya, in this case a showcase of Virtual Manhattan.

ITB Journal

Issue Number 14, December 2006 Page 114

Figure 28: CityEngine - Virtual Manhattan – DV/reality

A real-time implementation is available utilizing DV/reality software from
Dimension. DV/reality is a large scale visualisation tool designed to run on
super computers and distributed rendering applications. There are no real-
time rendering features such as level of detail or geometry culling discussed
and from the screen-shot of DV/reality in action in Figure 28 it is clearly
evident that a reduced complexity model is being displayed. (Notice how the
buildings appear more similar to the left most image of Figure 25 in contrast
to the right).

Discussion

1. Realism: The CityEngine can create a complex and detailed road network
through the use of extended L-systems. The sample shown in Figures 23
demonstrates the generation of a realistic road network, but does utilize
real statistical data making the capabilities of the system difficult to assess.
The blocks from the road network are divided into realistic and practical
lots upon which buildings can be constructed. L-system building
generation provides an effective method of generating a realistic cityscape
although the resulting buildings are quite basic. Several different types of
buildings including skyscrapers, commercial and residential buildings can
be created and green areas are also displayed. Overall a good visual
balance is achieved with practical positioning.

2. Scale: Scale does not appear to be a limiting factor for the system and is
possibly restricted only by the size of the input data maps.

3. Variation: a good range of road networks can be created and examples of

ITB Journal

Issue Number 14, December 2006 Page 115

different generated cities are shown including Paris – Circular, New York –
Grid and San Francisco – Terrain wrapping. Buildings vary in shape and
scale and a range of building types are catered for, but only limited range
of style is demonstrated. In Virtual Manhattan a convincing clone of New
York is shown but it may be more difficult to generate other cities where a
different architectural style would be required.

4. Input: the minimum input required is a geography map however all of
the samples shown utilize numerous input maps and include statistical
data from real world cities. A dependence on real-world data would
require the acquisition of geo-statistical data to begin using the system
which is not desirable. Also, from a practical point of view the system is
more difficult to evaluate since it is difficult to determine which patterns
are created by the L-systems and which are created as a result of the input
data. Although only one input map is required, all of the samples shown in
[11] utilize numerous maps to create realistic output like that illustrated in
Figure 27

5. Efficiency: Road network generation is very efficient, the large road
network of the Manhattan sample shown in Figure 27 is created in under
10 seconds. The next stage of generation the building stage takes longer to
complete: Virtual Manhattan requires approximately 10 minutes to sub-
divide the road network into lots, construct buildings and create textured
faces. It is important to note that although the generation time is
documented the time required for Maya to render Virtual Manhattan is not
disclosed and would likely take substantially longer than both combined.

6. Control: It is unclear how much user interaction is required and no
interactive features are specifically documented. L-systems are by their
very nature iterative and it appears that the number of iterations used by
the system to generate output of an acceptable realism and detail is
determined by the user trying different values on a trial and error basis.
Other values are also specified manually such as the angle of deviation.
Control of building generation appears to be limited to the numerous
image maps that can be passed as input.

7. Real-time: A real-time demonstration is available using the DV/Reality

ITB Journal

Issue Number 14, December 2006 Page 116

software shown in Figure 28 that displays a simplified version of Virtual
Manhattan. DV/Reality[DVR] is a visualisation tool designed to provide
real-time rendering though the use of high powered graphics workstations
and distributed rendering. No documentation on any real-time features in
the CityEngine are provided and without features like geometry culling or
LOD real-time rendering applications like gaming are not possible. It may
be possible to easily add some optimizations such as a simple level of
detail implementation based on the principle that each L-system iteration
produces a more detailed building version refined from a simple cuboid
primitive as illustrated in Figure 25.

3.3 Agent Based Simulation

Watson et al. [18] apply an agent based technique to generate cities in their
solution titled CityBuilder. The system is built on the NetLogoTM platform
which is a multi-agent programmable modelling environment based on the
Logo programming language and is designed to provide users with a platform
to explore emergent phenomena. The city generation is implemented by
simulating cities using a set of agents that can model specific city entities
such as developers, planning authorities and road builders. The CityBuilder
system models not only the road network and buildings but also simulates the
growth and development of the city over time.

Road Network: Agent Based Simulation

Roads are created from road segments that are assembled according to a grid
pattern. Deviation from the pattern is allowed and can be specified via a
parameter. A deviation value of zero will result in a strictly uniform grid like
road network; a deviation value near one would result in an organic like
network. The interconnectivity of the network can also be altered via
constants that dictate the road density and the distance between road
intersections.

ITB Journal

Issue Number 14, December 2006 Page 117

Figure 29: NetLogoTM City Builder Interface [18]

Input in the form of a terrain height map is required along with a specified
water level to determine the legal area in which roads and buildings can be
placed. Extra parameters such as road density, grid spacing and deviation
from grid can be adjusted using sliders in the interface shown in Figure 29 to
alter the behaviour of the agents. Additionally users can specify certain
parameter values for specific areas by painting on the map using a brush
similar to that in a simple paint application.

The road segments are created by two types of agents – extenders and
connectors:

• Extenders roam around terrain near to existing developments to search for
land that is not serviced by the road network. Once that area of land has
been discovered, it is assessed according to road density, proximity to
existing junctions, and deviation from the start point. Roads follow parcel
boundaries and try not to make large changes in elevation.

• Connectors roam over the existing road network sampling the distance
taken to travel to a point within a given radius using a breadth first search
of the road network. If this distance is too long the connector will propose
a road segment between the two points, the proposed segment is subject
to the same checks as extenders.

ITB Journal

Issue Number 14, December 2006 Page 118

a)

b)

c)

Figure 30: Example output of differing city structures: a) Gridded, b) Organic & c)
Mixed Gridded and Organic [18]

Road networks can be viewed evolving in real-time, and the examples shown
were created in 15 to 30 minutes. Figure 15c) shows one of the main
strengths of the agent based system by effectively blending between raster
and suburban road styles.

Buildings: Agent Based Simulation

The generation of land usage for buildings is completed via the interaction of
a number of agents but is primarily due to the work of Developer agents.
Developer agents perform the role of urban developers and have similar
goals: buy land, request planning permission, build and sell. A rectangular
grid of patches represents the world and each patch may be occupied by a
building or road. Patches are grouped into parcels under the ownership of the
building agent. The building agent determines the zoning information of each
parcel and tracks attributes of the buildings.

Figure 31: Development Sequence. Yellow is residential, red is commercial, blue is
industrial. Roads are grey. [18]

Three distinct developer types are defined: residential, commercial and
industrial. All developers seek to increase the value of their land and each

ITB Journal

Issue Number 14, December 2006 Page 119

developer type evaluates the value of land differently and uses a different set
of rules to complete its goals. For example: residential developers seek land
near the less busy areas of the road network in contrast to commercial
developers who look for the busiest sections of the road network. Property is
reviewed and a site is chosen. A proposal is then prepared that satisfies the
clients needs and meets and the city's restrictions. The proposal must then be
reviewed by the city. A developers' proposal is only successful if it passes the
city regulations and makes a net positive impact on the community by
providing a service or increasing the value of the land. After this process is
complete the developer agent starts again looking for more property. Shown
in Figure 31 are three snapshot images of the evolution of a small city from
left to right.

The CityBuilder system creates a road network and defines land use that is
then used to determine building types but does not generate actual building
geometry and textures. The visualization of the city buildings is not a feature
of the system but takes place externally in the proprietary SimCity game
engine.

Discussion

1. Realism: The road network is appears realistic and has the ability to
effectively transition between different road patterns, particularly the
transition from central urban areas to less dense suburban areas. No
buildings are generated but the land usage map appears realistic
resembling real statistical data similar to that showcased in the chil.us
[28] project.

2. Scale: The output created from the system and example shown in Figure
31 is limited in scale and is of a comparable scale to that of a village or
small town rather than a city.

3. Variation: Different zones are supported with commercial zones using
rigid block like road structures and residential areas using sprawling
roads. Three different land usage and building types are defined
commercial, residential and industrial. It is impossible to judge the
variation achieved by those categories as the visualisation is performed by
the SimCity engine which is outside of the system.

ITB Journal

Issue Number 14, December 2006 Page 120

4. Input: A terrain height map and a water level input are required to
determine the legal areas in which buildings can be placed. Other input
can be specified by the user through the interactive application.

5. Efficiency: CityBuilder models not only the structure of a city but also
its evolution and as a result of the added complexity the algorithm is
computationally intensive and time consuming. A city of only limited
scale similar to a village can be generated over a period of approximately
15 minutes not including the generation of any building geometry or
textures.

6. Control: An innovative feature is available in the form of a paint tool
that can be used to paint parameter values on the map. Numerical
parameters such as road concentration, deviation and scale can be
specified via an interactive application using the various sliders and
widgets of the GUI.

7. Real-time: There are no real-time considerations or even a three
dimensional model of the city. Visualization is provided via an external
system, the SimCity engine, that uses a flat bitmap tile based game view.

The system could be easily expanded but with an algorithm of high
computational complexity and it is not suited for procedural generation and
could be more suitable for simulation applications.

3.4 Template Based Generation

Sun, Baciu et al propose an alternative approach to creating cities in their
2002 paper Template-Based Generation of Road Networks for City Modeling
through the use of a collection of simple templates and a population adaptive
template [12]. The basic concept of the system is that a road network
template is applied to a geographic map as a plan and then the roads are
deformed subject to local constraints.

Road Network: Template Based Generation

Several inputs are required in the form of 2D image maps. A colour image
map which contains geographical information on land/water/vegetation is
required. A grey-scale height map image to specify elevation is required. A

ITB Journal

Issue Number 14, December 2006 Page 121

population density map is required for the population-based template and is
used to determine the varying road network density.

Population based

Radial Mode

Raster Mode

Mixed Mode

Figure 32: Road Patterns [12]

The population-based template is implemented using a Voronoi diagram. A
road system is created that is representative of the population distribution.
Road networks are suitably dense in highly populated areas and sparse in less
populated areas. This is made possible by extracting density points from the
population density input map and using the points as input sites for the
Voronoi diagram. The edges or cell boundaries from the resulting diagram
are used to create the interconnected road network. The other templates use
procedural patterns to create the road network. The Raster Mode, Radial
Mode and Mixed Mode templates serve as simplistic growing patterns, with
roads starting from a defined centre point and growing in an iterative process
toward the edges of a bounded area. The Mixed Mode is simply a compound
of one or more of the other basic templates.

Templates define only the desired road pattern and just as road planners must
respond to practical constraints, so must the pattern. Roads deviate from the
supplied pattern changing direction rapidly to avoid obstacles such as water
and curve gradually to avoid large changes in elevation. Roads are created in
short steps, at each step the system emits several fixed length radials and
selects the radial with the least variation in elevation that is in a legal zone.
In the case of a tie between two radials the path of least deviation from the
original path is chosen. The angles at which the radials are drawn is
restricted by a freedom factor, F, which limits the maximum angle of
deviation for each radial. The final shape of the road is a result of terrain
deviation and the selected pattern is followed only as strictly as the freedom
factor dictates it to be followed.

ITB Journal

Issue Number 14, December 2006 Page 122

Figure 33: Lot Division Stages [12]

Figure 34: Results clockwise: Population-Based Template, Radial Mode, Raster
Mode and Mixed Mode. [12]

Discussion

1. Realism: The applied template technique reflects the patterns found in
cities but the results do not achieve the complexity and scale of real city
road networks. The compound pattern aims to overcome the simplicity of
the single patterns by combining a number of patterns, similar to a real
city, but only combines two which is insufficient for the complexity of
modern cities.

2. Scale: The examples shown in Figure 34 demonstrate limited complexity
and are insufficient in scale to be classed as city scale road networks.

ITB Journal

Issue Number 14, December 2006 Page 123

3. Variation: A choice of four templates is demonstrated and each can be
deformed by the random terrain providing limited though varied output.

4. Input: Several inputs are required including geo-statistical data such as
terrain height maps, a standard geographic map and a population density
maps for the population based template.

5. Efficiency: No information is provided on the performance of the
generation process.

6. Control: A reliance on statistical data and no indication of any user
interaction to control the road network generation would imply that this
solution is very rigid and inflexible.

7. Real-time: No real-time features or rendering optimisations are

discussed.

3.5 Split Grammars

The Instant Architecture solution presented by Wonka et al. at Siggraph 2003
describes the generation of realistic buildings through the use of a new type
of formal grammar called split grammars. These grammars are based on the
concept of shape [17].

Buildings: Split Grammars

Split grammars are based upon the previous research and principles of shape
grammars pioneered by Stiny[4]. A shape grammar is a formal grammar not
unlike L-systems but it is based on the fundamental primitive of shapes rather
than letters or symbols. Rules or productions map a shape or number of
shapes to be replaced by another shape or number of shapes. An initial set of
shapes is supplied to start with and the rules are applied in an iterative
manner.

The basic building blocks of the system and the objects that the grammar
manipulates are simple attributed, parameterised, labelled shapes called basic
shapes. A large number of rules or productions are required to transform the
shapes. For the examples shown in the paper a database of around 200 rules

ITB Journal

Issue Number 14, December 2006 Page 124

and 40 attributes was assembled. Figure 30 shows an initial state and simple
set of sample rules.

Figure 35: An example of split grammar. [17]

An initial starting state is provided and then transformed in an iterative
process using rules from the database. The rules split buildings into faces,
faces into structural sections, structural sections into components such as
windows and so on, as shown in in Figure 30 with the end result shown of
the completed derivation in Figure 16.

Figure 36: Completed derivation of the grammar in Figure 30 [17]

Attributes assigned to shapes are propagated from the initial state down
through the system. The attributes store information about the building like
its symmetry, age, use and visual properties. These are later used to render
the building but are also used to help match transformation rules and find
relevant replacements. In addition, a control grammar is applied that can
change the attributes of basic shapes in order to apply spatial design
concepts, such as setting the first floor of a building to be a shop or applying
a vertical detail to a column of shapes. The resulting building models
produced by the instant architecture system contain detailed local details

WIN KS

 START

W

KS

F W

F F F F

ITB Journal

Issue Number 14, December 2006 Page 125

such as window sills but also distinctive building features such as vertical
details on the edges of buildings.

Figure 37: Screen shot of Instant Architecture [17]

Discussion

1. Realism: The split grammar technique produces very realistic buildings
even going as far as to effectively recreate different styles of architecture.

2. Scale: The examples shown in Instant Architecture are limited in scale,
they demonstrate the strengths of the system by creating a small group of
buildings in a town square or centre. A high level of variation is shown in
the examples but the number of buildings is limited and is not of city scale.

3. Variation: Building style varies greatly helping to produce very realistic
output, however it is not clear how many different buildings types can be
produced.

4. Input: The system requires substantial initial input with samples like
those shown in Figure 37 requiring a database containing approx. 200
rules and 40 attributes, and took around two weeks to assemble. From this
database a variety of buildings of different styles could be created and the
data could be distributed with the system without requiring the user to
assemble their own dataset.

5. Efficiency: The algorithm although complex is quite efficient creating
buildings of up to 10,000 polygons in around 3 seconds on an Intel
Pentium 4 at 2Ghz.

ITB Journal

Issue Number 14, December 2006 Page 126

6. Control: No interactive editor or GUI is described but the split grammar
rules can be edited in the database manually. This process is described as
non trivial and requires a level of expertise and experience using the split
grammars. It could well be a barrier to extending the system. There may
also be constraints on the size of the system and the number of rules that it
can manage with a reservation expressed that some derived designs may
not even make sense if more rules are added.

7. Real-time: The detailed buildings that the system produces can be
explored in real-time however the number of buildings on display at any
one time is limited. It is clearly a limit of the system with such a high
polygon count. Level of detail support would be essential to use the system
for real-time applications.

The Instant Architecture solution produces realistic and detailed buildings but
may require a level of expertise to operate that restrict it to an academic
audience.

4 Future Research

In Section 3 we reviewed previous research into the procedural generation of
cities. It is important for us to recognise the areas that can be improved in
this research and to identify suitable candidates for further research. To
evaluate the existing research we studied each city generation technique and
assessed the systems performance according to a common set of criteria:
Realism, Scale, Variation, Inputs, Efficiency, Control, Real-time provisions.
After completing this analysis, we have found that previous research efforts
have made good progress on a number of difficult goals by achieving a high
level of variation, realism and scale. However, city generation research is by
no means complete and we identified a number of areas which can be
improved on by future research.

An accessible city generation system is difficult if the operation of the system
requires a high level of expertise or if complex input such as geo-statistical
data is a prerequisite to using the system. The City Engine system [11] is
capable of producing visually sound results but the road network and
buildings are generated using a complex set of rules, images maps and geo-

ITB Journal

Issue Number 14, December 2006 Page 127

statistical data. The Split Grammars technique proposed by Wonka et al.[17]
requires the creation of a large set of complex architectural rules before
building generation can begin. The agent based simulation technique also
uses a large and complex set of pre-determined behaviours to specify how the
agents act. Varied results can be obtained without strictly requiring changes
to the city generation systems. But in order achieve results of a similar
quality to some of the examples shown a level of expertise and in-depth
knowledge of each system is required that is not possible for the general user.

The existing city generation solutions do not provide interactive, tactile or
close control over the generation process. The grid layout system proposed by
Greuter et al.[13] is very restrictive allowing only the grid spacing to be
adjusted by the user. Growth based algorithms such as L-systems[11] or
agent based simulation[18] are difficult to control due to their evolutionary
nature. Both growth based generation solutions use a system of image maps
to provide incentives for growth in certain areas of the city. An additional
layer of control is specified in the form of numerical parameters that
influence factors such as road branch distance, road branch angle, etc. The
template based approach uses a selection of basic procedural templates to
create a road network. The templates cannot be edited by the user and no
user interaction is documented.

A city is a large and complex model and cannot be rendered easily in real-
time on commodity hardware. In order to render such a complex model,
optimization systems such as level of detail, culling or paging are necessary.
Out of the city generation solutions studied only Greuter's system provides
real-time optimisations via the use of view frustum filling and geometry
caching.[19] The view frustum filling technique is possible by using a simple
regular grid road network but is not applicable in its current form to more
complex road networks.

We have reviewed the city generation systems and discussed some of the
areas that warrant further research. From this discussion we have obtained a
key list of goals for our city generation solution to build and improve upon
existing work.

ITB Journal

Issue Number 14, December 2006 Page 128

• Accessible – input data such as geo-statistical data or complex
architectural rules should not be required to use the system.

• Interactive – the system should be capable of fully autonomous generation
but also facilitate interactive control.

• Real-Time – for efficient rendering optimisation techniques like culling,
paging and level of detail should be implemented.

To summarize, the goal for our research is to create a city generation system
suitable for real-time applications that is capable of creating realistic, varied
and large scale cites in an efficient manner while remaining accessible to
non-expert users. Our current design comprises of three major components:
primary road generation, secondary road generation and building generation.
All three components are united within a standalone application providing
interactive control over the city generation process.

The primary road generation component utilises procedural templates Sun et
al. that encapsulate common city road network patterns such as raster, radial,
hierarchical and cellular. In addition to the previous template based solution
the templates are dynamically editable and form only the high level roads.
Each road network template can be applied to a terrain as an interconnected
graph with edges of the graph, the roads, automatically deformed by terrain
characteristics such as gradients, water levels and other obstacles. The
resultant road network graph is editable using an interactive 3D interface.
Streets can be added, deleted and moved using junctions as control points for
easy manipulation. Editing the control points affects not only the primary
road network but also the secondary roads within providing a tactile method
to control all road generation.

Cells resulting from the division of the city by the primary road network form
the basic units upon which the secondary road generation component
operates. A technique similar to that used in [11] based on L-systems can be
applied inside the cell although several different algorithms including agent
based approaches, and simple procedural templates can be applied within a
single city. Global and local parameters are adjusted to specify the behaviour

ITB Journal

Issue Number 14, December 2006 Page 129

of generation algorithms in a citywide and/or local cell scope. To optimize
rendering of the city we propose to page cells similar to terrain paging, the
primary road network forms a skeleton and the secondary road network cells
within can be pre-emptively generated and loaded on demand using a cell
adjacency model.

Buildings can be placed on the lots created from the secondary road network
and can be constructed using a generative grammar such as L-systems.
Several different building usage types will be supported including
commercial, industrial, and residential. Building structures are generated at
run time and can thus provide a substantial reduction in memory usage by
storing simple generation data and generating large complex geometry only
when required. This geometry generation can be applied to construct several
variants of buildings depending on the instantiation parameters used. L-
systems refine a basic model into a complex model by applied a series of
productions iteratively. A range dependant level of detail can be provided by
including an instantiation parameter that specifies the number of L-system
iterations proportional to the distance between the camera and building.

At present an interactive application has been built that implement the
primary road generation component and partial secondary road generation
enabling basic road network manipulation and interactive editing. Current
work involves implementing complete secondary road generation and
generative grammars for building generation. Real-Time rendering provisions
including cell paging, runtime geometry generation and L-system level of
detail are currently catered for and we would like to further explore and test
these optimisation schemes.

References

[1] Kevin Lynch; The Image of the City. Cambridge: MIT Press 1960.
[2] A. Lindenmayer; Mathematical models for cellular interaction in development,

Parts I and II. 1968.
[3] Alexander C, Ishikawa S, Silverstein M; A Pattern Language: Towns, Buildings,

Construction. Oxford University Press 1977.
[4] Stiny, G.; Introduction to shape and shape grammars..Environment and Planning B

1980.
[5] Benoit B. Mandelbrot; The Fractal Geometry of Nature. W.H. Freeman & Co.

1982.

ITB Journal

Issue Number 14, December 2006 Page 130

[6] Ken Perlin; 1985. An Image Synthesizer, in Proc ACM SIGGRAPH. In, 287-296.
[7] Lindenmayer and Prusinkiewicz; 1990. The Algorithmic Beauty of Plants.
[8] Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al.; The Algorithmic Beauty

of Plants. Springer-Verlag 1990.
[9] Michael F. Barnsley; Fractals Everywhere. Morgan Kaufman 1993.
[10] Ken Perlin. Making Noise, http://www.noisemachine.com/talk1/index.html.

1999
[11] Yoav I H Parish, Pascal Mueller; 2001. Procedural Modeling of Cities. In , , .
[12] Jing Sun and Xiaobo Yu and George Baciu and Mark Green; 2002. Template-

based generation of road networks for virtual city modeling. In , , .
[13] Stefan Greuter, Nigel Stewart, Jeremy Parker, Geoff Leach; 2002. Undiscovered

Worlds - Towards a Framework for Real-Time Procedural Generation. In
MelbourneDAC 2003 Proceedings, ACM Press, .

[14] Wolfgang von der Linden, Ewald Schachinger. Computersimulations.
http://itp.tugraz.at/LV/wvl/Comp_Simulationen/. 2002

[15] Evan Hart, ATI Research; 3D Textures and Pixel Shaders, ShaderX vertex and
pixel tips and tricks.. 2002.

[16] TomasAkenine-Möller, Eric Haines; Real-Time Rendering. A K Peters, Ltd.
2002.

[17] Peter Wonka, Michael Wimmer, Francois Sillion, William Ribarsky; 2003.
Instant Architecture. In , Siggraph, .

[18] Thomas Lechner, Ben Watson, Uri Wilensky, Martin Felsen; 2003. Procedural
City Modeling. In , , .

[19] Greuter S., Parker J., Stewart N., and Leach G.; 2003. Real-time procedural
generation of `pseudo infinite' cities. In Proceedings of GRAPHITE 2003, ACM
Press, 87-95.

[20] Sylvain Lefebvre, Fabrice Neyret 2003. Pattern Based Procedural Textures.
[21] Javier Lluch, Emilio Camahort, Roberto Vivó; 2003. Procedural Multiresolution

for Plant and Tree Rendering. In , , .
[22] John Spitzer, Simon Green and NVIDIA Corporation; 2003. Noise and

Procedural Techniques. In Proceedings of Game Developers Conference 2003,
GDC, .

[23] David S. Ebert; F Kenton Musgrave; Darwyn Peachy; Ken Perlin; Steven
Worley; Texturing & Modelling - A Procedural Approach. Morgan Kaufmann 2003.

[24] Stefan Greuter, Nigel Stewart, Geoff Leach; 2004. Beyond the horizon. In Image
Text and Sound Conferance 2004, , .

[25] http://www.planetside.co.uk/terragen. 2004
[26] International Scene Organization. Scene Awards 2004.

http://scene.org/awards.php?year=2004. 2004
[27] http://www.sidefx.com. Side Effects Software. Manufacturer of Houdini.. 2005
[28] UrbanLab. www.chil.us = Chicago, Illinois, USA. 2006
[29] Pascal Mueller. City Engine Wiki. 2006
[30] Cellular Texture Basis Functions implementation DarkTree procedural software.

2006
[31] Jon Hare. Sensible Software. http://www.purplesensi.co.uk 2006
[32] Interactive Data Visualization Inc.. SpeedTree RT. http://www.speedtree.com

2006
[33] Ken Musgrave, Pandromeda.. Mojo World Applications.

http://www.pandromeda.com/products/ 2006

	A Survey of Procedural Techniques for City Generation
	Recommended Citation

	Microsoft Word - ITB Journal-December 2006-v3.doc

