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Eddies induced in cylindrical containers by a rotating end wall
Christopher P. Hillsa)

Lincoln College, Oxford OX1 3DR, England

~Received 12 July 2000; accepted 23 April 2001!

The flow generated in a viscous liquid contained in a cylindrical geometry by a rotating end wall is
considered. Recent numerical and experimental work has established several distinct phases of the
motion when fluid inertia plays a significant role. The current paper, however, establishes the nature
of the flow in the thus far neglected low Reynolds number regime. Explicitly, by employing
biorthogonality relations appropriate to the current geometry, it is shown that a sequence of
exponentially decaying eddies extends outward from the rotating end wall. The cellular structure is
a manifestation of the dominance of complex eigensolutions to the homogeneous problem and arises
as the result of nonlinear forcing associated with an inertial correction to the Stokes flow. ©2001
American Institute of Physics.@DOI: 10.1063/1.1384470#

I. INTRODUCTION

We consider an incompressible, Newtonian viscous
fluid, contained within a semi-infinite circular cylinder, and
study the low Reynolds number flow produced by the steady
rotation of an end wall~see Fig. 1!. Recently there has been
considerable experimental interest in this geometry, but the
focus has been largely on a range of Reynolds numbers, Re,
in which the fluid inertia plays a significant role. Vogel1

showed that, as a stability bound is reached, the base flow,
consisting of a large toroidal vortex that flows up the outer
cylinder boundary to return down a small central core,2 gen-
erates a region of recirculation on the axis of symmetry.3 The
stability limit is defined by a curve lying in the plane of
aspect ratio versus Reynolds number. Vogel was the first to
draw parallels between the ‘‘bubble’’ creation and the prob-
lem of vortex breakdown. The possible link is undoubtedly
intriguing and has motivated several papers. In particular,
Bro”ns, Voigt, and So”rensen4 discussed the question of vortex
breakdown for the current geometry using a combination of
bifurcation theory and numerical simulations. Earlier,
Escudier5 verified the Vogel curve and extended the stability
diagram to a wider range of aspect ratios and Reynolds num-
bers. That work not only identified the stability curves of two
further breakdowns, each with an associated ‘‘bubble,’’ but
also revealed subsequent transitions to oscillatory and turbu-
lent regimes. The oscillatory, time-dependent states of the
geometry have been further studied, both experimentally and
numerically, by Stevens, Lopez, and Cantwell.6 More re-
cently, the work of Mullin, Kobine, Tavener, and Cliffe,7

while confirming the known results for a single cylinder,
gives an important insight into the influence of the geometry.
Explicitly these authors have considered a configuration in
which a coaxial central column is introduced with the possi-
bility of differential rotation. The inner column was taken as
~i! a circular cylinder and~ii ! the frustum of a right circular

cone. In the latter case they provided complementary experi-
mental and numerical work, showing that, when the cross
section increased vertically away from the end boundary, the
recirculating ‘‘bubble’’ was reinforced, but that a tapering
column suppressed the onset of the new region.

In this paper we concentrate on low Reynolds number
flow in a single cylinder, a regime that has been somewhat
overlooked, although it is likely to give valuable insight into
general flow structures. We find that, as a result of a first-
order inertial correction, toroidal eddies appear. Previously,
toroidal eddies have been predicted even in an inertialess
~Stokes! regime of a cylindrical geometry, but with physical
driving mechanisms somewhat different from our present
concern. For example, Fitz-Gerald8 modeled the Stokes flow
of a plasma contained between two red blood cells moving
with uniform velocity within a narrow capillary. The author
found that the expected Poiseuille flow is modified by a com-
plex eigenfunction contribution introduced to accommodate
the boundary conditions on the end blood cells. By a numeri-
cal analysis, Fitz-Gerald8 showed that the combined solution
could generate small secondary circulations within the
plasma. Also, with an aim of modeling the fluid motion due
to cilia, Liron and Shahar9 considered the motion generated
by Stokeslets~represented by delta function forcing! in an
infinite circular cylinder. Their flow solution exploited the
linearity of the Stokes equations and combined the Happel
and Brenner10 series solution of the homogeneous problem
with a particular solution for the singular forcing~not neces-
sarily placed on the axis of symmetry!. Liron and Shahar9

did consider in some detail the case when the Stokeslet does
lie on the axis of symmetry, resolving the problem by nu-
merical means. Later, Blake11 extended their work by dis-
cussing toroidal eddies produced in infinite, semi-infinite,
and finite cylinders when the Stokeslet lies on the axis of
symmetry. He constructed his solution using the superposi-
tion of eigenfunctions to the homogeneous Stokes problem
in the cylindrical geometry. The associated eigenvalues are
complex and lead directly to toroidal eddies. Blake11 pro-
duced numerical visualizations by either calculating series
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constants using a least squares criterion or using a finite dif-
ference scheme over the domain.

The driving force of the cylinder flow investigated here
is a rotating lower plate. This configuration has the obvious
advantage of being easily amenable to experimental investi-
gation. We are concerned with the low Reynolds number
regime and proceed in Sec. II to construct an asymptotic
series in terms of Re for the velocity and pressure fields. On
physical grounds we look for a solution in which there is
exponential decay in the perpendicular~z! direction away
from the plate. The zeroth-order flow is purely azimuthal,
given by a series involving orthogonal Bessel functions
whose coefficients are determined in an obvious fashion.
Heuristically we expect the first-order correction due to in-
ertia to be toroidal and two-dimensional and it can, therefore,
be expressed in terms of a streamfunction. This function sat-
isfies a fourth-order forced differential equation involving a
well-known second-order cylindrical differential operator12

$D2%. The exponentiallyz-decaying solution is found as a
combination of a particular solution~relating to the forcing
induced by the Stokes solution! and a complementary solu-
tion that will ensure that the homogeneous boundary condi-
tion of the combined solution is satisfied on the rotating end
wall. Both the particular and complementary solutions are
found as an infinite series. The boundary condition on the
side wall is imposed on each individual term of each series.
The complementary solution leads to an eigenvalue problem
that is characteristic of the geometry and the second-order
cylindrical differential operator,D2, which occurs frequently
in studies of cylinder flows. That the eigenvalues are com-
plex is known13 from, for example, the work of Blake11 and,
associated with these eigenvalues, there is a toroidal eddy
structure. The fundamental consideration is whether the par-
ticular or the complementary solution dominates.

The competition between particular and complementary
solutions is an important feature of the investigations of
Moffatt15 and Moffatt and Duffy16 relating to a wedge geom-
etry. These authors have established that geometry can have
a deciding role. By varying the boundary configuration they
show that the relative dominance of particular solutions and
local similarity solutions can swap over. It is this interchange
of dominance that alters the flow character. In particular, for
wedge geometries that include a ‘‘corner,’’ the appearance of

the eddies described by Moffatt17 is fundamentally depen-
dent on the corner angle: the internal angle of the wedge
determines not only if eddies appear but also the asymptotic
radial power as the corner is approached, the intensity of the
eddies and the extent to which they penetrate the corner~see
Hills18!. Although in the classic two-dimensional, linear,
Taylor19 scraping problem eddies never appear, Hills and
Moffatt20 show that the extension of the geometry to three
dimensions allows the presence of eddies for a range of cor-
ner angles. In Sec. II we show that, for the geometry associ-
ated with a cylinder with a rotating end wall, the leading
complex eigenvalue of the homogeneous problem dominates
all other toroidal terms and indicates the presence of eddies.

Our flow solution for the rotating end wall problem is
based upon series expansions that require the determination
of coefficients. The Stokes solution and the particular solu-
tion component of the toroidal streamfunction are in terms of
orthogonal functions and their series resolution present no
great difficulties. However, the complementary functions are
not orthogonal and the determination of their coefficients so
as to satisfy an inhomogeneous boundary condition is less
straightforward. Liron and Shahar9 and Blake11 rely on nu-
merical methods of approximation and truncation. In this
work we seek to employ appropriate biorthogonality rela-
tions but we need to demonstrate that the solution scheme
outlined in Sec. II is indeed self-consistent. Accordingly, in
Sec. III we demonstrate that the method of Smith,21 later
developed by Joseph22 and co-workers~see Joseph and
Sturges,23 Joseph, Sturges, and Warner,24 Liu and Joseph25!,
can be extended and used in respect of the eigenfunctions of
the operatorD4 so yielding an analytical method of deter-
mining a series solution. The method, however, has to be
exercised with caution. Spence26 and Harper and Wake27

considered the Cartesian description of the flow in a rect-
angle open at one end with prescribed data on the opposite
boundary and demonstrated that such solutions can be un-
stable with respect to the order of truncation so compromis-
ing convergence within the required domain. In the current
work, once we have established the validity of the solution
scheme, we do not explicitly determine the series constants
nor do we explore questions of completeness or convergence
but concentrate on identifying the dominant physical effects.
We find that the mechanism of the cellular structure in our
flow is essentially the same as in the higher Re case~see Ref.
2!, but our analysis provides a quantitative measure~given
by the periodicity of the streamfunction! that is capable of
being tested experimentally.

II. THE FORMATION OF EDDY CELLS IN A
‘‘SCRAPING’’ CYLINDER

A. Problem description and formulation

We consider a vertical, hollow, circular cylinder of ra-
diusa8, held stationary, in scraping contact28 with a horizon-
tal plane rotating with constant angular speedV8 about the
axis of the cylinder~see Fig. 1!. The cylinder is filled with an
incompressible, viscous fluid of constant kinematic viscosity
n8 that is assumed to be in steady motion, driven by the
rotation of the bottom plate. The velocity,u5(u,v,w), and

FIG. 1. Geometry of the single semi-infinite circular cylinder of radiusa8
with a rotating end wall, of angular velocityV8 about the axis of symmetry,
relative to a cylindrical polar coordinate system (r 8,u, z8).
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pressure,p8, fields will be determined by the solutions of the
steady Navier–Stokes equations subject to the usual no-slip
boundary conditions on the cylinder walls and end plate. In
addition, we shall impose a decay constraint ensuring thatu
must vanish at large distances from the rotating plate. We use
the obvious length scale,a8, and typical speed,V8a8, to
nondimensionalize our problem. Specifically, we set

r 5r 8/a8, z5z8/a8, u5u8/V8a8, p5p8/n8V8,
~1!

where (r 8,u, z8) are the usual cylindrical polar coordinates
shown in Fig. 1 and the Reynolds number of the flow, Re, is
given by

Re5V8a82/n8. ~2!

In terms of these new variables, the system is governed by

“"u50,
~3!

Re~u"“ !u52“p1¹2u,

with boundary conditions

u5v5w50, on r 51,

u5w50, v5r , on z50, ~4!

u,v,w→0, as z→`.

The intrinsic geometrical symmetry and the boundary condi-
tions lead us to look for axisymmetric solutions~so that
]/]u[0! with the pressure and velocity fields functions ofr
andz only but with thez dependence exponentially decaying.

Our analysis is concerned with the low Reynolds number
regime and we shall construct asymptotic power series ex-
pansions in Re. Specifically, ifx denotes eitheru or p, we
assume

x5x01Rex11Re2 x21¯ . ~5!

By substituting these expansions into~3! and equating pow-
ers of Re, we generate the following system for determining
the successive pairs$un ,pn%,

“"un50,
~6!

(
k50

n21

~uk"“ !un212k52“pn1¹2un , n>1.

From ~6! we see that the underlying equations for each pair
$un ,pn% are linear, and so a uniformly valid solution may be
constructed as the sum of an inhomogeneous part~due to
lower-order forcing! and a complementary solution related to
the homogeneous problem. It will be essential to assess the
relative dominance of these two contributions.

B. The solution to Stokes flow equations

From ~6! we see that, at the zeroth order the velocity and
pressure fields$(u0 ,v0 ,w0),p0% satisfy Stokes flow equa-
tions. The boundary conditions~4! suggest a purely azi-
muthal velocity profile so we setu05w050 and find that the
radial and vertical components of the governing equations
imply a constant pressure, i.e.,p0(r ,z)5const. The azi-
muthal velocity component satisfies

]2v0

]r 2 1
1

r

]v0

]r
2

1

r 2 v01
]2v0

]z2 50. ~7!

We look for a series solution employing a separation of vari-
ables. On physical grounds we expect spatial decay in thez
direction and so assume

v0~r ,z!5 (
k51

`

vk~r !e2lkz. ~8!

The sequence$lk% will be resolved later via an eigenvalue
problem.

Substituting~8! into ~7! we find that thevk(r ) satisfy
Bessel’s equation of order one so that they can be expressed
as linear combinations of the Bessel functionsJ1(lkr ) and
Y1(lkr ). Our solution must be finite atr 50 so thatY1(lkr )
cannot contribute. When we apply the boundary condition
~4! on r 51 we find that thelk are zeros ofJ1 and are,
therefore, all real. To ensure our solutions properly decay we
restrict attention to the positive roots. It is convenient to
order thelk by magnitude so that, henceforth, 0,l1,l2

,l3 , etc. Thus,v0 is given by

v0~r ,z!5 (
k51

`

AkJ1~lkr !e2lkz, where J1~lk!50. ~9!

Using the orthogonality of Bessel functions and the bound-
ary condition onz50, the constantsAk are found to be

Ak52E
0

1

r 2J1~lkr !dr /J18~lk!
2522/lkJ0~lk!, ~10!

whereJ0 is the Bessel function of the first kind of order zero.
The zeros,lk , of J1 are well known~see, for example, Am-
bramovitch and Stegun29! with the first three being

l153.832, l257.016, l3510.173. ~11!

We find from ~10! that

A151.296, A2520.950, A350.787.

Figure 2 shows, from two viewpoints, the distance trav-
eled in a fixed time by particles originating on the plane
u50. The Stokes flow is purely azimuthal so particles move
in a circular fashion about the vertical axis of symmetry, but

FIG. 2. The Stokes flow generated by a cylinder scraping over a rotating
plate. Two views of the displacement surface showing both the distance
traveled in a fixed time by particles initially on the planeu50 ~indicated in
black! and the exponential decay in thez direction.
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the speed of particles decays exponentially as we move away
from the driving plate. Asz increases, the dominant flow
contribution is given by

1.296J1~3.832r !e23.832z,

so that, in essence, the azimuthal flow may be thought of as
being substantially contained within a thinz layer. Outside
the layer the fluid velocities are very small.~For example, for
z.0.35 the maximum nondimensional azimuthal velocity is
always less than 0.2.!

C. The first-order Re correction

From Eq.~6!, the first-order corrections for the velocity
and pressure fields satisfy

“"u150,
~12!

2“p11¹2u15u0"“u0 ,

together with the homogeneous set of boundary conditions
for u1 , viz.

u150, on z50 and r 51,

u1→0, as z→`.

Since the zeroth-order velocity is purely azimuthal, the forc-
ing represented by the right-hand side of~12b! lies in the
~r, z! plane. Most importantly, since the zeroth-order solution
has no radial or axial velocity components, the first-order
terms in these directions will have a defining role on the flow
character. We assume that the first-order motion is in the
~r, z! plane and seek a steady axisymmetric solution. We may
eliminate the pressure field in the usual manner to obtain the
vorticity equation

¹2~“Ãu1!522v0r 21]v0 /]zeu . ~13!

But, sinceu1 is solenoidal and two-dimensional, it is appro-
priate to introduce a streamfunction,c, by

u15“Ã@0,r 21c~r ,z!,0#5r 21~2]c/]z,0,]c/]r !,
~14!

and we are led to

D2~D2c!52v0]v0 /]z, ~15!

where the operatorD2 is given by~see Ref. 12!

D2[
]2

]z2 1r
]

]r S 1

r

]

]r D . ~16!

In terms ofc, the homogeneous boundary conditions give

]c/]z5]c/]r 50, on r 51 and z50. ~17!

Equations~15!–~17! constitute a biharmonic system under
specific forcing with homogeneous boundary conditions. We
construct a general solution as the sum of a particular solu-
tion, cP, to the forced problem and a complementary solu-
tion, cC ~with no applied forcing!.

Let us first consider the forced problem. Substituting the
series solution of~9! into ~15!, we find

D4cP52(
l 51

`

(
m51

`

l lAlAmJ1~l l r !J1~lmr !e2~l l1lm!z,

~18!

where the$Ak% are determined by~10! and the$lk% are the
ordered sequence of positive roots ofJ1 . In order to accom-
modate thez dependence of the forcing, we assume

cP5(
l 51

`

(
m51

`

C lm
P ~r !e2~l l1lm!z. ~19!

From~18!, the functionC lm
P satisfies the ordinary differential

equation

S d2

dr 22
1

r

d

dr
1~l l1lm!2D 2

C lm
P

52l lAlAmJ1~l l r !J1~lmr !. ~20!

While the decomposition of~19! is not unique~as the func-
tions C lm

P and Cml
P have the same exponentialz depen-

dence!, Eq. ~20! removes any ambiguity and, following from
the assumed linear independence of the exponential func-
tions, we obtain a series of independent differential equa-
tions. Using the tabulated zeroslk , the solution for each
C lm

P can be constructed as a~complete! series in Bessel func-
tions of the first kind, viz.,

C lm
P 5alm

0 1 (
n51

`

alm
n rJ1~lnr !1AlmrJ1@~l l1lm!r #

1Blmr 2J0@~l l1lm!r #. ~21!

When we substitute~21! onto the left-hand side of~20!, we
find

~l l1lm!4alm
0 1 (

n51

`

alm
n rJ1~lnr !@~l l1lm!22ln

2#2.

~22!

Thus, each$alm
n % (n51,2,...) is determined using the or-

thogonality of Bessel functions by multiplying~20! by
J1(lnr ) and integrating over the range@0, 1#. @Note that, by
evaluating~20! at r 50, we obtainalm

0 50.# The constants

Alm and Blm are chosen to ensure thatC lm
P (1)5C lm

P8(1)
50. It is clear that, by this procedure, a particular solution
can be found satisfying all boundary conditions, except those
on z50. Our primary interest is, however, with the dominant
~r, z!-velocity components. As we move vertically away from
the horizontal plate the dominant contribution tocP comes
from the term with smallest exponent~viz., C11

P e22l1z!
which, from ~11a!, has a decay rate of 2l1.7.6. Therefore,
as might be expected, the nonlinear term forces a particular
solution that decays extremely rapidly.

The particular solution based on~21! will not generally
satisfy the boundary conditions on the lower plate and to
accommodate these conditions we introduce a complemen-
tary function,cC, that will satisfy the unforced biharmonic
equation and have zero partial derivatives on the cylinder
r 51. The behavior for largez suggests a series

2282 Phys. Fluids, Vol. 13, No. 8, August 2001 Christopher P. Hills
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cC5 (
k51

`

Ck
C~r !e2Lkz, ~23!

and we find that, by taking30

Ck
C5@Akr

2J0~Lkr !1BkrJ1~Lkr !1Ckr
2Y0~Lkr !

1DkrY1~Lkr !#, ~24!

we can satisfy the biharmonic equation. To get a finite ve-
locity field at r 50 we must discard the Bessel functions of
the second kind (Y0 ,Y1), and to satisfy the conditions on
r 51 we require

G~Lk![LkJ1~Lk!
222J0~Lk!J1~Lk!1LkJ0~Lk!

250,
~25!

and

Ak52BkJ1~Lk!/J0~Lk!. ~26!

Figure 3 shows a plot of the absolute value ofG~L! in the
complex plane.31 There are no real roots of~25! so that the
z-decay rates of the complementary function are given by the
real part of complex roots. The first three complex roots~see
Friedmann, Gillis, and Liron14!, ordered by the positive real
part ~the solution must decay!, are

L154.466 3011.467 47i, L257.694 1011.726 97i,

L3510.874 5811.894 94i, . . . .

Thus the complementary function is given by the series so-
lution

cC5RS (
k51

`

B̃k@J0~Lk!rJ1~Lkr !

2J1~Lk!r
2J0~Lkr !#e2LkzD , ~27!

where$B̃k% are complex constants intended to adjust the par-
ticular solutioncP so that the composite solution has van-
ishing partial derivatives onz50.

The important observation at this point is that the
z-decay constant associated withL1;4.47~the leading-order

term of cC! is smaller than that arising from the dominant
zeroth-order forcing~;7.6! of the particular solutioncP.
Thus, asz increases the complementary function will domi-
nate~assumingB̃1Þ0!. SinceL1 is complex, a periodicity in
the z direction will be present. The~r, z! motion will be
dominated by a sequence of stacking spatially (z) decaying
cells and is illustrated in Fig. 4 by a contour plot of
R@C1

Ce2L1z#, with B̃1 notionally taken as unity. The period-
icity of the cells will be governed by the imaginary part, i.e.,
T(L1). ~Note that, for this function in isolation, the bound-
ary conditions onz50 are clearly not satisfied but they are
satisfied onr 51.!

Our discussion has established that the solution for the
scraping cylinder problem is dominated by a zeroth-order
azimuthal flow. To first order, this azimuthal flow is modified
by a cellular structure involving the radial and vertical ve-
locity components. The series constants for the particular
solution are immediately found using the orthogonality of
Bessel functions. We note that the eigenvalues of the
complementary solution are only dependent on the geometry
and not on the primary flow. Therefore only the intensity, not
the shape, of the cell-like structure is affected byv0 in the
form of the constantsB̃k . Throughout our discussion of the
dominant contribution to the solution we have tacitly as-
sumed that the constantsB̃k are readily determinable without
stating how this task is to be achieved. In the next section we
develop a biorthogonality condition that will enable us to
determine theB̃k’s and will essentially complete the argu-
ments of the present section.

III. BIORTHOGONALITY RELATION FOR
EIGENFUNCTIONS OF D4

In the previous section, by considering dominant effects
we have established, in principle, the presence of toroidal

FIG. 3. The absolute value of the functionG~L! of ~25!. The roots occur at
the minima of the function, which can be seen as a sequence of troughs on
the surface.

FIG. 4. A plot of the eddy structure attributable to the dominant, first-order

complementary streamfunctionR@C1
Ce2L1z#, illustrated usingB̃151. Flow

intensity is indicated by the contour values taken asc5(0, 25
31022, 2231022, 2531023, 231023, 131023, 531024, 131024, 1
31025, 2831028, 2331028, 2131028, 2231029, 22310210, 1
310211, 3310212, 1310212).
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eddies in low Reynolds number flow. But we still need to

establish that the series constants,B̃k , for the complementary
solution can indeed be found for given boundary conditions
and, in addition, elucidate a practical method of determining
them. Essentially we need an orthogonality condition be-
tween the complementary functionsCk

C . In this section we
provide such a biorthogonality condition for the solutions of
our fourth-order operatorD4. The method we employ is sub-
stantially due to Smith,21 who established biorthogonality re-
lations to solve the biharmonic equation governing the bend-
ing of a semi-infinite elastic strip that is clamped along its
long edges with prescribed data on the short edge. These
relations have been used in conjunction with Stokes equa-
tions in fluid dynamics by Joseph22 and his collaborators~see
the following references!. In most cases the prescribed
boundary data is not canonical and results in an infinite set of
coupled linear equations in an infinite number of unknowns.
Usually the only practical way of dealing with such a set of
coupled equations is to solve numerically a truncated set of
equations for a finite number of coefficients. This approach
was used by Joseph and Sturges23 to demonstrate a stack of
eddies for the Stokes flow generated in a rectangular cavity
by a sliding plate along one edge. Khuri32 established~fol-
lowing the method of Liu and Joseph25! a biorthogonality
relation for a variation of the similarity solutions investigated
by Moffatt.17 Khuri used numerical truncation to find the
Stokes flow in a sector of a doughnut shape driven by a
uniformly moving plate at one of the radial boundaries.
However, in all these cases the provision of a biorthogonality
relation ensures that a solution is possible and will provide
an accurate method of determining the constants, even under
truncation.

The convergence of an infinite series solution is, of
course, important. Smith21 established convergence for his
biorthogonal series of eigenfunctions of the biharmonic
equation, but under somewhat severe conditions on the
boundary data. Later Joseph,22 Joseph and Sturges,23 and Jo-
seph, Sturges, and Warner24 were able to relax the sufficient
conditions found by Smith. Without explicitly finding a so-
lution, we do not attempt an analysis of the convergence
conditions for our series. Our principal concern is to demon-
strate that the determination of our series constants is pos-
sible. As pointed out by Smith,21 the divergence of the series
of complementary functions on the prescribing boundary
need not be catastrophic: the complementary functions are
dominated by an exponential decay in the vertical coordi-
nate, making the series asymptotic~and, therefore, useful! in
this direction.

Let us now turn to the complementary solution given by
~23!. For notational clarity, we shall henceforth drop the su-
perscriptC and, in order to facilitate our analysis, the con-

stants B̃k will no longer be included in the definition of
Ck(x) but will now appear explicitly in the series, modified
by a factor ofLk

2. Thus, relative to a cylindrical polar coor-
dinate system, we have a series solution for the streamfunc-
tion satisfying D4c50, in the domain (r ,z)P@0,1#
3@0,̀ ), given by

c5 (
k51

`

B̃kCke
2Lkz/Lk

2. ~28!

The eigenfunctionsCk(r ) satisfy homogeneous boundary
conditions onr 51 and we require that, on the boundary
z50, the streamfunctionc and its derivative should match
the particular solution in order that their sum satisfy~17!. To
keep our discussion general we write

]c/]r 5F~r !, ]c/]z5G~r !, on z50, ~29!

whereF andG have to be regarded as known functions. The
eigenfunctionsCk are given by

Ck5@J0~Lk!rJ1~Lkr !2J1~Lk!r
2J0~Lkr !#, ~30!

and the eigenvaluesLk satisfy ~25!. We introduce a second

eigenfunctionĈk with the ambition of reducing the fourth-
order biharmonic equation to a pair of coupled second-order
equations. We define

Ĉ k5
1

Lk
2 r

d

dr S 1

r

d

dr DCk52Ck12J1~Lk!rJ1~Lkr !.

~31!

The governing equations become

Ck92Lk
2Ĉk50,

~32!
Ĉk91Lk

2~2Ĉk1Ck!50,

where we have used9 to denote the operator
rd/dr @r 21d/dr #. The pair of equations~32! can be conve-
niently expressed in matrix form as

Ck91Lk
2MCk50, ~33!

with

M5S 0 21

1 2 D , Ck5S Ck

Ĉk
D . ~34!

To construct a biorthogonality condition we introduce the

adjoint problem. The adjoint eigenfunctionsFk5(Fk ,F̂k)
T

satisfy

Fk91Lk
2MTFk50, ~35!

where the superscript ‘‘T’’ indicates the usual transpose. By
eliminatingFk from ~35!, it is straightforward to show that

F̂k satisfies the original fourth-order differential equation in
r that arises when a separation of~r, z! variables is used on
the biharmonic equation. Thus, we take

F̂k5Ck . ~36!

Then the second component of~35! yields an expression for
Fk given by

Fk52F̂k1F̂k9/Lk
252Ck1Ĉk . ~37!

We are now in a position to write down the biorthogo-
nality relation. We define a binary operator^•,•& on func-
tional vectorsa, b by

^a,b&5E
0

1 1

r
aTMb dr . ~38!
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We will apply this binary relation toCn and its adjointFm ,
but first we must make explicit some boundary conditions.

The homogeneous boundary conditionsCk5F̂k5]Ck /]r

5]F̂k /]r 50 are satisfied onr 51 but, in order to perform

integration by parts, we need bothFk
TCk8/r andFk

T8Ck /r to
vanish asr→0. But Eqs.~30!, ~31!, ~36!, and~37! establish
thatFk /r→0 andCk /r→0 asr→0, and the derivatives are
necessarily finite. Then, from~33! and ~35!, we find

^Fm ,Cn&52
1

Ln
2 E

0

1 1

r
Fm

T Cn9dr

5
1

Ln
2 E

0

1 1

r

dFm
T

dr

dCn

dr
dr

52
1

Ln
2 E

0

1 1

r
Fm

T9Cndr

5
Lm

2

Ln
2 ^Fm ,Cn&. ~39!

But, since the eigenvalues$Lk% are distinct, it follows that

^Fm ,Cn&5Qndnm . ~40!

Here dnm is the usual Kronecker delta andQn5^Fn ,Cn&.
The quantityQn can be easily calculated from~30!, ~31!,
~36!, and~37! for each eigenvalueLk . Equation~40! is our
sought orthogonality condition.

We are now in a position to determine the constantsB̃k

for boundary functionsF, G. Substituting the series expres-
sion for c into ~29! we find that, onz50,

F5 (
k51

`

B̃k

dCk

dr
Lk

2, G52 (
k51

`

B̃kCk /Lk . ~41!

But, to apply the binary operator defined above, we need
some preliminary manipulation. We differentiate~41a! to ob-
tain the vectorial identity,

S G

r
d

dr S F

r D D 5 (
k51

`

B̃kCk2 (
k51

` S 11
1

Lk
D B̃kS Ck

0 D . ~42!

By applying the operator̂Fm ,•& to both sides, we find

B̃mQm2 (
k51

` S 11
1

Lk
D B̃kQmk

5E
0

1

@F̂m~2~d/dr !~F/r !1G/r !

2Fm~d/dr !~F/r !#dr , ~43!

where

Qmk5E
0

1 1

r
Fm

T M S Ck

0 Ddr . ~44!

Equation~43! represents an infinite set of coupled equations
for determining the coefficientsB̃k . Joseph22 has shown for
the problem of the semi-infinite strip that, under certain con-
ditions on the dataF, G, the series converges and the solu-

tion is thus ensured. In general, to obtain results from this
infinite coupled system in an infinite number of unknowns
we will need to resort to series truncation and numerical
methods. However, without any further effort we have pro-
vided a framework that justifies the approach of the previous
sections.

IV. CONCLUSION

The presence of eddies induced in a viscous fluid con-
tained in a stationary semi-infinite cylinder above a rotating
end wall when the fluid inertia is significant has been estab-
lished by Vogel,1 Escudier,5 and Mullin, Kobine, Tavener,
and Cliffe.7 The current work shows that the eddy structure
is present, even when the fluid inertia is very small. The
source of the flow character is the complex eigenvalues as-
sociated with the homogeneous problem for the first-order
inertia correction. Liron and Shahar9 and Blake11 have shown
that fluid inertia need not be the only source of toroidal
eddies.33 This structure can be induced even in a Stokes flow
by the application of a suitable body force. But in these cases
too the eddies are traceable to exactly the same complex
eigenvalues. It would appear, therefore, that the eddies are an
intrinsic feature of the geometry and this speculation is rein-
forced by experience with the later Re regimes.

The physical setup that we discuss is amenable to ex-
perimental investigation. Although the periodicity of the
streamfunction of the first-order radial and axial motion is
testable, a laboratory setup will be necessarily finite. Due
allowance will have to be made for end effects not included
in our analysis. We have been concerned with a single cyl-
inder but the analysis of this paper is clearly extendible to the
geometry considered by Mullin, Kobine, Tavener, and
Cliffe,7 when there is an inner coaxial cylinder of constant
radius. The boundary conditions on the inner cylinder will
lead to the appearance of Bessel functions of the second
kind.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the help and support of
my thesis advisor Professor H. K. Moffatt. I would also like
to thank Professor T. Mullin for his useful discussion of the
cylinder problem and the anonymous referees who brought
to my attention Refs. 8, 14, 26, and 27. My work was sup-
ported by EPSRC, U.K.

1H. Vogel, ‘‘Experimentelle ergenbnisse u¨ber die laminare stro¨mung in
einem zylindrischen geha¨use mit darin rotierender scheibe,’’ MPI Bericht
1968, Vol. 6.

2When the fluid inertia is significant, the flow generated in the cylinder by
the rotating end wall is found to possess a cellular structure. It is first
driven in an outward spiral, as predicted by T. von Karman@‘‘Laminaire
und turbulente Reibeng,’’ Z. Angew. Math. Mech.1, 233 ~1921!#, and
upon meeting the cylinder wall flows upward until, at a specified height, it
moves inward again before being drawn down the center by the pump-like
effect of the rotating plate. In experimental systems the cell often encom-
passes the whole height of the cylinder.

3The term ‘‘bubble’’ is sometimes used to describe the appearance of the
small recirculation regions. The terminology has nothing to do with the
presence of a cavity in the fluid domain.

4M. Bro”ns, L. Voigt, and J. So”rensen, ‘‘Streamline topology of steady axi-

2285Phys. Fluids, Vol. 13, No. 8, August 2001 Eddies induced in cylindrical containers

Downloaded 28 May 2003 to 144.173.6.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



symmetric vortex breakdown in a cylinder with co- and counter-rotating
end-covers,’’ J. Fluid Mech.401, 275 ~1999!.

5M. Escudier, ‘‘Observations of the flow produced in a cylindrical container
by a rotating end-wall,’’ Exp. Fluids2, 189 ~1984!.

6J. Stevens, J. Lopez, and B. Cantwell, ‘‘Oscillatory flow in an enclosed
cylinder with a rotating end-wall,’’ J. Fluid Mech.389, 101 ~1999!.

7T. Mullin, J. Kobine, S. Tavener, and K. Cliffe, ‘‘On the creation of stag-
nation points near straight and sloped walls,’’ Phys. Fluids12, 425~2000!.

8J. M. Fitz-Gerald, ‘‘Plasma motion in narrow capillary flow,’’ J. Fluid
Mech.51, 463 ~1972!.

9N. Liron and R. Shahar, ‘‘Stokes flow due to a Stokeslet in a pipe,’’ J.
Fluid Mech.86, 727 ~1978!.

10J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics
~Prentice–Hall, Englewood Cliffs, 1965!.

11J. Blake, ‘‘On the generation of viscous toroidal eddies in a cylinder,’’ J.
Fluid Mech.95, 209 ~1979!.

12The operatorD2 is intrinsic to the cylindrical geometry and is discussed by
Happel and Brenner~Ref. 10!.

13M. Friedmann, J. Gillis, and N. Liron~Ref. 14!, in their numerical calcu-
lation of the velocity profile of uniform flows entering a pipe, have tabu-
lated the first 30 complex eigenvalues.

14M. Friedmann, J. Gillis, and N. Liron, ‘‘Laminar flow in a pipe at low and
moderate Reynolds numbers,’’ Appl. Sci. Res.19, 426 ~1968!.

15H. K. Moffatt, ‘‘The asymptotic behavior of solutions of the Navier–
Stokes equations near sharp corners,’’Approximate Methods for Navier–
Stokes Problems, in Proceedings of the Symposium held by IUTAM at the
University of Paderborn, Germany, 9–15 September 1979, Lecture Notes
in Mathematics, edited by R. Rautmann~Springer-Verlag, New York,
1979!, Vol. 771, pp. 371–380.

16H. K. Moffatt and B. Duffy, ‘‘Local similarity solutions and their limita-
tions,’’ J. Fluid Mech.96, 299 ~1980!.

17H. K. Moffatt, ‘‘Viscous and resistive eddies near a sharp corner,’’ J. Fluid
Mech.18, 1 ~1964!.

18C. P. Hills, ‘‘Eddy structures induced within a wedge by a circular honing
arc,’’ Theor. Comput. Fluid Dyn.~in press!.

19G. I. Taylor, ‘‘On scraping viscous fluid from a plane surface,’’ inThe
Scientific Papers of Sir Geoffrey Ingram Taylor, edited by G. K. Batchelor
~Cambridge University Press, Cambridge, 1971!, Vol. IV, pp. 410–413.

20C. P. Hills and H. K. Moffatt, ‘‘Rotary honing: a variant of the Taylor
paint-scraper problem,’’ J. Fluid Mech.418, 119 ~2000!.

21R. Smith, ‘‘The bending of a semi-infinite strip,’’ Aust. J. Sci. Res.5, 227
~1952!.

22D. Joseph, ‘‘The convergence of biorthogonal series for biharmonic and
Stokes flow edge problems: Part I,’’ SIAM~Soc. Ind. Appl. Math.! J. Appl.
Math. 33, 337 ~1977!.

23D. Joseph and L. Sturges, ‘‘The convergence of biorthogonal series for
biharmonic and Stokes flow edge problems: Part II,’’ SIAM~Soc. Ind.
Appl. Math.! J. Appl. Math.34, 7 ~1978!.

24D. Joseph, L. Sturges, and W. Warner, ‘‘Convergence of biorthogonal se-
ries of biharmonic eigenfunctions by the method of Titchmarsh,’’ Arch.
Ration. Mech. Anal.78, 223 ~1982!.

25C. Liu and D. Joseph, ‘‘Stokes flow in wedge-shaped trenches,’’ J. Fluid
Mech.80, 443 ~1977!.

26D. A. Spence, ‘‘A class of biharmonic end-strip problems arising in elas-
ticity and Stokes flow,’’ IMA J. Appl. Math.30, 107 ~1983!.

27J. Harper and G. Wake, ‘‘Stokes flow between parallel plates due to a
transversely moving end-wall,’’ IMA J. Appl. Math.30, 141 ~1983!.

28This configuration is sometimes referred to as a ‘‘scraping’’ or ‘‘honing’’
problem due to the implied discontinuity in fluid velocity at the cylinder–
plane base contact. A similar situation occurs at the end walls in finite
Taylor–Couette geometries and in the Taylor paint-scraper problem@see
Taylor ~Ref. 19! and Hills and Moffatt~Ref. 20!#.

29M. Ambramovitch and I. Stegun,Handbook of Mathematical Functions
~Dover, New York, 1965!.

30Using the well-known recurrence relationships for Bessel functions we
could alternatively take a form in terms ofJ1 andJ18 , Y1 andY18 .

31We only show arg(L)P@0,p/2# since we require the solution to decay and
G(L̄)5G(L).

32S. Khuri, ‘‘Biorthogonal series solution of Stokes flow problems in secto-
rial regions,’’ SIAM ~Soc. Ind. Appl. Math.! J. Appl. Math.56, 19 ~1996!.

33Although the eddies of this paper and of the earlier works of Liron and
Shahar~Ref. 9! and Blake~Ref. 11! are all attributable to complex eigen-
values, it is perhaps worth emphasizing the fundamental difference be-
tween these studies. In the earlier works the toroidal eddies arose due to
the Stokeslet forcing at the level of the zeroth-order~Stokes! flow. For the
rotating end-wall configuration the zeroth-order flow is purely azimuthal
and the toroidal eddies are induced by the effects of the small inertia
correction.

2286 Phys. Fluids, Vol. 13, No. 8, August 2001 Christopher P. Hills

Downloaded 28 May 2003 to 144.173.6.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp


	Eddies Induced in Cylindrical Containers by a Rotating End Wall
	Recommended Citation

	tmp.1266244204.pdf.XGiS0

