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Abstract

In this paper we outline an expeditious numerical procedure to calculate the Stokes flow in a

corner due to the rotation of a scraping circular boundary. The method is also applicable to other

wedge geometries. We employ a collocation technique utilising a basis of eddy (similarity) functions

introduced by Moffatt (1964) that allows us to satisfy automatically the governing equations for

the streamfunction and all the boundary conditions on the surface of the wedge. The circular

honing problem thereby becomes one-dimensional requiring only the satisfaction of conditions on

the circular boundary. The advantage of using the Moffatt eddy functions as a basis in wedge

geometry is clear and the technique greatly reduces many of the concerns with accuracy and time

expenditure associated with alternative numerical methods. An investigation of the details of the

eddy structure for our particular geometry is presented.
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1 Introduction

Recirculation regions, or eddies, are found throughout experimental and industrial fluid dynamics

and commonly occur when viscous fluids encounter sharp corners (Moffatt (1964)) or surface cavities

(Higdon (1985)). The importance of investigating the formation of eddies and closed paths in the

complex streamline patterns that so frequently occur in applications cannot be over emphasised. Our

understanding of eddy phenomena was significantly advanced by the study of Moffatt (1964) who

analysed the two-dimensional Stokes flow in an infinite wedge of angle 2α due to an arbitrary (radially

decaying) far-field disturbance. His study established that there is a critical half-angle (αcrit) for eddy

formation and that a series solution can be constructed that is asymptotic in the radial distance from

the wedge vertex. Underlying the analysis there is an eigenvalue problem that arises from the boundary

conditions on the wedge walls which, for the case when α < αcrit when recirculation regions will be

present, possesses complex solutions. The associated eigenfunctions, here termed the Moffatt eddy

functions and described more fully in Section 2, form the basis of a series solution.

Jeffrey & Sherwood (1980) presented an analytic investigation of the formation of closed streamlines

and eddies in several two-dimensional geometries. By studying stagnation points, corners and ‘blocked’

paths in simple Stokes flows, these authors extrapolate the streamlines of more complicated geometries.

For example, they predict the flow patterns generated by a rotating cylinder placed in a shear flow

and the streamlines for a shear flow past a cylinder touching a plane wall. Liu & Joseph (1977) and

more recently Khuri (1996) studied, by analytical means, the formation of eddies in a section of a

wedge (corresponding to a polar region [R1, R2]× [θ1, θ2]), but for driving mechanisms different to our

own. These authors employ series expansions with a basis of (modified) Moffatt eddy functions and

seek to determine unknown coefficients using biorthogonality relations. In the same vein, Hills (2000)

also uses biorthogonality relations to demonstrate the presence of eddies (again arising from complex

eigenvalues) for the low Reynolds number flow in a three-dimensional cylindrical geometry. The eddies,

however, only arise in this geometry as a first order correction in the Reynolds number1. But, as a

general rule, the analytic systems are rarely canonical and, to obtain a physical solution, it is usually

necessary to resort to series truncation and the numerical evaluation of unknown coefficients.

In this paper we outline a general numerical method to determine the slow flow of a viscous fluid

in a finite wedge geometry. We shall confine our attention to wedge angles α < αcrit so that we may

expect an eddy structure. To illustrate the method we consider a stationary wedge that is bounded

by a circular arc whose centre, O, coincides with the wedge vertex. The slow flow is driven by the

1Liron & Shahar (1978) and Blake (1979) have demonstrated that eddies can be induced for Stokes flow in the cylinder

geometry by introducing delta function (Stokeslet) forcing.
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steady rotation of the curved boundary about an axis through O. The method is, however, flexible and

easily adaptable to a variety of wedge-shaped Stokes flows: it will clearly cope with the flow within a

triangle driven by the movement of one edge parallel to itself or the Stokes flow induced in a corner

due to a tooth-shaped conveyor belt. Our aim is to outline a general method, ideally suited to wedge

geometries, and, by investigating a particular case, obtain an insight into the eddy structure.

To resolve the Stokes flow we exploit the Moffatt eddy functions as a finite basis in a numerical

collocation scheme. There are considerable advantages in using the eddy functions in a numerical solu-

tion over methods employing either finite difference or finite element approaches. First and foremost,

the eddy functions all satisfy both the biharmonic equation and the boundary conditions on the wedge

walls. Consequently the coefficients in the collocation scheme only have to ensure that the velocity

boundary conditions are satisfied at discrete nodes on the rotating boundary: points within the re-

mainder of the flow domain will then be automatically accommodated2. Thus, importantly, since it is

known that the intensity of eddies decays exponentially towards the wedge vertex, our scheme avoids

any difficulties associated with resolving small quantities near the vertex. In addition, collocation

does not require lengthy calculation of grids and, unlike numerical adaptations of the biorthogonality

method, will be quickly and easily adaptable to different wedge angles and geometries such as those

described earlier.

The honing contact between wedge and circular boundary will clearly involve a discontinuity in fluid

velocity. A similar situation occurs both in the classic Taylor paint scraper problem (Taylor (1962))

where two semi-infinite planes are held in scraping contact and in the three-dimensional extension of

that problem, considered by Hills & Moffatt (2000), in which an inclined plane is honed by a rotating

lower plate. There is a question in all scraping problems of whether, physically, fluid leakage must occur

at the point of velocity discontinuity on the boundaries. But, if the gap between the planes is smaller

than the viscous penetration length, no fluid need escape. However the possibility of leakage and the

introduction of sources and sinks to satisfy mass conservation leads to many interesting extensions of

these problems. Consequences of a scraping (or honing) boundary condition are further discussed in

Hills & Moffatt (2000). The discontinuity in velocity will result in a Gibbs phenomenon at the point

of contact between the stationary and moving boundaries but will not cause any significant numerical

difficulties with the collocation scheme we set out in Section 3. Perhaps this is to be expected since

locally, where the wedge meets the circular arc, we have effectively two perpendicular plates scraping

2It is found to be numerically advantageous to replace the boundary condition requiring the radial velocity to van-

ish on the circular arc by the easily obtained condition that the curved boundary is a streamline. By continuity, the

streamfunction should have the same value as on the plates of the wedge.
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Figure 1: The geometry, parameters and coordinate system for the flow in a corner driven by a circular

boundary.

past one another; a special case of the Taylor paint scraper. Thus the Stokes streamfunction, valid

in the neighbourhood of this intersection, is known from the Taylor solution to be analytic. The

discontinuity in the boundary condition is entirely reflected by a pole of order one in the pressure field.

We find that our method is extremely robust. The essential flow character is strongly dictated by

the first few terms in the associated asymptotic sequence of Moffatt functions. Indeed, only a small

number of basis functions is necessary to generate an accurate solution and to reveal the eddy structure.

In particular, we determine as a function of the internal wedge angle the penetration of the induced

flow into the corner and suggest a plausible method of eliminating in practical applications eddies and

insular recirculation regions.

2 Problem formulation and basis functions background

We consider an incompressible, linearly viscous fluid, of kinematic viscosity ν ′, contained in the region

formed by a finite wedge of side R′ and internal angle 2α, that is in contact with a circular arc, radius

R′ with centre, O, at the vertex of the wedge. The fluid is maintained in two-dimensional steady

motion, with velocity field u
′, by the rotation of the curved boundary with constant angular speed Ω′

about an axis through O, perpendicular to the plane of the flow. We employ a plane polar coordinate

system (r′, θ), origin at O, in which the corner is symmetrically placed about the horizontal (θ = 0)

(see Figure 1). The flow within the fluid is assumed so slow that the Stokes equations apply and the

Reynolds number, Re = ΩR′2/ν ′ ≪ 1. Consequently, our analysis will apply to wedges of small radii,

small angular speeds or to very viscous fluids. It is convenient to work in terms of non-dimensional

variables r, u defined in terms of the characteristic length R′ and speed Ω′R′ by

r = r′/R′
u = u

′/Ω′R′. (2.1)
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Moreover, the incompressibility of the fluid and the two-dimensional nature of the flow allows us to

formulate the governing equations in terms of a dimensionless streamfunction, ψ(r, θ), as

u = −r−1∂ψ/∂θ êr + ∂ψ/∂r êθ, (2.2a)

∇4ψ = 0, (2.2b)

where ∇2 denotes the standard second order, two-dimensional Laplacian operator in the (r, θ)-variables

and êr, êθ are the usual polar base vectors.

The velocity boundary conditions on the wedge and the circular boundary require3

∂ψ

∂r
=
∂ψ

∂θ
= 0 on θ = ±α, (2.3a)

∂ψ

∂r
= 1,

∂ψ

∂θ
= 0 on r = 1, (2.3b)

and it is immediately clear that there is a discontinuity in the azimuthal component of the velocity

(∂ψ/∂r) at the point of contact (r = 1, θ = ±α). As we have previously mentioned, such discontinuities

are not unknown (see Hills & Moffatt (2000) for a fuller discussion). Locally the wedge and circular

boundary contact can be modelled as two scraping perpendicular planes. Taylor (1962) showed that in

such a configuration the velocity discontinuity at the contact leads to an analytic streamfunction but,

at the contact point, the pressure has a singularity of order one.

It is well known that in plane polar coordinates the biharmonic equation (2.2b) possesses, in the

terminology of Barenblatt (1996), similarity solutions of the second kind with a streamfunction, ψ,

having the form rλfλ(θ). The particular cases when λ = 0, 1, 2 respectively correspond to a source at

the origin, a linearly scraping plate (Taylor (1962)) and a closing hinge. Moffatt (1964) considered a

sub-class of these similarity solutions that also satisfy homogeneous boundary conditions on the walls

of the infinite wedge. We shall limit our discussion to the case of a symmetrically placed wedge when

(2.3a) applies. The streamfunction will then be even in θ and the boundary condition leads to the

eigenvalue equation (see Moffatt (1964), eq. (3.5))

sin 2(λ− 1)α = −(λ− 1) sin 2α, (2.4)

for the determination of the parameter λ. The solutions of (2.4) depend crucially upon the wedge

geometry and Moffatt showed that there exists a critical half-angle, αcrit. For wedge half-angles α >

αcrit the values of λ are real and eddies do not appear but, for α < αcrit the eigenvalues are complex

and lead to the complex streamfunction Ψ (see Moffatt (1964), eq. (3.9)),

Ψ = Arλ

(
cos λθ

cos λα
−

cos(λ− 2)θ

cos(λ− 2)α

)
. (2.5)

3Note that the problem is now entirely formulated in terms of non-dimensional variables and the flow pattern will be

solely dependent upon α. Only the intensity and size of the flow are given by the physical parameters.
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The (even) similarity solution that we are concerned with has αcrit ≃ 73◦. We can use the linearity of

the Stokes equation to construct the physical solution ψ as the real part of (2.5), that is ψ =R (Ψ).

The nature of the physical solution is immediately deducible from (2.5). In particular, if we approach

the vertex of the wedge along a ray (θ = constant), we see that when λ is complex, the sign of the

streamfunction alternates. Evidently there is an infinite cascade of recirculation regions whose intensity

decays exponentially as the vertex is approached. We shall concentrate on wedge angles α < αcrit, for

which the eigenvalues are complex and eddies do appear.

It is convenient to order the sequence {λk} by increasing real part so that

1 <Rλ1 <Rλ2 <Rλ3 < · · · . (2.6)

Moffatt & Duffy (1980) have illustrated the dependence of these eigenvalues on the half-angle α (see

Moffatt & Duffy (1980), Figure 7). We note that Rλk > 1 so that the velocity given by (2.2a) is

necessarily finite as we approach the vertex. In fact, Moffatt (1964) showed that 1 + (2k − 1)π/2α <

R λk < 1 + (2k − 1/2)π/2α. Again, using the linearity of (2.2)-(2.3), we can construct a physical

(real-valued) streamfunction satisfying (2.2b) and (2.3a) as

ψ =R

{ N∑

k=1

Akr
λk

(
cos λkθ

cos λkα
−

cos(λk − 2)θ

cos(λk − 2)α

)}
. (2.7)

where the Ak are arbitrary complex constants and N can take any positive integer value (the general

solution corresponding to N → ∞). The eigenvalue ordering (2.6) we have imposed ensures that (2.7)

is asymptotic in r as we approach the wedge vertex.

The general solution (2.7) forms the foundation of our method of solving the circularly-bounded

wedge problem (2.2b)-(2.3b). Essentially we recognise that the Moffatt eddy functions, ordered as

above, are an ideal basis for our wedge geometry. Not only do they automatically satisfy the conditions

on all but one boundary, but the contributions from each term in the basis is exponentially decreasing

as we approach the corner. The principal contribution stems from the basis function associated with λ1.

In the next section, we shall use a truncated series and will determine the coefficients Ak by numerical

collocation. The eddy functions we use need not form a complete set for all permissible wedge flows but

we obtain a physically realistic solution approximating all dynamic requirements from the set spanned

by these eddy functions. In order to judge the accuracy of our approximate solution we need only

monitor how closely the solution matches the boundary conditions on the circular arc.
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3 The numerical scheme and results

Our collocation scheme for determining the physical streamfunction ψ uses for a given value of N a

series of the form (2.7). The coefficients Ak (k = 1, 2, . . . N) in (2.7) are complex and will each require

two constraints to resolve our series approximation to the wedge flow. The constraints are obtained

by satisfying the conditions on ψ at discrete (collocation) points on r = 1. Formally, at any point

on the arc we have two boundary conditions and so will need a total of N collocation points where

the required components of velocity are strictly enforced. We shall choose these points in the positive

range4 θ ∈ [0, α). The finite series that constitutes our collocation function is, by construction, even

in θ so that we will tacitly satisfy the boundary conditions at either 2N − 1 (if θ = 0 is a collocation

point) or 2N boundary points over the whole arc. A measure of the effectiveness of our scheme will be

the number, N , of basis functions we require in the series in order to obtain a physically satisfactory

solution everywhere.

Let us briefly consider the positioning of the collocation points. For simplicity the points will be

equally spaced. The intrinsic symmetry of the finite series with respect to θ means that ∂ψ/∂θ will

always vanish at θ = 0. Thus, although we may use points on the boundary corresponding to

r = 1, θ = kα/N, k = 0, 1, 2, . . . , N − 1 (3.1)

for the boundary condition on ∂ψ/∂r, were we to use these points also for ∂ψ/∂θ we would be lacking

one condition. A possible method to overcome this shortfall would be to employ the collocation set

r = 1, θ = kα/(N + 1), k = 1, 2, . . . , N. (3.2)

But there is another approach. The circular boundary is a streamline. In fact, by continuity, the

streamfunction has the same value on the arc as on the wedge walls and we may replace the condition

on ∂ψ/∂θ given in (2.3b) by explicitly specifying ψ. Our alternative set of boundary conditions can

therefore be written as

ψ(1, θ) = 0 and ∂ψ/∂r(1, θ) = 1. (3.3)

Numerical comparison of schemes which employed the set (3.2) for the determination of either i) both

derivatives ∂ψ/∂r, ∂ψ/∂θ or ii) ∂ψ/∂θ alone (with ∂ψ/∂r obtained using (3.1)), with our alternative

boundary conditions applied at (3.1) showed that (3.3) was the most effective way to determine coef-

ficients. Far fewer basis functions are needed to obtain an accurate solution under this method and

we shall therefore, henceforth, adopt the boundary conditions (3.3) on ψ and ∂ψ/∂r at the collocation

4The cases θ = ±α must be excluded due to the discontinuity in fluid velocity at these points.
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points of (3.1). There is a heuristic argument to support the use of this alternative boundary con-

dition. The condition ∂ψ/∂θ = 0 attempts to make ψ constant without explicit knowledge of what

that constant should be: the constant will follow from numerical continuity. However, adopting the

alternative form of the boundary condition we explicitly specify the constant (ψ = 0). Exploiting the

symmetry and the fact that the streamfunction vanishes on the wedge walls, we have that ψ = 0 at

2N+1 points on the arc corresponding to θ = kα/N with k = −N, . . . ,N . Thus, from Rolle’s theorem,

the streamfunction will necessarily have N turning points on the upper half-arc where ∂ψ/∂θ = 0.

For a given half-corner angle, α, we determine the firstN eigenvalues λ1, . . . , λN satisfying (2.4). We

then determine the complex constants Ak from the 2N simultaneous linear equations resulting from the

boundary conditions of (3.3) at the collocation points (3.1). Of course, in general, the streamfunction

will not vanish at points in between the collocation points and this will physically correspond to a mass

flux across the boundary. We monitor, therefore, the accuracy of our solutions by a plot of ψ(1, θ). In a

plot of streamlines in the region
(
r ≤ 1, θ ∈ [−α,α]

)
a non-vanishing ψ on r = 1 will manifest itself by

broken streamlines at this boundary. It is worth reiterating that our solution automatically satisfies all

physical requirements in the remainder of the wedge and it is sufficient to ensure an adequate treatment

of the circular boundary.

We now set out the results for two representative wedges with half-wedge angles α = 15◦ and

α = 30◦. In both cases as few as twenty terms (N = 20) yields an accurate, physical solution but

for purposes of comparison and understanding the structure of the composite eddy picture we include

some intermediate cases.

3.1 Half-wedge angle α = 15◦

We list in Table 1 the real and imaginary parts of the first twenty eigenvalues from equation (2.4) for

α = 15◦ and in Table 2 we set out the series coefficients of (2.7) for the four cases N = 1, 5, 10, 20. The

coefficients are determined from the set of simultaneous equations arrived at by applying the boundary

conditions of (3.3) at the collocation points. We observe that the real parts of the λk increase

rapidlywith k, in accordance with the bound given by Moffatt (1964). Therefore we can see that as

we approach the vertex of the corner (r ≪ 1) the series (2.7) will very quickly become dominated by

the initial term of the series. A second observation concerns the constants Ak. Their values appear

remarkably constant as we increase the number of terms N in the series. This is not a universal feature

of the method of collocation (coefficients can be volatile) but it seems to suggest that the initial terms

of the series are also essentially dominant on r = 1; the later terms act as corrections.

In Figure 2 we show for the cases N = 1, 5 and 20 the streamlines inside the wedge. In each case

8



Ordered Eigenvalues of equation (2.4): λk = pk + iqk

k pk qk k pk qk k pk qk k pk qk

1 9.063 4.203 6 69.776 8.093 11 129.863 9.284 16 189.899 10.013

2 21.467 5.837 7 81.802 8.398 12 141.872 9.454 17 201.904 10.130

3 33.613 6.693 8 93.822 8.661 13 153.880 9.610 18 213.908 10.241

4 45.691 7.281 9 105.838 8.892 14 165.887 9.754 19 225.912 10.345

5 57.741 7.730 10 117.852 9.098 15 177.893 9.887 20 237.916 10.444

Table 1: The first twenty ordered eigenvalues of equation (2.4) relating to a wedge with half-angle

α = 15◦

N=1

(0.4327, 0.4144)

N=5

(0.5628, 0.5369) (0.2456, 0.2607) (0.1405, 0.1911) (0.0532, 0.1396) (-0.0196, 0.3390)

N=10

(0.5613, 0.5349) (0.2436, 0.2507) (0.1521, 0.1719) (0.1099, 0.1344) (0.0840, 0.1140)

(0.0630, 0.1021) (0.0400, 0.0933) (0.0099, 0.0788) (-0.0216, 0.0407) (-0.0204, 0.0039)

N=20

(0.5610, 0.5347) (0.2419, 0.2495) (0.1496, 0.1686) (0.1076, 0.1281) (0.0840, 0.1038)

(0.0691, 0.0878) (0.0587, 0.0767) (0.0510, 0.0687) (0.0449, 0.0629) (0.0396, 0.0586)

(0.0347, 0.0556) (0.0297, 0.0534) (0.0243, 0.0517) (0.0178, 0.0502) (0.0098, 0.0483)

(-0.0004,0.0445) (-0.0126,0.0364) (-0.0240, 0.0202) (-0.0233, -0.0032) (-0.0055, -0.0047)

Table 2: The complex pairs (ak, bk) of Ak (= ak + ibk) for a wedge of half-angle α = 15◦. The

coefficients Ak, k = 1, 2, . . . , N , are to be read horizontally.

contours were chosen which intersected the axis θ = 0 at even intervals in order to describe the whole

geometry. However, since each contour cuts the axis of symmetry twice their second intersection cannot

be governed and so the overall appearance is not uniform. But the plots do not give a measure of flow

intensity. The eddy cells, described by Moffatt (1964), are clear and, interestingly, the sizes vary very

little between plots. The main difference between the three plots that make up Figure 2 occurs in the

vicinity of the boundary r = 1. The top plot has numerous broken streamlines (indicative of a mass

flux). However, for N = 20, there are no broken streamlines and the solution is physically acceptable.

For this value of N the eddies are centred on the symmetry axis at r = 0.2, 0.4, 0.9, with the respective

values of ψ being5 −0.7× 10−7, 0.6× 10−4, −0.047. The intensity, therefore, decreases as we approach

the corner with the sense of circulation in adjacent cells alternating.

5These intensities are in agreement with the magnitudes found in studies of eddies in similar geometries such as those

by Moffatt (1964) and Liu & Joseph (1977).
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a)

b)

c) . . . . . .

. . . . . .

. . . . . .

Figure 2: Streamline plots of the principal eddies in an infinite sequence that decrease in size towards

the wedge vertex. We plot the finite series (2.7) for a corner of half-angle α = 15◦ in the cases a)

N = 1, b) N = 5, c) N = 20. The case N = 1 demonstrates the dominance of the first term of the

series but the broken streamlines show that the boundary condition is not completely satisfied.

As a further check on the solutions, we display in Figure 3 the streamfunction, ψ, on the boundary

r = 1 across the full range6 θ ∈ [−α,α]. Case (c) confirms that, to within numerical error, ψ substan-

tially vanishes on the arc r = 1. The only places where we have any significant deviation are at the

extremities θ = ±α where there is clearly a manifestation of the Gibbs phenomenon.

Qualitatively, at the resolution of Figure 2, the flow substantially consists of three cells of rapidly

decreasing dimension. The streamline ψ = 0 is a streamline of separation, marking the boundary

between adjacent cells and is the only streamline to intersect the wedge boundary. The streamfunction

is of opposite signs in adjacent cells (recall ψ changes sign infinitely often as we approach the vertex) so

that the circulation in adjacent cells has opposite sense. A characteristic feature of the eddy structure

6The scale in Figures 3 (a)–(c) is not uniform.
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θ
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Figure 3: Plot of the finite series (2.7) evaluated on r = 1 for the cases a) N = 1, b) N = 5, c) N = 20.

The deviation in (c) near α = 15◦ is due to the discontinuity in velocity at the honing contact.

Ordered Eigenvalues of (2.4): λk = pk + iqk

k pk qk k pk qk k pk qk k pk qk

1 5.059 1.952 6 35.392 3.909 11 65.433 4.505 16 95.451 4.869

2 11.246 2.778 7 41.404 4.061 12 71.438 4.589 17 101.453 4.928

3 17.314 3.208 8 47.414 4.193 13 77.442 4.667 18 107.455 4.983

4 23.351 3.502 9 53.422 4.309 14 83.445 4.739 19 113.457 5.035

5 29.375 3.727 10 59.428 4.412 15 89.448 4.806 20 119.459 5.085

Table 3: The first twenty ordered eigenvalues of (2.4) relating to half-corner angle α = 30◦

is that the fluid in each cell may never travel into an adjacent cell and is trapped within. Therefore

the proportion of the fluid nearest the vertex beyond the principal cell is an interesting property and

is discussed more fully in the final subsection.

3.2 Half-wedge angle α = 30◦

To understand the influence of wedge angle size we consider the corner angle α = 30◦. The eigenvalues

of (2.4) are listed in Table 3. As before, the real part of λk increases rapidly so that the later terms of

the series will again quickly become dominated by the first as we approach the corner: the contribution

of these terms will be most influential near r = 1. Again an accurate physical solution is obtained

for N = 20. In Figure 4 we plot streamlines of the wider angled wedge. Substantially the picture is

the same: there are characteristic alternating eddies separated by streamlines ψ = 0 which intersect

the wedge boundary wall. But here the principal eddy is much more dominant. The centres of the

two largest eddies are now approximately at positions r = 0.16 and 0.8 and the proportion of fluid

11



Figure 4: Streamline plot for the flow in a corner of half-angle α = 30◦ for the finite series (2.7) with

N = 20.

outside the principal eddy is reduced. In other words, the flow penetrates the corner to a greater extent

supporting the intuitive notion that the wider the geometry the further the external flow can enter.

3.3 Eddy penetration vs. half-wedge angle α

Let us return to a general wedge angle 2α and quantify the extent to which the flow pattern penetrates

the corner. An obvious measure of this feature is the position (r = d1) on the axis of symmetry of

the intersection of the dividing streamline nearest the circular boundary. We also measure the second

intersection (r = d2) of the dividing streamline but any closer to the vertex the flow is extremely weak.

Figure 5 shows the variation of the distances d1 and d2 with angle 2α (0 ≤ α ≤ αcrit). In the limit

α → 0 both d1, d2 tend to one: both distances are non-dimensionalised and the flow cannot enter the

corner7. As the wedge angle increases the distances d1, d2, decrease rapidly: for α = 15◦, d1 = 0.45,

d2 = 0.22 and for α = 30◦, d1 = 0.2, d2 = 0.04. The limit of both d1 and d2 must be zero as α

approaches αcrit.

The level of flow penetration into a corner is likely to be an important concern in the design of

physical applications and, from Figure 5, the confining effects of eddies on the fluid can be countered

by making angles as wide as possible. Clearly, if eddies are to be avoided completely, one method

is to ensure that any corner angles are always greater than the critical angle, αcrit, determined by

7We may also think of the limit α → 0 as representing the flow between two infinite parallel plates. An infinite sequence

of eddies is formed, each of finite diameter, whose size in proportion to the ‘corner’ is negligible.

12



2α
18016014012010080604020

di

1

0.8

0.6

0.4

0.2

0

Figure 5: Plot showing the distance from the vertex of the first and second intersections of the streamline

ψ = 0 with the axis θ = 0 , d1 and d2 respectively, against total wedge angle 2α.

Moffatt (1964): there are no eddies for α > αcrit. But, this is not always a practical solution and

there is an alternative approach that is suggested by the contour plots of Figures 2 and 4. If the

geometry of a corner is modified so that its boundaries now coincide with the dividing streamline

between the largest and second largest eddy, the Stokes flow in the new corner will take the form of a

single circulation (unchanged from the original streamfunction) and the main flow will penetrate fully

to all the boundaries.
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