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ABSTRACT

The spontaneous expressive interpretation of melodic templates
is a fundamental concept in flamenco music. Consequently, the
automatic detection of such patterns in music collections sets the
basis for a number of challenging analysis and retrieval tasks. We
present a novel algorithm for the automatic detection of manually
defined melodies within a corpus of automatic transcriptions of
flamenco recordings. We evaluate the performance on the exam-
ple of five characteristic patterns from the fandango de Valverde
style and demonstrate that the algorithm is capable of retrieving
ornamented instances of query patterns. Furthermore, we discuss
limitations, possible extensions and applications of the proposed
system.

1. INTRODUCTION

Flamenco is a rich music tradition from the southern Span-
ish province of Andalucıa. Having evolved from a singing
tradition, the vocal melody remains the main musical ele-
ment, accompanied by the guitar, rhythmical hand-clapping
and dance. Gómez et al. (2016) mention, among others,
the frequent appearance of glides and protamenti, sudden
dynamic changes in volume and a small pitch range of
less than an octave, as key characteristics of the flamenco
singing voice. For a more detailed description of the genre,
we refer to Gómez et al. (2014) and Gómez et al. (2016).

Flamenco singing is largely improvisational, in particu-
lar with respect to melody: during a performance, a melodic
skeleton or a set of prototypical patterns are subject to spon-
taneous ornamentation and variation. Consequently, the
automatic detection of modified instances of a given me-
lodic sequence is a crucial step to a number of music in-
formation retrieval tasks. For example, most characteristic
melodies are uniquely bound to a particular singing style.
Consequently, detected melodic patterns provide impor-
tant indications towards the style of an unknown record-
ing. Furthermore, flamenco recordings often contain vari-
ous songs and the location of pattern occurrences can assist
the structural segmentation of a song. Moreover, the occur-
rence of common melodic patterns across tracks is crucial
to characterising similarity among melodies which exhibit
structural differences (Volk & van Kranenburg, 2012).

Given the absence of musical scores, related approaches
in the context of flamenco (Pikrakis et al., 2012) but also
in other non-Western oral music traditions (Gulati et al.,
2014) have focused on the retrieval of melodic patterns
from the fundamental frequency (f0) contour. The high
degree of detail of this representation does not only in-
crease computational complexity but is also prone to errors

arising from micro-tonal ornamentations. In this study, we
present a novel approach which operates on symbolic rep-
resentations obtained from an automatic transcription sys-
tem (Kroher & Gómez, 2016).

We provide a detailed technical description of the me-
thod in Section 2. The experimental setup is described in
Section 3 and results are given in Section 4. We conclude
the paper in Section 5.

2. METHODOLOGY

The core of our method is a modification of the well known
Needleman-Wunsch (NW) algorithm (Needleman & Wun-
sch, 1970) from the area of bioinformatics. The NW al-
gorithm was proposed as a global alignment method of
molecular sequences. The term global alignment refers to
the fact that when two sequences of discrete symbols are
being matched, the objective is to align them from the be-
ginning to the end, without omitting parts around the end-
points. During the alignment procedure, gaps are allowed
to be formed. In the original NW formulation gaps are
not penalized. Given two sequences of discrete symbols,
the original NW algorithm can be formulated as a dynamic
programming method that creates a dot matrix and finds
the best path of dots on it, i.e., a path of dots (nodes) of in-
creasing index that accumulates the largest score (number
of dots). The dot matrix (also known as similarity grid) is
formed by placing one pattern on the x-axis and the other
one on the y-axis. An element of the dot grid is set equal
to “1” if the symbols corresponding to its coordinates co-
incide.

The problem that we are dealing with in this paper can-
not be treated as a global alignment task because our goal
is to detect occurrences of a pattern in a significantly longer
stream of notes. We are therefore proposing a modification
of the NW algorithm, that preserves its fundamental char-
acteristics and adds the capability to retrieve a ranked list
of subsequences from an automatic transcription. Each re-
trieved result aligns, in some optimal sense, with the given
prototype pattern. The novelty of our aprroach lies in the
fact that it introduces a systematic way to: (a) extract itera-
tively occurrences of the reference pattern, ranked with re-
spect to similarity score, (b) embed endpoint constraints in
the NW method, (c) ensure invariance to key changes be-
cause the alignment takes place on the sequences of inter-
vals derived from the pitch sequences that are being matched,
and, (d) formulate transition costs between nodes of the
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similarity grid as a function of intervalic differences. At
a first stage, the proposed method operates on pitch se-
quences only, ignoring note durations. At a second stage,
the results are refined by removing alignments that corre-
spond to excessive local time-stretching. In the rest of this
paper, we will use the abbreviation mNW for the proposed
method.

In order to describe mNW, let A = {ai; i = 1, 2, . . . , I}
and P = {pj ; j = 1, 2, . . . , J} be the pitch sequences
of the automatic transcription and the search pattern, re-
spectively, where the ai’s and pi’s are pitch values in some
symbolic (MIDI-like) format. We therefore ignore note du-
rations at this stage. Sequence P is manually defined and
reflects our musicological knowledge of the pattern to be
detected. For example, pattern “A” of our experimental
setup (Section 3) is represented by the following sequence
of MIDI values:

{64, 67, 65, 64, 67, 65, 65, 64, 62, 60, 58, 57}

We now define that,

δP (j2, j1) = pj2 − pj1 , j2 > j1,

is the music interval formed between the j1-th and j2-th
note (pitch value) of the prototype pattern, which are not
necessarily adjacent, and, similarly

δA(i2, i1) = ai2 − ai1 , i2 > i1,

is the music interval formed between the i1-th and i2-th
note (pitch value) of the automatically generated transcrip-
tion. Therefore, the proposed mNW algorithm seeks a sub-
sequence (chain) of ai ’s, of increasing index (not neces-
sarily adjacent), such that the resulting sequence of inter-
vals matches in some optimal scoring sense, a sequence of
intervals formed by a subsequence of pi ’s of increasing
index (also not necessarily adjacent).

To solve this problem from a dynamic programming
perspective, A is placed on the vertical axis and P on the
horizontal one, forming a scoring grid, S. Let

(i, j), i = 1, 2, . . . , I, j = 1, 2, . . . , J

be a node on this grid, which aligns the i-th note of A with
the j-th note of P , and let S(i, j) be the respective accu-
mulated alignment score. The grid is initialized by setting
the elements of the last row and column of the grid equal
to zero, i.e., S(I, j) = 0, j = 1, 2, . . . , J and S(i, J) =
0, i = 1, 2, . . . , I .

We then proceed row-wise, decreasing the row index
and examining the nodes of each row at decreasing col-
umn index, which stands for a standard zig-zag scanning
procedure. The accumulated score, S(i, j), at node (i, j),
where i < I and j < J is computed as follows:

h = max{S(i+ 1, k) + γ(δA(i+ 1, i), δP (k, j));

k = j + 1, . . . , j +Gh}, (1)

v = max{S(m, j + 1) + γ(δA(m, i), δP (j + 1, j));

m = i+ 1, . . . , i+Gv}, (2)

S(i, j) = max{h, v}, (3)

where parameters Gh and Gv are positive integers that de-
fine the search radius for successors on the horizontal and
vertical axis, respectively, and function γ(.) is defined as:

γ(x, y) =





1, if x = y,

−1, if | x− y |= 1,

−∞, if | x− y |> 1,

The first two equations impose that the best successor of
node (i, j) resides either on the next row (the (i + 1)-
th row) or on the next column (the (j + 1)-th column).
Parameters Gh and Gv control the horizontal and verti-
cal gap length, respectively. In other words, they control
how many pitch values can be skipped horizontally or ver-
tically when searching for the best successor of the node.
Function γ rewards equal intervals with a score equal to
+1, penalizes with −1 any pair of intervals that differ by
one semitone and forbids intervalic differences larger than
a semitone to take place, hence the −∞ penalty. After a
node has been processed, the coordinates, (iB , jB), of its
best successor, are stored in a separate matrix, Ψ, where
Ψ = {ψ(i, j) = (iB , jB); i = 1, . . . , I, j = 1, . . . , J}.

After the whole grid has been scanned, the highest ac-
cumulated score on the first E1 columns is selected and
forward tracking on matrix Ψ reveals the best alignment
path. However, this path will be rejected if it does not
end in one of the last E2 columns of the grid. Therefore,
parameters E1 and E2 stand for the endpoint constraints
of the alignment procedure, i.e., we permit that at most
E1−1 and E2−1 notes are omitted from the left and right
endpoints of the prototype pattern, respectively. If a path
is rejected, we repeat from the second highest score until
a valid path is detected or until all nodes of the first E1

columns have been processed as candidate starting points
of the best path. Obviously, if we want the algorithm to
return two pattern occurrences, the procedure will be re-
peated until a second path is revealed, and, of course, this
can be readily extended to address any number of desired
occurrences.

Table 1 presents the best alignment result between pat-
tern A of the experimental setup and a Valverde transcrip-
tion. In this example, two notes are skipped from the auto-
matically generated transcription (5th and 10th note from
the first column) and this is shown with one inserted gap
(symbol “-”) per deleted note in the second column, in the
respective rows. It is also worth observing that the matched
subsequences are performed in different keys.

The example is further illustrated in Figure 1, where
the dotted lines connect aligned notes and the two black
notes are the ones that have been skipped on the automatic
transcription sequence.

After the first processing stage has been completed, the
obtained results are subsequently filtered at a second stage.
More specifically, in order to restrain note duration vari-
ability, we compute the sequence of inter-onset differences
of the notes of a formed path on both axes and discard any
path for which at least two ratios of aligned inter-onset du-
rations exceed a predefined stretching threshold (equal to
3 or 1/3 in our study). This is equivalent to imposing, at a
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Table 1: Best alignment result of pattern A against an au-
tomatically generated Valverde transcription: symbol “-”
marks a skipped note (gap insertion).

transcription query pattern (A)

pitch duration pitch duration

60 0.28 64 0.50
63 0.32 67 0.50
61 0.15 65 0.50
60 0.32 64 0.50
59 0.13 - -
63 0.25 67 0.48
61 0.18 65 0.50
61 0.68 65 1.00
60 0.22 64 0.50
60 0.62 - -
58 0.16 62 0.12
56 0.17 60 0.15
54 0.17 58 0.14
53 0.19 57 0.61

time [seconds]
0 0.5 1 1.5 2 2.5 3 3.5 4

M
ID

I 
p
it
c
h

52
53
54
55
56
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aligned subsequence

time [seconds]
0 1 2 3 4 5 6

M
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I 
p
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c
h

56
57
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59
60
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62
63
64
65
66
67
68

query pattern

Figure 1: Illustration of the alignment shown in Table 1.

post-preocessing stage, a local time-warping threshold.

3. EXPERIMENTAL SETUP

We demonstrate the performance of the proposed algorithm
in a query-by-example task. We aim at detecting occur-
rences of manually annotated MIDI sequences in a corpus
of automatic transcriptions of polyphonic flamenco record-
ings. In this study, we focus on fandangos de Valverde
(FV), a singing style belonging to the family of the fan-
dangos (Kroher et al., 2016).

Like most fandangos, the fandangos de Valverde are bi-
modal in a structural sense (Fernández-Marı́n, 2011): solo
guitar sections are set in flamenco mode, a scale with the
diatonic structure of the Phrygian scale but with the dom-
inant and sub-dominant located on the second and third
scale degree, respectively (Figure 2). Singing voice sec-
tions are set in major mode and modulate only in the last
verse back to flamenco mode.

Having evolved from Spanish folk tunes, songs belong-
ing to this style are based on a particular melodic skele-
ton which, during interpretation, is subject to melodic and
rhythmic modifications in terms of an expressive perfor-

Figure 2: The flamenco mode: The tonic is located on the
first, the dominant on the second and the sub-dominant on
the third scale degree.

mance. The skeleton is composed of five distinct patterns
(Figure 3) which occur in the form A-B-A’-C-A-D (where
A’ refers to a variant of A).

In this study, we use as query patterns manual tran-
scriptions of the five phrases constituting the fandango de
Valverde skeleton (Figure 3) and aim to retrieve their orna-
mented and modified occurrences in automatic transcrip-
tions of real performances. To this end, we gathered a
collection of 20 fandangos de Valverde taken from com-
mercial recordings. The cante100 dataset (Kroher et al.,
2016) was added as noise to the collection: The contained
100 accompanied flamenco recordings cover a variety of
singing styles and serve as a representative sample of fla-
menco music. None of the tracks contained in the cante100
dataset belong to the fandangos de Valverde style. For each
of the 120 tracks of the resulting collection we generated
an automatic note-level transcription of the vocal melody
using the algorithm described by Kroher & Gómez (2016).

The retrieved results are evaluated by means of the pre-
cision of the top 5 (P@5) and top 10 (P@10) ranking. A
query result is considered relevant if its origin is a fan-
dangos de Valverde recording and the detected melodic se-
quence corresponds to the query phrase.

pattern�A

pattern�A'

pattern�B

pattern�C

pattern�D

Figure 3: MIDI representations of the query patterns.

4. RESULTS

Table 2 gives the quantitative evaluation of all five query
patterns and the top 5 results for pattern A are shown in
Figure 4. It can be seen that the percentage of relevant
melodic sequences in the top ranked results is significantly
higher for patterns A, A’ and B compared to patterns C and
D. In particular, for patterns A’ and B, all of the 5 highest
ranked results are relevant with respect to the query, while
for pattern D only one relevant result is retrieved.

A reasonable explanation for this behaviour is related
to the amount of variation a pattern is subjected to during
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performance: Pattern D, referred to as caı́da in flamenco
terminology, constitutes the end phrase and, at the same
time, the musical ”highlight” of the interpretation. Dur-
ing this phrase, the melody modulates from major mode
to flamenco mode and resolves in the Andalusian cadence.
Consequently, singers tend to apply more expressive re-
sources, which result in a higher performance variance.
Within a lesser extent, the same applies to pattern C, where
a high degree of ornamentation, in particular prolongation
through a sequence of grace notes, tends to appear during
the last two bars. Four examples of manual MIDI tran-
scriptions of caı́das are shown in Figure 5 in order to high-
light observed performance variation, free of possible tran-
scription errors. Furthermore, automatic transcriptions are
particularly prone to errors in the end of the singing voice
section, since the guitar accompaniment tends to signifi-
cantly increase in volume. As a result, notes belonging to
the singing voice melody might be missed and guitar notes
might be transcribed instead.

Nevertheless, it can be seen from Figure 4 that the al-
gorithm is capable of detecting ornamented and modified
occurrences of a query pattern. It is also interesting to
note that the obtained results contain a similar melodic se-
quence that was found in a recording of a different style
(Figure 4 (b)), a Bulerı́a. Despite this result being rated as
not relevant in this task, it nevertheless demonstrates the
potential of this tool for uncovering hidden structures and
similarities in the context of large mining studies.

Table 2: P@5 and P@10 measures among queries.

query P@5 P@10

A 80% 60%
A’ 100% 70%
B 100% 70%
C 40% 40%
D 20% 10%

(a) rank 1 (FV) (b) rank 2 (Bulería)

(c) rank 3 (FV) (d) rank 4 (FV)

(e) rank 5 (FV)

Figure 4: MIDI representations of the top 5 results for
query pattern A.

5. CONCLUSIONS

We presented an algorithm for melodic pattern retrieval
based on automatic transcriptions and demonstrated ex-

(a) Raya

(c) Toronjo

(b) Melvez

Figure 5: Manual transcriptions of pattern D for three
singers: (a) A. Raya, (b) M. Vélez and (c) P. Toronjo.

amples of the capabilities and limitations of the system.
Future applications are expected to include the incorpora-
tion of the algorithm in a framework for unsupervised pat-
tern detection, the retrieval of typical ornamentations from
music recordings and the detection of short melodic guitar
fragments (falsetas) in the melody of the singing voice.
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