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ABSTRACT 

It is estimated that there are between seven and ten thousand Irish traditional dance 

tunes in existence. As Irish musicians travelled the world they carried their repertoire 

in their memories and rarely recorded these pieces in writing. When the music was 

passed down from generation to generation by ear the names of these pieces of music 

and the melodies themselves were forgotten or changed over time. This has led to 

problems for musicians and archivists when identifying the names of traditional Irish 

tunes. 

 

Almost all of this music is now available in ABC notation from online collections. An 

ABC file is a text file containing a transcription of one or more melodies, the tune title, 

musical key, time signature and other relevant details.  

 

The principal aim of this project is to define a process by which Irish music can be 

compared using string distance algorithms. An online survey will then be conducted to 

assess if human participants agree with the computer comparisons. Improvements will 

then be made to the string distance algorithms by considering music theory. Two other 

methods of assessing musical similarity, Breandán Breathnach‟s Melodic Indexing 

System and Parsons Code will be computerised and integrated into a Combined 

Ranking System (CRS). An hypothesis will be formed based on the results and 

experiences of creating this system. This hypothesis will be tested on humans and if 

successful, used to achieve the final aim of the project, to construct a similarity matrix. 

 

Key words: Irish music, string distance algorithm, similarity matrix, combined 

ranking system, music comparison, edit distance 
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1. INTRODUCTION 

"Music - The one incorporeal entrance into the higher world of knowledge 

which comprehends mankind but which mankind cannot comprehend." 

Ludwig van Beethoven (Forbes 1992, p.465) 

 

“A musician can do no better than pass it on.” 

Philip Lavin, 1977 

 

The purpose of this chapter is to provide an introduction to this dissertation. Section 

1.1 outlines the project area while Section 1.2 provides a background to Irish 

traditional dance music. The research problem is presented in Section 1.3 and Section 

1.4 explains the intellectual challenge. The research objectives and methodology are 

summarised in Sections 1.5 and 1.6 respectively. Section 1.7 outlines the resources 

needed in order to complete this dissertation and its scope and limitations are described 

in Section 1.8. Section 1.9 concludes with a description of how this dissertation is 

organised. 

1.1 Overview of project area  

It is estimated that there are between seven and ten thousand Irish traditional dance 

tunes in existence (Duggan 2009, p.ii). As Irish musicians travelled the world they 

carried their repertoire in their memories and rarely recorded these pieces in writing. 

When the music was passed down from generation to generation by ear the names of 

these pieces of music and the melodies themselves were changed or forgotten over 

time.  

 

Most of this music is now available in ABC notation (Walshaw 1995). An ABC file is 

a text file with an .abc extension containing such details as the tune title, a transcription 

of one or more melodies, musical key and time signature. For the first phase of the 

project a corpus of tunes will be analysed using string distance algorithms and used to 

form a similarity matrix identifying the relationships between different tune parts. 
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Some programming will be required in order to pre-process the databases of ABC 

format tunes in order to ensure that reliable data is used. Further programming will be 

required in order to process the databases using string distance algorithms and to form 

a similarity matrix. 

 

In the second phase of the project, quantitative research will be performed by testing 

the results of string distance comparisons on humans, some who have little or no 

knowledge of Irish music and some who are considered experts. 

 

An hypothesis will then be formed based on experiences and results from the first two 

phases of the project. Based on these results an improved process will be defined and 

tested on humans before using this process to construct a similarity matrix. 

1.2 Background to Irish traditional dance music  

The author has over thirty years experience playing Irish traditional music on tin 

whistle, concert flute and uilleann pipes. The author also has an interest in computing 

and computer programming. This project gave the author an opportunity to combine 

both of these interests in order to analyse the relationships between Irish dance tunes. 

 

Traditional Irish dance music is the native folk music of Ireland. It is played on 

instruments such as harp, tin whistle, flute, fiddle, uilleann pipes, button accordion, 

concertina, banjo, piano and harmonica. Bones, bodhrán and spoons are percussion 

instruments commonly used to accompany the music. Customarily, traditional Irish 

music was played at Céili dances, at weddings, in village houses and other celebrations 

in order to accompany dancers. In modern times, it is common for musicians to play 

Irish music in public houses without dancers for their own entertainment or for the 

entertainment of others. 

1.2.1  Types of Irish traditional dance tune  

Several thousand pieces of music called “tunes” comprise the corpus of Irish 

traditional music. There are a number of types of dance tune including reels, single 

jigs, slip jigs, slides, polkas, hornpipes, waltzes, schottische‟s, strathspey‟s and 

barndances. Each of these types have a different rhythm to suit the dance - reels, 
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hornpipes, schottische‟s, strathspey‟s and barndances are in either 2/4 or 4/4 time 

signatures. Polkas are in 2/4, waltzes in 3/4, single, double and treble jigs are in 6/8, 

slip jigs in 9/8 and slides in 12/8. A time signature refers to the number of notes per 

beat and the length of those notes. A reel in 4/4 has four quarter notes per beat, a polka 

in 2/4 has two quarter notes per beat, a jig in 6/8 has six one eighth notes per beat 

while slip jigs in 9/8 and slides in 12/8 have nine and twelve one eighth notes per beat 

respectively. 

1.2.2  Musical keys in Irish tradit ional music  

Irish music is usually played in a variety of musical keys, limited only by a particular 

instrument.  For example, a standard non-keyed uilleann pipe chanter or keyless flute 

is not fully chromatic and does not have the full range of notes a fiddle or piano would 

have. This means that tunes in certain keys are difficult (but not impossible) to play on 

certain instruments and this led to the adoption of modal scales such as dorian and 

mixolydian into Irish traditional music. The following table represents a non-

exhaustive list of common keys played on concert pitch instruments such as tin 

whistle, flute and uilleann pipes in Irish traditional music; 

 

Table 1: Musical keys common in Irish music (Larsen 2003, p.25) 

D Major (Ionian) 

G Major (Ionian) 

A Major (Ionian) 

D Mixolydian 

G Mixolydian 

A Mixolydian 

E Dorian 

A Dorian 

B Dorian 

E Minor (Aeolian) 

A Minor (Aeolian) 

B Minor (Aeolian) 

1.2.3  Tune Structure  

All types of traditional Irish dance tune consist of parts that are usually repeated. A 

simple reel or a jig would usually have a “first” or “low” part (containing notes mostly 

in the lower octave) and a “second” or “high” part (containing notes mostly in the 
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higher octave). This is not always true as there are tunes that are played “single” where 

their parts are not repeated and also some tunes consisting of seven or more parts. It is 

common to refer to “first” or “second” parts as parts A and B respectively and this is 

the notation used throughout this dissertation. In a two part tune it is normal to play 

part A twice followed by part B twice and repeat this pattern a number of times. This 

table shows how some tunes are commonly constructed. 

Table 2: Some example of tune parts and repetition patterns 

Tune name Part Repetition Pattern  

Morrison‟s Jig AABB 

AABB 

AABB 

The Boys of the Lough Reel AABB 

AABB 

AABB 

The Lark in the Morning Jig ABCD 

ABCD 

The Musical Priest Reel ABC 

ABC 

The Gold Ring Jig ABCDEF 

ABCDEF 

The Glass of Beer AB 

AB 

AB 

  

It is normal for tunes to be played in “sets”. For example, a jig would normally be 

followed by one or more jigs that are also repeated appropriately.  Table 3 is an 

example of how a set of jigs might be repeated; 

Table 3: A set of jigs 

Morrison‟s Jig AABB x 3 

The Lark in the Morning ABCD x 2 

The Leitrim Fancy AABB x 3 
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Before the introduction of radio, television and satisfactory public transport 

infrastructure in Ireland, Irish music was regionalised with unique styles developing 

over time in various areas of Ireland. For example, County Donegal in the North West 

of Ireland is associated with fiddle music, Sliabh Luachra in the South West is 

associated with polkas and slides and North Connaught in Western Ireland is 

associated with a particular style of flute playing. 

1.2.4  Traditional Music Collections  

For the most part of this and the last century the majority of Irish musicians could not 

read staff notation and they learned the majority of their music by ear. Throughout 

history a number of respected collectors have catalogued Irish music in order to 

preserve it. 

 

 

Figure 1: An Irish jig called Paddy O’Rafferty recorded in staff notation 

 

Edward Bunting (1773-1843) collected and published three collections - A General 

Collection of the Ancient Irish Music, 66 tunes, (1796), A General Collection of the 

Ancient Music of Ireland (1809) and The Ancient Music of Ireland, 165 airs, (1840) 

(Bunting 1969). In 1855 George Petrie published The Petrie Collection of the Ancient 

Music of Ireland (Petrie 2002).  

 

Captain Francis O‟Neill a policeman living in Chicago, USA published four 

collections O'Neill's Music of Ireland in 1903 containing 1,850 tunes (C. F. O'Neill 

1979), The Dance Music of Ireland  in 1907 containing 1001 tunes (F. O. &. J. O'Neill 

1995), 400 tunes arranged for piano and violin in 1915 and finally Waifs and Strays of 

Gaelic Melody in 1922 containing 365 tunes (O‟Neill 1980).  
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Brendán Breathnach collected more than 7,000 tunes in his lifetime and published five 

collections entitled Ceol Rince na hÉireann Cuid I in 1963 (Breandán Breathnach 

1963), Ceol Rince na hÉireann Cuid II in 1976 (Breandán Breathnach 1976), Ceol 

Rince na hÉireann Cuid III in 1985 (Breandán Breathnach 1985), Ceol Rince na 

hÉireann Cuid IV in 1996 (Breandán Breathnach 1996), Ceol Rince na hÉireann Cuid 

V in 1999 (Breandán Breathnach 1999). Brendán Breathnach‟s collections are 

discussed further in Section 2.2. 

1.2.5  Electronic Collections  

A number of collectors such as Bill Black (Black 2010), Henrik Norbeck (Norbeck 

1996) and Nigel Gatherer (Gatherer 2009) have transcribed traditional collections and 

their own collections into electronic formats and made them freely available online. 

ABC notation is now preferred over midi as ABC is text based and can be sight read 

easily by musicians. Unlike staff notation, ABC notation is already in an electronic 

format and may be processed by computer systems without the need to convert it into 

another format. 

 

Websites such as http://www.thesession.org (Keith 2010) facilitates the archiving of 

tunes by allowing its members submit their tune transcriptions to its database. The 

tunes available from this collection are of varying quality because they are user 

submitted and do not always comply with the ABC notation specification. The 

Session.org website hosts over 9,340 tunes as of April 2010.  

 

A more detailed list of freely available electronic collections of Irish traditional music 

is available in Section 1.7.4 

1.3 Research problem 

The principal aim of this project was to evaluate and improve string distance 

algorithms for the purpose of identifying similarities in the corpus of Irish traditional 

music. A secondary aim of this project is to define a process by which a Music 

Similarity Matrix for Irish traditional dance music could be constructed. 
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Since the 1840‟s when Ireland was stricken by famine, its people emigrated to 

England, Europe and the Americas bringing their music, dance and culture with them. 

The Irish diaspora handed down the music as they inherited it, aurally. Because the 

music was usually stored in the memory of the musician this led to a number of 

problems; 

 

 The names of tunes were sometimes forgotten or changed. 

 The melodies of tunes were sometimes forgotten or changed. 

 Irish music teachers did not always recall tune melodies correctly. 

 Students did not always learn the tune exactly as it was taught to them. 

 

As a result, some tunes have multiple names; some tunes have different versions of the 

melody or completely different melodies. Others share some of the same parts or have 

phrases that are common in other tunes. Brendán Breathnach, a highly respected 

collector of Irish music recognised that while he was collecting tunes from any given 

musician, he could have collected it previously under a different name or that its 

melody could be similar to another he had collected earlier. The following quotation 

from Breathnach‟s first published collection, Ceol Rince na hÉireann Cuid I, describes 

the problem quite well. It lists one traditional Irish tune, “The Little Yellow Boy”, also 

known as “Galloway Tom”, that shares its name with two Scottish tunes with different 

melodies. The melody of “The Little Yellow Boy” or a version of it appears in three 

Irish tune collections under ten different names; 

 

“27. An Buachaillín Buí [The Little Yellow Boy[4]]: I took the name from the 

version published by O'Farrell in the "Collection of National Irish Music for 

the Union Pipes" (c.1797). He has two versions in the "Pocket Companion". 

O'Farrell also called this air Galloway Tom, but if he did it has no relation to 

the Gallua Tom in the Straloch manuscript or with the Galloway Tom in the 

"Scots Musical Museum" (325). O'Neill has six versions in the "Music of 

Ireland", four of them unknown to himself, one would think: The Little Yellow 

Boy (706); Galway Tom (744/5); The Thrush's Nest (855); The Goat's Horn 

(926); and The Spotted Cow (983). He has two settings in the "Dance Music of 

Ireland", Galway Tom (34) and The Spotted Cow (199). Joyce calls it Galway 
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Tom (J ii, 806). Nowadays it is usually called The Lark in the Morning, but it is 

also called Come in the Evening, The Kelso Races, The Welcome and A 

Western Lilt.” 

(Breandán Breathnach 1963) 

1.4 Intellectual challenge 

The first challenge was to obtain clean ABC data, pre-process and store it in a state 

that was suitable for conducting string comparison experiments. Because some online 

databases contained user contributed ABC notation it was not always correctly 

transcribed or did not comply with ABC notation rules. Unreliable data had to be 

identified automatically and discarded leaving only clean, validated data in the 

electronic corpus. 

 

The author had access to about twelve thousand five hundred tunes in ABC format 

with each of these tunes having at least two parts. If each part was to be compared with 

each other part in the entire corpus this means that there would be n(n-1) comparisons 

where n is the number of parts in the corpus. A corpus of tunes having 12,500 tunes 

with at least two parts each would therefore result in 624,975,000 comparisons (25,000 

x 24999). The second challenge was to implement algorithms in Java and to design 

large, efficient databases capable of storing millions of results that could be queried at 

will using Structured Query Language (SQL) (Chamberlin & Boyce 1974). 

 

The third challenge was to identify existing string distance algorithms that could 

potentially be used or adapted in order to identify similarities between strings of ABC 

notes. This involved an investigation of the features, advantages and disadvantages of 

numerous string distance algorithms and then assessing if they possessed any qualities 

that could be adapted and applied from a music theory perspective. 

 

The fourth challenge was to present the results in a meaningful way.  

 

An overall intellectual challenge is to show that computer algorithms can be used to 

find similarities between melodies in Irish traditional music. 
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1.5 Research objectives 

The following objectives have been achieved throughout the dissertation and 

contributed to the overall outcome: 

 

 To identify and evaluate suitable string distance algorithms for the purpose of 

conducting comparisons between sequences of musical notes.  

 To improve suitable string distance algorithms by implementing features 

unique to musical theory. 

 To test what is meant by a similarity in the context of traditional Irish music. 

The author felt that the people best positioned to decide similarities in Irish 

music are the musicians playing Irish music. A survey of both accomplished 

musicians and non-musicians was conducted in order to validate or disprove 

the results of computerised experiments. 

 To construct a Music Similarity Matrix (MSM) for the corpus of Irish 

traditional dance music. 

1.6 Research methodology 

The research methodology used during the project is described in this section. Both 

primary and secondary research was conducted throughout the duration of the 

dissertation. The secondary research consisted primarily of the following; 

 

 Identifying collections of Irish traditional tunes in ABC notation that were 

suitable for computerised comparison. 

 Literature review of 

o Online ABC databases 

o Integrated Development Environments (IDE‟s) 

o Java and C Sharp programming discussion forums 

o Journals 

o Articles 

o White papers 

o Various string distance algorithms 

o Emails from world experts 
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 Interviews with a world expert, Dr. Bryan Duggan 

 

The primary research consisted of the following; 

 

 Conducting computerised experiments in order to compare ABC tune parts 

using five string distance algorithms – Levenshtein (Levenshtein 1966), Jaro-

Winkler (W. E Winkler 1999), Semex (K Lemström & Perttu 2000) and two 

new algorithms based on Parsons Code (Parsons 1975) and the Melodic 

Indexing System developed by Breandán Breathnach (Brendan Breathnach 

1982). 

 Conducting two online surveys of experts and non-experts in Irish traditional 

music to test if humans felt that computer selected pairs of tune parts were 

similar or different. 

 Conducting quantitative analysis of the survey. 

 

By conducting experiments on transcribed tunes in ABC notation, a process was 

formulated whereby computer algorithms could be used to identify similarities 

between Irish traditional music tune parts. The process was further refined by altering 

the string distance algorithms in order to take account of features unique to Irish music 

and an hypothesis was formed. In order to prove or disprove this hypothesis the results 

were tested on experts and non-experts in the field of Irish traditional music. 

 

The following four phases were planned and carried out in order to complete the 

project successfully; 

1.6.1  Phase one – Collection of tunes in ABC notation  

A number of ABC collections exist online and these are described in greater detail in 

Section 1.7.4. These ABC files were processed automatically in order to separate them 

into tune parts and imported into a relational database for further processing. 

1.6.2  Phase two - Conduct programming experiments  

Phase two involved the evaluation of various Integrated Development Environments 

(IDE‟s) and short-listing them. This phase also involved the evaluation of string 
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distance algorithms suitable for music comparison and implementing them within a 

framework for conducting music comparison experiments. 

1.6.3  Phase three – Survey of experts and non-experts  

After tune pairs had been selected using Breathnach‟s Melodic Indexing System  and 

the Levenshtein (Levenshtein 1966) and Jaro-Winkler (W. E Winkler 1999) 

algorithms, the original ABC tune pairs were converted from ABC text notation to 

mp3 audio files and included in an online survey. Expert and non-expert participants 

were invited to complete the survey and their choices were recorded. 

1.6.4  Phase four -  Conclusions drawn from analysis of survey  

In order to evaluate the hypothesis it was necessary to analyse how the computer 

selected tune pairs were viewed by experts and non-experts completing the survey. 

Because music similarity can be very subjective, careful and empirical analysis of the 

results was necessary.  

1.6.5  Phase five – Construction of a Similarity Matrix  

Once the analysis in phase four was completed a process was designed whereby strings 

of musical notes could be compared by combining scores from multiple algorithms. 

This process was tested on humans in a second online survey and then used to 

construct the similarity matrix for Irish traditional music. 

1.7 Resources 

1.7.1  Library Facilit ies  

An extensive literature review was carried out in order to complete this project. A 

number of world experts have published relevant articles on music comparison and 

their knowledge contributed greatly to the success of this project. 

1.7.2  Programming Environment and Database Server  

Various Integrated Development Environments (IDE‟s) were obtained and a shortlist 

of possible solutions was created; 
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 Microsoft Visual Studio 2008 Professional Edition and Microsoft SQL Server 

2008 Developer Edition. Both applications are available to eligible students at 

no charge through the Microsoft Dreamspark program (Microsoft Corp. 2010). 

 Eclipse Java IDE with MySql Database Server, also free of charge. 

 Netbeans Java IDE with the integrated Derby database server, also available 

free of charge. 

 

Netbeans and Derby (Sun Microsystems 2010) were chosen over the other two 

solutions in order to complete the first four phases for three main reasons; 

 Java implementations of the Levenshtein, Jaro-Winkler and Lemström 

algorithms were available and this would have the effect of  reducing the 

amount of development, testing and debugging time if a Java IDE were used 

(Microsoft Visual Studio 2008 does not support Java). 

 Having a database server integrated within the IDE meant that a complete 

solution would be in place after one simple install without the need to install or 

configure a separate database server. 

 Familiarity with Netbeans meant that less time would be spent learning how to 

use the development environment leaving more time for designing, 

programming and running experiments. 

 

Because of performance problems with the Netbeans / Derby platform, the final phase 

of the project (the completion of the similarity matrix) was completed using Microsoft 

Visual Studio 2008 and Microsoft SQL Server 2008 Developer Edition. Moving to this 

platform also allowed the author to harness the power and simplicity of using custom 

Structured Query Language (SQL) functions to perform string distance comparisons. 

1.7.3  Access to a supervisor  

Weekly meetings with a supervisor were a necessary resource for the successful 

completion of this project. The supervisor assigned to this project was Dr. Pierpaolo 

Dondio whose insightful guidance and advice contributed immensely to the successful 

completion of this project. 
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1.7.4  Providers of databases of Irish tunes in ABC Notation  

 The Irish Traditional Music Archive 

 The Session.org (Keith 2010)  

 Henrik Norbeck (Norbeck 1996) 

 O‟Neills Music of Ireland ("1850"), Dance Music of Ireland ("1001") and 

Waifs and Strays of Gaelic Melody (Chambers 2010b) 

 Ceol Rince na hÉireann Cuid I, II, III, IV (Black 2010) 

 Johnny O'Leary of Sliabh Luachra (Black 2010) 

 Nigel Gatherers ABC Collection (Gatherer 2009) 

 John Chambers Tune Finder (Chambers 2010a) 

1.7.5  Two groups of survey participants  

In order to test if computer selected traditional Irish tune parts sound similar, a survey 

of non-experts and experts in the field of Irish music were surveyed and their 

responses recorded. 

1.8 Scope and limitations  

The source ABC data contains melody, time signature, musical key, tune title and 

other pertinent information. No information on playing style exists in the ABC files. 

This project will therefore be limited to assessing similarity based primarily on 

melody. 

 

A large percentage of ABC files used as the source data for this project were 

transcribed by humans of differing musical ability and did not conform absolutely to 

the ABC notation specification. Resource constraints limited the amount of data that 

could be corrected manually and as a result most of the problematic data was discarded 

as it was unreliable. 

 

The corpus of Irish traditional music contains “exact melody matches” where the 

names are different but the melodies identical.  It also contains “exact name matches” 

where the dance tunes have identical names but different melodies. ABC notation 

already supports multiple tune titles in its specification (Walshaw 1995). Although 

exact name and melody matches would form part of a music similarity matrix this 

aspect of the matrix was not focussed on as identifying them does not present a 

significant challenge. 
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Musical similarity in the context of this project would have the following 

characteristics; 

 

 Pairs of tune parts where the melodies are not exact matches. 

 Sequences of musical notes that contain common phrases or sub-sequences. 

 Where a musical similarity can be expressed as a value between 0 and 1. 

 

Finally, this project is not concerned with how humans perceive melodic similarity 

merely that humans can compare and identify instances where music sounds alike. 

1.9 Organisation of the dissertation  

This dissertation comprises of an introduction and six other chapters as follows; 

 

 Chapter 2 explores the meaning of music comparison and how researchers and 

music collectors have defined systems in order to measure or express how 

similar or different two musical pieces are. The work of the renowned music 

collector and world expert, Breandán Breathnach is described along with the 

system he devised in order to prevent duplicate Irish traditional dance tunes 

from entering his collections. This chapter concludes with a brief introduction 

to ABC notation (a specification for transcribing music in text format) and an 

overview of why ABC was chosen for use in this project.  

 Chapter 3 begins by explaining what a string distance algorithm is and 

continues by defining what “similarity” or “dissimilarity” means in the context 

of music and in particular, Irish traditional dance music. Some music theory 

considerations are also presented along with theories of how these concepts 

might be implemented within a string distance algorithm. The Levenshtein, 

Jaro-Winkler and Lemström Semex algorithms are then explained in detail with 

examples of how each might be used.  

 Chapter 4 outlines three contributions to the body of knowledge in the string 

distance domain. The first contribution concerns the weighting of melodic 

sequence variations and how this technique can be used to identify two very 

similar pieces of music that would not otherwise have been identified. The 
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second contribution relates to the weighting of short note prefixes that 

sometimes precede Irish tunes. Breandán Breathnach, a prominent collector of 

Irish traditional music recognised the importance the start of a musical piece 

has in relation to identifying a tune while William E. Winkler, an academic 

working for the US Census Bureau recognised the extra significance that 

matching a rarely occurring item had in correctly matching two records. How 

these techniques could be applied to Irish music is then examined. Possible 

improvements to the Levenshtein algorithm are also presented and some 

conclusions drawn. Contribution three, a method of using ranking to assess the 

accuracy of a similarity match is then illustrated. 

 Chapter 5 presents the advantages of Breandán Breathnach‟s Melodic Indexing 

System contrasted with some disadvantages and tradeoffs. Some proposed 

improvements are outlined before contribution 4, the computerisation of the 

Melodic Indexing System, is presented. Contribution 5 concerns how sorting 

index codes numerically is not feasible for different length index codes and 

offers a solution to the problem. 

 Chapter 6 presents an overview of the data used for the purposes of performing 

string distance and music comparison experiments. The design issues that were 

faced while constructing experiments and surveys are discussed before an 

overview of each experiment and survey is given. Results of the experiments, 

surveys and their analysis conclude the chapter. 

 Chapter 7 gives an overview of the research domain and describes the research 

performed during this project. Summaries of the contributions to the body of 

knowledge are then given. Synopses of the experimentation and evaluation 

phases are outlined before the scope of the project limitations are discussed. 

The research objectives achieved are also presented before future work and 

research areas are identified. Finally, some conclusions are presented before 

ending the chapter. 
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2. MUSIC COMPARISON TECHNIQUES 

2 Introduction 

The purpose of this chapter is to review methods of assessing music comparison other 

than by using string distance algorithms. Two techniques for assessing music similarity 

are presented, Breandán Breathnach‟s Melodic Indexing System (MIC) introduced in 

the 1960‟s and Parsons Code, invented by Dyers Parsons in 1975. The question of 

what exactly a similarity means in the context of Irish traditional music is explored. 

2.1 What is music comparison? 

In the context of this project, music comparison using string distance algorithms, 

Parsons Code or Breathnach‟s MIC means a measure of similarity that can be 

expressed as a value between 0 and 1 with 0 meaning completely different and 1 

meaning an exact match. In all cases, the result of a comparison was normalised so that 

the results of each method could be compared.  

 

For example, the Levenshtein algorithm returns the number of edits it would take to 

convert one string into another by using character insertions, deletions and 

substitutions. Section 3.2 outlines a more detailed explanation of the Levenshtein 

algorithm. The Levenshtein algorithm could return a result of 0, 1 or any number 

greater than 1. In order to express this result as a normalised score between 0 and 1 the 

number of Levenshtein edits was divided by the length of the longest string and 

subtracted from 1. Comparing two identical strings of notes returns an edit distance of 

0 resulting in a normalised value of 1 as 1-(0/string length) = 1. Because the maximum 

number of edits returned is equal to the length of the longest string, two completely 

different strings of notes will return a result of 0 as 1-(string length/string length) = 0. 

Any edit distance between 1 and the length of the longest string will result in a 

proportionate value between 0 and 1. 

 

By normalising the results of each algorithm so that they all return a result between 0 

and 1 this allows for the comparison of the algorithms themselves. It also enables the 
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rankings of the results of each algorithm and these can be used to generate standard 

deviation scores for each comparison. 

 

Music comparison of audio recordings is a popular research topic with various 

techniques being developed by researchers in order to solve diverse problems related 

to the field of Music Information Retrieval (MIR) such as comparing music using sung 

queries (Hu & R. B Dannenberg 2002), retrieving music using graph invariants (Pinto 

& Haus 2007), improving music retrieval by compacting musical signatures (Cui et al. 

2008), computing approximate repetitions in musical sequences (Cambouropoulos et 

al. 2001), creating models of musical similarity by using self-organising maps 

(Toiviainen & Eerola 2002) and using entropy based fingerprints to identify musical 

performances (Camarena-Ibarrola & Chávez 2006).  

 

A variety of string distance algorithms have been used to compare pairs of sequences 

of notes, the most popular of which is the Levenshtein method (Levenshtein 1966). 

This project uses the Levenshtein algorithm with implementations of the Jaro-Winkler 

algorithm (W. E Winkler 1999), Lemström and Perttu‟s Semex algorithm (K 

Lemström & Perttu 2000), Parsons Code (Parsons 1975) and a new algorithm based on 

Breandán Breathnach‟s work, implemented and improved by the author, to perform 

comparisons on fragments of Irish traditional dance tunes called “parts”. 

2.2 Brendán Breathnach 

Brendán Breathnach (1912-1985) was a respected collector and cataloguer of Irish 

traditional music. He collected more than 7,000 tunes in his lifetime while working as 

a civil servant in the Department of Education and after he retired. He is most well 

known for his five volume collection, Ceol Rince na hÉireann Cuid I, II, III, IV & V 

(Breandán Breathnach 1963) two editions of which were published after his death. 

 

While editing the first volume of Ceol Rince na hÉireann in 1963, Brendán Breathnach 

recognised that he may have collected the same tune previously or that it may already 

be contained in other collections such as Captain Francis O‟Neill‟s Dance Music of 

Ireland – 1001 Gems (F. O'Neill 1907). Wanting to include only previously 
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unpublished tunes in his collection, he developed an indexing system specifically 

designed for Irish music similarity detection.  

 

 

Figure 2: Breandán Breathnach Melodic Indexing System. Source: Author 

Breathnach described his indexing system briefly in his article Between the jigs and 

the reels (Brendan Breathnach 1982, pp.43-48). The system was based on the theory 

that a tune could be identified from the first two bars, commonly referred to in musical 

terms as an “incipit”. Index cards were created for every tune in known collections and 

for newly collected and transcribed tunes. The index cards contained the following 

information; 
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Figure 3: An index card from the Breandán Breathnach Melodic Index for the tune “The 

Swallows Tail” (Brendan Breathnach 1982) 

 

1. The tune title 

2. Numerical series 

3. Code generated from the first two bars 

4. Staff notation of the first two bars  

5. The final note of the tune 

6. The source of the tune e.g. published collection 

7. Comments 

8. Audio recording of the tune 

 

Index cards were created for each tune in published collections and for tunes that were 

newly collected and transcribed. They were stored sequentially according to the code 

at 3 in Figure 3 above.  

 

The generation of the code is of particular interest to this project as it is transposition 

invariant. This means that tunes transcribed in different musical keys may be compared 

without the need for transposing to a common key. In order to calculate the code the 

final note must be ascertained. Usually, but not always, the final note of a tune will 

represent the key in which the tune is played. Using this final note as the tonal centre 
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of the tune, sequential notes preceding and following it are given values in steps of 1 

as in Figure 4 below; 

 

Figure 4: Assigning numerical values from a final note (Brendan Breathnach 1982) 

  

The final note “G” in the centre above is given a value of 1 with notes before and after 

it calculated appropriately. Notice that the “G” notes an octave above and below the 

final note appear on the right and left hand sides respectively also have a value of 1. 

This effectively gives all “G” notes the same value irrespective of the octave they are 

contained within. In other words, Breathnach is suggesting that low, middle and high 

“G” notes are equal and that the octave in which a note is played has no bearing on 

melodic comparison.  

Table 4: Note values calculated with a fundamental note of A 

Note A B C D E F G 

Value 1 2 3 4 5 6 7 

 

The notes contained in the first two bars of “The Swallows Tail” in Figure 3 are EACA 

EACA CDEF GEDB. Extracting the accented notes from this phrase yields ECEC 

CEGD. Accented notes are notes within the phrase that are dominant or stressed and in 

this case it means that every second note is dominant i.e. notes 1, 3, 5, 7, 9, 11, 13 and 

15. Substituting the values for the notes in Table 4 the code 5353 3574 is obtained. 

This code represents a transposition invariant signature derived from the melody of the 

tune that can be compared to other tune signatures. By ordering tunes numerically by 

code, duplicates are identified. 
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Figure 5: Two jigs from Breandán Breathnach's collection, Doctor O'Halloran and The 

Munster Lass. Source: Author 

Breathnach did not define a method to assign scores based on proximity to a match. A 

new system was developed in order to return similarity scores comparable to those 

returned by the string distance algorithms. Normalised scores were calculated by 

obtaining the distance from the match, dividing it by the number of tunes in the corpus 

(the maximum distance) and subtracting it from 1. The same method of calculating 

normalised scores was used for both Melodic Indexing and Parsons Code systems. 

This process is discussed in greater detail in paragraph 2.3.1. 

2.3 Parsons Code 

In 1975 Denys Parsons introduced a system of identifying musical pieces by 

comparing their melodic contour. The system is very simple and very effective. The 

first note of a piece of music is used as a point of reference and is represented as an 

asterix. Each subsequent note is given a value of U, D or R depending on if it is higher, 

lower or equal to the note preceding it. 

 

For example, the musical notes ABCCABDD would be represented as *UURDUUR. 

Parsons Code also has the advantage of being transposition invariant as comparison is 

not affected by the musical key of the piece. Like the earlier example, the musical 

notes BCDDBCEE are also represented by the same Parsons Code *UURDUUR. 



  Music Comparison Techniques 

  23 

 

This method of music comparison is easily understood by non-musicians and allows 

people to express a piece of music by contour relatively easily regardless of musical 

ability and without the need to recognise notes, musical key or time signature. 

 

In order to normalise Parsons Code it was necessary to calculate the Parsons Code for 

the whole corpus of tune parts and sort them alphabetically (by Parsons Code) as 

follows; 

 

 

Figure 6: Parsons Code Calculation and Distance 

2.3.1  Normalised Parsons Code Scores  

Once the corpus has been converted to Parsons Code a match to the search term can be 

identified. The search term in this case was the Parsons Code of the tune with ID 9253 

– “Down the Hill” in Figure 6 above. This exact match is given a distance of 0 with the 

next closest match in either direction given distances in ascending order. In the case of 

a closest match (as opposed to an exact match) a distance of 0 from the search term is 

also given. Figure 6 shows that the tune “Down the Hill”, ID 9253 is an exact match 

and has a distance of 0 from itself. The next closest match in each direction is given a 

distance of 1 greater than the preceding row i.e. tunes with ID 17437 and 19520 have a 

distance of 1, tunes with ID 16752 and 19092 have a distance of 2 and so on. This 

method of ranking rows of results has been termed MICRank for the purposes of this 

project. 
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In Figure 6 the search term is the Parsons code for tune ID 9253 i.e. 

*DDDURRRRDUUDUDU. The tune with ID 19520 is represented in Parsons Code as 

*DDDURRRDUUDDUUU and the tune with ID 17437 is represented as 

*DDDURRRRUDDDRRU. The search match is given a distance of 0 and the other 

two tunes are given a distance of 1.  

 

If these tunes were to be ranked in order of closeness instead of calculating distance 

they would be ranked as follows; 

 

1. *DDDURRRRDUUDUDU – ID 9253 

2. *DDDURRRRUDDDRRU – ID 19520 

3. *DDDURRRDUUDDUUU – ID 17437 

 

Note that the tune with ID 19520 is a closer match to the search term as the first 9 

notes are identical, compared with the first 8 notes of the tune with ID 17437. This 

method of ranking rows of results has been termed MICDenseRank. 

 

The same method of calculating normalised scores is used for the computerised 

versions of the Parsons Code and Breathnach‟s Melodic Indexing Systems. In the 

original Melodic Indexing System these two tunes would have been physical index 

cards either side of the matched tune, each a distance of 1 from it. Similarly, the code 

used to calculate proximity in this project returns equal distances from the match for 

these tunes.  

 

This possible inaccuracy in the way distance is calculated in the computerised versions 

of the Melodic Indexing System and Parsons Code was identified but not changed for 

two principal reasons; 

 

 The original intention was to mimic the original Melodic Indexing System. 

 Increasing the accuracy of the algorithm would negatively affect performance 

drastically.  
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Improving the precision of Parsons Code and Melodic Indexing System ranking has 

been identified as an area for further investigation, future work and development. 

 

In order to normalise distance from a match the following formula was used; 

 

distance) maximum / (distance -1  

Therefore an exact match in a corpus of 11944 tunes would have a normalised score of 

1, calculated as follows; 

11944) / (0 -1  

A tune with a distance of 5000 from a match would be calculated as follows; 

11944) / (5000 -1  

(0.418) -1  

0.582  

In the final version of the algorithm, normalised scores are calculated for all results in 

the corpus and ranked in order of score. 

2.4 ABC Notation 

Traditionally, most western music is written using staff notation which can be sight 

read by musicians. It consists of symbols that represent notes, rests, repetitions, 

musical key, time signature and other musical concepts written on a five line staff. As 

it is image based it does not lend itself to being as easily machine processed as the text 

based ABC notation.  
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Figure 7: Hanley's Tweed Reel in Staff Notation. Source: Author 

 

Music is also available in various electronic forms such as MP3 (Moving Picture 

Experts Group 1992), Windows Media Audio (WMA) and MIDI for example. 

However, none of these are text based. 

 

ABC Notation is a language designed by Chris Walshaw in 1995 to transcribe music 

in text notation (Walshaw 1995) . Title, musical key, time signature and musical notes 

are described using ABC Notation and stored in text files with an abc extension.  

Table 5: Paddy Keenan's Jig in ABC Notation 

X: 1 

T: Paddy Keenan's 

M: 6/8 

L: 1/8 

R: jig 

K: Edor 

D|EGA B2A |Bee B2A |GBB FAA |GFE FED  

EGA B2A| Bee B2A |GBB FAA |GEDE2D:|E| 

Bef gfe| fgf edB |AFF dAF |AB=c dBA|  
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Bef gfe| fgf edB |AFF dAF |FED E2:| 

 

Table 5 shows how Paddy Keenan‟s jig would be represented in ABC Notation using 

common fields X, T, M, L, R and K as outlined below; 

 

 X represents the sequence number of the tune in the abc file. ABC notation 

supports multiple tunes per file and each is numbered sequentially. 

 T represents the title of the musical piece. Multiple T fields may be specified 

within the ABC file representing the different titles a musical piece may have. 

 M is the measure or time signature of the piece. 

 L is the length of each musical note. 

 R is the type of tune e.g. reel, jig, hornpipe. 

 K represents the musical key of the tune. 

 

These header fields are followed by the musical notes of the tune. 

2.4.1  Why ABC Notation?  

Irish traditional music databases in ABC format were chosen for use in this project for 

the following reasons; 

 

 ABC notation is text based and lends itself to being easily parsed by computer. 

 ABC notation can easily be stored in a relational database. 

 Thousands of Irish traditional dance music tunes are freely available in the 

ABC format. 

 The ABC specification supports musical key, tune title, time signature and 

other fields necessary to perform string distance experiments. 

2.5 Conclusion 

This chapter began by exploring what music comparison is. It outlined how Parsons 

Code, invented by Denys Parsons in the 1970‟s, uses the concept of melodic contours 

to compare musical sequences. It explains how the Melodic Indexing System, 

designed by Breandán Breathnach in the 1960‟s, uses a transposition invariant code to 

assess the similarity of two pieces of music. This chapter also examined the 
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advantages and disadvantages of both methods. A method of calculating normalised 

scores for both systems was explained in detail. The accuracy of results rankings was 

identified as an area for future work and further development.  A brief introduction to 

ABC notation was given along with a short overview of why ABC notation was 

chosen for this project. 
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3. STRING DISTANCE ALGORITHMS 

3 Introduction 

There are numerous string distance algorithms available for a variety of purposes 

including DNA comparison and spelling checks for instance. These algorithms are 

normally used to calculate how similar or dissimilar two strings are. This chapter 

outlines what similarity means in the context of this project, some uses for music 

similarity and how music theory was considered when evaluating string distance 

algorithms. This chapter also looks at the work of three world experts, Levenshtein, 

Winkler and Lemström and how they use three different methods to calculate the 

distance between two strings of text.  

3.1 Choosing a suitable algorithm 

Many different string distance algorithms are available and were evaluated briefly 

before deciding on potential candidates for the purpose of conducting string distance 

experiments on musical data. These included algorithms such as the Levenshtein 

algorithm (Levenshtein 1966) which is used to measure edit distance between two 

strings, the Jaro-Winkler algorithm (W. E Winkler 1999) used in spell checkers to 

identify misspelled words, the Damerau-Levenshtein algorithm (Damerau 1964), a 

variation on the original Levenshtein algorithm that supports horizontal transpositions, 

Hamming distance (Hamming 1950), which measures the amount of substitutions it 

takes to transform one string into another of equal length and the SIA(M)ESE 

algorithm (Wiggins et al. 2002), a transposition invariant method of retrieving musical 

patterns in polyphonic musical databases. 

3.1.1  Definition of similarity 

In their paper, Cognitive Adequacy in the Measurement of Melodic Similarity: 

Algorithmic vs. Human Judgments (Muellensiefen & Frieler 2003, p.4), Müllensiefen 

and Frieler define a similarity measure as the mapping of the abstract space of two 

melodies on a value between 0 and 1. They also state that a similarity measure should 

be normalised and a melody mapped to itself should have a similarity of 1. 
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Humans do not always agree what similarity means in the context of music. Allan and 

Wiggins (Allan & Wiggins 2006) identified that listeners place significance on 

different features of music they regard as being important for the purposes of 

similarity. 

 

Holzapfel (Holzapfel & Stylianou 2010) proposes that a morphological approach 

utilising timbre, rhythmic and melodic characteristics of traditional music be used in 

the assessment of similarity. The matrix constructed in Section 6.4 uses such a 

morphological approach by combining four different methods of assessing similarity to 

return an overall similarity score. 

3.1.2  Uses of similarity measures  

Measuring similarity in music has numerous applications. Eerola et al. suggest that 

folk melodies can be classified and categorised by calculating the city block distance 

between statistical measures taken from each melody (Eerola et al. 2000). Amazon, 

eBay and other online retailers often use similarity algorithms to identify potential 

products to offer shoppers via a recommendation system. 

 

Similarity is also used in the context of law suits for the assessment of infringement of 

copyright or intellectual property theft (Cronin 1998). 

3.1.3  Music theory considerations  

Strings of musical notes have a different structure than strings containing DNA 

sequences or phrases of words, for example. Different features of string distance 

algorithms are more appropriate for evaluating how similar one sequence of musical 

notes is to another.  

 

While evaluating algorithms, particular attention was paid to those algorithms with 

features that could be applied to strings of musical notes. For example, the following 

features were identified in the Levenshtein, Jaro-Winkler and Lemström Semex 

algorithms; 
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 When comparing strings of musical notes, the Levenshtein algorithm returns a 

measure of how many edits it would take to convert one sequence of notes into 

another using insertions, deletions and substitutions i.e. adding, subtracting or 

replacing notes until a sequence of notes is converted into the target sequence 

of notes. 

 The horizontal transposition feature of the Jaro-Winkler algorithm allowed for 

the fact that notes could be played in different sequences (referred to as 

variations in Irish music). 

 It is common for Irish traditional dance tunes to have a few introductory notes 

before the melody is played. This feature of Irish music is similar to the 

concept of prefixes as described in the Jaro-Winkler algorithm. 

 The Semex algorithm was designed for the purpose of comparing strings of 

music notes. It allows for transposition invariant searches and also for 

searching for sub-sequences of notes. For these two reasons it was chosen to 

compare Irish traditional music tunes in ABC notation format.  

3.2 The Levenshtein Algorithm 

In 1965, the Russian academic Vladimir Levenshtein proposed a metric for calculating 

the distance between two strings (Levenshtein 1966). The article was first published in 

English in 1966. Levenshtein proposed that the distance between two strings of text 

could be measured by counting the minimum number of edits it would take to change 

one string into another using only insertions, deletions or substitutions. The following 

example illustrates how the word “goal” could become the word “post” using 

substitutions only. 

Table 6: Levenshtein substitution example 

Edit Distance Text strings 

0 G O A L 

1 P O A L 

2 P O A T 

3 P O S T 
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According to Levenshtein the edit distance between “goal” and “post” is 3. Table 7 

shows how the minimum edit distance between two words of different lengths can be 

calculated using substitutions and one insertion. 

Table 7: Levenshtein insertion example 

Edit Distance Text strings 

0 B A R K  

1 B A R K L 

2 G A R K L 

3 G R R K L 

4 G R R W L 

5 G R O W L 

 

As can be seen from the example in Table 7 the four character word “BARK” has an 

edit distance of 5 from the five character word “GROWL”. The character “L” was 

inserted after the character “K” in “BARK” at a cost of 1. Similarly, if calculating the 

edit distance in reverse, from “GROWL” to “BARK”, removing any character to turn 

“GROWL” from a five character word into a four character word would also have a 

cost of 1. 

 

Dynamic programming techniques are frequently used to construct computer 

algorithms for calculating Levenshtein distance between two strings of text. A two 

dimensional array is created equal in size to the product of the length of both strings. 

This array is then used to form a matrix with each location holding edit distance 

values. The costs of previous calculations are carried over to the next calculation.  

 

Table 8 shows how the edit distance between the text strings “Sunday” and “Monday” 

are calculated using a matrix. One substitution is required to change “S” to “M”, the 

cost of which is 1. This cost is carried over to the next comparison. One substitution is 

required to change “u” to “o”, also at a cost of 1. Therefore, the total cost of changing 

“Su” to “Mo” is 2. The comparison process continues until all locations have been 

calculated. The minimum Levenshtein edit distance is the value held in the bottom 

right cell of the matrix.  
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Table 8: Calculating Levenshtein edit distance using a matrix 

  S u n d a y 

 0 1 2 3 4 5 6 

M 1 1 2 3 4 5 6 

o 2 2 2 3 4 5 6 

n 3 3 3 2 3 4 5 

d 4 4 4 3 2 3 4 

a 5 5 5 4 3 2 3 

y 6 6 6 5 4 3 2 

 

While this process provides a mechanism for constructing implementations of the 

Levenshtein algorithm it is not very efficient for large strings as the number of 

comparisons and memory requirements increase with the length of the text strings. 

 

Table 9 shows an implementation by Chas Emerick (Emerick 2003) that is more 

efficient for larger string comparisons by using two single dimension arrays equal to 

the sum of 2 + the lengths of both strings instead of a much larger two dimensional 

array. 

Table 9: Java implementation of Levenshtein edit distance using dynamic programming 

techniques (Emerick 2003) 

public static int getLevenshteinDistance (String s, String t) { 

  if (s == null || t == null) { 

    throw new IllegalArgumentException("Strings must not be null"); 

  }  

   

  int n = s.length(); // length of s 

  int m = t.length(); // length of t 

   

  if (n == 0) { 

    return m; 

  } else if (m == 0) { 

    return n; 

  } 

 

  int p[] = new int[n+1]; 

  int d[] = new int[n+1]; 

  int _d[]; 

 

  int i; 

  int j; 
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  char t_j; 

 

  int cost; 

 

  for (i = 0; i<=n; i++) { 

     p[i] = i; 

  } 

   

  for (j = 1; j<=m; j++) { 

     t_j = t.charAt(j-1); 

     d[0] = j; 

   

     for (i=1; i<=n; i++) { 

        cost = s.charAt(i-1)==t_j ? 0 : 1; 

        d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1),  p[i-1]+cost);   

     } 

 

     _d = p; 

     p = d; 

     d = _d; 

  }  

 

  return p[n]; 

} 

 

The Levenshtein implementation in Table 9 was used to calculate the Levenshtein edit 

distances for the experiments in Section 6.2.4.  

3.3 The Jaro-Winkler Algorithm 

In 1971 Matthew A. Jaro introduced UNIMATCH (UNIversal MATCHer), a system 

of linking US census records that used the concept of weighting parameters in order to 

increase the confidence level in a possible census record match. The more unusual the 

data that is matched the less likely the match is accidental. For example, if two social 

welfare records match because they have the same surname, “Murphy” this match is 

more likely to be correct if some other unusual piece of information also matches such 

as a dependents name or date of birth (M. A Jaro 1971, pp.526-527).  

 

Five years later Jaro introduced a method of comparing strings that utilised insertions, 

deletions and transpositions (M. A Jaro 1976) and this was further refined in 1989 

when the U.S. Bureau of the Census processed records for the 1985 census of Tampa, 

Florida (MA Jaro 1989). 

 

In 1999, William E. Winkler, also of the U.S. Bureau of the Census claimed that a 

modified version of the Jaro distance metric showed a considerable improvement over 
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instances where exact character matching was used (W. E Winkler 1999). Winkler also 

claims that in a study of twenty string comparison techniques by C.D. Budzinsky, the 

Jaro distance metric was second best and the improved Jaro-Winkler version was best 

(Budzinsky 1991). The improved Jaro-Winkler algorithm was used in this project in 

order to carry out the experiments in Section 6.2.5. 

 

Both Jaro and Jaro-Winkler distances are expressed as values between 0 and 1. A score 

of 0 means that both strings are completely different and a score of 1 means that both 

strings are identical. Values between 0 and 1 indicate a measure of how similar strings 

of text are. 

 

The Jaro distance dj between strings s1 and s2 is calculated using the following 

formula; 
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Figure 8 : Jaro Distance Formula 

 

Where m is the number of matching characters, |s1| is the length of string 1 and |s2| is 

the length of string 2 and t is the number of transpositions. A transposition is a 

character match out of sequence within a distance of one less than half the length of 

the longest string. For example, the strings “there” and “tehre” have two transposition 

matches. The character “h” in position 2 in the string “there” matches the character “h” 

in position 3 in the string “tehre”. This transposition match has a distance of 1 and this 

is less than half the length of the longest string minus 1 (a distance of 1.5 in this case). 

Similarly, the character “e” in position 3 in the string “there” matches the character “e” 

in position 2 in the string “tehre”. The maximum distance for a transposition match to 

be valid may be expressed as; 
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Figure 9: Jaro Distance Transposition Formula 
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William E. Winkler‟s modification introduces the concept of weighted prefixes so that 

Jaro-Winkler distance dw may be expressed as 

 

))d1((dd jjw  p  

Figure 10: Jaro-Winkler Formula 

Where dj is the Jaro distance between two strings s1 and s2,   is the length of an 

identical prefix in string 1 and string 2 and p is the weight given for having a matching 

prefix. 

 

Given the text strings of musical notes “BEFGFEFGFEDBAFFDAFFEDEEE” and 

“BEFGFEFFFEDBBAFDAFFEDEEE” the Jaro-Winkler distance may be calculated 

as follows; 

Table 10: Matches & transpositions between two strings of notes 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

S1 B E F G F E F G F E D B A F F D A F F E D E E E 

S2 B E F G F E F F F E D B B A F D A F F E D E E E 

 m m m m m m m t m m m m t  m m m m m m m m m m 

 

The length L, of both strings, is 24. 

There are 21 matches m. 

There are 2 transpositions t. Character “A” in position 13 in string 1 is a transposition 

match for character “A” in position 14 in string 2. Character “F” in position 14 in 

string 1 is a transposition match for character “F” in position 8 in string 2. 

There is 1 non-matching character.  

Substituting these values into the formula in Figure 8, the Jaro distance is calculated as 

follows; 
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Figure 11: Jaro distance calculation 
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The Jaro distance is therefore 0.885 (correct to three decimal places). In order to 

calculate the Jaro-Winkler distance we substitute appropriate values into the formula in 

Figure 10. Figure 11 shows how the Jaro distance is calculated for the strings in Table 

10. Winkler suggests a maximum of 4 for the length of the common prefix l and a 

default value of 0.1 (up to a maximum 0.25) for the weight p (W. E Winkler 1999).  

 

  885.011.04885.0dw   

Figure 12: Jaro-Winkler distance calculation 

 

The Jaro-Winkler distance dw is therefore 0.931 (correct to three decimal places). 

 

The freely available Java implementation of the Jaro-Winkler algorithm by Lingpipe 

(Carpenter 2010) was used to conduct experiments in Section 6.2.5. 

3.4 The Lemström Semex algorithm 

In their paper SEMEX - An Efficient Music Retrieval Prototype, Kjell Lemström and 

Sami Perttu introduced fast and efficient bit-parallel algorithms for retrieving music 

that were transposition invariant (K Lemström & Perttu 2000). 

 

The Lemström Semex (Search Engine for Melodic Excerpts) algorithm accepts two 

parameters, a pattern to search for and a large string within which the search is 

performed. Both parameters accept arrays of integers which represent musical notes. 

The purpose of this algorithm is to find the longest common subsequence between a 

pair of musical sequences. This subsequence could be an exact match, a transposed 

match or an approximate match. According to Lemström and Ukkonen (K Lemström 

& Ukkonen 2000, sec.6), the longer a common subsequence is, the greater the 

similarity between both sequences. 

 

Table 11:  Lemström Semex Java method by Dr. Bryan Duggan 

public static float minEdSemex(int[] pattern, int[] text) 

    { 

        int pLength = pattern.length; 
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        int tLength = text.length; 

        int difference = 0; 

 

        int sc; 

 

        if (pLength == 0) 

        {return -1;} 

        if (tLength == 0) 

        {return -1;} 

 

        int[][] d = new int[pLength + 1][tLength + 1]; 

 

        // Initialise the first row and column 

        for (int i = 0; i < tLength + 1; i++) 

        {d[0][i] = 0;} 

        for (int i = 0; i < pLength + 1; i++) 

        {d[i][0] = i;} 

 

        for (int i = 1; i <= pLength; i++) 

        { 

            sc = pattern[i - 1]; 

            for (int j = 1; j <= tLength; j++) 

            { 

                int v = d[i - 1][j - 1]; 

                if (j - 2 < 0 || i - 2 < 0) 

                {difference = 1;} 

                else if ((text[j - 1] - text[j - 2]) != (pattern[i - 

1] - pattern[i - 2]))  

                {difference = 1;} 

                else 

                {difference = 0;} 

                d[i][j] = Math.min(Math.min(d[i - 1][j] + 1, d[i][j - 

1] + 1), v + difference); 

            } 

        } 

        int[] lastRow = d[pLength]; 

        int min = Integer.MAX_VALUE; 

        for (int i = 1; i < tLength + 1; i++) 

        { 

            int c = lastRow[i]; 

            if (c < min) 
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            {min = c;} 

        } 

        return min; 

 

    } 

 

Since Lemström and Perttu proposed the Semex prototype in 2000, Lemström has 

collaborated with other computer scientists doing research on the Longest Common 

Sequence (LCS) problem, most notably with Navarro and Pinzon in 2004 in an article 

entitled Practical algorithms for transposition-invariant string-matching (K. 

Lemström et al. 2005). In this article Lemström et al. propose improvements 

specifically designed to provide performance increases over classical distance 

algorithms. A branch and bound method of identifying transposition invariant 

sequences along with a bit-parallel algorithm capable of handling more complex sub-

sequences is presented. 

3.5 Conclusion 

This chapter outlined what a string distance algorithm is and explains what 

(dis)similarity means in the context of this project. This chapter explains that various 

algorithms were evaluated with regard to their suitability for calculating the distance 

between two strings of musical notes. Features that could be applied to strings of 

musical notes were identified. Finally, the Levenshtein, Jaro-Winkler and the 

Lemström Semex algorithms were explained in detail. 
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4. IMPROVED ALGORITHMS & A RANKING SYSTEM 

4 Introduction 

The purpose of this chapter is to outline three contributions to the body of knowledge 

in the field of music comparison using string distance algorithms. It shows how two 

features of the Jaro-Winkler string distance algorithm may be used to weight “out of 

sequence” musical notes (transpositions) and introductory notes (prefixes).  This 

chapter also outlines the basis for a ranking system that combines the results from 

multiple algorithms to give a single similarity score and standard deviation. 

4.1 Modifications to the Jaro-Winkler Algorithm for Irish music  

During the evaluation of string distance algorithms suitable for performing similarity 

comparisons on ABC notation data of Irish traditional dance tunes it became apparent 

that the Jaro-Winkler algorithm had two unique characteristics that could have a 

practical application towards identifying similar Irish music phrases. 

4.1.1  Horizontal Transpositions  

Unlike the Levenshtein algorithm, the Jaro-Winkler algorithm allows characters out of 

sequence to be transposed. The algorithm‟s scoring mechanism weights characters 

within a distance of half the length of the longest string minus 1. The formula to 

calculate the correct transposition distance can be seen in Figure 9. Transpositions are 

frequently used for identifying spelling mistakes as out of sequence characters are 

weighted higher than incorrect characters so that an incorrectly spelled word will score 

almost as high as the correctly spelled version of the word. Consider the following 

example; 

Table 12: Jaro-Winkler Transposition Example 

1 2 3 4 5 6 7 

I R L E A N D 

I R E L A N D 
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Table 12 shows how the letter “E” in position 3 of the word “IRELAND” is mapped to 

“E” in position 4 of the word “IRLEAND”. Similarly, “L” in the correctly spelled 

word is mapped to the L in the incorrectly spelled word. A comparison between the 

Levenshtein and Jaro-Winkler algorithms shows that the Levenshtein distance is 2 

edits and when normalised for the length of the strings this represents a score of 0.714 

(0 being completely different and 1 being a perfect match).  The Jaro-Winkler 

algorithm scores this pair of strings as being 0.962 (0 being completely different and 1 

being a perfect match) which is higher than Levenshtein as it allows scores for 

horizontal transpositions. The Levenshtein algorithm classifies the characters “E” and 

“L” as completely incorrect giving both a cost of 1 each, whereas, the Jaro-Winkler 

algorithm lessens this cost because the characters are correct but out of sequence and 

scoring them almost as high as correct “in sequence” characters. 

 

Speaking about Irish music in his article Style in Traditional Irish Music (McCullough 

1977, p.85), Lawrence McCullough states that individual pieces of Irish music have 

been completely reshaped by musicians. He indicates that there are four main factors 

involved; 

 

 Ornamentation, a process of embellishing individual notes 

 Variation in melodic and rhythmic patterns 

 Phrasing – choosing where to include rests or short pauses 

 Articulation, how notes are played together. Examples of articulation are  

o Slur – when a note slides into the next note without separation. 

o Staccato – when notes are separated by short rests in between each note. 

o Legato – when notes are played smoothly together. 

 

The following contribution specifically relates to McCullough‟s second assertion, 

variation in melodic patterns. The Jaro-Winkler algorithm could be used to weight an 

out of sequence series of musical notes so that it scores almost as highly as the correct 

sequences of notes. 
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4.1.2  Contribution 1:  Weighting melodic sequence variation  

The transposition feature of the Jaro-Winkler algorithm can be adapted to recognise 

certain melodic variations that McCullough writes about. Specifically, the algorithm 

was adapted to give weight to out of sequence notes within a distance calculated with 

respect to the time signature of the piece of music. Consider the following example, a 

jig called “Wallop the Spot” available on an audio recording of the group Osna (Osna 

1999, Track.12). The opening phrase of the jig is normally played as follows; 

Table 13: Standard opening phrase of the Wallop the Spot jig 

FEF DFA BAF DDD 

 

On track 12, the whistle player swaps notes 1 & 2 and notes 7 & 8, reshaping the 

standard phrase so that it becomes;  

 

Table 14: Reshaped opening phrase of the Wallop the Spot jig (Osna 1999) 

EEF DFA ABF DDD 

 

The Jaro-Winkler algorithm was altered so that the proximity method accepted an 

extra parameter – searchRange. Specific values related to the time signature of the 

comparison strings were passed to this parameter, for example, 3 was passed for jigs 

and 4 for reels. 

 

Table 15: Adapted Jaro-Winkler method with searchRange parameter 

public double proximity(CharSequence cSeq1, CharSequence cSeq2, int 

searchRange) { 

        int len1 = cSeq1.length(); 

        int len2 = cSeq2.length(); 

        if (len1 == 0) 

            return len2 == 0 ? 1.0 : 0.0; 

        boolean[] matched1 = new boolean[len1]; 

        Arrays.fill(matched1,false); 

        boolean[] matched2 = new boolean[len2]; 

        Arrays.fill(matched2,false); 

 

        int numCommon = 0; 
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        for (int i = 0; i < len1; ++i) { 

            int start = Math.max(0,i-searchRange); 

            int end = Math.min(i+searchRange+1,len2); 

            for (int j = start; j < end; ++j) { 

                if (matched2[j]) continue; 

                if (cSeq1.charAt(i) != cSeq2.charAt(j)) 

                    continue; 

                matched1[i] = true; 

                matched2[j] = true; 

                ++numCommon; 

                break; 

            } 

        } 

        if (numCommon == 0) return 0.0; 

 

        int numHalfTransposed = 0; 

        int j = 0; 

        for (int i = 0; i < len1; ++i) { 

            if (!matched1[i]) continue; 

            while (!matched2[j]) ++j; 

            if (cSeq1.charAt(i) != cSeq2.charAt(j)) 

                ++numHalfTransposed; 

            ++j; 

        } 

        int numTransposed = numHalfTransposed/2; 

 

        double numCommonD = numCommon; 

        double weight = (numCommonD/len1 

                         + numCommonD/len2 

                         + (numCommon - 

numTransposed)/numCommonD)/3.0; 

 

        if (weight <= mWeightThreshold) return weight; 

        int max = 

Math.min(mNumChars,Math.min(cSeq1.length(),cSeq2.length())); 

        int pos = 0; 

        while (pos < max && cSeq1.charAt(pos) == cSeq2.charAt(pos)) 

            ++pos; 

        if (pos == 0) return weight; 

        return weight + 0.1 * pos * (1.0 - weight); 

    } 
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Comparing these two strings with the Levenshtein algorithm gives an edit distance of 3 

and a normalised score of 0.75.  The Jaro-Winkler score weights the out of sequence 

notes and gives a score of 0.85. The transposed out of sequence characters can be seen 

in Table 16.  

Table 16: Jaro-Winkler transpositions for a Wallop the Spot variation 

1 2 3 4 5 6 7 8 9 10 11 12 

F E F D F A B A F D D D 

E E F D F A A B F D D D 

 

 

The “B” in column 7 of the standard phrase (row 1) is transposed horizontally with the 

“B” in column 8 of the reshaped phrase. Similarly, the “A” in column 8 of the standard 

phrase is transposed with the “A” in column 7 of the reshaped phrase. Note that the 

“F” in column 1 of the standard phrase cannot be transposed with the “F” in column 3 

of the reshaped phrase as column 3 contains correct notes that are already matched 

with each other. 

 

It is worth noting that a flaw in Breandán Breathnach Melodic Indexing System is 

exposed by the example in Table 16. The indexing code for the standard phrase is 

33156311 and the reshaped phrase 23155311. Because the first note of each phrase is 

different the first digit of the eight digit indexing codes are also different. This means 

that when the index cards are stored numerically they will not be in proximity. In this 

case, the Jaro-Winkler algorithm correctly identifies that both phrases are similar, 

scoring higher than both the Levenshtein and Breathnach methods. 

4.1.3  Contribution 2:  Weighting tune prefixes  

The Jaro-Winkler algorithm supports weighted prefixes of up to four characters long. 

On occasion, Irish traditional dance tunes have a two note prefix that is played as an 

introduction to the tune. This prefix is omitted when the tune is repeated.  
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Figure 13: Boys of the Lough with prefix and repetition bars. Source: Author 

 

Figure 13 shows a two note prefix for the reel “The Boys of the Lough”. Not all Irish 

dance tunes have prefixes but if one exists, it will always precede the opening 

repetition bar. Fortunately, ABC notation supports the inclusion of prefixes in its 

specification as can be seen in Table 17. 

 

Table 17: Boys of the Lough with prefix in ABC Notation. Source (Lonelyhearts 1978) 

X: 1 

T: Boys Of The Lough, The 

M: 4/4 

L: 1/8 

R: reel 

K: Dmaj 

dB|:AF (3FFF A2 AB|defd efdB|AF (3FFF ABAF|EDEF E2 FG| 

|AF (3FFF A2 AB|defd efdB|AF (3FFF ABAF|1 EDEF D2 dB:|2 EDEF D2 de| 

|:faag fgfe|dBBA GBdB|AF (3FFF ABde|fdgf e2 fg| 

|abag fgfe|dBBA GBdB|AF (3FFF ABAF|1 EDEF D2 de:|2 EDEF D2 dB| 

 

The two note prefix is determined by factors such as the musical key and first note of 

the tune. Usually the two notes that comprise the prefix will be in close proximity to 

the first note of the tune and will either descend or ascend towards it. Table 18 gives 

some examples of prefixes to Irish dance tunes. 

 

Two note prefix 

Prefix 
Repetition bars 
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Table 18: Example prefixes for Irish tunes 

Prefix Tune Body 

gg|: fdAF GECE 

gf |: edBA GEDE 

ag |: EAAA BGAG 

 

If the prefixes are the same does this represent a greater likelihood that the tunes are 

similar? In his articles, The State of Record Linkage and Current Research Problems 

(W. E Winkler 1999, p.7) and Overview of Record Linkage and Current Research 

Directions (WE Winkler 2006, p.35), William E. Winkler states that two records that 

agree on a rarely occurring feature are more likely to represent a match than frequently 

occurring features. Similarly, Breandán Breathnach‟s Melodic Indexing System 

derived indexing codes exclusively from the first sixteen notes of each tune. Both 

methodologies clearly place importance on the beginnings of strings whether they 

consist of text or musical notes. 

 

For the purposes of the Jaro-Winkler experiments the default values of a 4 character 

prefix with a 0.25 weighting were observed. In order to fully test if these values were 

suitable the corpus of ABC notated Irish dance tunes would have to be examined in 

depth to ensure the following; 

 

 That prefixes were entered according to the ABC notation specification. 

 The minimum and maximum length of prefixes. 

 Any discernable rules regarding prefixes in Irish music that could be further 

incorporated into the Jaro-Winkler algorithm.  

 The most appropriate lengths for prefixes of musical notes. 

 The correct weight to afford to prefixes 

 

Winkler suggests that weighting should not exceed 1. For example, a 4 character prefix 

with a weighting of 0.25 results in a maximum weighting of 1 as 4 x 0.25 = 1. A two 

note prefix would have a maximum weight of 0.5 as 2 x 0.5 = 1. 
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The testing of Jaro-Winkler prefixes is reserved for future work and research in 

Section 7.4. 

4.2 Improvements to the Levenshtein algorithm  

One of the drawbacks of the Levenshtein algorithm is that it is not capable of key 

invariant or time signature invariant comparisons. In spite of this, it remains one of the 

most popular string distance algorithms for musical comparison.  

 

Rather than integrate a vertical transposition invariant feature into the Levenshtein 

algorithm it is possible to convert both sequences of notes to relative or absolute 

intervals and compare these sets of intervals using an unaltered Levenshtein algorithm. 

 

It is also possible to reduce musical pieces to a common time signature before 

performing a Levenshtein comparison. All of the tune parts imported into the corpus 

for the purpose of performing string distance experiments had a 2/4 version derived 

from the original sequence of notes and this was stored along with relative and 

absolute intervals calculated using the musical key. 

Table 19: Example of how tune parts are stored in the corpus database 

Field Value 

Name Longacre, The 

Notes AAEDDECCEDDECCEE 

2/4 Version ADDCEECE 

Semex Intervals 0,-3,-1,0,1,-2,0,2,-1,0,1,-2,0,2,0 

MIC Intervals 1443553 

 

A horizontal transposition feature as in the Jaro-Winkler algorithm could help improve 

the accuracy of the Levenshtein algorithm. A variant of the Levenshtein algorithm 

already exists called the Damerau-Levenshtein algorithm that allows for transpositions. 

It is a hybrid of the system proposed by Frederick J. Damerau for spelling mistakes 

requiring one edit operation (Damerau 1964) and the Levenshtein algorithm. 
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The conclusions drawn from examining any possible improvements to the Levenshtein 

algorithm were as follows; 

 

 Required features such as horizontal and vertical transpositions were already 

available in the Jaro-Winkler and Lemström algorithms. 

 A time signature invariant feature would be better performed outside of the 

algorithm. For example, data would be pre-processed before performing a 

Levenshtein comparison between two strings of notes. 

 The unaltered Levenshtein edit distance algorithm has value and remains a 

popular method for music comparison. 

4.3 Prototype for a Combined Ranking System  

Having identified the strengths and weaknesses of each of the string distance 

algorithms and after implementing a framework for generating metrics regarding tune 

parts held in a corpus the author felt that combining multiple methods and algorithms 

could be used to define a combined similarity scoring system. 

4.3.1  Contribution 3:  Combined Ranking Scores  

In order to combine various algorithms a ranking system was first developed. This 

involved running four separate SQL queries and ordering the results in descending 

order by algorithm. The Levenshtein and Jaro-Winkler algorithms were run on the 

unaltered notes of the tune parts and sequences with non-dominant notes removed 

(referred to as 2/4, 24 or TWOFOUR data in this project). The results were stored in a 

relational database.  

 

Figure 14 shows the first twenty rows of tune comparisons between tune id 8425 and 

various others along with the algorithm scores abbreviated as LEVEN, JARO, 

LEVEN24 and JARO24. These rows are sorted by Levenshtein score in descending 

order. 
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Figure 14: Levenshtein ordered ranking system for tune comparisons. Source: Author 

The columns in Figure 14 from left to right represent the following; 

 # represents rank. 

 ID is a unique ID and primary key for the row data. 

 TUNE_A_ID represents the first of the pair of tunes compared. 

 TUNE_B_ID represents the second of the pair of tunes compared. 

 LEVEN represents the Levenshtein edit distance between the unaltered 

melodies represented by TUNE_A_ID and TUNE_B_ID. 

 JARO represents the Jaro-Winkler distance between the unaltered melodies 

represented by TUNE_A_ID and TUNE_B_ID. 

 LEVEN24 represents the Levenshtein edit distance between the 2/4 version of 

the melodies represented by TUNE_A_ID and TUNE_B_ID. 

 JARO24 represents the Jaro-Winkler distance between the 2/4 version of the 

melodies represented by TUNE_A_ID and TUNE_B_ID. 

 

The rank of a pair combination can be ascertained by using Figure 14. For example, 

the tune pair with TUNE_A_ID of 8425 and TUNE_B_ID of 17825 has a Levenshtein 

rank of 1 (row 1 of the database table), tunes 8425 and 14383 have a rank of 2 (row 2 

of the database table), tunes 8425 and 17569 would have a Levenshtein rank of 11 
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(row 11 of the database table). The algorithms were run on a subset of the corpus and 

the results were stored in a relational database. A prototype Java application was 

designed in order to compare rankings from each of the algorithms as can be seen in 

the following diagram. 

 

 

Figure 15: Application used to generate rankings by algorithm 

 

In this example the Levenshtein score is relatively low at 0.5625 but this score is 

ranked 1
st
 (see Figure 14). The Jaro-Winkler score of 0.8094 is high in comparison to 

the Levenshtein score and it is also ranked high as the 3
rd

 highest Jaro-Winkler result. 

Because high rankings were returned by all four comparisons can it be said that two 

tunes are similar with any degree of confidence? This question is explored in Section 

6.4.3. 
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A visual check of both tunes in the database shows that they are in the same time 

signature and that both are in the key of D major. Also, 15 notes out of 32 are direct 

matches and there are a number of candidate notes that could be horizontally 

transposed. 

 

 

Figure 16: Visual comparison of tunes 8425 and 17825 

 

Initially the confidence score was calculated by averaging the ranks and subtracting 

this from 100%, giving 96% in the above example. Following careful analysis and 

experimentation in Section 6.2 this result was improved to include the standard 

deviation between algorithms. This resulted in the delivery of one of the project 

objectives, defining a process by which a similarity matrix could be constructed. 

Section 6.4 explains how the similarity matrix was created. 

 

Hypothesis: If multiple different algorithms rank a comparison similarly, can that 

comparison be assumed to be more accurate than when the algorithms disagree? 

 

In order to test the validity of this hypothesis, a survey of humans was carried out and 

is described in 6.4.3. 

4.4 Conclusion 

This chapter outlined three contributions to the body of knowledge - the weighting of 

melodic variations, the weighting of short prefixes that sometimes prefix Irish 

traditional music and a method of ranking the results of four algorithms and combining 

these ranks in order to assess similarity. An assumption was reached that if four 

different algorithms agreed about the result of a comparison then that comparison 

could be understood to be more accurate than comparisons where the algorithms 

disagreed. 
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5. COMPUTERISING MIC SYSTEM & PARSONS CODE 

5 Introduction 

In Section 2.2 the work done by Breandán Breathnach was outlined. Section 2.3 

explained how Parsons Code could be used to compare musical sequences of notes 

using melodic contours. In this chapter, flaws in both methods are identified and 

solutions offered. This chapter outlines contributions 4 and 5 to the body of knowledge. 

5.1 Advantages of the Breathnach Melodic Indexing System 

As seen in Section 2.2, an incipit from the start of a dance tune is converted into an 

eight digit Melodic Index Code (MIC) by calculating the intervals between notes in 

sequence. This code is written on index cards that are stored numerically.  

Table 20: Examples of tunes with Melodic Index Codes 

Name Measure Key Notes in 2/4 Melodic Index Code 

Shlide Aside 12/8 D Major AFEDEFDD 56611501 

Muineira De Casu 6/8 G Major GEDCDEDB 56611655 

Dick The Welshman 2/4 D Major AFEDFGBA 56621265 

 

Index cards in close physical proximity and numerical order are similar musically 

according to Breathnach‟s theory. 

5.1.1  Time signature invariant   

One of the disadvantages of using string distance algorithms to compare music is that 

they do not account for musical pieces in different time signatures. Using Breathnach‟s 

system, non dominant notes are removed from tune parts, effectively reducing each 

tune‟s incipit to a time signature of 2/4. This allows tunes in different time signatures 

to be compared on an equal basis.  
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5.1.2  Key invariant  

Because the Melodic Index Code is calculated using intervals the Melodic Index Code 

is key invariant allowing for the comparison of tunes in different musical keys. Similar 

tunes in different keys can be seen in Table 20. 

5.1.3  Easily managed system 

Because index cards are stored numerically, fewer comparisons need to be made in 

order to construct a similarity matrix. As noted in Section 1.4 using string distance 

algorithms requires the comparison of each tune part with all others in the corpus. 

Therefore, a corpus of 12,500 Irish traditional tunes having at least two parts each 

would result in 624,975,000 comparisons (25,000 x 24999). Because Breathnach‟s 

system does not require each index card to be compared with all other cards in the 

system the amount of comparisons that need be made are considerably fewer. One 

calculation per record is required for Breathnach‟s system compared to n(n -1) when 

using string distance algorithms to construct a similarity matrix. This results in a 

fraction of the computational resources being needed in order to complete a 

Breathnach similarity matrix compared to a matrix constructed using a string distance 

method. 

 

During an experiment run as part of the research work described in Section 6.2.6 

approximately 49,000,000 comparisons were performed over the course of five days 

and the results stored in a relational database that reached 2.5 gigabytes (2560 

megabytes) in size. By comparison the Breathnach system was completed in minutes 

and was 40 times smaller, reaching a size of only 64 megabytes.  

5.2 Disadvantages of the Breathnach Melodic Indexing System 

The Melodic Indexing System performed its function very well in the 1960‟s and 

1970‟s, identifying duplicates and tunes published in other music collections. As a 

result, the Ceol Rince na hÉireann tune collections I, II, III, IV & V (Breandán 

Breathnach 1963) are highly valued by Irish musicians worldwide and are equally as 

popular as the O‟Neill 1001 collection (F. O. &. J. O'Neill 1995). Using the system 

exactly as designed by Breathnach presents challenges that must be overcome when 

constructing a music similarity matrix.  
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5.2.1  Melodic Sequence Variation Anomalies  

As seen in Section 2.2 Melodic Index Codes are calculated by discarding non-

dominant notes and calculating absolute intervals with reference to a fundamental note. 

In Section 4.1.2 a disadvantage was identified where an Irish musician reshaped the 

opening phrase of a tune by playing the notes EEF DFA ABF DDD instead of FEF 

DFA BAF DDD. These phrases translate to MIC index codes 23155311 and 33156311 

respectively. In the corpus of 11,944 tune parts used for this project these versions of 

the same tune would be stored 1,387 rows apart. In other words, the index cards would 

not be physically proximate and the duplicate version would not be detected. 

5.2.2  Limited Comparisons can be made  

Breandán Breathnach‟s indexing system compared only the very beginnings of each 

tune. Because ABC data is available for the complete tune, the beginnings of each part 

of each tune can be compared and indexed. Indeed, the sequence of notes in the whole 

tune could be converted to a Melodic Index Code and compared. Tunes of the same 

type were stored with each other. This did not facilitate the easy comparison between 

jigs, reels, hornpipes, slip jigs and other types of tune. 

 

 

Figure 17: Storage of Melodic Indexing System. Source: Author 
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Figure 17 shows how the Melodic Indexing System was stored in the Irish Traditional 

Music Archive. From top left – Jigs, Reels, Slip jigs/Hornpipes. From bottom left – 

Jigs2, Reels 2, Polkas/Set Dances/Miscellaneous 

5.3 Proposed improvements  

Although Brendán Breathnach probably had little computing resources at his disposal 

in the 1960‟s when editing his first publication, Ceol Rince na hÉireann Cuid I 

(Breandán Breathnach 1963) his system of Melodic Index Cards lends itself to being 

converted into a computer algorithm. 

5.3.1  Contribution 4:  Computerisation of the Melodic Indexing System  

The implementation of a computerised version of Breandán Breathnach‟s Melodic 

Indexing System was constructed in the following manner; 

 

 Irish traditional dance music parts were imported and stored in a relational 

database. Invalid ABC notation was discarded. 

 Parts in ABC notation were converted from various time signatures to a 

common time signature of 2/4 by programming the Java algorithm in Table 21. 

The results were stored in the relational database. 

 A second Java algorithm (see Table 22) was programmed in order to calculate 

intervals based on Breathnach‟s concept of a “fundamental note”. Because the 

tune key is available in each of the ABC tune transcriptions it was used to 

calculate the fundamental note. Absolute intervals were stored in the same 

relational database as the corpus of ABC data. 

 

Table 21: Java algorithm to reduce ABC notation to 2/4 time signature. Source: Author 

public String reduceToTwoFour(String abc, String measure) { 

        String two4 = ""; 

        int counter = 0; 

        if (measure.startsWith("6") || measure.startsWith("9") || 

measure.startsWith("12")) { 

            counter = 3; 

        } 
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        if (measure.startsWith("4")) { 

            counter = 4; 

        } 

        if (measure.startsWith("2")) { 

            return abc; // already in 2/4 time signature 

        } 

 

        for (int i = 0; i < abc.length(); i += counter) { 

            try { 

                two4 += abc.substring(i, i + 1); 

                two4 += abc.substring(i + counter - 1, i + counter); 

            } catch (Exception e) { 

                System.out.println(e.toString()); 

            } 

        } 

        return two4; 

    } 

 

Table 22: Java method for calculating Melodic Index Intervals. Source: Author 

      public String calculate_BB_Intervals(String input, String key) 

{ 

        key = key.substring(0, 1).toUpperCase(); 

        input = (input).toUpperCase(); 

        String control = "CDEFGAB"; 

        String temp = ""; 

        int char1, interval, fundamental; 

        fundamental = control.indexOf(key); 

        for (int i = 0; i < input.length() - 1; i++) { 

            try { 

                char1 = control.indexOf(input.charAt(i)); 

                interval = (char1 - fundamental + 1); 

                if (interval < 1) { 

                    interval += 7; } 

                temp += "" + interval; 

            } catch (Exception e) { 

                System.out.println(e.toString()); 

            } 

        } 

        return temp; 

    } 
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5.3.2  Contribution 5:  Compare MIC index codes alphabetically  

Breathnach stored the melodic index cards in numerical order using the eight digit 

code to sort them appropriately. This had the effect of limiting the comparisons that 

could be done to sequences of notes that were at least sixteen notes long. Sequences of 

less than 16 notes would result in a melodic index code of less than eight digits 

meaning that they would not appear in the correct order if sorted numerically. 

 

A simple solution would be to right pad index codes with sufficient 1‟s to make them 

eight digits long as in Table 23 below. 

Table 23: Index codes with right padded 1's 

Index Code 

12111111 

12121353 

14524117 

64571156 

75441111 

77447277 

 

 

A better solution is to calculate Melodic Index Codes for the whole length of each tune 

part and storing the results in a database. Sorting the rows alphabetically instead of 

numerically allows the comparison of incipits of different lengths. 

 

The SQL query in Table 24 sorts rows of tune parts alphabetically, regardless of length 

as seen in Figure 18. 

 

Table 24: SQL Query to sort tune parts alphabetically 

select NAME, NOTES, MEASURE, TUNEKEY, BB_INTERVALS from APP.ABC 

where BB_INTERVALS is not null order by BB_INTERVALS asc 
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Figure 18: Tune parts sorted alphabetically by Melodic Index Code 

5.4 Advantages of computerising the Melodic Indexing System  

Computerisation of the Breathnach Melodic Indexing System would result in a far 

superior similarity comparison system for the following reasons; 

5.4.1  Larger database of tunes available  

Websites like The Session (Keith 2010) allow for members to submit transcriptions of 

traditional Irish tunes and also many other forms of music. The addition of genre, 

country of origin or geo-location data could allow for the comparison of tunes across 

genres or between each country‟s traditional folk music. For example, relationships or 

similarities between Irish, English, Scottish, Breton, Galician and Asturian folk music 

could be identified and explored. 

5.4.2  Greater Accuracy 

Because computerisation allows for Melodic Index Codes greater than eight digits long 

as in the original system, the accuracy of the similarity matrix can be increased 

considerably. Absolute intervals for whole tune parts were calculated and compared 

instead of comparing 8 digit codes derived from 16 note incipits. 
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5.4.3  Integration in a Combined Ranking System 

In Section 4.3 a confidence scoring system based on the ranking of the results of four 

string distance algorithms was proposed as Contribution 3. As part of the 

experimentation and research carried out in Section 6  an algorithm was developed for 

the calculation of metrics related to the Melodic Indexing System. These metrics 

included; 

 

 The calculation of the number of rows that separate a pair of tune parts along 

with the total number of tune parts in the corpus. 

 The proximity expressed in the same format as suggested by Muellensiefen & 

Frieler (Muellensiefen & Frieler 2003) i.e. 0 being perfectly different and 1 

being an exact match.  

 

Figure 19 shows how Melodic Indexing System metrics were calculated for the tune 

parts with id‟s 8425 and 17825.  
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Figure 19: Calculation of Melodic Indexing Metrics 

 

Although the normalised score could be considered high at 0.857 (1 being an exact 

match and 0 being completely different) it represents a distance of 1712 tune parts in a 

corpus of 11944. In other words, there are 1711 tune parts more similar to tune part 

8425 ascending the matrix to tune part 17825 and possibly others descending from 

8425 as can be seen in the following table. 
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Table 25: Portion of the Melodic Index Code Matrix 

ID Melodic Index Code 

----- (MIC codes similar to 8425 removed) 

8424 33216221542....... 

8425 33217552312....... 

8426 33222421421....... 

----- (MIC codes similar to 8425 removed) 

17824 43216123412....... 

17825 43217655313....... 

17826 44213213211....... 

 

The inclusion of the Melodic Index Code metrics into the confidence / ranking scoring 

system was completed as part of an experiment in Section 6.4.3. 

5.5 Conclusion 

The advantages, disadvantages and tradeoffs of Breandán Breathnach‟s Melodic 

Indexing System were presented in this chapter. A proposal for the computerisation of 

the system was presented as contribution 4. Contribution 5 suggests improvements to 

the system. The use of an alphabetical index rather than a numeric one was suggested 

in order to overcome the problem of different length melodic index codes. 
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6. EXPERIMENTATION AND EVALUATION 

6 Introduction 

The purpose of this chapter is to describe the string distance experiments that were 

carried out on ABC notation data. Once clean ABC data had been extracted from ABC 

files contained within music collections referred to in Section 1.7.4 it was stored in a 

relational database. Java versions of string distance algorithms were obtained and 

integrated into a programming framework that had been built in order to facilitate the 

running of experiments. This chapter also describes how two online surveys were 

carried out and how the hypothesis formed in Section 4.3 was tested. The chapter 

concludes with a description of how similarity matrices of Irish traditional dance music 

were constructed. 

6.1 Design of experiments  

Careful planning went into the design of each experiment. The purpose of carrying out 

experiments on string distance algorithms was to be able to draw conclusions from 

analysis of the results. Great care was taken to prevent bias of any kind in the 

experiments and in the online surveys. 

 

A series of goals in line with the research objectives of this dissertation were 

formulated and a strategy was formed in order to achieve these goals. The goals were 

as follows; 

 

 To identify string distance algorithms suitable for Irish traditional music 

comparison. 

 To identify possible areas where string distance algorithms could be improved 

with respect to music theory. 

 To test if humans agreed with the results of string distance algorithm 

comparisons of Irish music. 

 To identify and define a process whereby a Music Similarity Matrix could be 

constructed for Irish Traditional Music (ITM). 
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6.2 Experimentation 

The following experiments were carried out on clean data held in a relational database.  

 Levenshtein edit distance comparisons 

 Jaro-Winkler edit distance comparisons 

 Lemström Semex distance comparisons 

 Melodic Index Code similarity and distance 

 Parsons Code similarity and distance 

 Ranking and combined scoring  

 Various similarity matrix construction experiments 

 

All string distance experiments were carried out on a Dell Inspiron 9400 laptop with an 

Intel Dual Core 2.0 Ghz processor, 100GB 7200rpm hard drive and 2GB of ram 

running on the Windows 7 operating system. 

6.2.1  Description of raw data  

The relational database held a corpus of 11944 tune parts. As the data was imported 

from ABC text files it was cleaned and pre-processed so that only musical notes 

remained. This data was obtained from publicly available electronic tune collections 

mentioned in Section 1.2.5. The Irish music dance tunes were transcribed by users of 

varying musical ability with over half of the ABC files not validating against the ABC 

notation specification. Any unreliable data that did not fully comply with the ABC 

notation specification was immediately discarded.  

6.2.2  Pre-processing ABC data  

ABC data pre-processing involved the removal of ABC file headers, extra notation, 

triplet marks, rests, removal of white space and other unnecessary elements. This was 

achieved using Java methods available in Dr. Bryan Duggan‟s MattABCTools java 

class. The cleaned musical note data was stored in the NOTES column of the database. 

The musical note data was then converted from various time signatures to a 2/4 version 

and stored in the TWOFOUR column. The relative and absolute intervals between 

each musical note were also calculated and stored in the INTERVALS and 

BB_INTERVALS columns. The time signature, musical key and tune part number 
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were stored in the MEASURE, TUNEKEY and PART columns respectively. All 

columns were required and any incomplete rows were discarded. 

 

 

Figure 20: ABC Corpus Schema. Source: Author 

 ID – Primary key unique to each row 

 NAME – the name of the parent tune 

 NOTES - The cleaned notes of the parent tune 

 TWOFOUR – First and last notes of each beat preserved 

 INTERVALS – NOTES represented as relative intervals 

 MEASURE – The time signature as specified in the abc file 

 TUNEKEY – The musical key as specified in the abc file 

 PART – the number of the tune part i.e. first, second, third part of the tune. 

 BB_INTERVALS– intervals calculated using Breathnach‟s MIC system. 

 

Figure 21 below shows rows 1 to 16 of the ABC corpus with pre-processed data. 

String comparison experiments were carried out directly on this data and the results 

stored in separate database tables.  

 

Figure 21: ABC Corpus database rows 1 to 16 inclusive. Source: Author 
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6.2.3  Experiment Framework  

Two separate frameworks were used to carry out experiments, a Java framework and a 

C Sharp (C#) framework. The description of each experiment indicates whether the 

Java or Microsoft C# dotNet platform was used to complete it. 

6.2.3.1  Java Framework 

A desktop Java application was created using the Netbeans IDE and the integrated 

Derby database server (Sun Microsystems 2010). This application provided a 

mechanism for iterating through rows of ABC data, performing string distance 

operations on pairs of tune parts and storing the results. 

 

 

Figure 22: Desktop Java application framework for running experiments. Source: 

Author 

6.2.3.2  C Sharp Framework 

In order to construct the similarity matrix the Microsoft platform was used. This was 

primarily for performance issues identified while using the Derby database server but 

also to take advantage of MS SQL 2008‟s ability to use the Common Language 

Runtime (CLR) to create custom functions for use in SQL queries. For example, a 
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complex string distance algorithm could be converted into a SQL function and used 

directly on a database column as follows; 

Table 26: MS SQL 2008 query using a custom function 

SELECT ID, [Database].[dbo].[Jaro-Winkler](NOTES, 

‘ABCDEFG’) from [Database].[dbo].[Table] 

 

The SQL query in Table 26 returns the ID of each database row with the result of a 

Jaro-Winkler comparison between the string „ABCDEFG‟ and every row in the entire 

NOTES column. 

 

In addition, SimMetrics, a library of string distance algorithms programmed in the C# 

language, was already available containing implementations of the Levenshtein and 

Jaro-Winkler algorithms. MS SQL 2008‟s ranking functions were also taken advantage 

of to perform ranking experiments. 

 

The platform used to construct the Similarity Matrix was as follows; 

 SimMetrics C# String Distance Library 

 Microsoft Visual Studio 2010 Professional Edition 

 MS SQL Database Server 2008 Developer Edition 

6.2.4  Levenshtein Experiments  

The Levenshtein string comparison experiment was carried out on the Java platform 

and involved iterating over a number of tune parts and comparing them with a subset 

of the remaining rows. About 1,840 tune parts were compared against each other 

resulting in 3,386,248 comparisons. Figure 23 shows how the results were stored in a 

relational database. 
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Figure 23: Levenshtein comparison results. Source: Author 

In this case the tune part with TUNE_A_ID 8353 was compared with the tune parts 

with TUNE_B_ID‟s 8354 to 8373 inclusive. Results of comparisons between the two 

NOTES columns are recorded in the LEVEN column while results of the comparison 

between the 2/4 versions of the tune parts are stored in the LEVEN24 column. 

 

In order to plot the distribution of comparisons, the frequency of each result was 

obtained i.e. how many comparisons resulted in 0.01, how many resulted in 0.02 

continuing to 0.99 and finally 1.0. This data was obtained for comparisons on both 

types of data (the original tune part and the 2/4 version) and plotted in Figure 24 and 

Figure 25. 
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Figure 24: Levenshtein distribution 

 

Figure 25: Levenshtein 2/4 distribution 

 

As Figure 24 and Figure 25 show, the shapes of both distributions are almost identical. 

Both distributions show an off centre bell curve with the majority of the results in the 

12% to 64% area. Similar to the distribution Müllensiefen & Frieler found in Figure 26 

(Mullensiefen & Frieler 2007, p.196) the distribution of a Levenshtein comparison of 

the whole corpus looks much like an off centre normal distribution. In this experiment 

results below 12% and above 64% were very rare.  

 

 

Figure 26: Frequency distribution by M&F of all melodies in their database. Source: 

(Mullensiefen & Frieler 2007, p.196) 

6.2.5  Jaro-Winkler Experiments  

The Jaro-Winkler experiments were carried out in parallel with the Levenshtein 

experiments as both experiments required iteration over the same data. 
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As with the Levenshtein experiments, the frequency of each result was determined in 

order to calculate the Jaro-Winkler distribution of results. This was performed for both 

sets of data (the original tune part and the 2/4 version) and plotted on a line graph. 

 

Figure 27: Jaro-Winkler distribution 

 

Figure 28: Jaro-Winkler 2/4 distribution 

In the same manner as the Levenshtein result, the Jaro-Winkler distribution graph 

showed that the bulk of the results were between a certain range (37% - 90%). Once 

again the shape of the graph resembled an off centre normal distribution curve. Results 

above 90% were very rare with results below 37% being virtually non-existent. 

 

Processing 2/4 data compared to unaltered data with the Jaro-Winkler algorithm results 

in the distortion of the normal distribution curve apparent in Figure 27. 

6.2.6  Lemström Semex Interval Experiments  

The Lemström Semex algorithm is a very efficient, transposition invariant algorithm 

capable of identifying sub-sequences of note patterns in large music databases. 

Preliminary tests on a subset of data showed that the Semex algorithm was capable of 

identifying the same melody in different musical keys. Similar to the Levenshtein 

algorithm an integer is returned which signifies the edit distance between a sub-

sequence and a larger string. It was found that it was possible to normalise the result 

by dividing this distance by the length of the shorter search string. The Semex 

algorithm has been shown to be applicable in many environments including searching 

polyphonic music (Dovey 2001), fault tolerant music identification (Clausen & Kurth 

2002), a web based music retrieval system (Rho & Hwang 2004), matching melody 

directly from audio (Mazzoni & RB Dannenberg 2001) and various other 
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environments. For this reason it was decided that this experiment would not test how 

effective the algorithm is at identifying similarity in the context of music but instead if 

it would be possible to use this algorithm to construct a Music Similarity Matrix 

(MSM) and if so, what resources would be needed.  

 

This experiment was carried out on the Java platform. As with the previous 

experiments, the Semex algorithm was used to compare tune pairs of the original 

melody and the measure invariant 2/4 version of the melody. The un-normalised edit 

distance was stored for both comparison types. 

 

The experiment was run on the laptop described in Section 6.2 on a corpus of 11,944 

tune parts. This meant that 142,647,192 comparisons would need to be performed in 

order to complete the similarity matrix. The experiment was halted after five days and 

49,908,185 comparisons when writing to the hard disc became extremely slow, 

effectively rendering the experiment impossible to complete within the available 

resources.  

 

It was possible to draw some conclusions from this experiment even though it was not 

completed as measurable data resulted. Over the course of the experiment the 

following was observed; 

 

 Approximately one third of the matrix was completed in five days meaning that 

a full matrix could be completed in just over two weeks. 

 50 million database rows used 2.5 gigabytes of hard disk space. The total 

amount of hard disk space a complete matrix would require is approximately 

7.5 gigabytes. 

 Querying the database of results was very slow, taking an average of over eight 

minutes to complete even simple queries as in Figure 29. 
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Figure 29: Simple SQL query on interval data taking 523 seconds. 

The following conclusions were drawn from the experiment; 

 Greater computing resources are required in order to complete a music 

similarity matrix using the methods in this experiment. 

 Database and SQL query optimisations would need to be performed. 

 Only comparisons with results within a certain threshold (to be determined) 

should be stored in order to minimise hard disk usage. 

 Constructing an extremely large database was fruitless unless it could be 

reduced and analysed in a meaningful way. 

 Alternative solutions to constructing the matrix should be investigated and 

considered. 

6.2.7  Melodic Indexing Code experiments  

The purpose of this experiment was to computerise Breandán Breathnach‟s Melodic 

Indexing System as described in Section 2.2. It was carried out on the Java platform. A 

series of steps were planned in order to complete this experiment as follows; 
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 A Java method would be developed in order to calculate intervals with respect 

to a fundamental note. 

 All of the corpus would be converted to Melodic Index Codes (MIC) with 

resulting MIC codes stored with the original tune part. 

 Two different sorting methods, numeric and alphabetic would be tested and 

evaluated. 

 

Once preliminary testing was completed, bugs had been identified and corrected the 

experiment was run using the Java framework developed in Section 6.2.3. The 

experiment completed in less than 30 minutes without issue and the testing and 

evaluation of sorting methods began. 

 

Figure 30: The Munster Lass jig stored in the Breathnach Melodic Indexing System. 

Source: Author 

Breathnach stored index cards by tune type in numerical order. Jigs were stored 

separately from reels, hornpipes, slides and polkas as can be seen in Figure 30. 

 

A visual check of the results confirmed that the system is transposition invariant, 

correctly matching The Ivy Leaf reel in two keys, E mixolydian and A mixolydian, 

rows 3 & 4 of Figure 31. 
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Figure 31: Computerised Melodic Indexing System 

Figure 31 shows that comparisons between a range of time signatures and type of tune 

are possible under the system. For example, row 16, a reel without a name in the key 

of A Major was found to be similar to an A Minor jig called the Drunken Gauger (row 

15) and another jig called the Bells of Gorbio in B Minor (row 17). 

6.3 Evaluation 

6.3.1  Survey of experts and non-experts  

In order to test whether a computer algorithm could accurately identify similar or 

different tune parts, an online survey was conducted. Participants were divided into 

two groups, those that could be considered experts in Irish traditional music and those 

that had no interest or experience in Irish traditional music. 

6.3.2  Choosing tune part pairs to test  

Pairs were selected based on the following criteria; 

 

 Normalised Levenshtein score 

 Jaro-Winkler score  

 Breathnach Melodic Index Proximity 
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Levenshtein scores had to be normalised in order to take account of comparing 

different length strings of musical notes. Two strings of notes, ten and twenty 

characters long respectively have an edit distance of at least ten. An edit distance of ten 

is considerably more significant if the strings are 1 and 11 characters long than if they 

are 101 and 111 characters long. In order to normalise the Levenshtein scores the 

following formula was used; 

)2()1( slenslen

ed


 

Where ed is the Levenshtein edit distance, len(s1) is the number of characters in string 

one and len(s2) is the number of characters in string two. 

 

Table 27: List of tune pairs selected for the survey 

Pair ID Tune A Part Leven Leven 24 Jaro Jaro 24 

1a 10101  Jenny's Chickens 1 
0.19 0.38 0.57 0.59 

1b 11475  Sean sa Cheo 1 

2a 8544  All the world loves me 1 
0.56 0.68 0.72 0.62 

2b 8749  Lackeys 1 

2a 8545  All the world loves me   2 
0.53 0.36 0.63 0.78 

2b 8750  Lackeys 2 

3a 14736 A maid that dare not tell 2 
0.31 0.5 0.75 0.65 

3b 8542 All around the room 1 

4a 11324 The Musical Priest 1 
0.66 0.82 0.88 0.91 

4b 12006 North Brig O’Edinburgh 1 

5a 9972 Jenny picking cockles 1 
0.47 0.44 0.70 0.67 

5b 10944 Repeal of the Union 1 

6a 13546 Whisky makes you a lunatic 1 
0.06 0.00 0.29 0.00 

6b 18031 En Dro 2 

7a 14845 Humours of Tulla 2 
0.06 0.06 0.37 0.25 

7b 16191 Farewell to Stromness 2 

8a 16195 Willie Davie 2 
0.22 0.19 0.52 0.48 

8b 17356 Hangmans 3 

9a 18579 Oliver Jack 1 
0.09 0.19 0.38 0.48 

9b 8618 Down the Gort Road 2 

10a 10101 Jenny's Chickens 2/4 1 
0.19 0.38 0.57 0.59 

10b 11475 Sean sa Cheo 2/4 1 
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6.3.3  How tune pairs were chosen  

Table 27 shows the tune part pairs with their Levenshtein and Jaro-Winkler similarity 

scores for unaltered and 2/4 version of the musical notes. 

6.3.3.1  Pairs 1 & 10 

The same tune pair, Jenny’s Chickens and Sean sa Cheo were used for pairs 1 and 10. 

Question 1 contained both tunes in 4/4 time signature and Question 10 contained both 

tunes in 2/4 time signature. 

 

This example represents a weakness in the Levenshtein and Jaro-Winkler string 

distance algorithms‟ inability to compensate for vertically transposed melodies as they 

cannot perform key invariant comparisons. On the other hand, this pair ranked highly 

on the Breathnach Melodic Indexing System being 245 tunes apart in a corpus of 

11944. 

6.3.3.2  Pairs 2, 3, 4 and 5  

Pairs 2 and 5 were chosen because they had relatively high Jaro-Winkler scores and 

average Levenshtein scores. Pair 3 was chosen because it had a relatively high Jaro-

Winkler score but a low Levenshtein score. Pair 4 had a relatively high Levenshtein 

score and a high Jaro-Winkler score. All of these pairs were deemed to be similar 

according to at least one algorithm. 

6.3.3.3  Pairs 6, 7 , 8 and 9 

Pairs 6, 7 and 9 were chosen because they had low Levenshtein and Jaro-Winkler 

scores. Pair 8 was chosen because it had an average Jaro-Winkler score but a low 

Levenshtein score. All of these pairs were deemed to be dissimilar according to at least 

one algorithm. 

6.3.4  Question order randomisation  

In order to ensure that the order did not bias the survey results a list of tune pairs was 

prepared. This list was then randomised and the online survey constructed accordingly. 

The names of the tunes were not available to the participants and the ABC tune part 

data was converted to audio by computer instead of recording a musician playing a 
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version of each tune part. This was done in order to prevent bias due to style of playing 

or instrument choice. 

Table 28: List of tune pairs selected for the survey 

Pair No.  Method Order 

1 Similar Breathnach 9 

2 Similar Levenshtein & Jaro-Winkler 3 

3 Similar Levenshtein & Jaro-Winkler 10 

4 Similar Levenshtein & Jaro-Winkler 5 

5 Similar Levenshtein & Jaro-Winkler 4 

6 Different Levenshtein & Jaro-Winkler 6 

7 Different Levenshtein & Jaro-Winkler 2 

8 Different Levenshtein & Jaro-Winkler 7 

9 Different Levenshtein & Jaro-Winkler 1 

10 Similar Breathnach 8 

 

According to the methods used to determine similarity and dissimilarity the survey 

contained the following tests. 

 

Question Number Computer Determination Pair Number 

1 Different 9 

2 Different 7 

3 Similar 2 

4 Similar 5 

5 Similar 4 

6 Different 6 

7 Different 8 

8 Similar 10 

9 Similar 1 

10 Similar 3 

 



  Experimentation and evaluation 

  77 

6.3.5  Choosing experts  

In order to ensure that a representative result from the survey was returned, great care 

was taken when choosing a panel of experts. For the purposes of the survey experts 

were distinguished from non-experts and a minimum criteria was established before a 

candidate was considered to be an expert or a non-expert in the field of Irish music. A 

minimum criteria was also formulated in order to identify non-experts. The minimum 

criteria were as follows; 

 

An expert must; 

 Play a musical instrument that Irish music would normally be played on. 

 Have played Irish traditional music for at least 15 years. 

 

A non-expert must; 

 Not play any musical instrument. 

 Not listen to Irish traditional music regularly 

 

Experts and non-experts alike could; 

 Be of any nationality 

 Be of any gender orientation 

 Be of any age 

 Should not be tone deaf 

 

Lists of experts and non-experts are presented in Appendix A. 

6.3.6  Experts results  

A panel of experts were asked to choose whether tune parts were similar or different 

using a Likert scale (Likert 1932). Each participant was presented with twenty audio 

clips grouped into ten pairs of tune parts. The expert was instructed to play each pair of 

clips as many times as necessary in order to make a decision. The Likert scale allowed 

each participant to choose one of five options.   The choices given to each participant 

were as follows; 
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Table 29: Likert Scale Values 

Likert Scale Value 

Very different 1 

Different 2 

I dont know 3 

Similar 4 

Very similar 5 

 

The corresponding values for the Likert responses given by each expert participating in 

the survey are shown in Table 30. 

 

Table 30: Responses from participants that are experts in Irish traditional music 

Name Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 

Hauke Steinberg 4 2 5 2 5 2 5 1 4 4 

David Morrissey 4 4 3 4 5 4 5 2 2 2 

Martin Preshaw 2 4 4 5 1 1 5 1 2 1 

Daragh O'Reilly 2 4 4 4 5 2 5 1 4 2 

Jose Manuel Fernandez Mateos 1 1 2 1 4 1 5 1 4 1 

Deirdre Smyth 2 5 5 5 4 4 5 2 5 4 

Damian Werner 4 5 4 5 1 1 4 1 5 4 

Paulo McNevin 1 1 1 1 5 1 5 1 1 1 

Ray Dempsey 1 2 4 2 5 1 5 2 5 2 

Terry McGee 1 1 1 1 2 1 4 1 4 1 

Pádhraic ó Súilleabhán 1 4 2 4 4 2 4 4 4 2 

Treasa Lavin 2 2 4 2 1 1 5 1 5 2 

Joe Brennan 2 4 4 5 5 2 5 1 5 3 

Pauline Burke 2 4 5 4 4 1 4 1 4 1 

Sara Cory 4 2 5 4 2 1 5 1 4 2 

 

Table 31 shows how the experts voted. 

Table 31: Results of experts choices 

Question No. Similar Different Not sure Conclusion 

Question 1 4 11 0 Different 

Question 2 8 7 0 Similar 

Question 3 10 4 1 Similar 

Question 4 9 6 0 Similar 

Question 5 10 5 0 Similar 

Question 6 2 13 0 Different 

Question 7 15 0 0 Similar 

Question 8 1 14 0 Different 
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Question 9 12 3 0 Similar 

Question 10 3 11 1 Different 

Totals 74 74 2 150 

6.3.6.1  Analysis of the experts responses  

Most questions resulted in experts voting by a majority of over 10 votes to 5 except in 

two cases. In question 2 and 4 the experts voted by a majority of 8 to 7 and 9 to 6 

respectively. The outcomes of question 2 and 4 may be inconclusive as the experts 

seem to be unsure of their collective decisions. 

6.3.7  Non-experts results  

Survey participants with no musical experience were given the same survey as the 

experts under exactly the same conditions. Their responses are given in the table 

below. 

Table 32: Responses from participants with no experience of Irish traditional music 

Name Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 

Corinne Kingston Bageard 4 5 4 2 2 2 5 2 5 2 

Diarmuid Cooke 1 1 4 2 4 4 5 1 5 2 

Brian Duggan 2 4 5 4 2 2 5 1 4 2 

Martin Hughes 2 2 5 4 2 2 5 2 4 2 

Joe Phelan 2 5 4 1 1 2 5 1 4 4 

John Golden 2 4 5 2 1 2 5 2 4 4 

Patrick Crowe 1 2 2 1 2 1 2 1 2 1 

John Breen 1 2 4 5 1 1 5 1 5 2 

Caroline Bemingham 2 2 5 5 1 1 5 1 5 2 

Mark Bussell 2 4 5 4 4 1 5 2 4 5 

Enora Senlanne 2 4 4 4 4 1 4 1 5 2 

Richard Kinser 2 4 4 4 4 2 5 2 4 2 

Terry Lavin 2 1 2 5 1 1 5 1 5 1 

Clare Basset 4 4 4 5 4 2 5 3 5 2 

Louisa Murphy 4 2 2 5 4 1 5 1 4 2 

 

Table 33: Results of non-experts choices 

Question No. Similar Different Not sure Conclusion 

Question 1 3 12 0 Different 

Question 2 8 7 0 Similar 

Question 3 12 3 0 Similar 

Question 4 10 5 0 Similar 
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Question 5 6 9 0 Different 

Question 6 1 14 0 Different 

Question 7 14 1 0 Similar 

Question 8 0 14 1 Different 

Question 9 14 1 0 Similar 

Question 10 3 12 0 Different 

Totals 71 78 1 150 

6.3.7.1  Analysis of the non-experts responses  

Most questions resulted in the non-experts voting by a majority of over 10 votes to 5 

except in two cases. In question 2 and 5 the experts voted by a majority of 8 to 7 and 6 

to 9 respectively. The outcomes of question 2 and 5 may be inconclusive as the non-

experts seem to be unsure of their collective decisions. 

6.3.8  Experts vs. non-experts  

Interestingly, the expert and non-expert participants agree on all questions apart from 

one pair, question 5.  

 

Question No. Experts Non-experts 

Question 1 Different Different 

Question 2 Similar Similar 

Question 3 Similar Similar 

Question 4 Similar Similar 

Question 5 Similar Different 

Question 6 Different Different 

Question 7 Similar Similar 

Question 8 Different Different 

Question 9 Similar Similar 

Question 10 Different Different 

 

The numbers of votes for each tune pair were counted in order to calculate voting 

percentages for each question answered by both groups. For example, four experts out 

of fifteen voted that the tune pair in Question 1 were similar resulting in 27% of the 

vote and three out of fifteen non-experts voted that the tune pair in Question 1 were 

similar giving a vote of 20%. When the votes for both groups are plotted on a chart the 

results look remarkably similar. 
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Figure 32: Experts vs. non-experts voting percentages 

The following table shows how the computer algorithm chose similarities contrasted 

with those of the experts and non-experts. 

Table 34: Computer algorithm vs expert vs non-expert choices 

Question No. Computer algorithm Experts Non-experts 

1 Different Different Different 

2 Different Similar Similar 

3 Similar Similar Similar 

4 Similar Similar Similar 

5 Similar Similar Different 

6 Different Different Different 

7 Different Similar Similar 

8 Similar Different Different 

9 Similar Similar Similar 

10 Similar Different Different 

 

An analysis of these results suggests that experts and non-experts are likely to choose 

similarly. The one question where experts and non-experts differ is question 5 but this 

result may be classified as inconclusive because the voting is so close as to suggest 

that opinion was almost equally divided in both groups. 
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The tune pairs selected by the computer algorithm agreed with the experts at least 60% 

of the time. Question 2 was voted similar by a margin of 8 to 7 in both groups 

suggesting that opinion in humans was narrowly divided. The voting from both groups 

for questions 7, 8 and 10 suggests that the computer algorithm made a significant error 

selecting these pairs. 

6.4 Constructing a Similarity Matrix for Irish Traditional Music  

Using the process defined in Section 4.3 an experiment was designed in order to 

construct four similarity matrices. These matrices were constructed using the Jaro-

Winkler algorithm, Parsons Code, Melodic Indexing System and the Combined 

Ranking System described in Section 4.3. Construction was carried out over four 

phases. 

6.4.1  Phase 1 – Importing data and extending MS SQL 2008  

The first phase involved importing the corpus of tunes from the Derby database server 

into the MS SQL 2008 database server. As this data had already been cleaned and 

processed numerous times in other experiments it made sense to use it for experiments 

on the Microsoft platform. Comparisons between both platforms may also be made 

possible in the future. This phase also involved extending the MS SQL 2008 database 

server by writing implementations of the Lemström Semex, Breathnach Melodic 

Indexing System, Parsons Code and a standard deviation function in the C# language. 

These implementations are available in Appendix D. 
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Figure 33: Stored Procedures and custom functions in MS SQL 2008 

Figure 33 shows a screenshot of Microsoft Management Studio (the application used 

to administer MS SQL 2008). This screenshot shows how MS SQL Server 2008 has 

been extended by using custom stored procedures getRanks, getRanksID and custom 

functions Breathnach, Jaro-Winkler, Levenshtein, Parsons, stdevmusic and 

NormalisedRank. 

6.4.2  Phase 2 - Testing custom function SQL queries  

The purpose of creating custom functions using Microsoft Visual Studio 2010 

Professional to extend MS SQL 2008 was to enable the use of string distance functions 

within SQL queries. Two Visual Studio projects were used; the first to extend the 

SimMetrics string distance library to include implementations of the Semex, Parsons, 

Breathnach MIC and improved Jaro-Winkler algorithms and the second to create a 

private dotnet assembly that could be imported into MS SQL 2008. In order to test if 

these custom functions worked as planned in MS SQL 2008 the following SQL query 

was executed. 

Table 35: SQL query using a custom string distance function 

select ID, NAME, NOTES, [Test].dbo.JaroWinkler(NOTES, 'ABCC') as 

JW_Score  
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from Test.dbo.corpus 

order by JW_Score desc 

 

 

 

Figure 34: Result of a SQL query using a custom string distance function 

Figure 34 shows the following columns returned by the SQL query; 

 ID of the tune 

 NAME of the tune 

 NOTES of the tune 

 JW_Score represents the similarity between the string „ABCC‟ and each of the 

rows in the NOTES column in descending order 

The bottom right of the screenshot shows that the corpus of 11944 rows was processed 

in less than 1 second. Table 36 shows how a more complex query was then executed. It 

compared the notes from the tune “The Humours of Tulla” to the corpus of 11944 

tunes using the Jaro-Winkler, Levenshtein and Semex custom functions. 

Table 36: Jaro-Winkler, Levenshtein and Semex SQL for the “Humours of Tulla” 

select ID, NAME, NOTES, [Test].dbo.JaroWinkler(NOTES, 

'GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA') as JW_Score, 

[Test].dbo.Levenstein(NOTES, 'GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA') as 

Leven_Score, 

[Test].dbo.Semex('GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA', NOTES) as 

Semex_Score  

from Test.dbo.corpus 
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order by Semex_Score desc 

 

 

Figure 35: Jaro-Winkler, Levenshtein and Semex SQL query combined 

Figure 35 shows how the SQL query in Table 36 was executed, comparing the notes of 

the “Humours of Tulla” against the whole corpus of tunes using the Levenshtein, Jaro-

Winkler and Semex custom functions in just 2 seconds. 

 

Custom functions that returned Parsons Code and Breathnach‟s Melodic Indexing 

Code were also created. These two functions return the Parsons Code and MIC Code 

rather than a similarity score between 0 and 1. In order to calculate how proximate two 

strings of notes are, their positions in the corpus must first be known. A custom 

function in MS SQL Server 2008 is only aware of the two strings of notes passed to it 

as arguments and not aware of the entire corpus of tunes. It was decided that it would 

be more appropriate to perform this type of calculation within a stored procedure that 

would have access to both custom string distance functions and the whole corpus. The 

following SQL example shows how it is possible to convert a whole corpus of tunes to 

Melodic Indexing Code and Parsons Code in a few seconds. 

Table 37: SQL query to convert a corpus into MIC Code and Parsons Code 

select ID, NAme, [Test].dbo.Breathnach(NOTES) as MIC, 

[Test].dbo.Parsons(NOTES) as PIC 

from Test.dbo.corpus 

order by MIC asc 
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Figure 36 shows how the SQL query above converts a corpus of 11944 tunes into MIC 

Code and Parsons code in one second. 

 

Figure 36: Corpus of tunes in MIC Code and Parsons Code 

Temporary tables in stored procedures were used to dynamically create corpi so that 

positions of tunes within them could be ascertained. Once the position of the match 

was known it was possible to calculate proximity and distance from this match as 

described in Figure 6. Both MIC Code and Parsons Code were calculated in tandem as 

the systems are virtually identical (apart from the generated MIC and Parsons Code). 

 

Following is code that creates a temporary table, calculates MIC and Parsons Code for 

an entire corpus of tunes, identifies the closest match using both Melodic Index Code 

and Parsons Code, calculates distance and then normalises the MIC and Parsons 

distances so that a score between 0 and 1 is returned. 

Table 38: Code snippet that calculates and normalises MIC & Parsons Code ranks 

-- Create temp table for Breathnach and Parsons Rank and populate it 

 SELECT  ID,  

 dbo.Breathnach(NOTES) as MIC, 

 dbo.Parsons(NOTES) as PIC, 

 row_number() over (order by dbo.Breathnach(NOTES) asc) as 

rowID,  

 (row_number() over (order by dbo.Breathnach(NOTES)))/1.0 as 

MICScore, 

 (row_number() over (order by dbo.Parsons(NOTES)))/1.0 as 

PICScore 

 into #TEMP 

 from corpus 

 order by MIC; 
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 -- Find nearest match for @notes - Breathnach 

 Select top 1 @rowID = MICScore from #TEMP where 

dbo.Breathnach(@notes) <= MIC order by MIC asc 

 Select @MaxRank = MAX(MICScore) from #TEMP 

  

 -- Find nearest match for @notes - Parsons 

 Select top 1 @prowID = PICScore from #TEMP where 

dbo.Parsons(@notes) <= PIC order by PIC asc 

 Select @PMaxRank = MAX(PICScore) from #TEMP 

  

 Update #TEMP set MICScore = 1-((abs(MICScore - 

@rowID))/@MaxRank)   

 Update #TEMP set PICScore = 1-((abs(PICScore - 

@prowID))/@PMaxRank) 

 

The complete stored procedure is available in Appendix D. 

6.4.3  A Combined Ranking System 

MS SQL 2008 supports four ranking functions, one of which, RANK() was used to 

generate ranks for results returned by string distance functions. Table 39 shows a SQL 

query that utilises the RANK() function in conjunction with the Jaro-Winkler and 

Semex string distance custom functions. 

Table 39: SQL query for Semex & Jaro-Winkler scores with ranks 

select ID, NAME, Notes, 

[Test].[dbo].Semex('CDEEEDEGGA', dbo.corpus.NOTES) as Semex, 

RANK() OVER(ORDER BY [Test].[dbo].Semex('CDEEEDEGGA', 

dbo.corpus.[NOTES]) DESC) AS [SemexRank], 

[Test].[dbo].JaroWinkler('CDEEEDEGGA', dbo.corpus.NOTES) as Jaro,  

RANK() OVER(ORDER BY [Test].[dbo].JaroWinkler('CDEEEDEGGA', 

dbo.corpus.[NOTES]) DESC) AS [JaroRank] 

from dbo.corpus 

order by SemexRank asc, JaroRank asc 
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Figure 37: Results of the SQL query containing Semex and Jaro-Winkler scores with 

ranks ordered by Semex rank 

Figure 37 shows the results of the SQL query where the string „CDEEEDEGGA‟ is 

compared to the whole corpus of tunes returning Jaro-Winkler and Semex scores with 

these scores ranked. These results are sorted by Semex rank in ascending order. In this 

case the top 12 results all score 0.8 and are ranked joint 1
st
. The tune “The Turtledove” 

is given a rank of 13 as it has the next highest Semex score. Note how this tune has a 

Jaro-Winkler rank of 4, a much higher Jaro-Winkler rank than any of the tunes above 

it, most of which have a Jaro-Winkler rank in the thousands. 

 

By contrast, Figure 38 shows the results of the same SQL query ordered by Jaro-

Winkler rank instead of Semex rank. The top ranked Jaro-Winkler result is given a 

rank of 2475 by the Semex algorithm. Although some deviation between algorithms 

was expected, it was not expected at this level.  
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Figure 38: Results of the SQL query containing Semex and Jaro-Winkler scores with 

ranks ordered by Jaro-Winkler rank 

The result of this experiment is twofold; 

 It is possible to formulate SQL queries based on string distance functions and 

rank the results accordingly. 

 String distance algorithms may agree or disagree on the result of a comparison. 

 

It became clear that an experiment in combining ranks from different string distance 

functions would also need to be conducted. In order to do this, two further custom 

functions were created, normalisedRank and stdevMusic. Code for both of these 

functions is available in Appendix D. The formula to normalise the ranks is as follows; 








 


4*

4
1

mr

sr
 

Where sr is the sum of all four ranks and mr is the maximum rank possible. The 

normalisedRank function takes 4 ranks and the maximum rank possible (the total 

number of records in the corpus, 11944) as arguments. This function then combines 

the ranks using the following C# code; 

 

        public double GetNormalisedRank(int firstValue, int secondValue, int 
thirdValue, int fourthValue, int count) 
        { 
            // need four ranks and the total count of records (highest rank) to 
normalise 
            int sum = firstValue + secondValue + thirdValue + fourthValue; 
            double normalisedRank = 1.0 - ((sum - 4.0) / (count * 4.0)); 
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            return normalisedRank; 
        } 

 

Different combinations of ranks could return the same combined rank score. The figure 

below shows that Tune 1 and Tune 2 received different ranks from different algorithms 

but were given the same combined normalised score. 

 

Figure 39: Combined rank score calculation 

The stdev column in the figure above shows that the ranks for Tune 1 deviate more 

than for Tune 2. Tune 2 therefore represents a better match if standard deviation is 

considered. 

 

The following table shows the C# code used to calculate the standard deviation of the 

ranks; 

Table 40: Commonly available C# code used to calculate standard deviation 

        /// <summary> 
        /// gets the stdev of the four values passed to it. 
        /// </summary> 
        /// <param name="firstValue"></param> 
        /// <param name="secondValue"></param> 
        /// <param name="thirdValue"></param> 
        /// <param name="fourthValue"></param> 
        /// <returns>a value between 0-1 of the similarity</returns> 
        public override double GetSimilarity(double firstValue, double 
secondValue, double thirdValue, double fourthValue) 
        { 
 
            ArrayList rankList = new ArrayList(); 
            rankList.Add(firstValue); 
            rankList.Add(secondValue); 
            rankList.Add(thirdValue); 
            rankList.Add(fourthValue); 
 
            return StandardDeviation(rankList); 
 
        } 
        ///<Summary> 
        ///Calculates standard deviation of numbers in an ArrayList 
        ///</Summary>  
        public static double StandardDeviation(ArrayList num) 
        { 
            double SumOfSqrs = 0; 



  Experimentation and evaluation 

  91 

            double avg = Average(num); 
            for (int i = 0; i < num.Count; i++) 
            { 
                SumOfSqrs += Math.Pow(((double)num[i] - avg), 2); 
            } 
            double n = (double)num.Count; 
            return Math.Sqrt(SumOfSqrs / (n - 1)); 
        } 
 
        ///<Summary> 
        ///Calculates average of numbers of integer data type in an ArrayList 
        ///</Summary>   
        public static double Average(ArrayList num) 
        { 
            double sum = 0.0; 
            for (int i = 0; i < num.Count; i++) 
            { 
                sum += (double)num[i]; 
            } 
            double avg = sum / System.Convert.ToDouble(num.Count); 
 
            return avg; 
        } 

 

Two stored procedures were then created in order to carry out combined ranking 

experiments. The first was called getRanksIDVerbose and the second called 

getRanksID. The verbose version returns the individual string distance algorithm 

ranks, the combined rank and the standard deviation, the second, getRanksID performs 

exactly the same calculations as the first but only returns the combined rank and the 

standard deviation scores. 

 

Figure 40 shows the results of comparisons between the tune with ID 9020 and the rest 

of the corpus. As one would expect, tune 9020 is a perfect match with itself and 

receives four rankings of 1
st
. This results in a combined normalised rank of 1 (the 

NRank column on the right) and a standard deviation of 0. Tune 12540 receives second 

place with an NRank score of 0.972. The tune parts with ID‟s 10813 and 10812 (rows 

3 and 4) receive exactly the same NRank score, however, because tune ID 10813 (row 

3) has a lower standard deviation it is placed higher than tune ID 10812 (row 4). 
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Figure 40: Combined ranks with standard deviation 

 

Testing the results of this experiment by means of an online survey was conducted in 

the next phase of this experiment. 

6.4.4  Phase 3 – Testing the combined ranking system on humans  

As a result of feedback from participants of the previous survey, the number of tune 

pairs was reduced for the second online survey. Six tune pairs were chosen at random 

instead of ten reducing the amount of time taken to complete the survey to about five 

minutes. No distinction was made between experts and non-experts in Irish music for 

the second survey as they tended to vote similarly in the first survey. The survey was 

available online at the following web address for the participants to complete - 

http://fluidsurveys.com/surveys/podge/irish-music-similarities-2-1/ (Lavin 2010) 

 

Six pairs of tunes were chosen as follows; 

 Two pairs with a high combined ranking and low standard deviation score 

(reliable similarity) 
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 Two Pairs with a high combined ranking and high standard deviation score 

(unreliable similarity) 

 One pair with a low combined ranking and low standard deviation score 

(reliable dissimilarity) 

 One pair with a low combined ranking and a high standard deviation score 

(unreliable dissimilarity) 

 

Figure 41 below shows how tune pairs were chosen for the second online survey. 

 

 

Figure 41: Survey 2 tune pairs with ranking and stdev scores 

 

Twenty participants responded to the survey and responded as shown in Figure 42. 

Weighting of votes was not carried out for the initial count. Where a participant voted 

that a pair was “similar” or “very similar” that vote was counted as simply “similar” 

and where a participant voted that a pair was “different” or “very different” that vote 

was counted as “dissimilar”. 
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Figure 42: Online Survey 2 Responses 

Voting produced in the following result; 

Table 41: Results of Online Survey 2 

 Humans Computer 

Pair 1 Dissimilar Unreliable similarity 

Pair 2 Unknown Reliable dissimilarity 

Pair 3 Similar Reliable similarity 

Pair 4 Dissimilar Unreliable dissimilarity 

Pair 5 Similar Reliable similarity 

Pair 6 Similar Unreliable similarity 

 

In order to discern if the human participants voted that pair 2 were similar or dissimilar 

weighting of votes was carried out.  

Table 42: Vote weighting scores 

Very different -2 

Different -1 

I don‟t know 0 
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Similar 1 

Very similar 2 

 

A tune pair receiving a score below zero means that participants have voted that the 

tunes are different and above zero meaning that the tunes are similar.  

 

 

Figure 43: Weighted scores for Survey 2 

6.4.4.1  Analysis of results  

Figure 43 shows how the weighting of scores results in pair 2 being voted similar by 

the finest of margins. Because participants voted that pair 2 was similar by just one 

point the result is too close to be relied upon. The final results are shown in Table 43. 

Table 43: Online Survey 2 Final Result 

 Humans Computer 

Pair 1 Dissimilar Unreliable similarity 

Pair 2 Similar (unreliable) Reliable dissimilarity 

Pair 3 Similar Reliable similarity 
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Pair 4 Dissimilar Unreliable dissimilarity 

Pair 5 Similar Reliable similarity 

Pair 6 Similar Unreliable similarity 

 

The computer algorithm and human participants disagreed about the result of pair 1 

significantly. One reason for this is that three of the four computer algorithms make 

transposition invariant comparisons. The tunes in this pair were in the keys of D 

mixolydian and G major and this may have prevented the participants from 

recognising similarities between the tunes. In order to ascertain whether this had an 

effect on the result a further survey may be necessary with the tunes in the keys of G 

mixolydian (converted from D mixolydian) and G major respectively. 

 

Pair 2 consisted of tunes in different keys, had an average combined ranking score of 

0.61 and a low standard deviation. The initial vote was tied and after the scores were 

weighted the final result was that the tunes were similar by a margin of just 1 point. 

This result is unreliable. The computer algorithm result suggests that because the 

standard deviation is low the normalised combined ranked score of 0.61 should be 

reliable. It would seem that humans are undecided on the similarity of two tunes when 

their combined ranking score is below a certain threshold and that a score of 0.61 is 

within this range. The result suggests that a score of 0.61 could represent a tune pair 

that is similar or dissimilar. Mapping this threshold has been identified as an area for 

further research, investigation and future work. 

 

The computer algorithm agreed with the humans for pairs 3, 4, 5 and 6. This represents 

a significant improvement on the first online survey. The computer algorithm 

suggested that the comparison for pair 1 was unreliable. The algorithm suggested that 

pair 2 were dissimilar however the survey participants were undecided, voting the pair 

to be similar by a margin of just 1 point. Disregarding pair 2 the algorithm agreed with 

humans 80% of the time (4 out of 5 pairs) compared with 60% of the time in Section 

6.3.8. 
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6.4.5  Phase 4 – Constructing Similarity Matrices  

The experiments carried out in this final phase of the project were based on the results 

of previous experiments and all of the previous research carried out in earlier phases of 

the project. 

6.4.5.1  Parsons Code and Breathnach MIC Similarity Matrices  

A method for constructing matrices based on Breathnach‟s Melodic Indexing code and 

Parsons Code were introduced in Section 6.2.7 and Section 6.4.2 using both the Java 

platform and the Microsoft C# platform. A portion of matrices for both Parsons Code 

and Melodic Indexing Code can be seen in Figure 36. 

 

Dynamic Parsons Code and Melodic Indexing Code similarity matrices of the entire 

corpus may be constructed in a few seconds using the SQL code in Table 37. 

6.4.5.2  Jaro-Winkler Similarity Matrix  

This first experiment attempted to construct a similarity matrix using just one SQL 

query. It involved the use of a SQL query that joins a table to itself in order to iterate 

through all records in the corpus database table using the Jaro-Winkler function to 

compare each individual row with all others.  

 

In order to estimate the time taken to execute the SQL query a subset of 100 records 

were compared against all others in the corpus. The SQL query in Table 44 was used 

for this purpose.  

Table 44: SQL to compare 100 tunes to a corpus using Jaro-Winkler 

select m.ID, m.NAME, m.NOTES, n.ID, n.Name, n.NOTES, 

[Test].dbo.JaroWinkler(m.NOTES, n.NOTES) as JW_Score 

from Test.dbo.corpus m, Test.dbo.corpus n 

where m.id >= 8353 and m.id <= 8452 

order by JW_Score desc 
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Figure 44 shows that it took exactly 1 minute to compare 100 tunes with 11944 other 

tunes, a total of 1194400 comparisons.  

 

Figure 44: Result of the SQL query comparing 100 tunes to the corpus 

 

An estimated 142 million comparisons would need to be performed in order to 

construct the entire matrix resulting in an estimated execution time of 120 minutes. 

 

The SQL query below was used to perform comparisons on the whole corpus and 

instead of returning them to the Management Studio Console, they were stored in a 

database table named JaroWinklerMatrix. 

Table 45: SQL query for constructing the Jaro-Winkler Matrix 

select m.ID, m.NAME, m.NOTES, [Test].dbo.JaroWinkler(m.NOTES, 

n.NOTES) as JW_Score 

into [Test].dbo.JaroWinklerMatrix 

from Test.dbo.corpus m, Test.dbo.corpus n 

order by JW_Score desc 

 

The SQL query above completed the similarity matrix in less than 45 minutes. The 

screenshot below shows that 142,659,136 rows were inserted into the database table 

JaroWinklerMatrix. This represents the amount of records in the corpus squared i.e. 

11944
2
. This table requires 4.5GB of hard disk storage. 

 



  Experimentation and evaluation 

  99 

 

Figure 45: Completed Jaro-Winkler Similarity Matrix 

The completion of this similarity matrix represents the delivery of the secondary 

objective for this project – the construction of a similarity matrix. 

 

Using this method, similarity matrices based on the Levenshtein and Semex algorithms 

are also possible by substituting the appropriate function name at Line 2 of Figure 45 

e.g. [Test].dbo.Levenshtein(m.NOTES, n.NOTES) as Levenshtein_Score for a 

Levenshtein similarity matrix  or [Test].dbo.Semex(m.NOTES, n.NOTES) as 

Semex_Score for a Semex based similarity matrix. 

 

This method illustrates the power of SQL to dynamically create similarity matrices 

using a variety of algorithms on a corpus of tunes of unknown size and content. 

6.4.5.3  Similarity matrix  using the Combined Ranking System  

Following the success of the JaroWinkler similarity matrix the next experiment 

attempted to create a similarity matrix using the combined ranking method developed 

in Section 4.3. Two stored procedures were developed, getRanksID and 

CalculateMatrix, in order to iterate through all of the tune parts in the corpus, 

comparing each of them to all of the tune parts in the corpus and store the results in a 

database table. Both of these stored procedures are available in Table 60 and Table 61 

of Appendix D. 
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The getRanksID stored procedure compares a tune part to itself and all other tune parts 

in the corpus. When passed a tune part ID as an argument it returns 11944 rows, each 

containing the normalised combined rank score with the standard deviation between 

the four algorithms. 

 

The calculateMatrix stored procedure iterates through all tune ID‟s in the corpus, sends 

the ID to the getRanksID stored procedure and stores the results in a database table. 

MS SQL 2008 allows for the insertion of multiple rows of data returned from a stored 

procedure being stored in a database table using just one insert statement. The transact 

SQL code in Table 47 inserts all of the rows returned by the getRanksID stored 

procedure without having to iterate through all 11944. 

Table 46: Database cursor that iterates through all tune parts by ID 

DECLARE tune_cursor CURSOR FOR SELECT cast([ID] as int) as ID, NOTES 

FROM [Test].[dbo].[corpus] where (ID >= 8353 and ID <= 20297) order 

by ID asc 

Table 47: T-SQL INSERT code to store comparison results. 

INSERT dbo.matrix (A_ID, B_ID, STDEV, NRank) 

EXEC @return_value = [dbo].[getRanksID] 

@ID = @corpusID 

 

This method of constructing a similarity matrix is not as elegant as the method used to 

construct the Jaro-Winkler matrix. In order for this to be possible, the getRanksID 

stored procedure must take two tune ID‟s as arguments. An investigation into adapting 

the getRanksID stored procedure in this manner revealed that it would result in serious 

performance problems. In order to calculate score, rank and standard deviation in the 

Combined Ranking System of assessing similarity, score rank and standard deviation 

for the whole corpus must first be calculated. It does not make sense to return only 1 

row from a getRanksID stored procedure taking two arguments of tune ID‟s for 

comparison and discarding all other 11943 scores. 

 

A trial run of the calculateMatrix stored procedure revealed that the laptop running the 

experiments had insufficient memory to complete the task in one go so the task was 

divided into stages. The combined ranking matrix was completed by iterating through 

groups of 2000 tune parts at a time. This was done over the course of a few days. The 



  Experimentation and evaluation 

  101 

matrix was completed without issue and the resulting database table is about 8.5GB in 

size.  

6.5 Conclusion 

This chapter described how string distance experiments on ABC notation data were 

designed and carried out. An explanation of how raw data was imported, cleaned and 

stored in a relational database was also offered. A brief description of the Java and C 

Sharp programming frameworks used to carry out experiments was given. Details of 

Levenshtein and Jaro-Winkler comparison and distribution experiments are described. 

This chapter also outlined an attempt to construct a similarity matrix using the Semex 

algorithm and how it was halted due to performance problems. A successful 

experiment carried out on the Java platform in order to construct a computerised 

version of Breathnach‟s Melodic Indexing System is illustrated.  

 

This chapter continued by outlining various experiments carried out on the Microsoft 

dotNet platform. These experiments included the testing of existing and new custom 

string distance functions in the SimMetrics C Sharp library and the testing of a 

Combined Ranking System. A description of how participants were surveyed is 

presented before concluding the chapter with a description of how four similarity 

matrices were proposed and constructed. 
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7. CONCLUSION 

7 Introduction 

This chapter summarises the research domain and describes the research carried out 

throughout this project. Descriptions of how contributions were made to the body of 

knowledge are presented. The experimentation and evaluation phases are discussed 

followed by an examination of the scope of the project limitations. Research objectives 

that were achieved are outlined. Areas for further investigation, future work and 

research areas are identified. Some final conclusions complete this chapter. 

7.1 Research Definition & Research Overview  

The research for this project focused on the evaluation and improvement of string 

distance algorithms in order to identify similarities in the corpus of Irish traditional 

music. A secondary aim was to design a process by which an Irish music similarity 

matrix could be constructed. 

 

Numerous string distance algorithms were evaluated for suitability purposes before 

deciding on candidates. Two alternative methods of assessing similarity invented in the 

1960‟s and 1970‟s, Breathnach‟s Melodic Indexing Code and Parsons Code, were 

studied, computerised and converted into computer algorithms. 

 

Research into how results from both types of algorithms could be combined was 

undertaken. A Combined Ranking System (CRS) was then developed and tested on 

survey participants. 

7.2 Contributions to the Body of Knowledge  

Five contributions to the body of knowledge were made over the course of this project. 

7.2.1  Contribution 1 - Weighting Melodic Sequence Variation  

Irish musicians commonly vary the manner in which melodies are played. This can 

lead to string distance algorithms penalising phrases of notes because they contain 
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notes played in an alternative but correct sequence. This contribution allows 

compensation scores for these alternative note sequences. 

7.2.2  Contribution 2 - Weighting Tune Prefixes  

Some traditional Irish tunes are played after short introductory prefixes consisting of 

two or more notes. This contribution allows for the recognition of these initial notes by 

implementing increased scoring for matching opening notes. 

7.2.3  Contribution 3 – Computerising Breathnach‟s & Parsons‟ Systems 

Breandán Breathnach and Denys Parsons introduced two different systems for 

assessing similarity in the 1960‟s and 1970‟s respectively, the Melodic Indexing 

System and Parsons Code. Both of these systems were examined and computerised for 

the purposes of inclusion in a Combined Ranking System used to compare music and 

to construct a similarity matrix for Irish traditional music. 

7.2.4  Contribution 4 – Improvements to the Melodic Indexing System  

The following improvements to Breandán Breathnach‟s Melodic indexing system were 

proposed; 

 Sorting index codes alphabetically instead of numerically thus allowing the 

comparison of different length codes. 

 A system of using distance and normalisation was designed and introduced. 

This allows the return of a normalised MIC score similar to scores returned by 

string distance algorithms. 

7.2.5  Contribution 5 – A Combined Ranking System 

All of the string distance algorithms used to make comparisons between strings of 

musical notes returned a normalised measure of similarity between 0 and 1. Two 

further algorithms were developed based on Breathnach‟s MIC and Parsons Code that 

also returned normalised similarity scores between 0 and 1. This enabled the ranking 

of scores returned by all types of algorithm. A system was then developed that 

combined the ranks returned by all algorithms. The standard deviation between ranks 

was also returned. 
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7.3 Experimentation, Evaluation and Limitation  

7.3.1  Experimentation  

Various string distance experiments were carried out on a corpus of Irish traditional 

dance music tune parts in ABC notation. These experiments incorporated all five 

contributions described earlier. The results of these experiments were analysed and 

used to define a process by which a similarity matrix could be constructed.  

7.3.2  Evaluation 

During the evaluation stage, humans were surveyed twice in order to ascertain if they 

agreed with the results of computer algorithms. The results of the first survey were 

analysed and evaluated. Proposals for improvements to the string distance algorithms 

were formulated and implemented. Some string distance algorithms were also 

improved by considering music theory and then tested on humans by means of a 

second online survey. 

 

In the second online survey the following hypothesis was tested: if multiple different 

algorithms rank a comparison similarly, can that comparison be assumed as accurate? 

The conclusion drawn from the results of the experiment is that yes, if multiple 

different algorithms rank a result similarly then that result is more accurate than using 

string distance algorithms individually. 

7.3.3  Limitations  

Similarity comparison experiments were performed on music data that contained 

melody, time signature, musical key, title but no playing style data. Similarity was 

assessed primarily on melody. 

 

Approximately half of the source data was deemed unreliable as it did not comply with 

the ABC notation specification. This data was discarded as considerable manual 

resources would be needed in order to correct the erroneous ABC files. 

 

Similarity matrices were constructed by recording different types of comparisons 

between tune parts in a database. These databases are currently limited to being 
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queried by using SQL queries and this requires specialist knowledge. A better means 

of querying these databases has been identified as an area for further development and 

future work. 

7.4 Future Work & Research 

A number of areas have been identified for further investigation, future work and 

research. These include; 

7.4.1  Parsons Code & Melodic Index Code Precision  

In Section 2.3.1 two terms were defined to describe two methods of calculating 

distance, MICRank and MICDenseRank. An opportunity to increase the accuracy of 

MIC and Parsons Code scores was also identified. This task involves calculating 

individual distances from a match (MICDenseRank) instead of the current method of 

assigning the same distance from a match to a pair either side of the match 

(MICRank). 

 

Calculating individual distances from a match is a departure from the original system 

and will need to be programmed, tested and evaluated as part of future research. 

7.4.2  Jaro-Winkler matching prefixes  

A feature of the Jaro-Winkler algorithm was identified that could have a possible 

application in the Irish music domain. This feature was utilised when comparing 

sequences of musical notes, however, its positive or negative effectiveness was not 

measured. In order to take advantage of the concept of matching prefixes further 

investigation, examination and testing is necessary. 

7.4.3  Similarity / Dissimilari ty threshold  

While analysing the results of the second online survey it became apparent that 

humans were undecided if a particular tune pair were similar or dissimilar. The score 

returned by the Combined Ranking System for this pair was near the centre of the 

distribution making it unclear if the computer algorithm was indicating similarity or 

dissimilarity. When scores are returned at either end of the spectrum, between 0 and 

0.2 and between 0.8 and 1, dissimilarity and similarity respectively may easily be 
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inferred. The closer the score is to the centre of the distribution, the more difficult it is 

to predict whether humans feel that a tune pair is similar or different. The need to 

establish the threshold scores where humans felt that tunes were similar or dissimilar 

was identified as an area that warrants further investigation. 

7.4.4  User querying and surveying  

The similarity matrices built using the methods and processes defined during this 

project cannot be easily queried by persons that are not skilled in SQL. The necessity 

to develop a desktop application, website or mobile application that allows users to 

easily query matrices and record feedback has been identified as essential future work 

and development. 

7.5 Conclusion 

7.5.1  Objectives  

The following project objectives were achieved; 

 The identification of suitable string distance algorithms for the purposes of 

comparing music in ABC notation. 

 To improve specific string distance algorithms by implementing features 

unique to music theory. 

 To survey humans in order to assess if their choices agreed with computer 

algorithms. 

 Multiple similarity matrices were constructed. 

7.5.2  Deliverables  

The following deliverables were accomplished; 

 A process was designed for comparing Irish traditional dance tunes. This 

Combined Ranking System was built on improvements to string distance 

algorithms and tested on humans. 

 Similarity matrices were constructed using four different methods of 

comparison. 
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7.5.3  Conclusion 

 

This project has strived to solve the problem of identifying similarities in Irish music 

by investigating, evaluating and improving different methods of assessing musical 

likeness. A system was produced in line with the project objective and aims that 

allowed for a similarity matrix for Irish traditional dance music to be constructed. 

 

Music Information Retrieval (MIR) and string distance comparison remain lively 

research topics. This project has identified multiple areas that require future work and 

further study. Two areas are of primary importance to the author, the collection of 

musical similarity data by means of a mobile or social networking application for the 

purposes of surveying humans and associated research and enabling the navigation and 

querying of similarity matrices by means of a website, mobile or desktop application.  

 

 

“Where words leave off, music begins” 

Heinrich Heine, 1797-1856 
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APPENDIX A – SURVEY PARTICIPANTS 

Table 48: Panel of Experts in Irish traditional music 

Name Instrument played Location 

Hauke Steinberg Flute and percussion Germany 

David Morrissey Guitar and banjo Kildare 

Martin Preshaw Uilleann pipes Belfast 

Daragh O'Reilly Guitar and banjo Mayo 

Jose Manuel Fernandez Mateos Bouzouki and percussion Spain 

Deirdre Smyth Fiddle and flute Dublin 

Damian Werner Flute Hawaii 

Paulo McNevin Fiddle and flute Dublin 

Ray Dempsey Button accordion Waterford 

Terry McGee Flute Australia 

Pádhraic ó Súilleabheáin Percussion Kerry 

Treasa Lavin Whistle and piano Mayo 

Joe Brennan Guitar Cavan 

Pauline Burke Banjo Dublin 

Sara Cory Fiddle Chicago 

 

Table 49: Panel of non-experts 

Name Location 

Corinne Kingston Bageard Illinois 

Diarmuid Cooke Dublin 

Brian Duggan Kerry 

Martin Hughes Louth 

Joe Phelan Dublin 

John Golden Mayo 

Patrick Crowe Dublin 

John Breen Sligo 

Caroline Bemingham England 

Mark Bussell North Carolina 

Enora Senlanne France 

Richard Kinser Texas 

Terry Cosgrove Clare 

Clare Bassett Dublin 

Louisa Murphy Cork 
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APPENDIX B - IRISH DANCE MUSIC SIMILARITIES SURVEY 

A computer algorithm has picked the following tune parts as being somewhat similar or somewhat 

different. 

 

All of the audio you are about to hear has been played by a computer. Please turn up the sound on 

your computer and play both audio samples in turn by clicking the triangular play button. Please 

listen to each sample as many times as you need to in order to make a decision.  

 

There are no wrong answers, your opinion as a human is what is important. 

Survey Start  

Please enter your name: 

  

Are you an expert in Irish Traditional Music?  

 Yes  No 

 

Question 1  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 2  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 3  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 4  

Tune A  Tune B  
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 Very different  Different  I don't know  Similar  Very similar 

 

Question 5  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 6  

Tune A  Tune B  

 Very different  Different  I don't know  Similar  Very similar 

 

Question 7  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 8  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 9  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar 

 

Question 10  

Tune A  Tune B  

 

 Very different  Different  I don't know  Similar  Very similar
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APPENDIX C – SURVEY RESULTS 

 

Figure 46: Experts responses to Question 1 

 

Figure 47: Experts responses to Question 2 

 

Figure 48: Experts responses to Question 3 

 

Figure 49: Experts responses to Question 4 

 

Figure 50: Experts responses to Question 5 

 

Figure 51: Experts responses to Question 6 
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Figure 52: Experts responses to Question 7 

 

Figure 53: Experts responses to Question 8 

 

Figure 54: Experts responses to Question 9 

 

Figure 55: Experts response to Question 10 

 

Non-experts responses to Questions 1- 10 

 

Figure 56: Non-experts responses to Question 1 

 

Figure 57: Non-experts responses to Question 2 
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Figure 58: Non-experts responses to Question 3 

 

Figure 59: Non-experts responses to Question 4 

 

Figure 60: Non-experts responses to Question 5 

 

Figure 61: Non-experts responses to Question 6 

 

Figure 62: Non-experts responses to Question 7 

 

Figure 63: Non-experts responses to Question 8 
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Figure 64: Non-experts responses to Question 9 

 

Figure 65: Non-experts responses to Question 

10 

 

Table 50: Overview of responses from all survey participants 

Question:1 
 

Question:2 

Very different (1) 8 (26%) 
 

Very different (1) 5 (16%) 

Different (2) 16 (53%) 
 

Different (2) 9 (30%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 6 (20%) 
 

Similar (4) 12 (40%) 

Very similar (5) 0 (0%) 
 

Very similar (5) 4 (13%) 

Total 30 
 

Total 30 

Mean 2.13 
 

Mean 3.03 

Variance 1.09 
 

Variance 1.96 

     Question:3 
 

Question:4 

Very different (1) 2 (6%) 
 

Very different (1) 5 (16%) 

Different (2) 5 (16%) 
 

Different (2) 6 (20%) 

I dont know (3) 1 (3%) 
 

I dont know (3) 0 (0%) 

Similar (4) 12 (40%) 
 

Similar (4) 10 (33%) 

Very similar (5) 10 (33%) 
 

Very similar (5) 9 (30%) 

Total 30 
 

Total 30 

Mean 3.77 
 

Mean 3.4 

Variance 1.63 
 

Variance 2.32 

     Question:5 
 

Question:6 

Very different (1) 9 (30%) 
 

Very different (1) 17 (56%) 

Different (2) 6 (20%) 
 

Different (2) 10 (33%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 9 (30%) 
 

Similar (4) 3 (10%) 

Very similar (5) 6 (20%) 
 

Very similar (5) 0 (0%) 
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Total 30 
 

Total 30 

Mean 2.9 
 

Mean 1.63 

Variance 2.58 
 

Variance 0.86 

     Question:7 
 

Question:8 

Very different (1) 0 (0%) 
 

Very different (1) 20 (66%) 

Different (2) 1 (3%) 
 

Different (2) 9 (30%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 5 (16%) 
 

Similar (4) 1 (3%) 

Very similar (5) 24 (80%) 
 

Very similar (5) 0 (0%) 

Total 30 
 

Total 30 

Mean 4.73 
 

Mean 1.4 

Variance 0.41 
 

Variance 0.46 

     Question:9 
 

Question:10 

Very different (1) 1 (3%) 
 

Very different (1) 7 (23%) 

Different (2) 3 (10%) 
 

Different (2) 16 (53%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 1 (3%) 

Similar (4) 14 (46%) 
 

Similar (4) 5 (16%) 

Very similar (5) 12 (40%) 
 

Very similar (5) 1 (3%) 

Total 30 
 

Total 30 

Mean 4.1 
 

Mean 2.23 

Variance 1.13 
 

Variance 1.22 

 

Table 51: Overview of responses from expert survey participants 

Question:1 
 

Question:2 

Very different (1) 5 (33%) 
 

Very different (1) 3 (20%) 

Different (2) 6 (40%) 
 

Different (2) 4 (26%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 4 (26%) 
 

Similar (4) 6 (40%) 

Very similar (5) 0 (0%) 
 

Very similar (5) 2 (13%) 

Total 15 
 

Total 15 

Mean 2.2 
 

Mean 3 

Variance 1.46 
 

Variance 2.14 

     Question:3 
 

Question:4 

Very different (1) 2 (13%) 
 

Very different (1) 3 (20%) 

Different (2) 2 (13%) 
 

Different (2) 3 (20%) 

I dont know (3) 1 (6%) 
 

I dont know (3) 0 (0%) 

Similar (4) 6 (40%) 
 

Similar (4) 5 (33%) 

Very similar (5) 4 (26%) 
 

Very similar (5) 4 (26%) 

Total 15 
 

Total 15 

Mean 3.53 
 

Mean 3.27 
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Variance 1.98 
 

Variance 2.5 

     Question:5 
 

Question:6 

Very different (1) 3 (20%) 
 

Very different (1) 9 (60%) 

Different (2) 2 (13%) 
 

Different (2) 4 (26%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 4 (26%) 
 

Similar (4) 2 (13%) 

Very similar (5) 6 (40%) 
 

Very similar (5) 0 (0%) 

Total 15 
 

Total 15 

Mean 3.53 
 

Mean 1.67 

Variance 2.7 
 

Variance 1.1 

     Question:7 
 

Question:8 

Very different (1) 0 (0%) 
 

Very different (1) 11 (73%) 

Different (2) 0 (0%) 
 

Different (2) 3 (20%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 4 (26%) 
 

Similar (4) 1 (6%) 

Very similar (5) 11 (73%) 
 

Very similar (5) 0 (0%) 

Total 15 
 

Total 15 

Mean 4.73 
 

Mean 1.4 

Variance 0.21 
 

Variance 0.69 

     Question:9 
 

Question:10 

Very different (1) 1 (6%) 
 

Very different (1) 5 (33%) 

Different (2) 2 (13%) 
 

Different (2) 6 (40%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 1 (6%) 

Similar (4) 7 (46%) 
 

Similar (4) 3 (20%) 

Very similar (5) 5 (33%) 
 

Very similar (5) 0 (0%) 

Total 15 
 

Total 15 

Mean 3.87 
 

Mean 2.13 

Variance 1.55 
 

Variance 1.27 

 

Table 52: Overview of responses from non-expert survey participants 

Question:1 
 

Question:2 

Very different (1) 3 (20%) 
 

Very different (1) 2 (13%) 

Different (2) 10 (66%) 
 

Different (2) 5 (33%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 2 (13%) 
 

Similar (4) 6 (40%) 

Very similar (5) 0 (0%) 
 

Very similar (5) 2 (13%) 

Total 15 
 

Total 15 

Mean 2.07 
 

Mean 3.07 

Variance 0.78 
 

Variance 1.92 
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Question:3 
 

Question:4 

Very different (1) 0 (0%) 
 

Very different (1) 2 (13%) 

Different (2) 3 (20%) 
 

Different (2) 3 (20%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 6 (40%) 
 

Similar (4) 5 (33%) 

Very similar (5) 6 (40%) 
 

Very similar (5) 5 (33%) 

Total 15 
 

Total 15 

Mean 4 
 

Mean 3.53 

Variance 1.29 
 

Variance 2.27 

     Question:5 
 

Question:6 

Very different (1) 6 (40%) 
 

Very different (1) 8 (53%) 

Different (2) 4 (26%) 
 

Different (2) 6 (40%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 5 (33%) 
 

Similar (4) 1 (6%) 

Very similar (5) 0 (0%) 
 

Very similar (5) 0 (0%) 

Total 15 
 

Total 15 

Mean 2.27 
 

Mean 1.6 

Variance 1.78 
 

Variance 0.69 

     Question:7 
 

Question:8 

Very different (1) 0 (0%) 
 

Very different (1) 9 (60%) 

Different (2) 1 (6%) 
 

Different (2) 6 (40%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 1 (6%) 
 

Similar (4) 0 (0%) 

Very similar (5) 13 (86%) 
 

Very similar (5) 0 (0%) 

Total 15 
 

Total 15 

Mean 4.73 
 

Mean 1.4 

Variance 0.64 
 

Variance 0.26 

     Question:9 
 

Question:10 

Very different (1) 0 (0%) 
 

Very different (1) 2 (13%) 

Different (2) 1 (6%) 
 

Different (2) 10 (66%) 

I dont know (3) 0 (0%) 
 

I dont know (3) 0 (0%) 

Similar (4) 7 (46%) 
 

Similar (4) 2 (13%) 

Very similar (5) 7 (46%) 
 

Very similar (5) 1 (6%) 

Total 15 
 

Total 15 

Mean 4.33 
 

Mean 2.33 

Variance 0.67 
 

Variance 1.24 
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APPENDIX D – PROGRAMMING CODE 

Table 53: Code snippet of the Semex implementation in C# based on Dr. Bryan Duggan’s 

Java implementation 

        /// <summary> 
        /// gets the similarity of the two strings using Semex distance. 
        /// </summary> 
        /// <param name="firstWord"></param> 
        /// <param name="secondWord"></param> 
        /// <returns>a value between 0-1 of the similarity</returns> 
        public override double GetSimilarity(string firstWord, string 
secondWord) { 
            if ((firstWord != null) && (secondWord != null)) { 
 
                // Convert strings to arrays of midi notes 
                int[] pattern = notesToMidiArray(firstWord); 
                int[] text = notesToMidiArray(secondWord); 
 
                double Semex = calculateSemex(pattern, text); 
 
                if (pattern.Length >= text.Length) 
                { 
                    return 1-(Semex / text.Length); 
                } 
                else { 
                    return 1-(Semex / pattern.Length); 
                }                
            } 
            return defaultMismatchScore; 
        } 
 
        /// <summary>  
        /// gets the un-normalised similarity measure of the metric for the 
given strings.</summary> 
        /// <param name="firstWord"></param> 
        /// <param name="secondWord"></param> 
        /// <returns> returns the score of the similarity measure (un-
normalised)</returns> 
        public override double GetUnnormalisedSimilarity(string firstWord, 
string secondWord) { 
            return GetSimilarity(firstWord, secondWord); 
        } 
 
        /// <summary> 
        /// Converts a string of notes to an array of midi notes 
        /// </summary> 
        private int[] notesToMidiArray(string input2) 
        { 
            string control = "CDEFGAB"; 
            string input = ""; 
            input2 = input2.ToUpper(); 
 
            // clean input 
            for (int i = 0; i < input2.Length; i++) 
            { 
                if (control.IndexOf(input2[i]) != -1) 
                { 
                    input += input2[i]; 
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                } 
            } 
 
            int[] tmp = new int[input.Length]; 
 
            // convert to midi notes 
            for (int i = 0; i < input.Length; i++) 
            { 
                if (control.IndexOf(input[i]) != -1) 
                { 
                    tmp[i] = 60 + control.IndexOf(input[i]); 
                } 
            } 
            return tmp; 
        } 
 
        /// <summary> 
        /// Calculates the Semex edit distance between two int arrays, pattern 
and text 
        /// </summary> 
        public double calculateSemex(int[] pattern, int[] text) 
        { 
            int pLength = pattern.Length; 
            int tLength = text.Length; 
            int difference = 0; 
 
            //Console.Out.Write("pLength:" + pLength + " tLength:" + tLength); 
 
            int sc; 
 
            if (pLength == 0) 
            { 
                return -1; 
            } 
            if (tLength == 0) 
            { 
                return -1; 
            } 
 
            int[][] d = new int[pLength + 1][]; 
 
            // Initialise all rows to be zero instead of null based. 
            for (int i = 0; i < pLength + 1; i++) 
            { 
                d[i] = new int[tLength + 1]; 
            } 
 
            // Initialise the first row 
            for (int i = 0; i < tLength + 1; i++) 
            { 
                d[0][i] = 0; 
            } 
            // Now make the first col = 1,2,3,4,5,6 
            for (int i = 0; i < pLength + 1; i++) 
            { 
                d[i][0] = i; 
            } 
 
 
            for (int i = 1; i <= pLength; i++) 
            { 
                sc = pattern[i - 1]; 
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                for (int j = 1; j <= tLength; j++) 
                { 
                    int v = d[i - 1][j - 1]; 
                    if (j - 2 < 0 || i - 2 < 0) 
                    { 
                        difference = 1; 
                    } 
                    else if ((text[j - 1] - text[j - 2]) != (pattern[i - 1] - 
pattern[i - 2])) 
                    { 
                        difference = 1; 
                    } 
                    else 
                    { 
                        difference = 0; 
                    } 
                    d[i][j] = Math.Min(Math.Min(d[i - 1][j] + 1, d[i][j - 1] + 
1), v + difference); 
                } 
            } 
 
 
            int[] lastRow = d[pLength]; 
            int min = int.MaxValue; 
            for (int i = 1; i < tLength + 1; i++) 
            { 
                int c = lastRow[i]; 
                if (c < min) 
                { 
                    min = c; 
                } 
            } 
            return min; 
        } 

 

Table 54: Breathnach MIC Implementation in C# 

        /// <summary> 
        /// gets the similarity of the two strings using MIC distance. 
        /// </summary> 
        /// <param name="firstWord"></param> 
        /// <returns>a value between 0-1 of the similarity</returns> 
        public override string GetSimilarity(string firstWord) 
        { 
            if ((firstWord != null)) 
            { 
                return calculateBreathnach(firstWord); 
            } 
            else  
            {  
                return "";  
            } 
 
        } 
 
        /// <summary> 
        /// gets the Parsons code for a string. 
        /// </summary> 
        private string calculateBreathnach(string input2) 
        { 
            try 
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            { 
                input2 = input2.ToUpper(); 
                string control = "CDEFGAB"; 
                StringBuilder input = new StringBuilder(); 
 
                // clean input 
                for (int i = 0; i < input2.Length; i++) 
                { 
                    if (control.IndexOf(input2[i]) != -1) 
                    { 
                        input.Append(input2[i]); 
                    } 
                } 
 
                String key = input[input.Length - 1].ToString(); 
                StringBuilder temp = new StringBuilder(); 
                int char1, interval, fundamental; 
                fundamental = control.IndexOf(key); 
                for (int i = 0; i < input.Length; i++) 
                { 
                    try 
                    { 
                        char1 = control.IndexOf(input[i]); 
                        interval = (char1 - fundamental + 1); 
                        if (interval < 1) 
                        { 
                            interval += 7; 
                        } 
                        temp.Append(interval); 
                    } 
                    catch (Exception e) 
                    { 
                        //Console.Out.WriteLine(e.ToString()); 
                    } 
                } 
                return temp.ToString(); 
            } 
            catch 
            { 
                return "Error!"; 
            } 
        } 

 

Table 55: Parsons Code Implementation in C# 

        /// <summary> 
        /// gets the similarity of the two strings using Parsons distance. 
        /// </summary> 
        /// <param name="firstWord"></param> 
        /// <returns>a value between 0-1 of the similarity</returns> 
        public override string GetSimilarity(string firstWord) 
        { 
            if (firstWord != null) 
            { 
                return calculateParsons(firstWord); 
            } 
            else 
            { 
                return ""; 
            } 
        } 
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        /// <summary> 
        /// gets the Parsons code for a string. 
        /// </summary> 
        private string calculateParsons(string input2) 
        { 
            try 
            { 
                input2 = input2.ToUpper(); 
                string control = "CDEFGAB"; 
                string input = ""; 
 
                // clean input 
                for (int i = 0; i < input2.Length; i++) 
                { 
                    if (control.IndexOf(input2[i]) != -1) 
                    { 
                        input += input2[i]; 
                    } 
                } 
 
                string temp = "*"; 
                int loc, loc2 = 0; 
                for (int i = 0; i < input.Length - 1; i++) 
                { 
                    loc = control.IndexOf(input[i]); 
                    loc2 = control.IndexOf(input[i + 1]); 
                    if (loc > loc2) { temp += "D"; } 
                    else if (loc == loc2) { temp += "R"; } 
                    else if (loc < loc2) { temp += "U"; } 
                } 
                return temp; 
            } 
            catch 
            { 
                return "Error!"; 
            } 
        } 

 

Table 56: Standard Deviation Function in C# based on a C# version freely available 

online 

        /// <summary> 
        /// gets the stdev of the four values passed to it. 
        /// </summary> 
        /// <param name="firstValue"></param> 
        /// <param name="secondValue"></param> 
        /// <param name="thirdValue"></param> 
        /// <param name="fourthValue"></param> 
        /// <returns>a value between 0-1 of the similarity</returns> 
        public override double GetSimilarity(double firstValue, double 
secondValue, double thirdValue, double fourthValue) 
        { 
 
            ArrayList rankList = new ArrayList(); 
            rankList.Add(firstValue); 
            rankList.Add(secondValue); 
            rankList.Add(thirdValue); 
            rankList.Add(fourthValue); 
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            return StandardDeviation(rankList); 
 
        } 
 
        /// <summary> 
        /// gets the normalised rank of the four rank values passed to it. Also 
need the total count of records (the highest rank) 
        /// </summary> 
        /// <param name="firstValue"></param> 
        /// <param name="secondValue"></param> 
        /// <param name="thirdValue"></param> 
        /// <param name="fourthValue"></param> 
        /// <param name="count"></param> 
        /// <returns>a value between 0-1 of the normalised rank</returns> 
        public double GetNormalisedRank(int firstValue, int secondValue, int 
thirdValue, int fourthValue, int count) 
        { 
            // need four ranks and the total count of records (highest rank) to 
normalise 
            int sum = firstValue + secondValue + thirdValue + fourthValue; 
            double normalisedRank = 1.0 - ((sum - 4.0) / (count * 4.0)); 
            return normalisedRank; 
        } 
 
        ///<Summary> 
        ///Calculates standard deviation of numbers in an ArrayList 
        ///</Summary>  
        public static double StandardDeviation(ArrayList num) 
        { 
            double SumOfSqrs = 0; 
            double avg = Average(num); 
            for (int i = 0; i < num.Count; i++) 
            { 
                SumOfSqrs += Math.Pow(((double)num[i] - avg), 2); 
            } 
            double n = (double)num.Count; 
            return Math.Sqrt(SumOfSqrs / (n - 1)); 
        } 
 
        ///<Summary> 
        ///Calculates average of numbers of integer data type in an ArrayList 
        ///</Summary>   
        public static double Average(ArrayList num) 
        { 
            double sum = 0.0; 
            for (int i = 0; i < num.Count; i++) 
            { 
                sum += (double)num[i]; 
            } 
            double avg = sum / System.Convert.ToDouble(num.Count); 
 
            return avg; 
        } 

 

Table 57: TextFunctions String Metrics Assembly 

using System; 
using System.Collections.Generic; 
using System.Text; 
using System.Data.SqlTypes; 
using SimMetricsMetricUtilities; 
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using Microsoft.SqlServer.Server; 
 
    public class StringMetrics 
    { 
 
        private static readonly Levenstein _Levenstein; 
        private static readonly Jaro _Jaro; 
        private static readonly JaroWinkler _JaroWinkler; 
        private static readonly Semex _Semex; 
        private static readonly Breathnach _Breathnach; 
        private static readonly Parsons _Parsons; 
        private static readonly stdevmusic _stdevmusic; 
 
        static StringMetrics() 
        { 
            _Levenstein = new Levenstein(); 
            _Jaro = new Jaro(); 
            _JaroWinkler = new JaroWinkler(); 
            _Semex = new Semex(); 
            _Breathnach = new Breathnach(); 
            _Parsons = new Parsons(); 
            _stdevmusic = new stdevmusic(); 
 
        } 
 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlDouble Levenstein(SqlString firstWord, SqlString 
secondWord) 
        { 
            if (firstWord.IsNull || secondWord.IsNull) 
                return 0; 
 
            return new SqlDouble(_Levenstein.GetSimilarity(firstWord.Value, 
secondWord.Value)); 
        } 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlDouble Jaro(SqlString firstWord, SqlString secondWord) 
        { 
            if (firstWord.IsNull || secondWord.IsNull) 
                return 0; 
 
            return new SqlDouble(_Jaro.GetSimilarity(firstWord.Value, 
secondWord.Value)); 
        } 
 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlDouble JaroWinkler(SqlString firstWord, SqlString 
secondWord) 
        { 
            if (firstWord.IsNull || secondWord.IsNull) 
                return 0; 
 
            return new SqlDouble(_JaroWinkler.GetSimilarity(firstWord.Value, 
secondWord.Value)); 
        } 
 



  Appendix D 

  129 

 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlDouble Semex(SqlString firstWord, SqlString secondWord) 
        { 
            if (firstWord.IsNull || secondWord.IsNull) 
                return 0; 
 
            return new SqlDouble(_Semex.GetSimilarity(firstWord.Value, 
secondWord.Value)); 
        } 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlString Breathnach(SqlString firstWord) 
        { 
            if (firstWord.IsNull) 
                return ""; 
 
            return new SqlString(_Breathnach.GetSimilarity(firstWord.Value)); 
        } 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true, DataAccess=DataAccessKind.Read)] 
        public static SqlDouble BreathnachRank(SqlString firstWord, SqlString 
secondWord) 
        { 
            if (firstWord.IsNull || secondWord.IsNull) 
                return 0; 
 
            return new SqlDouble(_Breathnach.GetSimilarity(firstWord.Value, 
secondWord.Value)); 
        } 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlString Parsons(SqlString firstWord) 
        { 
            if (firstWord.IsNull) 
                return ""; 
 
            return new SqlString(_Parsons.GetSimilarity(firstWord.Value)); 
        } 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlDouble stdevmusic(SqlDouble firstValue, SqlDouble 
secondValue, SqlDouble thirdValue, SqlDouble fourthValue) 
        { 
            if (firstValue.IsNull || secondValue.IsNull || thirdValue.IsNull || 
fourthValue.IsNull) 
                return 0.0; 
 
            return new SqlDouble(_stdevmusic.GetSimilarity(firstValue.Value, 
secondValue.Value, thirdValue.Value, fourthValue.Value)); 
        } 
 
        [Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true, 
IsPrecise = true)] 
        public static SqlDouble normalisedRank(int firstValue, int secondValue, 
int thirdValue, int fourthValue, int count) 
        { 
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            if (firstValue.Equals(null) || secondValue.Equals(null) || 
thirdValue.Equals(null) || fourthValue.Equals(null) || count.Equals(null)) 
                return 0.0; 
 
            return new SqlDouble(_stdevmusic.GetNormalisedRank(firstValue, 
secondValue, thirdValue, fourthValue, count)); 
        } 
    } 

 

Table 58: SQL to install custom string distance functions in MS SQL 2008 

DROP FUNCTION Levenstein 

GO 

 

DROP FUNCTION NeedlemanWunch 

GO 

 

DROP FUNCTION SmithWaterman 

GO 

 

DROP FUNCTION SmithWatermanGotoh 

GO 

 

DROP FUNCTION SmithWatermanGotohWindowedAffine 

GO 

 

DROP FUNCTION Jaro 

GO 

 

DROP FUNCTION JaroWinkler 

GO 

 

DROP FUNCTION ChapmanLengthDeviation 

GO 

 

DROP FUNCTION ChapmanMeanLength 

GO 

 

DROP FUNCTION QGramsDistance 

GO 

 

DROP FUNCTION BlockDistance 

GO 

 

DROP FUNCTION CosineSimilarity 

GO 

 

DROP FUNCTION DiceSimilarity 

GO 

 

DROP FUNCTION EuclideanDistance 

GO 

 

DROP FUNCTION JaccardSimilarity 

GO 

 

DROP FUNCTION MatchingCoefficient 

GO 

 

DROP FUNCTION MongeElkan 
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GO 

 

DROP FUNCTION OverlapCoefficient 

GO 

 

DROP FUNCTION Semex 

GO 

 

DROP FUNCTION Parsons 

GO 

 

DROP FUNCTION Breathnach 

GO 

 

DROP FUNCTION BreathnachRank 

GO 

 

DROP FUNCTION stdevmusic 

GO 

 

DROP FUNCTION NormalisedRank 

GO 

 

DROP ASSEMBLY [TextFunctions] 

GO 

 

CREATE ASSEMBLY [TextFunctions] 

AUTHORIZATION [dbo] 

FROM 

'C:\bin\TextFunctions\TextFunctions\bin\Release\TextFunctions.dll' 

WITH PERMISSION_SET = EXTERNAL_ACCESS 

GO 

 

CREATE FUNCTION Levenstein(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.Levenstein 

GO 

 

CREATE FUNCTION NeedlemanWunch(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.NeedlemanWunch 

GO 

 

CREATE FUNCTION SmithWaterman(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.SmithWaterman 

GO 

 

CREATE FUNCTION SmithWatermanGotoh(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.SmithWatermanGotoh 

GO 

 

CREATE FUNCTION SmithWatermanGotohWindowedAffine(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.SmithWatermanGotohWindowedAffine 

GO 
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CREATE FUNCTION Jaro(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.Jaro 

GO 

 

CREATE FUNCTION JaroWinkler(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.JaroWinkler 

GO 

 

CREATE FUNCTION ChapmanLengthDeviation(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.ChapmanLengthDeviation 

GO 

 

CREATE FUNCTION ChapmanMeanLength(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.ChapmanMeanLength 

GO 

 

CREATE FUNCTION QGramsDistance(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.QGramsDistance 

GO 

 

CREATE FUNCTION BlockDistance(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.BlockDistance 

GO 

 

CREATE FUNCTION CosineSimilarity(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.CosineSimilarity 

GO 

 

CREATE FUNCTION DiceSimilarity(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.DiceSimilarity 

GO 

 

CREATE FUNCTION EuclideanDistance(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.EuclideanDistance 

GO 

 

CREATE FUNCTION JaccardSimilarity(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.JaccardSimilarity 

GO 

 

CREATE FUNCTION MatchingCoefficient(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.MatchingCoefficient 



  Appendix D 

  133 

GO 

 

CREATE FUNCTION MongeElkan(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.MongeElkan 

GO 

 

CREATE FUNCTION OverlapCoefficient(@firstword 

NVARCHAR(255),@secondword NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.OverlapCoefficient 

GO 

 

CREATE FUNCTION Semex(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.Semex 

GO 

 

CREATE FUNCTION Breathnach(@firstword NVARCHAR(255)) 

RETURNS nvarchar(255) EXTERNAL NAME 

TextFunctions.StringMetrics.Breathnach 

GO 

 

CREATE FUNCTION BreathnachRank(@firstword NVARCHAR(255),@secondword 

NVARCHAR(255)) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.BreathnachRank 

GO 

 

CREATE FUNCTION Parsons(@firstword NVARCHAR(255)) 

RETURNS nvarchar(255) EXTERNAL NAME 

TextFunctions.StringMetrics.Parsons 

GO 

 

CREATE FUNCTION stdevmusic(@firstValue float, @secondValue float, 

@thirdvalue float, @fourthValue float) 

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.stdevmusic 

GO 

 

CREATE FUNCTION NormalisedRank(@firstValue int, @secondValue int, 

@thirdvalue int, @fourthValue int, @count int) 

RETURNS float EXTERNAL NAME 

TextFunctions.StringMetrics.normalisedRank 

GO 

 

Table 59:  getRanks Stored Procedure 

USE [Test] 

GO 

/****** Object:  StoredProcedure [dbo].[getRanks]    Script Date: 

06/29/2010 14:30:05 ******/ 

SET ANSI_NULLS ON 

GO  

SET QUOTED_IDENTIFIER ON 

GO 

-- ============================================= 

-- Author:  Padraic Lavin 

-- Create date: 2010 

-- Description: Return ranks 
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-- ============================================= 

CREATE PROCEDURE [dbo].[getRanks]  

 -- Add the parameters for the stored procedure here 

 @Notes nvarchar(255) = '' 

AS 

BEGIN 

 -- SET NOCOUNT ON added to prevent extra result sets from 

 -- interfering with SELECT statements. 

 SET NOCOUNT ON; 

  

 -- Declare some Variables 

 DECLARE @parsons nvarchar(255) = [Test].[dbo].Parsons(@notes) 

 DECLARE @breathnach nvarchar(255) = 

[Test].[dbo].Breathnach(@notes) 

 DECLARE @rowID float 

 DECLARE @MaxRank float 

 DECLARE @prowID float 

 DECLARE @PMaxRank float 

 DECLARE @count int 

  

 -- Create temp table for Breathnach Rank and populate it 

 SELECT 

 ID,   

 dbo.Breathnach(NOTES) as MIC, 

 dbo.Parsons(NOTES) as PIC, 

 row_number() over (order by dbo.Breathnach(NOTES) asc) as 

rowID,  

 (row_number() over (order by dbo.Breathnach(NOTES)))/1.0 as 

MICScore, 

 (row_number() over (order by dbo.Parsons(NOTES)))/1.0 as 

PICScore 

 into #TEMP 

 from corpus 

 order by MIC; 

  

 -- Find nearest match for @notes - Breathnach 

 Select top 1 @rowID = MICScore from #TEMP where 

dbo.Breathnach(@notes) <= MIC order by MIC asc 

 Select @MaxRank = MAX(MICScore) from #TEMP 

  

 -- Find nearest match for @notes - Parsons 

 Select top 1 @prowID = PICScore from #TEMP where 

dbo.Parsons(@notes) <= PIC order by PIC asc 

 Select @PMaxRank = MAX(PICScore) from #TEMP 

  

 Update #TEMP set MICScore = 1-((abs(MICScore - 

@rowID))/@MaxRank)   

 Update #TEMP set PICScore = 1-((abs(PICScore - 

@prowID))/@PMaxRank) 

  

    -- Insert statements for procedure here 

  

 select [Test].[dbo].Corpus.ID, NAME, PART, 

[Test].[dbo].Semex(@Notes, dbo.corpus.NOTES) as Semex, 

RANK() OVER(ORDER BY [Test].[dbo].Semex(@Notes, dbo.corpus.[NOTES]) 

DESC) AS [SemexRank], 

[Test].[dbo].JaroWinkler(@Notes, dbo.corpus.NOTES) as Jaro,  

RANK() OVER(ORDER BY [Test].[dbo].JaroWinkler(@Notes, 

dbo.corpus.[NOTES]) DESC) AS [JaroRank], 

[Test].[dbo].JaroWinkler(@parsons, 

[Test].[dbo].Parsons(dbo.corpus.NOTES)) as Parsons, 
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RANK() OVER(ORDER BY #TEMP.PICScore DESC) AS [ParsonsRank], 

#TEMP.MICScore, 

RANK() OVER(ORDER BY #TEMP.MICScore DESC) AS [MICRank], 

notes, tunekey, measure, #TEMP.MIC 

 

into #TEMP3 

 

from dbo.corpus 

left join #TEMP 

on [Test].[dbo].Corpus.ID = #TEMP.ID 

order by MICRank asc, SemexRank asc, JaroRank asc, ParsonsRank asc 

 

select @count = COUNT(ID) from #TEMP3 

 

select ID, NAME, NOTES, TUNEKEY, MEASURE, 

[Test].[dbo].stdevmusic(SemexRank, JaroRank, ParsonsRank, MICRank) as 

stdev, [Test].[dbo].normalisedRank(SemexRank, JaroRank, ParsonsRank, 

MICRank, @count) as NRank 

from #TEMP3 

order by NRank desc, stdev asc 

END 

 

Table 60: getRanksID Stored Procedure 

USE [Test] 

GO 

/****** Object:  StoredProcedure [dbo].[getRanksID]    Script Date: 

06/29/2010 14:31:36 ******/ 

SET ANSI_NULLS ON 

GO 

SET QUOTED_IDENTIFIER ON 

GO 

-- ============================================= 

-- Author:  <Author,,Name> 

-- Create date: <Create Date,,> 

-- Description: <Description,,> 

-- ============================================= 

CREATE PROCEDURE [dbo].[getRanksID]  

 -- Add the parameters for the stored procedure here 

 @ID int 

AS 

BEGIN 

 -- SET NOCOUNT ON added to prevent extra result sets from 

 -- interfering with SELECT statements. 

 SET NOCOUNT ON; 

  

 -- Declare some Variables 

 DECLARE @notes nvarchar(255) 

  

 select @notes = NOTES from [Test].[dbo].corpus where ID = @ID 

  

 DECLARE @parsons nvarchar(255) = [Test].[dbo].Parsons(@notes) 

 DECLARE @breathnach nvarchar(255) = 

[Test].[dbo].Breathnach(@notes) 

 DECLARE @rowID float 

 DECLARE @MaxRank float 

 DECLARE @prowID float 

 DECLARE @PMaxRank float 

 DECLARE @count int 
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 -- Create temp table for Breathnach Rank and populate it 

 SELECT 

 ID,   

 dbo.Breathnach(NOTES) as MIC, 

 dbo.Parsons(NOTES) as PIC, 

 row_number() over (order by dbo.Breathnach(NOTES) asc) as 

rowID,  

 (row_number() over (order by dbo.Breathnach(NOTES)))/1.0 as 

MICScore, 

 (row_number() over (order by dbo.Parsons(NOTES)))/1.0 as 

PICScore 

 into #TEMP 

 from corpus 

 order by MIC; 

  

 -- Find nearest match for @notes - Breathnach 

 Select top 1 @rowID = MICScore from #TEMP where 

dbo.Breathnach(@notes) <= MIC order by MIC asc 

 Select @MaxRank = MAX(MICScore) from #TEMP 

  

 -- Find nearest match for @notes - Parsons 

 Select top 1 @prowID = PICScore from #TEMP where 

dbo.Parsons(@notes) <= PIC order by PIC asc 

 Select @PMaxRank = MAX(PICScore) from #TEMP 

  

 Update #TEMP set MICScore = 1-((abs(MICScore - 

@rowID))/@MaxRank)   

 Update #TEMP set PICScore = 1-((abs(PICScore - 

@prowID))/@PMaxRank) 

  

    -- Insert statements for procedure here 

  

 select @ID as A_ID, [Test].[dbo].Corpus.ID as B_ID,  

[Test].[dbo].Semex(@Notes, dbo.corpus.NOTES) as Semex, 

RANK() OVER(ORDER BY [Test].[dbo].Semex(@Notes, dbo.corpus.[NOTES]) 

DESC) AS [SemexRank], 

[Test].[dbo].JaroWinkler(@Notes, dbo.corpus.NOTES) as Jaro,  

RANK() OVER(ORDER BY [Test].[dbo].JaroWinkler(@Notes, 

dbo.corpus.[NOTES]) DESC) AS [JaroRank], 

[Test].[dbo].JaroWinkler(@parsons, 

[Test].[dbo].Parsons(dbo.corpus.NOTES)) as Parsons, 

RANK() OVER(ORDER BY #TEMP.PICScore DESC) AS [ParsonsRank], 

#TEMP.MICScore, 

RANK() OVER(ORDER BY #TEMP.MICScore DESC) AS [MICRank], 

notes, tunekey, measure, #TEMP.MIC 

 

into #TEMP3 

 

from dbo.corpus 

left join #TEMP 

on [Test].[dbo].Corpus.ID = #TEMP.ID 

order by MICRank asc, SemexRank asc, JaroRank asc, ParsonsRank asc 

 

select @count = COUNT(A_ID) from #TEMP3 

 

select A_ID, B_ID, [Test].[dbo].stdevmusic(SemexRank, JaroRank, 

ParsonsRank, MICRank) as stdev, 

[Test].[dbo].normalisedRank(SemexRank, JaroRank, ParsonsRank, 

MICRank, @count) as NRank 

from #TEMP3 
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order by NRank desc, stdev asc 

END 

Table 61: calculateMatrix Stored Procedure 

USE [Test] 

GO 

/****** Object:  StoredProcedure [dbo].[calculateMatrix]    Script 

Date: 06/29/2010 14:32:29 ******/ 

SET ANSI_NULLS ON 

GO 

SET QUOTED_IDENTIFIER ON 

GO 

-- ============================================= 

-- Author:  <Author,,Name> 

-- Create date: <Create Date,,> 

-- Description: <Description,,> 

-- ============================================= 

CREATE PROCEDURE [dbo].[calculateMatrix]  

AS 

 

 -- SET NOCOUNT ON added to prevent extra result sets from 

 -- interfering with SELECT statements. 

 SET NOCOUNT ON; 

  

 -- Declare some Variables 

 DECLARE @notes nvarchar(255) 

 DECLARE @corpusID int 

 DECLARE @return_value int 

  

 DECLARE tune_cursor CURSOR FOR SELECT cast([ID] as int) as ID, 

NOTES FROM [Test].[dbo].[corpus] where (ID >= 8353 and ID <= 20297) 

order by ID asc 

  

 OPEN tune_cursor 

 -- Perform the first fetch. 

 FETCH NEXT FROM tune_cursor into @corpusID, @notes 

  

 BEGIN 

 

 -- Check @@FETCH_STATUS to see if there are any more rows to 

fetch. 

 WHILE @@FETCH_STATUS =0 

 BEGIN 

 --Select @corpusID, @notes  

  

 -- ***************************************************** 

 INSERT dbo.matrix (A_ID, B_ID, STDEV, NRank) 

 EXEC @return_value = [dbo].[getRanksID] 

  @ID = @corpusID 

 

--***************************************************** 

 

FETCH NEXT FROM tune_cursor into @corpusID, @notes 

 

END 

 

CLOSE tune_cursor 

DEALLOCATE tune_cursor 

END 
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