D 5 B LIN Technological University Dub.lin
- ARROW@TU Dublin

Dissertations School of Computing

Winter 2010-11-01

A Similarity Matrix for Irish Traditional Dance Music

Padraic Lavin
Technological University Dublin, padraic.lavin@student.dit.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

b‘ Part of the Other Computer Engineering Commons

Recommended Citation
Lavin, Padraic, "A Similarity Matrix for Irish Traditional Dance Music" (2010). Dissertations. 30.
https://arrow.tudublin.ie/scschcomdis/30

This Dissertation is brought to you for free and open
access by the School of Computing at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations
by an authorized administrator of ARROW@TU Dublin.
For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/scschcomdis/30?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

A similarity matrix for Irish traditional

dance music

Padraic Lavin

A dissertation submitted in partial fulfilment of the requirements of
Dublin Institute of Technology for the degree of
M.Sc. in Computing (Information Technology)

July 2010

| certify that this dissertation which I now submit for examination for the award of
MSc in Computing (Information Technology), is entirely my own work and has not
been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.
This dissertation was prepared according to the regulations for postgraduate study of
the Dublin Institute of Technology and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute’s guidelines for ethics in research.

Signed:

Date: 26 July 2010

ABSTRACT

It is estimated that there are between seven and ten thousand lIrish traditional dance
tunes in existence. As Irish musicians travelled the world they carried their repertoire
in their memories and rarely recorded these pieces in writing. When the music was
passed down from generation to generation by ear the names of these pieces of music
and the melodies themselves were forgotten or changed over time. This has led to
problems for musicians and archivists when identifying the names of traditional Irish

tunes.

Almost all of this music is now available in ABC notation from online collections. An
ABC file is a text file containing a transcription of one or more melodies, the tune title,

musical key, time signature and other relevant details.

The principal aim of this project is to define a process by which Irish music can be
compared using string distance algorithms. An online survey will then be conducted to
assess if human participants agree with the computer comparisons. Improvements will
then be made to the string distance algorithms by considering music theory. Two other
methods of assessing musical similarity, Breanddn Breathnach’s Melodic Indexing
System and Parsons Code will be computerised and integrated into a Combined
Ranking System (CRS). An hypothesis will be formed based on the results and
experiences of creating this system. This hypothesis will be tested on humans and if

successful, used to achieve the final aim of the project, to construct a similarity matrix.

Key words: Irish music, string distance algorithm, similarity matrix, combined

ranking system, music comparison, edit distance

ADMHALACHA

Ba mhaith liom mo bhuiochas a chur in il do mo mhaor, an Dr. Pierpaolo Dondio,

mar gheall ar a fhoighne a inspioraid agus a spreagadh le linn an tionscnaimh seo.

Taim faoi chomaoin mhdr ag an Dr. Bryan Duggan a spreag chun an fheachtais seo mé
lena shaothar féin agus gan a chabhair agus a achmainn bheadh crioch fhoghanta an

tionscnaimh seo uireasach.

Ba mhaith liom mo bhuiochas a ghabhail le Brendan Tierney, Dr. Ronan Fitzpatrick,
Dr. Svetlana Hensman, Deirdre Lawless, Paul Doyle agus an fhoireann uilig san Scoil
Riomhaireachta, DIT, Sraid Chaoimhin.

Buiochas do m’fhostoir, An Roinn Talamhaiochta, lascaigh agus Bia, go hairithe mo
bhainisteoiri line, a bhi is atd agam, as a solubthacht agus a bhfoighne le seacht mbliain
anuas. Ba mhaith liom, freisin, buiochas a ghabhail le foireann oibri an Aonaid

Oiliuna as a gcabhair agus a dtacaiocht.

Ba mhaith liom mo bhuiochas a ghabhail le mo chairde, ceolmhar agus
neamcheolmbhar, a rinneadh saineolaithe agus neamshaineolaithe diobh mar aidhm an

tsuirbhé.

Do mo chailin, Deirdre, is mian liom mo bhuiochas dilis a chur in ial as ucht a tuiscint,

a foighne agus a foinn.

Taim de shior faoi chomaoin ag mo thuismitheoiri, Padhraic agus Treasa, mo
dhearthair Eanna agus mo dheirféar Treasa as a ngra agus a dtacaiocht

bhuanseasmhach.

Mar fhocal scoir, ba mhaith liom mo bhuiochas 6 chroi a ghabhail le mo sheanathair,
Philip Lavin, nach maireann, a mhdin dom mo chéad cheol traidisiinta 6 aois a sé agus
fos a spreagann mo cheol inniu.

ACKNOWLEDGEMENTS

| would like to express my sincere thanks to my supervisor Dr. Pierpaolo Dondio for

his patience, inspiration and encouragement throughout this project.

| am very grateful to Dr. Bryan Duggan whose work inspired this project and without

whose help and resources this project would not have been successfully completed.

| would like to thank Brendan Tierney, Dr. Ronan Fitzpatrick, Dr. Svetlana Hensman,
Deirdre Lawless, Paul Doyle and all of the staff in the School of Computing, DIT,

Kevin Street.

| would like to thank my employer, the Department of Agriculture, Fisheries and Food,
in particular my line managers, both past and present for their flexibility and patience
over the last seven years. | would also like to thank the staff working in the Training

Unit for their assistance and support.

| would also like to thank my musical and non-musical friends who became Irish

traditional music experts and non-experts for the purposes of the survey.

To my girlfriend Deirdre, 1 wish to express my deepest gratitude for her understanding,

patience and tunes.

| am forever indebted to my parents, Paddy and Terry, my brother Enda and sister

Treasa for their unwavering love and support.

Finally, 1 would like to express my profound appreciation to my late grandfather,
Philip Lavin, who taught me to play Irish traditional music from the age of six and

who continues to inspire my music today.

Dedicated to the memory of my grandfather,

Philip Lavin

TABLE OF CONTENTS

Table of Contents
A B S T R A C T oo 1]
ADMHALACHA .ottt ettt ettt ettt ettt ee e, 11
ACKNOWLEDGEMENTS ...ttt v
TABLE OF FIGURES ...ttt ettt e e XI
TABLE OF TABLES ...ttt eesnesesesssenenenenennnnnnes X1V
LIST OF ABBREVIATIONS ... e 1
1. INTRODUCTION. ..ottt ettt e e e ereeeeeeeees 2
1.1 OVERVIEW OF PROJECT AREA ... citteeeeeee e et teee e e e e e eeeeeaaaseeeeeeeeennnanseeeeseeenns 2
1.2 BACKGROUND TO IRISH TRADITIONAL DANCE MUSIC ..ceevvveeeeeeeeeeeeeeiieeeeeeeeeaeeenns 3
1.2.1 Types of Irish traditional dance tune............ccccceevveieeiiiie e 3
1.2.2 Musical keys in Irish traditional MUSICccceeveiieviiie e 4
L1.2.3 TUNE SETUCTUIE oot e e e e e e e e e e e e e e e e e e e s 4
1.2.4 Traditional MUSIC COIECLIONSooeeeeeeee et 6
1.2.5 ElectroniC COlECLIONSveeeeeeee et 7
1.3 RESEARCH PROBLEM ...coevttttuiiteeettteeetteasseeseeseessssassessssseessssnnsesessseesssnnansesessseenns 7
1.4 INTELLECTUAL CHALLENGEuiteee ettt e et e e e e e e e e e e e e 9
1.5 RESEARCH OBJIECTIVES ...uieeeeeteeee et ee e e e e eeee e e e e e e e e e e e e e e e e ee e eeeennns 10
1.6 RESEARCH METHODOLOGY ...iieeeieeeeetunaieteeesseesssnsssseesseeesssnssssessseessssnssseeesseenns 10
1.6.1 Phase one — Collection of tunes in ABC notation............ccccceveennennn. 11
1.6.2 Phase two - Conduct programming eXperiments...........ccccooceevrerennnn. 11
1.6.3 Phase three — Survey of experts and NON-exXpertS..........ccocevvervrerennnn. 12
1.6.4 Phase four - Conclusions drawn from analysis of survey 12
1.6.5 Phase five — Construction of a Similarity Matrix............cccccovvveiieennnns 12
L7 RESOURCES ...cvn ettt ettt ettt ettt e et e e ettt e e e e e e e e e e er e eeeennnn 12
1.7.1 Library FACIlItieS......ccccoveiieie e 12
1.7.2 Programming Environment and Database Servercccccceevevvvenene. 12
1.7.3 ACCESS t0 @ SUPEIVISOL ...couvieuieiieiiieniestiesieeieseeesieesaessee st enae e sreesaesnee e 13
1.7.4 Providers of databases of Irish tunes in ABC Notation...........cccveeee.... 14

Vi

1.7.5 Two groups of SUrvey partiCipantsccocoeervererienieeieenenesese s 14

1.8 SCOPE AND LIMITATIONSceiutiatieairtateesiteanteesnseesiesssseesseesnseessesasseesssessesssnsanes 14
1.9 ORGANISATION OF THE DISSERTATION ...cceiviirriaririeinresseseesensesseseesessesseseasessenes 15
2. MUSIC COMPARISON TECHNIQUES.........cocoiiiiiiineneeese e 17
2 INTRODUCTION ...utiiutiiiiitatie sttt estee ettt esteesiteesbeesseeebeesseeasbeessseebeesabeebeesnneenbeesaneenes 17
2.1 WHAT IS MUSIC COMPARISON?eitiiiitiaieeaiteatessieeateesieeaseesieesseesseesnseeseneenns 17
2.2 BRENDAN BREATHNACH ...ccvitiiiiiitesteieiesteseeseere st ses e sieseenesseseenessessessesessesens 18
2.3 PARSONS CODE ...c.ciuiiiiienieiesiesieseste e sie et ste e e steste s sesbestesaasessesesessessesessessens 22
2.3.1 Normalised Parsons Code SCOIEScccerireerieerieniesieeneesieseeseeneens 23
2.4 ABC NOTATION ..tiiiiiiitie ittt sttt sbe et nane e 25
2.4.1 Why ABC NOtAtION?.....cc.eoiieeiccieciece e 27
2.5 CONCLUSION ...uttitietiateteiete st seesa sttt sa b saessesesbesbeseasesbeseeseatesse s esessetenessessens 27
3. STRING DISTANCE ALGORITHMS ... 29
3 INTRODUCTION ...utiiutiiiiitetie sttt etee sttt e bt et e et esabe st e sse et e e ssbeebeesabeebeesneeebeeneneenes 29
3.1 CHOOSING A SUITABLE ALGORITHMuviiiieiiiiaieesireaiee e esiee e 29
3.1.1 Definition of sSimilarity..........c.ccocoovveiiiiiii e 29
3.1.2 Uses Of SIMIlarity MEASUIESccoerieiiiiiiriieieee e 30
3.1.3 Music theory CONSIAEIatiONS.coerverierieriiiseeee e 30
3.2 THE LEVENSHTEIN ALGORITHM ...ccitiiiiiiaiieaiiieiee ettt e e 31
3.3 THE JARO-WINKLER ALGORITHMcciiiiiiiiniiiaiiesireaiee e esiee e i e ne e 34
3.4 THE LEMSTROM SEMEX ALGORITHMciitiiiiiiaiiesiieaieesieeeniessseessiessseessesssneenns 37
R T O] N o U 1] (o] N USRI 39
4. IMPROVED ALGORITHMS & A RANKING SYSTEMc.cccoevvieriinne, 40
A INTRODUCTION ..uutietiiiutiateeasttesteeasteeateeasseesieeasbeesbeeanseeaseeabeeabseanbeesaneanseessneanneens 40
4.1 MODIFICATIONS TO THE JARO-WINKLER ALGORITHM FOR IRISH MUSIC........... 40
4.1.1 Horizontal TranSpOSItIONSccceiverierienirese s 40
4.1.2 Contribution 1: Weighting melodic sequence variation 42
4.1.3 Contribution 2: Weighting tune prefixes........cccccvvvvveevieiiic e, 44
4.2 IMPROVEMENTS TO THE LEVENSHTEIN ALGORITHMcooiiiaiiiaiienieesieesineeeens 47
4.3 PROTOTYPE FOR A COMBINED RANKING SYSTEM ...cveviiieierinienieinresieeeeneeseans 48
4.3.1 Contribution 3: Combined Ranking SCOreSccevevrvveriveresiiesieennnns 48
A4 CONCLUSION ..uutieteeiittetee et e steeasbeesbee s bt e saeeasbeesbe e e nbeesbeeabeeabeeenbessaeeanbeeasneanneeas 51

vii

5. COMPUTERISING MIC SYSTEM & PARSONS CODE...........cccoceivennnn. 52

O INTRODUCTION ...ttt ettt ettt e e e e e e e 52
5.1 ADVANTAGES OF THE BREATHNACH MELODIC INDEXING SYSTEM.......ccvevuneen. 52
5.1.1 Time signature iNVariantccccceeceiieiieeneeie e e e 52
5.1.2 KeY INVAITANT ... 53
5.1.3 Easily managed SYSeMcoieiiieriieiereseses e 53
5.2 DISADVANTAGES OF THE BREATHNACH MELODIC INDEXING SYSTEM............. 53
5.2.1 Melodic Sequence Variation ANOmMalies...........ccccoevvevevievvevesiieieenns 54
5.2.2 Limited Comparisons can be made..........c.coovrvriniiiieienc s 54
5.3 PROPOSED IMPROVEMENTS.ttiittiatiesiteaieesieeatessineasseesseessessseesssesssnessesssnssnns 55
5.3.1 Contribution 4: Computerisation of the Melodic Indexing System55
5.3.2 Contribution 5: Compare MIC index codes alphabetically................. 57
54 ADVANTAGES OF COMPUTERISING THE MELODIC INDEXING SYSTEM 58
5.4.1 Larger database of tunes availablecccccooieiiiiiiiiniieicees 58
5.4.2 Greater ACCUIACY......cciviiiiiiieiiiie it e sttt e sbeeesbee s sbe e e e snreessenee e 58
5.4.3 Integration in a Combined Ranking Systemcccccvvevveveiieieennns 59
5.5 CONCLUSIONoiiiiiititeitie sttt sttt sttt st e st e be e s ab e beesreeenteenrneenes 61

6. EXPERIMENTATION AND EVALUATION......ccociiiieecie e 62
6 INTRODUCTIONeiiitiiiiiieitie sttt eiee sttt et et sie et e sse e et e se e e bt e s ae e e beeanneeneennne e 62
6.1 DESIGN OF EXPERIMENTS ...oiitiiiitiaiiesireaieesireesteesineaseesieeaseesnneasneessnessneessneenes 62
6.2 EXPERIMENTATION . .ciiititiuttateeatteateesiteestessseeantessseeasbeesseesnsessseeasessseessesssneanes 63

6.2.1 Description Of raw data...........ccccerereiiiineieeee e 63
6.2.2 Pre-processing ABC dataccovvieiiiiiieiiie e 63
6.2.3 EXperiment FrameworkKcccoviiiiiiiiiieciee s 65
6.2.3.1 JaVa FrameWO Kcccceiiiiiiiesieesie et 65
6.2.3.2 C Sharp Framework ..o 65
6.2.4 Levenshtein EXPerimentscccoiiiriiiieneiinese e 66
6.2.5 Jaro-Winkler EXPerimentsS.......ccccoviiiieiiiiiiie e 68
6.2.6 Lemstrom Semex Interval EXperimentscccovvveviieevieiiieiiiesiie e 69
6.2.7 Melodic Indexing Code eXPerimentscccevvereereeriesieesieeriesieseeneens 71
6.3 EVALUATION ..ottt sttt sttt sbe st b sbe e enennennens 73
6.3.1 Survey of experts and NON-EXPEITS.......ccccvverererrieereniie e seere e 73
6.3.2 Choosing tune part Pairs t0 TStcccviieririeiiere e 73

6.3.3 HOW tune pairs Were ChOSEN.........ccoovveieiiriiineeieiee e 75

6.3.3.1 PaAIrS 1 & 10 .ioeiiiiiiiiiiiie e 75
6.3.3.2 Pairs 2,3, 4 an0 5......ccoiiiiiiiieieee s 75
6.3.3.3 Pairs 6, 7,8 and 9.......ccoociiiiiiiiiiee e 75
6.3.4 Question order randomiSatioN............ccevvverereeieeneere e 75
6.3.5 ChOOSING EXPEITSoviiiiiiiieieeiieie et 77
6.3.6 EXPEITS FESUILSveeiieiieciie et 77
6.3.6.1 Analysis Of the eXperts reSPONSEScccivverveeieeieeieerie e e ereeeeseeneens 79
6.3.7 NON-EXPEITS FESUILSc.viiviiiiiiiiiieieie e 79
6.3.7.1 Analysis of the NON-exXperts reSPONSESccvrvreeireierene e 80
6.3.8 EXPErtS VS. NON-BXPEITS......uiiiiiieiiiieiiii et 80
6.4 CONSTRUCTING A SIMILARITY MATRIX FOR IRISH TRADITIONAL MusIC......... 82
6.4.1 Phase 1 — Importing data and extending MS SQL 2008c....... 82
6.4.2 Phase 2 - Testing custom function SQL QUErIESccevververeeririennnnns 83
6.4.3 A Combined Ranking SYStEMcccccveiiieiiiiieieese e 87
6.4.4 Phase 3 — Testing the combined ranking system on humans................ 92
6.4.4.1 ANAlYSIS Of FESUILSooviiiiiiiiciecee e 95
6.4.5 Phase 4 — Constructing Similarity Matrices..........ccoovveriienieiinennnnn 97
6.4.5.1 Parsons Code and Breathnach MIC Similarity Matrices.................... 97
6.4.5.2 Jaro-Winkler Similarity MatriXcccooeeviiiiiiiii e 97
6.4.5.3 Similarity matrix using the Combined Ranking System..............c......... 99
6.5 CONCLUSIONctititiiieitieaieesiee et sttt sttt et et e e e et e e nbe e st e e nteesneeanbeeaneas 101
7. CONCLUSION ..ottt ens 102
T INTRODUCTION ...utiiiitiutiesieeatee sttt eteesite e bt e ssee e ebe e s bt e sbeessbeesbeeesbeesbeeanbeennneanbeeaneas 102
7.1 RESEARCH DEFINITION & RESEARCH OVERVIEWcccoiiiiiieniieniie e 102
7.2 CONTRIBUTIONS TO THE BODY OF KNOWLEDGEccovieitieiiiieniiesnieesiieaieeseees 102
7.2.1 Contribution 1 - Weighting Melodic Sequence Variation 102
7.2.2 Contribution 2 - Weighting Tune PrefiXes........c.ccoccevvvivieviiiieeinenn, 103
7.2.3 Contribution 3 — Computerising Breathnach’s & Parsons’ Systems .103
7.2.4 Contribution 4 — Improvements to the Melodic Indexing System....... 103
7.2.5 Contribution 5 — A Combined Ranking Systemcccccevvevvereenne. 103
7.3 EXPERIMENTATION, EVALUATION AND LIMITATIONcoiiiiiieniii e 104
7.3.1 EXPErimentation........cccoiieieiieiieiie ettt 104

7.3.2 EVAIUALION ..o 104

7.3.3 LIMITALIONS ..ottt 104
7.4 FUTURE WORK & RESEARCHoiuiiiiiiiiiiiieiie sttt 105
7.4.1 Parsons Code & Melodic Index Code Precision...........cccccoeevvrvnnnnne. 105
7.4.2 Jaro-Winkler matching prefixesccovviiiinieiciee e 105
7.4.3 Similarity / Dissimilarity thresholdccccooiiiiiini, 105
7.4.4 User querying and SUFVEYING.......ccoovvereerieieeneeieseesieeseeseesseeseesseesnas 106
7.5 CONCLUSION ..ottt sttt sttt bbbttt bbb ens 106
7.5 1 ODJECLIVES ..ot 106
7.5.2 DelVErables......cccooiiiiiiee e 106
7.5.3 CONCIUSION ..ottt 107
BIBLIOGRAPHY ..ottt ettt sttt 108
APPENDIX A —SURVEY PARTICIPANTSooot e, 112
APPENDIX B - IRISH DANCE MUSIC SIMILARITIES SURVEY 113
APPENDIX C —SURVEY RESULTScoiiiiiitiestseeeee e 115
APPENDIX D — PROGRAMMING CODE........ccootiiiiiieieenese e, 122

TABLE OF FIGURES

FIGURE 1: AN IRISH JIG CALLED PADDY O’RAFFERTY RECORDED IN STAFF NOTATION ... 6
FIGURE 2: BREANDAN BREATHNACH MELODIC INDEXING SYSTEM. SOURCE: AUTHOR 19
FIGURE 3: AN INDEX CARD FROM THE BREANDAN BREATHNACH MELODIC INDEX FOR
THE TUNE “THE SWALLOWS TAIL” (BRENDAN BREATHNACH 1982)ccevvvennne 20
FIGURE 4: ASSIGNING NUMERICAL VALUES FROM A FINAL NOTE (BRENDAN
BREATHNACH 1982) ...ttt ettt et rs 21

FIGURE 5: Two JIGS FROM BREANDAN BREATHNACH'S COLLECTION, DOCTOR

O'HALLORAN AND THE MUNSTER LASS. SOURCE: AUTHOR........ccccveeiireeriieeaiiinens 22
FIGURE 6: PARSONS CODE CALCULATION AND DISTANCEccoveiiiiiesiierie e 23
FIGURE 7: HANLEY'S TWEED REEL IN STAFF NOTATION. SOURCE: AUTHOR................. 26
FIGURE 8 : JARO DISTANCE FORMULAooiiiiiieiiie et 35
FIGURE 9: JARO DISTANCE TRANSPOSITION FORMULA........cciiuiieiieeeiireesiieeesieeesiaee e 35
FIGURE 10: JARO-WINKLER FORMULAciiiiiieiiiieiiieesieessiieessiieessinessssaeesnsnessnnnee e 36
FIGURE 11: JARO DISTANCE CALCULATIONuvtteittieeiiteeessteeessneesssseessssesssssesssssessssnessnns 36
FIGURE 12: JARO-WINKLER DISTANCE CALCULATION ...cccuvvieiiiieesiieeesiveeesneeeesseeeessneeenns 37

SOURCE: AUTHORttiiitiie ettt e e stie e s tte e st e e st e e st e e st e e snte e e ssaeeesnseeesnteeessbeeesnneeennneeans 49
FIGURE 15: APPLICATION USED TO GENERATE RANKINGS BY ALGORITHM.......c.cccvveeennns 50
FIGURE 16: VISUAL COMPARISON OF TUNES 8425 AND 17825.......c.cccccovviiiieiiiie e, 51
FIGURE 17: STORAGE OF MELODIC INDEXING SYSTEM. SOURCE: AUTHORccvvennee. 54
FIGURE 18: TUNE PARTS SORTED ALPHABETICALLY BY MELODIC INDEX CODE............. 58
FIGURE 19: CALCULATION OF MELODIC INDEXING METRICScccvviiiiieiiiee e 60
FIGURE 20: ABC CORPUS SCHEMA. SOURCE: AUTHORccoiiuiieiiieeiieeesiieessieeesinee e 64

FIGURE 21: ABC CORPUS DATABASE ROWS 1 TO 16 INCLUSIVE. SOURCE: AUTHOR...... 64

FIGURE 22: DESKTOP JAVA APPLICATION FRAMEWORK FOR RUNNING EXPERIMENTS.

SOURCE: AUTHORotttiiiiiiitet ettt ettt ettt ettt ettt ettt ettt ettt et ettt ettt ettt e et et ettt e et e e et ereeerererereeeeees 65
FIGURE 23: LEVENSHTEIN COMPARISON RESULTS. SOURCE: AUTHORcoovvvieeieeeeeeeeeens 67
FIGURE 24: LEVENSHTEIN DISTRIBUTION ... ceetttttuuieeeeeteeeestnasssesesssesssnnsssessesseesssnnseesess 68

Xi

FIGURE 25: LEVENSHTEIN 2/4 DISTRIBUTION ... ittt e et et 68

FIGURE 26: FREQUENCY DISTRIBUTION BY M&F OF ALL MELODIES IN THEIR DATABASE.

SOURCE: (MULLENSIEFEN & FRIELER 2007, P.196)ccccoveiieieeieceece e 68
FIGURE 27: JARO-WINKLER DISTRIBUTIONeviuietiteterestesteseesesseseesensesseseesessessesessensens 69
FIGURE 28: JARO-WINKLER 2/4 DISTRIBUTION ...c.vveutiiiiesteasiesseesieeseesseesseessessessseessesseenes 69
FIGURE 29: SIMPLE SQL QUERY ON INTERVAL DATA TAKING 523 SECONDS. 71

FIGURE 30: THE MUNSTER LASS JIG STORED IN THE BREATHNACH MELODIC INDEXING

SYSTEM. SOURCE: AUTHOR ...cvvetietieiteesteastesteesteaeesseesseassessaesseassessaesssassessesssesssenns 72
FIGURE 31: COMPUTERISED MELODIC INDEXING SYSTEM.....ccvveeiiieiiiieeeniieesirieeesieee e 73
FIGURE 32: EXPERTS VS. NON-EXPERTS VOTING PERCENTAGEScveeivieiieeireesireeiveeennes 81
FIGURE 33: STORED PROCEDURES AND CUSTOM FUNCTIONS IN MS SQL 2008............. 83

FIGURE 34: RESULT OF A SQL QUERY USING A CUSTOM STRING DISTANCE FUNCTION .. 84
FIGURE 35: JARO-WINKLER, LEVENSHTEIN AND SEMEX SQL QUERY COMBINED 85
FIGURE 36: CORPUS OF TUNES IN MIC CODE AND PARSONS CODEcccceevvveeeiireenne 86
FIGURE 37: RESULTS OF THE SQL QUERY CONTAINING SEMEX AND JARO-WINKLER

SCORES WITH RANKS ORDERED BY SEMEX RANKciciiireiiieeiiieesieesssieessinessssnenans 88

FIGURE 38: RESULTS OF THE SQL QUERY CONTAINING SEMEX AND JARO-WINKLER

SCORES WITH RANKS ORDERED BY JARO-WINKLER RANKcccoeiivieirieireeireesveennnes 89
FIGURE 39: COMBINED RANK SCORE CALCULATIONvvviiivieeiiiieesiieessireesssneesssneesssnessnns 90
FIGURE 40: COMBINED RANKS WITH STANDARD DEVIATIONcoiiiiieiiiiieeiiieessireessineeeens 92
FIGURE 41: SURVEY 2 TUNE PAIRS WITH RANKING AND STDEV SCORES........ccccveeruveene. 93
FIGURE 42: ONLINE SURVEY 2 RESPONSES........ceciititeiiieeiieeesieeesieeesseeessseesssseesssnessnnns 9
FIGURE 43: WEIGHTED SCORES FOR SURVEY 2......uutiiiiiieiiieeiiieesieessveessnseesssneesssnes e 95
FIGURE 44: RESULT OF THE SQL QUERY COMPARING 100 TUNES TO THE CORPUS......... 98
FIGURE 45: COMPLETED JARO-WINKLER SIMILARITY MATRIX ...cvveiiiiiieiiiesiieeeninee e 99
FIGURE 46: EXPERTS RESPONSES TO QUESTION Liiiiiiiiiiieniie it 115
FIGURE 47: EXPERTS RESPONSES TO QUESTION 2uviiiiiiiiiesiiesiieesiee e sieesiee e e 115
FIGURE 48: EXPERTS RESPONSES TO QUESTION 3....oiiiiiiiiieeeciieee et e e eieee e 115
FIGURE 49: EXPERTS RESPONSES TO QUESTION 4ooiiiiiiieee ettt eiree e 115
FIGURE 50: EXPERTS RESPONSES TO QUESTION 5viiiiiiiiieiiie et 115
FIGURE 51: EXPERTS RESPONSES TO QUESTION 6vvevveeiieiieeie ettt 115
FIGURE 52: EXPERTS RESPONSES TO QUESTION 7 ..vviiiiviieiiiieesiieeesiieessiieessineessnneessnnee e 116
FIGURE 53: EXPERTS RESPONSES TO QUESTION 8coiiviiiiiiieiiie e 116
FIGURE 54: EXPERTS RESPONSES TO QUESTION 9vviiiiiicieee e 116

FIGURE 55:
FIGURE 56:
FIGURE 57:
FIGURE 58:
FIGURE 59:
FIGURE 60:
FIGURE 61:
FIGURE 62:
FIGURE 63:
FIGURE 64:
FIGURE 65:

EXPERTS RESPONSE TO QUESTION 10.....ciuiiiiiiiiiiiiie e 116
NON-EXPERTS RESPONSES TO QUESTION L.....cciiiiiiiiiiiieiie e 116
NON-EXPERTS RESPONSES TO QUESTION 2....cviiviiiiiiieiieienienie et sie e 116
NON-EXPERTS RESPONSES TO QUESTION 3....c.viiiiiiiniieiieienie e 117
NON-EXPERTS RESPONSES TO QUESTION 4....covoiiiiiiiieiiie et 117
NON-EXPERTS RESPONSES TO QUESTION 5....couviiiiiiiie it 117
NON-EXPERTS RESPONSES TO QUESTION B....c.vvviiiniieiieieiesie e 117
NON-EXPERTS RESPONSES TO QUESTION 7 ...veuviiiiiniiniieienie et 117
NON-EXPERTS RESPONSES TO QUESTION 8....ccviiiiiiiiieiiiieiie e 117
NON-EXPERTS RESPONSES TO QUESTION 9....ooviiiiiiiiiciieiie e 118
NON-EXPERTS RESPONSES TO QUESTION 10.....ccviiiieiiieienie e 118

Xiii

TABLE OF TABLES

TABLE 1: MUSICAL KEYS COMMON IN IRISH MUSIC (LARSEN 2003, P.25)......ccccccverveenene 4
TABLE 2: SOME EXAMPLE OF TUNE PARTS AND REPETITION PATTERNS......cccvcvverieireannenn 5
TABLE 3: A SET OF JIGS...uttteittteiteeeiieeesteeesteeessteeesnbeeessteeasnseeessseeessseeessseeessseesssseesnssenans 5
TABLE 4: NOTE VALUES CALCULATED WITH A FUNDAMENTAL NOTEOF A.....cvvvvvennee 21
TABLE 5: PADDY KEENAN'S JIG IN ABC NOTATIONcoivieiiiiieeie e sie et 26
TABLE 6: LEVENSHTEIN SUBSTITUTION EXAMPLEccvviitietieiteeteeieseee e eeesseesreesaesneesnas 31
TABLE 7: LEVENSHTEIN INSERTION EXAMPLE ...ccvvviieeiiiieeesiireeesssnvieeesssnnneeesssnneessennens 32
TABLE 8: CALCULATING LEVENSHTEIN EDIT DISTANCE USING A MATRIX.....0ceeiveeannen. 33

TABLE 9: JAVA IMPLEMENTATION OF LEVENSHTEIN EDIT DISTANCE USING DYNAMIC

PROGRAMMING TECHNIQUES (EMERICK 2003).......ccoiiiiiieiireiie e 33
TABLE 10: MATCHES & TRANSPOSITIONS BETWEEN TWO STRINGS OF NOTES................. 36
TABLE 11: LEMSTROM SEMEX JAVA METHOD BY DR. BRYAN DUGGAN...........ccvvenneee. 37
TABLE 12: JARO-WINKLER TRANSPOSITION EXAMPLE......cciiiiiiiiiieiiieeiiee e sinee s 40
TABLE 13: STANDARD OPENING PHRASE OF THE WALLOP THE SPOT JIG...cccivveeiireennenen. 42

TABLE 14: RESHAPED OPENING PHRASE OF THE WALLOP THE SPOT JIG (OSNA 1999)... 42
TABLE 15: ADAPTED JARO-WINKLER METHOD WITH SEARCHRANGE PARAMETER........ 42
TABLE 16: JARO-WINKLER TRANSPOSITIONS FOR A WALLOP THE SPOT VARIATION 44
TABLE 17: Boys OF THE LOUGH WITH PREFIX IN ABC NOTATION. SOURCE

(LONELYHEARTS 1978) ...ttt 45
TABLE 18: EXAMPLE PREFIXES FOR IRISH TUNESccciiitiiieeiiiiieeeeitreeeeesitreeeesenreee e 46
TABLE 19: EXAMPLE OF HOW TUNE PARTS ARE STORED IN THE CORPUS DATABASE 47
TABLE 20: EXAMPLES OF TUNES WITH MELODIC INDEX CODESc..coceviiiiieeeiiieeeeeenee 52
TABLE 21: JAVA ALGORITHM TO REDUCE ABC NOTATION TO 2/4 TIME SIGNATURE.

SOURCE: AUTHOR ...eetiiiitiee e e ittt e e e ettt e e e s etbee e e e setaaeeesabbeeeesasbbeeeessssaeeesassbeeeesssreeeennns 55

TABLE 22: JAVA METHOD FOR CALCULATING MELODIC INDEX INTERVALS. SOURCE:

AAUTHOR ..tttk ettt ekt et h et e st e e bt emb e e e be e e m b e e ebe e et e e nneeenes 56
TABLE 23: INDEX CODES WITH RIGHT PADDED 1'S ..ot 57
TABLE 24: SQL QUERY TO SORT TUNE PARTS ALPHABETICALLY ...ovevvieiieieaieseeeaneneenns 57
TABLE 25: PORTION OF THE MELODIC INDEX CODE MATRIX ..ovveveiieiisiesieesie e 61
TABLE 26: MS SQL 2008 QUERY USING A CUSTOM FUNCTIONceevvieeiirreeiireeenineesnnneas 66

Xiv

TABLE 27: LIST OF TUNE PAIRS SELECTED FOR THE SURVEY ...vvuuieeeeeieeeeieeeeeeeeeeeeeennns 74
TABLE 28: LIST OF TUNE PAIRS SELECTED FOR THE SURVEY ...vvuuiieeeeieeeeieeeeeeeeeeeeeennnns 76

TABLE 29: LIKERT SCALE VALUEScciiiiiieiiie ettt sitee s sitee sttt ssae e nnnee s 78

IVIUSIC ottt sttt ettt et se e b et eese et e e ste e st e e s e et e e st e et e et e ent e e Reeneenteene e neentenneenren 79
TABLE 33: RESULTS OF NON-EXPERTS CHOICES.....ccccvteeiiieeiieeesiireesveeessneeessneessnneesssnens 79
TABLE 34: COMPUTER ALGORITHM VS EXPERT VS NON-EXPERT CHOICES..........ccoveenninn. 81
TABLE 35: SQL QUERY USING A CUSTOM STRING DISTANCE FUNCTION.......ccccveverrenne. 83

TABLE 36: JARO-WINKLER, LEVENSHTEIN AND SEMEX SQL FOR THE “HUMOURS OF

TABLE 37: SQL QUERY TO CONVERT A CORPUS INTO MIC CoDE AND PARSONS CODE. 85

TABLE 38: CODE SNIPPET THAT CALCULATES AND NORMALISES MIC & PARSONS CODE

TABLE 39: SQL QUERY FOR SEMEX & JARO-WINKLER SCORES WITH RANKS................ 87

TABLE 40: COMMONLY AVAILABLE C# CODE USED TO CALCULATE STANDARD

(9] 23NNy 1 0] USSR 90
TABLE 41: RESULTS OF ONLINE SURVEY 2....uiiiiiiieiiieeiiieesieessieeesieesssneesssseessssessssnees 94
TABLE 42: VOTE WEIGHTING SCORESuvvteiuteeesieeesiieeessieeessseeessseesssseessssesssssesssssesssseees 9
TABLE 43: ONLINE SURVEY 2 FINAL RESULT ..ccuviieiiiec et 95
TABLE 44: SQL TO COMPARE 100 TUNES TO A CORPUS USING JARO-WINKLER.............. 97
TABLE 45: SQL QUERY FOR CONSTRUCTING THE JARO-WINKLER MATRIX...........cuu.... 98
TABLE 46: DATABASE CURSOR THAT ITERATES THROUGH ALL TUNE PARTS BY ID...... 100
TABLE 47: T-SQL INSERT CODE TO STORE COMPARISON RESULTS. ...ccvvveiiienieeninenne 100
TABLE 48: PANEL OF EXPERTS IN IRISH TRADITIONAL MUSICcvveiiiieeiiieeeiiveeeeiiee e 112
TABLE 49: PANEL OF NON-EXPERTS . 0uteiuttteitteteiieeesineessseeesssnessssesssssesssssesssssesssssessnsns 112
TABLE 50: OVERVIEW OF RESPONSES FROM ALL SURVEY PARTICIPANTSccvvvrrvvrenne. 118
TABLE 51: OVERVIEW OF RESPONSES FROM EXPERT SURVEY PARTICIPANTS................ 119
TABLE 52: OVERVIEW OF RESPONSES FROM NON-EXPERT SURVEY PARTICIPANTS....... 120

DUGGAN’S JAVA IMPLEMENTATION 1..etttuietertnteeeestnseesestnseesessnsessestnsessessnseesesnnreeees 122

TABLE 54: BREATHNACH MIC IMPLEMENTATION IN C# ...ooovviiiiiiiiiiee e 124

TABLE 55: PARSONS CODE IMPLEMENTATION IN CH ..o 125

TABLE 56: STANDARD DEVIATION FUNCTION IN C# BASED ON A C# VERSION FREELY

TABLE 59: GETRANKS STORED PROCEDUREcccvvtteieeeeeeeeeieee e e e e e e eeeeeeeeeeeeaeeeennnnnns 133
TABLE 60: GETRANKSID STORED PROCEDURE........uuuuutetitttiiiteteeeseeesesssnensnnnnennsnnnnnnnnnns 135
TABLE 61: CALCULATEMATRIX STORED PROCEDUREuvvvvveviiiiiiiiiiiiiieeeiieieeeenennnenens 137

XVi

LIST OF ABBREVIATIONS

ABC ABC Notation

C# C Sharp

CD Compact Disc

CRS Combined Ranking System

IDE Integrated Development Environment
MIC Melodic Index Code

MIDI Musical Instrument Digital Interface
MIR Music Information Retrieval

MP3 Moving Picture Experts Group Layer 3
MS SQL Microsoft SQL Server

MSM Music Similarity Matrix

SQL Structured Query Language

1. INTRODUCTION

"Music - The one incorporeal entrance into the higher world of knowledge
which comprehends mankind but which mankind cannot comprehend.”
Ludwig van Beethoven (Forbes 1992, p.465)

“A musician can do no better than pass it on.”
Philip Lavin, 1977

The purpose of this chapter is to provide an introduction to this dissertation. Section
1.1 outlines the project area while Section 1.2 provides a background to Irish
traditional dance music. The research problem is presented in Section 1.3 and Section
1.4 explains the intellectual challenge. The research objectives and methodology are
summarised in Sections 1.5 and 1.6 respectively. Section 1.7 outlines the resources
needed in order to complete this dissertation and its scope and limitations are described
in Section 1.8. Section 1.9 concludes with a description of how this dissertation is

organised.

1.1 Overview of project area

It is estimated that there are between seven and ten thousand Irish traditional dance
tunes in existence (Duggan 2009, p.ii). As Irish musicians travelled the world they
carried their repertoire in their memories and rarely recorded these pieces in writing.
When the music was passed down from generation to generation by ear the names of
these pieces of music and the melodies themselves were changed or forgotten over

time.

Most of this music is now available in ABC notation (Walshaw 1995). An ABC file is
a text file with an .abc extension containing such details as the tune title, a transcription
of one or more melodies, musical key and time signature. For the first phase of the
project a corpus of tunes will be analysed using string distance algorithms and used to

form a similarity matrix identifying the relationships between different tune parts.

Some programming will be required in order to pre-process the databases of ABC
format tunes in order to ensure that reliable data is used. Further programming will be
required in order to process the databases using string distance algorithms and to form

a similarity matrix.

In the second phase of the project, quantitative research will be performed by testing
the results of string distance comparisons on humans, some who have little or no

knowledge of Irish music and some who are considered experts.

An hypothesis will then be formed based on experiences and results from the first two
phases of the project. Based on these results an improved process will be defined and

tested on humans before using this process to construct a similarity matrix.

1.2 Background to Irish traditional dance music

The author has over thirty years experience playing Irish traditional music on tin
whistle, concert flute and uilleann pipes. The author also has an interest in computing
and computer programming. This project gave the author an opportunity to combine

both of these interests in order to analyse the relationships between Irish dance tunes.

Traditional Irish dance music is the native folk music of Ireland. It is played on
instruments such as harp, tin whistle, flute, fiddle, uilleann pipes, button accordion,
concertina, banjo, piano and harmonica. Bones, bodhran and spoons are percussion
instruments commonly used to accompany the music. Customarily, traditional Irish
music was played at Céili dances, at weddings, in village houses and other celebrations
in order to accompany dancers. In modern times, it is common for musicians to play
Irish music in public houses without dancers for their own entertainment or for the

entertainment of others.

1.2.1 Types of Irish traditional dance tune

Several thousand pieces of music called “tunes” comprise the corpus of Irish
traditional music. There are a number of types of dance tune including reels, single
jigs, slip jigs, slides, polkas, hornpipes, waltzes, schottische’s, strathspey’s and

barndances. Each of these types have a different rhythm to suit the dance - reels,

hornpipes, schottische’s, strathspey’s and barndances are in either 2/4 or 4/4 time
signatures. Polkas are in 2/4, waltzes in 3/4, single, double and treble jigs are in 6/8,
slip jigs in 9/8 and slides in 12/8. A time signature refers to the number of notes per
beat and the length of those notes. A reel in 4/4 has four quarter notes per beat, a polka
in 2/4 has two quarter notes per beat, a jig in 6/8 has six one eighth notes per beat
while slip jigs in 9/8 and slides in 12/8 have nine and twelve one eighth notes per beat

respectively.

1.2.2 Musical keys in Irish traditional music

Irish music is usually played in a variety of musical keys, limited only by a particular
instrument. For example, a standard non-keyed uilleann pipe chanter or keyless flute
is not fully chromatic and does not have the full range of notes a fiddle or piano would
have. This means that tunes in certain keys are difficult (but not impossible) to play on
certain instruments and this led to the adoption of modal scales such as dorian and
mixolydian into Irish traditional music. The following table represents a non-
exhaustive list of common keys played on concert pitch instruments such as tin

whistle, flute and uilleann pipes in Irish traditional music;

Table 1: Musical keys common in Irish music (Larsen 2003, p.25)

D Major (lonian)
G Major (lonian)
A Major (lonian)
D Mixolydian

G Mixolydian

A Mixolydian

E Dorian

A Dorian

B Dorian

E Minor (Aeolian)
A Minor (Aeolian)
B Minor (Aeolian)

1.2.3 Tune Structure

All types of traditional Irish dance tune consist of parts that are usually repeated. A
simple reel or a jig would usually have a “first” or “low” part (containing notes mostly

in the lower octave) and a “second” or “high” part (containing notes mostly in the

higher octave). This is not always true as there are tunes that are played “single” where
their parts are not repeated and also some tunes consisting of seven or more parts. It is
common to refer to “first” or “second” parts as parts A and B respectively and this is
the notation used throughout this dissertation. In a two part tune it is normal to play
part A twice followed by part B twice and repeat this pattern a number of times. This

table shows how some tunes are commonly constructed.

Table 2: Some example of tune parts and repetition patterns

Tune name Part Repetition Pattern
Morrison’s Jig AABB
AABB
AABB
The Boys of the Lough Reel AABB
AABB
AABB
The Lark in the Morning Jig ABCD
ABCD
The Musical Priest Reel ABC
ABC

The Gold Ring Jig ABCDEF
ABCDEF
The Glass of Beer AB

AB

AB

It is normal for tunes to be played in “sets”. For example, a jig would normally be
followed by one or more jigs that are also repeated appropriately. Table 3 is an

example of how a set of jigs might be repeated;

Table 3: A set of jigs

Morrison’s Jig AABB x 3
The Lark in the Morning ABCD x 2
The Leitrim Fancy AABB x 3

Before the introduction of radio, television and satisfactory public transport
infrastructure in Ireland, Irish music was regionalised with unique styles developing
over time in various areas of Ireland. For example, County Donegal in the North West
of Ireland is associated with fiddle music, Sliabh Luachra in the South West is
associated with polkas and slides and North Connaught in Western Ireland is

associated with a particular style of flute playing.

1.2.4 Traditional Music Collections

For the most part of this and the last century the majority of Irish musicians could not
read staff notation and they learned the majority of their music by ear. Throughout
history a number of respected collectors have catalogued Irish music in order to

preserve it.

Paddy O'Rafferty

Figure 1: An Irish jig called Paddy O’Rafferty recorded in staff notation

Edward Bunting (1773-1843) collected and published three collections - A General
Collection of the Ancient Irish Music, 66 tunes, (1796), A General Collection of the
Ancient Music of Ireland (1809) and The Ancient Music of Ireland, 165 airs, (1840)
(Bunting 1969). In 1855 George Petrie published The Petrie Collection of the Ancient
Music of Ireland (Petrie 2002).

Captain Francis O’Neill a policeman living in Chicago, USA published four
collections O'Neill's Music of Ireland in 1903 containing 1,850 tunes (C. F. O'Neill
1979), The Dance Music of Ireland in 1907 containing 1001 tunes (F. O. &. J. O'Neill
1995), 400 tunes arranged for piano and violin in 1915 and finally Waifs and Strays of
Gaelic Melody in 1922 containing 365 tunes (O’Neill 1980).

Brendan Breathnach collected more than 7,000 tunes in his lifetime and published five
collections entitled Ceol Rince na hEireann Cuid | in 1963 (Breandan Breathnach
1963), Ceol Rince na hEireann Cuid Il in 1976 (Breandan Breathnach 1976), Ceol
Rince na hEireann Cuid Il in 1985 (Breandan Breathnach 1985), Ceol Rince na
hEireann Cuid IV in 1996 (Breandan Breathnach 1996), Ceol Rince na hEireann Cuid
V in 1999 (Breandan Breathnach 1999). Brendan Breathnach’s collections are

discussed further in Section 2.2.

1.2.5 Electronic Collections

A number of collectors such as Bill Black (Black 2010), Henrik Norbeck (Norbeck
1996) and Nigel Gatherer (Gatherer 2009) have transcribed traditional collections and
their own collections into electronic formats and made them freely available online.
ABC notation is now preferred over midi as ABC is text based and can be sight read
easily by musicians. Unlike staff notation, ABC notation is already in an electronic
format and may be processed by computer systems without the need to convert it into

another format.

Websites such as http://www.thesession.org (Keith 2010) facilitates the archiving of
tunes by allowing its members submit their tune transcriptions to its database. The
tunes available from this collection are of varying quality because they are user
submitted and do not always comply with the ABC notation specification. The

Session.org website hosts over 9,340 tunes as of April 2010.

A more detailed list of freely available electronic collections of Irish traditional music

is available in Section 1.7.4

1.3 Research problem

The principal aim of this project was to evaluate and improve string distance
algorithms for the purpose of identifying similarities in the corpus of Irish traditional
music. A secondary aim of this project is to define a process by which a Music

Similarity Matrix for Irish traditional dance music could be constructed.

Since the 1840’s when Ireland was stricken by famine, its people emigrated to
England, Europe and the Americas bringing their music, dance and culture with them.
The Irish diaspora handed down the music as they inherited it, aurally. Because the
music was usually stored in the memory of the musician this led to a number of

problems;

e The names of tunes were sometimes forgotten or changed.
e The melodies of tunes were sometimes forgotten or changed.
e Irish music teachers did not always recall tune melodies correctly.

e Students did not always learn the tune exactly as it was taught to them.

As a result, some tunes have multiple names; some tunes have different versions of the
melody or completely different melodies. Others share some of the same parts or have
phrases that are common in other tunes. Brendan Breathnach, a highly respected
collector of Irish music recognised that while he was collecting tunes from any given
musician, he could have collected it previously under a different name or that its
melody could be similar to another he had collected earlier. The following quotation
from Breathnach’s first published collection, Ceol Rince na hEireann Cuid I, describes
the problem quite well. It lists one traditional Irish tune, “The Little Yellow Boy”, also
known as “Galloway Tom”, that shares its name with two Scottish tunes with different
melodies. The melody of “The Little Yellow Boy” or a version of it appears in three

Irish tune collections under ten different names;

“27. An Buachaillin Bui [The Little Yellow Boy[4]]: I took the name from the
version published by O'Farrell in the "Collection of National Irish Music for
the Union Pipes"” (c.1797). He has two versions in the "Pocket Companion”.
O'Farrell also called this air Galloway Tom, but if he did it has no relation to
the Gallua Tom in the Straloch manuscript or with the Galloway Tom in the
"Scots Musical Museum” (325). O'Neill has six versions in the "Music of
Ireland”, four of them unknown to himself, one would think: The Little Yellow
Boy (706); Galway Tom (744/5); The Thrush's Nest (855); The Goat's Horn
(926); and The Spotted Cow (983). He has two settings in the "Dance Music of
Ireland”, Galway Tom (34) and The Spotted Cow (199). Joyce calls it Galway

Tom (J ii, 806). Nowadays it is usually called The Lark in the Morning, but it is
also called Come in the Evening, The Kelso Races, The Welcome and A
Western Lilt.”

(Breandan Breathnach 1963)

1.4 Intellectual challenge

The first challenge was to obtain clean ABC data, pre-process and store it in a state
that was suitable for conducting string comparison experiments. Because some online
databases contained user contributed ABC notation it was not always correctly
transcribed or did not comply with ABC notation rules. Unreliable data had to be
identified automatically and discarded leaving only clean, validated data in the

electronic corpus.

The author had access to about twelve thousand five hundred tunes in ABC format
with each of these tunes having at least two parts. If each part was to be compared with
each other part in the entire corpus this means that there would be n(n-1) comparisons
where n is the number of parts in the corpus. A corpus of tunes having 12,500 tunes
with at least two parts each would therefore result in 624,975,000 comparisons (25,000
X 24999). The second challenge was to implement algorithms in Java and to design
large, efficient databases capable of storing millions of results that could be queried at
will using Structured Query Language (SQL) (Chamberlin & Boyce 1974).

The third challenge was to identify existing string distance algorithms that could
potentially be used or adapted in order to identify similarities between strings of ABC
notes. This involved an investigation of the features, advantages and disadvantages of
numerous string distance algorithms and then assessing if they possessed any qualities

that could be adapted and applied from a music theory perspective.

The fourth challenge was to present the results in a meaningful way.

An overall intellectual challenge is to show that computer algorithms can be used to

find similarities between melodies in Irish traditional music.

1.5 Research objectives

The following objectives have been achieved throughout the dissertation and

contributed to the overall outcome:

e To identify and evaluate suitable string distance algorithms for the purpose of
conducting comparisons between sequences of musical notes.

e To improve suitable string distance algorithms by implementing features
unique to musical theory.

e To test what is meant by a similarity in the context of traditional Irish music.
The author felt that the people best positioned to decide similarities in Irish
music are the musicians playing Irish music. A survey of both accomplished
musicians and non-musicians was conducted in order to validate or disprove
the results of computerised experiments.

e To construct a Music Similarity Matrix (MSM) for the corpus of Irish

traditional dance music.

1.6 Research methodology

The research methodology used during the project is described in this section. Both
primary and secondary research was conducted throughout the duration of the
dissertation. The secondary research consisted primarily of the following;

e Identifying collections of Irish traditional tunes in ABC notation that were
suitable for computerised comparison.
e Literature review of
o Online ABC databases
o Integrated Development Environments (IDE’s)
o Java and C Sharp programming discussion forums
o Journals
o Atrticles
o White papers
o Various string distance algorithms

o Emails from world experts

10

e Interviews with a world expert, Dr. Bryan Duggan

The primary research consisted of the following;

e Conducting computerised experiments in order to compare ABC tune parts
using five string distance algorithms — Levenshtein (Levenshtein 1966), Jaro-
Winkler (W. E Winkler 1999), Semex (K Lemstrom & Perttu 2000) and two
new algorithms based on Parsons Code (Parsons 1975) and the Melodic
Indexing System developed by Breandan Breathnach (Brendan Breathnach
1982).

e Conducting two online surveys of experts and non-experts in Irish traditional
music to test if humans felt that computer selected pairs of tune parts were
similar or different.

e Conducting quantitative analysis of the survey.

By conducting experiments on transcribed tunes in ABC notation, a process was
formulated whereby computer algorithms could be used to identify similarities
between Irish traditional music tune parts. The process was further refined by altering
the string distance algorithms in order to take account of features unique to Irish music
and an hypothesis was formed. In order to prove or disprove this hypothesis the results
were tested on experts and non-experts in the field of Irish traditional music.

The following four phases were planned and carried out in order to complete the

project successfully;

1.6.1 Phase one — Collection of tunes in ABC notation

A number of ABC collections exist online and these are described in greater detail in
Section 1.7.4. These ABC files were processed automatically in order to separate them

into tune parts and imported into a relational database for further processing.

1.6.2 Phase two - Conduct programming experiments

Phase two involved the evaluation of various Integrated Development Environments

(IDE’s) and short-listing them. This phase also involved the evaluation of string

11

distance algorithms suitable for music comparison and implementing them within a

framework for conducting music comparison experiments.

1.6.3 Phase three — Survey of experts and non-experts

After tune pairs had been selected using Breathnach’s Melodic Indexing System and
the Levenshtein (Levenshtein 1966) and Jaro-Winkler (W. E Winkler 1999)
algorithms, the original ABC tune pairs were converted from ABC text notation to
mp3 audio files and included in an online survey. Expert and non-expert participants

were invited to complete the survey and their choices were recorded.

1.6.4 Phase four - Conclusions drawn from analysis of survey

In order to evaluate the hypothesis it was necessary to analyse how the computer
selected tune pairs were viewed by experts and non-experts completing the survey.
Because music similarity can be very subjective, careful and empirical analysis of the

results was necessary.

1.6.5 Phase five — Construction of a Similarity Matrix

Once the analysis in phase four was completed a process was designed whereby strings
of musical notes could be compared by combining scores from multiple algorithms.
This process was tested on humans in a second online survey and then used to

construct the similarity matrix for Irish traditional music.

1.7 Resources

1.7.1 Library Facilities

An extensive literature review was carried out in order to complete this project. A
number of world experts have published relevant articles on music comparison and

their knowledge contributed greatly to the success of this project.

1.7.2 Programming Environment and Database Server

Various Integrated Development Environments (IDE’s) were obtained and a shortlist

of possible solutions was created;

12

e Microsoft Visual Studio 2008 Professional Edition and Microsoft SQL Server
2008 Developer Edition. Both applications are available to eligible students at
no charge through the Microsoft Dreamspark program (Microsoft Corp. 2010).

e Eclipse Java IDE with MySql Database Server, also free of charge.

e Netbeans Java IDE with the integrated Derby database server, also available

free of charge.

Netbeans and Derby (Sun Microsystems 2010) were chosen over the other two
solutions in order to complete the first four phases for three main reasons;

e Java implementations of the Levenshtein, Jaro-Winkler and Lemstrém
algorithms were available and this would have the effect of reducing the
amount of development, testing and debugging time if a Java IDE were used
(Microsoft Visual Studio 2008 does not support Java).

e Having a database server integrated within the IDE meant that a complete
solution would be in place after one simple install without the need to install or
configure a separate database server.

e Familiarity with Netbeans meant that less time would be spent learning how to
use the development environment leaving more time for designing,

programming and running experiments.

Because of performance problems with the Netbeans / Derby platform, the final phase
of the project (the completion of the similarity matrix) was completed using Microsoft
Visual Studio 2008 and Microsoft SQL Server 2008 Developer Edition. Moving to this
platform also allowed the author to harness the power and simplicity of using custom

Structured Query Language (SQL) functions to perform string distance comparisons.

1.7.3 Access to a supervisor

Weekly meetings with a supervisor were a necessary resource for the successful
completion of this project. The supervisor assigned to this project was Dr. Pierpaolo
Dondio whose insightful guidance and advice contributed immensely to the successful

completion of this project.

13

1.7.4 Providers of databases of Irish tunes in ABC Notation

e The Irish Traditional Music Archive

e The Session.org (Keith 2010)

e Henrik Norbeck (Norbeck 1996)

e O’Neills Music of Ireland ("1850"), Dance Music of Ireland ("1001") and
Waifs and Strays of Gaelic Melody (Chambers 2010b)

e Ceol Rince na hEireann Cuid I, I, 11, 1V (Black 2010)

e Johnny O'Leary of Sliabh Luachra (Black 2010)

e Nigel Gatherers ABC Collection (Gatherer 2009)

e John Chambers Tune Finder (Chambers 2010a)

1.7.5 Two groups of survey participants

In order to test if computer selected traditional Irish tune parts sound similar, a survey
of non-experts and experts in the field of Irish music were surveyed and their

responses recorded.

1.8 Scope and limitations

The source ABC data contains melody, time signature, musical key, tune title and
other pertinent information. No information on playing style exists in the ABC files.
This project will therefore be limited to assessing similarity based primarily on

melody.

A large percentage of ABC files used as the source data for this project were
transcribed by humans of differing musical ability and did not conform absolutely to
the ABC notation specification. Resource constraints limited the amount of data that
could be corrected manually and as a result most of the problematic data was discarded

as it was unreliable.

The corpus of Irish traditional music contains “exact melody matches” where the
names are different but the melodies identical. It also contains “exact name matches”
where the dance tunes have identical names but different melodies. ABC notation
already supports multiple tune titles in its specification (Walshaw 1995). Although
exact name and melody matches would form part of a music similarity matrix this
aspect of the matrix was not focussed on as identifying them does not present a

significant challenge.

14

Musical similarity in the context of this project would have the following

characteristics;

Pairs of tune parts where the melodies are not exact matches.
Sequences of musical notes that contain common phrases or sub-sequences.

Where a musical similarity can be expressed as a value between 0 and 1.

Finally, this project is not concerned with how humans perceive melodic similarity

merely that humans can compare and identify instances where music sounds alike.

1.9 Organisation of the dissertation

This dissertation comprises of an introduction and six other chapters as follows;

Chapter 2 explores the meaning of music comparison and how researchers and
music collectors have defined systems in order to measure or express how
similar or different two musical pieces are. The work of the renowned music
collector and world expert, Breandan Breathnach is described along with the
system he devised in order to prevent duplicate Irish traditional dance tunes
from entering his collections. This chapter concludes with a brief introduction
to ABC notation (a specification for transcribing music in text format) and an
overview of why ABC was chosen for use in this project.

Chapter 3 begins by explaining what a string distance algorithm is and
continues by defining what “similarity” or “dissimilarity” means in the context
of music and in particular, Irish traditional dance music. Some music theory
considerations are also presented along with theories of how these concepts
might be implemented within a string distance algorithm. The Levenshtein,
Jaro-Winkler and Lemstrom Semex algorithms are then explained in detail with
examples of how each might be used.

Chapter 4 outlines three contributions to the body of knowledge in the string
distance domain. The first contribution concerns the weighting of melodic
sequence variations and how this technique can be used to identify two very

similar pieces of music that would not otherwise have been identified. The

15

second contribution relates to the weighting of short note prefixes that
sometimes precede Irish tunes. Breandan Breathnach, a prominent collector of
Irish traditional music recognised the importance the start of a musical piece
has in relation to identifying a tune while William E. Winkler, an academic
working for the US Census Bureau recognised the extra significance that
matching a rarely occurring item had in correctly matching two records. How
these techniques could be applied to Irish music is then examined. Possible
improvements to the Levenshtein algorithm are also presented and some
conclusions drawn. Contribution three, a method of using ranking to assess the
accuracy of a similarity match is then illustrated.

Chapter 5 presents the advantages of Breandan Breathnach’s Melodic Indexing
System contrasted with some disadvantages and tradeoffs. Some proposed
improvements are outlined before contribution 4, the computerisation of the
Melodic Indexing System, is presented. Contribution 5 concerns how sorting
index codes numerically is not feasible for different length index codes and
offers a solution to the problem.

Chapter 6 presents an overview of the data used for the purposes of performing
string distance and music comparison experiments. The design issues that were
faced while constructing experiments and surveys are discussed before an
overview of each experiment and survey is given. Results of the experiments,
surveys and their analysis conclude the chapter.

Chapter 7 gives an overview of the research domain and describes the research
performed during this project. Summaries of the contributions to the body of
knowledge are then given. Synopses of the experimentation and evaluation
phases are outlined before the scope of the project limitations are discussed.
The research objectives achieved are also presented before future work and
research areas are identified. Finally, some conclusions are presented before

ending the chapter.

16

Music Comparison Techniques

2. MUSIC COMPARISON TECHNIQUES

2 Introduction

The purpose of this chapter is to review methods of assessing music comparison other
than by using string distance algorithms. Two techniques for assessing music similarity
are presented, Breandan Breathnach’s Melodic Indexing System (MIC) introduced in
the 1960’s and Parsons Code, invented by Dyers Parsons in 1975. The question of
what exactly a similarity means in the context of Irish traditional music is explored.

2.1 What is music comparison?

In the context of this project, music comparison using string distance algorithms,
Parsons Code or Breathnach’s MIC means a measure of similarity that can be
expressed as a value between 0 and 1 with 0 meaning completely different and 1
meaning an exact match. In all cases, the result of a comparison was normalised so that

the results of each method could be compared.

For example, the Levenshtein algorithm returns the number of edits it would take to
convert one string into another by using character insertions, deletions and
substitutions. Section 3.2 outlines a more detailed explanation of the Levenshtein
algorithm. The Levenshtein algorithm could return a result of 0, 1 or any number
greater than 1. In order to express this result as a normalised score between 0 and 1 the
number of Levenshtein edits was divided by the length of the longest string and
subtracted from 1. Comparing two identical strings of notes returns an edit distance of
0 resulting in a normalised value of 1 as 1-(0/string length) = 1. Because the maximum
number of edits returned is equal to the length of the longest string, two completely
different strings of notes will return a result of 0 as 1-(string length/string length) = 0.
Any edit distance between 1 and the length of the longest string will result in a

proportionate value between 0 and 1.

By normalising the results of each algorithm so that they all return a result between 0

and 1 this allows for the comparison of the algorithms themselves. It also enables the

17

Music Comparison Techniques

rankings of the results of each algorithm and these can be used to generate standard

deviation scores for each comparison.

Music comparison of audio recordings is a popular research topic with various
techniques being developed by researchers in order to solve diverse problems related
to the field of Music Information Retrieval (MIR) such as comparing music using sung
queries (Hu & R. B Dannenberg 2002), retrieving music using graph invariants (Pinto
& Haus 2007), improving music retrieval by compacting musical signatures (Cui et al.
2008), computing approximate repetitions in musical sequences (Cambouropoulos et
al. 2001), creating models of musical similarity by using self-organising maps
(Toiviainen & Eerola 2002) and using entropy based fingerprints to identify musical

performances (Camarena-lbarrola & Chavez 2006).

A variety of string distance algorithms have been used to compare pairs of sequences
of notes, the most popular of which is the Levenshtein method (Levenshtein 1966).
This project uses the Levenshtein algorithm with implementations of the Jaro-Winkler
algorithm (W. E Winkler 1999), Lemstrom and Perttu’s Semex algorithm (K
Lemstrom & Perttu 2000), Parsons Code (Parsons 1975) and a new algorithm based on
Breandan Breathnach’s work, implemented and improved by the author, to perform

comparisons on fragments of Irish traditional dance tunes called “parts”.

2.2 Brendan Breathnach

Brendan Breathnach (1912-1985) was a respected collector and cataloguer of Irish
traditional music. He collected more than 7,000 tunes in his lifetime while working as
a civil servant in the Department of Education and after he retired. He is most well
known for his five volume collection, Ceol Rince na hEireann Cuid I, II, I, IV & V
(Breandan Breathnach 1963) two editions of which were published after his death.

While editing the first volume of Ceol Rince na hEireann in 1963, Brendan Breathnach
recognised that he may have collected the same tune previously or that it may already
be contained in other collections such as Captain Francis O’Neill’s Dance Music of

Ireland — 1001 Gems (F. O'Neill 1907). Wanting to include only previously

18

Music Comparison Techniques

unpublished tunes in his collection, he developed an indexing system specifically

designed for Irish music similarity detection.

Figure 2: Breandan Breathnach Melodic Indexing System. Source: Author

Breathnach described his indexing system briefly in his article Between the jigs and
the reels (Brendan Breathnach 1982, pp.43-48). The system was based on the theory
that a tune could be identified from the first two bars, commonly referred to in musical
terms as an “incipit”. Index cards were created for every tune in known collections and
for newly collected and transcribed tunes. The index cards contained the following

information;

19

Music Comparison Techniques

[he, Aumilaw) foif 333&1- 3874

== e

6 — | B
;__M(J_LL__ZBLL_.LZQ.E ¢ __Awrs JJR 7:
3¢ I, n. 34 i _

—_The A.é.l.l.'_'t\.: ot %MC- OTFT . 8:

g_E;l g ll _l‘f_._1 PL Pm_&df_‘-_ﬂid_.
X _RE_[(m) 1

e e — ! it e — S . e

Figure 3: An index card from the Breandan Breathnach Melodic Index for the tune “The
Swallows Tail” (Brendan Breathnach 1982)

The tune title

Numerical series

Code generated from the first two bars

Staff notation of the first two bars

The final note of the tune

The source of the tune e.g. published collection

Comments

© N o o~ w DN PE

Audio recording of the tune

Index cards were created for each tune in published collections and for tunes that were
newly collected and transcribed. They were stored sequentially according to the code

at 3 in Figure 3 above.

The generation of the code is of particular interest to this project as it is transposition
invariant. This means that tunes transcribed in different musical keys may be compared
without the need for transposing to a common key. In order to calculate the code the
final note must be ascertained. Usually, but not always, the final note of a tune will

represent the key in which the tune is played. Using this final note as the tonal centre

20

Music Comparison Techniques

of the tune, sequential notes preceding and following it are given values in steps of 1

as in Figure 4 below;

S R —— e S— — — {)__ e
e S S S - S —— " ¢ oSt —
N - M a—

oo
Figure 4: Assigning numerical values from a final note (Brendan Breathnach 1982)

The final note “G” in the centre above is given a value of 1 with notes before and after
it calculated appropriately. Notice that the “G” notes an octave above and below the
final note appear on the right and left hand sides respectively also have a value of 1.
This effectively gives all “G” notes the same value irrespective of the octave they are
contained within. In other words, Breathnach is suggesting that low, middle and high
“G” notes are equal and that the octave in which a note is played has no bearing on

melodic comparison.

Table 4: Note values calculated with a fundamental note of A

Note A B C D E F G
Value | 1 2 3 4 5 6 7

The notes contained in the first two bars of “The Swallows Tail” in Figure 3 are EACA
EACA CDEF GEDB. Extracting the accented notes from this phrase yields ECEC
CEGD. Accented notes are notes within the phrase that are dominant or stressed and in
this case it means that every second note is dominant i.e. notes 1, 3, 5, 7, 9, 11, 13 and
15. Substituting the values for the notes in Table 4 the code 5353 3574 is obtained.
This code represents a transposition invariant signature derived from the melody of the
tune that can be compared to other tune signatures. By ordering tunes numerically by

code, duplicates are identified.

21

Music Comparison Techniques

Figure 5: Two jigs from Breandan Breathnach's collection, Doctor O'Halloran and The

Munster Lass. Source: Author

Breathnach did not define a method to assign scores based on proximity to a match. A
new system was developed in order to return similarity scores comparable to those
returned by the string distance algorithms. Normalised scores were calculated by
obtaining the distance from the match, dividing it by the number of tunes in the corpus
(the maximum distance) and subtracting it from 1. The same method of calculating
normalised scores was used for both Melodic Indexing and Parsons Code systems.

This process is discussed in greater detail in paragraph 2.3.1.

2.3 Parsons Code

In 1975 Denys Parsons introduced a system of identifying musical pieces by
comparing their melodic contour. The system is very simple and very effective. The
first note of a piece of music is used as a point of reference and is represented as an
asterix. Each subsequent note is given a value of U, D or R depending on if it is higher,

lower or equal to the note preceding it.

For example, the musical notes ABCCABDD would be represented as *UURDUUR.
Parsons Code also has the advantage of being transposition invariant as comparison is
not affected by the musical key of the piece. Like the earlier example, the musical
notes BCDDBCEE are also represented by the same Parsons Code *UURDUUR.

22

Music Comparison Techniques

This method of music comparison is easily understood by non-musicians and allows
people to express a piece of music by contour relatively easily regardless of musical

ability and without the need to recognise notes, musical key or time signature.

In order to normalise Parsons Code it was necessary to calculate the Parsons Code for

the whole corpus of tune parts and sort them alphabetically (by Parsons Code) as

follows;

1D Name
15351 Colonel Robertson
9323 Langstrom"s Pony
11283 Langstrom"s Pony
18139 Palm Sunday
9738 Palm Sunday
18553 Pendle Witches, The
8657 Glassan
19092 Roddie C"s
19520 Gan Ainm
9253 Down the Hill
17437 Each Little Thing
16752 Harbourview, The
3848 Biddy Martin
13601 An Dro
17147 Girls Of The Town
11186 Castle Kelly
16278 Kathleen"s Wedding

13404 Jackson"s Morning Brush

16604 North Sydney Bar

Notes Parsons Code
AFEDAADBGBAAAFEDAADCCEEEAFEDAADI *DDDURDUDUDRRDDDURDDRURRUDDD
FEDCAAEAACAAFEDCAABGBDCBFEDCAAEL *DDDURDURDURDDDDURUDUDDUDDDL
FEDCAAEAACAAFEDCAABGBDCBFEDCAAEL *DDDURDURDURDDDDURUDUDDUDDDL
BAGEGGEGGEGGEAABCCDEEDEFGEEEDBAB *DDDURDURDURDURUDRUURDUUUDRR
BAGEGGEGGEGGEAABCCDEEDEFGEEEDBAR *DDDURDURDURDURUDRUURDUUUDRR
BAFDAADEEAEEFGBEDCCADBGBCDBEEABG *DDDURDURUDRUUUDDDRUDUDUDUUL
BAFDFFDEEFGGBAFDFFDEEEBBBAFDFFDEE/ *DDDURDURUURUDDDURDURRURRDDD
AFECAAACDBCABGGBAFECFBBCECBCAAAL *DDDURRDUUDUUDRUDDDDUURDUDUL
FEDCAAMAACEAFEFGAAABCAAAFAAGFFFGC *DDDURRRDUUDDUUURRUDURRDURDD
BAGEAAAAAEABCBABCABAGABGAGEDEFG *DDDURRRRDUUDUDUDUUDDUUDUDDL
BGFEGGGGGBGFEEEBCEGFFFFFGFEBCEEEEF *DDDURRRRUDDDRRUDUUDRRRRUDDUI
GFEDEEEFEDEEFBABDCDAFDDDGFEDEEEFEl *DDDURRUDDURUUDUDDUUDDRRUDDL
FEDCEEFEDFEDCEEADD *DDDURUDDUDDDURUDR
FEDCDDADBAGBAAAGFFFGAABAGABGEEE *DDDURUDUDDUDRRDDRRUURUDDUUL
BAFEAABCFFECBAFEAABCCCBAFAFEAABCE *DDDURUDURDDUDDDURUDRRUDDUDL
AGECDFEDCAGEGGEGAGECDDCDEAAGAAB *DDDUUDDDUDDURDUUDDDURDUUURL
AGFEFAGFEFDDDDDDEGACAAAAFFEFDCAF *DDDUUDDDUDRRRRRUVUDURRRDRDU
GFEDFAFEDEFDBAFADEFGFGEEGFEDFAFED *DDDUUDDDUUDUDDUDUUUDUDRUDDI
AGECGADCAGECEDCACGECGABCAGAGECC *DDDUUDDUDDDUDDUDUDDUUUDUDU

Distance

=T - T B = T R s o I el — Tl T TR R R B = I - IR Y -

Figure 6: Parsons Code Calculation and Distance

2.3.1 Normalised Parsons Code Scores

Once the corpus has been converted to Parsons Code a match to the search term can be
identified. The search term in this case was the Parsons Code of the tune with 1D 9253
— “Down the Hill” in Figure 6 above. This exact match is given a distance of 0 with the
next closest match in either direction given distances in ascending order. In the case of
a closest match (as opposed to an exact match) a distance of 0 from the search term is
also given. Figure 6 shows that the tune “Down the Hill”, ID 9253 is an exact match
and has a distance of 0 from itself. The next closest match in each direction is given a
distance of 1 greater than the preceding row i.e. tunes with 1D 17437 and 19520 have a
distance of 1, tunes with ID 16752 and 19092 have a distance of 2 and so on. This
method of ranking rows of results has been termed MICRank for the purposes of this
project.

23

Music Comparison Techniques

In Figure 6 the search term is the Parsons code for tune ID 9253 i.e.
*DDDURRRRDUUDUDU. The tune with 1D 19520 is represented in Parsons Code as
*DDDURRRDUUDDUUU and the tune with ID 17437 is represented as
*DDDURRRRUDDDRRU. The search match is given a distance of 0 and the other

two tunes are given a distance of 1.

If these tunes were to be ranked in order of closeness instead of calculating distance

they would be ranked as follows;

1. *DDDURRRRDUUDUDU — ID 9253
2. *DDDURRRRUDDDRRU — ID 19520
3. *DDDURRRDUUDDUUU — ID 17437

Note that the tune with ID 19520 is a closer match to the search term as the first 9
notes are identical, compared with the first 8 notes of the tune with ID 17437. This

method of ranking rows of results has been termed MICDenseRank.

The same method of calculating normalised scores is used for the computerised
versions of the Parsons Code and Breathnach’s Melodic Indexing Systems. In the
original Melodic Indexing System these two tunes would have been physical index
cards either side of the matched tune, each a distance of 1 from it. Similarly, the code
used to calculate proximity in this project returns equal distances from the match for

these tunes.

This possible inaccuracy in the way distance is calculated in the computerised versions
of the Melodic Indexing System and Parsons Code was identified but not changed for

two principal reasons;
e The original intention was to mimic the original Melodic Indexing System.

e Increasing the accuracy of the algorithm would negatively affect performance
drastically.

24

Music Comparison Techniques

Improving the precision of Parsons Code and Melodic Indexing System ranking has
been identified as an area for further investigation, future work and development.

In order to normalise distance from a match the following formula was used,

1- (distance / maximum distance)
Therefore an exact match in a corpus of 11944 tunes would have a normalised score of
1, calculated as follows;
1-(0/11944)
A tune with a distance of 5000 from a match would be calculated as follows;
1- (5000 /11944)
1-(0.418)
0.582
In the final version of the algorithm, normalised scores are calculated for all results in

the corpus and ranked in order of score.

2.4 ABC Notation

Traditionally, most western music is written using staff notation which can be sight
read by musicians. It consists of symbols that represent notes, rests, repetitions,
musical key, time signature and other musical concepts written on a five line staff. As
it is image based it does not lend itself to being as easily machine processed as the text
based ABC notation.

25

Music Comparison Techniques

Hanley's Tweed

Rythm : reel

I — i i — | —
%b _—— — T @@ | BN — E— | ——__S— -~

Figure 7: Hanley's Tweed Reel in Staff Notation. Source: Author

Music is also available in various electronic forms such as MP3 (Moving Picture
Experts Group 1992), Windows Media Audio (WMA) and MIDI for example.

However, none of these are text based.

ABC Notation is a language designed by Chris Walshaw in 1995 to transcribe music
in text notation (Walshaw 1995) . Title, musical key, time signature and musical notes

are described using ABC Notation and stored in text files with an abc extension.

Table 5: Paddy Keenan's Jig in ABC Notation

X1

T: Paddy Keenan's

M: 6/8

L:1/8

R: jig

K: Edor

DIEGA B2A |Bee B2A |GBB FAA |GFE FED
EGA B2A| Bee B2A |GBB FAA |GEDE2D:|E|
Bef gfe| fgf edB |AFF dAF |AB=c dBA|

26

Music Comparison Techniques

Bef gfe| fgf edB |AFF dAF |FED E2:|

Table 5 shows how Paddy Keenan’s jig would be represented in ABC Notation using
common fields X, T, M, L, R and K as outlined below;

e X represents the sequence number of the tune in the abc file. ABC notation
supports multiple tunes per file and each is numbered sequentially.

e T represents the title of the musical piece. Multiple T fields may be specified
within the ABC file representing the different titles a musical piece may have.

e M is the measure or time signature of the piece.

e L is the length of each musical note.

e R s the type of tune e.g. reel, jig, hornpipe.

e K represents the musical key of the tune.

These header fields are followed by the musical notes of the tune.

2.4.1 Why ABC Notation?

Irish traditional music databases in ABC format were chosen for use in this project for

the following reasons;

e ABC notation is text based and lends itself to being easily parsed by computer.

e ABC notation can easily be stored in a relational database.

e Thousands of Irish traditional dance music tunes are freely available in the
ABC format.

e The ABC specification supports musical key, tune title, time signature and

other fields necessary to perform string distance experiments.

2.5 Conclusion

This chapter began by exploring what music comparison is. It outlined how Parsons
Code, invented by Denys Parsons in the 1970’s, uses the concept of melodic contours
to compare musical sequences. It explains how the Melodic Indexing System,
designed by Breandan Breathnach in the 1960’s, uses a transposition invariant code to

assess the similarity of two pieces of music. This chapter also examined the

27

Music Comparison Techniques

advantages and disadvantages of both methods. A method of calculating normalised
scores for both systems was explained in detail. The accuracy of results rankings was
identified as an area for future work and further development. A brief introduction to
ABC notation was given along with a short overview of why ABC notation was

chosen for this project.

28

String Distance Algorithms

3. STRING DISTANCE ALGORITHMS

3 Introduction

There are numerous string distance algorithms available for a variety of purposes
including DNA comparison and spelling checks for instance. These algorithms are
normally used to calculate how similar or dissimilar two strings are. This chapter
outlines what similarity means in the context of this project, some uses for music
similarity and how music theory was considered when evaluating string distance
algorithms. This chapter also looks at the work of three world experts, Levenshtein,
Winkler and Lemstrém and how they use three different methods to calculate the
distance between two strings of text.

3.1 Choosing a suitable algorithm

Many different string distance algorithms are available and were evaluated briefly
before deciding on potential candidates for the purpose of conducting string distance
experiments on musical data. These included algorithms such as the Levenshtein
algorithm (Levenshtein 1966) which is used to measure edit distance between two
strings, the Jaro-Winkler algorithm (W. E Winkler 1999) used in spell checkers to
identify misspelled words, the Damerau-Levenshtein algorithm (Damerau 1964), a
variation on the original Levenshtein algorithm that supports horizontal transpositions,
Hamming distance (Hamming 1950), which measures the amount of substitutions it
takes to transform one string into another of equal length and the SIA(M)ESE
algorithm (Wiggins et al. 2002), a transposition invariant method of retrieving musical

patterns in polyphonic musical databases.

3.1.1 Definition of similarity

In their paper, Cognitive Adequacy in the Measurement of Melodic Similarity:
Algorithmic vs. Human Judgments (Muellensiefen & Frieler 2003, p.4), Millensiefen
and Frieler define a similarity measure as the mapping of the abstract space of two
melodies on a value between 0 and 1. They also state that a similarity measure should
be normalised and a melody mapped to itself should have a similarity of 1.

29

String Distance Algorithms

Humans do not always agree what similarity means in the context of music. Allan and
Wiggins (Allan & Wiggins 2006) identified that listeners place significance on
different features of music they regard as being important for the purposes of

similarity.

Holzapfel (Holzapfel & Stylianou 2010) proposes that a morphological approach
utilising timbre, rhythmic and melodic characteristics of traditional music be used in
the assessment of similarity. The matrix constructed in Section 6.4 uses such a
morphological approach by combining four different methods of assessing similarity to

return an overall similarity score.

3.1.2 Uses of similarity measures

Measuring similarity in music has numerous applications. Eerola et al. suggest that
folk melodies can be classified and categorised by calculating the city block distance
between statistical measures taken from each melody (Eerola et al. 2000). Amazon,
eBay and other online retailers often use similarity algorithms to identify potential

products to offer shoppers via a recommendation system.

Similarity is also used in the context of law suits for the assessment of infringement of

copyright or intellectual property theft (Cronin 1998).

3.1.3 Music theory considerations

Strings of musical notes have a different structure than strings containing DNA
sequences or phrases of words, for example. Different features of string distance
algorithms are more appropriate for evaluating how similar one sequence of musical

notes is to another.

While evaluating algorithms, particular attention was paid to those algorithms with
features that could be applied to strings of musical notes. For example, the following
features were identified in the Levenshtein, Jaro-Winkler and Lemstrom Semex

algorithms;

30

String Distance Algorithms

e When comparing strings of musical notes, the Levenshtein algorithm returns a
measure of how many edits it would take to convert one sequence of notes into
another using insertions, deletions and substitutions i.e. adding, subtracting or
replacing notes until a sequence of notes is converted into the target sequence
of notes.

e The horizontal transposition feature of the Jaro-Winkler algorithm allowed for
the fact that notes could be played in different sequences (referred to as
variations in Irish music).

e It is common for Irish traditional dance tunes to have a few introductory notes
before the melody is played. This feature of Irish music is similar to the
concept of prefixes as described in the Jaro-Winkler algorithm.

e The Semex algorithm was designed for the purpose of comparing strings of
music notes. It allows for transposition invariant searches and also for
searching for sub-sequences of notes. For these two reasons it was chosen to

compare Irish traditional music tunes in ABC notation format.

3.2 The Levenshtein Algorithm

In 1965, the Russian academic Vladimir Levenshtein proposed a metric for calculating
the distance between two strings (Levenshtein 1966). The article was first published in
English in 1966. Levenshtein proposed that the distance between two strings of text
could be measured by counting the minimum number of edits it would take to change
one string into another using only insertions, deletions or substitutions. The following
example illustrates how the word “goal” could become the word “post” using

substitutions only.

Table 6: Levenshtein substitution example

Edit Distance Text strings
0 G A L
1 P O A L
2 P O A T
3 P 0 S T

31

String Distance Algorithms

According to Levenshtein the edit distance between “goal” and “post” is 3. Table 7
shows how the minimum edit distance between two words of different lengths can be

calculated using substitutions and one insertion.

Table 7: Levenshtein insertion example

Edit Distance Text strings
0 B A R K
1 B A R K L
2 G A R K L
3 G R R K L
4 G R R W L
5 G R O W L

As can be seen from the example in Table 7 the four character word “BARK” has an
edit distance of 5 from the five character word “GROWL”. The character “L” was
inserted after the character “K” in “BARK” at a cost of 1. Similarly, if calculating the
edit distance in reverse, from “GROWL” to “BARK?”, removing any character to turn
“GROWL” from a five character word into a four character word would also have a

cost of 1.

Dynamic programming techniques are frequently used to construct computer
algorithms for calculating Levenshtein distance between two strings of text. A two
dimensional array is created equal in size to the product of the length of both strings.
This array is then used to form a matrix with each location holding edit distance

values. The costs of previous calculations are carried over to the next calculation.

Table 8 shows how the edit distance between the text strings “Sunday” and “Monday”
are calculated using a matrix. One substitution is required to change “S” to “M”, the
cost of which is 1. This cost is carried over to the next comparison. One substitution is
required to change “u” to “o0”, also at a cost of 1. Therefore, the total cost of changing
“Su” to “Mo” is 2. The comparison process continues until all locations have been
calculated. The minimum Levenshtein edit distance is the value held in the bottom

right cell of the matrix.

32

String Distance Algorithms

Table 8: Calculating Levenshtein edit distance using a matrix

S u n d a y

0 1 2 3 4 5 6

M 1 1 2 3 4 5 6
0 2 2 2 3 4 5 6
n 3 3 3 2 3 4 5
d 4 4 4 3 2 3 4
a 5 5 5 4 3 2 3
y 6 6 6 5 4 3 2

While this process provides a mechanism for constructing implementations of the
Levenshtein algorithm it is not very efficient for large strings as the number of

comparisons and memory requirements increase with the length of the text strings.

Table 9 shows an implementation by Chas Emerick (Emerick 2003) that is more
efficient for larger string comparisons by using two single dimension arrays equal to
the sum of 2 + the lengths of both strings instead of a much larger two dimensional

array.

Table 9: Java implementation of Levenshtein edit distance using dynamic programming
techniques (Emerick 2003)

public static int getlLevenshteinDistance (String s, String t) {
if (s == null || t == null) {
throw new IllegalArgumentException("Strings must not be null");

}

int n = s.length(); // length of s
int m = t.length(); // length of t
if (n == 0) {

return m;
} else if (m == 0) {

return n;

}

int p[] = new int[n+1];
int d[] = new int[n+1];
int d[];

int 1i;

int j;

33

String Distance Algorithms

char t j;
int cost;

for (1 = 0; i<=n; i++) {

pli] = 1

}

for (3 = 1; j<=m; j++) {
t j = t.charAt(j-1);
da[o] = j;

for (i=1; i<=n; i++) {

cost = s.charAt(i-1)==t j 2 0 : 1;
d[i] = Math.min(Math.min(d[i-1]+1, p[i]l+1), pli-1]+cost);
}
_d =p;
p = d;
d = d;

return plnl;

The Levenshtein implementation in Table 9 was used to calculate the Levenshtein edit

distances for the experiments in Section 6.2.4.

3.3 The Jaro-Winkler Algorithm

In 1971 Matthew A. Jaro introduced UNIMATCH (UNIlversal MATCHer), a system
of linking US census records that used the concept of weighting parameters in order to
increase the confidence level in a possible census record match. The more unusual the
data that is matched the less likely the match is accidental. For example, if two social
welfare records match because they have the same surname, “Murphy” this match is
more likely to be correct if some other unusual piece of information also matches such
as a dependents name or date of birth (M. A Jaro 1971, pp.526-527).

Five years later Jaro introduced a method of comparing strings that utilised insertions,
deletions and transpositions (M. A Jaro 1976) and this was further refined in 1989
when the U.S. Bureau of the Census processed records for the 1985 census of Tampa,
Florida (MA Jaro 1989).

In 1999, William E. Winkler, also of the U.S. Bureau of the Census claimed that a

modified version of the Jaro distance metric showed a considerable improvement over

34

String Distance Algorithms

instances where exact character matching was used (W. E Winkler 1999). Winkler also
claims that in a study of twenty string comparison techniques by C.D. Budzinsky, the
Jaro distance metric was second best and the improved Jaro-Winkler version was best
(Budzinsky 1991). The improved Jaro-Winkler algorithm was used in this project in

order to carry out the experiments in Section 6.2.5.

Both Jaro and Jaro-Winkler distances are expressed as values between 0 and 1. A score
of 0 means that both strings are completely different and a score of 1 means that both
strings are identical. VValues between 0 and 1 indicate a measure of how similar strings
of text are.

The Jaro distance d; between strings s1 and s2 is calculated using the following

formula;

d-—l ﬂ+ﬂ+m__t
"alst 2 m

Figure 8 : Jaro Distance Formula

Where m is the number of matching characters, |s1] is the length of string 1 and [s2] is
the length of string 2 and t is the number of transpositions. A transposition is a
character match out of sequence within a distance of one less than half the length of
the longest string. For example, the strings “there” and “tehre” have two transposition
matches. The character “h” in position 2 in the string “there” matches the character “h”
in position 3 in the string “tehre”. This transposition match has a distance of 1 and this
is less than half the length of the longest string minus 1 (a distance of 1.5 in this case).
Similarly, the character “e” in position 3 in the string “there” matches the character “e”
in position 2 in the string “tehre”. The maximum distance for a transposition match to

be valid may be expressed as;

ot

2

Figure 9: Jaro Distance Transposition Formula

35

String Distance Algorithms

William E. Winkler’s modification introduces the concept of weighted prefixes so that

Jaro-Winkler distance d,, may be expressed as

dw = dj+ (/p(L—dj))
Figure 10: Jaro-Winkler Formula

Where dj is the Jaro distance between two strings s1 and s2, ¢ is the length of an
identical prefix in string 1 and string 2 and p is the weight given for having a matching
prefix.

Given the text strings of musical notes “BEFGFEFGFEDBAFFDAFFEDEEE” and
“BEFGFEFFFEDBBAFDAFFEDEEE” the Jaro-Winkler distance may be calculated

as follows;

Table 10: Matches & transpositions between two strings of notes

1/2|3(4|5|6|7(8]9(10/11|12|13|14(15|16|17|18|19|20|21|22|23|24
S1/B|E|F|G|F|E|F|G|F|E|D/B/A|F|F/D/A/F|F|E|D|E
S2/B|E|F|G|F|E|F|F|F|E|D|B/B|/A|F|D|A|F

mimmmmmm timmmm|t mmmmmimmimim|m

The length L, of both strings, is 24.

There are 21 matches m.

There are 2 transpositions t. Character “A” in position 13 in string 1 is a transposition
match for character “A” in position 14 in string 2. Character “F” in position 14 in
string 1 is a transposition match for character “F” in position 8 in string 2.

There is 1 non-matching character.

Substituting these values into the formula in Figure 8, the Jaro distance is calculated as

follows;
1(21 21 21-2
3124 24 21

Figure 11: Jaro distance calculation

36

String Distance Algorithms

The Jaro distance is therefore 0.885 (correct to three decimal places). In order to
calculate the Jaro-Winkler distance we substitute appropriate values into the formula in
Figure 10. Figure 11 shows how the Jaro distance is calculated for the strings in Table
10. Winkler suggests a maximum of 4 for the length of the common prefix | and a
default value of 0.1 (up to a maximum 0.25) for the weight p (W. E Winkler 1999).

dw = 0.885 + (4 x 0.1(1—0.885))

Figure 12: Jaro-Winkler distance calculation

The Jaro-Winkler distance d,, is therefore 0.931 (correct to three decimal places).

The freely available Java implementation of the Jaro-Winkler algorithm by Lingpipe

(Carpenter 2010) was used to conduct experiments in Section 6.2.5.

3.4 The Lemstrom Semex algorithm

In their paper SEMEX - An Efficient Music Retrieval Prototype, Kjell Lemstrom and
Sami Perttu introduced fast and efficient bit-parallel algorithms for retrieving music
that were transposition invariant (K Lemstrom & Perttu 2000).

The Lemstrom Semex (Search Engine for Melodic Excerpts) algorithm accepts two
parameters, a pattern to search for and a large string within which the search is
performed. Both parameters accept arrays of integers which represent musical notes.
The purpose of this algorithm is to find the longest common subsequence between a
pair of musical sequences. This subsequence could be an exact match, a transposed
match or an approximate match. According to Lemstrom and Ukkonen (K Lemstrom
& Ukkonen 2000, sec.6), the longer a common subsequence is, the greater the

similarity between both sequences.

Table 11: Lemstrém Semex Java method by Dr. Bryan Duggan

public static float minEdSemex (int[] pattern, int[] text)

{
int plength = pattern.length;

37

String Distance Algorithms

1]

1]

int tLength = text.length;

int difference = 0;
int sc;

if (pLength == 0)
{return -1;}

if

(tLength == 0)

{return -1;}
int[][]

d = new int[pLength

// Initialise the first row and column

for (int 1 = 0; i < tLength + 1; i++)
{d[01[i] = 0;}
for (int i = 0; i1 < pLength + 1; i++)
{d[i1[0] = i;}
for (int i = 1; i <= pLength; i++)
{
sc = pattern[i - 11];
for (int j = 1; j <= tLength; j++)
{
int v = d[i - 11[3J - 11;
if (3 -2<0 1] 1-2<x020)
{difference = 1;}
else if ((text[j - 1] - text[]
- pattern[i - 2]))
{difference = 1;}
else
{difference = 0;}

dli]l [3] =
v + difference);

}

Math.min (Math.min (d[1
+ 1),

}

int[] lastRow = d[pLengthl];

int min = Integer.MAX VALUE;

for (int i = 1;

{

i < tLength + 1; i++)

int ¢ = lastRow[i];

if (¢ < min)

+ 1] [tLength + 177

= (pattern[i -

- 11031 + 1, dli]ll3 -

38

String Distance Algorithms

{min = c;}
}

return min;

Since Lemstrdom and Perttu proposed the Semex prototype in 2000, Lemstrdm has
collaborated with other computer scientists doing research on the Longest Common
Sequence (LCS) problem, most notably with Navarro and Pinzon in 2004 in an article
entitled Practical algorithms for transposition-invariant string-matching (K.
Lemstrom et al. 2005). In this article Lemstrom et al. propose improvements
specifically designed to provide performance increases over classical distance
algorithms. A branch and bound method of identifying transposition invariant
sequences along with a bit-parallel algorithm capable of handling more complex sub-

sequences is presented.

3.5 Conclusion

This chapter outlined what a string distance algorithm is and explains what
(dis)similarity means in the context of this project. This chapter explains that various
algorithms were evaluated with regard to their suitability for calculating the distance
between two strings of musical notes. Features that could be applied to strings of
musical notes were identified. Finally, the Levenshtein, Jaro-Winkler and the

Lemstrom Semex algorithms were explained in detail.

39

Improved algorithms and a ranking system

4. IMPROVED ALGORITHMS & A RANKING SYSTEM

4 Introduction

The purpose of this chapter is to outline three contributions to the body of knowledge
in the field of music comparison using string distance algorithms. It shows how two
features of the Jaro-Winkler string distance algorithm may be used to weight “out of
sequence” musical notes (transpositions) and introductory notes (prefixes). This
chapter also outlines the basis for a ranking system that combines the results from
multiple algorithms to give a single similarity score and standard deviation.

4.1 Modifications to the Jaro-Winkler Algorithm for Irish music

During the evaluation of string distance algorithms suitable for performing similarity
comparisons on ABC notation data of Irish traditional dance tunes it became apparent
that the Jaro-Winkler algorithm had two unique characteristics that could have a

practical application towards identifying similar Irish music phrases.

4.1.1 Horizontal Transpositions

Unlike the Levenshtein algorithm, the Jaro-Winkler algorithm allows characters out of
sequence to be transposed. The algorithm’s scoring mechanism weights characters
within a distance of half the length of the longest string minus 1. The formula to
calculate the correct transposition distance can be seen in Figure 9. Transpositions are
frequently used for identifying spelling mistakes as out of sequence characters are
weighted higher than incorrect characters so that an incorrectly spelled word will score
almost as high as the correctly spelled version of the word. Consider the following

example;

Table 12: Jaro-Winkler Transposition Example

1 2 3 4 5 6 7
I E A N D

R L: :
I R E L A N D

40

Improved algorithms and a ranking system

Table 12 shows how the letter “E” in position 3 of the word “IRELAND” is mapped to
“E” in position 4 of the word “IRLEAND”. Similarly, “L” in the correctly spelled
word is mapped to the L in the incorrectly spelled word. A comparison between the
Levenshtein and Jaro-Winkler algorithms shows that the Levenshtein distance is 2
edits and when normalised for the length of the strings this represents a score of 0.714
(0O being completely different and 1 being a perfect match). The Jaro-Winkler
algorithm scores this pair of strings as being 0.962 (0 being completely different and 1
being a perfect match) which is higher than Levenshtein as it allows scores for
horizontal transpositions. The Levenshtein algorithm classifies the characters “E” and
“L” as completely incorrect giving both a cost of 1 each, whereas, the Jaro-Winkler
algorithm lessens this cost because the characters are correct but out of sequence and

scoring them almost as high as correct “in sequence” characters.

Speaking about Irish music in his article Style in Traditional Irish Music (McCullough
1977, p.85), Lawrence McCullough states that individual pieces of Irish music have
been completely reshaped by musicians. He indicates that there are four main factors

involved;

e Ornamentation, a process of embellishing individual notes
e Variation in melodic and rhythmic patterns
e Phrasing — choosing where to include rests or short pauses
e Articulation, how notes are played together. Examples of articulation are
o Slur —when a note slides into the next note without separation.
o Staccato — when notes are separated by short rests in between each note.

o Legato —when notes are played smoothly together.

The following contribution specifically relates to McCullough’s second assertion,
variation in melodic patterns. The Jaro-Winkler algorithm could be used to weight an
out of sequence series of musical notes so that it scores almost as highly as the correct

sequences of notes.

41

Improved algorithms and a ranking system

4.1.2 Contribution 1: Weighting melodic sequence variation

The transposition feature of the Jaro-Winkler algorithm can be adapted to recognise
certain melodic variations that McCullough writes about. Specifically, the algorithm
was adapted to give weight to out of sequence notes within a distance calculated with
respect to the time signature of the piece of music. Consider the following example, a
jig called “Wallop the Spot” available on an audio recording of the group Osna (Osna

1999, Track.12). The opening phrase of the jig is normally played as follows;

Table 13: Standard opening phrase of the Wallop the Spot jig

FEF DFA BAF DDD

On track 12, the whistle player swaps notes 1 & 2 and notes 7 & 8, reshaping the

standard phrase so that it becomes;

Table 14: Reshaped opening phrase of the Wallop the Spot jig (Osna 1999)

EEF DFA ABF DDD

The Jaro-Winkler algorithm was altered so that the proximity method accepted an
extra parameter — searchRange. Specific values related to the time signature of the
comparison strings were passed to this parameter, for example, 3 was passed for jigs

and 4 for reels.

Table 15: Adapted Jaro-Winkler method with searchRange parameter

public double proximity (CharSequence cSegl, CharSequence cSeg2, int

searchRange) {

int lenl cSeqgl.length();

int len2 = cSeg2.length();

if (lenl == 0)
return len2 == 0 2 1.0 : 0.0;
boolean[] matchedl = new boolean[lenl];

Arrays.fill (matchedl, false);
boolean[] matched2 = new boolean[len2];

Arrays.fill (matched2, false);

int numCommon = 0;

42

Improved algorithms and a ranking system

for (int i = 0; i < lenl; ++1i) {
int start = Math.max (0,i-searchRange) ;
int end = Math.min (i+searchRange+1l, len2);

for (int j = start; j < end; ++3j) {

if (matched2[j]) continue;
if (cSegl.charAt (i) != cSeg2.charAt(j))
continue;
matchedl[i] = true;
matched2[j] = true;
++numCommon ;
break;
}
}
if (numCommon == 0) return 0.0;
int numHalfTransposed = 0;
int j = 0;

for (int i = 0; 1 < lenl; ++1i) {
if (!matchedl[i]) continue;
while (!matched2[j]) ++7;
if (cSeqgl.charAt (i) != cSeg2.charAt(j))
++numHalfTransposed;
++7;
}

int numTransposed = numHalfTransposed/2;

double numCommonD = numCommon;
double weight = (numCommonD/lenl
+ numCommonD/len?2
+ (numCommon -

numTransposed) /numCommonD) /3.0;

if (weight <= mWeightThreshold) return weight;

int max =
Math.min (mNumChars,Math.min (cSeql.length(),cSeg2.length()));
int pos = 0;
while (pos < max && cSeqgl.charAt (pos) == cSeqg2.charAt (pos))
++pos;
if (pos == 0) return weight;

return weight + 0.1 * pos * (1.0 - weight);

43

Improved algorithms and a ranking system

Comparing these two strings with the Levenshtein algorithm gives an edit distance of 3
and a normalised score of 0.75. The Jaro-Winkler score weights the out of sequence
notes and gives a score of 0.85. The transposed out of sequence characters can be seen
in Table 16.

Table 16: Jaro-Winkler transpositions for a Wallop the Spot variation

1 2 3 4 5 6 7 8 9 10 11 12

F E F D F B A F D D D

>

"y
s;"F D | F | A AXB F | D|D| D

E E

The “B” in column 7 of the standard phrase (row 1) is transposed horizontally with the
“B” in column 8 of the reshaped phrase. Similarly, the “A” in column 8 of the standard
phrase is transposed with the “A” in column 7 of the reshaped phrase. Note that the
“F” in column 1 of the standard phrase cannot be transposed with the “F” in column 3
of the reshaped phrase as column 3 contains correct notes that are already matched

with each other.

It is worth noting that a flaw in Breandan Breathnach Melodic Indexing System is
exposed by the example in Table 16. The indexing code for the standard phrase is
33156311 and the reshaped phrase 23155311. Because the first note of each phrase is
different the first digit of the eight digit indexing codes are also different. This means
that when the index cards are stored numerically they will not be in proximity. In this
case, the Jaro-Winkler algorithm correctly identifies that both phrases are similar,

scoring higher than both the Levenshtein and Breathnach methods.

4.1.3 Contribution 2: Weighting tune prefixes

The Jaro-Winkler algorithm supports weighted prefixes of up to four characters long.
On occasion, Irish traditional dance tunes have a two note prefix that is played as an

introduction to the tune. This prefix is omitted when the tune is repeated.

44

Improved algorithms and a ranking system

Boys Of The Lough, The
. Repetition bars
Prefix P

SN R L
I RS e
**'H]:LVULLUILLUWID.%UJJIM ===
L e e BN TR P

Figure 13: Boys of the Lough with prefix and repetition bars. Source: Author

Figure 13 shows a two note prefix for the reel “The Boys of the Lough”. Not all Irish
dance tunes have prefixes but if one exists, it will always precede the opening
repetition bar. Fortunately, ABC notation supports the inclusion of prefixes in its

specification as can be seen in Table 17.

Table 17: Boys of the Lough with prefix in ABC Notation. Source (Lonelyhearts 1978)

X: 1

T: Boys Of The Lough, The

M: 4/4

L: 1/8

R: reel .
Two note prefix

K: Dmag

dB| :AF (3FFF A2 AB|defd efdB|AF (3FFF ABAF|EDEF E2 FG|

|AF (3FFF A2 AB|defd efdB|AF (3FFF ABAF|1 EDEF D2 dB:|2 EDEF D2 de|
| :faag fgfe|dBBA GBAB|AF (3FFF ABde|fdgf e2 fg|

|abag fgfe|dBBA GRdB|AF (3FFF ABAF|1 EDEF D2 de: |2 EDEF D2 dB|

The two note prefix is determined by factors such as the musical key and first note of
the tune. Usually the two notes that comprise the prefix will be in close proximity to
the first note of the tune and will either descend or ascend towards it. Table 18 gives

some examples of prefixes to Irish dance tunes.

45

Improved algorithms and a ranking system

Table 18: Example prefixes for Irish tunes

Prefix Tune Body
qal: fdAF GECE
of |: edBA GEDE
ag |: EAAA BGAG

If the prefixes are the same does this represent a greater likelihood that the tunes are
similar? In his articles, The State of Record Linkage and Current Research Problems
(W. E Winkler 1999, p.7) and Overview of Record Linkage and Current Research
Directions (WE Winkler 2006, p.35), William E. Winkler states that two records that
agree on a rarely occurring feature are more likely to represent a match than frequently
occurring features. Similarly, Breanddn Breathnach’s Melodic Indexing System
derived indexing codes exclusively from the first sixteen notes of each tune. Both
methodologies clearly place importance on the beginnings of strings whether they

consist of text or musical notes.

For the purposes of the Jaro-Winkler experiments the default values of a 4 character
prefix with a 0.25 weighting were observed. In order to fully test if these values were
suitable the corpus of ABC notated Irish dance tunes would have to be examined in

depth to ensure the following;

e That prefixes were entered according to the ABC notation specification.

e The minimum and maximum length of prefixes.

e Any discernable rules regarding prefixes in Irish music that could be further
incorporated into the Jaro-Winkler algorithm.

e The most appropriate lengths for prefixes of musical notes.

e The correct weight to afford to prefixes
Winkler suggests that weighting should not exceed 1. For example, a 4 character prefix

with a weighting of 0.25 results in a maximum weighting of 1 as 4 x 0.25 = 1. A two

note prefix would have a maximum weight of 0.5as 2 x 0.5 = 1.

46

Improved algorithms and a ranking system

The testing of Jaro-Winkler prefixes is reserved for future work and research in
Section 7.4.

4.2 Improvements to the Levenshtein algorithm

One of the drawbacks of the Levenshtein algorithm is that it is not capable of key
invariant or time signature invariant comparisons. In spite of this, it remains one of the

most popular string distance algorithms for musical comparison.

Rather than integrate a vertical transposition invariant feature into the Levenshtein
algorithm it is possible to convert both sequences of notes to relative or absolute

intervals and compare these sets of intervals using an unaltered Levenshtein algorithm.

It is also possible to reduce musical pieces to a common time signature before
performing a Levenshtein comparison. All of the tune parts imported into the corpus
for the purpose of performing string distance experiments had a 2/4 version derived
from the original sequence of notes and this was stored along with relative and

absolute intervals calculated using the musical key.

Table 19: Example of how tune parts are stored in the corpus database

Field Value
Name Longacre, The
Notes AAEDDECCEDDECCEE
2/4 Version ADDCEECE
Semex Intervals 0,-3,-1,0,1,-2,0,2,-1,0,1,-2,0,2,0
MIC Intervals 1443553

A horizontal transposition feature as in the Jaro-Winkler algorithm could help improve
the accuracy of the Levenshtein algorithm. A variant of the Levenshtein algorithm
already exists called the Damerau-Levenshtein algorithm that allows for transpositions.
It is a hybrid of the system proposed by Frederick J. Damerau for spelling mistakes

requiring one edit operation (Damerau 1964) and the Levenshtein algorithm.

47

Improved algorithms and a ranking system

The conclusions drawn from examining any possible improvements to the Levenshtein

algorithm were as follows;

e Required features such as horizontal and vertical transpositions were already
available in the Jaro-Winkler and Lemstrém algorithms.

e A time signature invariant feature would be better performed outside of the
algorithm. For example, data would be pre-processed before performing a
Levenshtein comparison between two strings of notes.

e The unaltered Levenshtein edit distance algorithm has value and remains a

popular method for music comparison.

4.3 Prototype for a Combined Ranking System

Having identified the strengths and weaknesses of each of the string distance
algorithms and after implementing a framework for generating metrics regarding tune
parts held in a corpus the author felt that combining multiple methods and algorithms

could be used to define a combined similarity scoring system.

4.3.1 Contribution 3: Combined Ranking Scores

In order to combine various algorithms a ranking system was first developed. This
involved running four separate SQL queries and ordering the results in descending
order by algorithm. The Levenshtein and Jaro-Winkler algorithms were run on the
unaltered notes of the tune parts and sequences with non-dominant notes removed
(referred to as 2/4, 24 or TWOFOUR data in this project). The results were stored in a
relational database.

Figure 14 shows the first twenty rows of tune comparisons between tune id 8425 and
various others along with the algorithm scores abbreviated as LEVEN, JARO,
LEVEN24 and JARO24. These rows are sorted by Levenshtein score in descending
order.

48

Improved algorithms and a ranking system

F D TUNE_A_ID TUNE_B_ID LEVEN JARO LEVEN24 JARO24
1 84481 8425 17825 0.5625 0.8094135802469135 0.5625 0.8094135802469135
2 84463 8425 14383 0.5 0.7083333333333334 0.5 0.7083333333333334
3 84451 8425 11232 0.46875 0.7836538461538461 0.46875 0.7836538461538461
4 84448 8425 9948 0.46875 0.8138888888888888 0.46875 0.8138388888883388
5 84486 8425 18069 0.4375 0.7724358974358975 0.4375 0.7724358974358975
6 84485 8425 18068 0.4375 0.798076923076923 0.4375 0.798076923076923
7 84475 8425 17461 0.4375 0.760576923076923 0.4375 0.760576923076923
8 84446 8425 9854 0.4375 0.7836538461538461 0.4375 0.7836538461538461
9 84488 8425 18763 0.40625 0.7723765432098766 0.40625 0.7723765432098766
10 84480 8425 17824 0.40625 0.8392857142857144 0.40625 0.8392857142857144
11 84476 8425 17569 0.40625 0.7007575757575758 0.40625 0.7007575757575758
12 84490 8425 19178 0.375 0.7208333333333333 0.375 0.7208333333333333
13 84483 8425 17972 0.375 0.606359649122807 0.375 0.606359649122807
14 84469 8425 15843 0.375 0.768840579710145 0.375 0.768840579710145
15 84466 8425 14654 0.375 0.7625000000000001 0.375 0.7625000000000001
16 84464 8425 14493 0.375 0.78475 0.375 0.78475
17 84455 8425 12400 0.375 0.6856060606060606 0.375 0.6856060606060606
18 84452 8425 11547 0.375 0.7208333333333333 0.375 0.7208333333333333
19 84450 8425 11231 0.375 0.75 0.375 0.75
20 84449 8425 9950 0.375 0.6965579710144928 0.375 0.6965579710144928

Figure 14: Levenshtein ordered ranking system for tune comparisons. Source: Author

The columns in Figure 14 from left to right represent the following;

e #represents rank.

e ID isaunique ID and primary key for the row data.

e TUNE_A_ID represents the first of the pair of tunes compared.

e TUNE_B_ID represents the second of the pair of tunes compared.

e LEVEN represents the Levenshtein edit distance between the unaltered
melodies represented by TUNE_A_ID and TUNE_B_ID.

e JARO represents the Jaro-Winkler distance between the unaltered melodies
represented by TUNE_A_ID and TUNE_B_ID.

e LEVENZ24 represents the Levenshtein edit distance between the 2/4 version of
the melodies represented by TUNE_A_ID and TUNE_B_ID.

e JARO24 represents the Jaro-Winkler distance between the 2/4 version of the
melodies represented by TUNE_A_ID and TUNE_B_ID.

The rank of a pair combination can be ascertained by using Figure 14. For example,
the tune pair with TUNE_A _ID of 8425 and TUNE_B_ID of 17825 has a Levenshtein
rank of 1 (row 1 of the database table), tunes 8425 and 14383 have a rank of 2 (row 2
of the database table), tunes 8425 and 17569 would have a Levenshtein rank of 11

49

Improved algorithms and a ranking system

(row 11 of the database table). The algorithms were run on a subset of the corpus and
the results were stored in a relational database. A prototype Java application was
designed in order to compare rankings from each of the algorithms as can be seen in

the following diagram.

' N

. T - =
[£] Insh Music Similarity Matrix = — 5

File Run Algorithrn Show Results Help

8425 17825 RESULTSSTRICT v [

»

Comparizon of tune 8425 and tune 17825
Jaro-Winkler ERank: 3 of 50
Levenshtein Rank: 1 of 50

[m

Levenshtein 24 Rank: 1 of 50
Jaro-Winkler 24 Bank: 3 of 50
Confidence: 96.0 - |

Breanach H Valid ABC H Intervals][Compare

Figure 15: Application used to generate rankings by algorithm

In this example the Levenshtein score is relatively low at 0.5625 but this score is
ranked 1% (see Figure 14). The Jaro-Winkler score of 0.8094 is high in comparison to
the Levenshtein score and it is also ranked high as the 3" highest Jaro-Winkler result.
Because high rankings were returned by all four comparisons can it be said that two
tunes are similar with any degree of confidence? This question is explored in Section
6.4.3.

50

Improved algorithms and a ranking system

A visual check of both tunes in the database shows that they are in the same time
signature and that both are in the key of D major. Also, 15 notes out of 32 are direct

matches and there are a number of candidate notes that could be horizontally

transposed.
D NAME PART TUNEKEY MEASURE NOTES
1 2425 Con Thadhgo's 2 Dmaj 214 FFEDCAAEFDEDEAAGFDEDCAABCECEEDDD
2 17825 Braddock"s March 2 Dmaj 214 GFEDCEAAFDFDCDEEGFEDCEAAFFACDDDD

Figure 16: Visual comparison of tunes 8425 and 17825

Initially the confidence score was calculated by averaging the ranks and subtracting
this from 100%, giving 96% in the above example. Following careful analysis and
experimentation in Section 6.2 this result was improved to include the standard
deviation between algorithms. This resulted in the delivery of one of the project
objectives, defining a process by which a similarity matrix could be constructed.

Section 6.4 explains how the similarity matrix was created.

Hypothesis: If multiple different algorithms rank a comparison similarly, can that

comparison be assumed to be more accurate than when the algorithms disagree?

In order to test the validity of this hypothesis, a survey of humans was carried out and
is described in 6.4.3.

4.4 Conclusion

This chapter outlined three contributions to the body of knowledge - the weighting of
melodic variations, the weighting of short prefixes that sometimes prefix Irish
traditional music and a method of ranking the results of four algorithms and combining
these ranks in order to assess similarity. An assumption was reached that if four
different algorithms agreed about the result of a comparison then that comparison
could be understood to be more accurate than comparisons where the algorithms

disagreed.

o1

Computerising the Melodic Indexing System and Parsons Code

5. COMPUTERISING MIC SYSTEM & PARSONS CODE

5 Introduction

In Section 2.2 the work done by Breandan Breathnach was outlined. Section 2.3
explained how Parsons Code could be used to compare musical sequences of notes
using melodic contours. In this chapter, flaws in both methods are identified and

solutions offered. This chapter outlines contributions 4 and 5 to the body of knowledge.

5.1 Advantages of the Breathnach Melodic Indexing System

As seen in Section 2.2, an incipit from the start of a dance tune is converted into an
eight digit Melodic Index Code (MIC) by calculating the intervals between notes in
sequence. This code is written on index cards that are stored numerically.

Table 20: Examples of tunes with Melodic Index Codes

Name Measure | Key Notes in 2/4 Melodic Index Code
Shlide Aside 12/8 D Major | AFEDEFDD | 56611501
Muineira De Casu 6/8 G Major | GEDCDEDB | 56611655
Dick The Welshman | 2/4 D Major | AFEDFGBA | 56621265

Index cards in close physical proximity and numerical order are similar musically

according to Breathnach’s theory.

5.1.1 Time signature invariant

One of the disadvantages of using string distance algorithms to compare music is that
they do not account for musical pieces in different time signatures. Using Breathnach’s
system, non dominant notes are removed from tune parts, effectively reducing each
tune’s incipit to a time signature of 2/4. This allows tunes in different time signatures

to be compared on an equal basis.

52

Computerising the Melodic Indexing System and Parsons Code

5.1.2 Key invariant

Because the Melodic Index Code is calculated using intervals the Melodic Index Code
is key invariant allowing for the comparison of tunes in different musical keys. Similar

tunes in different keys can be seen in Table 20.

5.1.3 Easily managed system

Because index cards are stored numerically, fewer comparisons need to be made in
order to construct a similarity matrix. As noted in Section 1.4 using string distance
algorithms requires the comparison of each tune part with all others in the corpus.
Therefore, a corpus of 12,500 Irish traditional tunes having at least two parts each
would result in 624,975,000 comparisons (25,000 x 24999). Because Breathnach’s
system does not require each index card to be compared with all other cards in the
system the amount of comparisons that need be made are considerably fewer. One
calculation per record is required for Breathnach’s system compared to n(n -1) when
using string distance algorithms to construct a similarity matrix. This results in a
fraction of the computational resources being needed in order to complete a
Breathnach similarity matrix compared to a matrix constructed using a string distance

method.

During an experiment run as part of the research work described in Section 6.2.6
approximately 49,000,000 comparisons were performed over the course of five days
and the results stored in a relational database that reached 2.5 gigabytes (2560
megabytes) in size. By comparison the Breathnach system was completed in minutes

and was 40 times smaller, reaching a size of only 64 megabytes.

5.2 Disadvantages of the Breathnach Melodic Indexing System

The Melodic Indexing System performed its function very well in the 1960’s and
1970’s, identifying duplicates and tunes published in other music collections. As a
result, the Ceol Rince na hEireann tune collections I, I, 1, IV & V (Breandan
Breathnach 1963) are highly valued by Irish musicians worldwide and are equally as
popular as the O’Neill 1001 collection (F. O. &. J. O'Neill 1995). Using the system
exactly as designed by Breathnach presents challenges that must be overcome when

constructing a music similarity matrix.

53

Computerising the Melodic Indexing System and Parsons Code

5.2.1 Melodic Sequence Variation Anomalies

As seen in Section 2.2 Melodic Index Codes are calculated by discarding non-
dominant notes and calculating absolute intervals with reference to a fundamental note.
In Section 4.1.2 a disadvantage was identified where an Irish musician reshaped the
opening phrase of a tune by playing the notes EEF DFA ABF DDD instead of FEF
DFA BAF DDD. These phrases translate to MIC index codes 23155311 and 33156311
respectively. In the corpus of 11,944 tune parts used for this project these versions of
the same tune would be stored 1,387 rows apart. In other words, the index cards would

not be physically proximate and the duplicate version would not be detected.

5.2.2 Limited Comparisons can be made

Breanddn Breathnach’s indexing system compared only the very beginnings of each
tune. Because ABC data is available for the complete tune, the beginnings of each part
of each tune can be compared and indexed. Indeed, the sequence of notes in the whole
tune could be converted to a Melodic Index Code and compared. Tunes of the same
type were stored with each other. This did not facilitate the easy comparison between

jigs, reels, hornpipes, slip jigs and other types of tune.

Figure 17: Storage of Melodic Indexing System. Source: Author

54

Computerising the Melodic Indexing System and Parsons Code

Figure 17 shows how the Melodic Indexing System was stored in the Irish Traditional
Music Archive. From top left — Jigs, Reels, Slip jigs/Hornpipes. From bottom left —

Jigs2, Reels 2, Polkas/Set Dances/Miscellaneous

5.3 Proposed improvements

Although Brendéan Breathnach probably had little computing resources at his disposal
in the 1960’s when editing his first publication, Ceol Rince na hEireann Cuid |
(Breandan Breathnach 1963) his system of Melodic Index Cards lends itself to being

converted into a computer algorithm.

5.3.1 Contribution 4: Computerisation of the Melodic Indexing System

The implementation of a computerised version of Breandan Breathnach’s Melodic

Indexing System was constructed in the following manner;

e lIrish traditional dance music parts were imported and stored in a relational
database. Invalid ABC notation was discarded.

e Parts in ABC notation were converted from various time signatures to a
common time signature of 2/4 by programming the Java algorithm in Table 21.
The results were stored in the relational database.

e A second Java algorithm (see Table 22) was programmed in order to calculate
intervals based on Breathnach’s concept of a “fundamental note”. Because the
tune key is available in each of the ABC tune transcriptions it was used to
calculate the fundamental note. Absolute intervals were stored in the same

relational database as the corpus of ABC data.

Table 21: Java algorithm to reduce ABC notation to 2/4 time signature. Source: Author

public String reduceToTwoFour (String abc, String measure) {

String twod = "";
int counter = 0;
if (measure.startsWith ("6") | measure.startsWith ("9") |
measure.startsWith ("12")) {
counter = 3;

55

Computerising the Melodic Indexing System and Parsons Code

if (measure.startsWith("4")) {
counter = 4;

}

if (measure.startsWith("2")) {

return abc; // already in 2/4 time signature

for (int i = 0; i < abc.length(); 1 += counter) {
try {
two4d += abc.substring(i, i + 1);
twod += abc.substring(i + counter - 1, i + counter);
} catch (Exception e) {
System.out.println(e.toString());

}

return two4;

Table 22: Java method for calculating Melodic Index Intervals. Source: Author

public String calculate BB Intervals(String input, String key)

key = key.substring (0, 1).toUpperCase();

input = (input) .toUpperCase();
String control = "CDEFGABR";
String temp = "";

int charl, interval, fundamental;

fundamental = control.indexOf (key);
for (int 1 = 0; i < input.length() - 1; i++) {
try {
charl = control.indexOf (input.charAt(i));
interval = (charl - fundamental + 1);

if (interval < 1) {
interval += 7; }

temp += "" + interval;
} catch (Exception e) {

System.out.println(e.toString())

}

return temp;

56

Computerising the Melodic Indexing System and Parsons Code

5.3.2 Contribution 5: Compare MIC index codes alphabetically

Breathnach stored the melodic index cards in numerical order using the eight digit
code to sort them appropriately. This had the effect of limiting the comparisons that
could be done to sequences of notes that were at least sixteen notes long. Sequences of
less than 16 notes would result in a melodic index code of less than eight digits

meaning that they would not appear in the correct order if sorted numerically.

A simple solution would be to right pad index codes with sufficient 1’s to make them

eight digits long as in Table 23 below.

Table 23: Index codes with right padded 1's

Index Code
12111111
12121353
14524117
64571156
75441111
17447277

A better solution is to calculate Melodic Index Codes for the whole length of each tune
part and storing the results in a database. Sorting the rows alphabetically instead of

numerically allows the comparison of incipits of different lengths.

The SQL query in Table 24 sorts rows of tune parts alphabetically, regardless of length

as seen in Figure 18.

Table 24: SQL Query to sort tune parts alphabetically

select NAME, NOTES, MEASURE, TUNEKEY, BB_INTERVALS from APP.ABC
where BB_INTERVALS is not null order by BB_INTERVALS asc

S7

Computerising the Melodic Indexing System and Parsons Code

= MNAME MOTES MEASURE TUMEKEY BB_INTERVALS

1 Tantan"s EBFEGBEF... &/3 Emin 12551327125555421266 13273344521

2 Millbrze AAGBEGEE... 4/4 Ama] 12557137554327221255713755425311125571....
3 Tullochgorum CBGDGCFA... 4/4 Cmaj 125612525256125

4 Copenhagen, The DEEECCDD... 4/4 Dmaj 12715233127155411171523426221451

5 Jolly Tinker, The AAABGGGE... 4/4 Ador 1272167211724242127216721172424

o Wild Swans at Coole DECEDCDA... 2/2 Dirnix 127217157 77423421555355532167776533232. ..
7 Long Mate, The DDDECADE... 4/4 Dirnix 12722272517715421115112542311541

3 Butcher"s March (D) GFAFGEAE... /3 Gmaj 1276253211216651

E False Proof, The BOCACAGF... 6/3 Bmin 1277545544044637 1277645944443271

10 Peeler"s Pocket GGDBGEDG... 4/4 Gmaj 13111167131764311176532255546511

11 Paidin O"Rafferty GBBGGGGEE... 6/3 Gmaj 13111342131211151312134235332216

12 Da Birlie DDDFDODD... 4/4 Dmaj 13113777 7713112347611111727 723476126
13 Wild One, The DEFDGDAG... &/3 Dimin 1311575213113322131157551574521

14 Father Kelly"s DEFFDFED... 4/4 Dmaj 1311611234232223431161123535327

15 Connie The Soldier DEFDDEDE... /3 Dmaj 13121311132127555231223154145221

16 Strike the Gay Harp DEFDFEDA... 6/3 Dmaj 1312131513121325136155321113522

17 Lord Mounteagle"s DDAFDGFE... 4/4 Dmaj 131213431316523113121343131652

18 Stay A Wee BitBonny Lad DFAFDFEE... 4/4 Dmaj 131215614122116

19 Old Dudeen, The BCODBCDC,.. 4/4 Bmin 13123115411231743112311755117557

20 Donald, Wilie And His Dog AACABBCC... 9/8 Amix 13123213132213123231171

Figure 18: Tune parts sorted alphabetically by Melodic Index Code

5.4 Advantages of computerising the Melodic Indexing System

Computerisation of the Breathnach Melodic Indexing System would result in a far

superior similarity comparison system for the following reasons;

5.4.1 Larger database of tunes available

Websites like The Session (Keith 2010) allow for members to submit transcriptions of
traditional Irish tunes and also many other forms of music. The addition of genre,
country of origin or geo-location data could allow for the comparison of tunes across
genres or between each country’s traditional folk music. For example, relationships or
similarities between Irish, English, Scottish, Breton, Galician and Asturian folk music

could be identified and explored.

5.4.2 Greater Accuracy

Because computerisation allows for Melodic Index Codes greater than eight digits long
as in the original system, the accuracy of the similarity matrix can be increased
considerably. Absolute intervals for whole tune parts were calculated and compared

instead of comparing 8 digit codes derived from 16 note incipits.

58

Computerising the Melodic Indexing System and Parsons Code

5.4.3 Integration in a Combined Ranking System

In Section 4.3 a confidence scoring system based on the ranking of the results of four
string distance algorithms was proposed as Contribution 3. As part of the
experimentation and research carried out in Section 6 an algorithm was developed for
the calculation of metrics related to the Melodic Indexing System. These metrics
included,;

e The calculation of the number of rows that separate a pair of tune parts along
with the total number of tune parts in the corpus.

e The proximity expressed in the same format as suggested by Muellensiefen &
Frieler (Muellensiefen & Frieler 2003) i.e. 0 being perfectly different and 1
being an exact match.

Figure 19 shows how Melodic Indexing System metrics were calculated for the tune
parts with id’s 8425 and 17825.

59

Computerising the Melodic Indexing System and Parsons Code

-

|| Irish Music Similarity Matrix =NEC X

File Run Algorithrn Show Results Help

8425 17525 RESULTSSTRICT - [

*Melodic Index Code Calculations#® A

MIC Tune A Location: 5338 of 11944

MIC Tune B Location: 7050 of 11944

il |MIC Score: 1712 tunes apart in a corpus of 11944 (lower
means more similar) i

MIC Tune & Intervals: 3321755231212554312175567672211

MIC Tune B Intervals: 4321765531317122432176553357111
Tune A Notes: FFEDCAAEFDEDEAAGFDEDCAARCERCEEDDD

Tune B Notes: GFEDCEAAFDFDCDEEGFEDCEAAFFACDDDD

HMIC Hormalised Proximity: 0.8566644 (where 0 is perfectl
v different and 1 i=s an exact match)

m

1

| Breanach H Valid ABC H Intervals][Compare

Figure 19: Calculation of Melodic Indexing Metrics

Although the normalised score could be considered high at 0.857 (1 being an exact
match and 0 being completely different) it represents a distance of 1712 tune parts in a
corpus of 11944. In other words, there are 1711 tune parts more similar to tune part
8425 ascending the matrix to tune part 17825 and possibly others descending from
8425 as can be seen in the following table.

60

Computerising the Melodic Indexing System and Parsons Code

Table 25: Portion of the Melodic Index Code Matrix

ID Melodic Index Code

----- (MIC codes similar to 8425 removed)
8424 33216221542.......

8425 33217552312.......

8426 33222421421.......

----- (MIC codes similar to 8425 removed)
17824 43216123412.......
17825 43217655313.......
17826 44213213211.......

The inclusion of the Melodic Index Code metrics into the confidence / ranking scoring

system was completed as part of an experiment in Section 6.4.3.

5.5 Conclusion

The advantages, disadvantages and tradeoffs of Breandan Breathnach’s Melodic
Indexing System were presented in this chapter. A proposal for the computerisation of
the system was presented as contribution 4. Contribution 5 suggests improvements to
the system. The use of an alphabetical index rather than a numeric one was suggested

in order to overcome the problem of different length melodic index codes.

61

Experimentation and evaluation

6. EXPERIMENTATION AND EVALUATION

6 Introduction

The purpose of this chapter is to describe the string distance experiments that were
carried out on ABC notation data. Once clean ABC data had been extracted from ABC
files contained within music collections referred to in Section 1.7.4 it was stored in a
relational database. Java versions of string distance algorithms were obtained and
integrated into a programming framework that had been built in order to facilitate the
running of experiments. This chapter also describes how two online surveys were
carried out and how the hypothesis formed in Section 4.3 was tested. The chapter
concludes with a description of how similarity matrices of Irish traditional dance music

were constructed.

6.1 Design of experiments

Careful planning went into the design of each experiment. The purpose of carrying out
experiments on string distance algorithms was to be able to draw conclusions from
analysis of the results. Great care was taken to prevent bias of any kind in the

experiments and in the online surveys.

A series of goals in line with the research objectives of this dissertation were
formulated and a strategy was formed in order to achieve these goals. The goals were

as follows;

e To identify string distance algorithms suitable for Irish traditional music
comparison.

e To identify possible areas where string distance algorithms could be improved
with respect to music theory.

e To test if humans agreed with the results of string distance algorithm
comparisons of Irish music.

e To identify and define a process whereby a Music Similarity Matrix could be

constructed for Irish Traditional Music (ITM).

62

Experimentation and evaluation

6.2 Experimentation

The following experiments were carried out on clean data held in a relational database.
e Levenshtein edit distance comparisons
e Jaro-Winkler edit distance comparisons
e Lemstrom Semex distance comparisons
e Melodic Index Code similarity and distance
e Parsons Code similarity and distance
e Ranking and combined scoring

e Various similarity matrix construction experiments

All string distance experiments were carried out on a Dell Inspiron 9400 laptop with an
Intel Dual Core 2.0 Ghz processor, 100GB 7200rpm hard drive and 2GB of ram
running on the Windows 7 operating system.

6.2.1 Description of raw data

The relational database held a corpus of 11944 tune parts. As the data was imported
from ABC text files it was cleaned and pre-processed so that only musical notes
remained. This data was obtained from publicly available electronic tune collections
mentioned in Section 1.2.5. The Irish music dance tunes were transcribed by users of
varying musical ability with over half of the ABC files not validating against the ABC
notation specification. Any unreliable data that did not fully comply with the ABC
notation specification was immediately discarded.

6.2.2 Pre-processing ABC data

ABC data pre-processing involved the removal of ABC file headers, extra notation,
triplet marks, rests, removal of white space and other unnecessary elements. This was
achieved using Java methods available in Dr. Bryan Duggan’s MattABCTools java
class. The cleaned musical note data was stored in the NOTES column of the database.
The musical note data was then converted from various time signatures to a 2/4 version
and stored in the TWOFOUR column. The relative and absolute intervals between
each musical note were also calculated and stored in the INTERVALS and

BB_INTERVALS columns. The time signature, musical key and tune part number

63

Experimentation and evaluation

were stored in the MEASURE, TUNEKEY and PART columns respectively. All

columns were required and any incomplete rows were discarded.

MAME

MOTES
TWOFOLR
INTERVALS
MEASLIRE
TUMEKREY
PART
BB_INTERVALS
Indexes

L BEEEE

-

Foreign Keys
Figure 20: ABC Corpus Schema. Source: Author

e |ID — Primary key unique to each row

e NAME - the name of the parent tune

e NOTES - The cleaned notes of the parent tune

e TWOFOUR - First and last notes of each beat preserved

e INTERVALS — NOTES represented as relative intervals

e MEASURE - The time signature as specified in the abc file

e TUNEKEY - The musical key as specified in the abc file

e PART — the number of the tune part i.e. first, second, third part of the tune.
e BB_INTERVALS- intervals calculated using Breathnach’s MIC system.

Figure 21 below shows rows 1 to 16 of the ABC corpus with pre-processed data.
String comparison experiments were carried out directly on this data and the results
stored in separate database tables.

| 0 | NAME | NOTES TWOFOLR INTERVALS [MEasure [Tunekey [PerT |
1 20257 Annaghbeg FFEDEFEEFECCRARAF AFDFEDEFEEF ... FFEDEFEEFEDCBABAFAFDFEDEFEEF... 0,1,-1,1,1,-1,0,1,-1,-1, L,6,1,1,-1,-2,2, 2... 2/4 Dmaj 3
2 20298 Brendan Begley's BDEDBGEDBGAAADEDRGRDBGGGEDE. . BEDGBBGAAEDGRBGGREDGBRGEEEA. . -5,1,-15,2,2,-5,5,2, 1,0,0,-4,1,-1,5,2,2,-... 6/3 Gmaj i
3 20299 Ballydesmond #1 ABAGEFGEAAAGADDCAGAGEFGFGA.., AMAGEFGEAAAGADDCAGAGEFGFGAR. -1,- - - Lo 204 Dmix. 1
4 20300Ballydesmond #1 FDDCDERCCEDCDEAAGEDDCDERCD... EDDCDERCCEDCDEAAGEDDCDERCOC. Drmix 2
5 20301 Ballydesmand #2 EAABCCDEGGGGAGEEDEAGABCCDEF. . EAABCCDEGGGGAGEEDEAGABCCDEF. . 3, Ador 1
=] 20302 Ballydesmond #2 ASABASGEFGFGAGEDFDEAAGAGEFG. .. AAABAAGEFGFGAGEDFOEAAGAGEFG. .. Ador 2
7 20303Ballydesmand #3 BOCBCBABAGABCDREDGGFGEAGGED. .. BOCBCBABAGARCDBEDGGFGEAGGED. . Ador 1
8 20304 Ballydesmand #3 EAAGEDGGFGEAAGAGGFGEAGAGED ., EAAGEDGGFGEAAGAGGFGEAGAGEDS... 3,0,-1,2,-1,3,0,-1,1, Adar 2
s 20305 Bill the Weaver's BOBEFARBABADBBEEFGAAGFEDBEEE. .. PREARABDREEGAGFOBEEARARDAADE. Eclor 1
1 20306 Bill the Weaver's GGEFEDEEBRAFBABEFGAAGFEDGFEF. .. GEFDERRFEREGAGFDGEFDEBDBADDF. Ecor 2
11 20307 Bill the Weaver's FEEEGEDEFGEEGEDEGEEFGAAGFEDE. . EEEEDFGEGDEEEGAGFDEEEDEGEFGG. Edor 3
12 20308 Bridgi Con Matt"s DFGRBACBGGFGRBCOBADFOFGERCE. .. DFGRBACRGGFGRBCDBADFDFGRBCE. . Gmaj 1
13 20309 Bridgie Con Matt's BEEFEDEFAGGREFEDRADFDABEEFED. . BEEFEDEFAGGBEFEDBADFDABEEFED. .. -4,0,1,-1,-1,1,1,2,-1,024,1,-1,-1,5,-1,4,... Gmaj 2
14 20310 Callaghan''s BCOEGFGEDBAGABCOBGEDEGABABC, . BEGEDGADBDEBADEFGEBCDFDRBEFAG.., Gmaj 1
15 20311 Cabbler [The] FGFEFRAFEFEDRRBCBABEFEDEFARS... FGFEFBAFEFEDRRRCBABEFEDEFABA. .. 1, . Belor 3
16 20312Con Thachgo's AFEFGFEFGFEEDEAFEFGFEEDDDDEA, . AEFFEGFEDAFFGEEDDBAEFEEEDBAE. .. -2-1,1,1,-1,-1,1,1,-1,-1,0,-1,1,3,-2-1,1,1,... Dmaj i

Figure 21: ABC Corpus database rows 1 to 16 inclusive. Source: Author

64

Experimentation and evaluation

6.2.3 Experiment Framework

Two separate frameworks were used to carry out experiments, a Java framework and a
C Sharp (C#) framework. The description of each experiment indicates whether the

Java or Microsoft C# dotNet platform was used to complete it.

6.2.3.1 Java Framework

A desktop Java application was created using the Netbeans IDE and the integrated
Derby database server (Sun Microsystems 2010). This application provided a
mechanism for iterating through rows of ABC data, performing string distance

operations on pairs of tune parts and storing the results.

-

| 2| Irish Music Similarity Matrix . o | B e

File [Run Algorithm | Show Results Help

Levenshtein

Jaro-Winkler
Darmerau-Levenshtein

Statistical Method

Populate parts database

Compare ABC tune parts
Gather Files
JARO24 Similarity Map

Strict Map
] Calculate Interval Results
- Get Rank
Populate Breathnach in Corpus -
I =
Breanach J [Valid ABC ‘ I Intervals J I Compare

Figure 22: Desktop Java application framework for running experiments. Source:
Author

6.2.3.2 C Sharp Framework

In order to construct the similarity matrix the Microsoft platform was used. This was
primarily for performance issues identified while using the Derby database server but
also to take advantage of MS SQL 2008’s ability to use the Common Language

Runtime (CLR) to create custom functions for use in SQL queries. For example, a

65

Experimentation and evaluation

complex string distance algorithm could be converted into a SQL function and used
directly on a database column as follows;

Table 26: MS SQL 2008 query using a custom function

SELECT ID, [Database] . [dbo]. [Jaro-Winkler] (NOTES,
‘ABCDEFG’) from [Database].[dbo].[Table]

The SQL query in Table 26 returns the ID of each database row with the result of a
Jaro-Winkler comparison between the string ‘ABCDEFG’ and every row in the entire
NOTES column.

In addition, SimMetrics, a library of string distance algorithms programmed in the C#
language, was already available containing implementations of the Levenshtein and
Jaro-Winkler algorithms. MS SQL 2008’s ranking functions were also taken advantage

of to perform ranking experiments.

The platform used to construct the Similarity Matrix was as follows;
e SimMetrics C# String Distance Library
e Microsoft Visual Studio 2010 Professional Edition
e MS SQL Database Server 2008 Developer Edition

6.2.4 Levenshtein Experiments

The Levenshtein string comparison experiment was carried out on the Java platform
and involved iterating over a number of tune parts and comparing them with a subset
of the remaining rows. About 1,840 tune parts were compared against each other
resulting in 3,386,248 comparisons. Figure 23 shows how the results were stored in a

relational database.

66

Experimentation and evaluation

I [~

Matching Rows:

|Z] SOL Cammand 1 "‘l [2]S0L Cammand 2 XI
Cohhection: debc:derb\;:{{IDcthDst:152?HABC [padr... LI | l:l} % ff) |_"<h | o vl T | '@. % 5' I:'|:| | @ {5 ?D | =

1| select ID, TUNE & ID, TUME B_ID, LEVEN, LEVENZ4| from LPP.RESULTS

select 1D, TUNE_A_ID, TUN x|

= | : 2 K € > M PageSize: |2D | Total Rows: 3386248 Page: 1 of 169,313 |

o | TuEsDD | TUNER D | LEVEM LEVENZ4

1 2368448 8353 8354 0.7051282051282052 0.7945717948717348
2 2368449 8353 8355 0.74358974358597436 0,7433897435897436
c} 2368450 8353 8356 0.64102564 10256411 0.6410256410256411
<4 2368451 8353 8357 0.7564102564102564 0.75564102564 102564
bl 2368452 8353 2358 0.7364102564102564 0.7564102564 102564
la} 2368453 8353 8359 0.7307092307692307 0. 73076592307092307
7 2368454 8353 8350 0.7820512820512582 0.7820512820512582
a 2368455 8353 8361 0.602564 1025641025 0,7051282051282052
Q 2368456 8353 8362 0.6153846153845154 0.717948717948718
10 2368457 8353 8353 0.6153845153846154 0.717348717948718
11 2368458 8353 2364 0.717948717948718 0.717948717948718
12 2368459 8353 8365 | o 0. 6666660606065656
13 2368460 8353 8366 07179487 17948718 0.7433897435897435
14 2368461 8353 8367 0.6666666666066066 0, 6666665606666066
15 2368462 8353 8368 0.5897435897435803 0. 6666660606065650
16 2368463 8353 8359 0.602564 1025641025 0.6794871704871795
17 2368464 8353 2370 0.70531282051282052 0,7433897435897436
13 2368465 8353 8371 0.6282051282051282 0.6282051282051282
19 2368460 8353 8372 0.6538451538451539 0.6535451538461539
20 2368467 8353 8373 0.6282051282051282 0.6282051252051282

Figure 23: Levenshtein comparison results. Source: Author

In this case the tune part with TUNE_A_ID 8353 was compared with the tune parts

with TUNE B ID’s 8354 to 8373 inclusive. Results of comparisons between the two

NOTES columns are recorded in the LEVEN column while results of the comparison

between the 2/4 versions of the tune parts are stored in the LEVEN24 column.

In order to plot the distribution of comparisons, the frequency of each result was

obtained i.e. how many comparisons resulted in 0.01, how many resulted in 0.02

continuing to 0.99 and finally 1.0. This data was obtained for comparisons on both

types of data (the original tune part and the 2/4 version) and plotted in Figure 24 and

Figure 25.

67

Experimentation and evaluation

Levenshtein Distribution - Levenshtein 2/4 Distribution

9000 14000

8000 12000

7000

_ 10000

G000

5000 8000

4000 6000

3000

? 4000

2000 A

1000 A l ”AM 2000

() 1l H'\'\\HHH LLLL LLLLLLRLLALE \Iﬂ\l\'\'\\\'\'\\uu T T T T, “ gt e e
1 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100
Figure 24: Levenshtein distribution Figure 25: Levenshtein 2/4 distribution

As Figure 24 and Figure 25 show, the shapes of both distributions are almost identical.
Both distributions show an off centre bell curve with the majority of the results in the
12% to 64% area. Similar to the distribution Mullensiefen & Frieler found in Figure 26
(Mullensiefen & Frieler 2007, p.196) the distribution of a Levenshtein comparison of
the whole corpus looks much like an off centre normal distribution. In this experiment

results below 12% and above 64% were very rare.

12000 4

10000

=
=
8

Frequency
o
5
8

Mean=0152428
2y =0,
0 0778971
N=171405
02000 00000 02000 04000 D600 0000 10000 12000

Similarity_opti3

Figure 26: Frequency distribution by M&F of all melodies in their database. Source:
(Mullensiefen & Frieler 2007, p.196)

6.2.5 Jaro-Winkler Experiments

The Jaro-Winkler experiments were carried out in parallel with the Levenshtein

experiments as both experiments required iteration over the same data.

68

Experimentation and evaluation

As with the Levenshtein experiments, the frequency of each result was determined in
order to calculate the Jaro-Winkler distribution of results. This was performed for both

sets of data (the original tune part and the 2/4 version) and plotted on a line graph.

) Jaro-Winkler Distribution i Jaro-Winkler 2/4 Distribution
5000 5000
4500 4500
4000 4000
3500 | 3500
3000 I l 3000
2500 "[‘ f 2500
2000 R ,U l \ 2000
1500]m" . \V* 1500
1000 r{/ \ 1000
500 500 R
() LR LR AR RN R R IR LR RN LRI R RN RN RN R LR I L R LR R 0 L R L RN A A A R L LR LA R LRI MR RN AR R R R N
I 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100
Figure 27: Jaro-Winkler distribution Figure 28: Jaro-Winkler 2/4 distribution

In the same manner as the Levenshtein result, the Jaro-Winkler distribution graph
showed that the bulk of the results were between a certain range (37% - 90%). Once
again the shape of the graph resembled an off centre normal distribution curve. Results

above 90% were very rare with results below 37% being virtually non-existent.

Processing 2/4 data compared to unaltered data with the Jaro-Winkler algorithm results

in the distortion of the normal distribution curve apparent in Figure 27.

6.2.6 Lemstrom Semex Interval Experiments

The Lemstrom Semex algorithm is a very efficient, transposition invariant algorithm
capable of identifying sub-sequences of note patterns in large music databases.
Preliminary tests on a subset of data showed that the Semex algorithm was capable of
identifying the same melody in different musical keys. Similar to the Levenshtein
algorithm an integer is returned which signifies the edit distance between a sub-
sequence and a larger string. It was found that it was possible to normalise the result
by dividing this distance by the length of the shorter search string. The Semex
algorithm has been shown to be applicable in many environments including searching
polyphonic music (Dovey 2001), fault tolerant music identification (Clausen & Kurth
2002), a web based music retrieval system (Rho & Hwang 2004), matching melody

directly from audio (Mazzoni & RB Dannenberg 2001) and various other

69

Experimentation and evaluation

environments. For this reason it was decided that this experiment would not test how
effective the algorithm is at identifying similarity in the context of music but instead if
it would be possible to use this algorithm to construct a Music Similarity Matrix

(MSM) and if so, what resources would be needed.

This experiment was carried out on the Java platform. As with the previous
experiments, the Semex algorithm was used to compare tune pairs of the original
melody and the measure invariant 2/4 version of the melody. The un-normalised edit

distance was stored for both comparison types.

The experiment was run on the laptop described in Section 6.2 on a corpus of 11,944
tune parts. This meant that 142,647,192 comparisons would need to be performed in
order to complete the similarity matrix. The experiment was halted after five days and
49,908,185 comparisons when writing to the hard disc became extremely slow,
effectively rendering the experiment impossible to complete within the available

resources.

It was possible to draw some conclusions from this experiment even though it was not
completed as measurable data resulted. Over the course of the experiment the

following was observed:;

e Approximately one third of the matrix was completed in five days meaning that
a full matrix could be completed in just over two weeks.

e 50 million database rows used 2.5 gigabytes of hard disk space. The total
amount of hard disk space a complete matrix would require is approximately
7.5 gigabytes.

e Querying the database of results was very slow, taking an average of over eight

minutes to complete even simple queries as in Figure 29.

70

Experimentation and evaluation

== = — — ' - = =" - = | =

Connection: .jdbc:derby:fﬂocalhost: 1527 fABC [padraic on PADRAIC]

1| select * from APP.RESULTS INTEEVALS order by INTEEVALS ED asc‘.l

select * from APP.RESLLTS. .. x |

EEHEBE L [€ » 3 PagesSize: |20 |1 Total Rows: 45908185 Page: 1 of 2,295,410 1

£ D TUNE_A_ID TUNE_E_ID INTERVALS_ED INTERVALS_ED24

1 46301424 15388 9271 1 22
2 45539910 15259 10489 1 25
3 45581220 15258 10438 1 25
4 45572530 15257 10437 1 29
5 44763137 15120 8735 1 1
5] 43398921 14993 14992 1 1
7 43890232 14592 14993 1 1
3 43829401 14980 14979 1 4
9 43190330 14879 9362 1 1
10 43182135 14373 9356 1 1
11 43017536 14851 9388 1 1
17 43NNR{E 14850 SRAT 1 1
: Qutput

MySQL Server Commands x | MySQL Server Commands = | Java DB Database Process x| S0L Command 2 execution x L

Executed successfully in 522.%307 =.

Line 1, column 1

Execution finished after 522Z.307 =, 0 error(s) occurred.

Figure 29: Simple SQL query on interval data taking 523 seconds.

The following conclusions were drawn from the experiment;

e Greater computing resources are required in order to complete a music
similarity matrix using the methods in this experiment.

e Database and SQL query optimisations would need to be performed.

e Only comparisons with results within a certain threshold (to be determined)
should be stored in order to minimise hard disk usage.

e Constructing an extremely large database was fruitless unless it could be
reduced and analysed in a meaningful way.

e Alternative solutions to constructing the matrix should be investigated and

considered.

6.2.7 Melodic Indexing Code experiments

The purpose of this experiment was to computerise Breandan Breathnach’s Melodic
Indexing System as described in Section 2.2. It was carried out on the Java platform. A

series of steps were planned in order to complete this experiment as follows;

71

Experimentation and evaluation

e A Java method would be developed in order to calculate intervals with respect
to a fundamental note.

e All of the corpus would be converted to Melodic Index Codes (MIC) with
resulting MIC codes stored with the original tune part.

e Two different sorting methods, numeric and alphabetic would be tested and

evaluated.

Once preliminary testing was completed, bugs had been identified and corrected the
experiment was run using the Java framework developed in Section 6.2.3. The
experiment completed in less than 30 minutes without issue and the testing and

evaluation of sorting methods began.

Figure 30: The Munster Lass jig stored in the Breathnach Melodic Indexing System.

Source: Author

Breathnach stored index cards by tune type in numerical order. Jigs were stored

separately from reels, hornpipes, slides and polkas as can be seen in Figure 30.
A visual check of the results confirmed that the system is transposition invariant,

correctly matching The lvy Leaf reel in two keys, E mixolydian and A mixolydian,
rows 3 & 4 of Figure 31.

72

Experimentation and evaluation

select ID, NAME, PART, TU... x |
=N N | @2 K € » ¥ ' PageSize: 20 | TotalRows: 11944 Page: 16 of 598 1
o] MNAME PART TUNEKEY MEASURE BE_INTERVALS 4
1 9966 Flogging Reel, The 6 Gmaj 22 111531351116722711153135217123421115313511167222312716532171234
2 9963 Flogging Reel, The 3 Gmaj 22 111531351161722711153553257123421115313511617222312716532171234
3 10986 Ivy Leaf, The 1Emix 2f2 111531511535427211153151175671271555355515554272111531511756712
4 10269 Ivy Leaf, The 1 Amix 2f2 1115315315554272115423454275671217111535551555427211542345427567123
L 10264 Ivy Leaf, The 5 Amix 2f2 1115315315554272115423454275671217155515551555427211542345427567123
6 9976 Humours of Loughrea, The 4 Gmaj 22 111532223321165311123216222161561115322251321653111232162221613
7 19327 Sport Of The Chase, The 2 Amaj 9/8 11153311153344646655757713131313131362626272727
8 11148 Bundle And Go 1Emin 6/8 111533354444 7771753542725127111
9 20075 Child Of My Heart 2 Amin 58 1115334411157444111533345341717
10 9684 no name 1 Ador 68 1115334455443325111533445544367
i1 12267 My Love In The Morning 1 Ador 58 1115334455527751157547723125111
12 14235 Misconception, The 1 Bdor 68 111533445553444311153344534511151115334455534477111533445345111
13 15415 O"Dea’s 1Gmaj 68 1115356653556357111566635663132
14 19329 Landslide, The 2Gmaj 68 1115414452553151251451245711223
15 19631 Duncan The Gauger 2 Amin 68 1115415577727725111541552472251
16 19515 Gan Ainm 1 Amaj 44 1115416611165562111561132157111
7 17793 Bells Of Gorbio, The 3 Bmin 68 1115432711157455111543275553271
18 16329 Merry Maid"s Wedding, The 1 Ador 44 1115445274565452
19 11202 Dusty Windowsills, The 2 Adar 58 1115947777750 77574757132547111
20 1156@ Lexie McAskil's 3 Edor 44 1115453711151717111545371115171

Figure 31: Computerised Melodic Indexing System

Figure 31 shows that comparisons between a range of time signatures and type of tune
are possible under the system. For example, row 16, a reel without a name in the key
of A Major was found to be similar to an A Minor jig called the Drunken Gauger (row
15) and another jig called the Bells of Gorbio in B Minor (row 17).

6.3 Evaluation

6.3.1 Survey of experts and non-experts

In order to test whether a computer algorithm could accurately identify similar or
different tune parts, an online survey was conducted. Participants were divided into
two groups, those that could be considered experts in Irish traditional music and those

that had no interest or experience in Irish traditional music.

6.3.2 Choosing tune part pairs to test

Pairs were selected based on the following criteria;
e Normalised Levenshtein score

e Jaro-Winkler score

e Breathnach Melodic Index Proximity

73

Experimentation and evaluation

Levenshtein scores had to be normalised in order to take account of comparing

different length strings of musical notes. Two strings of notes, ten and twenty

characters long respectively have an edit distance of at least ten. An edit distance of ten

is considerably more significant if the strings are 1 and 11 characters long than if they

are 101 and 111 characters long. In order to normalise the Levenshtein scores the

following formula was used,

ed

len(sl) + len(s2)

Where ed is the Levenshtein edit distance, len(s1) is the number of characters in string

one and len(s2) is the number of characters in string two.

Table 27: List of tune pairs selected for the survey

Pair | ID Tune A Part | Leven | Leven 24 | Jaro | Jaro 24
1a | 10101 | Jenny's Chickens 1
1b | 11475 | Sean sa Cheo 1 0.19 0.38 0.57 0.59
2a | 8544 | All the world loves me 1
2b | 8749 Lackeys 1 0.56 0.68 0.72 0.62
2a | 8545 | All the world loves me 2
2b | 8750 Lackeys 5 0.53 0.36 0.63 0.78
3a | 14736 | A maid that dare not tell 2
3b | 8542 | All around the room 1 031 0.5 0.75| 0.65
43 | 11324 | The Musical Priest 1
4b | 12006 | North Brig O’Edinburgh 1 0.66 0.82 0.88) 0.91
5a | 9972 | Jenny picking cockles 1
5b | 10944 | Repeal of the Union 1 0.47 0.4 0.70 | 0.67
6a | 13546 | Whisky makes you a lunatic | 1
6b | 18031 | En Dro) 0.06 0.00 0.29 0.00
7a | 14845 | Humours of Tulla 2
7b | 16191 | Farewell to Stromness 2 0.06 0.06 0.37) 0.25
8a | 16195 | willie Davie 2
8b | 17356 | Hangmans 3 0.22 0.19 0.52 0.48
9a | 18579 | Oliver Jack 1
9b | 8618 | Down the Gort Road 2 0.09 0.19 0.38 | 048
10a | 10101 | Jenny's Chickens 2/4 1
10b | 11475 | Sean sa Cheo 2/4 1 0.19 0.38 0.57 0.59

74

Experimentation and evaluation

6.3.3 How tune pairs were chosen

Table 27 shows the tune part pairs with their Levenshtein and Jaro-Winkler similarity

scores for unaltered and 2/4 version of the musical notes.

6.3.3.1 Pairs 1 & 10

The same tune pair, Jenny’s Chickens and Sean sa Cheo were used for pairs 1 and 10.
Question 1 contained both tunes in 4/4 time signature and Question 10 contained both

tunes in 2/4 time signature.

This example represents a weakness in the Levenshtein and Jaro-Winkler string
distance algorithms’ inability to compensate for vertically transposed melodies as they
cannot perform key invariant comparisons. On the other hand, this pair ranked highly
on the Breathnach Melodic Indexing System being 245 tunes apart in a corpus of
11944,

6.3.3.2 Pairs 2, 3,4 and 5

Pairs 2 and 5 were chosen because they had relatively high Jaro-Winkler scores and
average Levenshtein scores. Pair 3 was chosen because it had a relatively high Jaro-
Winkler score but a low Levenshtein score. Pair 4 had a relatively high Levenshtein
score and a high Jaro-Winkler score. All of these pairs were deemed to be similar

according to at least one algorithm.

6.3.3.3 Pairs 6, 7, 8 and 9

Pairs 6, 7 and 9 were chosen because they had low Levenshtein and Jaro-Winkler
scores. Pair 8 was chosen because it had an average Jaro-Winkler score but a low
Levenshtein score. All of these pairs were deemed to be dissimilar according to at least

one algorithm,

6.3.4 Question order randomisation

In order to ensure that the order did not bias the survey results a list of tune pairs was
prepared. This list was then randomised and the online survey constructed accordingly.
The names of the tunes were not available to the participants and the ABC tune part
data was converted to audio by computer instead of recording a musician playing a

75

Experimentation and evaluation

version of each tune part. This was done in order to prevent bias due to style of playing

or instrument choice.

Table 28: List of tune pairs selected for the survey

Pair No. Method Order
1 Similar Breathnach 9
2 Similar | Levenshtein & Jaro-Winkler 3
3 Similar | Levenshtein & Jaro-Winkler | 10
4 Similar | Levenshtein & Jaro-Winkler 5
5 Similar | Levenshtein & Jaro-Winkler 4
6 Different | Levenshtein & Jaro-Winkler 6
7 Different | Levenshtein & Jaro-Winkler 2
8 Different | Levenshtein & Jaro-Winkler 7
9 Different | Levenshtein & Jaro-Winkler 1
10 Similar Breathnach 8

According to the methods used to determine similarity and dissimilarity the survey

contained the following tests.

Question Number | Computer Determination | Pair Number
1 Different 9
2 Different 7
3 Similar 2
4 Similar 5
5 Similar 4
6 Different 6
7 Different 8
8 Similar 10
9 Similar 1
10 Similar 3

76

Experimentation and evaluation

6.3.5 Choosing experts

In order to ensure that a representative result from the survey was returned, great care
was taken when choosing a panel of experts. For the purposes of the survey experts
were distinguished from non-experts and a minimum criteria was established before a
candidate was considered to be an expert or a non-expert in the field of Irish music. A
minimum criteria was also formulated in order to identify non-experts. The minimum

criteria were as follows;

An expert must;
e Play a musical instrument that Irish music would normally be played on.

e Have played Irish traditional music for at least 15 years.

A non-expert must;
e Not play any musical instrument.

e Not listen to Irish traditional music regularly

Experts and non-experts alike could;
e Be of any nationality
e Be of any gender orientation
e Beofanyage

e Should not be tone deaf

Lists of experts and non-experts are presented in Appendix A.

6.3.6 Experts results

A panel of experts were asked to choose whether tune parts were similar or different
using a Likert scale (Likert 1932). Each participant was presented with twenty audio
clips grouped into ten pairs of tune parts. The expert was instructed to play each pair of
clips as many times as necessary in order to make a decision. The Likert scale allowed
each participant to choose one of five options. The choices given to each participant

were as follows;

77

Experimentation and evaluation

Table 29: Likert Scale Values

Likert Scale

Value

Very different

Different

| dont know

Similar

Very similar

i wiN

The corresponding values for the Likert responses given by each expert participating in

the survey are shown in Table 30.

Table 30: Responses from participants that are experts in Irish traditional music

Name Q1({Q2|Q3 |/ Q4|Q5|Q6 | Q7| Q8| Q9 |Q10
Hauke Steinberg 4 2 5 2 5 2 5 1 4 4
David Morrissey 4 4 3 4 5 4 5 2 2 2
Martin Preshaw 2 4 4 5 1 1 5 1 2 1
Daragh O'Reilly 2 4 4 4 5 2 5 1 4 2
Jose Manuel Fernandez Mateos 1 1 2 1 4 1 5 1 4 1
Deirdre Smyth 2 5 5 5 4 4 5 2 5 4
Damian Werner 4 5 4 5 1 1 4 1 5 4
Paulo McNevin 1 1 1 1 5 1 5 1 1 1
Ray Dempsey 1 2 4 2 5 1 5 2 5 2
Terry McGee 1 1 1 1 2 1 4 1 4 1
Padhraic ¢ Suilleabhan 1 4 2 4 4 2 4 4 4 2
Treasa Lavin 2 2 4 2 1 1 5 1 5 2
Joe Brennan 2 4 4 5 5 2 5 1 5 3
Pauline Burke 2 4 5 4 4 1 4 1 4 1
Sara Cory 4 2 5 4 2 1 5 1 4 2
Table 31 shows how the experts voted.
Table 31: Results of experts choices

Question No. Similar Different Not sure Conclusion

Question 1 4 11 0 | Different

Question 2 8 7 0 | Similar

Question 3 10 4 1 | Similar

Question 4 9 6 0 | Similar

Question 5 10 5 0 | Similar

Question 6 2 13 0 | Different

Question 7 15 0 0 | Similar

Question 8 1 14 0 | Different

78

Experimentation and evaluation

Question 9 12 3 0 | Similar
Question 10 3 11 1 | Different
Totals 74 74 2 150

6.3.6.1 Analysis of the experts responses

Most questions resulted in experts voting by a majority of over 10 votes to 5 except in

two cases. In question 2 and 4 the experts voted by a majority of 8 to 7 and 9 to 6

respectively. The outcomes of question 2 and 4 may be inconclusive as the experts

seem to be unsure of their collective decisions.

6.3.7 Non-experts results

Survey participants with no musical experience were given the same survey as the

experts under exactly the same conditions. Their responses are given in the table

below.

Table 32: Responses from participants with no experience of Irish traditional music

Name Ql1|Q2|Q3|Q4|Q5|Q6| Q7| Q8| Q9| Q10
Corinne Kingston Bageard 4 5 4 2 2 2 5 2 5 2
Diarmuid Cooke 1 1 4 2 4 4 5 1 5 2
Brian Duggan 2 4 5 4 2 2 5 1 4 2
Martin Hughes 2 2 5 4 2 2 5 2 4 2
Joe Phelan 2 5 4 1 1 2 5 1 4 4
John Golden 2 4 5 2 1 2 5 2 4 4
Patrick Crowe 1 2 2 1 2 1 2 1 2 1
John Breen 1 2 4 5 1 1 5 1 5 2
Caroline Bemingham 2 2 5 5 1 1 5 1 5 2
Mark Bussell 2 4 5 4 4 1 5 2 4 5
Enora Senlanne 2 4 4 4 4 1 4 1 5 2
Richard Kinser 2 4 4 4 4 2 5 2 4 2
Terry Lavin 2 1 2 5 1 1 5 1 5 1
Clare Basset 4 4 4 5 4 2 5 3 5 2
Louisa Murphy 4 2 2 5 4 1 5 1 4 2
Table 33: Results of non-experts choices

Question No. Similar Different Not sure Conclusion

Question 1 3 12 0 | Different

Question 2 8 7 0 | Similar

Question 3 12 3 0 | Similar

Question 4 10 5 0 | Similar

79

Experimentation and evaluation

Question 5 6 9 0 | Different
Question 6 1 14 0 | Different
Question 7 14 1 0 | Similar

Question 8 0 14 1 | Different
Question 9 14 1 0 | Similar

Question 10 3 12 0 | Different

Totals 71 78 1 150

6.3.7.1 Analysis of the non-experts responses

Most questions resulted in the non-experts voting by a majority of over 10 votes to 5
except in two cases. In question 2 and 5 the experts voted by a majority of 8 to 7 and 6
to 9 respectively. The outcomes of question 2 and 5 may be inconclusive as the non-

experts seem to be unsure of their collective decisions.

6.3.8 Experts vs. non-experts

Interestingly, the expert and non-expert participants agree on all questions apart from

one pair, question 5.

Question No. Experts Non-experts
Question 1 Different Different
Question 2 Similar Similar
Question 3 Similar Similar
Question 4 Similar Similar
Question 5 Similar Different
Question 6 Different Different
Question 7 Similar Similar
Question 8 Different Different
Question 9 Similar Similar
Question 10 Different Different

The numbers of votes for each tune pair were counted in order to calculate voting
percentages for each question answered by both groups. For example, four experts out
of fifteen voted that the tune pair in Question 1 were similar resulting in 27% of the
vote and three out of fifteen non-experts voted that the tune pair in Question 1 were
similar giving a vote of 20%. When the votes for both groups are plotted on a chart the

results look remarkably similar.

80

Experimentation and evaluation

Participants voting that pairs are different

Non-Experts Experts |

[HEN
N
o

[HEN
0 O
o o

\ ‘\‘ :7 | \. , \
N/

N

N
o

N
o

Percentage of votes
(o]
o

o

1 2 3 4 5 6 7 8 9
Question Number

Figure 32: Experts vs. non-experts voting percentages

The following table shows how the computer algorithm chose similarities contrasted

with those of the experts and non-experts.

Table 34: Computer algorithm vs expert vs non-expert choices

Question No. | Computer algorithm | Experts | Non-experts
1 Different Different | Different
2 Different Similar Similar
3 Similar Similar Similar
4 Similar Similar Similar
5 Similar Similar Different
6 Different Different | Different
7 Different Similar Similar
8 Similar Different | Different
9 Similar Similar Similar
10 Similar Different | Different

An analysis of these results suggests that experts and non-experts are likely to choose
similarly. The one question where experts and non-experts differ is question 5 but this
result may be classified as inconclusive because the voting is so close as to suggest

that opinion was almost equally divided in both groups.

81

Experimentation and evaluation

The tune pairs selected by the computer algorithm agreed with the experts at least 60%
of the time. Question 2 was voted similar by a margin of 8 to 7 in both groups
suggesting that opinion in humans was narrowly divided. The voting from both groups
for questions 7, 8 and 10 suggests that the computer algorithm made a significant error

selecting these pairs.

6.4 Constructing a Similarity Matrix for Irish Traditional Music

Using the process defined in Section 4.3 an experiment was designed in order to
construct four similarity matrices. These matrices were constructed using the Jaro-
Winkler algorithm, Parsons Code, Melodic Indexing System and the Combined
Ranking System described in Section 4.3. Construction was carried out over four

phases.

6.4.1 Phase 1 — Importing data and extending MS SQL 2008

The first phase involved importing the corpus of tunes from the Derby database server
into the MS SQL 2008 database server. As this data had already been cleaned and
processed numerous times in other experiments it made sense to use it for experiments
on the Microsoft platform. Comparisons between both platforms may also be made
possible in the future. This phase also involved extending the MS SQL 2008 database
server by writing implementations of the Lemstrom Semex, Breathnach Melodic
Indexing System, Parsons Code and a standard deviation function in the C# language.

These implementations are available in Appendix D.

82

Experimentation and evaluation

= | Programmability

- [Stored Procedures

+ [System Stored Procedures

El dbo.calculateMatrix
E dbo.getFrequency
£ dbo.getRanks
E dbo.getRanksID
El dbo.getRanksIDVerbose
- 1 Functions

+ [Table-valued Functions

H FH OFEOFEE

- [Scalar-valued Functions
7 B dbo.Breathnach

f-{i dbo.Jaro

B dboJaroWinkler

W dbo.Levenstein

B dbo.NermalisedRank

f-{i dbo.Parsons

B dbo.Semex
+ B dbo.stdevmusic

+ [Aggregate Functions

HHEE B ®E

+ [System Functions

Figure 33: Stored Procedures and custom functions in MS SQL 2008

Figure 33 shows a screenshot of Microsoft Management Studio (the application used
to administer MS SQL 2008). This screenshot shows how MS SQL Server 2008 has
been extended by using custom stored procedures getRanks, getRanksID and custom
functions Breathnach, Jaro-Winkler, Levenshtein, Parsons, stdevmusic and

NormalisedRank.

6.4.2 Phase 2 - Testing custom function SQL queries

The purpose of creating custom functions using Microsoft Visual Studio 2010
Professional to extend MS SQL 2008 was to enable the use of string distance functions
within SQL queries. Two Visual Studio projects were used; the first to extend the
SimMetrics string distance library to include implementations of the Semex, Parsons,
Breathnach MIC and improved Jaro-Winkler algorithms and the second to create a
private dotnet assembly that could be imported into MS SQL 2008. In order to test if
these custom functions worked as planned in MS SQL 2008 the following SQL query

was executed.

Table 35: SQL query using a custom string distance function

select ID, NAME, NOTES, [Test].dbo.JaroWinkler (NOTES, 'ABCC') as
JW Score

83

Experimentation and evaluation

from Test.dbo.corpus
order by JW Score desc

B BN =2 EE
x

5QLQuery5.sql - PODGE-PCT\...... (58))° | installZ.sql - PODGE-PCT\..\P...ge (57)) | 5QLQueryd.sql - PODGE-PCT\..ne (53)) =

b4
_E| select ID, NAME, NOTES, [Test].dbo.JaroWinkler (NOTES, 'ABCC') as JW_Score =
T 2%Llfr0rr. Test.dbo.corpus i
3 order by JW_Score desc 1
4 : I 3
I Results 3 Messages
NAME NOTES JW_Score -
B[1 {12627 : Blackbind, The ABCCCBAGADEDEBGGEEGGGEDBABGGEEEE 0.325000001738469
2 12769 Ballydesmond, The ABCCBBAAGABDEDGGEDEAGEDBGBCEDBAA 0.325000001738469
3 12171 BagOflee, The ABCCBCCDEFGBEEGABDCCBCCDEFGEDBGG 0.325000001738469
4 18351 Greenslesves ABCCCCDEDGGGABCAAABCBEEEABCCCCDEDGGGABCAABCEBAARA 0.81666666848752
5 9334 Earlthe Breakfast Boiler ABCCBABEEEFABEEDEEFEDDEFABCCBABEEEFABEEDEEAGFFED 0.31666666848792
6 9385 Earlthe Breakfast Boiler ABCCBABEEEDBFFEDEEDBFFEDABCCBABEEEDBFFEDFGFEAAFD 0.31666666848752
7 9485 Gilfrom the Big House, The ABCCAAGFGGGGFGADBCAGADCDFGFEDCAGFFFGECDCAGEADDDD 0.31666666848752
8 9483 Gilfromthe Big House, The ABCCAAGFDGGDGGADBCAGADCDDEFEDCAGFFAGECDDAGEADDDD 0.B1666666848792
9 13633 Ear The Breakfast Boler ABCCBABEEEFGBEEDEEAGFFEDABCCBABEEEFABEEDEEAGFFED 0.31666666848792
10 13634 Ear The Breakfast Boiler ABCCBABEEEDBFFEDEEDBFFEDABCCBABEEEDBFFEDFGFEAAFD 0.31666666848792
11 19197 Shan Van Vocht, The ABCCCDEEFGDBAGAAGABDABGFEDEEAAAADCEGABGEDEGGGGGG 0.81666666848792
12 20080 Wals OF Liscamol, The ABCCCDCDECAAGECCADCAAGFGABCCCDCDEFEDEAGEDCABCBAGA 0.8163265324362877
13 15573 Peeler And The Goat, The ABCCABAGAABCCDEFEDDCBBGGABCCABAGAABCCDEFGFEDEEAAA 0.816326532436877
14 8387 \'Eireann go Brach ABCCCECADADDAACCCECADCDBBBCCCECADADDAACDECBABCAAAA 0.816000001827876
15 14351 Light And Aly ABCCCACAFACFCACCCACAGGABBDCCCACAFACFCABGBAFAGGABED 0.816000001827876
[|L18 13695 Caheistrane ABCCCBAFEAFEEEFECACEFAABBBCCCBAFEAFEEEFECACEFAAAAR 0.816000001827876
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (100 SP1) | Podge-PC7\Podge (58) | Test | 00:00:00 | 11944 rows

[~—t e LIV

Figure 34: Result of a SQL query using a custom string distance function

Figure 34 shows the following columns returned by the SQL query;

e D of the tune

e NAME of the tune

e NOTES of the tune

e JW _Score represents the similarity between the string ‘ABCC” and each of the

rows in the NOTES column in descending order

The bottom right of the screenshot shows that the corpus of 11944 rows was processed
in less than 1 second. Table 36 shows how a more complex query was then executed. It
compared the notes from the tune “The Humours of Tulla” to the corpus of 11944

tunes using the Jaro-Winkler, Levenshtein and Semex custom functions.

Table 36: Jaro-Winkler, Levenshtein and Semex SQL for the “Humours of Tulla”

select ID, NAME, NOTES, [Test].dbo.JaroWinkler (NOTES,

' GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA') as JW_Score,

[Test] .dbo.Levenstein (NOTES, 'GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCRBA') as
Leven Score,

[Test] .dbo.Semex (' GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA',
Semex Score

from Test.dbo.corpus

NOTES) as

84

Experimentation and evaluation

order by Semex Score desc

7 == T e | g % 5
: SQLQuery5.sql - PODGE-PCT\..... (38))* | install2.sql - PODGE-PCT\.A\P..ge (57]) | SQLQueryd.sql - PODGE-PCT e (53)) - X
1@ select ID, NAME, NOTES, [Test].dbo. kler (NOTES, * GEGLGEFGGDGEGDGEFGRBCCBA') as JW Score, —|
il 2 [Test] .dbo.Levenstein (NOTES, FG | as Leven_Score, - it
3 [Test] .dbo.Semex (' GGDGEGDEGG , HOTES) as Semex Score E
4:| from Test.dbo.corpus
5 -order by Semex_Score desc i
] [b
[Resutts _'j Messages
1] NAME NOTES JW_Score Leven_Score Semex_Score -
1 Humours Of Tulla, The GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCEA 1 1 0.96965696363657
2 11433 Glen Allen DEGGDGEGDEGGBGAGEGAAEAFAEAABCDEDBAGGDG... 0 0.46875 0.787878787878788
3 10215 Bushin Bloom, The GGDGEGDEGGBGAGEFGGDGEGDBAGEFGGGABGGGA... 0.858347337667117 0484375 0.757575757575758
4 8963 Mossy Banks b) GGDGEGDGGGBGAGEFGGDGEGDBABGABAAAGGDGE... 0.844238691362685 0.446153846153846 0.757575757575758
5 11434 Glen Allen BDGGDGEGDEGGBGAGEGAAEAFAEGAABGAGEFGGDG... 0.689643409505507 0.46875 0.727272727272727
6 12458 Mossy Banks, The GGDGEGDEGABGADEFGGDGEGDBABGABGEDGGDGE... 0.848301516652544 0421875 0.636363636363636
7 14584 Peter Flanagan”s AMAAEAAGEGAGBGAGEFGGDGEGDGGGAFGEDDAAEA. .. 0.650867511320097 0.375 0.636363636363636
3 8785 Mrs Crehan's GGDGEGDGGGDGADBAGGDGEGDGEGABCEDBGGDDE. .. 0.828301516851226 0.40625 0.606060606060606
] 11437 Traveller, The GGDGBGDGGGEGAGEFGGDGBGDECEAGFADDGGDGE... 0.814339828684195 0.40625 0.606060606060606
10 13120 Mike Fannagan’s GGDGEGDGGGDBAFDEFGGDGEGDGEFDBAFDEFGGDG... 0.836656893118263 0.454545454545455 0.575757575757576
11 16736 Mad Dan DEFGGDGEGDGGDBCDEDBAGGDGEGDGAGABCDEDG... 0.692217065016361 0.380281630140845 0.575757575757576
12 16653 Jemy's EAAAEAFAEFGAGEDBGGDGEGDGCCECFCECEAAAEAF.. 0.582733585058586 0.328125 0.545454545454545
13 16990 Dicky Deegan’s Wasabi FEBBFEDEFAAGFBBBEAAAEAFAEFFECAAAFBBBFEDEF.. 0 0.21875 0.545454545454545
14 15779 Farewell To Miltown DGGFGGGABCAFGFDEFFCFDFCFDFFFFDCFDGGFGGGA... 0.596066919191919 0.265625 0.545454545454545
15 15877 Le Reel Des Voyageurs BDGGDGEGDFGABGAGEFGGDGEGDECBAGFADFGGDG... 0.648322241605824 0.388059701492537 0.545454545454545 -
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (100 SP1) | Podge-PC7\Podge (58) | Test | 00:00:02 | 11944 rows

Figure 35: Jaro-Winkler, Levenshtein and Semex SQL query combined

Figure 35 shows how the SQL query in Table 36 was executed, comparing the notes of
the “Humours of Tulla” against the whole corpus of tunes using the Levenshtein, Jaro-

Winkler and Semex custom functions in just 2 seconds.

Custom functions that returned Parsons Code and Breathnach’s Melodic Indexing
Code were also created. These two functions return the Parsons Code and MIC Code
rather than a similarity score between 0 and 1. In order to calculate how proximate two
strings of notes are, their positions in the corpus must first be known. A custom
function in MS SQL Server 2008 is only aware of the two strings of notes passed to it
as arguments and not aware of the entire corpus of tunes. It was decided that it would
be more appropriate to perform this type of calculation within a stored procedure that
would have access to both custom string distance functions and the whole corpus. The
following SQL example shows how it is possible to convert a whole corpus of tunes to

Melodic Indexing Code and Parsons Code in a few seconds.

Table 37: SQL query to convert a corpus into MIC Code and Parsons Code

select ID, NAme, [Test].dbo.Breathnach (NOTES) as MIC,
[Test] .dbo.Parsons (NOTES) as PIC

from Test.dbo.corpus

order by MIC asc

85

Experimentation and evaluation

Figure 36 shows how the SQL query above converts a corpus of 11944 tunes into MIC

Code and Parsons code in one second.

v
o
=
o
15
-
3
I
-l
Il
[=]
(2]
m
b
=]
a
3
v
©
=
o
c
m
2
i
)
o
(=]
L=
(5]
i
o
9
7l
b
G
=
L
re
=
o
&
3
in
4
o
(=]
o
o
m
o
4
T
G
L=
=
]

>
14 select ID, NAme, [Te=st].dbo.Breathnach NOTES) as MIC, —
[Test] .dbo.Parsons (HOTES) as PIC i
from Test.dbo.corpus
~] order by MIC asc -
] T s
[Resutts _Iﬁ Messages
NAme MIC PIC -
1 Up South IRRR AR AR RN R AR RRARRRREE “*RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
2 19546 Drunken Hussar. The TTITINN232117127511111111111111232156711 “RRRRRRRRRRRRRUUDDROUUDDURRRRRRRRRRRRRUUDDDU
3 16203 Kilkelly, Ireland 111111111122333333332211222222211771111111111551... . “RRRRRRRRRURURRRRRRRDRDRURRRRRRDRCRURRRRRRRR
4 15554 Wolves A-Howlin™ 11111111116655444564541246542211 “RRRRRRRRRORURDRRUDUUDDUUDUDDRDR
i 18792 Ailiu Eanai 111111116535555566666666653555555533112233221111 “"RRRRRRRUDDURRRRIURRRRRRRRDDURRRRRRDRDRURURDR
& 11349 Pride Of Petravore, The 111111117534555654234445431711571111323175345534. *RRRRRRROUDUURRDUDDUURRUDDDDURUDURRRUDUDDUDU
7 11001 Smuggler’s Reel. The 111111123234545677777771212454571111111232345456... “RRRRRRUUDUUUDUDURRRRRRUUDUUUDUDURRRRRRUUDUL
8 12681 Whistle Ower The Lave 0% 111111123322355555671155331117771111111233223555... *RRRRRRUDRURDURRRRUUURDRDRURRDRRURRRRRRUDRUR
] 19585 Miss Galvin™s 111111124576754217656777231271756712172112457675... “RRRRRRUDUUDUDDUDDDDUURRUDUUDUDDUUUUDDUDRUDU
10 13518 Morgan Rattler 111111135275111135642345111111135275111753665671... "RRRRRRUUDUDDRRRUUUDDUUUDRRRRRRUUDUDDRRUDDUR
il 17905 Love And Hospitality 111111154277756551115424211111111542777671567645. *RRRRRRUDDODRRUUDRDRRUDDUDDRRRRRRRUDDDRRUDUUL
12 17724 Indian Summer 111111156546511111111115654655511112333215465111... “RRRRRRUUDDUDDRRRRRRRRRUUDCUDRRDRRRUURRDDUDU
13 20101 Traditional Gaslic Melody 111111171111111177754445334455771111111711111111... . “RRRRRRDURRRRRRRDRRCDRRUDRURURURURRRRRAROURRR
14 12831 Hogties 111111176545677675111155765457211111111117654567... “RRRRRRDDUDUDURDUUDRRRURDDUDUDUDRRRRRRRRRODU
15 20236 Leslie™ March 111111176567176543553221 222212321254332115123221 “RRRRRROUDUDUDUDDDURDDRDURRROUUDDUUDDRODRUDU. _
T e e = — e
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (10.0 SP1) | Podge-PC7\Podge (55) | Test | 00:00:01 | 11944 rows

Figure 36: Corpus of tunes in MIC Code and Parsons Code

Temporary tables in stored procedures were used to dynamically create corpi so that
positions of tunes within them could be ascertained. Once the position of the match
was known it was possible to calculate proximity and distance from this match as
described in Figure 6. Both MIC Code and Parsons Code were calculated in tandem as

the systems are virtually identical (apart from the generated MIC and Parsons Code).

Following is code that creates a temporary table, calculates MIC and Parsons Code for
an entire corpus of tunes, identifies the closest match using both Melodic Index Code
and Parsons Code, calculates distance and then normalises the MIC and Parsons

distances so that a score between 0 and 1 is returned.

Table 38: Code snippet that calculates and normalises MIC & Parsons Code ranks

-- Create temp table for Breathnach and Parsons Rank and populate it
SELECT 1D,
dbo.Breathnach (NOTES)
dbo.Parsons (NOTES)

as MIC,
as PIC,

row number () over (order by dbo.Breathnach (NOTES) asc) as
rowlD,

(row _number () over (order by dbo.Breathnach (NOTES))) /1.0 as
MICScore,

(row_number () over (order by dbo.Parsons (NOTES)))/1.0 as
PICScore

into #TEMP
from corpus
order by MIC;

86

Experimentation and evaluation

-—- Find nearest match for @notes - Breathnach

Select top 1 @rowID = MICScore from #TEMP where
dbo.Breathnach (@notes) <= MIC order by MIC asc

Select @MaxRank = MAX (MICScore) from #TEMP

-— Find nearest match for @notes - Parsons

Select top 1 @prowID = PICScore from #TEMP where
dbo.Parsons (@notes) <= PIC order by PIC asc

Select @PMaxRank = MAX (PICScore) from #TEMP

Update #TEMP set MICScore = 1-((abs(MICScore -
@rowID)) /@MaxRank)
Update #TEMP set PICScore = 1-((abs (PICScore -

@prowID)) /@PMaxRank)

The complete stored procedure is available in Appendix D.

6.4.3 A Combined Ranking System

MS SQL 2008 supports four ranking functions, one of which, RANK() was used to
generate ranks for results returned by string distance functions. Table 39 shows a SQL
query that utilises the RANK() function in conjunction with the Jaro-Winkler and

Semex string distance custom functions.

Table 39: SQL query for Semex & Jaro-Winkler scores with ranks

select ID, NAME, Notes,

[Test].[dbo].Semex ('CDEEEDEGGA', dbo.corpus.NOTES) as Semex,
RANK () OVER (ORDER BY [Test].[dbo].Semex ('CDEEEDEGGA',

dbo.corpus. [NOTES]) DESC) AS [SemexRank],

[Test]. [dbo].JaroWinkler ('CDEEEDEGGA', dbo.corpus.NOTES) as Jaro,
RANK () OVER (ORDER BY [Test].[dbo].JaroWinkler ('CDEEEDEGGA',
dbo.corpus. [NOTES]) DESC) AS [JaroRank]

from dbo.corpus

order by SemexRank asc, JaroRank asc

(
[
]
(

87

Experimentation and evaluation

JEFE| s | KEEER | = = | F S| B 5
50LQueryd.sql - PODGE-PCT\.....e (57)) ' 5QLQueryb.sql - PODGE-PCT\...... (54))* | SQLQuenyS.sql - PODGE-PCT\...... (58))* - X
lidselect ID, NAME, Hotes, [=
2 [Test] . [dbo] .Semex ("CDEEEDEGGR', dbo.corpus.NOTES) as Semex, i
31| RLNE () OVER(ORDER BY [Test].[dbo].Semex ('CDEEEDEGGL', dbo.corpus. [NOTES]) DESC) A5 [SemexRank], L
-1 [Test] . [dbo] .JaroWinkler (' CDEEEDEGGA', dbo.corpus.NOTES) as Jaro, J
Si| RLNE () OVER(ORDER BY [Test].[dbo].JaroWinkler ('CDEEEDEGGL', dbo.corpus.[NOTES]) DESC) AS [JaroRank]
6 from dbo.corpus
' order by SemexRank asc, JaroRank asc e
4 - [+
[Resutts _j Messages
AME Notes Semex SemexRank Jaro JaroRank ~
g i | Ha" A Wife O™ Ma Ain EDEGGABEBEDEGGABGEEDEGGABCDDEDDDBAFD n.g 1 0.568518518518518 698
2 “1;131 1 Bonnie Mulligan ACECDEFDCDECDCBCACECDEFGAFEDCDEFGGGFGGAGFDDCDE.. 0.8 1 0.50902777777777 3 2385
3 19676 Touch Me F You Dare EEABCDEEEFGEFDECAGABCDEEEDEAABAEDBABCDEDEFGEFD 0.2 1 0.5078869304761905 2669
4 16741 Teeln. The DCBBDDGGGABBAAAAABCDDDDCCDDEEDDBDEBABBDDGGGAB... 0.8 1 0.432703150912106 3252
5 15912 Absent Friends CCCCCCBAFFFFFFDCCCCCCCBAFFFFFFAGFFFFFFAGFFFFFFDEFFF.. 0.8 1 0.469375000878548 3960
13 17734 Lolipop Man, The EAGBDDDDEFGGGFGGGABBGABAGABEEDEEBAGBDDDDEFGGG... 0.8 1 0.459375 4736
7 16002 Road To Cres, The DCDEFFFEFFEFAFECDCDEFFFEAFECCBBCDCDEFFFEFABAAFECD ... 0.8 1 0.453472022372377 5361
8 17297 Gin | Were Where Gadie Rins ~ AABDDEFFFEDFFFEDEEFEDEADABDADEFFFEFAAABCDFDE n.g 1 0.413636363636364 6411
9 18343 Let Down The Blade FGAABAABAAFDFAAAFDDEFGGGFGAABAABAAFDGGGBCDBCAF D2 1 0.246938775510204 8536
10 10337 McKenna's #2 FAAFGFEDBCDEFGAFGEBBBGEDBBABCDCDEFAAFGFEDBCDEFG... 0.8 1 0 8709
11 18335 Noel Hils FFFEFDDEFAAFEEDEFFFEFDDEFAAFEEEE 0.8 1 0 8703 |
12 13534 Rabbit, The DDBBAGABDEEEEDEGGABAGAGFGEDEFGEDBGABC 0.8 1 0 8703
13 16773 Tutledove, The CDEEEDCCCDEDEFEEEFGGGGAAMMEEEEEECD 0.7 12 0.781176472762052 4 18
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (10.0 5P1) | Podge-PC7\Podge (54) | Test | 00:00.01 | 11944 rows

Figure 37: Results of the SQL query containing Semex and Jaro-Winkler scores with
ranks ordered by Semex rank

Figure 37 shows the results of the SQL query where the string ‘CDEEEDEGGA” is
compared to the whole corpus of tunes returning Jaro-Winkler and Semex scores with
these scores ranked. These results are sorted by Semex rank in ascending order. In this
case the top 12 results all score 0.8 and are ranked joint 1%. The tune “The Turtledove”
is given a rank of 13 as it has the next highest Semex score. Note how this tune has a
Jaro-Winkler rank of 4, a much higher Jaro-Winkler rank than any of the tunes above

it, most of which have a Jaro-Winkler rank in the thousands.

By contrast, Figure 38 shows the results of the same SQL query ordered by Jaro-
Winkler rank instead of Semex rank. The top ranked Jaro-Winkler result is given a
rank of 2475 by the Semex algorithm. Although some deviation between algorithms

was expected, it was not expected at this level.

88

Experimentation and evaluation

SQLQueny7.sql - PODGE-PCT\..ve (57)) * SQLQuery6.sgl - PODGE-PCT\...... (54))* | 5QLQuery5.5ql - PODGE-PCT e (58))° - x
10 select ID, HAME, Hotes, —
[Test] . [dbo] . Semex ("CDEEEDEGGA', dbo.corpus.NOTES) as Semex, i
3| RANE () OVER (CRDER BY [Test].[dbo].Semex('CDE ', dbo.corpus. [NCTES)) DESC) AS [SemexRank], -
[Test] . [dbo] . JaroWinkler ('CDEEEDEGGA', dbo.corpus E5) as Jaro, 3
‘| RENE() OVER(ORDER BY [Test].[dbo].JaroWinkler ('CDEEEDEZGEA', dbo.corpus.[NOTES]) DESC) A5 [JaroRank]
6| from dbo.corpus
' order by JaroRank asc, SemexRank asc H
4 . 1 2
[T Resuts T M
D NAME Motes Semex SemexRank Jaro JaroRank =
1 11253 | Galloping Stalion, The CDEECEECEECEAGFEDCDEFFED 05 2475 0.801666663636931 1
2 Y8588 Nothing Can Sadden Us CDEEEEEFEFGAEDCCEAGABBEECDEEEEEFEFGAEDCCEAGAEBED 06 274 0.793333335386382 2
3 1583 Hooded Cloak, The CDEEEFGGFGABAFGEFGAAABAGECDCAFGGCDEEEFGGFGABAFGEF.. 06 274 0.785000002135833 3
4 16773 Turtledove, The CDEEEDCCCDEDEFEEEFGGGGAAMAEEEEEECD 07 13 0.781176472762052 4
5 13754 Guzzle Together CDEECFECACDEECEGGECDEECFAEGFDFECEGGE 05 2475 0.779444446635457 5
6 18678 Jig OF Beer CDEEGFAFEEDCDDDDEFGGFEEDCDEEFGAFEEDCDEFGAGEDCDDD 05 475 0.773055557810046 &
7 9503 Mooncoin Jig, The CDEEFGFGAFGEDCDEEFGFAABCDCDEEFGAFDEGEAFDGECDBGECD 06 274 0.767653063532649 7
8 12742 Mooncoin, The CDEEFGFGAFGEDCDEEFGFGAABCDCDEEFGAFDBGEAFDGECDBGECD 06 274 0.767000002314647 8
9 16297 Stones OF Stenness CDEECDEEAGFDADFFEDCCACECAECCBCBBEEAGABCCEADCDEFAGF . 05 2475 0.7636B0557303178 §
10 11421 Over The Moor To Magge CDEEECDDDBCCCABAGDEAAMGABAGEAAGABCDEEECDDDBCCCABA.. 06 274 0.761875002365559 10
11 12744 Bunker Hil CAGECEDDEDEFGABCCECABAGEFGGAECADD 05 2475 0.76030909130435 11
12 13059 Maghera Mountsin CDEEDBCAAGEAAREARAEEDBCAACBGDGEGDGEEDBCAAGEARAEAA . 05 2475 0.760000002384186 12
13 11716 Shidey's CDEEEFEACEDFAFECCDEEEFECCEADCDBECDEEEFEACEDFAFECCE.. 05 2475 0.760000002384186 12 il
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (10.0 SP1) | Podge-PCT\Podge (54) | Test | 00:00:01 | 11944 rows

Figure 38: Results of the SQL query containing Semex and Jaro-Winkler scores with
ranks ordered by Jaro-Winkler rank

The result of this experiment is twofold,;
e It is possible to formulate SQL queries based on string distance functions and
rank the results accordingly.

e String distance algorithms may agree or disagree on the result of a comparison.

It became clear that an experiment in combining ranks from different string distance
functions would also need to be conducted. In order to do this, two further custom
functions were created, normalisedRank and stdevMusic. Code for both of these

functions is available in Appendix D. The formula to normalise the ranks is as follows;

1_(sr—4j
mr*4

Where sr is the sum of all four ranks and mr is the maximum rank possible. The

normalisedRank function takes 4 ranks and the maximum rank possible (the total
number of records in the corpus, 11944) as arguments. This function then combines

the ranks using the following C# code;

public double GetNormalisedRank(int firstValue, int secondValue, int
thirdvalue, int fourthValue, int count)
{
// need four ranks and the total count of records (highest rank) to
normalise
int sum = firstValue + secondValue + thirdValue + fourthValue;
double normalisedRank = 1.0 - ((sum - 4.9) / (count * 4.0));

89

Experimentation and evaluation

return normalisedRank;

Different combinations of ranks could return the same combined rank score. The figure
below shows that Tune 1 and Tune 2 received different ranks from different algorithms

but were given the same combined normalised score.

Rank1l Rank2 Rank3 Rank4 Sum stdev Total Score Normalised Average
Tune 1 1 1 1 10 13 4.5 0.999811621 3.25
Tune 2 3 3 3 4 13 0.5 0.999811621 3.25
Tune 3 10000 20 10000 1 20021 5767.44573 0.581023945 5005.25
Total Tunes 11544

Figure 39: Combined rank score calculation

The stdev column in the figure above shows that the ranks for Tune 1 deviate more
than for Tune 2. Tune 2 therefore represents a better match if standard deviation is

considered.

The following table shows the C# code used to calculate the standard deviation of the

ranks;

Table 40: Commonly available C# code used to calculate standard deviation

/// <summary>

/// gets the stdev of the four values passed to it.

/// </summary>

/// <param name="firstValue"></param>

/// <param name="secondValue"></param>

/// <param name="thirdValue"></param>

/// <param name="fourthValue"></param>

/// <returns>a value between 0-1 of the similarity</returns>

public override double GetSimilarity(double firstValue, double
secondValue, double thirdValue, double fourthValue)

{
ArrayList rankList = new ArrayList();
rankList.Add(firstValue);
rankList.Add(secondValue);
rankList.Add(thirdvalue);
rankList.Add(fourthValue);
return StandardDeviation(rankList);

¥

///<Summary>

///Calculates standard deviation of numbers in an Arraylist

///</Summary>

public static double StandardDeviation(ArraylList num)

{

double SumOfSqgrs = 0;

90

Experimentation and evaluation

double avg = Average(num);
for (int i = @; i < num.Count; i++)
{

SumofSqgrs += Math.Pow(((double)num[i] - avg), 2);
¥

double n = (double)num.Count;
return Math.Sqrt(SumofSqrs / (n - 1));

}
///<Summary>
///Calculates average of numbers of integer data type in an Arraylist
///</Summary>
public static double Average(ArrayList num)
{
double sum = 90.0;
for (int i = @; i < num.Count; i++)
{
sum += (double)num[i];
}
double avg = sum / System.Convert.ToDouble(num.Count);
return avg;
}

Two stored procedures were then created in order to carry out combined ranking
experiments. The first was called getRanksIDVerbose and the second called
getRanksID. The verbose version returns the individual string distance algorithm
ranks, the combined rank and the standard deviation, the second, getRanksID performs
exactly the same calculations as the first but only returns the combined rank and the

standard deviation scores.

Figure 40 shows the results of comparisons between the tune with ID 9020 and the rest
of the corpus. As one would expect, tune 9020 is a perfect match with itself and
receives four rankings of 1%. This results in a combined normalised rank of 1 (the
NRank column on the right) and a standard deviation of 0. Tune 12540 receives second
place with an NRank score of 0.972. The tune parts with ID’s 10813 and 10812 (rows
3 and 4) receive exactly the same NRank score, however, because tune ID 10813 (row
3) has a lower standard deviation it is placed higher than tune ID 10812 (row 4).

91

Experimentation and evaluation

p FH i REA = = (EE %
5QLQueryll.sql - PODGE-PCT\...(62))*| SQLQueny@.5ql - PODGE-PCT\.... (58))° F X
E.E DECLARE @ret'.:trn_val'.:le int 1
. 4i i
5% EXEC @ret'.:trn_val'.:le = [dbo] . [getRanksIDVerbose]
& @ID = 9020 il
i[a : m = b
[Results _'_1 Messages
A D B_ID SemexRank JaroRank PamsonsRank MICRank stdev MRank -
1 19020 i %020 1 1 1 1 0 1
2 9020 12540 195 460 478 158 157, 504232747356 0.972224547830154
3 8020 10813 554 521 54 206 272.704204832513 0.970047722705961
4 9020 10812 554 521 52 208 273.080421603948 0.970047722705961
5 5020 10811 554 530 138 210 77.369730802999 0.964877762893503
§ 9020 10810 554 530 340 212 176.267788700413 0.964794038847957
7 5020 16489 310 123 136 1857 857.913165769124 0.94B46724596651
3 5020 15934 2066 23 486 10 972.046766707583 0.94597705361152
5 5020 15703 554 23 178 1500 852.542081072835 0.544407233757535
10 8020 15985 2341 kY 364 12 1114.45143456321 0.942565304755526
11 5020 15773 2299 11 512 20 1084.56212362409 0.940597789685198
12 8020 11119 37 479 1744 445 §56.572603246079 0.936348794373744
13 8020 12201 536 1602 120 874 506.285259897177 0.933271935699933
14 8020 11527 253 160 1778 1040 757.771458510634 0.932455626255861
15 5020 15754 155 459 2168 443 908.553612433887 0.931639316811738
16 8020 19380 1791 229 530 842 667.055765719321 0.927829872738451 .
(@ Query executed suc... | PODGE-PCT\DEVELOPER (10.0 SP1) | Podge-PCT\Podge (62) | Test | 00:00:09 | 11944 rows

Figure 40: Combined ranks with standard deviation

Testing the results of this experiment by means of an online survey was conducted in

the next phase of this experiment.

6.4.4 Phase 3 — Testing the combined ranking system on humans

As a result of feedback from participants of the previous survey, the number of tune
pairs was reduced for the second online survey. Six tune pairs were chosen at random
instead of ten reducing the amount of time taken to complete the survey to about five
minutes. No distinction was made between experts and non-experts in Irish music for
the second survey as they tended to vote similarly in the first survey. The survey was
available online at the following web address for the participants to complete -

http://fluidsurveys.com/surveys/podge/irish-music-similarities-2-1/ (Lavin 2010)

Six pairs of tunes were chosen as follows;
e Two pairs with a high combined ranking and low standard deviation score

(reliable similarity)

92

Experimentation and evaluation

e Two Pairs with a high combined ranking and high standard deviation score

(unreliable similarity)

e One pair with a low combined ranking and low standard deviation score

(reliable dissimilarity)

e One pair with a low combined ranking and a high standard deviation score

(unreliable dissimilarity)

Figure 41 below shows how tune pairs were chosen for the second online survey.

A

1a

1b

2a
2b

W o N B W N

[y
o

3a
3b

b |
W N

43
ab

b | |
0 N o

5a
5b

NN IR
N O

6a
6b

NN
W

B G

Pair No Tune Name

8921 Hag at the Churn
9213 Buck in the wood

14884 Fred Finns
12590 McDonagh's

8969 The Mossy Banks
11437 The Traveller

11248 Humours of Whiskey
12877 The Banks of Allan

14018 Lad O'Beirnes
15871 Greigs Pipes

10764 Colonel Frazer
10612 The West Wind

16/8
3 6/8

14/4
2.4/4

44/a
24/4

19/8
16/8

14/a
3 4/4

6 2/2
42/2

F

Part Measure Key

Dmix
Gmaj

Dmaj
Edor

Gmaj
GMaj

Bmin
DMaj

GMaj
GMaj

GMaj
GMaj

G

stdev

1929.559

267.4700918

219.1863743

4233.944605

18.62793601

1851

Figure 41: Survey 2 tune pairs with ranking and stdev scores

H |

Nrank Similar

0.917050402 Yes

0.610913425 No

0.98986939 Yes

0.657003516 No

0.998869725 Yes

0.922429672 Yes

Reliable

No

Yes

Yes

No

Yes

No

Twenty participants responded to the survey and responded as shown in Figure 42.

Weighting of votes was not carried out for the initial count. Where a participant voted

that a pair was “similar” or “very similar” that vote was counted as simply “similar”

and where a participant voted that a pair was “different” or “very different” that vote

was counted as “dissimilar”.

93

Experimentation and evaluation

A B C D E F G
Name Question 1 Question 2 Question 3 Question 4 Question 5 Question 6
Brian Joseph Finian Duggan Similar Different Very similar Different Similar Very similar
padhraic O Suilleabhain Different Different Very similar Different Similar Very similar
Frances McMahon Very different Similar Very similar Very different Very similar Very similar
terry lavin Different Different Similar Very different Similar Different
paul browne Very different Very different Similar Very different Similar Very similar
Deirdre Smyth Very different Different Very similar Different Similar Very similar
Alan O'Brien Different Very similar Very similar Very different Very similar Very similar
Diarmuid Cooke Similar Different Very similar Very different Very similar Very similar
Jim Mulhall Different Similar Very similar Similar Very similar Very similar
Treasa Lavin Very different Very different Very similar Very different Similar Very similar
john breen Different Similar Very similar Very different Similar Very similar
Paul Boylan Different Different Very similar Similar Very similar Very similar
Martin Denning Different Different Very similar Very different Similar Very similar
irene dunne Different Similar Very similar Very different Similar Very similar
Aisling Ni Ghradaigh Different Different Very similar Similar Very similar Similar
Eibhlis O'Sullivan Similar Very similar Very similar Different Similar Very similar
Ruth Maher Very different Verysimilar Very similar Different Very similar Very similar
Caroline Bermingham Very different Similar Very similar Very different Very similar Very similar
oisin o grady Very different Similar Very similar Very different Similar Very similar
aimee o reilly Different Similar Very similar Very different Similar Very similar
Similar count 3 10 20 3 20 15
Dissimilar count 17 10 1] 17 o 1
Result Dissimilar Unknown Similar Dissimilar Similar Similar
Figure 42: Online Survey 2 Responses
Voting produced in the following result;
Table 41: Results of Online Survey 2

Humans Computer

Pair 1 Dissimilar Unreliable similarity

Pair 2 Unknown Reliable dissimilarity

Pair 3 Similar Reliable similarity

Pair 4 Dissimilar Unreliable dissimilarity

Pair 5 Similar Reliable similarity

Pair 6 Similar Unreliable similarity

In order to discern if the human participants voted that pair 2 were similar or dissimilar

weighting of votes was carried out.

Table 42: Vote weighting scores

Very different -2
Different -1
I don’t know 0

94

Experimentation and evaluation

Similar

Very similar

A tune pair receiving a score below zero means that participants have voted that the

tunes are different and above zero meaning that the tunes are similar.

Mame

[L

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6

(=]

[

~

Brian Joseph Finian Duggan
Padhraic O Suilleabhéin

Frances McMahon
terry lavin

paul browne
Deirdre Smyth
Alan O'Brien
Diarmuid Cooke
Jim Mulhall

. |Treasa Lavin

john breen

i |Paul Boylan

Martin Denning
irene dunne

Aisling Mi Ghradaigh
Eibhlis O'Sullivan
Ruth Maher

Caroline Bermingham
oisin o grady

. laimee o reilly

1

L R R R e i R e i R R e R R R R R R

-1

[T R T [[[T S R B
i S LS R R i I o O T S I U D T U D T T S R S R S]

1

R e R R e R R i R e R R N R R e R R

2
2

|
=R

Pd P B R R R R R R RIOR R R R R

Totals
i 'Result

-21

Dissimilar Similar

BlR R R MMEB B R RRRBERRMERERERRR

Similar

gNNNNNNNNNMNNNNNHHNNN

-26

Dissimilar Similar

el
=]

Similar

Lokt
=11

Figure 43: Weighted scores for Survey 2

6.4.4.1 Analysis of results

Figure 43 shows how the weighting of scores results in pair 2 being voted similar by

the finest of margins. Because participants voted that pair 2 was similar by just one

point the result is too close to be relied upon. The final results are shown in Table 43.

Table 43: Online Survey 2 Final Result

Humans Computer
Pair 1 Dissimilar Unreliable similarity
Pair 2 Similar (unreliable) Reliable dissimilarity
Pair 3 Similar Reliable similarity

95

Experimentation and evaluation

Pair 4 Dissimilar Unreliable dissimilarity
Pair 5 Similar Reliable similarity
Pair 6 Similar Unreliable similarity

The computer algorithm and human participants disagreed about the result of pair 1
significantly. One reason for this is that three of the four computer algorithms make
transposition invariant comparisons. The tunes in this pair were in the keys of D
mixolydian and G major and this may have prevented the participants from
recognising similarities between the tunes. In order to ascertain whether this had an
effect on the result a further survey may be necessary with the tunes in the keys of G

mixolydian (converted from D mixolydian) and G major respectively.

Pair 2 consisted of tunes in different keys, had an average combined ranking score of
0.61 and a low standard deviation. The initial vote was tied and after the scores were
weighted the final result was that the tunes were similar by a margin of just 1 point.
This result is unreliable. The computer algorithm result suggests that because the
standard deviation is low the normalised combined ranked score of 0.61 should be
reliable. It would seem that humans are undecided on the similarity of two tunes when
their combined ranking score is below a certain threshold and that a score of 0.61 is
within this range. The result suggests that a score of 0.61 could represent a tune pair
that is similar or dissimilar. Mapping this threshold has been identified as an area for

further research, investigation and future work.

The computer algorithm agreed with the humans for pairs 3, 4, 5 and 6. This represents
a significant improvement on the first online survey. The computer algorithm
suggested that the comparison for pair 1 was unreliable. The algorithm suggested that
pair 2 were dissimilar however the survey participants were undecided, voting the pair
to be similar by a margin of just 1 point. Disregarding pair 2 the algorithm agreed with
humans 80% of the time (4 out of 5 pairs) compared with 60% of the time in Section
6.3.8.

96

Experimentation and evaluation

6.4.5 Phase 4 — Constructing Similarity Matrices

The experiments carried out in this final phase of the project were based on the results
of previous experiments and all of the previous research carried out in earlier phases of

the project.

6.4.5.1 Parsons Code and Breathnach MIC Similarity Matrices

A method for constructing matrices based on Breathnach’s Melodic Indexing code and
Parsons Code were introduced in Section 6.2.7 and Section 6.4.2 using both the Java
platform and the Microsoft C# platform. A portion of matrices for both Parsons Code

and Melodic Indexing Code can be seen in Figure 36.

Dynamic Parsons Code and Melodic Indexing Code similarity matrices of the entire

corpus may be constructed in a few seconds using the SQL code in Table 37.

6.4.5.2 Jaro-Winkler Similarity Matrix

This first experiment attempted to construct a similarity matrix using just one SQL
query. It involved the use of a SQL query that joins a table to itself in order to iterate
through all records in the corpus database table using the Jaro-Winkler function to

compare each individual row with all others.

In order to estimate the time taken to execute the SQL query a subset of 100 records
were compared against all others in the corpus. The SQL query in Table 44 was used

for this purpose.

Table 44: SQL to compare 100 tunes to a corpus using Jaro-Winkler

select m.ID, m.NAME, m.NOTES, n.ID, n.Name, n.NOTES,
[Test] .dbo.JaroWinkler (m.NOTES, n.NOTES) as JW Score
from Test.dbo.corpus m, Test.dbo.corpus n

where m.id >= 8353 and m.id <= 8452

order by JW_Score desc

97

Experimentation and evaluation

Figure 44 shows that it took exactly 1 minute to compare 100 tunes with 11944 other

tunes, a total of 1194400 comparisons.

PEm e om = | W=l | wes | = = | - - 8 |F
5QLQuery5.sql - PODGE-PCT\...... (58))* | install2.sql - PODGE-PCTV..\P...ge (57)) | SQLQueryd.sgl - PODGE-PCT\....e (53]) - X
_E| gelect m.ID, m.MAME, m.NCTES, n.ID, n.Name, n.NOTES, [Test].dbo.JaroWinkler (m.NOTES, n.NOTES) as JW Scor—I|
2;\‘fron’. Test.dbo.corpus m, Test.dbo.corpus n - i
3i| where m.id >= 8353 and m.id <= 8452 =
-1 order by JW Score descg]
5 h .
< ; i 2
[Resuts _j Messages
D NAME NOTES 1D Name NOTES JW_Score =
258 8428 Ceangulla Side b) ~ GGDDEDGGFGGBAABCBABAGEEDGGDDEDG.. 13786 Helvic Head GGCBGDBGDAFDGGCEGDAFDGEDGGC... 0.87480...
259 8354 Brendan Begley™s BDEDBGBDBGAAADEDBGBDBGGGEDEDBGB... 15483 Edward The Sev... BDEDDBDGFEDEFGDBGGABGEEDEGG.. 0.87476..
260 8330 Gullane EFFFFEFGGGFFGEEDCBABEEEDEFAFFEFGGG... 16749 Alig For Jay EFFFAFEEDBABCDFFFFEDEEEACEFEFA.. 0.87476..
261 8366 Callaghan™s BCDEGFGEDBAGABCDBGEDEGABABCDEFGF.. 12630 Mew Century, The BCDEFDCEDDEFGFGABCDEFDEFGAFDC.. 0.87461..
262 8366 Callaghan™s BCDEGFGEDBAGABCDBGEDEGABABCDEFGF... 17152 Miss Linda MacF... BCDDBCDBGFEECDECGDDDGABDGDB.. 0.87453..
263 8436 Danny Ab"s H2 EAAAABAAGEEDEAGAABAAGEEFGFGGFEDBA... 12507 Flying Tiger, The EAAAABCABGGFGABGAEEEDCBAEAAG 0.87454
264 8376 Din Tamart™s #1 ABCDADEACCEFEDEDBABCDCEABCDEDCDE... 15339 South Of The Gr.. ABCDECEEAEFEAEACABCDECECDCBCE.. 0.87444.
265 8410 Jerthe Rigger EEAAEEAAEFEDCDBCADDCDEFGAAAFEEEEE.. 15914 Watching The W... EEAAABCDEEAFGFDFEEAAABCADDGAB.. 0.87442..
266 8436 Danny Ab"s H2 EAAAABAAGEEDEAGAABAAGEEFGFGGFEDBA.. 13441 Reunion. The EAAACBCDEAAGAGEFGFEDBEDBADBA.. 0.87428..
267 8365 Bridgie Con Matt™s BEEFEDEFAGGBEFEDBADFDABEEFEDEFGGG... 14336 Modal Anorsk, The BEEEEDEBBCAGFDDADDFGADEFEEGA.. 0.87416..
268 8366 Callaghan™s BCDEGFGEDBAGABCDBGEDEGABABCDEFGF... 16918 Sherock™s BCDCDEDBGFGBDCDGFGEFGFEDBGEC... 0.87404...
265 8330 Gullane EFFFFEFGGGFFGEEDCBABEEEDEFAFFEFGGG... 12878 Banks Of Allan, .. EFFFEDEFAAFDEFFFEDGGABAGFEDEE.. 0.87380..
270 8436 Danny Ab"s H2 EAAMABAAGEEDEAGAABAAGEEFGFGGFEDBA... 11352 Rakes Of Kildare... EAAAGABCDEEFGGGEFGDBAGGDEAAA.. 0.87380..
271 8431 DanOLeary™s #2 EFEDCEAGAEDEFGECAEFEDCEAAEFEDCBAA. 139773 High Road To G EFEACAEEDEDGBGDDEFEACAEEABCAR 0.87375
272 8366 Callaghan™s BCDEGFGEDBAGABCDBGEDEGABABCDEFGF... 17329 Remember Me BCDGDBGDBGFCAFGDBGFDCDERGABC.. 087374, «
(@ Query executed successfully. PODGE-PCT\DEVELOPER (10.0 SP1) | Podge-PCT\Podge (58) | Test | 00:01:00 | 1194400 rows
Ln4 Col 23 Ch23 NS
-

Figure 44: Result of the SQL query comparing 100 tunes to the corpus

An estimated 142 million comparisons would need to be performed in order to

construct the entire matrix resulting in an estimated execution time of 120 minutes.

The SQL query below was used to perform comparisons on the whole corpus and
instead of returning them to the Management Studio Console, they were stored in a

database table named JaroWinklerMatrix.

Table 45: SQL query for constructing the Jaro-Winkler Matrix

select m.ID, m.NAME, m.NOTES, [Test].dbo.JaroWinkler (m.NOTES,
n.NOTES) as JW_Score

into [Test].dbo.JaroWinklerMatrix

from Test.dbo.corpus m, Test.dbo.corpus n

order by JW Score desc

The SQL query above completed the similarity matrix in less than 45 minutes. The
screenshot below shows that 142,659,136 rows were inserted into the database table
JaroWinklerMatrix. This represents the amount of records in the corpus squared i.e.
119442, This table requires 4.5GB of hard disk storage.

98

Experimentation and evaluation

LG GE |

SQLQuery5.sql - PODGE-PC/\...... (58))* | SQLQueryl.sql - PODGE-PC7\...... (56)) -~ x|
1} select m.ID as A ID, n.ID as B _ID, o)
[Test] .dbo.JaroWinkler (m.NOTES, n.NCTES) as JW_Score
into [Test].dbo.JaroWinklerMatrix
from Test.dbo.corpus m, Test.dbo.corpus n
“order by JW_Score desc

Wb W N b

o

< 1] »

‘ _j Messages

(1426558136 row(s) affected)

i
A0
(@ Query executed success... | PODGE-PCT\DEVELOPER (10.0 SP1) | Podge-PC7\Podge (58) | Test | 00:44:34 | 0 rows

v 13X
Figure 45: Completed Jaro-Winkler Similarity Matrix

The completion of this similarity matrix represents the delivery of the secondary

objective for this project — the construction of a similarity matrix.

Using this method, similarity matrices based on the Levenshtein and Semex algorithms
are also possible by substituting the appropriate function name at Line 2 of Figure 45
e.0. [Test].dbo.Levenshtein (m.NOTES, n.NOTES) as Levenshtein Score fOr a
Levenshtein similarity matrix or [Test].dbo.Semex (m.NOTES, n.NOTES) as

semex_Score for a Semex based similarity matrix.

This method illustrates the power of SQL to dynamically create similarity matrices

using a variety of algorithms on a corpus of tunes of unknown size and content.

6.4.5.3 Similarity matrix using the Combined Ranking System

Following the success of the JaroWinkler similarity matrix the next experiment
attempted to create a similarity matrix using the combined ranking method developed
in Section 4.3. Two stored procedures were developed, getRanksID and
CalculateMatrix, in order to iterate through all of the tune parts in the corpus,
comparing each of them to all of the tune parts in the corpus and store the results in a
database table. Both of these stored procedures are available in Table 60 and Table 61
of Appendix D.

99

Experimentation and evaluation

The getRanksID stored procedure compares a tune part to itself and all other tune parts
in the corpus. When passed a tune part ID as an argument it returns 11944 rows, each
containing the normalised combined rank score with the standard deviation between

the four algorithms.

The calculateMatrix stored procedure iterates through all tune ID’s in the corpus, sends
the ID to the getRanksID stored procedure and stores the results in a database table.
MS SQL 2008 allows for the insertion of multiple rows of data returned from a stored
procedure being stored in a database table using just one insert statement. The transact
SQL code in Table 47 inserts all of the rows returned by the getRanksID stored
procedure without having to iterate through all 11944,

Table 46: Database cursor that iterates through all tune parts by 1D

DECLARE tune cursor CURSOR FOR SELECT cast ([ID] as int) as ID, NOTES

FROM [Test].[dbo].[corpus] where (ID >= 8353 and ID <= 20297) order
by ID asc

Table 47: T-SQL INSERT code to store comparison results.

INSERT dbo.matrix (A_ID, B ID, STDEV, NRank)
EXEC @return value = [dbo].[getRanksID]
@ID = @corpusID

This method of constructing a similarity matrix is not as elegant as the method used to
construct the Jaro-Winkler matrix. In order for this to be possible, the getRanksID
stored procedure must take two tune ID’s as arguments. An investigation into adapting
the getRanksID stored procedure in this manner revealed that it would result in serious
performance problems. In order to calculate score, rank and standard deviation in the
Combined Ranking System of assessing similarity, score rank and standard deviation
for the whole corpus must first be calculated. It does not make sense to return only 1
row from a getRanksID stored procedure taking two arguments of tune ID’s for

comparison and discarding all other 11943 scores.

A trial run of the calculateMatrix stored procedure revealed that the laptop running the
experiments had insufficient memory to complete the task in one go so the task was
divided into stages. The combined ranking matrix was completed by iterating through

groups of 2000 tune parts at a time. This was done over the course of a few days. The

100

Experimentation and evaluation

matrix was completed without issue and the resulting database table is about 8.5GB in

size.

6.5 Conclusion

This chapter described how string distance experiments on ABC notation data were
designed and carried out. An explanation of how raw data was imported, cleaned and
stored in a relational database was also offered. A brief description of the Java and C
Sharp programming frameworks used to carry out experiments was given. Details of
Levenshtein and Jaro-Winkler comparison and distribution experiments are described.
This chapter also outlined an attempt to construct a similarity matrix using the Semex
algorithm and how it was halted due to performance problems. A successful
experiment carried out on the Java platform in order to construct a computerised

version of Breathnach’s Melodic Indexing System is illustrated.

This chapter continued by outlining various experiments carried out on the Microsoft
dotNet platform. These experiments included the testing of existing and new custom
string distance functions in the SimMetrics C Sharp library and the testing of a
Combined Ranking System. A description of how participants were surveyed is
presented before concluding the chapter with a description of how four similarity

matrices were proposed and constructed.

101

Conclusion

7. CONCLUSION

7 Introduction

This chapter summarises the research domain and describes the research carried out
throughout this project. Descriptions of how contributions were made to the body of
knowledge are presented. The experimentation and evaluation phases are discussed
followed by an examination of the scope of the project limitations. Research objectives
that were achieved are outlined. Areas for further investigation, future work and
research areas are identified. Some final conclusions complete this chapter.

7.1 Research Definition & Research Overview

The research for this project focused on the evaluation and improvement of string
distance algorithms in order to identify similarities in the corpus of Irish traditional
music. A secondary aim was to design a process by which an Irish music similarity

matrix could be constructed.

Numerous string distance algorithms were evaluated for suitability purposes before
deciding on candidates. Two alternative methods of assessing similarity invented in the
1960’s and 1970’s, Breathnach’s Melodic Indexing Code and Parsons Code, were

studied, computerised and converted into computer algorithms.

Research into how results from both types of algorithms could be combined was
undertaken. A Combined Ranking System (CRS) was then developed and tested on

survey participants.

7.2 Contributions to the Body of Knowledge

Five contributions to the body of knowledge were made over the course of this project.

7.2.1 Contribution 1 - Weighting Melodic Sequence Variation

Irish musicians commonly vary the manner in which melodies are played. This can

lead to string distance algorithms penalising phrases of notes because they contain

102

Conclusion

notes played in an alternative but correct sequence. This contribution allows

compensation scores for these alternative note sequences.

7.2.2 Contribution 2 - Weighting Tune Prefixes

Some traditional Irish tunes are played after short introductory prefixes consisting of
two or more notes. This contribution allows for the recognition of these initial notes by

implementing increased scoring for matching opening notes.

7.2.3 Contribution 3 — Computerising Breathnach’s & Parsons’ Systems

Breandan Breathnach and Denys Parsons introduced two different systems for
assessing similarity in the 1960°s and 1970’s respectively, the Melodic Indexing
System and Parsons Code. Both of these systems were examined and computerised for
the purposes of inclusion in a Combined Ranking System used to compare music and

to construct a similarity matrix for Irish traditional music.

7.2.4 Contribution 4 — Improvements to the Melodic Indexing System

The following improvements to Breanddn Breathnach’s Melodic indexing system were
proposed;
e Sorting index codes alphabetically instead of numerically thus allowing the
comparison of different length codes.
e A system of using distance and normalisation was designed and introduced.
This allows the return of a normalised MIC score similar to scores returned by

string distance algorithms.

7.2.5 Contribution 5 — A Combined Ranking System

All of the string distance algorithms used to make comparisons between strings of
musical notes returned a normalised measure of similarity between 0 and 1. Two
further algorithms were developed based on Breathnach’s MIC and Parsons Code that
also returned normalised similarity scores between 0 and 1. This enabled the ranking
of scores returned by all types of algorithm. A system was then developed that
combined the ranks returned by all algorithms. The standard deviation between ranks

was also returned.

103

Conclusion

7.3 Experimentation, Evaluation and Limitation

7.3.1 Experimentation

Various string distance experiments were carried out on a corpus of Irish traditional
dance music tune parts in ABC notation. These experiments incorporated all five
contributions described earlier. The results of these experiments were analysed and

used to define a process by which a similarity matrix could be constructed.

7.3.2 Evaluation

During the evaluation stage, humans were surveyed twice in order to ascertain if they
agreed with the results of computer algorithms. The results of the first survey were
analysed and evaluated. Proposals for improvements to the string distance algorithms
were formulated and implemented. Some string distance algorithms were also
improved by considering music theory and then tested on humans by means of a

second online survey.

In the second online survey the following hypothesis was tested: if multiple different
algorithms rank a comparison similarly, can that comparison be assumed as accurate?
The conclusion drawn from the results of the experiment is that yes, if multiple
different algorithms rank a result similarly then that result is more accurate than using

string distance algorithms individually.

7.3.3 Limitations

Similarity comparison experiments were performed on music data that contained
melody, time signature, musical key, title but no playing style data. Similarity was

assessed primarily on melody.

Approximately half of the source data was deemed unreliable as it did not comply with
the ABC notation specification. This data was discarded as considerable manual

resources would be needed in order to correct the erroneous ABC files.

Similarity matrices were constructed by recording different types of comparisons

between tune parts in a database. These databases are currently limited to being

104

Conclusion

queried by using SQL queries and this requires specialist knowledge. A better means
of querying these databases has been identified as an area for further development and

future work.

7.4 Future Work & Research

A number of areas have been identified for further investigation, future work and

research. These include;

7.4.1 Parsons Code & Melodic Index Code Precision

In Section 2.3.1 two terms were defined to describe two methods of calculating
distance, MICRank and MICDenseRank. An opportunity to increase the accuracy of
MIC and Parsons Code scores was also identified. This task involves calculating
individual distances from a match (MICDenseRank) instead of the current method of
assigning the same distance from a match to a pair either side of the match
(MICRank).

Calculating individual distances from a match is a departure from the original system

and will need to be programmed, tested and evaluated as part of future research.

7.4.2 Jaro-Winkler matching prefixes

A feature of the Jaro-Winkler algorithm was identified that could have a possible
application in the Irish music domain. This feature was utilised when comparing
sequences of musical notes, however, its positive or negative effectiveness was not
measured. In order to take advantage of the concept of matching prefixes further

investigation, examination and testing is necessary.

7.4.3 Similarity / Dissimilarity threshold

While analysing the results of the second online survey it became apparent that
humans were undecided if a particular tune pair were similar or dissimilar. The score
returned by the Combined Ranking System for this pair was near the centre of the
distribution making it unclear if the computer algorithm was indicating similarity or
dissimilarity. When scores are returned at either end of the spectrum, between 0 and

0.2 and between 0.8 and 1, dissimilarity and similarity respectively may easily be

105

Conclusion

inferred. The closer the score is to the centre of the distribution, the more difficult it is
to predict whether humans feel that a tune pair is similar or different. The need to
establish the threshold scores where humans felt that tunes were similar or dissimilar

was identified as an area that warrants further investigation.

7.4.4 User querying and surveying

The similarity matrices built using the methods and processes defined during this
project cannot be easily queried by persons that are not skilled in SQL. The necessity
to develop a desktop application, website or mobile application that allows users to
easily query matrices and record feedback has been identified as essential future work
and development.

7.5 Conclusion

7.5.1 Objectives

The following project objectives were achieved,
e The identification of suitable string distance algorithms for the purposes of
comparing music in ABC notation.
e To improve specific string distance algorithms by implementing features
unique to music theory.
e To survey humans in order to assess if their choices agreed with computer
algorithms.

e Multiple similarity matrices were constructed.

7.5.2 Deliverables

The following deliverables were accomplished,;

e A process was designed for comparing lIrish traditional dance tunes. This
Combined Ranking System was built on improvements to string distance
algorithms and tested on humans.

e Similarity matrices were constructed using four different methods of

comparison.

106

Conclusion

7.5.3 Conclusion

This project has strived to solve the problem of identifying similarities in Irish music
by investigating, evaluating and improving different methods of assessing musical
likeness. A system was produced in line with the project objective and aims that

allowed for a similarity matrix for Irish traditional dance music to be constructed.

Music Information Retrieval (MIR) and string distance comparison remain lively
research topics. This project has identified multiple areas that require future work and
further study. Two areas are of primary importance to the author, the collection of
musical similarity data by means of a mobile or social networking application for the
purposes of surveying humans and associated research and enabling the navigation and

querying of similarity matrices by means of a website, mobile or desktop application.

“Where words leave off, music begins”’

Heinrich Heine, 1797-1856

107

Bibliography

BIBLIOGRAPHY

Allan, H. & Wiggins, G., 2006. Further aspects of similarity. In Proceedings of the 2nd Digital
Music Research Network Summer Conference.

Black, B., 2010. Bill Blacks Web ABC Homepage. Bill Blacks web ABC tune collections. Available
at: http://www.gmcorp.net/webabc/collections/index.html [Accessed April 20, 2010].

Breathnach, B., 1963. Ceol rince na hEireann Cuid | [Dance Music of Ireland] Vol I, Qifig an
tSolathair.

Breathnach, B., 1976. Ceol rince na hEireann Cuid Il [Dance Music of Ireland] Vol I, Oifig an
tSolathair.

Breathnach, B., 1985. Ceol rince na hEireann Cuid Il [Dance Music of Ireland] Vol I1l, An Gum.
Breathnach, B., 1996. Ceol rince na hEireann Cuid IV [Dance Music of Ireland] Vol 1V, An Gum.
Breathnach, B., 1999. Ceol rince na hEireann Cuid V [Dance Music of Ireland] Vol V, An Gum.

Breathnach, B., 1982. Between the Jigs and the Reels. Ceol V, 2. Available at:
http://msikio.online.fr/Breathnach/breandn.htm [Accessed April 23, 2010].

Budzinsky, C., 1991. Automated spelling correction. Statistics Canada.

Bunting, E., 1969. The Ancient Music of Ireland. An edition comprising the three collections by
Edward Bunting originally published in 1796, 1809, and 1840. [Facsimiles, ... edition
published by W. Power& Co., Dublin.], Walton's Piano and Musical Instrument Galleries.

Camarena-lbarrola, A. & Chavez, E., 2006. Identifying Music by Performances Using an Entropy
Based Audio-Fingerprint. In Mexican International Conference on Artificial Intelligence
(MICAL).

Cambouropoulos, E., Crawford, T. & lliopoulos, C.S., 2001. Pattern processing in melodic
sequences: Challenges, caveats and prospects. Computers and the Humanities, 35(1), 9-21.

Carpenter, B., 2010. LingPipe: Download LingPipe Core Java Library. Available at: http://alias-
i.com/lingpipe/web/download.html [Accessed April 28, 2010].

Chamberlin, D.D. & Boyce, R.F., 1974. SEQUEL: A structured English query language. In
Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description,
access and control. p. 264.

Chambers, J., 2010a. JC's ABC Tune Finder Homepage. JC's ABC Tune Finder [tunefind] on
trillian.mit.edu. Available at: http://trillian.mit.edu/~jc/cgi/abc/tunefind [Accessed April 20,
2010].

Chambers, J., 2010b. O'Neill's Music of Ireland. John Chambers' clone of the O'Neill's Project files
and web pages. Available at: http://trillian.mit.edu/%7Ejc/music/book/oneills/ [Accessed
April 20, 2010].

108

Bibliography

Clausen, M. & Kurth, F., 2002. A unified approach to content-based and fault tolerant music
identification. In Web Delivering of Music, 2002. WEDELMUSIC 2002. Proceedings.
Second International Conference on. pp. 56-65.

Cronin, C., 1998. Concepts of melodic similarity in music-copyright infringement suits. Melodic
Similarity: Concepts, procedures and applications. MIT Press, Cambridge, Massachusetts.

Cui, B. et al., 2008. Compacting music signatures for efficient music retrieval. In Proceedings of
the 11th international conference on Extending database technology: Advances in database
technology. pp. 229-240.

Damerau, F., 1964. A technique for computer detection and correction of spelling errors.

Dovey, M., 2001. A technique for “regular expression” style searching in polyphonic music. In
Proc. ISMIR’2001. Citeseer.

Duggan, B., 2009. Machine Annotation of Traditional Irish Dance Music PhD Thesis.
Eerola, T. et al., 2000. Categorising Folk Melodies Using Similarity Ratings.

Emerick, C., 2003. Levenshtein Distance Algorithm: Java Implementation. Available at:
http://www.merriampark.com/ldjava.htm [Accessed April 27, 2010].

Forbes, E., 1992. Thayer's Life of Beethoven, Princeton University Press.

Gatherer, N., 2009. Nigel Gatherer's ABC Collection Homepage. Nigel Gatherer's ABC Collection.
Available at: http://www.nigelgatherer.com/tunes/abc.html [Accessed April 20, 2010].

Hamming, R., 1950. Error detecting and error correcting codes. Bell System Technical Journal,
29(2), 147-160.

Holzapfel, A. & Stylianou, Y., 2010. Similarity methods for computational ethnomusicology.

Hu, N. & Dannenberg, R.B., 2002. A comparison of melodic database retrieval techniques using
sung queries. In Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital
libraries. pp. 301-307.

Jaro, M.A., 1976. UNIMATCH Software System (No longer available).

Jaro, M.A., 1971. UNIMATCH: a computer system for generalized record linkage under conditions
of uncertainty. In Proceedings of the November 16-18, 1971, fall joint computer conference.
pp. 523-530.

Jaro, M., 1989. Advances in record-linkage methodology as applied to matching the 1985 census of
Tampa, Florida. Journal of the American Statistical Association, 84(406), 414-420.

Keith, J., 2010. The Session.org Homepage. The Session. Available at: http://www.thesession.org/
[Accessed April 20, 2010].

Larsen, G., 2003. The Essential Guide to Irish Flute and Tin Whistle, Mel Bay Publications, Inc.

Lavin, P., 2010. Irish Music Similarity Survey 2. Available at:

109

Bibliography

http://fluidsurveys.com/surveys/podge/irish-music-similarities-2-1/ [Accessed July 11,
2010].

Lemstrom, K. & Perttu, S., 2000. Semex-an efficient music retrieval prototype. In First
International Symposium on Music Information Retrieval (ISMIR). Citeseer.

Lemstrém, K. & Ukkonen, E., 2000. Including interval encoding into edit distance based music
comparison and retrieval. In Proceedings of the AISB’2000 Symposium on Creative &
Cultural Aspects and Applications of Al & Cognitive Science’, Birmingham. Citeseer, pp.
53-60.

Lemstrom, K., Navarro, G. & Pinzon, Y., 2005. Practical algorithms for transposition-invariant
string-matching. Journal of Discrete Algorithms, 3(2-4), 267-292.

Levenshtein, V., 1966. Binary codes capable of correcting deletions, insertions, and reversals. In
Soviet Physics-Doklady.

Likert, R., 1932. A technique for the measurement of attitudes. Archives of Psychology. Vol,
22(140), 55.

Lonelyhearts, M., 1978. The Session: Tunes - The Boys Of The Lough (reel). The Session: Tunes -
The Boys Of The Lough (reel). Available at: http://www.thesession.org/tunes/display/343
[Accessed May 5, 2010].

Mazzoni, D. & Dannenberg, R., 2001. Melody matching directly from audio. In 2nd Annual
International Symposium on Music Information Retrieval. Citeseer, pp. 17-18.

McCullough, L., 1977. Style in Traditional Irish Music. Ethnomusicology, 21(1), 85-97.

Microsoft Corp., 2010. Microsoft DreamSpark. Available at:
https://www.dreamspark.com/Default.aspx [Accessed April 20, 2010].

Moving Picture Experts Group, 1992. MPEG. Coding of moving pictures and associated
audio for digital storage media at up to 15 Mbit/s,
part 3: Audio. International Standard IS 11172-3,
ISO/IEC JTC1/SC29 WG11,

Muellensiefen, D. & Frieler, K., 2003. 8 Cognitive Adequacy in the Measurement of Melodic
Similarity: Algorithmic vs. Human Judgments.

Mullensiefen, D. & Frieler, K., 2007. Modelling expert's notions of melodic similarity. MUSICAE
SCIENTIAE, 11(1), 183.

Norbeck, H., 1996. Henrik Norbeck's Abc Tunes Homepage. Henrik Norbeck's Abc Tunes.
Available at: http://www.norbeck.nu/abc/ [Accessed April 20, 2010].

Oneill, 1980. Waifs & Strays of Gaelic Melody 2nd ed., Humanities Pr.

O'Neill, C.F., 1979. O'Neill's Music of Ireland. Eighteen Hundred and fifty melodies. Airs, Jigs,
Reels, Hornpipes, Long Dances, Marches, etc., Bronx NY: Daniel Michael Collins.

O'Neill, F., 1907. The Dance Music of Ireland - 1001 Gems, Chicago, USA.
110

Bibliography

O'Neill, F.O.&.J., 1995. O'Neill's 1001: The Dance Music of Ireland, Walton's Mfg. Ltd.
Osna, 1999. Osna, Celtic Note.
Parsons, D., 1975. The Directory of Tunes and Musical Themes 1st ed., S. Brown.

Petrie, G., 2002. The Petrie Collection of the Ancient Music of Ireland 2nd ed., Cork University
Press.

Pinto, A. & Haus, G., 2007. A novel XML music information retrieval method using graph
invariants. ACM Transactions on Information Systems, 25(4), 19-es.

Rho, S. & Hwang, E., 2004. FMF (Fast Melody Finder): A Web-based Music Retrieval System.
Computer Music Modeling and Retrieval, 351-388.

Sun Microsystems, 2010. NetBeans IDE Download. NetBeans IDE Download. Available at:
http://netbeans.org/downloads/index.html [Accessed April 28, 2010].

Toiviainen, P. & Eerola, T., 2002. A computational model of melodic similarity based on multiple
representations and self-organizing maps. In Proceedings of the 7th International
Conference on Music Perception and Cognition, Sydney. pp. 236-239.

Walshaw, C., 1995. abcnotation.com Homepage. Welcome to the home page at abcnotation.com.
abc is a text based format for music notation, particularly popular for folk and traditional
music. Available at: http://abcnotation.com/ [Accessed April 20, 2010].

Wiggins, G.A., Lemstr\ém, K. & Meredith, D., 2002. SIA (M) ESE: An algorithm for transposition
invariant, polyphonic, content-based music retrieval. In 3rd International Symposium on
Music Information Retrieval (ISMIR 2002). pp. 13-17.

Winkler, W.E., 1999. The state of record linkage and current research problems. Statistical
Research Division, US Bureau of the Census, Wachington, DC.

Winkler, W., 2006. Overview of record linkage and current research directions. US Bureau of the
Census Research Report.

111

Appendix A

APPENDIX A - SURVEY PARTICIPANTS

Table 48: Panel of Experts in Irish traditional music

Name Instrument played Location

Hauke Steinberg Flute and percussion Germany

David Morrissey Guitar and banjo Kildare

Martin Preshaw Uilleann pipes Belfast

Daragh O'Reilly Guitar and banjo Mayo

Jose Manuel Fernandez Mateos Bouzouki and percussion Spain

Deirdre Smyth Fiddle and flute Dublin

Damian Werner Flute Hawaii

Paulo McNevin Fiddle and flute Dublin

Ray Dempsey Button accordion Waterford

Terry McGee Flute Australia

Padhraic 6 Suilleabheain Percussion Kerry

Treasa Lavin Whistle and piano Mayo

Joe Brennan Guitar Cavan

Pauline Burke Banjo Dublin

Sara Cory Fiddle Chicago
Table 49: Panel of non-experts

Name Location

Corinne Kingston Bageard Illinois

Diarmuid Cooke Dublin

Brian Duggan Kerry

Martin Hughes Louth

Joe Phelan Dublin

John Golden Mayo

Patrick Crowe Dublin

John Breen Sligo

Caroline Bemingham England

Mark Bussell North Carolina

Enora Senlanne France

Richard Kinser Texas

Terry Cosgrove Clare

Clare Bassett Dublin

Louisa Murphy Cork

112

Appendix B

APPENDIX B - IRISH DANCE MUSIC SIMILARITIES SURVEY

A computer algorithm has picked the following tune parts as being somewhat similar or somewhat
different.

All of the audio you are about to hear has been played by a computer. Please turn up the sound on
your computer and play both audio samples in turn by clicking the triangular play button. Please

listen to each sample as many times as you need to in order to make a decision.

There are no wrong answers, your opinion as a human is what is important.
Survey Start

Please enter your name:

Are you an expert in Irish Traditional Music?
 Yes C No

Question 1

Tune A ICHIEEEICC N 1 ¢ (S

" Very different T Different £~ I don't know Similar £2 Very similar

Question 2

Tune A EIHIEIC T . - S

C Very different C Different © | don't know C Similar C Very similar

Question 3

Tune A NI T . - S

 Very different C Different I don't know Similar C Very similar

Question 4

Tune A ICHIEESIC N 1 ¢ (S

113

Appendix B

" Very different T Different £~ I don't know ~ Similar £2 Very similar

Question 5

Tune A I . o S

C Very different C Different © | don't know . Similar C Very similar

Question 6

Tune A NI . - S

C Very different © Different £ I don't know © Similar ©2 Very similar

Question 7

Tune A NI . - S

 Very different C Different © | don't know Similar C Very similar

Question 8

Tune A NI T - S

C Very different C Different © | don't know © Similar C Very similar

Question 9

Tune A ICHIEEEIC N 1 ¢ (I

" Very different T Different £~ I don't know Similar ©2 Very similar

Question 10

Tune A ICHIEEEIC N 1 & (I

 Very different C Different C I don't know Similar C Very similar

114

Appendix C

APPENDIX C - SURVEY RESULTS

Question 1 - 15 responses total
Tune A Tune B

Very different 33.33%

Different 40%

I dont know | 0%

Similar 26.67%

Very similar | 0%

0% 20% 40% 60% 80% 100%

Figure 46: Experts responses to Question 1

Question 2 - 15 responses total
Tune A Tune B

Very different 20%

Different 26.67%

I dont know | 0%

Similar 40%
Very similar l 13.33%
0% 20% 40% 60% 80% 100%

Figure 47: Experts responses to Question 2

Question 3 - 15 responses total
Tune A Tune B

Very different 13.33%
Different 13.33%
I dont know js.m%
Similar 40%
Very similar . 26.67%
0% 20% 40% 60% 80% 100%

Figure 48: Experts responses to Question 3

Question 4 - 15 responses total
Tune A Tune B

Very different 20%

Different 20%

I dont know | 0%

Similar 33.33%
Very similar -25.67%
0% 20% 40% 60% 80% 100%%

Figure 49: Experts responses to Question 4

Question 5 - 15 responses total
Tune A Tune B

Very different 20%

Different 13.33%

I dont know | 0%

Similar 26.67%
Very similar -4o=.=
0% 20% 40% 60% 80% 100%

Figure 50: Experts responses to Question 5

Question 6 - 15 responses total
Tune A Tune B

Very different 60%

Different 26.67%

I dont know | 0%

Similar 13.33%

Very similar | 0%

0% 20% 40% 60% 80% 100%

Figure 51: Experts responses to Question 6

115

Appendix C

Question 7 - 15 responses total
Tune A Tune B

Very different | 0%

Different | 0%

I dont know | 0%

Similar 26.67%
e _73‘33%
0% 20% 40% 60% 80% 100%

Figure 52: Experts responses to Question 7

Question 8 - 15 responses total
Tune A Tune B

Very different 73.33%

Different 20%

I dont know | 0%

Similar 6.67%

Very similar | 0%

0% 20% 40% 60% 80% 100%

Figure 53: Experts responses to Question 8

Question 9 - 15 responses total
Tune A Tune B

Very different :|s.s7=,c
Different 13.33%
I dont knowi | 0%
Similar 46.67%
Very similar - 33.33%
0% 20% 40% 60% 80% 100%

Figure 54: Experts responses to Question 9

Question 10 - 15 responses total
Tune A Tune B

Very different 33.33%
Different 40%
I dont know] 6.67%
Similar 20%
Very similar | 0%
0% 20% 40% 60% 80% 100%

Figure 55: Experts response to Question 10

Non-experts responses to Questions 1- 10

Question 1 - 15 responses total
Tune A Tune B

Very different 20%
Different 66.67%
I dont know | 0%
Similar 13.33%
Very similar | 0%
0% 20% 40% 50% 80% 100%

Figure 56: Non-experts responses to Question 1

Question 2 - 15 responses total
Tune A Tune B

Very different 13.33%
Different 33.33%
I dont know | 0%
Similar 40%
Very similar I 13.33%
0% 20% 40% 60% 80% 100%

Figure 57: Non-experts responses to Question 2

116

Appendix C

Question 3 - 15 responses total
Tune A Tune B

Very different | 0%

Different 20%

I dont know | 0%

Similar 40%
Very similar -40%
0% 20% 40% 60% 80% 100%

Figure 58: Non-experts responses to Question 3

Question 4 - 15 responses total
Tune A Tune B

Very different 13.33%
Different 20%
I dont know | 0%
Similar |32.33%
Very similar - 33.33%
0% 20% 40% 60% 80% 100%

Figure 59: Non-experts responses to Question 4

Question 5 - 21 responses total
Tune ATune B

Very different 29.03%
Different 19.35%
I dont know | 0%
Similar 32.26%
Very similar I 19.35%
0% 20% 40% 60% 80% 100%

Figure 60: Non-experts responses to Question 5

Question 6 - 15 responses total
Tune A Tune B

Very different 53.33%

Different 40%

I dont know | 0%

Similar 6.67%

Very similar | 0%

0% 20% 40% 60% 80% 100%

Figure 61: Non-experts responses to Question 6

Question 7 - 15 responses total
Tune A Tune B

Very different | 0%

Different 6.67%

I dont know | 0%

Similar 6.67%

Very similar

- i

100%

0% 20% 40% 60% 80%

Figure 62: Non-experts responses to Question 7

Question 8 - 15 responses total
Tune A Tune B

Very different 60%

Different 40%

I dont know | 0%

Similar | 0%

Very similar | 0%

100%

Figure 63: Non-experts responses to Question 8

117

Appendix C

Question 9 - 15 responses total
Tune ATune B

Question 10 - 15 responses total
Tune A Tune B

Different 6.67%

I dont know | 0%

Figure 64: Non-experts responses to Question 9

I dont know | 0%

Very similar Is 67%
.
e

40% 60% 80%

Figure 65: Non-experts responses to Question

10

Table 50: Overview of responses from all survey participants

Question:1

Very different (1) 8 (26%)
Different (2) 16 (53%)

| dont know (3) 0 (0%)
Similar (4) 6 (20%)
Very similar (5) 0 (0%)
Total 30
Mean 2.13
Variance 1.09
Question:3

Very different (1) 2 (6%)
Different (2) 5(16%)

| dont know (3) 1 (3%)
Similar (4) 12 (40%)
Very similar (5) 10 (33%)
Total 30
Mean 3.77
Variance 1.63
Question:5

Very different (1) 9 (30%)
Different (2) 6 (20%)

| dont know (3) 0 (0%)
Similar (4) 9 (30%)
Very similar (5) 6 (20%)

Question:2

Very different (1) 5(16%)
Different (2) 9 (30%)

| dont know (3) 0 (0%)
Similar (4) 12 (40%)
Very similar (5) 4 (13%)
Total 30
Mean 3.03
Variance 1.96
Question:4

Very different (1) 5(16%)
Different (2) 6 (20%)

| dont know (3) 0 (0%)
Similar (4) 10 (33%)
Very similar (5) 9 (30%)
Total 30
Mean 3.4
Variance 2.32
Question:6

Very different (1) 17 (56%)
Different (2) 10 (33%)

| dont know (3) 0 (0%)
Similar (4) 3 (10%)
Very similar (5) 0 (0%)

118

Appendix C

Total 30
Mean 2.9
Variance 2.58
Question:7

Very different (1) 0 (0%)
Different (2) 1(3%)

| dont know (3) 0 (0%)
Similar (4) 5(16%)
Very similar (5) 24 (80%)
Total 30
Mean 4.73
Variance 0.41
Question:9

Very different (1) 1(3%)
Different (2) 3 (10%)

| dont know (3) 0 (0%)
Similar (4) 14 (46%)
Very similar (5) 12 (40%)
Total 30
Mean 4.1
Variance 1.13

Table 51: Overview of responses from expert survey participants

Question:1

Very different (1) 5(33%)
Different (2) 6 (40%)

| dont know (3) 0 (0%)
Similar (4) 4 (26%)
Very similar (5) 0 (0%)
Total 15
Mean 2.2
Variance 1.46
Question:3

Very different (1) 2 (13%)
Different (2) 2 (13%)

| dont know (3) 1 (6%)
Similar (4) 6 (40%)
Very similar (5) 4 (26%)
Total 15
Mean 3.53

Total 30
Mean 1.63
Variance 0.86
Question:8

Very different (1) 20 (66%)
Different (2) 9 (30%)

| dont know (3) 0 (0%)
Similar (4) 1(3%)
Very similar (5) 0 (0%)
Total 30
Mean 1.4
Variance 0.46
Question:10

Very different (1) 7 (23%)
Different (2) 16 (53%)

| dont know (3) 1(3%)
Similar (4) 5(16%)
Very similar (5) 1(3%)
Total 30
Mean 2.23
Variance 1.22
Question:2

Very different (1) 3 (20%)
Different (2) 4 (26%)

| dont know (3) 0 (0%)
Similar (4) 6 (40%)
Very similar (5) 2 (13%)
Total 15
Mean 3
Variance 2.14
Question:4

Very different (1) 3 (20%)
Different (2) 3 (20%)

| dont know (3) 0 (0%)
Similar (4) 5(33%)
Very similar (5) 4 (26%)
Total 15
Mean 3.27

119

Appendix C

Variance 1.98
Question:5

Very different (1) 3 (20%)
Different (2) 2 (13%)

| dont know (3) 0 (0%)
Similar (4) 4 (26%)
Very similar (5) 6 (40%)
Total 15
Mean 3.53
Variance 2.7
Question:7

Very different (1) 0 (0%)
Different (2) 0 (0%)

| dont know (3) 0 (0%)
Similar (4) 4 (26%)
Very similar (5) 11 (73%)
Total 15
Mean 4.73
Variance 0.21
Question:9

Very different (1) 1 (6%)
Different (2) 2 (13%)

| dont know (3) 0 (0%)
Similar (4) 7 (46%)
Very similar (5) 5(33%)
Total 15
Mean 3.87
Variance 1.55

Table 52: Overview of responses from non-expert survey participants

Question:1

Very different (1) 3 (20%)
Different (2) 10 (66%)

| dont know (3) 0 (0%)
Similar (4) 2 (13%)
Very similar (5) 0 (0%)
Total 15
Mean 2.07
Variance 0.78

Variance 2.5
Question:6

Very different (1) 9 (60%)
Different (2) 4 (26%)

| dont know (3) 0 (0%)
Similar (4) 2 (13%)
Very similar (5) 0 (0%)
Total 15
Mean 1.67
Variance 1.1
Question:8

Very different (1) 11 (73%)
Different (2) 3 (20%)

| dont know (3) 0 (0%)
Similar (4) 1 (6%)
Very similar (5) 0 (0%)
Total 15
Mean 1.4
Variance 0.69
Question:10

Very different (1) 5(33%)
Different (2) 6 (40%)

| dont know (3) 1 (6%)
Similar (4) 3 (20%)
Very similar (5) 0 (0%)
Total 15
Mean 2.13
Variance 1.27
Question:2

Very different (1) 2 (13%)
Different (2) 5(33%)

| dont know (3) 0 (0%)
Similar (4) 6 (40%)
Very similar (5) 2 (13%)
Total 15
Mean 3.07
Variance 1.92

120

Appendix C

Question:3

Very different (1) 0 (0%)
Different (2) 3(20%)

| dont know (3) 0 (0%)
Similar (4) 6 (40%)
Very similar (5) 6 (40%)
Total 15
Mean 4
Variance 1.29
Question:5

Very different (1) 6 (40%)
Different (2) 4 (26%)

| dont know (3) 0 (0%)
Similar (4) 5(33%)
Very similar (5) 0 (0%)
Total 15
Mean 2.27
Variance 1.78
Question:7

Very different (1) 0 (0%)
Different (2) 1 (6%)

| dont know (3) 0 (0%)
Similar (4) 1 (6%)
Very similar (5) 13 (86%)
Total 15
Mean 4.73
Variance 0.64
Question:9

Very different (1) 0 (0%)
Different (2) 1 (6%)

| dont know (3) 0 (0%)
Similar (4) 7 (46%)
Very similar (5) 7 (46%)
Total 15
Mean 4.33
Variance 0.67

Question:4

Very different (1) 2 (13%)
Different (2) 3 (20%)

| dont know (3) 0 (0%)
Similar (4) 5(33%)
Very similar (5) 5(33%)
Total 15
Mean 3.53
Variance 2.27
Question:6

Very different (1) 8 (53%)
Different (2) 6 (40%)

| dont know (3) 0 (0%)
Similar (4) 1 (6%)
Very similar (5) 0 (0%)
Total 15
Mean 1.6
Variance 0.69
Question:8

Very different (1) 9 (60%)
Different (2) 6 (40%)

| dont know (3) 0 (0%)
Similar (4) 0 (0%)
Very similar (5) 0 (0%)
Total 15
Mean 1.4
Variance 0.26
Question:10

Very different (1) 2 (13%)
Different (2) 10 (66%)

| dont know (3) 0 (0%)
Similar (4) 2 (13%)
Very similar (5) 1 (6%)
Total 15
Mean 2.33
Variance 1.24

121

Appendix D

APPENDIX D - PROGRAMMING CODE

Table 53: Code snippet of the Semex implementation in C# based on Dr. Bryan Duggan’s

Java implementation

/// <summary>

/// gets the similarity of the two strings using Semex distance.

/// </summary>

/// <param name="firstWord"></param>

/// <param name="secondWord"></param>

/// <returns>a value between 0-1 of the similarity</returns>

public override double GetSimilarity(string firstWord, string
secondWord) {

if ((firstWord != null) && (secondWord != null)) {

// Convert strings to arrays of midi notes
int[] pattern = notesToMidiArray(firstWord);
int[] text = notesToMidiArray(secondWord);

double Semex = calculateSemex(pattern, text);

if (pattern.Length >= text.Length)

{
return 1-(Semex / text.Length);
}
else {
return 1-(Semex / pattern.Length);
}

}

return defaultMismatchScore;

}

/// <summary>

/// gets the un-normalised similarity measure of the metric for the
given strings.</summary>

/// <param name="firstWord"></param>

/// <param name="secondWord"></param>

/// <returns> returns the score of the similarity measure (un-
normalised)</returns>

public override double GetUnnormalisedSimilarity(string firstWord,
string secondWord) {

return GetSimilarity(firstWord, secondWord);

}

/// <summary>
/// Converts a string of notes to an array of midi notes
/// </summary>
private int[] notesToMidiArray(string input2)
{
string control = "CDEFGAB";
string input = "";
input2 = input2.ToUpper();

// clean input
for (int i = @; i < input2.Length; i++)
{
if (control.IndexOf(input2[i]) != -1)

{
input += input2[i];

122

Appendix D

and text

}

}
int[] tmp = new int[input.Length];

// convert to midi notes
for (int i = @; i < input.Length; i++)

{
if (control.IndexOf(input[i]) != -1)
{
tmp[i] = 60 + control.IndexOf(input[i]);
}
}

return tmp;

/// <summary>
/// Calculates the Semex edit distance between two int arrays, pattern

/// </summary>
public double calculateSemex(int[] pattern, int[] text)

{

int pLength = pattern.Length;

int tLength = text.Length;

int difference = 0;

//Console.Out.Write("pLength:" + pLength + " tLength:" + tLength);

int sc;

if (pLength == 0)

{
return -1;
¥
if (tLength == 0)
{
return -1;
}

int[][] d = new int[pLength + 1][];

// Initialise all rows to be zero instead of null based.
for (int i = @; i < pLength + 1; i++)

{

}

d[i] = new int[tLength + 1];

// Initialise the first row
for (int i = 0; i < tLength + 1; i++)

d[e][i] = e;

}
// Now make the first col = 1,2,3,4,5,6

for (int i = @; i < pLength + 1; i++)

dfi][e] = i;

for (int i = 1; i <= pLength; i++)

{

sc = pattern[i - 1];

123

Appendix D

for (int j = 1; j <= tLength; j++)
{
int v = d[i - 1][] - 1];
if(3-2<0|]i-2¢<9)

difference = 1;

}

else if ((text[j - 1] - text[j - 2]) != (pattern[i - 1] -

pattern[i - 2]))

difference = 1;
}
else
{

difference = 0;
}

d[i][j] = Math.Min(Math.Min(d[i - 1][j] + 1, d[i][j - 1] +

1), v + difference);
}
¥
int[] lastRow = d[pLength];

int min = int.MaxValue;
for (int i = 1; i < tLength + 1; i++)

{
int ¢ = lastRow[i];
if (c < min)
{ .
min = c;
}
}

return min;

Table 54: Breathnach MIC Implementation in C#

/// <summary>

/// gets the similarity of the two strings using MIC distance.
/// </summary>

/// <param name="firstWord"></param>

/// <returns>a value between 0-1 of the similarity</returns>
public override string GetSimilarity(string firstWord)

if ((firstWord != null))

{
return calculateBreathnach(firstWord);
}
else
{
return "";
}

}

/// <summary>

/// gets the Parsons code for a string.

/// </summary>

private string calculateBreathnach(string input2)

{
try

124

Appendix D

input2 = input2.ToUpper();
string control = "CDEFGAB";
StringBuilder input = new StringBuilder();

// clean input

for (int i = @; i < input2.Length; i++)

{
if (control.IndexOf(input2[i]) != -1)
{

}

input.Append(input2[i]);

}

String key = input[input.Length - 1].ToString();
StringBuilder temp = new StringBuilder();
int charl, interval, fundamental;
fundamental = control.IndexOf(key);
for (int i = @; i < input.Length; i++)
{
try
{
charl = control.IndexOf(input[i]);
interval = (charl - fundamental + 1);
if (interval < 1)

{

}
temp.Append(interval);

interval += 7;

}

catch (Exception e)

{
}

//Console.Out.WriteLine(e.ToString());

}
return temp.ToString();

}

catch

{
¥

return "Error!";

Table 55: Parsons Code Implementation in C#

/// <summary>

/// gets the similarity of the two strings using Parsons distance.
/// </summary>

/// <param name="firstWord"></param>

/// <returns>a value between 0-1 of the similarity</returns>
public override string GetSimilarity(string firstWord)

{
if (firstWord != null)
{
return calculateParsons(firstWord);
}
else
{
return "";
}
}

125

Appendix D

/// <summary>

/// gets the Parsons code for a string.

/// </summary>

private string calculateParsons(string input2)

{
try
{
input2 = input2.ToUpper();
string control = "CDEFGAB";
string input = "";
// clean input
for (int i = @; i < input2.Length; i++)
{
if (control.IndexOf(input2[i]) != -1)
{
input += input2[i];
}
}
string temp = "*";
int loc, loc2 = ©;
for (int i = @; i < input.Length - 1; i++)
{
loc = control.IndexOf(input[i]);
loc2 = control.IndexOf(input[i + 1]);
if (loc > loc2) { temp += "D"; }
else if (loc == loc2) { temp += "R"; }
else if (loc < loc2) { temp += "U"; }
}
return temp;
}
catch
{
return "Error!";
}
}

Table 56: Standard Deviation Function in C# based on a C# version freely available

online

/// <summary>

/// gets the stdev of the four values passed to it.

/// </summary>

/// <param name="firstValue"></param>

/// <param name="secondValue"></param>

/// <param name="thirdValue"></param>

/// <param name="fourthValue"></param>

/// <returns>a value between 0-1 of the similarity</returns>

public override double GetSimilarity(double firstValue, double
secondValue, double thirdValue, double fourthValue)

{

ArraylList rankList = new ArraylList();
rankList.Add(firstValue);
rankList.Add(secondValue);
rankList.Add(thirdValue);
rankList.Add(fourthvalue);

126

Appendix D

return StandardDeviation(rankList);

}

/// <summary>

/// gets the normalised rank of the four rank values passed to it. Also
need the total count of records (the highest rank)

/// </summary>

/// <param name="firstValue"></param>

/// <param name="secondValue"></param>

/// <param name="thirdValue"></param>

/// <param name="fourthValue"></param>

/// <param name="count"></param>

/// <returns>a value between 0-1 of the normalised rank</returns>

public double GetNormalisedRank(int firstValue, int secondValue, int
thirdvalue, int fourthValue, int count)

{
// need four ranks and the total count of records (highest rank) to
normalise
int sum = firstValue + secondValue + thirdValue + fourthValue;
double normalisedRank = 1.0 - ((sum - 4.9) / (count * 4.0));
return normalisedRank;
}
///<Summary>
///Calculates standard deviation of numbers in an Arraylist
///</Summary>
public static double StandardDeviation(ArrayList num)
{
double SumOfSgrs = 0;
double avg = Average(num);
for (int i = @; i < num.Count; i++)
{
SumOfSqgrs += Math.Pow(((double)num[i] - avg), 2);
}
double n = (double)num.Count;
return Math.Sqrt(SumofSqrs / (n - 1));
}
///<Summary>
///Calculates average of numbers of integer data type in an Arraylist
///</Summary>
public static double Average(ArrayList num)
{
double sum = 90.0;
for (int i = @; i < num.Count; i++)
{
sum += (double)num[i];
}
double avg = sum / System.Convert.ToDouble(num.Count);
return avg;
}

Table 57: TextFunctions String Metrics Assembly

using System;

using System.Collections.Generic;
using System.Text;

using System.Data.SqlTypes;

using SimMetricsMetricUtilities;

127

Appendix D

using Microsoft.SqglServer.Server;

public class StringMetrics

{

private static readonly Levenstein _Levenstein;
private static readonly Jaro _Jaro;

private static readonly JaroWinkler _JaroWinkler;
private static readonly Semex _Semex;

private static readonly Breathnach _Breathnach;
private static readonly Parsons _Parsons;

private static readonly stdevmusic _stdevmusic;

static StringMetrics()

{
_Levenstein = new Levenstein();
_Jaro = new Jaro();
_JaroWinkler = new JaroWinkler();
_Semex = new Semex();
_Breathnach = new Breathnach();
_Parsons = new Parsons();
_stdevmusic = new stdevmusic();

}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]
public static SqlDouble Levenstein(SqlString firstWord, SqlString
secondWord)
{
if (firstWord.IsNull || secondWord.IsNull)
return 0;

return new SqlDouble(_Levenstein.GetSimilarity(firstWord.Value,
secondWord.Value));

}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]
public static SqlDouble Jaro(SqlString firstWord, SqlString secondWord)
{
if (firstWord.IsNull || secondWord.IsNull)
return 0;

return new SqlDouble(_Jaro.GetSimilarity(firstWord.Value,
secondWord.Value));

}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]

public static SqlDouble JaroWinkler(SqlString firstWord, SqlString
secondWord)

if (firstWord.IsNull || secondWord.IsNull)
return 0;

return new SqlDouble(_JaroWinkler.GetSimilarity(firstWord.Value,
secondWord.Value));

}

128

Appendix D

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]
public static SqlDouble Semex(SqlString firstWord, SqlString secondWord)
{
if (firstWord.IsNull || secondWord.IsNull)
return 0;

return new SqlDouble(_Semex.GetSimilarity(firstWord.Value,
secondWord.Value));

}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]
public static SqlString Breathnach(SqlString firstWord)

{
if (firstWord.IsNull)
return "";
return new SqlString(_Breathnach.GetSimilarity(firstWord.Value));
}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true, DataAccess=DataAccessKind.Read)]
public static SqlDouble BreathnachRank(SqlString firstWord, SqlString
secondWord)
{
if (firstWord.IsNull || secondWord.IsNull)
return 0;

return new SqlDouble(_Breathnach.GetSimilarity(firstWord.Value,
secondWord.Value));

}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]
public static SqlString Parsons(SqlString firstWord)

{
if (firstWord.IsNull)
return "";
return new SqlString(_Parsons.GetSimilarity(firstWord.Value));
}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]

public static SqlDouble stdevmusic(SqlDouble firstValue, SqlDouble
secondValue, SqlDouble thirdvValue, SqlDouble fourthValue)

{
if (firstvValue.IsNull || secondValue.IsNull || thirdvalue.IsNull ||
fourthValue.IsNull)
return 0.0;

return new SqlDouble(_stdevmusic.GetSimilarity(firstValue.Value,
secondValue.Value, thirdvalue.Value, fourthValue.Value));

}

[Microsoft.SqlServer.Server.SqlFunction(IsDeterministic = true,
IsPrecise = true)]

public static SqlDouble normalisedRank(int firstValue, int secondValue,
int thirdvalue, int fourthValue, int count)

{

129

Appendix D

if (firstValue.Equals(null) || secondvalue.Equals(null) ||
thirdvalue.Equals(null) || fourthValue.Equals(null) || count.Equals(null))
return 0.0;

return new SqlDouble(_stdevmusic.GetNormalisedRank(firstValue,
secondValue, thirdvalue, fourthValue, count));
}
}

Table 58: SQL to install custom string distance functions in MS SQL 2008

DROP FUNCTION Levenstein
GO

DROP FUNCTION NeedlemanWunch
GO

DROP FUNCTION SmithWaterman
GO

DROP FUNCTION SmithWatermanGotoh
GO

DROP FUNCTION SmithWatermanGotohWindowedAffine
GO

DROP FUNCTION Jaro
GO

DROP FUNCTION JaroWinkler
GO

DROP FUNCTION ChapmanLengthDeviation
GO

DROP FUNCTION ChapmanMeanLength
GO

DROP FUNCTION QGramsDistance
GO

DROP FUNCTION BlockDistance
GO

DROP FUNCTION CosineSimilarity
GO

DROP FUNCTION DiceSimilarity
GO

DROP FUNCTION EuclideanDistance
GO

DROP FUNCTION JaccardSimilarity
GO

DROP FUNCTION MatchingCoefficient
GO

DROP FUNCTION MongeElkan

130

Appendix D

GO

DROP FUNCTION OverlapCoefficient
GO

DROP FUNCTION Semex
GO

DROP FUNCTION Parsons
GO

DROP FUNCTION Breathnach
GO

DROP FUNCTION BreathnachRank
GO

DROP FUNCTION stdevmusic
GO

DROP FUNCTION NormalisedRank
GO

DROP ASSEMBLY [TextFunctions]
GO

CREATE ASSEMBLY [TextFunctions]

AUTHORIZATION [dbo]

FROM
'C:\bin\TextFunctions\TextFunctions\bin\Release\TextFunctions.dll"
WITH PERMISSION_SET = EXTERNAL_ACCESS

GO

CREATE FUNCTION Levenstein(@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.Levenstein
GO

CREATE FUNCTION NeedlemanWunch (@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.NeedlemanWunch

GO

CREATE FUNCTION SmithWaterman (@Rfirstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.SmithWaterman
GO

CREATE FUNCTION SmithWatermanGotoh (Q@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))
RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.SmithWatermanGotoh
GO

CREATE FUNCTION SmithWatermanGotohWindowedAffine (Rfirstword
NVARCHAR (255) , @secondword NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.SmithWatermanGotohWindowedAffine
GO

131

Appendix D

CREATE FUNCTION Jaro (@firstword NVARCHAR (255),@secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.Jaro
GO

CREATE FUNCTION JaroWinkler (@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.JaroWinkler
GO

CREATE FUNCTION ChapmanlLengthDeviation(@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.ChapmanLengthDeviation
GO

CREATE FUNCTION ChapmanMeanLength(@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))
RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.ChapmanMeanLength
GO

CREATE FUNCTION QGramsDistance (@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.QGramsDistance

GO

CREATE FUNCTION BlockDistance (Rfirstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.BlockDistance
GO

CREATE FUNCTION CosineSimilarity(@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.CosineSimilarity

GO

CREATE FUNCTION DiceSimilarity(@firstword NVARCHAR(255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.DiceSimilarity

GO

CREATE FUNCTION EuclideanDistance (@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))
RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.EuclideanDistance
GO

CREATE FUNCTION JaccardSimilarity(@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))
RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.JaccardSimilarity
GO

CREATE FUNCTION MatchingCoefficient (@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))
RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.MatchingCoefficient

132

Appendix D

GO

CREATE FUNCTION MongeElkan (@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.MongeElkan
GO

CREATE FUNCTION OverlapCoefficient (@firstword
NVARCHAR (255) , @secondword NVARCHAR (255))
RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.OverlapCoefficient
GO

CREATE FUNCTION Semex (@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.Semex
GO

CREATE FUNCTION Breathnach (@firstword NVARCHAR (255))
RETURNS nvarchar (255) EXTERNAL NAME
TextFunctions.StringMetrics.Breathnach

GO

CREATE FUNCTION BreathnachRank (@firstword NVARCHAR (255), @secondword
NVARCHAR (255))

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.BreathnachRank

GO

CREATE FUNCTION Parsons (@firstword NVARCHAR (255))
RETURNS nvarchar (255) EXTERNAL NAME
TextFunctions.StringMetrics.Parsons

GO

CREATE FUNCTION stdevmusic (@firstValue float, @secondValue float,
@thirdvalue float, @fourthValue float)

RETURNS float EXTERNAL NAME TextFunctions.StringMetrics.stdevmusic
GO

CREATE FUNCTION NormalisedRank (@firstValue int, @secondValue int,
@thirdvalue int, @fourthValue int, @count int)

RETURNS float EXTERNAL NAME
TextFunctions.StringMetrics.normalisedRank

GO

Table 59: getRanks Stored Procedure

USE [Test]
GO
/******x Object: StoredProcedure [dbo].[getRanks] Script Date:

06/29/2010 14:30:05 *x*x*x/
SET ANSI NULLS ON

GO

SET QUOTED IDENTIFIER ON

GO

—-— Author: Padraic Lavin
-- Create date: 2010

-- Description: Return ranks

133

Appendix D

CREATE PROCEDURE [dbo].[getRanks]
-- Add the parameters for the stored procedure here
@Notes nvarchar (255) = '!'

AS

BEGIN
-— SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

-— Declare some Variables
DECLARE @parsons nvarchar (255) = [Test].[dbo].Parsons (@notes)
DECLARE @breathnach nvarchar (255) =
[Test].[dbo] .Breathnach (@notes)
DECLARE @rowID float
DECLARE @MaxRank float
DECLARE @prowID float
DECLARE @PMaxRank float
DECLARE @count int

-- Create temp table for Breathnach Rank and populate it

SELECT

ID,

dbo.Breathnach (NOTES) as MIC,

dbo.Parsons (NOTES) as PIC,

row_number () over (order by dbo.Breathnach (NOTES) asc) as
rowlD,

(row_number () over (order by dbo.Breathnach(NOTES)))/1.0 as
MICScore,

(row number () over (order by dbo.Parsons (NOTES))) /1.0 as
PICScore

into #TEMP

from corpus

order by MIC;

-- Find nearest match for @notes - Breathnach

Select top 1 @rowID = MICScore from #TEMP where
dbo.Breathnach (@notes) <= MIC order by MIC asc

Select @MaxRank = MAX (MICScore) from #TEMP

-—- Find nearest match for @notes - Parsons

Select top 1 @prowID = PICScore from #TEMP where
dbo.Parsons (@notes) <= PIC order by PIC asc

Select @PMaxRank = MAX (PICScore) from #TEMP

Update #TEMP set MICScore = 1-((abs(MICScore -
@rowID)) /@MaxRank)

Update #TEMP set PICScore
@prowID)) /@PMaxRank)

1-((abs (PICScore -

-- Insert statements for procedure here

select [Test].[dbo].Corpus.ID, NAME, PART,
[Test].[dbo].Semex (@Notes, dbo.corpus.NOTES) as Semex,
RANK () OVER (ORDER BY [Test].[dbo].Semex (@Notes, dbo.corpus.[NOTES])
DESC) AS [SemexRank],
[Test].[dbo].JaroWinkler (@Notes, dbo.corpus.NOTES) as Jaro,
RANK () OVER (ORDER BY [Test].[dbo].JaroWinkler (@Notes,
dbo.corpus. [NOTES]) DESC) AS [JaroRank],
[Test]. [dbo].JaroWinkler (@parsons,
[Test] . [dbo].Parsons (dbo.corpus.NOTES)) as Parsons,

134

Appendix D

RANK () OVER (ORDER BY #TEMP.PICScore DESC) AS [ParsonsRank],
#TEMP.MICScore,

RANK () OVER (ORDER BY #TEMP.MICScore DESC) AS [MICRank],
notes, tunekey, measure, #TEMP.MIC

into #TEMP3

from dbo.corpus

left join #TEMP

on [Test].[dbo].Corpus.ID = #TEMP.ID

order by MICRank asc, SemexRank asc, JaroRank asc, ParsonsRank asc

select @count = COUNT(ID) from #TEMP3

select ID, NAME, NOTES, TUNEKEY, MEASURE,

[Test] . [dbo] .stdevmusic (SemexRank, JaroRank, ParsonsRank, MICRank) as
stdev, [Test].[dbo].normalisedRank (SemexRank, JaroRank, ParsonsRank,
MICRank, @count) as NRank

from #TEMP3

order by NRank desc, stdev asc

END

Table 60: getRanksID Stored Procedure

USE [Test]
GO
/******x Object: StoredProcedure [dbo].[getRanksID] Script Date:

06/29/2010 14:31:36 ******/
SET ANSI NULLS ON

GO

SET QUOTED IDENTIFIER ON

GO

-— Author: <Author, , Name>
-— Create date: <Create Date,,>
-- Description: <Description,,>

CREATE PROCEDURE [dbo].[getRanksID]
-—- Add the parameters for the stored procedure here
@ID int
AS
BEGIN
—-— SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ONj;

-— Declare some Variables
DECLARE (@notes nvarchar (255)

select @notes = NOTES from [Test].[dbo].corpus where ID = @ID

DECLARE @parsons nvarchar (255) = [Test].[dbo].Parsons (@notes)
DECLARE @breathnach nvarchar (255) =
[Test].[dbo] .Breathnach (@notes)
DECLARE @rowID float
DECLARE @MaxRank float
DECLARE (@prowID float
DECLARE @PMaxRank float
DECLARE @count int

135

Appendix D

-- Create temp table for Breathnach Rank and populate it
SELECT

ID,

dbo.Breathnach (NOTES) as MIC,

dbo.Parsons (NOTES) as PIC,

row_number () over (order by dbo.Breathnach (NOTES) asc) as

rowlD,

(row number () over (order by dbo.Breathnach (NOTES))) /1.0 as
MICScore,

(row_number () over (order by dbo.Parsons (NOTES)))/1.0 as
PICScore

into #TEMP
from corpus
order by MIC;

-—- Find nearest match for @notes - Breathnach

Select top 1 @rowID = MICScore from #TEMP where
dbo.Breathnach (@notes) <= MIC order by MIC asc

Select @MaxRank = MAX (MICScore) from #TEMP

-—- Find nearest match for @notes - Parsons

Select top 1 @prowID = PICScore from #TEMP where
dbo.Parsons (@notes) <= PIC order by PIC asc

Select @PMaxRank = MAX (PICScore) from #TEMP

Update #TEMP set MICScore
@rowID)) /@MaxRank)

Update #TEMP set PICScore
@prowID)) /@PMaxRank)

1-((abs (MICScore -

1-((abs (PICScore -

-- Insert statements for procedure here

select @ID as A ID, [Test].[dbo].Corpus.ID as B ID,
[Test].[dbo].Semex (@Notes, dbo.corpus.NOTES) as Semex,
RANK () OVER (ORDER BY [Test].[dbo].Semex (@Notes, dbo.corpus.[NOTES])
DESC) AS [SemexRank],

[Test]. [dbo].JaroWinkler (@Notes, dbo.corpus.NOTES) as Jaro,
RANK () OVER (ORDER BY [Test].[dbo].JaroWinkler (@Notes,
dbo.corpus. [NOTES]) DESC) AS [JaroRank],
[Test].[dbo].JaroWinkler (@parsons,

[Test] . [dbo].Parsons (dbo.corpus.NOTES)) as Parsons,

RANK () OVER (ORDER BY #TEMP.PICScore DESC) AS [ParsonsRank],
#TEMP.MICScore,

RANK () OVER (ORDER BY #TEMP.MICScore DESC) AS [MICRank],
notes, tunekey, measure, #TEMP.MIC

(
[
]
]

into #TEMP3

from dbo.corpus

left join #TEMP

on [Test].[dbo].Corpus.ID #TEMP.ID

order by MICRank asc, SemexRank asc, JaroRank asc, ParsonsRank asc

select @count = COUNT (A ID) from #TEMP3

select A ID, B ID, [Test].[dbo].stdevmusic (SemexRank, JaroRank,
ParsonsRank, MICRank) as stdev,

[Test] . [dbo] .normalisedRank (SemexRank, JaroRank, ParsonsRank,
MICRank, @count) as NRank

from #TEMP3

136

Appendix D

order by NRank desc, stdev asc
END

Table 61: calculateMatrix Stored Procedure

USE [Test]
GO
/****** Object: StoredProcedure [dbo].[calculateMatrix] Script

Date: 06/29/2010 14:32:29 ***xxx/
SET ANSI_NULLS ON

GO

SET QUOTED IDENTIFIER ON

GO

-— Author: <Author, ,Name>
-—- Create date: <Create Date,,>
-- Description: <Description, , >

CREATE PROCEDURE [dbo].[calculateMatrix]
AS

-— SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ONj;

-—- Declare some Variables
DECLARE @notes nvarchar (255)
DECLARE (@corpusID int

DECLARE @return value int

DECLARE tune cursor CURSOR FOR SELECT cast ([ID] as int) as ID,

NOTES FROM [Test].[dbo].[corpus] where (ID >= 8353 and ID <= 20297)
order by ID asc

OPEN tune cursor
—-— Perform the first fetch.
FETCH NEXT FROM tune cursor into @corpusID, @notes

BEGIN

—-— Check QRFETCH STATUS to see if there are any more rows to
fetch.

WHILE @Q@FETCH STATUS =0

BEGIN

--Select @corpusID, @notes

e KA AR AR A AR A AR A AR A AR A AR A AR A A A AR A A A A A AR AR A AN A A AR A A AR AR K

INSERT dbo.matrix (A ID, B ID, STDEV, NRank)
EXEC (@return value = [dbo].[getRanksID]
@ID = @corpusID

R SRR R S b e dh b b b Sh b dh b b dh db b 2 db b b d Sh b b db b b S Sh b b db Sb b JE db b b db Sb b 2 db b db S 4
FETCH NEXT FROM tune cursor into @corpusID, @notes

END

CLOSE tune_cursor

DEALLOCATE tune cursor
END

137

	A Similarity Matrix for Irish Traditional Dance Music
	Recommended Citation

	ABSTRACT
	ADMHÁLACHA
	ACKNOWLEDGEMENTS
	TABLE OF FIGURES
	TABLE OF TABLES
	List of abbreviations
	Introduction
	Overview of project area
	Background to Irish traditional dance music
	Types of Irish traditional dance tune
	Musical keys in Irish traditional music
	Tune Structure
	Traditional Music Collections
	Electronic Collections

	Research problem
	Intellectual challenge
	Research objectives
	Research methodology
	Phase one – Collection of tunes in ABC notation
	Phase two - Conduct programming experiments
	Phase three – Survey of experts and non-experts
	Phase four - Conclusions drawn from analysis of survey
	Phase five – Construction of a Similarity Matrix

	Resources
	Library Facilities
	Programming Environment and Database Server
	Access to a supervisor
	Providers of databases of Irish tunes in ABC Notation
	Two groups of survey participants

	Scope and limitations
	Organisation of the dissertation

	Music Comparison techniques
	Introduction
	What is music comparison?
	Brendán Breathnach
	Parsons Code
	Normalised Parsons Code Scores

	ABC Notation
	Why ABC Notation?

	Conclusion

	String distance Algorithms
	Introduction
	Choosing a suitable algorithm
	Definition of similarity
	Uses of similarity measures
	Music theory considerations

	The Levenshtein Algorithm
	The Jaro-Winkler Algorithm
	The Lemström Semex algorithm
	Conclusion

	Improved algorithms & a ranking system
	Introduction
	Modifications to the Jaro-Winkler Algorithm for Irish music
	Horizontal Transpositions
	Contribution 1: Weighting melodic sequence variation
	Contribution 2: Weighting tune prefixes

	Improvements to the Levenshtein algorithm
	Prototype for a Combined Ranking System
	Contribution 3: Combined Ranking Scores

	Conclusion

	Computerising MIC System & Parsons Code
	Introduction
	Advantages of the Breathnach Melodic Indexing System
	Time signature invariant
	Key invariant
	Easily managed system

	Disadvantages of the Breathnach Melodic Indexing System
	Melodic Sequence Variation Anomalies
	Limited Comparisons can be made

	Proposed improvements
	Contribution 4: Computerisation of the Melodic Indexing System
	Contribution 5: Compare MIC index codes alphabetically

	Advantages of computerising the Melodic Indexing System
	Larger database of tunes available
	Greater Accuracy
	Integration in a Combined Ranking System

	Conclusion

	Experimentation and Evaluation
	Introduction
	Design of experiments
	Experimentation
	Description of raw data
	Pre-processing ABC data
	Experiment Framework
	Java Framework
	C Sharp Framework
	Levenshtein Experiments
	Jaro-Winkler Experiments
	Lemström Semex Interval Experiments
	Melodic Indexing Code experiments

	Evaluation
	Survey of experts and non-experts
	Choosing tune part pairs to test
	How tune pairs were chosen
	Pairs 1 & 10
	Pairs 2, 3, 4 and 5
	Pairs 6, 7, 8 and 9
	Question order randomisation
	Choosing experts
	Experts results
	Analysis of the experts responses
	Non-experts results
	Analysis of the non-experts responses
	Experts vs. non-experts

	Constructing a Similarity Matrix for Irish Traditional Music
	Phase 1 – Importing data and extending MS SQL 2008
	Phase 2 - Testing custom function SQL queries
	A Combined Ranking System
	Phase 3 – Testing the combined ranking system on humans
	Analysis of results
	Phase 4 – Constructing Similarity Matrices
	Parsons Code and Breathnach MIC Similarity Matrices
	Jaro-Winkler Similarity Matrix
	Similarity matrix using the Combined Ranking System

	Conclusion

	Conclusion
	Introduction
	Research Definition & Research Overview
	Contributions to the Body of Knowledge
	Contribution 1 - Weighting Melodic Sequence Variation
	Contribution 2 - Weighting Tune Prefixes
	Contribution 3 – Computerising Breathnach’s & Parsons’ Systems
	Contribution 4 – Improvements to the Melodic Indexing System
	Contribution 5 – A Combined Ranking System

	Experimentation, Evaluation and Limitation
	Experimentation
	Evaluation
	Limitations

	Future Work & Research
	Parsons Code & Melodic Index Code Precision
	Jaro-Winkler matching prefixes
	Similarity / Dissimilarity threshold
	User querying and surveying

	Conclusion
	Objectives
	Deliverables
	Conclusion

	BIBLIOGRAPHY
	Appendix A – Survey Participants
	Appendix B - Irish Dance Music Similarities Survey
	APPENDIX C – Survey Results
	Appendix D – Programming code

