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Abstract 

 

Whitebox fuzz testing is a vital part of the software testing process in the software 

development life cycle (SDLC). It is used for bug detection and security 

vulnerability checking as well. But current tools lack the ability to detect all the 

bugs and cover the entire code under test in a reasonable time. This study will 

explore some of the various whitebox fuzzing techniques and tools (AFL, SAGE, 

Driller, etc.) currently in use followed by a discussion of their strategies and the 

challenges facing them.  

One of the most popular state-of-the-art fuzzers, American Fuzzy Lop (AFL) will 

be discussed in detail and the modifications proposed to reduce the time required 

by it while functioning under QEMU emulation mode will be put forth. The study 

found that the AFL fuzzer can be sped up by injecting an intermediary layer of 

code in the Tiny Code Generator (TCG) that helps in translating blocks between 

the two architectures being used for testing. The modified version of AFL was 

able to find a mean 1.6 crashes more than the basic AFL running in QEMU mode.  

The study will then recommend future research avenues in the form of hybrid 

techniques to resolve the challenges faced by the state of the art fuzzers and create 

an optimal fuzzing tool. The motivation behind the study is to optimize the fuzzing 

process in order to reduce the time taken to perform software testing and produce 

robust, error-free software products.  

 

 

 

 

 

 

 

 

 

 

Keywords: software testing, greybox, fuzzing, debugging, program 

verification, symbolic execution, software security, software validation  
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1. INTRODUCTION 

 

1.1 Background 

 

Software is made by people and people make mistakes (Lagus 2013). Most 

engineers consider “program verification research” as a typically theoretical 

pursuit having limited impact in the real world. Think again. Almost every piece 

of high-quality software has undergone rigorous tests before it is released. The 

Windows O/S itself adds up to a billion people affected by this field (Godefroid, 

Levin, & Molnar, 2012). Moreover, malware infections that prey on undiscovered 

bugs have increased at an alarming rate: five-fold in the past five years (Moser, 

Kruegel, & Kirda, 2007). It is essential to stay one step ahead.  

Before the Internet became mainstream, not much attention was paid to 

vulnerabilities since making most of the limited resources was considered 

paramount (Lagus 2013, 30). According to Lagus (2013, 31), another issue with 

software vulnerabilities is the fact that security is often taken into consideration in 

the final development phases. Additionally, information systems are not simple, 

and they are often connected to other complex information systems (Lagus 2013, 

31).  

According to Bhat (2015, 23), software testing is highly complex, yet, an 

imperative element of any software development life cycle. Software testing 

should be started as early as possible (Bhat 2015, 23); however, the costs of testing 

are high and Godefroid et al. (2008, 30) point out that usually testing accounts for 

about half of the R&D budget of many software development organizations. 

Myers, Sandler & Badgett (2011, 5) state that in an ideal world every possible 

permutation of a program would be tested. However, in most cases that would not 

be possible or would need hundreds or thousands of possible input and output 

combinations and making test cases for all the combinations would be unfeasible 

(Myers et al. 2011, 5). Positive testing is used to confirm that the software works 

as it is supposed to whereas in negative testing, there is an effort to break the 

software (Bhat 2015, 24). 
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This is where fuzz testing comes into the picture. It is an integral part of the 

software testing process in the software development life cycle. The term fuzz 

testing or fuzzing is commonly used to refer to techniques which test programs 

through the generation of randomized input data and then running the program 

with those inputs (Ognawala et al., 2017). Fuzzing can be utilized to test 

applications where the space of conceivable sources of input is expansive. The 

system is utilized to perceive how well an application treats invalid inputs and, in 

this manner, uncover bugs. The aim of fuzzing is to traverse the maximum number 

of program paths and detect bugs that may present themselves as assertion 

violations, buffer overflows or program crashes (Pak, 2012). Better coverage of 

code for detection of bugs will result in more robust, error-free and secure software 

products. 

Fuzzing has only one goal, to make the system crash (Takanen et al. 2008, 25). 

With fuzzing a large numbers of boundary cases are tested by either developers or 

quality assurance teams (Oehlert 2005, 58). The prime targets for fuzzing are input 

files, configuration or registry entries, APIs, user interfaces, network interfaces, 

database entries or command line arguments (Oehlert 2005, 59). Shapiro (2011, 

58) points out that the fuzzing triggers race conditions, failures to check return 

code, buffer overflows and format or printf string issues.  

At the structural level, fuzzing finds underflows, repetition of elements and 

unexpected elements (Takanen et al. 2008, 27). At the sequence level, fuzzing 

finds out of sequence or omitted unexpected repetition or spamming of messages 

(Takanen et al. 2008, 27). Fuzzing can also be a part of vulnerability analysis 

where fuzzing is used as a black box technique without the need of source code 

(Takanen et al. 2008, 102). Also whitebox fuzzing can be performed (Godefroid 

et al. 2012, 44).  

The trade-offs between whitebox and blackbox fuzzing are different, because 

blackbox fuzzing is simple, easy, lightweight and fast; however, may offer only 

limited code coverage (Godefroid et al. 2012, 44). Whitebox fuzzing is more 

compound but cleverer (Godefroid et al. 2012, 44). For the discovery of bugs, 

Godefroid et al. (2012, 44) point out that competence of either whitebox or black 

box fuzzing varies according to the software under testin.  
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A simple blackbox fuzzing is a good start if an application has never been fuzzed 

and after those bugs have been found it is time to use whitebox fuzzing (Godefroid 

et al. 2012, 44). The effectiveness of fuzzing bases on measuring how well fuzzing 

covers the input space of the tested interfaces and how good the used inputs are 

(Takanen et al. 2008, 27–28). Fuzzers that only generate random data-based inputs 

are unsuccessful and find only naive coding errors (Takanen et al. 2008, 28). 

Godefroid et al. (2008, 32) point out that the fuzzer’s ability to find errors along 

low probability paths are limited. Above all fuzzing is about test automation to its 

fullest extent (Takanen et al. 2008, 136). 

 

1.2 Research Problem 

 

Although fuzzing is helpful, no algorithm or technique has been able to provide a 

solution to comprehensively detect all bugs in the code by covering the entire code 

in a realistic time frame and with realistic computing power. 

Fuzzing has several challenges: 

1.2.1. Where to fuzz 

One of the central issues to achieve deep penetration of the program is to know 

where to fuzz. Some parts of a binary are known to be more prone to bugs than 

others.  It becomes important that the fuzzer be directed towards problem areas of 

the binary more often.  

 

1.2.2. Seed Inputs or well-formed inputs 

Another central issue is to determine the right inputs so that no time is wasted on 

inputs that will be rejected or lead to paths already traced. Inputs directly determine 

the paths and also the ability to trigger the bugs lying in those paths.  

Böhme et al. (2016) states: 

Coverage-based Greybox Fuzzing (CGF) would clearly 

benefit from a smart seed selection if many seed files are 

available. (pp 1041). 
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This highlights the need for a smart seed generator. The challenge here is that 

constraint solvers in symbolic analysis do not return soon and hence achieve 

incomplete code coverage under limited time (Ognawala, Hutzelmann, Psallida, 

& Pretschner, 2017). 

 

1.2.3. Penetration 

The fuzzer should be able to traverse deep into the program. Otherwise it will only 

be able to detect surface bugs as is the case in most blackbox fuzzers (Godefroid 

et al., 2012). Path explosion as discussed earlier is the main challenge to deep 

penetration.  

 

1.2.4. Full Code Coverage 

Inputs and fuzzer logic should complement each other in a way not only to traverse 

deep but also to be able to cover maximum code possible. It is possible there might 

be severe bugs in a component of the program that was expected to be bug-free. 

 

1.2.5. Manual Input 

The best well-formed inputs are still generated manually. Manual input can be 

error prone if the programmer is inexperienced. Although, AFL was able to 

recreate meaningful input files from an empty file, that does not translate to 

effective input seeds (Böck, 2015). Creating tests manually is expensive, error-

prone and most of the time inconclusive (Burnim, 2008). 

 

However, the most important constraint when it comes to software testing is time. 

Given unlimited time, any software can be tested to be completely bug free. But 

this is not the case. The immense complexity of the latest software products would 

require an unfeasible amount of time for all execution paths to be fuzzed to 

exhaustion. There is a need to speed up the fuzzing process.  
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1.3 Research Question 

 

The research conducted aims to investigate the following research question: 

 

Can implementing an intermediate layer in the tiny code generator of the American 

Fuzzy Lop fuzzer improve its speed significantly? 

 

To elaborate, this study will assess whether the speed of the fuzzing process under 

emulation mode of the AFL fuzzer can be improved significantly by introducing 

an intermediate layer in the tiny code generator to help the translation of transfer 

blocks between the source and the target architectures.  

 

1.4 Research Objective 

 

This research intents to investigate the state-of-the-art fuzzing techniques and any 

improvement that can be made. This will be done be conducting an experiment by 

testing benchmark binaries with known bugs. The AFL fuzzer will be modified 

and compared against the baseline AFL fuzzer. The objective is to improve the 

fuzzer’s performance under the QEMU (Quick Emulator) emulation mode. The 

study will also provide the results and conclusion for additional research and 

studies in the future. It is expected that this study will add to the knowledge in the 

information security area specially the field of software testing and lead to more 

safe and robust software products. The research objectives are: 

• To assess related studies which have made contributions in the field of 

fuzzing. Various studies in the past and their findings will be collected and 

studied carefully. 

• To test the efficiency of current state of the art fuzzers like AFL. 

• To test if an intermediate layer in the tiny code generator to help the 

translation of transfer blocks between the source and the target 

architectures leads to faster performance or not. 

• To test if the modified fuzzer reveals previously unknown bugs.  
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• To recommend further avenues of research that could help improving 

fuzzing techniques and their performance. 

 

1.5 Research Methodology 

 

The main aim of this research is to determine whether the modified AFL fuzzer 

can detect bugs faster than the normal AFL under QEMU mode. This will 

require a quantitative analysis to be undertaken.  

To accomplish this, an experiment will be conducted to test the performances 

of the individual fuzzers. The test subjects will be ten different binaries which 

are commonly used as benchmarks for testing fuzzing techniques. Each binary 

will be tested for one hour with both the fuzzers. The results will then be 

compared using a paired t-test evaluation to check if any significant difference 

in performance was achieved.  

 

1.6 Scope and Limitation 

 

Fuzz testing is an integral part of the software testing process in the software 

development life cycle. The term fuzz testing or fuzzing is commonly used to refer 

to techniques which test programs through the generation of randomized input 

data and then running the program with those inputs (Ognawala et al., 2017). The 

aim of fuzzing is to traverse the maximum number of program paths and detect 

bugs that may present themselves as assertion violations, buffer overflows or 

program crashes (Pak, 2012). Better coverage of code for detection of bugs will 

result in more robust, error-free and secure software products. 

The limitation here is that only QEMU mode of the AFL fuzzer is being modified, 

the performance under normal mode will not be affected. Also, only ten binaries 

are being tested each for only one hour due to time and resource limitations.  
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1.7 Document Outline 

Chapter 2; Literature Review: This chapter explores fuzzing and its role in the 

SDLC. It further discusses the state-of-the-art fuzzers and their strengths and 

limitations and challenges in the field of automated software testing 

 

Chapter 3; Experiment Design and Methodology: This chapter explains the 

working of AFL fuzzer and outlines the modifications made in an attempt to 

improve its performance. It delineates the experiment to take place. 

 

Chapter 4; Implementation, Results and Analysis: This chapter discusses the 

precise steps in the experiment. It contains the results and their analysis using a 

paired t-test.  

 

Chapter 5; Conclusion: This chapter expounds on the results and delineates the 

limitations of the experiment conducted. It also mentions the future research 

ideas in order to further enhance the fuzzing process.  
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2. LITERATURE REVIEW 

 

The chapter provides a brief but detailed review of relevant literature concerning 

the current approaches to detecting vulnerabilities. An overview of fuzzing 

including the need for fuzzing, different types of fuzzers and their strategies are 

included. The state of the art fuzzers and their advantages and disadvantages are 

discussed in this chapter. 

 

2.1 Introduction 

Modern methods for discovering programming vulnerabilities can be partitioned 

right off the bat into two distinct methodologies; static analysis and dynamic 

analysis. Static analysis of programming includes methods for looking at the 

source code or a binary that is compiled without executing it. Dynamic 

investigation includes inspecting the software at runtime, commonly subsequent 

to connecting some sort of debugger to it. Both approaches have their relative 

advantages and disadvantages (Shoshitaishvili, 2016).  

For static analysis, several automated tools exist that can be combined with 

manual code review by a skilled analyst. The less sophisticated tools essentially 

just scan the target source code looking for known dangerous functions such as 

strcpy() in C programs. The more advanced tools often work using some sort of 

taint analysis (Dahse, 2014). These tools will distinguish and 'taint' any variable 

that has its value set from info that enters the objective application from a client. 

This tainted input and its impact on other information will at that point be 

followed as it passes through the source code. At whatever point it is seen that 

corrupted information could come to a 'sink' or conceivably unsafe function this 

will be hailed for further examination. Static analysis, although useful, often 

produces many false positives that cannot be exploited in practice and requires 

a lot of manual verification work to identify which issues are genuine 

vulnerabilities (Dahse, 2014). It does, however, allow for complete code 

coverage with the entire application being inspected. 
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In the case of dynamic analysis, the most common automated method for 

discovery of vulnerabilities is the method of fuzz testing or fuzzing. 

Essentially this consists of repeatedly giving an application invalid input and 

monitoring for any sign of this triggering a bug, such as the application 

crashing or hanging (Gadi, 2007). There are numerous advantages to this 

methodology, for example, the simplicity of automation and the capacity to 

test even extensive applications where code survey would be too tedious. 

Moreover, each bug found by fuzzing naturally accompanies its own 'proof 

of concept' experiment demonstrating that the bug can be activated by a client. 

Fuzzing is the primary method used nowadays to detect high profile 

vulnerabilities.  

The motivation behind fuzzing and any research pertaining to techniques for 

finding vulnerabilities, can be offensive or defensive. Software organizations 

utilize these procedures to recognize vulnerabilities in their own products and 

is considered an integral part of the Software Development Life Cycle 

(SDLC). Whitehat security specialists likewise utilize these strategies to 

discover vulnerabilities in both open source and restrictive software and 

inform the software developers about the vulnerabilities to allow them to be 

able to release a patch.  

But various intelligence agencies, defense contractors, and even organized 

criminals are known to use these techniques for malicious purposes. These 

organizations benefit from keeping the discovered vulnerabilities to 

themselves and even exploiting them if need be. 

 

2.2. Types of fuzzing:  

Fuzzing is classified into two main types as discussed below: 

 

2.2.1. Black-box fuzzing  

Traditional fuzzing is called black box fuzzing. This is the simplest form of 

fuzzing and assumes that the input as well as output of the SUT (System Under 

Test) are the only things the fuzzer knows. The internal working of the SUT is 
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not known, hence making it a black-box. For instance, in a network protocol, 

both the server-side and client-side code could be fuzzed for vulnerabilities 

(Takanen, Demott, & Miller, 2008). An aggressor could leave the fuzzing 

procedure running until the point that a bug is uncovered. Since protocol 

implementations may be the same on numerous servers, an assailant could set 

up a similar framework to run the fuzzing procedure against. In the event that 

a bug is found, it can in principle, be misused on each server running a similar 

implementation of that protocol. 

 

2.2.2. White-box fuzzing  

White-box fuzzing, on the other hand, utilizes program analysis to know the 

effect of the input and increment code coverage of the SUT. White-box fuzzing 

exploits its access to the source code and design particulars of the SUT. 

Symbolic execution is very connected to white-box fuzzing and is a method for 

deciding how inputs propagate different paths when the program executes. 

When symbolic execution is performed, input variables are assigned symbolic 

values rather than concrete values. All changes to the symbolic value are stored 

and taken into account later when an if statement is reached. This empowers 

the symbolic execution to set the symbolic values such as to take a specific 

path according to the changes to the symbolic value. While symbolic execution 

takes place, constraints can be stored. The constraints are assembled from 

conditional paths of execution experienced along the execution, invalidated, 

and solved utilizing a constraint solver. The output of the solver is then used to 

create new input variables. These input variables are then used to find new 

paths or uncover security risks or bugs. In the development of Windows 7, 

white-box fuzzing was primarily implemented and found one-third of the total 

vulnerabilities found prior to the release (Bounimova, Godefroid, & Molnar, 

2013).  

 

2.2.3. Grey-box fuzzing  

The term grey-box fuzzing coined in 2007 by Demott, Enbody and Punch. 

Despite being bound to only provide input and only be able to look at the output 
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of the SUT, black-box fuzzers can still be smart in the way they generate inputs, 

and therefore achieve high code coverage without suffering from problems in 

scalability (Kargen & Shahmehri, 2015) (Rawat et al., 2017).  Although black-

box fuzzing can achieve high code coverage, the lack of knowledge of the 

working of the SUT makes it difficult to execute certain paths. White-box 

fuzzing is able to solve this issue using symbolic execution. Grey-box fuzzers 

are known to use symbolic execution as well as implementing dynamic taint 

analysis. They combine the best of both worlds and most state of the art fuzzers 

are considered to be of the grey-box variety. 

 

Some of the state of the art fuzzers are discussed below: 

A. SAGE – the first symbolic execution based whitebox fuzzer 

Prior to 2008, blackbox fuzzing was the norm for software testing. It is a form 

of blackbox random testing where randomly mutated well-formed inputs are 

run on the program under test. In some cases, grammars are implemented to 

create the inputs based on application-specific knowledge (Bounimova, 

Godefroid, & Molnar, 2013). Although blackbox fuzzing was effective, it 

provided very low code coverage. Consider the following conditional 

statement as put forth by Bounimova et al. (2013): 

 

int foo(int x) { 

 /

/ x is an input 

int y = x + 3; 

if (y == 13) abort(); // error 

return 0; 

} 

This only has a 1 in 232 chance of being accessed since the input variable x 

would have a randomly-allocated 32-bit value. This low code coverage meant 

many bugs were not detected.  



12 
 

In 2008, Patrice Godefroid, Michael Y. Levin and David Molnar implemented 

symbolic execution and dynamic test generation to give rise to the whitebox 

fuzzing tool, SAGE (Scalable, Automated, Guided Execution). This algorithm 

could dynamically create randomly mutated input variables based on 

constraints in the program under test. This way the well-formed inputs were 

able to access more paths in the program allowing for more code coverage.  

SAGE was credited with finding roughly one third of all the bugs during the 

development of Microsoft’s Windows 7. However, majority of the test time 

was spent in the discovery of the appropriate inputs which was done manually 

by a skilled programmer. SAGE set the stage for further research to overcome 

its drawbacks. 

 

B. TaintScope 

TaintScope, built on the symbolic execution engine mentioned in SAGE, is a 

fuzzer that “can symbolically evaluate a trace, reason about all possible values 

that can execute the trace, and then detect potential vulnerabilities on the trace” 

(Wang, Wei, Gu, & Zou, 2010). 

 

 

Figure 2.2.3.1 – Validating inputs using checksum integrity checks (Wang et 

al., 2010). 

As observed in figure 1, it uses checksum verification to verify the integrity of 

the mutated well-formed inputs, saving a lot of time by getting rid of 

malformed inputs. It also intelligently focuses on modifying those bits of the 

input that can mostly result in triggering exceptions in the program.  
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TaintScope was able to find 27 bugs that were previously unknown in many 

widely used applications, including Microsoft Paint, Google Picasa, 

ImageMagick, and Adobe Acrobat. 

 

C. American Fuzzy Lop (AFL) 

AFL is a well-known open source, off-the-shelf fuzzer first developed in 2014 

and has been updated regularly making it a benchmark for most novel 

algorithms being researched. Some of the enhancements made to AFL are 

credited to scientists incorporating their fuzzing techniques into AFL (Stephens 

et al.,2016) (Bohme, 2016), which is a strong indication that AFL can be 

considered one of, or even, the foremost grey-box fuzzer currently.   

It emphasizes unique code coverage i.e. creating inputs that trace paths that 

have not been accessed before (Zalewski, 2014). Another noteworthy feature 

of AFL is that it keeps a record of all the loops that it gets into and decides in 

the end which would be most important path to trace for a particular loop, 

thereby reducing the time complexity from N2 to log(N) (Stephens et al., 2016).  

A demonstration of AFL entailed using a bogus file as input to fuzz 

the djpeg tool that comes with libjpeg. As time passed, the fuzzer 

automatically created a new input file with a valid JPEG header (Böck, 2015). 

This means that smart fuzzers can operate without any seed input.  

 

D. Driller 

Driller, a fuzzing tool developed at UC Santa Barbara last year, builds on the 

AFL. It uses the complimenting strengths of fuzzing and symbolic execution 

to allay their respective drawbacks. In SAGE, symbolic execution led to the 

path explosion problem where too many possible paths are generated. A trade-

off had to be made between time and code coverage (Bounimova et al., 2013). 

Also, a lot of time was spent on manually creating inputs. 

Driller solves these issues by using concolic execution to split the program into 

compartments and then use fuzzing to drill deep into the program by using 
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valid inputs crafted by the concolic execution engine (Stephens et al., 2016).     

Tests were performed on 126 binaries using AFL and Driller. AFL found 66 

bugs while Driller was able to find 72 bugs (Stephens et al., 2016).    

  

E. AFLFast 

AFLFast is a state of the art fuzzing tool that, as the name suggests, is an 

augmentation on AFL that implements Coverage-based Greybox Fuzzing 

(CGF). CGF combines whitebox and blackbox fuzzing as it doesn’t need any 

program analysis to generate seed inputs. Instead of symbolic execution, it uses 

Markov chains to recognize paths that are not being frequently traced by the 

fuzzer. This improves code coverage without requiring additional time for 

input generation. 

It was able to find more bugs in lesser time as compared to off-the-shelf AFL 

(Böhme, Pham, & Roychoudhury, 2016). 

 

F. Neural Byte Sieve 

Rajpal, Blum and Singh (2017) developed a technique to use neural networks 

to discover and learn patterns in the input files by studying previous fuzzing 

runs. These patterns can then be leveraged to predict optimal locations to 

perform future fuzzing using the right mutations.  

They implemented this in AFL and were able to demonstrate significant 

enhancements in terms of code coverage and unique code path traces. 

  

2.3 Discussion 

Ever since SAGE (Godefroid et al.,2012) there has been a race to develop better 

automated seed inputs or better fuzzer logic to overcome the challenges. The 

primary strength of grey-box fuzzing is that it functions without requiring the 

source code of the SUT. This is advantageous for the testing and security 

verification of third-party softwares (DeMott, 2007). Since grey-box fuzzing is 
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based on the lightweight black-box fuzzing technique, but may still glean 

information about the SUT, code coverage can still be leveraged without 

sacrificing time on program analysis (Bayer et al., 2006). Grey-box fuzzing, 

however, is unsuitable for conditions when the internals of the software cannot 

be accessed. 

 

The state of the art is to combine lightweight blackbox/greybox fuzzers with 

whitebox fuzzers that employ symbolic execution to combine the strengths of 

both and minimize each other’s drawbacks. They build a program model 

automatically as it is tested, allowing for optimal guidance of the fuzzer. For 

example, HybridFuzz (Pak, 2012) first runs symbolic execution to create inputs 

that lead to “frontier nodes” which are then used by a blackbox fuzzer. In 

contrast, Driller starts with AFL and turns to symbolic execution when it “gets 

stuck”, for example, to generate a magic number (Stephens et al., 2016). 

Whereas AFLFast uses Markov Chains for the same (Böhme et al., 2016).  

 

Time is an important constraint when it comes to software testing. Grey-box 

fuzzers are more non-specific than white-box fuzzers. Since white-box fuzzers 

take into consideration the source code, information about the language’s 

syntax is essential to perform the analysis. Hence it can be difficult to test 

software’s that use multiple languages or those whose language is unknown to 

the fuzzer. Grey-box fuzzers unlike black-box fuzzers can automatically learn 

to generate valid inputs which eliminates the need to have seed inputs. By not 

being dependent on valid seed inputs that have the purpose of taking the 

execution away from branches that only lead to exception handling in the 

parser code, grey-box fuzzers can be automated in a more sophisticated matter 

than black-box fuzzers. 
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3. EXPERIMENT DESIGN AND METHODOLOGY 

 

3.1 Introduction 

 

In the last chapter, the challenges faced by fuzzing were discussed. Time being 

one of the primary ones. In this chapter, the basic working of American Fuzzy 

Lop (AFL) fuzzer will be discussed followed by the modifications proposed 

and their effect on the fuzzing process. A quantitative experiment will be 

discussed in this chapter that compares the basic AFL to the modified version 

which is expected to improve the runtime and hence speed up bug detection.  

 

3.2 Why American Fuzzy Lop? 

An effective fuzzing framework comprises of more than just a method to create 

and pass invalid inputs to the software being tested. Some method for 

instrumenting the software is required so as to screen what is happening inside as 

each case is handled. Exceptions, crashes and other unexpected behavior must be 

identified and additionally logged and answered to the client alongside as much 

information as would be essential for further manual examination. There must 

likewise be a test harness that can restart the application automatically as required 

so that the fuzzing effort can run unsupervised. 

In Franz (2010) and Vimpari (2015), several prevalent free fuzzing tools are 

assessed and compared to each other. This work outlines well that there are a wide 

range of sorts of fuzzers and they are appropriate for various circumstances. There 

is no single tool that gives the best results in each circumstance. 

For the experiment, an open source state of the art fuzzer called the American 

Fuzzy Lop as discussed in last chapter will be implemented. 

American Fuzzy Lop Fuzzer or AFL is a well-known open source, off-the-shelf 

fuzzer first developed in 2014 and has been updated regularly making it a 

benchmark for most novel algorithms being researched. Some of the 

enhancements made to AFL are credited to scientists incorporating their fuzzing 

techniques into AFL (Stephens et al.,2016) (Bohme, 2016), which is a strong 
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indication that AFL can be considered one of, or even, the foremost grey-box 

fuzzer currently.  Hence, AFL was chosen to be augmented.  

 

3.3 How AFL works? 

 

AFL Fuzzer is a security focused brute-force fuzzer that can be used either in 

compile time instrumentation mode or in traditional blind fuzzer mode (Zalewski, 

2016). Instrumentation can be either done either while compiling or by the use of 

QEMU hypervisor (Stephens et al. 2016). American Fuzzy Lop employs a altered 

form of edge coverage in order to pick up small, local-scale changes to program 

control flow (Zalewski, 2016). Input generation is done by a genetic algorithm, 

mutating inputs based on the genetics inspired rules and ranking them by a fitness 

function (Stephens et al. 2016). Fitness functions base on unique code coverage 

where an execution path is triggered, which is different from the paths triggered 

by other inputs (Stephens et al. 2016). Union of control flow transitions, which 

American Fuzzy Lop has seen from its inputs, such as tuples of the source and 

destination basic blocks are tracked by American Fuzzy Lop (Stephens et al. 

2016).  

The inputs that make an application execute in a different way get prioritized in 

the generation of future inputs (Stephens et al., 2016). In order to reduce the size 

of the path spaces for loops, American Fuzzy Lop uses a heuristic approach where 

only log(N) paths are taken into account for each loop instead of N paths (Stephens 

et al., 2016). Randomization of the programs interferes with the genetic fuzzer’s 

evaluation of inputs because an input, which produces interesting paths under a 

certain random seed may not do so under another random seed (Stephens et al., 

2016). If randomization is not removed, the fuzzing component is likely to explore 

only few paths, but if constant randomness is used, then the program accepts the 

same input each time and that allows the fuzzer to find this value and subsequently 

explore further (Stephens et al., 2016).  

The process of American Fuzzy Lop is to load user-supplied initial test cases into 

the queue, then take next input file from the queue, attempt to trim the test case to 

the smallest size, which will not change the measured behavior of the system under 
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test, mutate the file repeatedly by using a variety of traditional fuzzing strategies 

and if any of the generated mutations caused new state transitions that were 

recorded by the instrumentation, new entry of the mutated output is added to the 

queue and then the algorithm takes next input file from the queue and repeats 

(Zalewski, 2016).  

 

Figure 3.3.1 The UI of AFL 

If instrumentation is to be used, the fuzzed program has to be instrumented with 

aflgcc (Zalewski, 2016). The instrumentation will also display the number of 

locations that were instrumented, as seen in Figure 3.3.2.  

  

 

Figure 3.3.2 UI showing instrumented locations 

During instrumentation assembly code is injected to the target program that is used 

to trace executions paths as new inputs are entered (Margaritelli, 2015). Injected 

assembly code is also used to determine if known or unknown execution paths is 

triggered by a new mutation input (Margaritelli, 2015). When fuzzing with 
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instrumented code, last new path should show the time when last new path was 

found like in Figure 3.3.3 (Zalewski, 2016). 

 

Figure 3.3.3 Running AFL withs instrumented code. 

The disparity between instrumented and non-instrumented afl-fuzzing can be seen 

using a simple program that is known to have only one unique crash. Non-

instrumented fuzzing shows total paths as 1 and total crashes to be 0. On the other 

hand, performing fuzzing with instrumentation, the total paths were found to be 5 

and total crashes were 63 with only 1 unique.  

American Fuzzy Lop fuzzes until Ctrl-C is pressed but at least one queue cycle 

should be completed before fuzzing is stopped (Zalewski, 2016). Completing one 

queue cycle may take from seconds to even a week (Zalewski, 2016). The fuzzing 

is performed by afl-fuzz utility that requires a read-only directory with initial test 

cases, a directory to store results and path to the binary to be fuzzed (Zalewski, 

2016).  

For example, when command  

./afl-fuzz -i input1 -o output1 /home/virtual/Ravi/afl-

1.92b/a.out  
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is used, the -i parameter points out to a directory with initial test cases and -o 

parameter points out to a directory to store the fuzzing results (Zalewski, 2016).  

American Fuzzy Lop comes with sample test cases containing small standalone 

files that can be used to seed afl-fuzz (Zalewski, 2016). The archives directory has, 

among others, samples of rar, tar and zip (Zalewski, 2016). Images directory has, 

among others, samples of bmp, jpeg and png (Zalewski, 2016). Multimedia 

directory has a sample of h264 and others directory has among others samples of 

js, pdf, rtf and text files (Zalewski, 2016). These will be used as benchmarks for 

the experiment.  

The directory to store results will have three subdirectories that are updated in real 

time (Zalewski, 2016). Queue directory has test cases for every distinctive 

execution paths and the starting files given by the user (Zalewski, 2016). Crashes 

directory has unique test cases that caused the program to receive a fatal signal 

and the entries are grouped by the received signal (Zalewski, 2016). Hangs 

directory has unique test cases that cause the tested program to time out (Zalewski, 

2016).  

American Fuzzy Lop considers crashes and hangs unique if the associated 

execution paths involve any state transitions that have not been seen in previously 

recorded faults (Zalewski, 2016). Crash is considered unique if the crash trace 

includes not seen a tuple in any of the previous crashes or if the crash trace is 

missing a tuple that was present every time in earlier faults (Zalewski, 2016).  

In order to ease crash analysis American Fuzzy Lop fuzzer has a crash exploration 

mode where a crashed test case is provided as an input and American Fuzzy Lop 

uses its genetic algorithms to see how far can be reached within the instrumented 

codebase while the program is kept in the crashing state (Zalewski, 2016). Figure 

3.3.4 shows an example where the crashes are being used as inputs, though, only 

one unique crash is recognized by the fuzzer. 
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Figure 3.3.4. Fuzzing with a failing test code as input. 

American Fuzzy Lop produces a coverage-based grouping of crashes that can be 

triaged manually or use GDB scripts to analyze (Zalewski, 2016). Also, every 

crash can be traced to its parent non-crashing test case in the queue, which should 

make it easier to detect faults (Zalewski, 2016). Zalewski (2016) points out that 

some crashes produced by fuzzing can be fairly difficult to evaluate for 

exploitability without substantial work in debugging and code analysis.  

 

3.4   Instrumenting binary-only apps 
 

When the source code is unavailable, AFL offers some experimental support for 

fast, convenient instrumentation of binaries that are black-box. This is carried out 

with a form of QEMU running in the "user space emulation" mode. According to 

Zalewski (2016), this mode is about 2-5x slower compared to compile-time 

instrumentation, is less prone to parallelization, and may present some other quirks 

as well. 
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Full system testing is difficult to achieve because most testing tools do not have 

full access to the lower levels of the software stack. To address this issue, 

virtualization technology is frequently used in full system testing tools. One such 

virtualization technology is QEMU (Quick Emulator). It is an open source 

emulator software that carries out hardware simulation. 

QEMU’s aim is to emulate a target on top of a host, each having different or 

similar architectures. A simple technique would be to code an interpreter for the 

target’s instruction set followed by compiling it on the host system. However, this 

is a very time-consuming endeavour. A smarter method is just-in-time 

compilation: interpret the target’s code to the native host instructions and then 

execute at native speed which is accomplished by QEMU automatically. 

 

3.5 Tiny Code Generator Modification 
 

This raises another issue, translating directly from target to host is not able to scale 

well, as it would require translators for all the target and host tuples. This can be 

solved by introducing an indirection layer, Tiny Code Generator (TCG).  

A TCG front-end takes native target instructions and puts them into an 

architecture-independent intermediate representation (IR). A TCG back-end then 

casts the IR into the native host’s instructions. A new targer architecture then only 

requires the programmer to write a new front end while a new host architecture 

would require only a new backend. This immensely lowers the manual work 

required to carry out the fuzzing.  

The translation is done while running during emulation at the elementary block 

level. Since translation is resource intensive, translation blocks (TBs) are kept in 

the TCG cache, where from they can be called if they are executed again. 

An important issue to take into consideration here is that the memory layout of the 

code that was translated would not always be a match for the original code. 

References to memory addresses also need to be fixed.  

For example, the control-flow instruction that would terminate a block. If it is a 

direct jump then the address of the destination is already known, so it can be 
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directly corrected, and the jump can then be translated into a native jump onto the 

inheritor, resulting in a zero runtime overhead. QEMU calls this 

phenomenon block chaining. In the case of an indirect jump, however, the 

destination cannot be determined at the time of translation. In such a case, the jump 

can be translated to a call back to the QEMU’s core, which will then consequently 

translate the destination block and transfer control to it, thus continuing the 

emulation. Clearly, this will have a performance price. 

AFL, being a coverage-guided fuzzer, needs a tracing instrumentation to collect 

information about the program’s control flow (Biondo, 2018). If you have the 

program’s source code, you can recompile it using AFL’s instrumenting compiler, 

which will add a small snippet to the beginning of every basic block. When you 

only have a binary, you can use AFL’s QEMU mode: the binary runs within a 

patched QEMU that collects coverage information and delivers it to AFL (Biondo, 

2018). 

QEMU patches in AFL function as follows: 

The qemu_mode/patches/afl-qemu-cpu-inl.h file contains the actual 

implementation. This has two main components: the forkserver and the tracing 

instrumentation (Biondo, 2018). The forkserver is AFL’s method to optimize the 

initialization overhead as discussed. The forkserver starts before the program is 

run and hence the children always have a vacant TCG cache (Biondo, 2018). 

Therefore, there’s a technique by which children notify the parent of the newly 

translated blocks, leading the parent to translate the block within its own cache for 

upcoming children. 

The instrumentation part then calls the accel/tcg/cpu-exec.c in the QEMU core. 

Specifically, this patch inserts a snippet of code into cpu_tb_exec, which is called 

whenever a TB is executed by the emulator. The patch calls afl_maybe_log, which 

holds the responsibility to check whether the block resides within the traced 

bounds and, if so, the control flow transfer is traced into AFL’s edge map. 

This gives rise to an issue, the jumps in the chained blocks will be unable to call 

back into the emulator and therefore, it won’t go through cpu_tb_exec. AFL 

provides a siolution to this is disabling chaining: 
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setenv("QEMU_LOG", "nochain", 1); 

However, this causes it to function very slowly since direct jumps are not being 

traced at all.  

TCG Instrumentation: 

The idea is to handover the instrumentation into the translated code by adding a 

small snippet of TCG IR at the start of every TB. By doing this, the instrumentation 

becomes a part of the emulated software, thus eliminating the need to go back into 

the emulator at each block allowing us to re-enable chaining in order to reduce the 

time required.  

 

The function afl_maybe_log exists in the file qemu_mode/patches/afl-qemu-cpu-

inl.h: 

 

/* This is the same as the tuple logging function from afl-

as.h. */ 

static inline void afl_maybe_log(abi_ulong cur_loc) { 

  static __thread abi_ulong prev_loc; 

  /* Optimize for cur_loc > afl_end_code, only for Linux. */ 

  if (cur_loc > afl_end_code || cur_loc < afl_start_code || 

!afl_area_ptr) 

    return; 

  /* It is seen that QEMU always maps to some fixed locations, 

so ASAN will not be a concern. But the instruction addresses 

may be aligned inadvertently. The value has to be randomized 

to get something quasi-uniform. */ 

  cur_loc  = (cur_loc >> 4) ^ (cur_loc << 8); 

  cur_loc &= MAP_SIZE - 1; 
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  /* Here probabilistic instrumentation is implemented by 

reading the scrambled block address. This will keep the 

instrumented memory locations steady across various runs. */ 

  if (cur_loc >= afl_inst_rms) return; 

  afl_area_ptr[cur_loc ^ prev_loc]++; 

  prev_loc = cur_loc >> 1; 

} 

 

Everything that depends on cur_loc can be done at translation time, as cur_loc is 

the address of the current block. Basically, TCG IR needs to be generated for the 

last two lines. This can be done as follows: 

 

/* Generates TCG code for AFL's tracing instrumentation. */ 

 

static void afl_gen_trace(target_ulong cur_loc) 

{ 

  static __thread target_ulong prev_loc; 

  TCGv index, count, new_prev_loc; 

  TCGv_ptr prev_loc_ptr, count_ptr; 

 

  /* Optimize for cur_loc > afl_end_code, which is the case on Linux systems. */ 

 

  if (cur_loc > afl_end_code || cur_loc < afl_start_code || !afl_area_ptr) 

    return; 
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  /* QEMU always maps to fixed locations, so ASAN is not a concern. But 

instruction addresses may be similar. The value needs to be changed to get a quasi-

uniform value. */ 

 

  cur_loc  = (cur_loc >> 4) ^ (cur_loc << 8); 

  cur_loc &= MAP_SIZE - 1; 

 

  /*  Instrumentation is implemented by observing the scrambled block address as 

this stabilizes the locations across the various runs. */ 

 

  if (cur_loc >= afl_inst_rms) return; 

 

  /* index = prev_loc ^ cur_loc */ 

  prev_loc_ptr = tcg_const_ptr(&prev_loc); 

  index = tcg_temp_new(); 

  tcg_gen_ld_tl(index, prev_loc_ptr, 0); 

  tcg_gen_xori_tl(index, index, cur_loc); 

 

  /* afl_area_ptr[index]++ */ 

  count_ptr = tcg_const_ptr(afl_area_ptr); 

  tcg_gen_add_ptr(count_ptr, count_ptr, TCGV_NAT_TO_PTR(index)); 

  count = tcg_temp_new(); 

  tcg_gen_ld8u_tl(count, count_ptr, 0); 

  tcg_gen_addi_tl(count, count, 1); 

  tcg_gen_st8_tl(count, count_ptr, 0); 
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  /* prev_loc = cur_loc >> 1 */ 

  new_prev_loc = tcg_const_tl(cur_loc >> 1); 

  tcg_gen_st_tl(new_prev_loc, prev_loc_ptr, 0); 

} 

 

 

This should be called before translating each block. The TB IR generation happens 

in tb_gen_code (accel/tcg/translate-all.c), which subsequently calls the target 

frontend’s gen_intermediate_code function: 

 

tcg_ctx.cpu = ENV_GET_CPU(env); 

gen_intermediate_code(cpu, tb); 

tcg_ctx.cpu = NULL; 

 

This needs to be changed to insert the IR before each block: 

 

tcg_ctx.cpu = ENV_GET_CPU(env); 

afl_gen_trace(pc); 

gen_intermediate_code(cpu, tb); 

tcg_ctx.cpu = NULL; 

 

The function setenv("QEMU_LOG", "nochain", 1) has to be removed from the 4 

AFL files: afl-analyze.c, , afl-tmin.c, afl-fuzz.c and afl-showmap.c. 
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3.6 Chain Caching modification 
 

AFL uses a forkserver strategy to decrease and optimize initialization overhead. 

Basically, the forkserver is run after initialization, and it forks off children at 

AFL’s request. Each child then executes a test case. This approach removes 

QEMU’s initialization overhead but can cause TCG cache thrashing since the 

parent, after being initialized, has a vacant TCG cache, thus all the children would 

be starting with an empty cache.  

To circumvent this, AFL’s patches establish a connection between the parent and 

child, which the child uses to alert the parent of each new basic block translation 

that takes place. The parent will then be able to translate the block within its own 

cache thus making it accessible to future children. 

To do this, AFL patches tb_find in accel/tcg/cpu-exec.c by putting a call 

to afl_request_tslafter tb_gen_code, which does the translation of the block. 

The afl_request_tsl function sends the data needed to identify the TB (address, CS 

base and flags) to the parent, that is spinning in afl_wait_tsl. 

Finally, afl_wait_tsl calls the tb_gen_code function to translate the block residing 

in the parent’s cache. 

The tb_find function then receives two parameters, last_tb and tb_exit, which 

identify the previous TB and slot where it jumps of the previous TB’s last 

instruction, which led to the current one. After translating the recieved 

block, tb_find performs the chaining by patching the previous block’s jump slot: 

/* Patching the calling TB. */ 

if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 

    if (!have_tb_lock) { 

        tb_lock(); 

        have_tb_lock = true; 

    } 

    if (!tb->invalid) { 

        tb_add_jump(last_tb, tb_exit, tb); 
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    } 

} 

However, afl_wait_tsl won’t cache the chains between TBs. The implementation 

for caching of the patched jump slots can be found in the appendix. Basically, the 

parent is notified when the tb_add_jump block is reached so the caching can take 

place.  

3.7 Experiment Design 
 

The summary statistics produced by the AFL include the number of bugs found, 

code coverage percentage and time taken among several other relevant parameters. 

A comparison can be made between the number of bugs for the two fuzzer 

configurations tested. This relates directly to the research question. There is 

expected to be a significant rise in both these numbers in the modified AFL fuzzer 

compared to the basic AFL fuzzer. 

The experiment consists of running both versions of the fuzzer on ten common 

benchmark binaries for one hour per binary. The number of bugs found will be 

counted. If the number of bugs found by one version is higher than the other, it 

can be inferred that that particular version of the fuzzer is performing faster than 

the other.  

Several benchmark binaries are provided in the AFL package. The ones chosen 

for the experiment are as follows: 

1. tcpdump 

2. Readelf 

3. nm 

4. objdump 

5. C++filt 

6. xmllint 

7. mutooldraw 

8. djpeg 

9. readpng 

10. strings 
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Statistical analysis can be done for the two configurations of the fuzzer to find the 

mean difference in performance using a paired t-test. If improved performance is 

observed overall in the ten binaries tested, then the hypothesis can be said to have 

been proven unequivocally. 

 

3.8 Conclusion 
 

Time is of the essence. This is true for fuzzing as well. In today’s world with rapid 

software development and quick updates, it is essential that software testing can 

be done as fast as possible. In this chapter, the AFL fuzzer’s inner workings were 

discussed along with the modifications proposed to reduce the time taken to find 

crashes. The experiment design was explained as well. The next step would be to 

perform the experiment and record the results. 
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4. IMPLEMENTATION, RESULTS AND ANALYSIS 

 

 

4.1 Introduction 

 

As discussed in the previous chapter, the basic AFL fuzzer and the modified 

version will both be run on ten different binaries and the number of bugs detected, 

code coverage achieved, and time taken for each will be noted. Due to time 

constraints, each binary will be tested only for one hour using both the fuzzers.  

The results will be compared using a paired t-test as detailed in the section 4.3 

below. 

 

4.2 Implementation  

 

The programming language used will be C in a Linux Environment on an x86 

machine with 4 cores.  

The experiment comprises of the following basic steps:  

 

1. First, prime the AFL by initializing it in the QEMU mode.  

2. We run the fuzzer on the ten benchmark binaries selected.  

3. After one hour has passed, the fuzzer’s execution is stopped and the 

number of bugs detected for each of the benchmark binaries are recorded.  

4. Then, the modified version of AFL is initialized in QEMU mode.  

5. Steps 2 and 3 are repeated for this version of the fuzzer.  

6. The observations are tabulated, and a paired t-test is conducted to 

determine whether any significant change has been achieved in the number 

of bugs detected.  
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4.3 Experiment Results 

 

Both fuzzers were run for one hour each on the ten binaries and the number of 

crashes detected was noted down. The following table shows the values 

observed. 

 

Binary Under Test Crashes detected using 

basic AFL 

Crashed detected using 

modified AFL 

tcpdump 12 15 

Readelf 19 21 

nm 6 6 

objdump 8 11 

C++filt 14 16 

xmllint 32 37 

mutooldraw 9 11 

djpeg 8 6 

readpng 17 19 

strings 6 5 

Table 4.2.1. Crashes detected in basic AFL and modified AFL  

The fuzzing benchmarks are derived from real-life libraries that have a wide range 

of bugs and hard-to-find code paths for bug finding tools and are included in the 

AFL package. 

Some examples include jpeg, png, xml, JSON, SSL, etc. The bugs present in these 

binaries are well-documented and hence the fuzzers can be tested to find how 

many of the known bugs were discovered by it and also the different paths 

explored by the fuzzer which can tell us the code coverage achieved. 

 

4.4 Analysis: Paired t-test  

 

This section delineates the technique that will be utilized to dissect the analysis 

results. A paired t-test method will be implemented in this analysis. It is a factual 



33 
 

system that is utilized in "before-after‟ studies, case-control study, or coordinated 

sets (Sigma, 2009). It analyses two means that are obtained from a similar subject. 

The point of such sort of test is to decide if the mean difference between the 

observations on an explicit result is significantly different from zero.  

 

In this investigation, the data contains two factors that are tested on the same set 

of variables. The two factors are the basic AFL and the modified AFL and the 

variables are the number of bugs found in the ten binaries under test. By utilizing 

the paired t-test, it becomes clear whether the modifications made to AFL were 

successful in speeding up the fuzzing or not. 

Hypothesis: 

The 'null hypothesis' will be as following: 

H0: There is no significant difference in mean of the number of bugs found by the 

basic AFL and the modified AFL 

And the 'alternative hypothesis' can be defined as: 

H1: There is a significant difference in mean of the number of bugs found by the 

basic AFL and the modified AFL 

 

The results of the paired t-test are as follows:  

P value and statistical significance:  

                              The two-tailed P value equals 0.0368  

Confidence interval:  

The difference in the mean of Modified AFL and Basic AFL minus was found to 

be 1.60  
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Figure 4.4.1. T Distribution of the paired t-test 

 

The 95% confidence interval of this difference was found to be: From -3.08 to -

0.12  

Intermediate values used in calculations:  

  t = 2.4495                               df = 9  

  standard error of difference = 0.653 

 

 

Table 4.4.1. Paired t-test results for Basic AFL vs Modified AFL 

 

 

 Basic AFL Modified AFL 

Mean 13.10 14.70 

SD 8.02 9.60 

SEM 2.54 3.04 

N 10 10 
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4.5 Discussion 
 

According to conventional criteria, a two-tailed P value of 0.0368 is considered to 

be statistically significant. This means that the null hypothesis can be dismissed. 

The mean difference between the the number of bugs discovered was found to be 

1.6 which means the modified AFL fuzzer on average detected more than 1 crash 

per binary more than the basic AFL fuzzer. This may not seem like a big difference 

but fuzzing generally is carried out by extremely powerful computers and for long 

periods of time. Due to time limitations, the study was only able to run the fuzzers 

for an hour making the mean difference of 1.6 quite significant.    

The changes made to AFL significantly improved the performance as expected. 

Simply put, more bugs were found by the modified version in the same amount of 

time. This translated to the fact that the modified AFL runs faster than the basic 

version.  

This decisively proves that adding the TCG IR to help translate the blocks does in 

fact significantly improve the performance of the AFL Fuzzer under QEMU mode 

in terms of speed and bug detection.  
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5. CONCLUSION 

 

5.1 Introduction 

 

While symbolic execution-based whitebox methodologies have been gaining 

prominence, their scalability is not comparable to that of blackbox or greybox 

fuzzers. Speeding up the greybox fuzzer AFL can help the entire SDLC and error 

free software can be published quickly.  

The study was able to successfully answer the research question:  

 

“Can implementing an intermediate layer in the tiny code 

generator of the American Fuzzy Lop fuzzer improve its speed 

significantly?” 

 

The answer simply put is yes. A more detailed discussion can be 

found in the next section. 

  

5.2 Conclusion 

 

In the experiment conducted, it was observed that the modified AFL fuzzer 

provided better performance in QEMU mode. In the same amount of time, the 

modified fuzzer was consistently able to detect more bugs. The mean difference 

between the bugs discovered was 1.6 which means the modified AFL was able to 

detect atleast one bug more in each of the binaries as compared to the basic AFL 

when run in QEMU mode.  

This conclusively proves that adding the TCG IR to help translate the blocks does 

in fact significantly improve the performance in terms of speed and bug detection. 

The hypothesis was proved to be true. However, the study has certain limitations 

that need to be taken into consideration. These are discussed in the next section. 
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5.2 Limitations 

 

1. Due to time constraints, each binary was tested only for one hour. This may 

give rise to discrepancies as the test can be carried out for weeks to discover 

all the bugs. It is essential to run the tests to completion and note the time 

required to discover all the known bugs in each binary. This will unequivocally 

prove whether the modified AFL fuzzer performs faster than basic AFL or not.  

 

2. More binaries need to be tested to fully gauge the performance difference 

between the two fuzzers. It can be a co-incidence that the ten binaries selected 

gave favourable results.  

 

3. Both fuzzers were run with chain caching enabled. The same experiment can 

be conducted without chain caching to be able to fully comprehend the 

difference in performance. The results may or may not be aligned with the 

findings of this study.  

 

4. Only QEMU mode is affected by the modifications made. They have no 

effect on the basic usage of AFL. The basic AFL in normal mode will still 

give better results than the modified version. 

 

5. Another factor that may affect dependability is the haphazardness in AFL's 

fluffing. Since AFL uses random inputs, the performance is different in each 

run. Several runs need to be conducted to ensure the consistency of the 

results.  

 

6. The limitation here is that only one parameter, the number of bugs 

discovered, is being measured. However, there are more nuances to fuzzing 

that need to be taken into consideration. The time taken to discover all the 

bugs might be high but the fuzzer might be able to discover a majority of the 

bugs in a small amount of time and then take longer to discover the rest. This 

may be important in many applications where time is limited.  
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7. Another limitation is that the fuzzer might work excellently on the ten 

binaries being tested but might not work so well on other programs since 

each piece of software is unique in its structure and build. But these libraries 

have been selected because they are used as the benchmark by scientists 

(Cadar, Pawlowski, Dill & Engler, 2008) (Gligoric et al., 2010). 

 

8. Only one device was used to conduct the experiment. The architecture 

differences on other hardware could create issues in the block chaining 

algorithm. It is important to test on devices with different architectures.  

 

 

5.3 Further Research  

 

Future research can include trying to combat the various challenges by combining 

the best methods discovered so far for each problem area. The following is a 

proposed implementation: 

 

1. Before fuzzing commences, one can implement static program analysis by 

analysing the program control and data flow to produce an input dictionary using 

the strategies delineated by Shastry et al. (2017). This can aid the fuzzer in 

determining the seed inputs that will create the most number of paths thereby 

increasing code coverage.  

2. The fuzzer can then be run for a limited time as a test run to allow the neural byte 

sieve to come up with optimal location for the next fuzzing cycle.  

3. Then Driller’s concolic execution engine can be implemented to split the 

program into compartments and create more paths using steps 1 & 2.  

4. This can be done in conjunction with TaintScope’s checksum verification 

algorithm to select the best mutated input seeds.  

5. Lastly, AFLFast’s algorithms can be used to trace rare paths.  
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Another avenue of research can include implementation of multiple fuzzers and 

running them simultaneously, sharing information with each other, speeding up 

the fuzzing process. As we have observed, contingent on the binary, different 

symbolic executors will be more or less effective and the right one can be chosen 

dynamically to allow for maximum code coverage while reducing duplication by 

marking paths that are traced. 
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