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Abstract 

This thesis investigates the different approaches to video object segmentation and the 

current state-of-the-art in the discipline, focusing on the different deep learning 

techniques used to solve the problem. The primary contribution of the thesis is the 

investigation of usefulness of Exponential Linear Units as activation functions for deep 

convolutional neural architectures trained to perform object semi-supervised 

segmentation in videos. 

Mask R-CNN was chosen as the base convolutional neural architecture, with the view 

of extending the image segmentation algorithm to videos. Two models were created, 

one with Rectified Linear Units and the other with Exponential Linear Units as the 

respective activation functions.  The models were instantiated and fine-tuned on the 

first frame of each sequence on the test dataset before predicting segmentations. This 

was done to focus on the principal object in the video for segmentation.

Mean Jaccard index was the metric chosen to evaluate the performance of the models. 

No significant difference was found between the performance of the two models on the 

test  dataset.  A qualitative analysis of the performance of the model with ReLU 

activation functions was conducted with the view of understanding its strengths and 

weaknesses. The thesis concludes with an overview and a discussion on limitations and 

recommendations for future work that can be done to extend on the work presented in 

this thesis.

Key Words: Computer Vision, Video Object Segmentation, Deep Learning, 

Convolutional Neural Networks, Rectified Linear Units, Exponential Linear Units. 
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1. INTRODUCTION 

1.1. Background

Computer Vision has always been one of the more complex among the host of 

problems that pose challenge to the development of intelligent automata with sensory 

inputs. Computer vision is the process of automating the deciphering of patterns, the 

understanding the semantic information about real world objects represented in the 

visual media (Ballard & Brown, 1982). 

Object Segmentation in videos is currently an area of research that has been garnering 

a lot of attention, primarily due to the sheer importance the process has in a broad 

spectrum of problems in the domain of Computer Vision in general, and partly due to 

the recent technological advances – both hardware and software. The objective of 

object segmentation in videos is similar to that of object segmentation in images, to 

identify, and delineate one or more objects present in a video. It is a more complex 

problem than the more traditional problems like object detection (classification and 

localisation of objects), and semantic segmentation (grouping similar pixels in a 

video). Object segmentation (and the more complex instance segmentation) can be 

considered an extension to these classical problems (He, Gkioxari, Dollár, & Girshick, 

2017). The identification and segmentation of objects forms the basis for scene 

understanding, a mandate for the myriad of applications falling under disciplines 

ranging from traffic monitoring (Cheung & Kamath, 2007; Remagnino et al., 1997), 

and autonomous driving (Cordts et al., 2016; Ess, Mueller, Grabner, & Gool, 2009), to 

intelligent photography (Yoon, Jeon, Yoo, Lee, & Kweon, 2015) among various others. 

Research on object segmentation, similar to that on many other problems falling under 

the umbrella of Computer Vision (and outside it), has been given a boost recently due 

to the significant progress made in Deep Learning. Deep Learning is an example of 

representational (or feature) learning methods, a suite of machine learning algorithms 

that aim to identify representations or features from data that help in detection or 

classification of the data itself (Bengio, Courville, & Vincent, 2012). This eliminates 

the necessity of possessing a deep level of domain-specific knowledge before 
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application of the technique to the data, enabling and even encouraging 

interdisciplinary research. The resurgence of deep learning techniques in the last 

decade has seen it pushing the existing limits and dominating the state-of-the-art in a 

multitude of fields (Yann LeCun et al., 2015). 

1.2. Research problem

Video object segmentation is fast becoming a fundamental Computer vision problem 

because of its importance to a multitude of other related problems spread across a wide 

range of disciplines. With the release of DAVIS 2016 dataset for semi-supervised 

object segmentation videos, research has been given a boost and the state-of-the-art 

pushed multiple times over the last couple of years. Most of the state-of-the-art 

solutions have their approach rooted in deep convolutional neural networks and 

employ the Rectified Linear Units as activation units in the network architecture. This 

research attempts to look at an alternative choice for activation units, Exponential 

Linear Units, which have been proven to perform better in certain contexts when 

compare to the Rectified Linear Units, in the context of semi-supervised video object 

segmentation. 

Research Question: Can changing the activation unit of a convolutional neural 

network trained to perform semi-supervised object segmentation in videos from 

Rectified Linear Unit to Exponential Linear Unit impact the mean Jaccard Index 

observed for the model? 

1.3. Research objectives

The primary objective of this research is to understand how a technique designed to 

perform object segmentation in images can be extended to videos, and subsequently, to 

investigate the impact of using a different neuron, the Exponential Linear Unit (ELU), 

than the one used in most current architectures, Rectified Linear Unit (ReLU). The 

intuition behind this research is that videos are but collections of images, which when 

played continuously, produce an illusion of motion due to persistence of vision 

(Maninis et al., 2017). Also, extension of image object segmentation techniques to 
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video is not an uncommon approach to the problem (Caelles et al., 2016; Khoreva et 

al., 2016; Maninis et al., 2017). 

A secondary objective is to look into the feasibility and specifics of modelling the 

implicit temporal structure in the videos by adding a recurrent component to the 

network architecture constructed in this research. This is motivated by the fact that 

videos are more than just collections of images, they are sequences of images – there is 

a logical, temporal flow of data from one frame to another. This presents an 

opportunity to view the same problem a bit differently. The modelling of the temporal 

structure inherent in the videos had been approached in different ways without using a 

recurrent component (Cheng et al., 2017; Khoreva et al., 2016; F. Li et al., 2013). 

There are approaches which specifically try to combine the recurrent and convolutional 

components to perform video object segmentation (Chen et al., 2016; Hu et al., 2018; 

Valipour et al., 2016). 

The null hypothesis is that there is no impact in the mean Jaccard index observed 

for a convolutional neural network to perform semi-supervised object 

segmentation in videos when the activation unit of the network is changed from 

Rectified Linear Unit to Exponential Linear Unit. 

1.4. Research methodologies

This research is of secondary, empirical nature and seeks to analyse and study the 

impact of the addition of a component to a baseline solution by comparing its 

performance with that of the baseline model. The data for the research is obtained from 

the DAVIS 2016 challenge. The code written for this experiment is made available, 

and the performance metrics are measurable – thus, the research is empirical. 

1.5. Scope and limitations

The models developed as part of this research were mostly configured with the 

hyperparameters that were suggested by the authors of the different architectures used 

in the research, and the ones preset in the Mask R-CNN implementation used as the 
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base for development. Hyperparameter tuning, although could have possibly improved 

on the observed results, was not explored thoroughly as it was not the focus of this 

research. 

1.6. Organisation of the dissertation

• Chapter 2 covers the relevant scientific literature reviewed for the purpose of this 

research. It discusses the problem of object segmentation in videos, the different 

ways the researchers have approached the problem over the years, identifying three 

broad clusters under which the solutions are classified. The review then zeroes in on 

the final and the currently most popular approach to the problem, using deep 

learning techniques and discusses various solutions rooted in deep learning, before 

concluding by stating the identified literature gaps. 

• Chapter 3 discusses the design and the methodology of the research. It starts out 

with the dataset selection process, briefly describing the different datasets 

considered for the purpose of this research, the criteria regarded to find an 

appropriate dataset and the reasoning behind choosing the final dataset. This is 

followed by a detailed description of the chosen dataset, an explanation of the 

evaluation criterion adopted by this research and an overview of the design of the 

research – the design of the experiment and the subsequent analysis and evaluation 

of the different techniques. 

• Chapter 4 delves into the details of implementing the research described in the 

third chapter. It discusses the different implementation details involved and the 

choices made during the development phase and explains the motivations behind 

those decisions. The chapter concludes with the reporting of the results obtained in 

the experiment. 

• Chapter 5 is the conclusion of the thesis. The chapter opens by giving an overview 

of the research conducted and the experimental setup, proceeding to summarise the 

results obtained and what it means in the context of the research question, and 

finally concluding by discussing potential future work that could be undertaken to 

build on the work done during this research. 
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2. LITERATURE REVIEW AND RELATED WORK 

2.1. Object Segmentation in Videos

Computer Vision has been a heavily researched topic in the field of Computer Science 

for the most parts of at least the past four decades (Ballard & Brown, 1982; Huang, 

1996). The significance of Computer Vision has risen primarily due to the exponential 

growth of the video data in the world. For context, it is forecasted that 82% of all 

internet traffic by 2022, up from 56% in 2017 (Cisco VNI, 2018). The sheer magnitude 

of video data makes it near impossible for humans to be able to process it for the 

various applications, thus arising the necessity for automating the various video 

processing tasks (Giordano, Murabito, Palazzo, & Spampinato, 2015). The importance 

of Computer Vision gains in stature when the infinite applications it impacts, spread 

across various domains, are also taken into consideration – these domains including 

robotics, autonomous vehicles, augmented reality, human-computer interaction among 

several others (Brunetti, Buongiorno, Trotta, & Bevilacqua, 2018). 

2.2 Different approaches

Object segmentation in videos is a problem of correctly classifying the pixels 

belonging to (an) object(s) in the video with the view of separating it from the 

background (Perazzi et al., 2016). It is one of the fundamental tasks for many of the 

diverse applications of Computer Vision, ranging from pedestrian detection and 

tracking (Brunetti, Buongiorno, Trotta, & Bevilacqua, 2018), behaviour understanding 

and event detection (Giordano, Murabito, Palazzo, & Spampinato, 2015) to temporal 

stabilisation of three-dimensional videos (Erdem, Ernst, Redert, & Hendriks, 2005). 

All of these applications would require being able to identify the pixels of a frame as 

part of an object and maintain the identification through out the length of the video – 

which is object segmentation. 

2.2.1 Background Subtraction 

There have been various approaches towards solving the problem of object 

segmentation in videos. One of the more popular approaches during the initial times 
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involved modelling for the background in the video, the idea then to identify the 

background across the frames in the video and subtracting the proposed background 

segmentation from each frame, thus coming up with the actual objects in the video. 

This approach is called Background Subtraction (BS). There have been a host of BS 

methods over the years, the work over the years laying out the foundation for the 

future research by identifying some of the core challenges involved in the task. 

Toyama, Krumm, et al. (1999) proposed the then state-of-the-art approach for object 

segmentation in videos, Wallflower, an algorithm they explained as based on a concept 

called Background Maintenance, itself grounded on Background Subtraction. They 

identified and discussed on some of the common challenges faced in the task, changes 

in illumination, moving objects and presence of shadows among them. 

Background Modelling techniques could further be classified into recursive and non-

recursive methods, based on their use of a buffer for the background segmentation. 

Non-recursive techniques employ a sliding-window strategy for the estimation of 

background from a scene. They use a frame buffer to keep track of the previous frames 

to learn the temporal variation of the pixels over those frames and thus aid in the 

prediction of the background in the next frame. Median filtering (Cutler & Davis, 

1998; Zhou & Aggarwal, 2001), medoid filtering (Cucchiara, Grana, Piccardi, & Prati, 

2003), linear predictive filter (Toyama, Krumm, et al., 1999) all are instances of non-

recursive techniques. On the other hand, recursive techniques are the ones that did not 

use a buffer to maintain the information of the previous frames, these updated the 

model for the background recursively at each frame. Approximated median filters 

(McFarlane & Schofield, 1995; Remagnino et al., 1997) and Kalman filters (Heikkilä 

& Silvén, 1999; Wren, Azarbayejani, Darrell, & Pentland, 1997; Zhang & Ding, 2012) 

are some popular examples of recursive techniques. While the recursive algorithms 

take up less storage when compared to the non-recursive ones, recursive algorithms 

bear with them the risk of propagating any error in the background model over the 

frames (Cheung & Kamath,2007).  
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Friedman & Russell (1997) proposed an upgrade to Kalman filter for object 

segmentation and tracking, Mixture of Gaussians (MoG). The key difference between 

the MoG method and Kalman filters was the number of Gaussian distributions tracked 

– while Kalman filter tracked a single Gaussian distribution, MoG method tracked 

multiple Gaussian distributions, maintaining a density distribution per pixel. Stauffer 

& Grimson (2000), developed a stable, robust outdoor object tracking system that was, 

to a degree, capable of coping with changes in illumination, noisy background, and 

long-term changes in the complex scene using an MoG method. Cheung & Kamath 

(2007) discuss a host of Background Subtraction techniques used in processing 

complex scenes in the context of urban traffic. They recognise the necessity of a BS 

model to be robust in handling various complexities like illumination changes and non-

stationary background components and found the model developed by Stauffer & 

Grimson (2000) to be the best-performing. They concluded that even though the 

Mixture of Gaussians method was preforming the best among the various techniques 

they surveyed, it is significantly complex (a large number of sensitive parameters that 

required attentive tuning) than the much less computationally complex approximated 

median filter which compares in the performance as well. Besides, they found the 

MoG methods to be extremely susceptible to sudden changes in global illumination, 

thus making it a far from perfect solution. Background Subtraction techniques have 

been thoroughly examined and explained in literature, with many survey papers deeply 

researching the topic (Piccardi, 2004; Bouwmans, El Baf, & Vachon, 2008; 

Bouwmans, 2009; Bouwmans, Baf, & Vachon, 2010). 

2.2.2 Graph-based techniques 

Another popular suite of techniques that are used in object segmentation in videos 

employ a graph-based approach, the key characteristic of these techniques being the 

modelling of a video as a spatio-temporal graph. In contrast to the Background 

Subtraction techniques, the graph-based techniques attempt at modelling the objects in 

the foreground rather than the background. The graph-based approaches have been 

used to tackle the problem of unsupervised object segmentation in videos with a good 

degree of success. This is tougher than the supervised version because of a lack of 
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prior definition of any object in the video. This unavailability of information leads to a 

low-level grouping of similar pixels without any semantic value attached to it, called 

over-segmentation (Lee, Kim, & Grauman, 2011). 

Grundmann, Kwatra, Han, & Essa (2010) introduced an approach in which they built 

hierarchical trees composed of over-segmented spatio-temporal regions of the spatio-

temporal graph representing the entire video. Besides the creation of the tree, they 

employed a dense optical flow to prune the tree in order to try and ensure that any 

constituent temporal connections are of high quality, resulting in a high-quality 

solution to the problem of long-term temporal coherence in video object segmentation. 

They propose their method as a preprocessing step for other segmentation techniques 

that want to model the temporal component of videos. 

Lee, Kim, & Grauman (2011) uses another unsupervised graph-based approach in 

which they try to move past the over-segmentation technique to the automation of 

discovery of a set of key segments that can be used to explicitly model object-like 

motion and (temporal and spatial) persistence. They use a region proposal technique, 

originally proposed by Endres & Hoiem (2010), to come up with candidate object 

proposals, rank the proposals on their static appearance and global motion tendencies – 

an attempt at modelling the proposed object’s centrality to the video. The top ranked 

regions are then checked for matching features across frames to create object-wise 

likelihood maps which in turn are used in binary pixel-wise classification, achieving 

global segmentation of the scene. 

Li et al. (2013) developed a graph-based technique which identified multiple segment 

tracks from a pool of proposed segments, for each of which a global appearance model 

is trained to learn incrementally. A similar incremental learning approach has been 

adopted by Babenko, Yang, & Belongie (2011) for object tracking in videos to good 

effect. The entire video is used to train all of the individual models created for the 

proposed segment tracks and this allows for efficient tracking, which are further 

optimised using a composite statistical algorithm which makes use of the global 
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appearance models. They reported state-of-the-art performance on a dataset they 

released along with the paper, the SegTrack v2 dataset. This dataset has since been 

used to evaluate segmentation models and was considered for the purpose of this 

research as well. 

Graph-based approaches have been used in semi-supervised environments as well. The 

semi-supervised task involves the provision of segmentation for some of the frames, 

possibly just the first frame of the video sequence(Bai & Sapiro, 2007; Price, Morse, & 

Cohen, 2009). The semi-supervised algorithms make the training interactive, allowing 

the user to annotate the foreground objects on the requisite frames of a previously 

unseen video sequence. For instance, some techniques propagate the user-annotated 

segments across the video to produce good results (Price et al., 2009; Fan, Zhong, 

Lischinski, Cohen-Or, & Chen, 2015).Yuen, Russell, Liu, & Torralba (2009) developed 

an online open-access system which lets users interact with images and annotate them, 

thus effectively contributing with a database comprised of a wide range of video 

sequences. 

Some other techniques made use of in other graph-based approaches include higher-

order Markov random fields (Ren & Malik, 2007; Babenko, Yang, & Belongie, 2011; 

Tsai, Flagg, Nakazawa, & Rehg, 2012), and variational approximations 

(Badrinarayanan, Budvytis, & Cipolla, 2013; Unger, Werlberger, Pock, & Bischof, 

2012) among others. Readers are recommended to read on graph-based approaches to 

solving image segmentation to get a better picture on the construction of spatial graphs 

(Camilus & V  K, 2012; Peng, Zhang, & Zhang, 2013; Wang, 2015). One of the main 

caveats with the graph-based approaches is that the construction of spatio-temporal 

graphs remains an extremely intensive task computationally, rendering it both 

expensive and slow, rendering it difficult to be used in real-time applications (Hu, 

Huang, & Schwing, 2018). 
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2.2.3. Deep Learning techniques 

The next major approach to solving the problem of object segmentation in videos is by 

employing Deep Learning. This is currently emerging as the most popular method 

owing to the fact that the current state-of-the-art is dominated by various Deep 

Learning approaches (Hu, Huang, & Schwing, 2018). In fact, Deep Learning methods 

have pushed the boundaries and improved on the state-of-the-art on other areas such as 

speech recognition and drug discovery among others (LeCun, Bengio, & Hinton, 

2015). Although Deep Learning is not a new concept and has been a major topic of 

research for the best parts of the last three decades (Y. LeCun et al., 1989), the 

unavailability of capable hardware was a major hurdle to the advances in the area; 

however, recent progress in hardware, along with the software and algorithmic 

advancements, has helped research in Deep Learning a lot, thus impacting the wide 

range of domains mentioned above (LeCun, Bengio, & Hinton, 2015). 

Deep Learning based techniques for video object segmentation more often than not 

extend on image object segmentation techniques, owing to the fact that a video 

sequence can be considered as a collection of images (Garcia-Garcia et al., 2018). That 

the Deep Learning techniques which applied an image segmentation algorithm on a 

frame-to-frame basis performed close to the state-of-the-art makes it compelling to 

review some of the image segmentation algorithms in this chapter. 

2.2.3.1 Image segmentation algorithms based on Deep Learning 

Convolutional Neural Networks (CNN) have been the most used Deep Learning 

architecture in segmentation tasks due to its tremendous ability of learning spatial 

features (LeCun et al., 1989; Krizhevsky, Sutskever, & Hinton, 2012). The 

convolutions / sliding-window taken by CNNs make them excellent in preserving 

spatial patterns (LeCun, Bengio, & Hinton, 2015). Garcia-Garcia et al. (2018) presents 

segmentation as a product of natural evolution of simpler and coarser problems, having 

their origins in classification, like image classification and the finer detection and 

localisation problems. Segmentation, classification of each pixel into background or 

foreground, thus can be considered the finest in this scale of problems, a natural 
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extension to the mentioned classical problems (He, Gkioxari, Dollár, & Girshick, 

2017). The section proceeds to examine some of the seminal deep neural network 

architectures. 

While CNNs have been used in image classification since the nineteen eighties (LeCun 

et al., 1989), it is only recently that the advancements in Computer Vision have been 

impacted greatly by them. This is mostly due to the advent of deeper network 

architectures. AlexNet, introduced by Krizhevsky, Sutskever, & Hinton (2012) was a 

pioneer effort in image classification, improving on the then state-of-the-art by more 

than ten percentage points in accuracy. The architecture, while not very deep when 

considered by today’s standards (He, Zhang, Ren, & Sun, 2015; Xie, Girshick, Dollár, 

Tu, & He, 2016), was complex enough at the time that it was implemented by splitting 

it into two and running it in two GPUs. This shows how much the domain of Deep 

Learning has progressed in the space of the past eight years. Simonyan & Zisserman 

(2014) of Visual Geometry Group from the University of Oxford improved on this 

with their proposal of VGG-16, making it easier to train yet deeper models. Szegedy et 

al. (2014), in their model GoogLeNet, introduced a new building block to the neural 

architectures, inception module, which rethought the way of stacking convolutional 

layers, making the parallel computation of a Network in Network (NiN) layer, a 

pooling layer, and two convolutional layers possible. GoogLeNet reduced considerably 

on the number of parameters required to be learned, bringing down both the memory 

required and the computational expense in the process. 

However, the results were observed to saturate after a certain depth (He & Sun, 2014; 

Srivastava, Greff, & Schmidhuber, 2015), rendering the building of deeper networks 

not very useful. He et al. (2015) introduced the concept of residual blocks in their 

seminal ResNet (short for Residual Network) architecture to address this problem. 

They solved the problem of saturation of results by introducing identity layers (or skip 

layers), layers capable of copying their inputs to the immediate next layer, the intuition 

being that a layer gets to learn not only from what its immediate predecessor outputs, 

but also from what the predecessor layer had available to learn from. This makes the 
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propagation of features deeper into the layers, thus combating the problem of 

vanishing gradients as well. The simple nature of the solution meant a further 

reduction in complexity in training, thus enabling the training of much deeper 

networks and making them faster too. ResNet, introduced in 2015, won the 

ILSVRC-2016 challenge (Russakovsky et al., 2014) recording an accuracy of 96.4%. 

This was more than eleven percentage points than the accuracy recorded by AlexNet 

(84.6%) when winning ILSVRC-2012 challenge. This again reiterates the progress 

made by the Deep Learning architectures in the area in the relatively short time span of 

four years. 

Another seminal work by Long, Shelhamer, & Darrell (2014) introduces a Fully 

Convolutional Network (FCN), replacing the fully connected layers at the end (that 

was a characteristic of most prominent architectures at the time) with further 

convolutional layers. FCNs proved the feasibility of using convolutional layers 

throughout for problems of a similar nature. The replacement of fully connected layers 

with convolutional layers meant further reduction in the number of parameters to be 

learned. The feature maps produced by the final convolutional layers are then 

upsampled by applying fractionally strided convolutions, commonly referred to as 

deconvolution layers (Zeiler & Fergus, 2013; Zeiler, Taylor, & Fergus, 2011). FCN has 

considerably improved the performance of their traditional variants and as such, is 

currently the most popular approach adopted by the researchers trying to improve on 

the performance – most of the current state-of-the-art feature FCNs. These networks 

have been so important in that these are considered the building blocks for the newer 

and improved solutions (Garcia-Garcia et al., 2018). 

The discussed progress in image classification has evidently been helped on by the 

presence of various online challenges focusing on the task, the annual ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) conducted by the ImageNet project 

(Russakovsky et al., 2014) one of the most popular ones – the winner of which has de 

facto been considered the state-of-the-art over the years. Likewise, the Pascal Visual 

Object Classes (Pascal VOC) annual challenge (Everingham, Gool, Williams, Winn, & 
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Zisserman, 2010) has also been instrumental by providing an exemplary dataset for 

image classification, object detection and segmentation. The Densely-Annotated VIdeo 

Segmentation (DAVIS) annual challenge (Caelles et al., 2018; Perazzi et al., 2016; 

Pont-Tuset et al., 2017) is regarded similarly as a benchmark dataset in the domain of 

video object segmentation. From 2017 onwards, the datasets released as part of the 

respective DAVIS challenges have provided separate segmentations for different 

objects in the frame, thus making it suitable for training instance segmentation models 

as well – the process of not only segmenting objects, but identifying the different 

instances of each object as well. 

While most of the recent techniques employ FCNs to achieve segmentation in images, 

the constituent components vary. Classical networks like VGG-16 or ResNets sans 

their fully connected layers are used to extract the spatial features and then a 

deconvolution network is connected to this part to upsample the resultant feature map. 

This is akin to an encoder-decoder architecture, with the extraction of spatial features 

and generation of smaller sized feature maps being the encoding component and the 

subsequent upsampling of these low resolution feature maps to pixel-accurate 

segmentations being the decoding component. The final layer in the architecture could 

still be a softmax classification layer. SegNet presented by Badrinarayanan, Kendall, & 

Cipolla (2015), and U-Net presented by Ronneberger, Fischer, & Brox (2015) are two 

examples of this encoder-decoder architecture. 

The more conventional approach of considering the problem of segmentation as a 

pixel-wise classification also has been adopted in research and commendable progress 

made on the area. Gu (2009) discussed about the importance of features in identifying 

regions of potential interest in a complex scene. A unified framework for object 

detection, classification and segmentation was presented. Uijlings, Sande, Gevers, & 

Smeulders (2013) successfully extended on this paradigm of using regions for 

recognition and introduced the Selective Search algorithm for object detection. 

Girshick, Donahue, Darrell, & Malik (2013) presented a method called Regions with 

CNN features (R-CNN). R-CNN used the Selective Search algorithm for generating 
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proposals of regions of interest (RoI) in the image. These proposals were then 

classified into objects and the regions refined using a linear regression model. The R-

CNN architecture was improved remarkably on its running time by its successor, Fast 

R-CNN (Girshick, 2015). This was achieved by the unification of the different 

constituent networks in the R-CNN architecture, and by the adoption of a technique 

called the RoIPool (Region of Interest Pooling), which eliminated the need for running 

a forward pass per proposal and reduced it to one single forward pass for all the 

proposals. The Fast R-CNN architecture was further sped up by removing the use of 

the relatively slower Selective Search algorithm (Uijlings, Sande, Gevers, & 

Smeulders, 2013). The deep convolutional network that performed the feature 

extraction was used for region proposal as well. The resultant architecture was dubbed 

Faster R-CNN (S. Ren, He, Girshick, & Sun, 2015). He et al. (2017) extended on this 

architecture and presented an architecture aimed at solving the task of instance 

segmentation. The RoIPool technique was replaced by a novel technique proposed 

called RoIAlign, which helped preserve the exact spatial locations of features and fixed 

a misalignment caused by RoIPool. This architecture, Mask R-CNN, improved on the 

state-of-the-art for instance segmentation in images and went on to win the prestigious 

Marr Prize for the year 2017, annually awarded to the best paper by International 

Conference on Computer Vision (ICCV).  

2.2.3.2 Deep Learning for video object segmentation 

As discussed before, many of the video object segmentation techniques extend on 

existing image segmentation techniques, the intuition behind doing so being the fact 

that videos are but collection of images (the constituent frames). However, videos 

should be considered a sequence of images (frames) rather than just a collection of 

them (Maninis et al., 2017). This means that the temporal information contained in the 

videos can be used to aid in the process of video-related Computer Vision tasks, 

including object segmentation or instance segmentation. As such, there have been 

various approaches to modelling the inherent temporal component for the same.  
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MaskTrack, an architecture introduced by Khoreva, Perazzi, Benenson, Schiele, & 

Sorkine-Hornung (2016), try to model the temporal flow by passing the segmentation 

of the previous frame along with the RGB channels of the current frame as input to the 

model. This approach has been the basis for a host of solutions since. The top three 

architectures in the DAVIS 2017 challenge all have MaskTrack as their base technique 

– Video Object Segmentation with Re-identification (VS- ReID) model (X. Li et al., 

2017), LucidTracker (Khoreva, Benenson, Ilg, Brox, & Schiele, 2017), and Instance 

Re-Identification Flow (IRIF) method (Le et al., 2017) are the three papers that came 

first, second and third respectively in the challenge. There have been different 

approaches to this though. Jain, Xiong, & Grauman (2017), have formulated the 

problem as a structured prediction problem and tried to solve it by their approach, 

FusionSeg, by implementing parallel networks to capture the motion and appearance 

of the objects and then unify it for the final segmentation of the various objects. Hu, 

Huang, & Schwing (2018) introduce a novel approach called MaskRNN that has a 

base very similar to the MaskTrack model and has an additional recurrent component 

in it to model the sequential nature of the temporal information contained in the video. 

The primary focus of this paper is however on techniques that do not model the 

temporal information in the videos. One-Shot Video Object Segmentation (Caelles et 

al., 2016), shortened as OSVOS, tries to run an efficient image object segmentation 

technique on the independent frames. This technique has been extremely influential as 

well and inspired many other improved approaches to the problem since then (Maninis 

et al., 2017; Newswanger, 2017; Shaban et al., 2017; Voigtlaender & Leibe, 2017). 

OSVOS tackles the semi-supervised version of the object detection problem, where the 

segmentation of the first frame of a video is available. OSVOS has a modular 

architecture that starts with a deep FCN-based architecture pre-trained on a large 

dataset (like ImageNet or MS-COCO) that acts as the base network. This network is 

then re-trained on the particular dataset, thus attuning the model more specifically to 

the problem at hand. The final step is the key in this approach. This involves fine-

tuning the entire network using the first frame and its ground truth. This step makes the 

model tailored to the specific video sequence at hand, and is rerun for each video 
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sequence to segment. The original OSVOS architecture has a VGG-16 as its base 

network, but this is a customisable component in the modular architecture – any 

classical deep convolutional network converted to an FCN could be plugged in as the 

base network. 

2.3 Gaps in literature

2.3.1 Can Rectified Linear Unit be replaced? 

From the literature review, it was observed that most of the relevant architectures 

employ Rectified Linear Units (ReLUs) as the activation function (Caelles et al., 2016; 

He et al., 2017; Maninis et al., 2017). That ReLU is a non-saturated activation function 

is a clear advantage over the saturated functions like sigmoid activation function or the 

hyperbolic tangent function because saturated functions are susceptible to exploding 

gradient and vanishing gradient problems when the architecture gets deeper and are 

slower to converge when compared to ReLU (Xu, Wang, Chen, & Li, 2015). But, 

ReLUs have a problem that they can ‘die’ off. At larger learning rates, a ReLU unit can 

be updated in a way that it will not activate irrespective of the data and will always 

output zero from then on. This forces the use of smaller learning rates. While not a big 

problem in itself as the problem rarely occurs when smaller learning rates are used, it 

would be interesting to study how the alternative non-saturated functions that are 

immune to this problem would perform. 

Exponential Linear Unit, shortened as ELU (Clevert, Unterthiner, & Hochreiter, 2015), 

counters this problem by not cutting off the negative component of the function 

completely like ReLU. Also, ELU is proven to speed up convergence and perform 

comparably to ReLU, and even surpass ReLU and Leaky ReLU (Maas, 2013) at least 

in generalisation performance in certain contexts. ELU introduces another tuneable 

hyperparameter into picture – α, the negative gradient coefficient. Pedamonti (2018) 

conducts an experiment to compare how ReLU and ELU perform as activation 

functions in a CNN tuned to a relatively simple image classification task and reported 

that ELUs performed marginally better than ReLUs in that specific context. ELUs have 

been used in the context of object classification and segmentation in images  in the 
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context of aerial imagery (Panboonyuen, Jitkajornwanich, Lawawirojwong, 

Srestasathiern, & Vateekul, 2017) and found that the results compared with the state-

of-the-art. Panboonyuen, Vateekul, Jitkajornwanich, & Lawawirojwong (2018) 

introduced ELU as the activation function in a Convolution - deconvolution (encoder - 

decoder) architecture in the same context, road segmentation from aerial imagery. The 

impact the introduction of ELU as an activation instead of the now conventional ReLU 

can have in the context of video object segmentation would be interesting to explore. 

2.3.2 A recurrent neural component to model the sequential nature of videos. 

While there are many different approaches to modelling the temporal nature of the 

videos in object segmentation problem, recurrent neural networks (RNN) are very 

rarely used to address it. RNNs are proven to perform excellently when it comes to 

modelling sequential data (Karpathy, Johnson, & Fei-Fei, 2015; Yin, Kann, Yu, & 

Schütze, 2017). As discussed, videos are inherently sequential data as it has a logical 

temporal structure and flow to it. While Hu et al. (2018) uses a recurrent component in 

MaskRNN, it is not clearly described how the recurrent component helped in 

modelling the problem. Some other approaches did talk about using a recurrent 

component in similar contexts (Chen, Yang, Zhang, Alber, & Chen, 2016; Valipour, 

Siam, Jagersand, & Ray, 2016), but these models do not use the state-of-the-art 

convolutional architectures. A study could be undertaken to see how the addition of a 

recurrent component to a current Deep ConvNet architecture would perform and 

compare against the state-of-the-art. 

2.4 Summary

In this chapter, the literature reviewed for this research has been discussed. The review 

started with how the solutions to solving the problem of object segmentation have 

progressed over time. During the process, the solutions reviewed were grouped under 

three broad categories – background subtraction, graph-based approaches and finally, 

techniques based on deep learning. The focus of the review was on the deep learning 

techniques as the research also focuses particularly on deep learning techniques rather 

than general approaches. Two gaps were identified in the literature and discussed – this 
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research would undertake to investigate the first of the gaps, how the application of 

Exponential Linear Units (ELUs) could potentially impact the solution.  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3. DESIGN AND METHODOLOGY 

3.1. Introduction

This chapter aims to explain in detail how the experiment was set up to answer the 

research question that has been established prior. Firstly, an overview of the different 

datasets considered for the research is given and the thought process behind the 

selection of the final dataset explained. That is succeeded by an overview of the design 

of the experiment. The chapter concludes by defining the evaluation metric to be used 

in the experiment to accept or reject the null hypothesis. 

3.2. Datasets considered

Segmentation tasks in video have been gaining traction in the computer vision 

community in the recent years and this has been fuelled by the accessibility of some 

very good datasets. Some of the popular datasets used in the video segmentation 

domain were considered for this research. Three of the considered datasets offered 

pixel-accurate ground truths, which was a key criterion for the dataset selection – 

SegTrack v2 dataset (Li, Kim, Humayun, Tsai, & Rehg, 2013), Freiburg-Berkeley 

Motion Segmentation (FBMS - 59) dataset (Ochs, Malik, & Brox, 2014), and Densely 

Annotated Video Segmentation (DAVIS) dataset (Perazzi et al., 2016). These three 

shortlisted datasets are summarised in Table 3.1. 

Table 3.1 A comparison of the different datasets considered 

FBMS - 59 dataset was an extension of the original Berkeley Motion Segmentation 

dataset, referred to as the BMS - 26 dataset (Brox & Malik, 2010). BMS - 26 dataset 

itself is made up of 12 video sequences from the Hopkins 155 dataset (Tron & Vidal, 

2007). The images of the dataset are mostly devoid of common challenges faced in the 

Dataset # of video 
sequence
s

# of 
frame

s

# of objects 
per frame

# of attributes 
annotated

Pixel-
accurate 

segmentation

Image 
resolution

SegTrack 
v2

14 976 1 to 6 6 Yes Varying

FBMS - 59 59 720 Multiple NA Yes, but not 
complete

Varying

DAVIS 2016 50 3455 1 15 Yes Consistent
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video segmentation problem, like occlusion, fast motion, etc. Further, while the 

available ground-truths are pixel-accurate, the segmentations are not provided for all of 

the 720 frames. The 26 video sequences inherited from the BMS - 26 dataset has pixel-

accurate ground-truths for all the frames, but the added-on 33 sequences provide 

ground-truths for one in twenty frames. The images, while spatially dense in their 

nature, are less diverse than the other datasets in that the number of objects in the 

images, with only animals, cars and people as the classes provided. Although, the 

video sequences are of very short lengths, averaging 12.2 frames per sequence. Also, 

the constituent video sequences are of varying resolutions, thus adding an extra 

overhead in an implementation of the solution due to handling of this variance. 

The SegTrack v2 dataset, on the other hand, is comprised of video sequences of longer 

durations (average is 69.71 frames per video sequence). Besides the pixel - accurate 

ground truths, extra annotations are provided indicating some of the challenges posed 

in the respective video sequence. Each of the sequence can have one or more of these 

six challenges (motion blur, appearance change, complex deformation, occlusion, slow 

motion, interacting objects). This extra annotation makes possible a better qualitative 

evaluation of any proposed solution. However, that the dataset consists only 14 video 

sequences and that the image resolution of the frames of the sequences are varying 

makes it less desirous for this research.  

DAVIS 2016 dataset better suits this research in that it is comparable to the FBMS - 59 

dataset in size, having 50 video sequences while not compromising on the length of the 

individual video sequences. DAVIS 2016 dataset has an average of 69.1 frames per 

video sequence (comparable to the SegTrack v2 dataset). The additional annotation of 

video sequences with the challenges posed in them is provided in this dataset as well, 

only in a more detailed fashion. Each video sequence in the dataset has one or more of 

the fifteen challenges annotated to it. A summary of these challenges as given by 

Perazzi et al. (2016) is provided in Table 3.2. The video sequences in the dataset 

maintains a consistent resolution of 854 X 480. Also, each frame in the video 

sequences in this dataset has only one primary object to be identified and segmented. 
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This makes it simpler for the research to better focus on its purpose of investigating 

how an image segmentation algorithm could be extended to solve a video 

segmentation problem. Also, DAVIS dataset has grown in its magnitude and 

importance since 2016 and the maintainers of the dataset have been hosting an annual 

video segmentation challenge since 2017. The dataset has grown in size, and video 

sequences with multiple objects have been introduced to the dataset. This is another 

positive because this research can be built upon and extended to the future editions of 

the dataset with considerable ease. Thus, the DAVIS 2016 dataset was chosen for the 

purpose of this research. 

3.3. Dataset - DAVIS 2016

The dataset selected for the task is the Densely Annotated Video Segmentation 

(DAVIS) Dataset (Perazzi et al., 2016). This is a high quality dataset with 50 short 

length video sequences (3455 frames in all) captured at 24fps. Pixel perfect 

annotations of the objects in each sequence are also made available. The clips in the 

dataset contain one object or two spatially connected objects which are considered as a 

single object.  

Figure 3.1 Sample frames from the DAVIS 2016 dataset (Perazzi et al., 2016) 
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This dataset is simple enough to work with because of the single annotation per image, 

yet complex enough in that most of the major commonly issues faced in the task of 

object segmentation are present in this dataset. Table 3.1 gives a list of all these 

common problems as identified by Perazzi et al. (2016). 

Table 3.2 List of video attributes and their descriptions as provided by Perazzi et al. 
(2016). Each video sequence is annotated with one or more of the attributes present in 

this table. 

Each of the video sequences is annotated with a set of one or more of the attributes, 

listed in Table 3.1, present in that video. This makes a more meaningful qualitative 

evaluation of any proposed solution possible. 

ID Description

AC Appearance Change. Noticeable appearance variation, due to illumination and relative 
camera-object rotation.

BC Background clutter. The background and foreground regions around the object boundaries 
have similar colours.

CS Camera-Shake. Footage displays non-negligible vibrations.

DB Dynamic Background. Background regions move or deform.

DEF Deformation. Object undergoes complex, non-rigid deformations.

EA Edge Ambiguity. Unreliable edge detection. The average ground truth edge probability is 
smaller than 0.5.

FM Fast Motion. The average per-frame object motion, computed as centroid’s Euclidean 
distance is larger than 20 pixels.

HO Heterogeneous Object. Object regions have distinct colours.

IO Interacting Objects. The target object is an ensemble of multiple, spatially-connected objects 
(eg. mother with stroller)

LR Low Resolution. The ratio between the average object BB area and the image area is smaller 
than 0.1.

MB Motion Blur. Object has fuzzy boundaries due to fast motion.

OCC Occlusion. Object becomes partially or fully occluded.

OV Out-of-view. Object is partially clipped by the image boundaries.

SC Shape Complexity. The object has complex boundaries such as thin parts and holes.

SV Scale Variation. The area ration among any pair of bounding-boxes enclosing the target 
object is smaller than 0.5.
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Figure 3.2 Distribution of attributes across sequences - DAVIS 2016 dataset 

The video sequences are available in two resolutions – full HD (1920 X 1080) and 

FWVGA (854 X 480). This research will be conducted with the FWVGA resolution 

sequences keeping the computational complexity in mind. 

3.4. Evaluation Criterion

The metric that will be used to quantitatively evaluate the models built in this research 

is the mean Jaccard Index over the frames. Jaccard Index is defined as “intersection-

over-union of the estimated segmentation and the ground-truth mask” (Perazzi et al., 

2016). This measure thus gives a good idea of how well the predicted mask fits the 

ground truth. For each frame, the Jaccard Index is computed by dividing the total 

number of pixels that are common to both the predicted mask and the ground truth 

over the number of pixels that fall under either the predicted mask or the ground truth. 

The mean Jaccard index is computed over multiple frames – it is defined as the ratio of 

total number of pixels that fall in the intersection of any ground-truth – segmentation 
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pair over the total number of pixels that fall in any ground-truth or segmentation across 

the frames considered. 

3.5. Research Design

The experiment can be divided into three principal phases. The first phase involves the 

development of an evaluation framework that returns the mean Jaccard index across 

multiple frames, given the respective sets of ground-truths and segmentations. In the 

second phase, a solution for the video object segmentation problem is implemented by 

extending the original Mask RCNN framework to perform video object segmentation 

in the semi-supervised environment of DAVIS 2016 dataset. The final phase involves 

the modification of the Mask RCNN framework to use Exponential Linear Units 

(ELU) instead of the default Rectified Linear Units (ReLU). The results of both the 

phases are recorded. The experiment is followed up with a comparison of the results 

obtained in the two phases, and an evaluation (both qualitative and quantitative) of the 

two techniques. The research is then concluded by summarising the findings.  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4. RESULTS, EVALUATION AND DISCUSSION 

4.1. Introduction

This chapter discusses the implementation details and the results of the experiments 

conducted. It starts off by providing a high level explanation of Mask R-CNN, the 

image instance segmentation framework chosen for the research. It proceeds to explain 

about the data preparation steps taken in the research – the application of pre-trained 

weights, video data preprocessing steps and splitting the data into training, validation 

and testing subsets. This is followed by an explanation of the implementation details 

such as the software environment used for the research, code structure, and other 

software development efforts. The chapter concludes with a reporting of the results 

observed in the experiments – mean Jaccard indices over various groupings of the data, 

and an evaluation of the results. 

4.2. Mask R-CNN

4.2.1 Network Architecture 

Mask R-CNN (He, Gkioxari, Dollár, & Girshick, 2017) is a CNN-based approach that 

aims to solve the object instance segmentation problem in images. Mask R-CNN  

architecture can be divided into two – a backbone, and a head. The backbone is a deep 

convolutional network that specialises in understanding spatial patterns and identifying 

features. This architecture is modular in that the backbone can be altered if needed, a 

classical deep convolutional network stripped of the final fully connected layers could 

act as the backbone. The head consists of the three smaller networks, performing 

object classification, bounding box regression and mask prediction respectively. 

Mask R-CNN directly extends on Faster R-CNN (Ren, He, Girshick, & Sun, 2015). 

Faster R-CNN attempts to tackle the problem of object detection, Mask R-CNN 

extends Faster R-CNN by adding a Fully Convolutional Network (Long, Shelhamer, & 

Darrell, 2014) branch to predict a mask for each instance. A key difference between the 

Mask R-CNN approach and a completely FCN-based approach towards object 

segmentation is that the task of instance segmentation is completely decoupled in 
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Mask R-CNN in that the network predicts a binary mask for each class independently, 

unlike the FCN-based approach in which there is a pixel-level competition between the 

classes, thus coupling the classification and segmentation tasks together. Mask R-CNN 

is based on an instance-first strategy, rather than on segmentation-first strategies. 

4.2.2 Faster R-CNN 

The Faster R-CNN architecture can be divided into two stages. The first stage is a 

Region Proposal Network (RPN) tasked with object detection and localisation. This 

RPN stage works by coming up with the candidate bounding boxes, or the Regions of 

Interest (RoIs). The second stage of Faster R-CNN is a Fast R-CNN (Girshick, 2015) 

which aims at classification and bounding box regression. RPN in itself an FCN which 

shares the full convolutional features with the Fast R-CNN object detection 

framework. Faster R-CNN has two outputs for each candidate object, a class label and 

a bounding box offset. Mask R-CNN adds a third FCN branch that outputs the mask of 

the candidate as well. This is depicted in Figure 4.1. 

Figure 4.1 The architecture of the Mask R-CNN head used in this research. The image 
is taken from the original Mask R-CNN paper (He et al., 2017) 

Mask R-CNN uses the same first stage as Faster R-CNN, the RPN. The second stage 

(the Fast R-CNN one) is altered to incorporate the third FCN branch as well. The 

intuition behind this is that the spatial features learned by the deep FCN backbone can 
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be shared for all the three tasks. The authors discuss two architectures that can be used 

as the backbone for Mask R-CNN – ResNet (He et al., 2015) and Feature Pyramid 

Network (Lin et al., 2016). This research uses an implementation with ResNet for the 

backbone as the authors discuss about the remarkable advantage in both accuracy and 

speed a ResNet backbone architecture has over its FPN counterpart. 

This research goes ahead with the hyperparameters suggested in the original Mask R-

CNN architecture, which the authors have based on empirical evidence and extended 

from the original Fast R-CNN and Faster R-CNN architectures. Though how the 

tuning of these hyperparameters impact the training would be a fruitful undertaking, it 

is beyond the scope of this research, and as such, only hyperparameter adjustments 

deemed absolutely necessary due to memory constraints were made. Any such 

implementation choice made is discussed further later. 

4.2.3 The loss function 

The loss L of the entire Mask R-CNN network is defined as the sum of losses over the 

three constituent networks: 

L = Lcls + Lbox + Lmask  

The classification and bounding box regression losses. Lcls and Lbox are defined exactly 

as in the original Fast R-CNN architecture. The mask branch outputs K m × m binary 

masks for each RoI, one for each of the K classes. The loss over this branch Lmask  is 

calculated using the mask predicted for the ground truth class by the branch. A per-

pixel sigmoid is applied to this mask and Lmask is defined as the average binary cross-

entropy loss. This is a key difference between the Mask R-CNN approach to the 

problem and the more traditional FCN-based solution to segmentation. The FCN-based 

solution (Long et al., 2014) employs a per-pixel softmax classifier and the loss 

function used is a multinomial cross-entropy loss – this creates a competition for a 

pixel between the object classes. In the Mask R-CNN approach, this competition is 

avoided. 
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4.2.4 RoIAlign 

The FCN branch used for the mask prediction requires the smaller feature maps (RoI 

features) extracted to be well-aligned to preserve the explicit per-pixel spatial 

correspondence. This is achieved with the help of RoIAlign, a novel approach 

introduced along with the Mask R-CNN architecture. RoIPool, which is the technique 

used in Faster R-CNN, extracts a small feature map from an RoI. But, the continuous 

discretisation applied by RoIPool can negatively impact the task of pixel-perfect mask 

prediction. RoIAlign solves this problem by removing the harsh quantisation 

performed in RoIPool. 

4.3. One-shot fine-tuning

Caelles et al. (2016) introduced an interesting approach to the problem of semi-

supervised object segmentation in videos. The modular approach could be divided into 

three phases – selection of a base deep convolutional FCN pre-trained on a large 

dataset such as the MS-COCO (Lin et al., 2014) or ImageNet (Russakovsky et al., 

2014) datasets, training the entire network on the training dataset available for the 

specific object segmentation task, and finally fine-tuning the entire network on the 

available frames and ground-truth pairs for the test dataset. The DAVIS 2016 semi-

supervised video object segmentation problem statement allows the use of the first 

frame of a validation video sequence. Caelles et al. (2016) also proposed their solution 

on the DAVIS 2016 dataset itself. The intuition behind this approach of a final fine-

tuning of the entire network on the first frame is to attune the network to focus on the 

principal object in the videos. 

This research implemented a similar solution, in which the base network is the Mask 

R-CNN network (ReLU and ELU models were tested) pre-trained on the MS-COCO 

dataset. The second step of training on the specific dataset (DAVIS 2016) was carried 

out, initially training the head of the network till the validation error was minimised, 

and then the entire network (backbone + head) was fine-tuned on a single epoch over 
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the entire training dataset. The final step, during testing, involved a dynamic (one-shot) 

fine-tuning of copies of the model from the second step on the first frame of the test 

video sequence and its ground-truth, before predicting the segmentation. 

4.4. Data preparation

4.4.1 Pre-trained weights 

Deep Learning has been applied to a host of domains to solve a wide range of 

problems to increasing degrees of success. As mentioned before, the training of models 

is a possibly time-consuming endeavour and many a times, doing so from scratch is 

avoided if it can be. This is made possible by the different pre-trained models and/or 

weights made available by the respective researchers. These pre-trained weights could 

be used as benchmarks and allow testing a newly built model to be compared against 

the baseline. Also, a model that has been trained on a particular dataset to solve a 

specific problem could have learned some features that are dataset-independent and 

problem-specific. Thus, the weights learned during the training on a dataset could be 

proven useful if used properly to solve the same problem (or even a similar one) on 

another dataset. The use of pre-trained weights could help in saving time during 

training, providing a starting point in the right direction instead of starting from zero. 

Figure 4.2 Some sample segmentations before training on the DAVIS dataset — the top 
row shows the images superimposed with the respective ground truths, the bottom row 
shows the images superimposed with the predicted segmentations of identified objects 

by the model with only the pre-trained backbone weights. 
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The Microsoft Common Objects in Context dataset (Lin et al., 2014), shortened to MS 

COCO, is a dataset that has around 330,000 images, of which over 200,000 are 

labelled, with around 1.5 million object instances spread across 80 object categories. A 

backbone of ResNet-101 (He, Zhang, Ren, & Sun, 2015) was used for the Mask R-

CNN model in this research. Weights for the specific backbone used in this 

implementation (Waleed Abdulla, 2017) pre-trained on the MS COCO dataset has been 

made available for use. These weights have been used in this research to aid with the 

training phase. The total number of pre-trained backbone weights loaded across the 

network  63,733,406. Figure 4.2 shows the performance of the Mask R-CNN model on 

some images from the training dataset with only the pre-trained backbone weights. 

Figure 4.3 Segmentations for the same images after one additional epoch of training 
the head of the network architecture on the DAVIS dataset. 

As can be seen, the model already performs quite well in locating the object with just 

the pre-trained weights and no training. Figure 4.3 shows the performance of the same 

model on the same images after one additional training epoch for just the head of the 

network on the DAVIS 2016 dataset. Thus, this has sped up the training process by a 

considerable amount. 

The weights pre-trained on MS-COCO dataset available were for the Mask R-CNN 

architecture with the ReLU activation units. For the second model based on ELU, a 

similar Mask R-CNN model instance with ELU activation units, and randomly 

initialised weights was trained on the MS-COCO dataset. Post this training, the 

weights for the backbone were preserved and the head were re-initialised with random 

weights, to make the training process similar to the one for the model with ReLU 

activation. The rest of the training was exactly the same as that of the ReLU-based 

model. 
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4.4.2 Data preprocessing 

4.4.2.1 Frame transformation for conforming to Mask R-CNN requirements 

Data preprocessing is an integral step in any data mining or machine learning task that 

aims to make the raw data acquired (either primary or secondary) to a format that is 

required by the application for consumption. This is required because the data 

available in the real world may not only be unfit for usage, but also partial or unclean. 

Specifically in the domain of video object segmentation, data preprocessing would 

primarily involve taking in the video(s) and converting it into a data format that can be 

understood by the object segmentation model. For instance, there could be video 

sequences of varying frame resolution present in a dataset, thus possibly making a 

preprocessing step required in which this is handled and all the video sequences 

converted to a consistent frame resolution before being passed to the model. 

The DAVIS 2016 dataset consists of 50 video sequences, all captured originally at 24 

frames per second at a resolution of 480p. The dataset structures the data so that all the 

frames are contained in a folder and are named numerically, in ascending fashion. Each 

frame is presented as a JPEG image. 

The OpenCV (Open Source Computer Vision Library) Python interface is used to read 

the frames into the application. A frame is read in as a numpy array of 1229760 values 

and specifically of shape (480, 854, 3). The shape is of (height, width, channels) 

format. 480 and 854 represent the resolution of the 480p frame – that is the total 

number of pixels present in the frame. The 3 indicates the three channels of a colour 

image – red, green and blue. Each element in this array could take a value from 0 to 

255, indicating the intensity of that specific channel in its pixel. For example, a red 

pixel would have (255, 0, 0) as the RGB channel values associated with it. 

The primary image preprocessing step performed was to transform the frames into a 

shape that was required by the Mask R-CNN implementation that was used for the 

research. The implementation required a square shaped frame with each dimension a 

multiple of 26. The closest dimension that met these requirements were 832 X 832 
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pixels. Figure 4.4 shows this preprocessing step. Thus, the shape of the resized frame 

is (832, 832, 3). This is achieved by padding an equal number of 0s at the top and 

bottom of the original image to make it 832 pixels. The original height of the image 

being 480 pixels, (832 - 480) / 2 = 176 more 0 pixels (3 channels of all zeros) are 

added to the top and the bottom of the frame. 

Figure 4.4 Image transformation performed to conform to the requirements of the 
Mask R-CNN model. The rectangular image is converted to a square shaped one by 

padding zeros at the top and bottom. 

4.4.2.2 Ground-truth and segmentation transformation for evaluation 

The ground-truths provided by DAVIS 2016 are of the same shape as that of the 

frames, (854, 480, 3). The same image transformation process, explained in the 

previous section, is carried out for the ground-truths as well, converting them to (832, 

832, 3). 

Also, the segmentations predicted by Mask R-CNN are of shape (832, 832, 1). This 

was reshaped to (832, 832, 3) by broadcasting the first two dimensions of the array to 

the third. 

4.4.3 Splitting the data into training, validation and testing subsets 

The DAVIS 2016 dataset, as discussed in section 3.3, consists a total of 50 video 

sequences. Perazzi et al. (2016) suggests a split of the dataset into a training – 
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validation split of 30 – 20. Figure 4.5 shows the way the different annotated attributes 

(challenges posed) are spread across the training and validation splits. 

 

Figure 4.5 Distribution of attributes over training and validation datasets. 

The initial method the dataset was split into training, validation and test datasets was 

by keeping the training data as it is and then randomly splitting the validation data into 

validation and test subsets in a 3:1 ratio, 15 video sequences in the validation subset 

and 5 in the test subset. The motivation for this split was to make sure that the 

robustness of any trained model is validated on a large enough validation subset. The 

attributes distribution over the test subset after this split is shown in Figure 4.6. As can 

be seen, three of the fifteen attributes are not represented in the test subset (BC, CS, 

DB), and another three attributes are seen in only one video sequence each (LR, OCC, 

OV). This is not desirable, as this hinders a more meaningful qualitative evaluation of 

the model. 
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Figure 4.6 Distribution of attributes over test dataset after the initial split. 

 

Figure 4.7 Distribution of attributes over training and validation dataset after the final 
split. 

To avoid certain attributes being dropped so that a more meaningful qualitative 

evaluation can be conducted, the suggested validation dataset of 20 was considered as 

the test dataset and the training dataset was split into training and validation subsets of 

25 and 5 video sequences respectively. Reduction of the training dataset size might 

work towards making the model more generalised to previously unseen data. Final 

distribution of the attributes in the training and validation subsets are shown in Figure 
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4.7 respectively. The distribution in the testing dataset would be the same as the 

original validation dataset, that is shown in Figure 4.5. 

4.5 Mask R-CNN Implementation 

4.5.1 Software environment 

The primary programming language used for this research was Python 3.6.3. Python 

was adopted due to its standing as one of the most used programming languages in the 

domains of machine learning in general and Deep Learning and Computer Vision in 

particular. Another reason for choosing Python was the wide range of third-party 

libraries available that facilitates the entire development process. 

An implementation of Mask R-CNN by Matterport Engineering team (Waleed 

Abdulla, 2017) was used. This implementation was written in Python 3.x and is widely 

considered as one of the best implementations of Mask R-CNN by the Computer 

Vision development community. The deep neural networks are implemented using 

Keras, an open source Deep Learning library written in Python. Keras is currently 

compatible with Python versions up to 3.6. This was another incentive for choosing 

Python 3.6.3 for the development. Keras can be thought of as a higher level interface 

rather than a lower level library in that it runs on top of other core Deep Learning 

libraries like TensorFlow, Microsoft Cognitive Toolkit, or Theano. In this 

implementation, the Keras interfaces with Tensorflow, an open source machine 

learning framework developed by the Google Brain team (Abadi et al., 2016), keeping 

the necessity for high speed parallel computations that facilitate quick performing of 

vectorised operations which form the crux of the various Deep Learning operations. 

Specifically, Keras 2.2.4 and Tensorflow 1.12.0 were used for the development, both 

the latest stable versions of the respective libraries at the time of writing. 

Jupyter notebooks were used heavily for exploring and working out different aspects 

of the data and understanding the original Mask R-CNN implementation. Jupyter 

notebook is an open-source web-based tool provided by Project Jupyter that builds on 

the powerful Interactive Python (iPython) shell and facilitates the combining of code, 
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outputs and any narrative or explanatory text. Normal iPython shell was used for 

similar purposes due to the author’s prior familiarity with it. An advantage of using 

Jupyter notebooks is the ease of sharing a notebook between developers and also 

persisting the interactions with the compiler, thus enabling the work to be picked up 

from where it was left off at a later point of time comfortably. Sublime Text 3, a simple 

yet powerful text editor was also used to write Python scripts during the development. 

Training a deep neural network is a computationally intensive task and involves a high 

amount of operations. Due to vectorisation, these operations could be done 

concurrently. Although, the sheer magnitude of the number of operations required, 

even if simple enough the individual operations are, makes an extremely large amount 

of memory required. For instance, one forward pass of the Mask R-CNN network with 

a ResNet 101 backbone and its head involves learning more than 63 million 

parameters for a single image (a mini-batch size of 1). A Graphics Processing Unit 

(GPU) has proven to suit the Deep Learning operations much better than the normal 

Central Processing Unit (CPU). Although the GPU core need not be faster than the 

CPU core, the larger number of cores present in the GPU and the faster memory makes 

the execution of parallel operations faster in a GPU (sequential code would be 

executed faster in a CPU than in a GPU). Thus, a GPU environment was required to 

train the deep network. Colaboratory, a Google research project aimed to aid in 

machine learning education and research, was used as the primary environment to 

carry out the various experiments. Colaboratory provides its users with Tesla K-80 

GPU with GPU Random Access Memory (RAM) of 12GB. 

R, an open source software environment for statistical computing and graphics, was 

used to visualise various aspects of the data during the research. The visualisations 

presented in this dissertation are also produced using R. R 3.4.2 running on RStudio 

1.0.153, the most popular Interactive Development Environment (IDE) for R, was used 

for all the visualisations. This choice was made due to the author’s comfort with 

ggplot2 (Wickham, 2016), a popular data visualisation package in R. 
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Git, a popular version control software, was used in collaboration with GitHub, to 

maintain and manage the different versions of code during the development, and to 

easily make it available in the Colaboratory environment. 

4.5.2 Code structure 

The implementation is structured so that it spans across three primary modules. These 

are – 

1. utils – all the utility functions that help in the smaller specific tasks are written 

here. 

2. config – the various hyperparameters involved in the training goes here. The 

different hyperparameters available that were relevant to the research are listed and 

described below. Most of the hyperparameters were left untouched as they were 

already tested out and set according to prior experimental evidence. 

a. NAME - a custom name that can be given to identify a particular experiment, 

useful when multiple experiments are run. 

b. GPU_COUNT - the number of GPUs to use. 

c. IMAGES_PER_GPU - the number of images to train on each GPU instance. 

The mini-batch size for a pass would be GPU_COUNT * IMAGES_PER_GPU 

d. STEPS_PER_EPOCH - the number of iterations when it should be considered 

as an epoch. This need not be set to the size of the training dataset – this has 

been written thus so that validation steps can be made in a higher frequency if 

needed. 

e. BACKBONE - resnet50 and resnet101 are the supported values. This research 

uses resnet101. 

f. NUM_CLASSES - the number of object classes used in training plus the 

background class. This has been set to 2 for this research, an object class and a 

background class. 

g. USE_MINI_MASK - whether or not to scale down the instance masks to a 

smaller size to reduce the load on memory. This is recommended when using 

images of higher resolution. This was set to True for this research. 
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h. MINI_MASK_SHAPE - dimensions of the resized mask – the default value is 

56 X 56 and has been left unchanged in this research. 

i. IMAGE_MAX_DIM - the upper limit to which the image is padded up with 

zeros to make it square shaped and a multiple of 64 (as discussed in section 

4.4.2.1) 

j. IMAGE_CHANNEL_COUNT - the number of channels in a frame in the 

dataset. This has been set to 3 as each frame in the DAVIS 2016 dataset has 

three channels (RGB). 

k. DETECTION_MIN_CONFIDENCE - the percentage confidence threshold 

required for a region of interest to be presented as a detected instance. 

l. LEARNING_RATE - learning rate of the algorithm. Set to 0.001 after trying 

out different values among [0.0001, 0.0003, 0.001, 0.003, 0.01], keeping the 

rest of the hyperparameters unchanged. 0.001 was found to be a good learning 

rate because the learning was not too slow and it did not fail to converge. The 

Mask R-CNN paper uses a learning rate of 0.02, but it is advised against by 

Waleed Abdulla (2017) in this implementation as it causes the weights to 

explode possibly due to different optimiser implementations. 

m. LEARNING_MOMENTUM - the value of momentum to be used in the 

learning. The default value of 0.9 is used. 

n. WEIGHT_DECAY - the value of weight decay to be used to prevent explosion 

of weights. The default value of 0.0001 is used. 

o. GRADIENT_CLIP_NORM - the threshold value used to clip the gradient, to 

prevent the abnormal growth of the gradients. The default value of 5.0 is used. 

3. model – the Mask R-CNN network architecture is written here.  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4.6 Results 

The Mask R-CNN model with ReLU activation units recorded an average Jaccard 

Index of 0.709 while that with ELU activation units recorded an average Jaccard Index 

of 0.707. 

Figures 4.8 and 4.9 show the mean Jaccard indices observed over each video sequence 

in the testing dataset by the model with ReLU activation units and the one with ELU 

activation units respectively. Table 4.1 compares the mean Jaccard indices observed 

over each video sequence for further clarity. 

Figure 4.8 Mean Jaccard indices over test video sequences for model using ReLU as 
the activation unit. 

 

Figure 4.9 Mean Jaccard indices over test video sequences for model using ELU as the 
activation unit. 
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Table 4.1 Mean Jaccard indices over test video sequences for models using ReLU and 
ELU as activation units — a comparison. 

4.7 Analysis, Evaluation & Discussion

From observing the Figures 4.8, 4.9 and Table 4.1, it is evident how closely the two 

models compare in their respective performances. Both the models scored strongly 

across same video sequences. So, it would suffice to conduct an error analysis on one 

of the models. This section looks at what the observed results mean in the context of 

Test video sequence Mean Jaccard index with ELU Mean Jaccard index with 
ReLU

blackswan 0.7460477 0.7478864

bmx-trees 0.4731706 0.4754088

breakdance 0.4310772 0.4409379

camel 0.5790564 0.5871835

car-roundabout 0.9395416 0.9403327

car-shadow 0.9162216 0.9165938

cows 0.8559922 0.8556838

dance-twirl 0.7198102 0.7203358

dog 0.8551628 0.8545649

drift-chicane 0.8546576 0.8544595

drift-straight 0.8961719 0.8974399

goat 0.8079687 0.8080276

horsejump-high 0.7515617 0.7516226

kite-surf 0.6004799 0.5993657

 libby 0.736075 0.7366984

motocross-jump 0.6233499 0.6230072

paragliding-launch 0.6064516 0.6068224

parkour 0.8522469 0.8528893

scooter-black 0.8092873 0.8102524

soapbox 0.4846367 0.4925435

!40



the research question and the null hypothesis, and then proceeds to try and understand  

more about the working of the model that used ReLU activation units, and identify the 

strengths and weaknesses of the model. 

4.7.1 Quantitative analysis 

Both the models posted overall very similar mean Jaccard index over the test dataset – 

the model with the ELU activation units posted 0.707, where the one with the ReLU 

activation units posted 0.709. From these observed results, the research has failed to 

reject the null hypothesis that stated that there would be no significant impact in 

the observed mean Jaccard index if the more traditional ReLU activation units 

are replaced with ELU activation units in a deep convolutional architecture 

tasked with semi-supervised object segmentation in videos. 

4.7.2 Error analysis 

The model posted a mean Jaccard Index of 0.709 over the test dataset, meaning 70.9% 

of the pixels classified as the prominent object across the 1376 frames fell in the 

intersection of the respective ground-truth - segmentation pairings. 

4.7.2.1 What went well? 

The two video sequences that the model performed the best both featured cars, car-

roundabout (0.940) and car-shadow (0.917) were the sequences that the model 

recorded the best scores. Figure 4.10 and 4.11 shows how the predictions for these 

sequences compare with the respective ground-truths. 
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Figure 4.10 Ground-truth vs predicted segmentations for car-roundabout video 
sequence. The top row shows frames from the sequence at an interval of 20, 

superimposed with the ground-truth and the bottom row shows the same frames 
superimposed with the predicted segmentations. 

 

Figure 4.11 Ground-truth vs predicted segmentations for car-shadow video sequence. 
The top row shows frames from the sequence at an interval of 20, superimposed with 
the ground-truth and the bottom row shows the same frames superimposed with the 

predicted segmentations. 

In both these video segments, it can be observed that the principal object to be detected 

are centred in the frame and the objects (cars) are conveniently placed in the forefront 

as well. Other than some background clutter, there is not much of a challenge in these 

video sequences. On examining the extra annotations provided in the dataset, the car-

roundabout sequence is marked as indeed having BC (Background Clutter), and the 

car-shadow sequence is marked as afflicted by four challenges (Appearance Change, 

Background Clutter, Edge Ambiguity, Low Resolution). Even though the model 

performed extremely well in segmenting the principal objects in these videos, it is 

interesting to observe that some other objects in the background are also identified and 
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segmented by the object. This did not hurt the score in this case because the principal 

object is still the object with the highest probability score (confidence) assigned to it 

by the model and thus, the other segmentations are discarded. This could have been a 

problem if there was an object segmented by the model that had a higher confidence 

assigned to it – the mask of that object would have been the one used to compute the 

Jaccard Index. 

4.7.2.2 What went wrong? 

Next, the analysis looks at two of the video sequences for which the model performed 

the worst. These are bmx-trees (0.475) and breakdance (0.441). Figure 4.12 and 4.14 

shows how the predictions for these sequences compare with the respective ground-

truths. 

 

Figure 4.12 Ground-truth vs predicted segmentations for bmx-tree video sequence. The 
top row shows frames from the sequence at an interval of 20, superimposed with the 

ground-truth and the bottom row shows the same frames superimposed with the 
predicted segmentations. 

The bmx-tree video sequence is attributed with 12 of the possible 15 attributes, the 

maximum for any video sequence in the dataset, making it one of the most complex 

video sequences the model has come across. From figure 4.12, some of the challenges 

in the video sequence are evident, like the background clutter presented by the graffiti-

covered wall and the occlusion of the bike and the rider by the tree. Still, it appears that 

the model has performed relatively very well on the final two frames presented in the 

figure. 
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Figure 4.13 Jaccard index over each frame in the bmx-tree video sequence. 

 

Figure 4.13 shows the Jaccard index observed across each frame in the bmx-tree video 

sequence. As can be seen, the performance drops tremendously from frame 50 to frame 

70. This is the region where the object (bike and rider) is occluded by the tree. The 

model performs moderately well through the rest of the sequence, even when heavy 

background clutter is encountered. Thus, in this video sequence, occlusion seems to be 

the most difficult challenge for the model. 

From figure 4.14, it seems that even though the model did correctly identify the 

principal object in the video, the performance was hurt by the same phenomenon that 

was observed for the car-roundabout sequence as well. The model identified and 

segmented objects that are not principal to the video. That this segmentation of non-

principal objects happened even after the fine-tuning on the first frame and its ground 

truth is definitely a limitation of the current model though and needs to be looked into. 
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Figure 4.14 Ground-truth vs predicted segmentations for breakdance video sequence. 
The top row shows frames from the sequence at an interval of 20, superimposed with 
the ground-truth and the bottom row shows the same frames superimposed with the 

predicted segmentations. 

4.7.2.3 Does video duration affect the mean Jaccard index? 

Figure 4.15 shows the variation of mean Jaccard index with variation in duration of the 

video sequence. At a quick glance, there does not seem to be any correlation between 

the two.  

Figure 4.15 Scatterplot visualising the variation of mean Jaccard index over sequences 
with their lengths. 
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No assumptions were made about the normality of the data and a Kendall’s rank 

correlation test was conducted to examine the relationship between length of a video 

sequence and its mean Jaccard index. The statistical significance considered was 0.05 

for the test (Field, Miles and Field, 2012). A moderate negative association (Cohen, 

1988) was observed between the length of a video sequence and the mean Jaccard 

index reported for it, however the result was not statistically significant, τb = -0.11, p 

= .49) 

4.7.2.4 Attributes and mean Jaccard index - any obvious patterns? 

Figure 4.16 Mean Jaccard index aggregated over videos grouped under the same 
attributes. 

Figure 4.16 shows the mean Jaccard index over the fifteen different annotated 

attributes in the dataset. No clear pattern seems to emerge from the visualisation.  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5.    CONCLUSIONS 

5.1 Research Overview

This research aimed at understanding the problem of video object segmentation in 

general, and in a semi-supervised environment in specific. The primary goal of the 

research was to gain a deep level of understanding on how an image object 

segmentation algorithm based on deep learning techniques could be extended to solve 

the same problem in videos, and to investigate the impact of changing the activation 

function from Rectified Linear Units (ReLUs) to Exponential Linear Units (ELUs) on 

the performance of a model. 

The research started off with a comprehensive review of the relevant literature, which 

in itself was a great learning process, followed by the identification of a proper dataset.  

DAVIS 2016 dataset was chosen because it is widely identified as the benchmark in 

object segmentation currently. Due to the author’s prior experience in Python and 

Python’s popularity in the Deep Learning and Computer Vision communities, Python 

3.6 was identified as the programming language to proceed with. Rest of the 

development environment was set up based on this initial choice of Python. A popular 

image segmentation algorithm was identified in Mask R-CNN. 

Three phases were identified in the experiment. The first was the deciding on an 

evaluation metric and designing a framework to compute the evaluation metric given 

the predicted segmentations and the ground-truths. The evaluation metric decided on to 

evaluate the models developed was mean Jaccard index. 

The second phase was to develop the model with the ReLU activation unit. An 

implementation of Mask R-CNN by the Matterport engineering team (Waleed Abdulla, 

2017) was used as a base for the model being developed. Weights for the backbone of 

the network pre-trained on the MS-COCO dataset were loaded to speed up the training 

of the model. Development efforts included understanding the code written and how to 

extend it to the DAVIS 2016 dataset. This facilitated the training and fine-tuning of the 

model on the DAVIS 2016 dataset. Training involved just updating the weights of the 
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network head on the DAVIS 2016 training dataset, followed by fine-tuning the whole 

network with one epoch over the entire training dataset. Once this was done, the next 

most important step was the development of the one-shot fine-tuning system as 

implemented in OSVOS (Caelles et al., 2016). This involved dynamically training a 

new model that has been fine-tuned specifically on the first frame of the test video 

sequence, in an attempt to zero in on the object of principal focus. 

The third phase was to develop a similar model, with just the activation unit changed 

from ReLU to ELU. The first step in this phase involved the training of the entire 

network on the MS-COCO dataset for consistency. The weights after this training were 

retained for the backbone of the network. The rest of the training procedure was the 

same for this model as it was for the previous model.  

Both the models were then used to predict on the video sequences in the test dataset. 

5.2 Problem Definition

The research question this thesis set out to investigate was: Can changing the 

activation unit of a convolutional neural network trained to perform semi-supervised 

object segmentation in videos from Rectified Linear Unit to Exponential Linear Unit 

impact the mean Jaccard Index observed for the model? 

The null hypothesis formulated to answer the research question was that there is no 

impact in the mean Jaccard index observed for a convolutional neural network to 

perform semi-supervised object segmentation in videos when the activation unit of the 

network is changed from Rectified Linear Unit to Exponential Linear Unit. 

The evaluation metric chosen, mean Jaccard index, was recorded for both the models 

developed in the research over the video sequences on the test dataset. A comparison of 

these observed values would help to decide on whether or not the null hypothesis can 

be rejected. 
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5.3 Results

Both the models developed as part of this research were used to predict on the test 

dataset and the respective observed mean Jaccard indices recorded. The model with 

ReLU activation units recorded a mean Jaccard index of 0.709 over the test data 

whereas the second model with ELU activation units recorded a mean Jaccard index of 

0.707. The scores of both the models are comparable and as such, this research has 

failed to reject the null hypothesis. 

5.4 Contributions

The primary contribution of this work is the showcasing of the usefulness of 

employing Exponential Linear Units in the context of video object segmentation. This 

is an area that can be further explored and investigated, given that ELU is proven to 

learn faster than ReLUs and give better results in the context of image classification 

(Clevert et al., 2015). This could lead to improvement on the current state-of-the-art 

not only in accuracy, but in speed also. 

The secondary contribution of this research is the code base developed as part of this 

research. The code is somewhat unstructured at the time of writing this thesis, but the 

author plans to clean it up and make it available with concise documentation and 

explanation on its working in the recent future. Also, the author hopes the literature 

review conducted as part of this research could help researchers in the future in jump-

starting their understanding of the different approaches that exist to the problem of 

video object segmentation, and their evolution over time. 

5.5 Future Work & recommendations

Even though the developed models were fine-tuned on the first frame of the test video 

sequence, the models continued to identify the non-principal objects present in the 

video as well. This impacts the calculation of the evaluation metric of choice, mean 

Jaccard index. 
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While this research answers the question it set out to investigate, the conclusions 

drawn could be corroborated further in the future with the conduction of similar 

experiments in other datasets too. Experiments could be conducted over some other 

popular datasets in the domain as well to discover patterns that help understand the 

performance of the models further. 

Modelling of the temporal structure of the videos using a recurrent component could 

not be developed due to the complexity of the problem and the time constraints. The 

author could not go past an initial survey of the literature, and understanding the theory 

behind the said architecture. An experiment in this direction is planned in the recent 

future, where the primary objective would be to incorporate a recurrent component into 

the models developed in this research and examine how it impacts the performance. 
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