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ABSTRACT

A new representation of the Coriolis terms on the Arakawa C grid is proposed. The approximation dumps
the grid-scale noise that arises because of spatial averaging of the Coriolis terms when the grid spacing is larger
than the deformation radius. The proposed approximation can also be applied in C-grid schemes with semi-
implicit treatment of the Coriolis terms. The new scheme is analyzed in the context of the linear inertial–gravity
waves and its advantageous behavior is demonstrated with respect to the conventional technique.

1. Introduction

An important class of numerical models of ocean cir-
culation are the so-called C-grid models [in the no-
menclature of Arakawa and Lamb (1977)]. Because of
the numerous well-known advantages of the C-grid dis-
cretization at high spatial resolutions, many ocean mod-
els have been developed on the horizontal C grid (e.g.,
Smith et al. 1990; Marshall et al. 1997; Madec et al.
1999). The C grid is well suited for reproducing high-
frequency inertia–gravity waves, but the conventional
approximation of the primitive equations on the C grid
suffer from certain difficulties in dealing with the Cor-
iolis terms and low-frequency processes (Winninghoff
1968; Arakawa and Lamb 1977; Delecluse and Zalesnyy
1996; Adcroft et al. 1999). In particular, the C-grid ap-
proach is prone to grid-scale noise when the horizontal
grid spacing dx is larger than the deformation radius R;
that is, when the resolution parameter r 5 2R/dx is low.
The grid-scale noise can persist because of horizontal
averaging of the velocity components that are staggered
in space on the C grid. Although this type of noise has
negligible projection on the eigenfunctions of linearized
model equations in the unbounded ocean, it may even-
tually grow near sharp topographic features and affect
the structure of the model fields, especially of the ver-
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tical velocity. The spatial four-point averaging of the
Coriolis terms utilized in conventional C-grid schemes
may lead to the excitation of a ‘‘checkerboard’’ noise
in horizontal divergence and sea surface height (SSH)
fields and, in some cases, to production of work by
Coriolis terms. Averaging of the Coriolis terms also
complicates their implicit representation, which is in
many cases important for numerical stability.

This problem with the C grid has been known for a
long time. A large number of ‘‘fixes,’’ which basically
employ scale-selective dissipation to dump grid-scale
variability, have been proposed. Recently, Adcroft et al.
(1999) suggested augmenting the C-grid horizontal ve-
locities with D-grid velocity variables. They have shown
that such a hybrid C-/D-grid approach improved spectral
properties of the inertia–gravity waves at low resolu-
tions. This was achieved, however, at the expense of
doubling the number of velocity variables.

In this note we propose an approach that does not
require introduction of any additional degrees of free-
dom into the model. To obtain consistent velocity fields
after one-step integration, we first find solutions to the
original C-grid finite-difference equations with noncol-
located velocities and then average these solutions to
compute the divergence and eliminate the impact of
spatial shifts on the final velocity field. The approach
yields good results at both high and low resolutions and
can be readily used in semi-implicit schemes. To illus-
trate the method, in the next section we briefly overview
the conventional spatial averaging scheme and discuss
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the approach of Adcroft et al. (1999). In section 3 we
give a detailed description of the numerical scheme,
analyze its dispersion properties, and test its perfor-
mance against the well-known community Ocean Par-
allelise (OPA) OGCM (Madec et al. 1999).

2. C-grid representations of the inertia–gravity
waves

In this section we generally follow the treatment of
Adcroft et al. (1999) who gave a comprehensive analysis
of the ‘‘low-resolution C-grid problem.’’ Consider lin-
earized shallow-water equations on an infinite plane

] u 5 2 f (k 3 u) 2 g=z,t

] z 5 2H= · u,t

with ocean depth H 5 const. Here f is the Coriolis pa-
rameter, u is the horizontal velocity vector, z is the free
surface elevation, and g is the reduced gravity. Under this
notation the Rossby deformation radius is R 5 / f.ÏgH

a. Conventional technique
The standard C-grid discretization with centered treat-

ment of the Coriolis terms reads
xyd u 2 f y 1 gd z 5 0, (1)2t x

xyd y 1 f u 1 gd z 5 0, (2)2t y

d z 1 H(d u 1 d y) 5 0. (3)2t x y

Here, d2t, dx, and dy are the centered discrete operators
that approximate the continuous partial derivatives ] t,
]x, and ]y, respectively: d2tw 5 (1/2dt)[wt1dt 2 wt2dt],
dxw 5 (1/dx)[wx1dx/2 2 wx2dx/2], dyw 5 (1/dy)[wy1dy/2 2
wy2dy/2]. The overbar denotes centered two-point aver-
aging over the coordinates shown by the superscript:

x 5 (1/2)[wx1dy/2 1 wx2dy/2], y 5 (1/2)[wy1dx/y/2 1w w
wy2dy/2]. Substituting a plane wave solution exp[i(kx 1
ly 2 vt)] into (1)–(3), one can get the dispersion relation
in the form

2 2 2 2 2s [s 2 f c 2 gH(s 1 s )] 5 0,v v k l (4)
where sv 5 1/dt sinvdt, sk 5 2/dx sin(kdx)/2, sl 5
2/dy sin(ldy/2), and c 5 cos(kdx/2) cos(ldy/2). It is well
known (e.g., Adcroft et al. 1999) that it is the factor c2

that is responsible for excitation of the grid-scale noise
when dx . 2R. In that case false minima appear in the
2D wavenumber space of the discrete representation of
the analytic dispersion relation

2 2 2 2v[v 2 f 2 gH(k 1 l )] 5 0. (5)
These minima reside near points {0, p/dy}, {p/dx, 0}

and cause characteristic near-coastal noise with wave crests
parallel to the coastlines and steep topographic features.

b. C-/D-grid approach
To bring the discrete dispersion relation closer to the

analytic form (5) and eliminate false minima associated
with spatial averaging, Adcroft et al. (1999) proposed
to augment C-grid model variables with D-grid veloc-

ities ud, such that zonal C-grid velocities uc are collo-
cated with meridional D-grid velocities yd and vice ver-
sa. In their approach the factor c is removed from the
dispersion relation at the expense of two extra roots v
5 61/dt atan fdt, which represent the computational
modes. The latter emerge as a consequence of doubling
the number of velocity variables on the C/D grid and
have to be filtered. Adcroft et al. (1999) have shown
that filtering could be effectively performed using im-
plicit treatment of the Coriolis terms and can be readily
implemented on the C/D grid because velocities ,t1dtuc

can be expressed analytically in terms of z. Thist1dtud

is an important feature since Coriolis terms, when treat-
ed explicitly, may often cause numeric instabilities even
at moderate time steps. In the conventional approach,
velocities at t 1 dt cannot be obtained analytically be-
cause of the nonlocal nature of spatial averaging.

An obvious disadvantage of the C-/D-grid approach
is a substantial increase of the model’s degrees of free-
dom and a necessity to filter the computational modes.

3. Shifted approximations
Delecluse and Zalesnyy (1996) analyzed approxima-

tions of linear shallow-water equations on B and C grids
and noticed that the hybrid C/B grid is capable of solving
the problems caused by spatial averaging of the Coriolis
terms. The paper also outlines the possibility of regular-
ization of the C-grid approximation at low frequencies
v K f through ‘‘diagonalization’’ of the Coriolis terms.
The simplest way to ‘‘diagonalize’’ the Coriolis term is
to implement a ‘‘shifted’’ approximation:

d u 2 f y 5 · · · ,2t i21/2, j i, j11/2

d y 1 fu 5 · · · . (6)2t i, j11/2 i21/2, j

We call (6) the shifted approximation since y is taken
in the node that is displaced half a grid step in both
directions of the horizontal coordinate axes with respect
to the node, where the time derivative d2tu is computed.
The system (6) is pointwise (or diagonalized) with re-
spect to ui21/2,j and y i,j11/2 and can be easily solved if the
scheme is implicit with respect to the Coriolis term.

a. Numerical scheme
In the following numerical treatment we propose to

center the approximation (6) by averaging the result of
time steppings over four possible shifted approximations:

41 1
u 5 (u 1 u 1 u 1 u ) 5 u , (7)O1 2 3 4 m4 4 m51

where u1 is the result of integration with the scheme
(6), u2 is the velocity field obtained from the scheme,
where y is shifted in the negative direction in x and
positive in y with respect to u:

d u 2 f y 5 · · · ,2t i21/2, j i21, j11/2

d y 1 fu 5 · · · . (8)2t i21, j11/2 i21/2, j

Velocity fields u3 and u4 cover the remaining two of
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the four possible shift permutations. Introducing ‘‘shift
operators’’ 1 : wx,y → wx11/2dx,y11/2dy, 2 : wx,y →ŝ ŝ
wx11/2dx,y21/2dy etc., we may write down the symmetrized
shifts approximation (SSA) scheme as follows:

d u 2 f ŝ y 1 gd z 5 0 m 5 1, . . . , 4,2t m m m x

(9)
21d y 1 f ŝ u 1 gd z 5 0 m 5 1, . . . , 4,2t m m m y

(10)

d z 1 H(d u 1 d y) 5 0.2t x y

(11)

Here the velocity field u in Eq. (11) is averaged over
the four shifted approximations. As will be shown in
the next section, the SSA scheme (9)–(11) resolves the
grid-scale noise problem without introduction of the ad-
ditional degrees of freedom into the velocity field since
um are the same at the starting point of integration t 5
0. An obvious disadvantage of the method is the ne-
cessity of carrying in time the four shifted solutions for
the velocity field, which may be impractical and com-
putationally inefficient. In an alternative approach, um

can be reinitialized on every time step by taking their
average. The resulting averaged symmetrized shifts ap-
proximation (ASSA) scheme is

1
t1dt t2dt t1dt t t2dt[u 2 u ] 2 f ŝ [ay 1 by 1 gy ] 1 gd z 5 0 m 5 1, . . . , 4, (12)m m m x2dt

1
t1dt t2dt 21 t1dt t t2dt[y 2 y ] 1 f ŝ [au 1 bu 1 gu ] 1 gd z 5 0 m 5 1, . . . , 4, (13)m m m y2dt

t1dt t1dtˆu 5 Au , (14)m

d z 1 H(d u 1 d y) 5 0. (15)2t x y

Equations (12)–(15) are written for general implicit
treatment of the Coriolis terms (a . 0, b . 0, g . 0,
a 1 b 1 g 5 1). Here, Â averages the shifted modes
Âum 5 u, whereas its action is equivalent to four-point
spatial averaging when Â is applied to a single field
taken with different shifts Â mu 5 Â u 5 xy. It is21ŝ ŝ um

also obvious that Âu [ u. Application of Â to Eqs.
(12)–(13) results in the following relations:

xyt t1dt t1dt tˆ ˆd u 2 f y 2 a f [Aŝ y 2 Aŝ y ] 1 gd z 5 0,2t m m m x

(16)
xyt 21 t1dt 21 t1dt tˆ ˆd y 1 f u 1 a f [Aŝ u 2 Aŝ u ] 1 gd z 5 0,2t m m m y

(17)

where xyt 5 Âsm (au t1dt 1 but 1 gut2dt). Equationsu
(16)–(17) show that the numerical properties of the
ASSA approximation depend on the particular form of
the time averaging of the Coriolis term. For example,
the explicit treatment of the Coriolis term (a 5 0) re-
duces the ASSA scheme to the standard C-grid ap-
proximation. On the other hand, in the case of a 5 1,
ASSA and implicit SSA schemes become identical.
Note that numerically in both ASSA and SSA schemes
the equations are first resolved with respect to andt1dtum

then averaged to obtain a single velocity field on the
time layer t 1 dt. The only difference is that the ASSA
scheme forgets the discrepancies between the shifted
solutions after the time step is completed [there ist1dtum

a single velocity at times t, t 2 dt in formulas (12)–
(13)], whereas the SSA scheme (9)–(11) keeps these
solutions in memory to advance them further in time.

Implicit treatment of the pressure gradient terms in
both ASSA and SSA schemes can be reduced to solution
of a linear set of equations with respect to zt1dt, which
have identical system matrices but different right-hand
side vectors. Below we analyze numerical properties of
the SSA and ASSA schemes with implicit treatment of
both Coriolis and pressure gradient terms with centered
time averaging (a 5 g 5 1/2). To simplify further anal-
ysis, it is convenient to rewrite (12)–(15) in the equivalent
form of three finite-difference equations that do not con-
tain the shifted velocity fields. These relationships can
be obtained by solving (12)–(13) with respect to ,t1dtum

and substituting the result into (16)–(17):t1dtym
t xytxyt xy td u 2 f y 1 gd z 1 «[d y 1 f u 1 gd z ] 5 0,2t x 2t y

(18)
t xytxyt xy td y 1 f u 1 gd z 2 «[d u 2 f y 1 gd z ] 5 0,2t y 2t x

(19)
t td z 1 H(d u 1 d y ) 5 0,2t x y

(20)

where « 5 fdt. As it is seen from (18)–(20) in the low-
frequency limit (« → `; dt k f 21) the ASSA scheme
produces a geostrophic flow resulting from averaging
of the four regular geostrophic velocity approximations
um 5 g/ f (k 3 =) mz. In the high-frequency limit (« →ŝ
0), the scheme is equivalent to the conventional C-grid
approximation with implicit representation of the Cor-
iolis terms.
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b. Dispersion

After substitution of the plane wave {Ûm, V̂m, }ẑ
exp[i(kx 1 ly 2 vt)] into equations (9)–(11), they take
the form

ˆ ˆ2is U 2 fc e V 1 igs c ẑ 5 0 m 5 1, . . . , 4,v m v m m k v

(21)
21 ˆ ˆfc e U 2 is V 1 igs c ẑ 5 0 m 5 1, . . . , 4,v m m v m l v

(22)

ˆ ˆ2s ẑ 1 Hc (s U 1 s V ) 5 0, (23)v v k l

where cv 5 cosvdt, and e1 5 exp[i(1kdx/2 1 idy/2)],
e2 5 exp [i(1kdx/2 2 ldy/2)] etc. are the Fourier images
of the shift operators m. Amplitudes of the averagedŝ
Fourier components Û , V̂ can be expressed in terms of

using the solutions of (21)–(22) with respect to Ûm,ẑ
V̂m and taking into account that c 5 1/4 Sm em 5 1/4
Sm . By doing that one can obtain the dispersion21em

relation for the SSA scheme in the form
2 2 2 2t [t 2 f 2 gH(s 1 s )] 5 0,v v k l

where tv 5 sv/cv 5 1/dt tanvdt. It is seen that the
problematic factor c2 in the Coriolis term [see Eq. (4)]
is now absent. That is achieved, however, at the expense
of the necessity to keep solutions of the four shifted
velocity approximations.

The dispersion relation for the ASSA scheme can be
obtained by applying a similar technique to Eqs. (18)–
(20). Substituting the plane wave and dividing (18)–
(20) by 2icv, one can obtain

ˆ ˆt U 2 ic f V 2 g(s 1 «cs )ẑ 5 0, (24)v k l

ˆ ˆic f U 1 t V 2 g(s 2 «cs )ẑ 5 0, (25)v l k

ˆ ˆ2Hs U 2 Hs V 1 t ẑ 5 0, (26)k l v

where v 5 tv 1 i« f, and 5 f 1 i«tv. The corre-t f
sponding dispersion relation is

2 2
2 2 2 2t [t 2 f c ] 2 gH(s 1 s )[t 2 i« f c ] 5 0. (27)v v k l v

At small time steps (« → 0), the relationship (27)
asymptotes to the version of (4) with semi-implicit Cor-
iolis and pressure gradient terms.

In contrast to SSA, the ASSA dispersion relation con-
tains complex-valued terms that may cause damping of
the waves at certain wavenumbers. Consider this prop-
erty at time steps dt, satisfying the temporal resolution
condition vdt K 0 (tv ø v). At small, but finite « →
0 the roots vR, vIG, corresponding to Rossby (R) and
inertia–gravity (IG) waves acquire small imaginary
parts

1
R 2 2Im(v ) 5 2« f (1 2 c ) 1 O(« ),

21 1 j

21/2 1 j
IG 2 2Im(v ) 5 2« f (1 2 c ) 1 O(« ),

21 1 j

where j2 5 c2/[R2( 1 )] and R2 5 gH/ f 2. The sign2 2s sk l

of imaginary parts corresponds to damping of the waves,
which is highly selective in wavenumbers because of
the factor (1 2 c2). At wavelengths l k dx the factor
becomes small since 1 2 c2 ; p2dx2/l2 K 1. For well-
resolved waves sk,l K 1, j ; (kR)21, and the Rossby
waves with wavelengths L k R have negligible damp-
ing. If, for example, R 5 30 km, dx 5 10 km, f 5 1024

s21, and dt 5 1000 s, the Rossby waves with length
300 km will be damped with an e-folding time of ap-
proximately 1 yr. In the opposite limit of large time
steps dt k f 21(« → `) the damping factor for the
Rossby waves is

1
R 21 2 2Im(v ) 5 2« f (1 2 c ) 1 O(« ).

2 2c 1 j

That is, for dt 5 1 day and the same wave/grid pa-
rameters as above, the damping scale will again be of
the order of 1 yr.

c. Energy conservation

To simplify the derivation of energy equations we
again consider the case of centered time averaging (a
5 g 5 1/2) and use the notation Mu 5 xy for the four-u
point averaging operator. Consider an infinite C grid C
with gridded functions u, y, z taking nonzero values in
some finite domain (ocean basin) that are extended with
zeroes into the rigid boundaries. If we define the inner
product ^a, b& as pointwise summations of the appro-
priate fields over C, then it can be shown that the grid
operators dx, dy, M have the following properties:

^Ma, b& 5 ^a, Mb&, ^d a, b& 5 2^a, d b&,x x

^d a, b& 5 2^a, d b&, (28)y y

whereas M also commutes with the differentiation op-
erators

Md 2 d M 5 Md 2 d M 5 0.x x y y (29)

Consider first the quadratic form defined on the space
of nine gridded fields {um, ym, m 5 1, . . . , 4; z}

t tˆE {u , y , z} 5 A[^u , (9)& 1 ^y , (10)&]SSA m m m m

g t
1 ^z , (11)&,

H

where numbers in brackets denote symbolically the left-
hand sides of Eqs. (9)–(11). Using (28)–(29) the form
can be reduced to the conservation equation

gˆd A(^u , u & 1 ^y , y &) 1 ^z, z& 5 0, (30)2t m m m m[ ]H

which shows that the SSA scheme conserves the sum
of the potential energy and mean of the kinetic energies
of the four shifted velocity fields.

Energy equation for the ASSA scheme can be derived
by considering the form
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FIG. 1. Divergence fields after 50 days of integration of the (left) SEC, (middle) ASSA, and (right) SSA codes.
Contour interval is 1029 s21.

t t t tE {u, y , z} 5 ^u 1 «My , (18)& 1 ^y 2 «Mu , (19)&ASSA

g t t
21 [^z , (20)& 1 « ^Mz , M(20)&],

H

which can be reduced to
2d (E 1 « E ) 1 2« f (K 2 K ) 5 0,2t M M (31)

where

1 g
E 5 ^u, u& 1 ^y , y& 1 ^z, z& ;[ ]2 H

1 g
E 5 ^Mu, Mu& 1 ^My , My& 1 ^Mz, Mz&M [ ]2 H

are the energies of the gridded E and the four-point
averaged EM fields, whereas K and K M are the respective
kinetic energies of the velocity fields

1 t t t tK 5 [^u , u & 1 ^y , y &],
2

1 t t t tK 5 [^Mu , Mu & 1 ^My , My &].M 2

Relationship (31) shows that the ASSA scheme con-
serves E in the limit of small time steps « → 0 and
conserves the energy of the four-point averaged fields
in the ‘‘quasigeostrophic’’ limit « → `. The damping
term 2« f (K 2 K M) is scale selective: it preferentially
removes energy from the states with strong grid-scale
components in the velocity field.

d. Numerical testing

In this section we present the results from five nu-
merical codes: a standard explicit C grid (SEC) code,
2D implementations of the SSA and ASSA schemes,
the OPA (Madec et al. 1999) ocean general circulation
model, and the 3D baroclinic version of the ASSA al-
gorithm.

In the first series of experiments we compared the
performance of the SEC scheme (1)–(3) with ASSA

(18)–(20) using the following setup. The 2D shallow-
water model was integrated for 50 days in a closed flat-
bottomed rectangular 4000 km 3 4000 km basin on the
f plane with a grid step of 100 km. The parameters of
the model experiment were the following: the basin
depth H 5 1 km, f 5 1024 s21, the reduced gravity g
5 0.1 cm s22, and the bottom drag coefficient « 5 1026

s21. These values may be considered as typical for the
high-latitude seas, where the internal Rossby defor-
mation radius (R 5 10 km) is often unresolved even by
high-resolution global OGCMs. Circulation within the
box was forced by a steady zonal wind of the form tx

5 t0 sinpx/L sinpy/L, where 2L/2 , x, y , L/2 and
t0 5 2 dyn cm22. The time stepping of 1 h was used
to integrate both the SEC and ASSA codes. As an ad-
ditional benchmark we have also integrated the SSA
code (9)–(11) for comparison.

Figure 1 shows the results of integration. As we see,
the grid-scale noise present in the divergence field pro-
duced by the SEC scheme (left) is absent in the result
of integration by the SSA algorithm, whose dispersion
relation does not contain the troublesome factor c before
the Coriolis parameter. The divergence field (middle) is
also virtually free of the grid-scale noise, which has
been removed by the grid-scale damping property of the
ASSA scheme.

Regarding the computational cost of the 2D setting,
the SSA code requires 4.3 times more CPU time (and
approximately 3 times more memory) than the SEC
scheme. The ASSA algorithm consumed only 15% more
CPU time with no extra memory requirements compared
to SEC. These figures are valid for the versions of the
SSA and ASSA algorithms with explicit representation
of the pressure gradient terms, which give virtually the
same results for the present setting as the patterns gen-
erated by the semi-implicit versions of these algorithms
shown in Fig. 1.

In the second series of experiments we have checked
the performance of the ASSA scheme against linear
solutions of a model with conventional C-grid approx-
imation (OPA OGCM; Madec et al. 1999). The 3D lin-
ear version of the ASSA code and OPA were configured
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FIG. 2. Vertical temperature and salinity profiles used for
initialization of the 3D OPA and ASSA models.

in a rectangular basin of constant depth (H 5 5000 m)
368 3 118 in size. The basin was centered at the latitude
w 5 408N (Fig. 1). The initial conditions were specified
as horizontally homogeneous temperature and salinity
distributions, whose profiles are shown in Fig. 2. The
corresponding first baroclinic deformation radius R is
15 km. We used the default 31-level vertical grid from
OPA’s documentation (Madec et al. 1999) and horizontal
grid stepping of dx 5 0.58. The ‘‘wave resolution fac-
tor’’ of Adcroft et al. (1999) was r 5 R/dx ; 0.27. Both
models were integrated for 400 days from the state of
no motion with a time step of 1 h. The circulation was
forced by the steady wind of the form

t (w) 5 t sin[p(w 2 408)/138]x 0

22t 5 0.1 dyn cm ,0

which induces a weak anticyclonic single-gyre circu-
lation in the domain. Such shape of the wind forcing
generates Ekman downwelling with typical vertical ve-
locities of 0.5–1 m yr21 with an exception of thin bound-
ary layers where water is forced to rise by the continuity
constraint. These boundary layers serve as a strong
source of grid-scale noise in the conventional C-grid
approximation.

The two upper panels in Fig. 3 show the vertical
velocity field at z 5 20 m after 400 days of integration
of the OPA OGCM. The grid-scale noise generated by
the conventional scheme appears to be so intense that
we were forced to display the same solution after low-
pass filtering in the meridional direction (Fig. 1, mid-
dle). On the contrary the noise is apparently absent in

the simulation driven by the ASSA scheme (lower pan-
el).

4. Discussion
Consideration of the symmetrized shifted approxi-

mation and development of the ASSA scheme was mo-
tivated by ill conditioning of the four-point averaging
operator that acts on horizontal velocities present in the
Coriolis terms of a GCM formulated on a C grid. As a
consequence, when Coriolis terms dominate the hori-
zontal momentum balance, C-grid solutions are prone
to grid-scale noise, belonging to the null space of the
averaging operator. In the proposed scheme, we first
employ the technique of shifted approximations of the
Coriolis terms in the momentum equations and then
center the resulting velocity fields by averaging over the
four shifted solutions.

We have demonstrated that the new scheme has spec-
tral properties of the inertia–gravity waves similar to
those on the B and C grids at wavenumbers well below
2p/dx. At wavelengths close to the grid scale the ASSA
scheme damps the transient inertia–gravity waves with
a time scale proportional to 1/ f 2dt. The damping is a
payoff for the absence of extra computational modes
and for the necessity to keep in memory the shifted
solutions of the SSA method.

Similar to the B- and C-/D-grid approaches, the
ASSA and SSA schemes can be readily utilized for
implicit treatment of the Coriolis terms, since the point-
wise linear subsystems of the shifted approximations
can be inverted analytically. It should be noted that al-
though we have used a semi-implicit scheme for ap-
proximation of the Coriolis terms, one could equally
well use any explicit SSA scheme (e.g., fourth-order
Runge–Kutta) on the four shifted equations and the grid-
scale noise issue will still be fixed by averaging over
the four shifted solutions. We utilized the Crank–Nich-
olson scheme for illustrative purposes only, in order to
demonstrate the ability of SSA and ASSA schemes to
treat the Coriolis terms implicitly.

The ASSA scheme has a number of important features
in representation of the Coriolis terms on the C grid:

1) it preferentially damps the grid-scale noise without
artifical dissipation terms as it was done, for ex-
ample, in the approach of Smith et al. (1990);

2) the method allows us to treat the Coriolis terms semi-
implicitly and is easily extended to implement a gen-
eral forward–backward scheme (Ames 1969) for the
inertia–gravity waves, like the ‘‘mixed’’ time-dif-
ferencing technique proposed by Janjic and Wiin-
Nielsen (1977);

3) in contrast to the C-/D-grid approach of Adrcroft et
al. (1999), no additional degrees of freedom are in-
troduced into the model variables;

4) the scheme allows us to solve shallow-water equa-
tions in the rigid-lid approximation.

At present we have successfully implemented the
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FIG. 3. Vertical velocity field after 400-day integration of the (top) OPA OGCM and (bottom)
the same field obtained by using the ASSA scheme. (middle) The OPA solution low-pass filtered
in the meridional direction. Units are in meters per year.

ASSA scheme in construction of an OGCM with implicit
treatment of the barotropic mode under both rigid-lid and
free-surface formulations. Preliminary experiments show
remarkable robustness of the horizontal divergence and
vertical velocity fields in comparison with the output of
the conventionally formulated OPA OGCM. We believe
that the proposed scheme is capable of improving the
performance of C-grid models in applications with rel-
atively coarse spatial and temporal resolutions.
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