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Neurobiology of Disease

Accumulation of Pathological Tau Species and Memory Loss
in a Conditional Model of Tauopathy

Zdenek Berger,! Hanno Roder,' Amanda Hanna,' Aaron Carlson,' Vijayaraghavan Rangachari,' Mei Yue,'

Zbigniew Wszolek,' Karen Ashe,? Joshua Knight,' Dennis Dickson,' Cathy Andorfer,' Terrone L. Rosenberry,!

Jada Lewis,' Mike Hutton,' and Christopher Janus!

"Mayo Clinic Jacksonville, Jacksonville, Florida 32224, and ?Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota
55455

Neurofibrillary tangles (NFTs) are a pathological hallmark of Alzheimer’s disease and other tauopathies, but recent studies in a condi-
tional mouse model of tauopathy (rTg4510) have suggested that NFT formation can be dissociated from memory loss and neurodegen-
eration. This suggests that NFTs are not the major neurotoxic tau species, atleast during the early stages of pathogenesis. To identify other
neurotoxic tau protein species, we performed biochemical analyses on brain tissues from the rTg4510 mouse model and then correlated
the levels of these tau proteins with memory loss. We describe the identification and characterization of two forms of tau multimers (140
and 170 kDa), whose molecular weight suggests an oligomeric aggregate, that accumulate early in the pathogenic cascade in this mouse
model. Similar tau multimers were detected in a second mouse model of tauopathy (JNPL3) and in tissue from patients with Alzheimer’s
disease and FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17). Moreover, levels of the tau multimers
correlated consistently with memory loss at various ages in the rTg4510 mouse model. Our findings suggest that accumulation of
early-stage aggregated tau species, before the formation of NFT, is associated with the development of functional deficits during the

pathogenic progression of tauopathy.

Key words: tau; transgenic; neurodegeneration; Alzheimer’s disease; FTDP-17; toxicity

Introduction
Tauopathies encompass more than 20 different disorders, in-
cluding Alzheimer’s disease (AD), progressive supranuclear
palsy, and frontotemporal dementia and parkinsonism linked to
chromosome 17 (FTDP-17), which are characterized by intracel-
lular accumulations of filamentous tau (Lee et al., 2001). The
identification of tau mutations in FTDP-17 patients established
that tau dysfunction alone can lead to neurodegeneration (Hut-
ton et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998). The
causal role of these mutations is supported by experiments in
animal models, in which expression of mutant tau leads to neu-
rodegeneration and the development of functional deficits (Lewis
et al., 2000; Wittmann et al., 2001; Santacruz et al., 2005).
Neurofibrillary tangles (NFTs) are a common pathological
hallmark of the tauopathies (Lee et al., 2001) and were previously
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implicated in mediating neurodegeneration and dementia in Alz-
heimer’s disease (Arriagada et al., 1992; Gotz et al., 2001; Lewis et
al., 2001; Guillozet et al., 2003; Bennett et al., 2004). However,
recent studies in a novel conditional mouse model of tauopathy
(rTg4510), expressing human mutant P301L tau, suggested that
NEFT formation could be dissociated from neuronal dysfunction
(Santacruz et al., 2005). This in turn implied that NFTs are un-
likely to be the major toxic tau species, at least in the early stages
of tauopathy.

The apparent dissociation between behavioral dysfunction/
tau toxicity and NFT is supported by additional observations.
Inhibition of tau hyperphosphorylation in a second mouse model
of tauopathy (JNPL3), expressing mutant human P301L tau, led
to delayed development of motor dysfunction without affecting
NFT numbers (Le Corre et al., 2006). Neuronal cell death also
occurred independently of histologically observed tangles in mice
that express all six isoforms of wild-type human tau (Andorfer et
al., 2005). Finally, overexpression of wild-type and mutant
R406W tau in Drosophila led to neurodegeneration without for-
mation of neurofibrillary tangles (Wittmann et al., 2001).

These findings raised the possibility that specific tau aggrega-
tion/hyperphosphorylation intermediates, formed before the de-
velopment of NFT, could be neurotoxic. The role of oligomeric
aggregation intermediates has recently received considerable at-
tention in several neurodegenerative diseases. SDS-stable AS oli-
gomers, a-synuclein oligomers, and prion oligomers have all
been linked to toxicity (Conway et al., 2000; Lashuel et al., 2002;
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Walsh et al., 2002; Sharon et al., 2003; Cleary et al., 2005; Lesne et
al., 2006; Novitskaya et al., 2006).

This led us to explore the formation of similar early tau aggre-
gated species during pathogenic progression in the conditional
r'Tg4510 model. In addition, we determined the relationship of these
early aggregates and other pathological tau species with the develop-
ment of memory deficits in rTg4510.

Materials and Methods

Transgenic mice. rTg4510 mice were bred by crossing mice expressing the
responder mutant tau P301L transgene (FVB/NCr strain; Charles River
Laboratories, Wilmington, MA) with mice expressing the tetracycline-
dependent transcription activator (tTa) activator transgene (12956
strain; Taconic, Germantown, NY) as described previously (Santacruz et
al,, 2005). 129/FVB F1 littermates were used in all experiments. Briefly,
the responder transgene consists of a tetracycline operon-responsive el-
ement placed upstream of a cDNA encoding human tau with four mi-
crotubule binding repeats (4R tau) and the P301L mutation. The activa-
tor transgene contains the tet-off open reading frame placed downstream
of Ca?*/calmodulin kinase IT promoter elements.

To suppress transgene expression, doxycycline (dox) (200 ppm) in
chow was administered to mice ad libitum during the course of the study.
In addition, doxycycline (1.5 mg/ml) was administered for the first 2 d in
drinking water in 4% sucrose (controls were given 4% sucrose only).
JNPL3 mice were bred as described previously (Lewis et al., 2000) and
maintained on an outbred Swiss Webster Background (Taconic). All
animals were housed and tested according to standards established by the
Mayo Clinic Institutional Animal Care and Use Committee. Mice were
killed using cervical dislocation or under deep anesthesia.

Behavioral protocols. The reference memory (place discrimination)
Morris water maze test (MWM) test was preceded by 3 d cued (visible
platform) version of the test. During this test, the water maze tank was
surrounded by a curtain, and the platform location and point of release of
a mouse were changed semirandomly each trial. The reference memory
MWM test was run for 9 d with four training trials per day. An escape
platform submerged under water was always positioned in the center of
one quadrant (target quadrant). During the training, four 60 s probe
trials on days 1, 3, 6, 9, and 10 of training were administered to evaluate
spatial memory. The spatial memory for the platform location during
probe trials was evaluated by computing the annulus crossing index,
referred to as memory index. The memory index represents the number
of crosses over the platform site in the target quadrant, adjusted for
crosses over corresponding sites in other quadrants, and, because this
transforms the raw data, the total number of platform crosses in all four
quadrants of the pool was also analyzed. The mean memory index represent-
ing the average from the last two probe trials at the end of the 9 d training
period (days 9 and 10) was used. Complete details of the water maze appa-
ratus, procedure, and data analysis are provided in the supplemental meth-
ods (available at www.jneurosci.org as supplemental material).

Preparation of brain/spinal cord extracts and tau biochemistry. Tissue
(brain or spinal cord) was homogenized in 6X volume of the following
(in mm): 50 Tris base, pH 8.0, 274 NaCl, 5 KCl, 2 EGTA, 2 EDTA,
protease inhibitor cocktail (Sigma, St. Louis, MO), phosphatase inhibitor
cocktail Tand II (Sigma), and 1 PMSF, except for experiments testing the
presence of disulfide bonds (supplemental methods, available at www.
jneurosci.org as supplemental material).

The extract (homogenate) was spun for 15 min at 13,000 X g, and
supernatant was used as a total fraction (NFTs and cell debris were re-
moved in the pellet). Purification of sarkosyl-insoluble tau (P3 fraction)
was based on previously published procedures (Greenberg and Davies,
1990). The amount of starting material was adjusted for protein concen-
tration to obtain comparable results. The supernatant was then further
centrifuged at 150,000 X g for 15 min to separate proteins into soluble
(S1, supernatant) and insoluble (pellet) fraction. Pellet was re-extracted
in 10 mm Tris, pH 7.4, 0.8 M NaCl, 10% sucrose, 1 mm EGTA, 1 mm
PMSF, protease inhibitor cocktail (Sigma), and phosphatase inhibitor
cocktail T and IT (Sigma) and centrifuged at 150,000 X g for 15 min. The
pellet was discarded, and the supernatant was incubated with 1% sarkosyl
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at 37°C for 1 h and centrifuged at 150,000 X g for 30 min, briefly washed
with the same buffer, and centrifuged again. The pellet (solubilized in
Tris-EDTA buffer) contained sarkosyl-insoluble tau (P3 fraction). Typ-
ically 150 ul of total extract was used to obtain 50 ul of P3 fraction. We
estimated that P3 fraction obtained using this protocol contained <5%
of the 64 kDa tau in the total brain extracts.

Western blotting. A total of 10 ug of proteins for the total fraction, 15
g for the S1 fraction, and 10 ul for the P3 fraction were mixed with
equivalent volume of 2X SDS-sample buffer (Invitrogen, Carlsbad, CA)
(62.5 mm Tris-HCI, pH 6.8, 2% SDS, 25% glycerol, and 0.1% bromophe-
nol blue) and 5% B-mercapthoethanol (unless mentioned otherwise),
boiled for 5 min, and loaded on 10% polyacrylamide Tris-glycine gels
[Invitrogen or Bio-Rad (Hercules, CA)]. The gels were resolved at 15 mA
for ~2 h and then transferred onto polyvinylidene difluoride membrane
using wet transfer system at 200 mA for 2 h. The membrane was briefly
washed in TBST (1% Triton X-100, 10 mm Tris, and 140 mMm NaCl),
blocked in 5% milk, and incubated in primary antibody overnight. Mem-
brane was then washed three times for 10 min with TBST and incubated
in secondary antibody for 0.5-2 h, washed three times for 10 min with
TBST, and incubated with Western lightning Chemiluminescence
reagent plus (PerkinElmer, Wellesley, MA) and exposed on Eastman
Kodak (Rochester, NY) BioMax Light Film. Bands on the films were
scanned, and band intensities were quantified using Scion (Frederick,
MD) Image Alfa 4.0.3.2. The intensity of the protein band of interest was
divided by the intensity of the band representing a loading control
[glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] to calculate the
relative amount. The intensity of the bands was compared on the same
membrane when possible (sample size permitting), or the intensity was
adjusted according to a standard run on both gels.

We used the following antibodies: E1 (1:2000), CP13 (1:1000), PHF1
(1:1000), AT8 (1:1000; Pierce, Rockford, IL), PS422 (1:1000; Biosource
International, Camarillo, CA), GAPDH (1:10,000; Biodesign International,
Kennebunk, ME), tau 12 (1:200,000), TauC3 (1:1000), and anti-rabbit and
anti-mouse (1:2000 to 1:10,000; Jackson ImmunoResearch, West Grove,
PA). Total tau 64 kDa was always quantified using AT8 antibody because this
provided better separation between 64 and 55 kDa tau.

Tau dephosphorylation. Low-speed supernatant, 60 ul, was mixed with
400 ul of 7 M guanidium hydrochloride and 5% B-mercap-
toethanol and dialyzed overnight against water. The next day, samples were
lyophilized and then incubated with 50 ul of hydrofluoric acid overnight. On
the following day, samples were again lyophilized and resuspended in 0.5 M
Tris, pH 8.6.

Size exclusion chromatography. Column preparation and general
methodology were described previously (Nichols et al., 2002). In brief,
sample (one brain or hemibrain in total volume of 2 ml) wasloaded on to
a HiPrep 16/60 Sephacryl S-300HR column (Amersham Biosciences,
Arlington Heights, IL) attached to a Pharmacia LKB (Gaithersburg, MD)
system. The column was pre-equilibrated in the buffer in which the brain
was homogenized (see above) at 25°C and run at a flow rate of 0.8 ml/
min. Two milliliter fractions were collected and concentrated to 50200
pand 5-10 ul were used for Western blot analysis, using the E1 antibody.
The size exclusion chromatography (SEC) profile was constructed from
Western blot data, using fractions 19-32, containing monomeric and
multimeric tau (on Western blots). Tau ~55 and 64 kDa, were also found
in fractions corresponding to particles of smaller size (data not shown)
but not multimers. The absence of the curve (see Fig. 2D, E) in a partic-
ular fraction indicates the absence of the species. Blue dextran was used to
determine the void volume and other standards (thyroglobulin, ~670
kDa; apoferritin, ~450 kDa; and BSA, ~70 kDa) were used to determine
the approximate molecular weights corresponding to the fractions of the
inclusion volume.

Neurofibrillary tangle counts in rTg4510 mouse brains. Brains were dis-
sected, and one hemisphere of the brains was drop fixed in 10% Formalin
for 1 week. After fixation, brains were embedded in paraffin, sections
were cutat 5 wm, and Gallyas silver staining was performed (supplemen-
tal methods, available at www.jneurosci.org as supplemental material).
Stained sections were viewed using an Olympus Optical (Center Valley,
PA) 40i microscope and imaged using a Retiga EXi (QImaging, Burnaby,
British Columbia, Canada) and MetaMorph imaging software (Molecu-
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lar Devices, Downington, PA). Total number of 3.5 months
neurofibrillary tangles in each section was A 3.5 months C Te4510 (T
counted in the insular, motor, and somatosen- rg—j —37
sory cortices as defined by the atlas of Paxinos rngA;iID ]‘Ta = r;fg4im IlTaﬁ 2 L& ,
and Franklin (2001). = = = = :Zg :g: T e El
All mice in the 5.5-month-old cohort evalu- 170 kpa—» 20 —1" =
ated for biochemical tau species were included ~ 140kDa == o = — [ -
in the NFT counts. In the 8-month-old cohort, 0 s = N s e
two brains were excluded fro'm thej analys?s of s C " '..
NFT counts (compared with biochemistry al 2 =M. - PHF1
analysis) because of a substantial damage of the =
.cortical region that prevented us from obtain- RS high exposure = - PS422
ing accurate NFT count. 10
Tissue from human subjects. For initial evalu- B Y [ =
ation of the presence of multimers in human - L AT
tissue, frozen brain tissue was obtained from 10 Tl Tau-C3 . i
subjects with pathologically confirmed Alzhei- C I - > d i - T46
mer’s disease (six women and four men; aver- El Taud6
age age at death, 81 * 8 years; average Braak e ——— GAPDH

neurofibrillary tangle stage, 5.6 * 0.5; average
postmortem delay, 11 * 6 h) and two subjects
from the pallido-ponto-nigral degeneration
family (Wszolek et al., 1992; Reed et al., 1998),
who have N279K mutations in microtubule-
associated protein tau (MAPT) (two women;
average age at death, 51 * 4 years; average
Braak neurofibrillary tangle stage, 0.8 = 0.4; av-
erage postmortem delay, 10 = 1 h). Alzheimer’s
diagnosis was made with established criteria ac-
cording to previously reported methods (Uch-
ikado et al., 2006).

Results

Tau multimers in a conditional model
of tauopathy, rTg4510

To determine whether tau was able to
form oligomers (multimers) similar to
those described for other proteins implicated in neurodegenera-
tive disorders (Conway et al., 2000; Lashuel et al., 2002; Walsh et
al., 2002; Sharon et al., 2003; Cleary et al., 2005; Lesne et al., 2006),
we analyzed Western blots prepared from brain extracts from the
rTg4510 conditional tau mouse model. We used rTg4510 mice
because they exhibit robust neurofibrillary pathology, cell loss,
and memory impairment (Santacruz et al., 2005). Initial studies
used 3.5-month-old mice, a stage at which the rTg4510 line
shows memory impairments but has not yet developed mature
NFTs or detectable hippocampal neuronal cell loss (Santacruz et
al., 2005).

Standard Western blot analysis was first performed on total
brain extracts that represent the supernatant obtained after cen-
trifuging the brain homogenate at low speed (13,000 X g). At this
age, the human-specific tau antibody E1 (residues 19-33)
(Crowe et al., 1991) detected multiple tau species migrating at
~55 kDa (Fig. 1 A). These bands correspond to normal soluble
tau species with different phosphorylation states, as reported pre-
viously (Sahara et al., 2002; Santacruz et al., 2005). In contrast,
there was no evidence of the pathologically hyperphosphorylated
tau migrating at 64 kDa (Fig. 1A) that accumulates in rTg4510
mice at older ages (Santacruz et al., 2005).

Oligomeric tau species was not observed when the film was
exposed for the time necessary to detect ~55 kDa tau. However,
after prolonged exposure, we observed what appeared to be oli-
gomeric tau species (termed tau “multimers”) migrating as two
major bands with apparent molecular weights of ~140 kDa
(termed taul40) and ~170 kDa (taul70) (Fig. 1 A) (supplemen-
tal Fig. S2, available at www.jneurosci.org as supplemental mate-

Figure1.

D

dephosphorylation - +

170 kDa —»
140 kDa —>

Taumultimers in rTg4510 mice. A, Western blot of total extracts from 3.5-month-old rTg4510 and age-matched tTa
animals (without mutant P301L tau transgene). Tau migrating at ~55 kDa can be detected with the human-specific E1 antibody
inrTg4510 but not in tTa animals. Tau multimers migrating at ~170 (called tau170) and ~ 140 kDa (called tau140) can be seen
inrTg4510 but not in age-matched tTa animals, when film is exposed for a longer time. B, Schematic location of epitopes on tau
that are recognized by phosphorylation-independent antibodies tau12, E1, Tau(3, and tau46. Tau12 and E1 are N-terminal,
whereas tau46 is C-terminal. TauC3 (which does not detect tau multimers) is selective for tau cleaved at Asp421. €, Tau multimers
are detected in total brain extracts from 3.5-month-old rTg4510 with a variety of tau antibodies (E1, CP13, PHF1, PS422, AT8, and
T46). Age-matched tTa animals (without mutant P301L tau transgene) were used as a control. Tau170 and tau140 are seen by E1,
(P13, PHF1,and T46, whereas PS422 and AT8 selectively detects tau170. D, Dephosphorylation leads to disappearance of tau170,
although tau40 s still present.

rial). These species were detected in rTg4510 tau animals (with
both tau and tTa transgenes) but not tTa control animals (with
only the activator tTa transgene) (Fig. 1 A). The apparent molec-
ular weight of these species is sufficient to suggest that they are
multimeric structures (i.e., species with two or more tau
molecules).

To further characterize the tau multimers, we used different
antibodies recognizing epitopes located in N- and C-terminal
region of tau, which are independent of tau phosphorylation sta-
tus (Fig. 1 B). Tau multimers (taul40 and taul70) were detected
with the E1 antibody (residues 19-33 of human tau) (Crowe et
al., 1991) (Fig. 1A,C) and with the taul2 antibody (data not
shown) recognizing residues 9—18 of human tau (Horowitz et al.,
2004). Moreover, tau multimers were also detected with the
tau46 antibody (Fig. 1C) that recognizes an epitope near the C
terminus (428 —441 amino acids) (Fig. 1 B, C). In contrast, the tau
multimers were not detected using the TauC3 antibody (data not
shown) that recognizes tau truncated at Asp421 (Gamblin et al.,
2003), although we cannot exclude the possibility that this nega-
tive result may be attributable to insufficient sensitivity or that
other truncated tau species may be present. Nonetheless, our
results are consistent with the multimers containing full-length
tau species. In addition, the tau multimers were also not detected
by antibodies that recognize MAP1, MAP2, or mouse tau, which
were previously suggested to affect tau aggregation (Alonso et al.,
1997; Andorfer et al., 2003).

Both tau multimer species were SDS-stable, even after boiling
in SDS for 30 min (data not shown). Moreover, levels of the
multimers were not altered by prolonged incubation in 0.1%
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month-old rTg4510 mice. Dephosphory-
lation of the protein extracts, through
treatment with hydrofluoric acid, resulted

= in disappearance of the taul70 species,

o tau multimers

(pematan)  contains NFTs T = Nt exposure suggesting that taul70 exists in a hyper-
g8 8 yp
170 kDa - " .
|00y 140 kDa —> ..—ﬂJ 2ol phosphorylated state (Fig. 1D). In sum-
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Soluble (S} Pellet 64 kDa—» _—ﬁ levels of phosphorylation.
: e tau 55/64 kDa
e o sskoa C |0 D 9 % fowim Our results clearly show that the tau
Pe—— multimers described above are detected in
the presence of reducing agents. However,
Pafler  uperi species reminiscent of tau multimers were
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I nciin previously shown to form in vitro under
Vmin C Fraction/ Monomeric | Multimers nonreducing conditions through the for-
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(P3) fraction Sarkosyl-insoluble:  |64:kDa 170Xba al., 1998). We were therefore interested to
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determine whether such “disulfide-bond-
D E dependent” multimers might also exist in
4.5 months 6.5 months vivo in rTg4510 because these species
would have been lost in our standard SDS-
D I e PAGE Western blot analysis attributable
200 | 240( +— 55 kDa | . o . .
. 64 kDa o e | to the reducing conditions used in this
g 160 ‘—I‘ Z 64 kDa | technique. To test this hypothesis without
g 160 q yp
2 | [T £ 6 | W40 . . if: f
£ Bl 70 2 muwino i vitro artifacts, we performed rTg4510
§ e mikr brain extractions under conditions that
2 | £ 40 gLul?" enabled us to capture the state of sulfhy-
= taul 70

[n
MRS e e

wa O O8BAZY .
Fraction number I Fraction number ]
: rge . large
— size, — size [
[ ~ 670 kDa I I ~ 670 kDa
~67kDa - 450 kDa ~ 1.5 MDa ~ 67 kDa 450 kDa 1.5 MDa
Figure 2.  Biochemical properties of tau species. A, Schematic diagram of the tau extraction procedure that is based on

previously published methology (Greenberg and Davies, 1990). For details, see Material and Methods. B, Brain extracts from
6.5-month-old rTg4510 were processed as described in A. Tau ~55 kDa and tau 64 kDa are present in total extracts at 6.5 months

dryl groups and disulfide bonds in vivo
(see Material and Methods) and then per-
formed Western blot analysis of tau mul-
timer species under reducing and nonre-
ducing conditions. However, these studies
showed no evidence of additional
disulphide-bond-dependent multimers in
r'Tg4510 mice (supplemental Fig. S1, avail-
able at www.jneurosci.org as supplemental
material).

of age (assessed by E1antibody). Tau ~55 kDa s found in soluble (1) fraction, whereas hyperphosphorylated tau 64 kDa is found

in the sarkosyl-insoluble (P3) fraction. Tau170 and tau140 are present in total lysate from 6.5-month-old rTg4510. Tau140 is
mostly found in soluble (S1) fraction, whereas tau170 is mostly in the sarkosyl-insoluble (P3) fraction, as assessed by E1 antibody.
Tau170 kDa, present in the sarkosyl-insoluble (P3) fraction, is strongly immunoreactive with AT8, whereas tau140, present in
soluble (S1) fraction, exhibits very little immunoreactivity with AT8 antibody. C, Summary of how the various tau species are
extracted into the different fractions. D, Analysis of the size of the different tau species in vivo. Size-exclusion chromatography was
performed with total extracts from 4.5-month-old rTg4510. Tau140 and tau 55 kDa elute at a similar size and appear relatively
small, whereas tau170 and tau 64 kDa are part of larger aggregates. Tau140 and tau170 have distinct sizes that do not overlap at
this time point. Molecular weight scale corresponds to standards (see Materials and Methods) eluting at respective fractions
shown on the graph (~67 kDa eluted in fraction 34). E, Size-exclusion chromatography analysis using extracts of older 6.5-
month-old rTg4510. Hyperphosphorylated species (64 kDa, tau170) are characterized by two distinct elution peaks, suggesting
they are derived from two distinct populations of small and large aggregated species. Tau140 and tau170 have overlapping size

ranges at 6.5 months of age.

SDS, which mimics the conditions during SDS-PAGE (data not
shown), demonstrating that the tau multimers are not an artifact
of SDS-PAGE.

We next determined the phosphorylation state of the taul70
and taul40 multimers, using antibodies that recognize different
tau phospho-epitopes. Both taul70 and taul40 were detected
with CP13 and PHF1 antibodies that also recognize phospho-
epitopes on normal tau, migrating at ~55 kDa (Fig. 1C). How-
ever, antibodies that selectively recognize pathological phospho-
epitopes, in both human AD patients and rTg4510 mice (AT8
and PS422), preferentially detected the taul70 multimers (Fig.
1C), despite higher abundance of the taul40 species, in 3.5-

Properties of tau multimers in

rTg4510 mice

Tau multimers were initially detected in
total brain extracts (Fig. 1). To character-
ize the extent of aggregation of tau mul-
timers i1 vivo, we initially used a fraction-
ation procedure (Greenberg and Davies,
1990), frequently used to separate aggre-
gated tau species (see schematic in Fig.
2A). Total extracts were first centrifuged at
high speed (150,000 X g), leading to accu-
mulation of larger insoluble tau aggregates
in the pellet, whereas monomeric or oligo-
meric tau species remain in the supernatant (Fig. 2A). The super-
natant is the soluble (S1) fraction, whereas the pellet is further
extracted with the detergent sarkosyl to obtain the sarkosyl-
insoluble (P3) fraction.

The soluble (S1) fraction contains the normal human tau that
migrates as a series of diffuse bands at ~55 kDa on SDS-PAGE. In
contrast, the sarkosyl-insoluble (P3) fraction (from the extracts
of rTg4510 mice >4 months) contains pathological hyperphos-
phorylated tau species that migrates as 64 kDa species (Fig. 2 B).
The material in sarkosyl-insoluble (P3) fraction also ultrastruc-
turally resembles NFTs. However, the P3 fraction does not con-
tain mature NFTs because these large structures are removed by
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low-speed centrifugation during the initial
preparation of the total brain extracts (see
schematic in Fig. 2A) (Lewis et al., 2000,
2001; Sahara et al., 2002; Santacruz et al.,
2005).

In fractionated brain extracts from
rTg4510 mice, tau multimers were de-
tected in both soluble (S1) and sarkosyl-
insoluble (P3) fractions (Fig. 2B). How-
ever, in the soluble fraction, taul40
multimers were the major species, whereas
taul70 was essentially absent. In contrast,
the taul70 species were most abundant in
the sarkosyl-insoluble (P3) fraction (Fig.
2B). Significantly, taul70 multimers
present in the P3 fraction were strongly
immunoreactive with the AT8 antibody,
known to selectively recognize pathologi-
cal hyperphosphorylated tau, including

A total extracts
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These data suggest that taul40 exists
mostly as relatively small aggregates in
vivo, which are not hyperphosphorylated,
whereas in contrast taul70 is derived from
larger aggregated structures that are also
hyperphosphorylated.

Although generally similar results were
obtained in rTg4510 at all ages examined
(see Figs. 3, 4, 6), it is important to empha-
size that, in young mice (up to 5.5 months)
(see Figs. 3, 4), only the taul40 multimers
and the 55 kDa tau species were detected in
the soluble (S1) fraction. In contrast, the hyperphosphorylated
taul70 multimers and 64 kDa tau species were not detected in the
soluble (S1) fraction. However, in older mice (>6.5 months), a
relatively small quantity of taul70 was observed in the soluble
(S1) fraction (see Figs. 2B, 6B). Similarly, in 6.5-month-old
r'Tg4510, 64 kDa tau could be detected in soluble (S1) fraction
with the phospho-specific AT8 antibody (data not shown). These
results suggest that hyperphosphorylated tau is only present in
large aggregates early in the disease cascade.

To confirm the apparent differences in the relative size of the
various tau species, we next performed SEC on total extracts from
r'Tg4510 at 4.5 and 6.5 months of age. We used these two ages
because hyperphosphorylated tau species (taul70 and 64 kDa
tau) can be detected only in insoluble fractions at 4.5 months,
although they appear in both soluble (S1) and insoluble (P3)
fractions at 6.5 months.

As expected, SEC on brain extracts from 4.5-month-old
r'Tg4510 showed a clear distinction between the relative sizes of
the taul40 and taul70 species with no overlap in their elution
profile (Fig. 2D). Taul40 was primarily detected in fractions
30-32 that correspond to a molecular weight just above ~70
kDa, raising the possibility that this species may exist as a single
140 kDa unit. A shoulder on the taul40 elution profile (fractions
26-28) also suggests that a small proportion of this species is
present in larger aggregates. In contrast, taul70 was only found in
fractions that correspond to molecular weights between ~670
kDa and ~1.5 MDa, suggesting that taul70 is exclusively a com-
ponent of larger aggregated structures at 4.5 months of age. The
64 kDa species also appeared only in fractions with high molec-

Figure 3.

Changes in the levels of tau species between 1 and 4.5 months. A, Tau species present in total extracts in 1- and
4.5-month-old rTg4510. Abundant ~55 kDa tau is detected at both time points, and the levels of this species appear to increase
over this time period. Hyperphosphorylated tau 64 kDa can be detected at 4.5 months with the AT8 antibody (arrow, the top band
inthe doublet). Levels of the tau140 multimers are increased at 4.5 months, relative to 1 month, and tau70, also detected by the
AT8antibody, is detectable only at4.5 months. B, Tau species presentin the soluble (S1) fractionin 1-and 4.5-month-old rTg4510.
Only tau140 is present in the soluble (S1) fraction, whereas tau170 is absent. Tau140 levels increase between 1 and 4.5 months
similar to that observed in total fraction. €, Tau ~55 kDa positively correlates with the levels of the multimers (tau140) in the
soluble (S1) fraction. Data from 1-month-old animals are depicted in squares, whereas data from 4.5-month-old animals are in
triangles; the same applies to D. D, Levels of tau140 multimers positively correlate with levels of tau170 in total extracts.

ular weight, at 4.5 months, indicating that it is also found in large
aggregates, similar to taul70. Interestingly, the ~55 kDa tau spe-
cies exhibited a broad elution profile, suggesting that some nor-
mally phosphorylated tau (that migrates as ~55 kDa tau on
Western blots) is part of larger aggregates (fractions 20-22).

In older 6.5-month-old rTg4510 mice, SEC again showed that
the majority of taul40 elutes with smaller size than taul70, sim-
ilar to results at 4.5 months (Fig. 2 E). However, in the older mice
(6.5 months), taul40 and taul70 also give overlapping elution
profiles with both present in detectable amounts in fractions
24-26 (Fig. 2E). This indicates that, in older mice, unlike at 4.5
months, the two tau multimer species can be present in aggre-
gates of similar intermediate size. Interestingly, 64 kDa tau also
gave two distinct SEC elution peaks in 6.5-month-old mice, in-
dicating that this species is not only present in large aggregates (as
at 4.5 months) but is also derived from smaller aggregates and
possibly hyperphosphorylated tau monomers.

Age-dependent changes in tau species in rTg4510
To determine how levels of the tau multimers and other tau
species change with age in rTg4510, we analyzed in parallel brain
extracts of 1-month-old and 4.5-month-old mice. In the period
from 1 to 4.5 months, rTg4510 mice develop large numbers of
pretangle lesions and also mature silver-positive NFTs (Santa-
cruz et al., 2005). We analyzed total extracts and soluble (S1)
fractions.

Hyperphosphorylated tau migrating at 64 kDa was observed
in total extracts of 4.5-month-old rTg4510, although this species
was not detected at 1 month of age (Fig. 3A). The 64 kDa species
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Figure 4.  Analysis of tau species present at 5.5-month-old rTg4510. A, Tau species present in total extracts in 5.5-month-old
1Tg4510. The abundant ~55 kDa tau is observed with the E1 antibody without obvious variability between mice. Hyperphospho-
rylated 64 kDa tau is detected both by E1 and the phospho-epitope-specific AT8 antibody. Both tau170 and tau140 are seen with
the ET antibody, whereas only tau170is recognized specifically by AT8. Levels of the tau multimers (tau170 and tau140) appear to
be variable between different animals. B, Soluble (S1) fraction contains tau ~55 kDa and tau140, but tau 64 kDa and tau170 are
absent. €, Levels of multimers in total extracts exhibit a higher extent of variability across the group (SD of 0.33; 48% of the mean)
compared with the levels of multimers in the soluble (S1) fraction (SD of 0.06; 21% of the mean).
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dex, referred to as the “memory index”
throughout, during the probe trials (see
Material and Methods) (Janus, 2004). The
time point of 5.5 months was chosen be-
cause partial recovery of memory function
was observed in rTg4510 after transgene
suppression at 5.5 months, although
rTg4510 exhibits significant memory im-
pairment and neuronal loss in the hip-
pocampus at this age (Santacruz et al.,
2005).

Western blot analysis of this cohort of
5.5-month-old rTg4510 mice, with the E1
antibody (Fig. 4A), detected both the ~55
kDa and hyperphosphorylated 64 kDa tau
species in total brain extracts. The hyper-
phosphorylated 64 kDa tau was again se-
lectively recognized by the AT8 antibody
(Fig. 4A). In addition, in total extracts, the
taul70 and taul40 multimers were also
detected with the E1 antibody and taul70
was recognized by AT8 (but not taul40)
(Fig. 4A). In contrast, in the soluble (S1)
fraction, only the ~55 kDa tau and tau140
multimers were observed (Fig. 4 B).

The levels of both tau multimer species

was absent in the S1 fraction at both ages (Fig. 3B), consistent
with previous observations that the 64 kDa tau is not detected in
the S1 fraction in young (<<6.5 month old) mice. Tau ~55 kDa
was relatively abundant (compared with 64 kDa tau) in total
extracts both at 1 and 4.5 months, as assessed with the E1 anti-
body. The levels of ~55 kDa tau in total extracts significantly
increased from 1 to 4.5 months (1.4-fold; p = 0.006, two-tailed ¢
test; n = 16). Similarly, ~55 kDa tau detected in the soluble (S1)
fraction also significantly increased during this period (1.5-fold;
p = 0.007, two-tailed t test; n = 16). This increase in ~55 kDa tau
might reflect an increase in transgene-driven human tau expres-
sion during this period or alternatively it may be attributable to
the formation of tau aggregates containing the ~55 kDa species
as suggested by the SEC studies (Fig. 2E).

Taul40 multimers were detected in total extracts even at 1
month of age, whereas taul70 multimers were absent. At 4.5
months, both taul40 and taul70 were present in total extracts
(Fig. 3A). In the soluble (S1) fractions, from both ages, only
taul40 was present with a threefold increase in levels ( p < 0.001,
two-tailed ¢ test; n = 16) observed from 1 to 4.5 months (Fig. 3B).
Similarly, taul40 multimers in total extracts increased signifi-
cantly during this period (threefold; p < 0.001, two-tailed ¢ test;
n = 16). Levels of ~55 kDa tau correlated positively with tau140
in the soluble (S1) fractions (R* = 0.75; p < 0.001) (Fig. 3C);
moreover, levels of taul40 exhibited a significant positive corre-
lation with levels of taul70 in total extracts (R* = 0.30; p < 0.05)
(Fig. 3D).

Relationship between tau species and memory deficits in
5.5-month-old rTg4510

To test the relationship of tau species and memory deficits in
r'Tg4510 mice, we analyzed the spatial memory of a cohort of 12
mice at 5.5 months, using the reference memory version of the
Morris water maze test (Morris, 1981). The evaluation of spatial
memory was performed by computing an annulus crossing in-

(taul70 and taul40) in total extracts dis-

played marked variability between indi-
vidual mice within the group (SD of 0.33; 48% of the mean) (Fig.
4C). In contrast, levels of taul40 present in the soluble (S1) frac-
tion appeared less variable (SD of 0.06; 21% of the mean) (Fig.
4C).

The combined levels of the two tau multimer species (140 and
170 kDa) in total extracts correlated negatively with the memory
index (R*> = 0.57; p < 0.01) (Fig. 5A). In addition, levels of
individual 140 and 170 kDa multimer species (determined using
the E1 antibody) also correlated negatively with memory index to
a similar extent (taul40, R* = 0.52, p < 0.01; taul70, R* = 0.57,
p < 0.01; data not shown). Levels of taul70 analyzed with the
ATS$ antibody also showed a similar correlation (R* = 0.56; p <
0.01; data not shown). In contrast, levels of the soluble multimers
(S1 fraction) did not show any correlation with memory index
(R* = 0.008; p = 0.80) (Fig. 5A).

Next we examined the correlation of other tau species with
memory index in the cohort of 5.5-month-old rTg4510 mice. The
~55 kDa tau present in total extracts did not exhibit significant
correlation with memory index (R* = 0.12; p = 0.26) (Fig. 5B).
Similarly, ~55 kDa tau in soluble (S1) fraction did not show a
significant correlation with memory index (R* = 0.14; p = 0.47)
(Fig. 5B). Levels of hyperphosphorylated 64 kDa tau in total ex-
tracts also did not show a significant correlation with memory
index (R*> = 0.22; p = 0.13) (Fig. 5C). However, sarkosyl-
insoluble 64 kDa tau species, present in the P3 fraction, negatively
correlated with memory index (R* = 0.35; p < 0.05) (Fig. 5C).

Single transgenic littermates with the tau responder transgene
alone did not develop tau multimers or the 64 kDa tau species
(data not shown). Consistent with this lack of pathological tau
species, the single transgenic mice displayed normal spatial mem-
ory performance that was indistinguishable from nontransgenic
littermates (data not shown).

In summary, pathological, aggregated tau species, tau mul-
timers in the total extracts, and the 64 kDa in the sarkosyl-
insoluble (P3) fraction exhibited a significant negative correla-
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Figure 5.  Relationship of tau species and memory impairment (memory index) in 5.5-

month-old rTg4510. A, Levels of multimers (tau170 and tau140) in total extracts showed a
significant negative correlation with memory index, whereas multimers in the soluble (S1)
fraction did not. B, Levels of ~55 kDa tau in total extracts or in the soluble (S1) fraction did not
significantly correlate with memory index. €, Levels of hyperphosphorylated tau ~64 kDa in
total extracts did not exhibit significant correlation with memory index. However, the subpopu-
lation of this species that was extracted into the sarkosyl-insoluble (P3) fraction correlated
significantly and negatively with memory index.

tion with the memory index in individual 5.5-month-old
r'Tg4510 mice. In contrast, levels of soluble tau species (taul40
and ~55 kDa) did not correlate with the memory index.

Relationship between tau species and memory deficits after
suppression of transgene expression

Suppression of transgene expression in rTg4510 mice at 2.5
months and 5.5 months of age was associated with recovery of
spatial reference memory (Santacruz et al., 2005). This paradigm
allows us to determine whether levels of tau multimers or other
species are associated with not only the development of memory
deficits but also subsequent recovery. We therefore suppressed
tau expression in a cohort of r'Tg4510 mice from 6.5 months until
8 months of age, using dox-supplemented mouse chow and com-
pared them with age-matched rTg4510 mice on control chow (no
dox; for details, see Material and Methods).

Transgene suppression in this cohort resulted in reduced lev-
els of normal ~55 kDa tau in both total brain extracts and in the
soluble (S1) fraction (33 and 28% reduction, respectively; p <
0.001) (Fig. 6A,B,D), which was consistent with our previous
findings (Santacruz et al., 2005). In addition, levels of hyperphos-
phorylated 64 kDa tau species in the total extracts were also sig-
nificantly reduced (51% reduction; p < 0.001) (Fig. 6 A, D). Levels of
sarkosyl-insoluble (P3) fraction 64 kDa tau species were variable
(Fig. 6C) and did not show a significant reduction relative to
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Figure6.  Changes in tau species after suppression of transgene expression with doxycycline
between 6.5 and 8 months. A, Transgene suppression with doxycycline led to decreased levels
of ~55 kDa tau, 64 kDa tau, and tau multimers (tau170 and tau140) in total extracts. B,
Transgene suppression with doxycycline also led to decreased levels of tau species in the soluble
(S1) fraction. €, Levels of sarkosyl-insoluble 64 kDa tau and tau multimers in the P3 fraction
were variable and did not show a consistent decrease with transgene suppression. D, Quantifi-
cation of changes of different tau species from experiment in Figure 64—C. The values of tau
species in animals not treated with doxycycline was set as 100% (n = 10 for animals without
doxycycline; n = 11 for animals treated with doxycycline). ***p <<'0.001; NS p > 0.05. Two-
sample two-tailed ¢ test was used.

8-month-old no-dox mice ( p = 0.17) (Fig. 6d), which is again con-
sistent with our previous studies (Santacruz et al., 2005).

Levels of tau multimers (taul70 and taul40) in total extracts
were dramatically decreased after transgene suppression in this
cohort (74% reduction; p < 0.001) (Fig. 6A,D), and a similar
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Figure 7.  Relationship of tau species and memory index during transgene suppression by

doxycycline between 6.5—8 months. 4, Levels of multimers in total extracts correlated signifi-
cantly and negatively with memory index, whereas levels of multimers in the soluble (1)
fraction do not. B, Levels of ~55 kDa tau in total extracts or in soluble (S1) fraction did not
exhibit significant correlation with memory index. C, Levels of hyperphosphorylated tau 64 kDa
in total extracts did not significantly correlate with memory, whereas sarkosyl-insoluble 64 kDa
tau in P3 fraction does exhibit significant and negative correlation with memory index.

reduction was observed when taul40 and taul70 were assessed
individually in total extracts (74 and 73% reduction, respectively;
p < 0.001). In the soluble (S1) fraction, tau multimers (mostly
taul40) were reduced by 58% ( p < 0.001) (Fig. 6 B, D).

Transgene suppression from 6.5—-8 months resulted in im-
proved memory function. The memory index was significantly
higher in the dox rTg4510 group compared with animals kept on
control chow (mean * SEM memory index, 0.02 = 0.37 mice
without dox; 1.00 = 0.30 mice with dox; p < 0.05, two-sample
one-tailed f test).

Next we examined the relationship between the levels of dif-
ferent tau species and spatial memory in individual rTg4510
mice, after transgene suppression. The memory index negatively
correlated with the levels of combined multimers (taul40 and
taul70 species) in total extracts (R* = 0.22; p < 0.02) (Fig. 7A). A
similar correlation was observed when taul40 and taul70 mul-
timers in total extracts were assessed individually (R* = 0.28, p <
0.01 and R* = 0.27, p < 0.01, respectively; data not shown).
However, multimers in the soluble (S1) fraction (mostly taul40)
again did not correlate significantly with memory index (R* =
0.08; p = 0.09) (Fig. 7A).

Levels of the ~55 kDa tau in total extracts and the soluble S1
fractions did not significantly correlate with memory index [R*
= 0.10, p = 0.09 (Fig. 7B) and R> = 0.05, p = 0.17 (Fig. 7B),
respectively]. Levels of hyperphosphorylated 64 kDa tau in total
extracts did not show a significant correlation with memory in-
dex in this cohort (R* = 0.08; p = 0.11) (Fig. 7C). However,
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not correlate significantly with memory index at 3.5 months. However, removal of an outlier
animal with memory index of 8.5 (square) resulted in a significant and negative correlation
between levels oftau140 multimers in total extracts and memory index (R? = 0.45;p = 0.01).
B, Levels of multimers in soluble (S1) fraction did not correlate significantly with memory index
at3.5 months, and this analysis is not affected by removing the outlier animal (R* = 0.11;p =
0.16).

interestingly, sarkosyl-insoluble 64 kDa tau (P3) did show a sig-
nificant negative correlation with memory index (R* = 0.22; p <
0.02) (Fig. 7C). This result is somewhat surprising given that
sarkosyl-insoluble (P3) 64 kDa tau did not show a significant
reduction after doxycycline treatment in our study but illustrates
the importance of assessing tau species in individual mice rather
than simply mean values from groups of animals. In summary,
levels of pathological aggregated tau species, multimers in total
extracts, and 64 kDa tau, in the sarkosyl-insoluble (P3) fraction,
again gave significant negative correlations with memory index,
in transgene suppressed mice, whereas levels of soluble tau spe-
cies did not show such association.

The relationship of tau multimers and memory deficits in
3-month-old rTg4510

To test whether tau multimers correlate with memory in the
absence of sarkosyl-insoluble (P3) 64 kDa tau, we studied a co-
hort of 3-month-old rTg4510. At this age, the rTg4510 mice de-
veloped significant memory impairment (.4, = 2.7; p < 0.02,
two-tail ¢ test, with an outlier removed; see below) compared with
nontransgenic littermates. Only taul40 multimers were present
in both total extracts and soluble (S1) fraction (data not shown).
Hyperphosphorylated taul70 multimers were not detected in
total extracts at this age.

Levels of taul40 multimers in total extracts were not signifi-
cantly correlated with memory indices in 3-month-old rTg4510
mice (R? = 0.15; p = 0.10) (Fig. 8 A). However, the inspection of
the memory scores of these mice revealed one extreme score of
8.5 (Fig. 8A). Normalizing the scores using z-score transforma-
tion revealed that this score of 8.5 was an outlier deviating 2.62
SD from the mean with the probability of occurrence of p < 0.01.
After removing this score from the analysis, the negative correla-
tion between the taul40 multimers in the total extracts and mem-
ory reached a significance at @ = 0.05 (R* = 0.45; p < 0.02). In
contrast, we again did not observe a correlation between levels of
taul40 multimers in soluble (S1) fractions and the memory index
(R*=0.15; p = 0.41) (Fig. 8 B), and this result was not affected by
excluding the single outlier (R* = 0.11;p = 0.16). Similar analysis
performed on the cohorts of rTg4510 at 5.5 and 8 months of age
(Figs. 5, 7) did not alter the level of statistical significance of these
correlations (i.e., all correlations above @ = 0.05 remained above
this level and vice versa).
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Figure9.  NFT countsand memoryindexin 5.5- and 8-month-old rTg4510. 4, The number of

neurofibrillary tangles in individual rTg4510 mice and memory index displayed a borderline
significant negative correlation (R = 0.33; p = 0.05) in 5.5-month-old Tg4510. B, In
8-month-old rTg4510 mice, the number of neurofibrillary tangles correlated negatively with
memory index only in the no-dox cohort (R? = 0.47; p = 0.02), whereas this correlation was
completely lost after transgene suppression in the dox cohort (R* = 0.03; p = 0.33). Dox
treatment was for 6 weeks from 6.5 to 8 months.

Relationship of different tau protein species

Our studies demonstrated that both the tau140 and taul70 mul-
timers in total extracts and the sarkosyl-insoluble 64 kDa tau
consistently correlated with memory index in two different co-
horts of r'Tg4510 mice at different ages. Given these observations,
we next explored the relationship between these pathological tau
species. We observed a strong positive correlation between
taul40 and taul70 multimers in total extracts (5.5 months, R* =
0.88, p < 0.001; 8 months, R> = 0.88, p < 0.001) (supplemental
Fig. S3A, available at www.jneurosci.org as supplemental mate-
rial). This observation is consistent with our previous results that
show that levels of the taul40 and taul70 multimers correlate
with memory index to a similar extent. Moreover, we also saw a
positive correlation between levels of the multimers (taul70 and
taul40) in total extracts and sarkosyl-insoluble 64 kDa tau in the
P3 fraction (5.5 months, R* = 0.36, p < 0.05; 8 months, R* =
0.16, p < 0.05) (supplemental Fig. S3B, available at www.jneuro-
sci.org as supplemental material). This indicates a possible rela-
tionship between the formation of the taul40, taul70 multimers,
and tau 64 kDa. Interestingly, this positive correlation was even
stronger when we analyzed the tau multimers and tau 64 kDa,
present in the sarkosyl-insoluble (P3) fraction (5.5 months, R* =
0.69, p < 0.001; 8 months, R* = 0.91, p < 0.001) (supplemental
Fig. S3C, available at www.jneurosci.org as supplemental mate-
rial). This likely reflects the fact that the P3 fraction contains
almost exclusively taul70 multimers that, like 64 kDa tau, are
hyperphosphorylated and appear to be derived from large aggre-
gated species (Fig. 2D).

Relationship of NFT counts in rTg4510 mice to tau multimers
and memory deficits

To compare the biochemical results described above with the
extent of pathology in individual mice, we determined NFT
counts in the same series of 5.5-month-old rTg4510 mice. We
observed a significant correlation between NFT numbers and
levels of the tau multimers (R* = 0.50; p < 0.001; data not
shown) in this cohort of mice consistent with both the multimers
and end-stage NFT being part of a continuum of pathological tau
aggregation events. In addition, the NFT counts in individual
mice displayed a borderline negative correlation with memory
index (R* = 0.33; p = 0.05) (Fig. 9A). In contrast, multimer levels
gave a highly significant negative correlation with memory index
in the same cohort of mice (Fig. 5A), suggesting that levels of
multimers are more predictive of memory function, at least using
with the methodology used in this study.
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In a similar manner, we also examined the relationship of NFT
counts to memory index in 8-month-old rTg4510 mice treated
with dox for 6 weeks to suppress transgene expression. Although
the levels of the NFT's were not significantly different between the
dox and no-dox groups ( p = 0.33), this analysis revealed that,
although NFT numbers again showed a significant negative cor-
relation with memory in the no-dox group (R* = 0.47; p = 0.02),
this relationship was completely lost after transgene suppression
with dox (R* = 0.03; p = 0.33) (Fig. 9B). This result is in a stark
contrast to previous analysis of the correlation between memory
and levels of tau multimers or P3 64 kDa tau (Fig. 7A-C), in
which similar negative correlations for these species was observed
in both dox and no-dox groups.

The association of NFT counts with memory index in r'Tg4510
mice constitutively expressing mutant tau at 5.5 months and 8
months of age (Fig. 9) is reminiscent of the consistent correlation
observed between NFT pathology and memory deficits in human
AD patients (Arriagada et al., 1992; Guillozet et al., 2003). More-
over, the loss of the correlation between NFT and memory index
in individual 8-month-old mice, after transgene suppression, ex-
tends our previous observation that NFT formation can be dis-
sociated from memory loss in rTg4510 (Santacruz et al., 2005).

Tau species in JNPL3 mice

We also evaluated the presence of different tau species, including
tau multimers, in a second mouse model of tauopathy, the JNPL3
transgenic mouse line that expresses the same mutant tau isoform
(ON4R P301L isoform) as rTg4510. Average levels of human tau
expression, in JNPL3 mice, are similar to levels of endogenous
mouse tau. JNPL3 mice exhibit motor deficits with variable onset
age, starting as early as 6.5 months, associated with the development
of neurodegenerative changes in the spinal cord (Lewis et al., 2000).

We observed tau of ~55 kDa and taul40 multimer species in
total spinal cord extracts from 2-month-old JNPL3 mice (Fig.
10A), demonstrating that taul40 multimers are formed early in
the pathogenic progression in this model. At this age, sarkosyl-
insoluble 64 kDa tau (in P3 fraction) was not detected (Lewis et
al., 2000).

We then compared tau species present in total extracts of
spinal cord and brain from animals with functional (motor) def-
icits at 12—14 months of age. Both tau multimer species (taul70
and taul40) and hyperphosphorylated 64 kDa tau were present
in total extracts in aged JNPL3 mice (Fig. 10 B). Moreover, higher
levels of these species were present in spinal cord compared with
brain extracts (Fig. 10 B), consistent with the distribution of NFT
pathology in this model (Lewis et al., 2000). We also observed
higher levels of multimers (taul40 and taul70) and 64 kDa tau in
12- to 15.5-month-old JNPL3 mice with functional (motor) def-
icits compared with unaffected mice of similar age, although
these two groups of mice displayed similar levels of normal ~55
kDa tau species (Fig. 10C). In contrast, no taul40 or taul70 mul-
timers were detected in spinal cord extracts from 14-month-old
animals expressing wild-type human tau (Fig. 10D) that do not
develop NFT pathology or motor deficits (Lewis et al., 2000). The
same mouse prion promoter was used in the lines expressing
wild-type or mutant tau P301L (Lewis et al., 2000). These results
demonstrate that, similar to rTg4510 mice, the accumulation of
tau multimers and hyperphosphorylated 64 kDa tau is associated
with the development of functional deficits in a second mouse
model of tauopathy, the JNPL3 mice.
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Figure 10.  Relationship of tau species to motor deficits in JNPL3 mice. A, Multimers were
detected in spinal cord extracts from 2-month-old JNPL3 mice (1-3) but were absent in non-
transgenic littermates (NT). Asterisk marks nonspecific band also present in nontransgenic
littermates, which is attributable to nonspecific binding of the secondary antibody. B, Spinal
cord and brain extracts from JNPL3 female mice at the age of 12 (1) and 14 months (2). Tau
multimers (tau170 and tau140) and 64 kDa tau species are present in spinal cord but are not
clearly visible in brain. €, Tau multimers (tau170 and tau140) and hyperphosphorylated 64 kDa
are detected in JNPL3 mice severely affected with motor dysfunction, but neither of these
species is seen in unaffected JNPL3 mice of similar age. D, Tau multimers are not present in mice
overexpressing wild-type human tau. wt tau, Spinal cord extracts from mice overexpressing
wild-type human tau (JN25 line) at 14-months of age; JNPL3, spinal cord extracts from 14-
month-old JNPL3 mice. Note that there is no evidence of tau multimers in mice expressing
human wild-type tau, despite significantly higher levels of total tau being loaded onto the blot,
compared with JNPL3 mice. The apparent low level of tau 55/64 kDa in the JNPL3 mice seen on
this Western blot is only attributable to this adjustment (~3 times more protein was loaded for
wild-type tau).

Tau species with similar characteristics to tau multimers
accumulate in human tauopathies

To test whether similar multimer species form during the devel-
opment of human tauopathy, we examined brain extracts from
two patients with the N279K MAPT mutation (Wszolek et al.,
1992; Reed et al., 1998; Arvanitakis et al., 2006). We observed
tau-immunoreactive bands at molecular weight ~170 kDa in
extracts from temporal cortices (a region affected by tau pathol-
ogy) from these individuals (Fig. 11A, lanes D1, D2), whereas
these species were absent in extracts from the cerebellum (a re-
gion without tau pathology in these patients) and were also ab-
sent in extracts from both regions of nondemented controls.
These bands appeared relatively well defined and migrated at
identical molecular weight to the taul70 species that we described
in tau mice. Thelevels of the multimers in tissue from the FTDP-17
patients appeared relatively low (compared with AD brains, see be-
low) (Fig. 11B). This is consistent with the low Braak stage in the
FTDP-17 patients with the N279K mutation (0.8 £ 0.4) (Wszolek et
al.,, 2005). In summary, these data suggest that species similar to tau
multimers are present in human tauopathy associated with an
MAPT mutation.
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Previous studies reported the presence of high molecular tau
species in brain extracts from patients with Alzheimer’s disease
(Morishima-Kawashima et al., 1993; Weaver et al., 2000; Maeda
et al., 2006), although their possible role in disease was not ad-
dressed. We analyzed these species to compare them with the tau
multimers in the tau mice. In AD brain, a more complex mixture
of species was observed that migrated as a compact smear with a
similar molecular weight range to the tau multimers in mice
(~140-170 kDa) (Fig. 11B) (supplemental Fig. S2, available at
www.jneurosci.org as supplemental material). The increased
complexity of the multimer-like species in AD patients may well
reflect the fact that, in AD, all six tau isoforms are incorporated
into the pathological tau aggregates, whereas in FTDP-17 pa-
tients with the N279K mutation, it is just the four-repeat tau
isoforms. The multimer-like species in AD were detected in brain
regions with NFT pathology (frontal cortices) but were absent in
unaffected regions (cerebellum) (data not shown).

Discussion

Characterization of pathological tau species in mouse models
of tauopathy

Previous results in the rTg4510 mouse model suggested the exis-
tence of toxic tau species that accumulate before the formation of
significant numbers of mature NFT (Santacruz et al., 2005). We
therefore undertook a series of biochemical investigations to
identify candidate neurotoxic tau species. These studies identi-
fied tau multimers both in r'Tg4510 and a second mouse model of
tauopathy (JNPL3) that expresses mutant human tau P301L.

Tau multimers migrate on SDS-PAGE with apparent molec-
ular weights of 140 and 170 kDa (taul40 and taul70). We spec-
ulate that these species may represent tau dimers, with taul40
consisting of two “55 kDa” tau molecules and taul70 containing
two “64 kDa” tau molecules; the apparent discrepancy in molecular
weight (140 vs 55 X 2 = 110) may be accounted for by their SDS-
stable conformation or by unequal binding of SDS to this species.
However, we cannot exclude the possibility that tau multimers may
be composed of tau in complex with another protein(s).

Regardless of the exact composition, the two multimer species
represent tau aggregation states that are stable during exposure to
SDS. This is in contrast to previously reported aggregated tau
species that are sensitive to SDS and that are broken down to
individual monomers during incubation with SDS. On Western
blots, these SDS-sensitive aggregated species are observed as the
hyperphosphorylated 64 kDa tau species. SEC, performed on to-
tal brain extracts from young (4.5 month) rTg4510 mice, dem-
onstrate that both the 64 kDa and the taul70 species are subunits
of much larger tau aggregates. It is, however, unknown whether
these two tau species are derived from same or different aggre-
gates that elute with similar size on SEC.

In contrast, similar SEC analysis indicates that taul40 mul-
timers predominantly exist in smaller structures, possibly even as
a single 140 kDa unit. The taul40 multimers are the earliest
pathological tau species detected in the rTg4510 mice. In con-
trast, the taul70 and 64 kDa species (derived from larger aggre-
gates) appear later in the pathological progression. Importantly,
the taul70 and 64 kDa species are hyperphosphorylated, whereas
taul40 exhibits a phosphorylation state similar to normal (55
kDa) tau species. This suggests that pathological tau hyperphos-
phorylation is an event that likely occurs after initial tau aggrega-
tion has taken place, at least during the initial stages of disease
development. An alternative explanation is that hyperphospho-
rylated monomeric tau species normally have an extremely short
half-life before they are degraded or incorporated into large ag-
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gregated structures, with the result that A
they are undetectable in soluble extracts
during early stages of disease in rTg4510
mice. However, this seems less likely be-

cortex cerebellum
cause small tau aggregates with a normal Ly
pattern of phosphorylation (e.g., taul40) -
are observed at this stage, and, as a result,
initial tau aggregation events in vivo are -1

clearly not absolutely dependent on previ-
ous tau hyperphosphorylation. This is a
critical point because the majority of cur-
rent hypotheses regarding the role of tau
hyperphosphorylation have assumed that
pathological hyperphosphorylation of tau
is required for the release of tau from mi-
crotubules and for subsequent tau aggre-
gation (Lee et al., 2001).

Interestingly,  both  fractionation
through centrifugation and SEC elution
profiles show that small hyperphosphory-
lated tau aggregates and possibly hyper-
phosphorylated tau monomers are present in older rTg4510 mice
(6.5 months) (Fig. 2 E and data not shown). Whether this reflects
the breakdown of larger hyperphosphorylated aggregates (per-
haps as a consequence of widespread neuronal death) or a shift to
the early hyperphosphorylation of monomeric tau in older ani-
mals is unknown. Significantly, hyperphosphorylated soluble tau
species were observed previously in extracts from the brains of
AD patients, usually at a relatively late disease stage. Our data, in
the rTg4510 mice, suggest that, in human AD, there may also be
an initial stage during which hyperphosphorylated tau occurs
only within large tau aggregates. Regardless, the SEC data ob-
tained from the rTg4510 model of tauopathy suggest that a fun-
damental revision of the role of tau hyperphosphorylation in AD
pathogenesis may be necessary.

e — ————

Figure 11.

Tau species and functional deficits in mouse models

of tauopathy

Levels of tau multimers (taul40 and taul70) in total extracts and
64 kDa tau in the sarkosyl-insoluble fraction displayed a signifi-
cant negative correlation with memory index in individual
rTg4510 mice at 5.5 and 8 months. We also observed an associa-
tion between the onset of motor impairment in the JNPL3 mouse
model of tauopathy and elevated levels of both the tau multimers
and the 64 kDa species. Importantly, we also observed a correla-
tion between taul40 multimers, in total extracts, and memory
index in rTg4510 at 3 months, when sarkosyl-insoluble 64 kDa
tau was not detectable. This indicates that formation of sarkosyl-
insoluble 64 kDa tau occurs after the initial accumulation of the
taul40 multimers and also that formation of this insoluble 64
kDa species does not appear to be necessary for the development
of initial memory impairment in rTg4510, consistent with our
previous observations (Santacruz et al., 2005). Low levels of
taul40 were also observed at 1 month, before the onset of mem-
ory deficits (Fig. 3), suggesting that tau multimers and/or other
aggregated species, if they are toxic, must accumulate to a critical
level before affecting neuronal function.

Although we consistently observed a significant correlation
between memory index and levels of tau multimers in total ex-
tracts, we did not observe a similar correlation with the levels of
tau multimers in the soluble (S1) fraction. Thus, we conclude that
it is the accumulation of larger (more aggregated) tau species that
predominantly correlated with memory index. However, the dis-
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Species similar to tau multimers are found in extracts from patients with AD and FTDP-17. A, Species similar to tau
multimers are present in total extracts from the temporal cortex of FTDP-17 patients (D1, D2) with the N279K mutation but not in
extracts from the cerebellum. Note that the low-intensity band present in control individuals (C) or in cerebellum s attributable to
nonspecific binding of the secondary antibody (data not shown). B, Comparison of the molecular weight of the multimers in total
extracts from the spinal cords of JINPL3 mice (affected, 12 and 14 months of age), brain extracts from 6.5-month-old rTg4510, an
AD patient (Braak stage 5 and 6), and two FTDP-17 cases with the N279K mutation. In both panels, the human-specificE1 antibody
was used for detection of tau, and GAPDH was used as a loading control.

sociation of NFT counts from the memory index after transgene
suppression in rTg4510 mice (Fig. 9B) (Santacruz et al., 2005)
suggests that the aggregates associated with memory dysfunction
are of intermediate size and smaller than NFTs. Based on these
observations, it is tempting to speculate that the early accumula-
tion of intermediate aggregated tau species, composed at least in
part of tau multimers, is necessary to induce neurotoxicity in
these transgenic mice. However, these observations do not ex-
clude the possibility that other, yet unidentified small soluble tau
species also contribute to neurodegeneration and memory loss in
the rTg4510 model. If such species do exist, however, their for-
mation is likely to be closely linked to the process of tau
aggregation.

Relationships between tau species

Our data argue against the possibility that formation of the
taul40 and taul70 species is simply attributable to overexpres-
sion of tau in transgenic mouse models. First, overexpression of
wild-type human tau in transgenic mouse models is not sufficient
to cause formation of similar multimer species. Second, species
similar to tau multimers are observed in cases of human tauopa-
thy (FTDP-17) without tau overexpression. Therefore, tau over-
expression alone is neither necessary nor sufficient to cause for-
mation of tau multimers. In addition, taul40 and taul70 show a
close correlation, making it unlikely that they are formed by two
unrelated mechanisms. A much more obvious possibility is that
the taul70 represents a hyperphosphorylated version of taul40
that has been incorporated into bigger aggregates. The difference
in the elution profiles of these two species in SEC studies is clearly
consistent with this hypothesis.

Tau multimer-like species in AD and FTD

We also detected species similar to the multimers in brain ex-
tracts from FTDP-17 patients. These species are well defined and
migrate at the same molecular weigh as taul70. We also observed
similarities between tau multimers and reported previously high-
molecular-weight tau species observed in brain extracts from AD
patients (Morishima-Kawashima et al., 1993). However, they
also exhibit significant differences from the multimers, notably
the greater complexity, which is reflected in their migration as a
smear on Western blots rather than discrete bands as in the tau
mice and FTDP-17 patients. This greater complexity likely in part
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reflects the fact that all six tau isoforms are incorporated into the
aggregates in the AD patients compared with three 4R isoforms in
the N279K FTDP-17 patients and one mutant 4R isoform present in
the transgenic mouse models. In addition, the interpretation of the
these species in human AD is complicated by the likely presence of
polyubiquitinated and other modified forms of tau (Morishima-
Kawashima et al., 1993) that migrate in a similar size range.

Conclusion

Our results identify multimeric tau species that accumulate dur-
ing pathogenesis in two mouse models of tauopathy and that
correlate closely with functional deficits. This correlation is pre-
dominantly with tau multimers derived from larger aggregated
structures. Consistent with this observation, the only other tau
species that correlated with functional deficits in our mouse
models is the previously described sarkosyl-insoluble 64 kDa tau
species. The appearance of multimers before the formation of the
sarkosyl-insoluble 64 kDa tau and the presence of multimers in
both soluble and insoluble fractions imply that they reflect an
early aggregation event and should be further examined for their
potential role in tau-associated neuronal toxicity and degenera-
tion. In addition, our data clearly imply that the formation of
aggregated tau species is either necessary for neuronal dysfunc-
tion and memory loss in the rTg4510 mouse model or that tau
aggregation is tightly linked to the mechanism of tau toxicity.
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