
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Dissertations 

Summer 8-2012 

Coastal Hurricane Damage Assessment via Wavelet Transform of Coastal Hurricane Damage Assessment via Wavelet Transform of 

Remotely Sensed Imagery Remotely Sensed Imagery 

Ricky Carl Crowsey 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/dissertations 

 Part of the Atmospheric Sciences Commons, Climate Commons, and the Meteorology Commons 

Recommended Citation Recommended Citation 
Crowsey, Ricky Carl, "Coastal Hurricane Damage Assessment via Wavelet Transform of Remotely Sensed 
Imagery" (2012). Dissertations. 839. 
https://aquila.usm.edu/dissertations/839 

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted 
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more 
information, please contact Joshua.Cromwell@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=aquila.usm.edu%2Fdissertations%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=aquila.usm.edu%2Fdissertations%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/190?utm_source=aquila.usm.edu%2Fdissertations%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/839?utm_source=aquila.usm.edu%2Fdissertations%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


The University of Southern Mississippi 

 

COASTAL HURRICANE DAMAGE ASSESSMENT 

VIA WAVELET TRANSFORM OF REMOTELY SENSED IMAGERY 

 

by 

Ricky Carl Crowsey 

 

Abstract of a Dissertation 
Submitted to the Graduate School 

of The University of Southern Mississippi 
in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

August 2012 



ii 
 

ABSTRACT 

COASTAL HURRICANE DAMAGE ASSESSMENT 

VIA WAVELET TRANSFORM OF REMOTELY SENSED IMAGERY 

by Ricky Carl Crowsey 

August 2012 

This dissertation uses post storm imagery processed using wavelet 

transforms to investigate the capability of wavelet transform-based methods to 

classify post storm damage of residential areas. Five level Haar, Meyer, Symlets, 

and Coiflets wavelet transform decompositions of the post storm imagery are 

inputs to damage classification models of post hurricane and tornado damage. 

Hurricanes Ike, Rita, Katrina, and Ivan are examined as are the 2011 Joplin and 

Tuscaloosa tornadoes.  

Wavelet transform-based classification methods yielded varying 

classification accuracies for the four hurricanes examined, ranging from 67 

percent to 89 percent classification accuracy for classification models informed 

by samples from the storms classified. Classification accuracies fall when the 

samples being classified are from a hurricane not informing the classification 

model, from 17 percent for Rita classified with an Ike-based model, 41 percent 

for Rita classified with an Ike-Katrina-based model, to 69 percent for Rita 

classified with an Ike-Katrina-Ivan-based model.  

The variability within and poor classification accuracy of these models can 

be attributed to the large variations in the four hurricane events studied and the 

significant differences in impacted land cover for each of these storms. 
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Classification accuracies improved when these variations were limited via 

examination of residential areas impacted by 2011 Joplin and Tuscaloosa 

tornadoes. Damage classification models required as few as nineteen to as many 

as fifty nine wavelet coefficients to explain the variability in the hurricane storm 

data samples, and included all four wavelet functions studied. A similar analysis 

of the tornado damaged areas resulted in a damage classification model with 

only six wavelet coefficients, four Meyer-based, one Symlets-based and one 

Haar-based. Classification accuracies ranged from 96 percent for samples 

included in the model formation to 85 percent for samples not included in the 

model formation.    

The damage classification accuracies found for tornado storms suggests 

this model is suitable for operational implementation. The damage classification 

accuracies found for the hurricane storms suggests further investigation into 

methods that will reduce the variability attributable to land cover and storm 

variability.  
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CHAPTER I 

INTRODUCTION 

Hurricanes on average make landfall on U.S. soil 1.2 (for El Niño years) to 

2.1 times per year (for La Niña years) resulting in normalized mean damage of 

$7.7 (El Niño years) to $9.2 billion (La Niña years) per year (Pielke 2009). Since 

the 1990s tornadoes have impacted the U.S. approximately 1,000 times per year 

causing severe localized damage (Boruff et al. 2003).These disasters raise 

immediate questions about the extent and severity of damage, which can be 

answered by image-based damage assessments to aid in the response and 

recovery phases. Image based damage assessments can meet the response 

and recovery information needs only if they are collected soon after the event 

and over the correct location, contain sufficient geographic detail, and are 

evaluated by skilled interpreters (Clarke et al. 2007). The National Academy’s 

Committee on Planning for Catastrophe has suggested that processes which can 

reduce the time between image acquisition and delivery to responders to twenty 

four to forty eight hours are of particular interest (Clarke et al. 2007).  

Such a methodology with an analytical component can also be used by 

the United States Federal Courts, which according to the Daubert decision 

(Blackmun 1993) are require to consider several factors when evaluating the 

suitability of scientific evidence, including the scientific validity, acceptability and 

accuracy of the methodology, and acceptability of the methodology. An 

algorithmic methodology would more easily allow an analytical assessment of 
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offered damage assessment evidence against the Daubert falsifiability, and 

potential error rates factors.  

FEMA currently produces image-based damage assessments (Figure 1 is 

an example from Hurricane Katrina) using skilled visual interpretations of post 

event imagery. These damage assessments are usually performed by 

interpreters of varying skills working with an evolving set of rules, requirements, 

and tools. For example, prior to the availability of now commonly available 

remote sensing, geographic information systems (GIS) and global positioning 

systems (GPS) tools, NOAA collected post Hurricane Camille imagery for simple 

visual damage extent evaluations. Hurricane Andrew in 1993, the World Trade 

Center attack in September 2001and Hurricane Katrina in August 2005 

accelerated the collection and use of high resolution imagery use with these 

advanced tools for response, recovery and study of U.S. disasters. These three 

major events and others which followed have precipitated the routine use of 

remotely sensed imagery, GIS and GPS tools to assess the extent and severity 

of damage after most disasters.  
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Figure 1. Typical FEMA distributed post hurricane landfall damage assessment 
map. This post hurricane Katrina Harrison County, Mississippi damage 
assessment is based on visual interpretation of overhead imagery acquired 
August 30, 2005 and was made available to the public shortly after the 
September 7, 2005 production date.  

There are several potential issues with a visual interpretation based 

damage assessment approach. (1) Rapid response visual interpretation of 

overhead imagery requires significant human and infrastructure resources. 

Hurricanes typically cause wide areas of damage resulting in large volumes of 

imagery. Many skilled interpreters working concurrently on this large volume of 

imagery requires access to at least a workstation with image processing and 

geographic information system (GIS) software running on relatively robust, multi-
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monitor workstations. (2) Damaging hurricanes make landfall at unpredictable 

times and with uncertain periodicity. This sporadic and unpredictable nature of 

hurricane landfall hinders the development and maintenance of a dedicated, 

trained, ongoing human capability for visual damage assessment. The result is 

that visual interpretation teams are pulled together at the last minute from where 

ever they are available. This ad hoc human capability makes it difficult for 

damage assessments to be performed consistently across large storms and from 

storm to storm. (3) Visual interpretation also poses the problem of validation. The 

lack of a set of uniformly implemented rule or guidelines applied for all events 

over time exacerbates the challenges of ad hoc commercial or government visual 

interpretation teams. This research focuses on developing an analytical damage 

assessment methodology building on wavelet transformation and change 

detection techniques to address the need for faster delivery of image-based 

damage assessments to responders.   

The results found to date indicate that the proposed approach works as 

well as visual interpretation methods based on comparison with published FEMA 

damage assessments for hurricanes Ike, Rita, Katrina and Ivan. More promising 

results have been found with the same methodology when classifying tornado 

damaged areas. If implemented, this approach has the potential to reduce the 

time and resources required by visual interpretation. Additionally, this 

methodology is structured in a way that allows calibration and maintenance of 

performance metric improvements across and among damage events.  This 

methodology also easily supports two of the Daubert scientific evidence 
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guidelines (falsifiability and error rates), which provides benefit for application in 

legal application uses. 

This research focuses exclusively on damage classification from the 

spatial frequency content within immediate response imagery. Samples were 

collected from existing imagery collected by NOAA and the National Weather 

Service as part of their normal immediate response activities. This imagery is 

natural color RGB imagery. This limited the ability to explore the impacts of 

image enhancement methods that rely on spectral bands outside the visible 

range. While many of the areas impacted by hurricanes experienced flooding and 

storm surge damage, this research does not consider water damage, focusing on 

damage caused by hurricane and tornado wind fields.  

Research Objectives and Significance 

For the purposes of information extraction, the scattered and reflected 

radiation captured by overhead image sensors exists in five domains: spectral, 

spatial, temporal, geometrical, and polarization. Until recently, little attention has 

been paid to the spatial domain because of the difficulty in extracting this 

information quantitatively from remotely sensed imagery (Curran 2001). This 

research focuses on information extraction from the spatial domain of remotely 

sensed imagery using wavelet transformation.  

The objective of this research is to examine the effectiveness and 

accuracy of wavelet transform informed post storm (hurricane and tornado) high 

resolution imagery for identification of storm damaged areas.   
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The specific questions addressed by this research include: 

1. Can wavelet processed post storm overhead imagery identify areas of 

residential damage?  

2. What wavelet mother functions and levels identify damage in remotely 

sensed imagery? 

3. How accurately does a wavelet transform-based discriminant function 

classify damage in imagery not used to inform the discriminant 

function? 

In addition to adding to the limited but growing body of geoscience in the 

area of information extraction from imagery using the spatial domain, two 

application areas may benefit from this research. FEMA currently uses visual 

interpretation for preliminary damage assessments and could realize improved 

effectiveness (speed of damage assessments to responders) and increased 

accuracy (consistent damage assessments based on methodologies that can be 

calibrated) if the wavelet transform-based methodology developed in this 

research substituted for visual interpretation. U.S. Courts may experience added 

value in confidence and speed of adjudication of disputes that hinge on a valid 

residential damage assessment method suitable for use in trials. U.S. Federal 

Courts look to the 1993 Daubert (Blackmun 1993) decision to assess the 

suitability of expert testimony for use in a legal proceeding. This decision offers 

guidelines for assessing scientific information (including geographic information). 

These guidelines are simpler to apply to quantitative methods, therefore the 

courts will find it easier to evaluate this algorithmic damage assessment 
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methodology compared to a subjective visual interpretation approach to 

determine damage. 

Study Areas 

This research focuses primarily on coastal areas of the U.S. Gulf of 

Mexico where high spatial resolution pre- and post-storm imagery is available. 

Hurricanes were selected for study where post storm high resolution imagery is 

available, a damage assessment was made and is available and where enough 

damage extent is documented to support analysis of adequate samples for each 

category of damage. Four hurricane events (from west to east, Ike (13 

September 2008), Rita (24 September 2005), Katrina (29 August 2005), and Ivan 

(16 September 2004) shown in Figure 5) met all the selection constraints. Table 

1 summarizes some of the characteristics of these storms.  

Secondary areas of focus are the areas damaged by the April 2011 

Tuscaloosa, Alabama and May 2011 Joplin, Missouri tornado outbreaks. The 

hurricane areas examined revealed significant variability within and among 

storms which appeared to be in part the cause of some of the variability in the 

classification results within and among hurricane areas. Tornadoes were added 

to the research in an effort to minimize these variations so as to emphasize the 

accuracy of the wavelet transform analysis on less variable samples, as might be 

expected with the smaller areas of tornadoes and the more homogenous 

damage seen in tornado damaged areas.  

The remainder of this manuscript is organized as follows. Chapter II, 

Literature Review, examines the development of wavelet transform and spatial 
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information extraction from overhead imagery. Chapter III, Methods, documents 

the data used in this research, the methodology employed to examine the 

success of wavelet transform based spatial information extraction to assess post 

hurricane and post tornado damage, and Chapter IV, Results and Discussion, 

presents the statistical analysis employed and performance of damage 

classification models among the four studied hurricanes and two tornado events. 

Chapter V offers conclusions and recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 

Wavelet transform analysis of signals, including imagery, is a natural 

extension of Fourier analysis. Fourier was the first to explain (Fourier 1878) that 

almost any periodic function can be described as the sum of a series of sines 

and cosines (commonly known as a Fourier series).  

Fourier analysis works well for linear problems and problems with long 

periodic signals that are relatively stable. It is poorly suited for problems with 

short signals or signals that change suddenly or unpredictably. In this context, a 

signal can be whatever is recorded in one or more dimensions. An analog 

recording of a musical instrument and an image of a portion of the earth with a 

digital camera are examples of signals that are often processed using Fourier 

analysis.  In fact, while Fourier analysis easily reveals the frequencies of periodic 

signals, it hides information about time (or space). In other words, a local 

characteristic of the signal becomes a global characteristic of the Fourier 

transform (see Figure 2). This means that the Fourier transform is vulnerable to 

errors in the signal or abrupt, brief signal changes (e.g., a sixty-fourth note in 

musical recording or a narrow road in an otherwise forest covered area in an 

image). The Fourier transform of music, for example, reveals what notes 

(frequencies) is played, but it cannot reveal when during the performance of the 

music that the notes are played (Richards and Jia 2006). 

Figure 2 illustrates this shortcoming of Fourier transform-based analysis 

with two images and their respective Fourier transform. The top image is of a 
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black square centered within a white field. The Fourier transform to the right of 

this image shows that most of the frequencies in this image are near the origin, 

decreasing substantially with distance away from the origin along the vertical and 

horizontal axis. While this is a complete description of the frequencies within the 

image, there is no information about where these frequencies occur in the image. 

The lower image and Fourier transform pair illustrate this short-coming 

dramatically. The lower image contains the same size black square within the 

same field of white, except that the location of the square is in the lower right of 

the image. The Fourier transform of the lower image is the same as the Fourier 

transform of the upper image. While Fourier transform analysis reveals what 

frequencies are present in an image, it does not provide information about the 

location of the square within the image.   
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Figure 2. The Fourier transform (upper right) of an image of a centered black 
block (upper left) is the same as the Fourier transform (lower right) of an image of 
a black block in the lower right of an image. Fourier transforms reveal the 
frequencies in an image but not their location as illustrated above.  

Several operations commonly used on remotely sensed imagery, or three 

dimensional (3-D) functions, rely on Fourier transforms and theory. For example, 

low and high pass filters commonly found in image processing software such as 

ERDAS Imagine (Smith, Pyden, and Cole 1995), rely on Fourier theory and 

transformation. To carry out a high pass filter operation (e.g., remove speckle 
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noise from an image), the image is transformed from space domain (often 

referred to as time domain for 2-D signals) to the frequency domain, then the 

high frequencies associated primarily with the noise are removed by multiplying 

the frequency function with a notch function to eliminate the high frequencies 

associated with the noise. The resultant frequency domain signal is Fourier 

transformed back to the space domain, with the result that the image no longer 

contains the high frequency noise (see Figure 3 for high pass and low pass 

Fourier filtering examples). A Fourier transformed and filtered image is also 

missing any high frequency target signal at the same frequencies as the noise. 

Low pass filtering is another common filter found in most image processing 

software and often relies on Fourier theory and operations (Jensen 1986). Figure 

3 shows, at left, a post-Katrina aerial photo of the Port of Gulfport, at center, the 

aerial photo high pass filtered, and at right, the aerial photo low pass filtered. 

While this type of analysis and filtering has benefit, for example, in edge 

detection and noise reduction, the effects of Fourier-based filtering apply 

throughout an image without regard for location.  
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Figure 3. The post-Katrina image collected by NOAA of the Port of Gulfport (far 
left) has undergone high pass filtering (center) and low pass filtering (far right). 
High pass filters leave the high frequency (e.g., edges) while eliminating the low 
frequency information detail. Low pass filters leave the low frequency information 
while eliminating the high frequency information. These Fourier transform based 
filters operate on frequency information throughout the image.  

A partial solution to this shortcoming of Fourier analysis is windowed 

Fourier analysis, first introduced by Gabor (1946). The windowed Fourier 

analysis is a special case of the short-time Fourier transform and begins with 

multiplying the signal by a Gaussian window then Fourier transforming the signal 

to determine the time-frequency content. While this approach moves closer to 

revealing both frequency and time (or space) information about the signal of 

interest, it does so at the expense of lost information at lower frequencies.  

The solution to the lack of both frequency and location problems with 

Fourier transform-based analysis is wavelet transformation (WT). Wavelet 

transform analysis was developed at approximately the same time by several 

researchers in several locations and disciplines (Hubbard 1998). Wavelet 

transform analysis keeps the number of oscillations in a window constant and 

varies the width of the window instead of keeping the size of the window constant 
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and filing it with different frequencies as is done with windowed Fourier transform 

analysis.  

Wavelet transform analysis extracts image information at different 

positions and scales. A continuous wavelet transform is essentially the 

convolution of a wavelet mother function with an image, or signal, at multiple 

scales (Watson 1999). The value of the convolution of the wavelet mother 

function with the image function indicates the interaction between the two 

functions. For example, if an overhead image is being examined for tree crowns 

a Mexican hat wavelet mother function can be convolved with the image. The 

resultant wavelet transformed image will show high values at the location of tree 

crowns in the image that best match the shape of the Mexican hat function 

(Falkowski et al. 2006).  

Figure 4 shows a five-level discrete Meyer WT of the centered block and 

lower right located block images (previously Fourier transformed in Figure 2). On 

the left are the original images. The center figures show an image visualization of 

the five levels of discrete Meyer WT of each image on the left. On the right are 

enlarged views of the diagonal transform of the third level discrete Meyer WT. 

These are outlined in blue in the center figures. Unlike Fourier transforms, WT 

provides information about both the frequency and the location of features within 

the image (Watson 1999). Notice that the third level discrete Meyer WT of the 

centered block (shown top right) indicates the block’s corners are centered in the 

image. The third level discrete Meyer WT of the lower right block image (shown 

lower right in Figure 4) illustrates WT’s capability to provide information about the 
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location in addition to the frequency information. The corners of the lower right 

block are clearly indicated in the lower right of the WT.  

 

 

Figure 4. Original centered and lower right block images are in the left column 
above. Visualizations of a 5 level discrete Meyer WT are in the center column. 
The 3rd level discrete Meyer wavelet transform visualizations are in the right 
column. Where the Fourier transforms in Figure 2 do not provide location 
information of the frequency components in the image, wavelet transformation 
does provide this information.  

Grossman and Morlet’s collaborative wavelet transform work in the early 

1980’s (Hubbard 1998) is often cited (Rao and Bopardikar 1998) as one of the 

first in wavelet transformations. Their work was motivated by a desire to better 

understand seismic signals in both time and location. In addition to their work, 

original work with wavelets appeared at approximately the same time in several 

disciplines, by several different researchers working on different problems (e.g., 



16 
 

Marcelja suggested that human vision could be best modeled using Gabor’s 

scheme (Marcelja 1980), quadrature mirror filters and subband filtering 

developed by Croisier, Esteban, and Galand (1977) for use in electrical 

engineering discipline, Zweig’s (1976) discovery of continuous wavelet transform 

while studying transduction of sound into nerve impulses in the ear). Morlet 

developed wavelets as a tool for oil prospecting as a geophysicist with the 

French oil company Elf-Aquitaine. A typical approach for oil prospecting in the 

1960’s was to send vibrations underground and analyze the echoes. This 

methodology indicates how deep and how thick various underground layers are. 

After developing an empirical method for decomposing and reconstructing a 

signal, he met with Grossman who worked in phase space quantum mechanics, 

which intensively uses Fourier transform analysis. Working together Grossman 

and Morlet validated the oil exploration-based empirical work begun by Morlet 

(Hubbard 1998). 

Mallat (1989) first suggested wavelet transformation for imagery texture 

analysis. Ingrid Debauchies’ “Ten Lectures on Wavelets” (Daubechies 1992) is 

widely regarded as the foundational paper on wavelet transformation analysis 

(Hubbard 1998). A novel set of invariant Fourier-Wavelet descriptors for 

recognizing complex patterns (e.g., Chinese characters) is described by Chen 

and Bui (1999).  

Curran (2001) is one of the first to emphasize the paucity of exploitation of 

spatial content of remotely sensed imagery. He suggested that this is likely due 

to how well the human visual system processes spatial image content combined 
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with the difficulty until recently of extracting quantitative spatial content from 

remotely sensed imagery.  

Myint (2001) began looking at wavelet analysis for classification of urban 

environments using high resolution imagery with his dissertation. The 

subsequent 2002 paper (Myint, Lam, and Tyler 2002) evaluated four different 

wavelet procedures for spatial feature discrimination in urban areas, finding that 

the additional levels of combination improves classification accuracy. In a 2003 

paper (Myint 2003) examining fractal approaches (isarithm, triangular prism and 

variogram)  in texture analysis and classification of remotely sensed data, 2.5 

meter spatial resolution ATLAS (Advanced Thermal and Land Applications 

Sensor) data was used to compare fractal, spatial autocorrelation and spatial co-

occurrence approaches (Myint, Lam, and Tyler 2004). Myint, Lam, and Tyler 

(2002) found that wavelet transformation increases classification accuracy. In 

2006 Myint (2006) offered a new framework for multiscale analysis and 

classification to identify urban classes. In this manuscript he confirmed that 

traditional approaches are poor for urban mapping from high resolution imagery 

and that wavelet approaches are more accurate. Most recently, Myint (2010) 

authored further wavelet research based on IKONOS imagery looking at window 

size variation, finding that the intrinsic scale of the most complex feature among 

the classes might be the optimal local window size for best accuracy. Overall, 

Myint has the longest and broadest body of work examining wavelet 

transformation approaches focused on urban classification from high resolution 

imagery.  
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Though not as recent or long standing, others have looked at classification 

of urban environments. Zhou’s (2006) Ph.D. dissertation examines the detection 

of socioeconomic conditions of urban neighborhoods through wavelet analysis of 

remotely sensed imagery, finding that wavelet analysis in combination with 

artificial neural networks support detection of socioeconomic conditions of urban 

neighborhoods.  

Ecology has seen the longest interest in the use of wavelet transformation. 

Dale and Mah (1998) examined the use of wavelets for spatial pattern analysis in 

ecology, finding several advantages to wavelet analysis as compared to paired 

quadrat or blocked quadrat variance calculations. Mi and colleagues (Mi et al. 

2005) examined Mexican hat and Morlet wavelets for detection of ecological 

patterns, finding the Morlet wavelet transform providing better scale detection 

and location than the Mexican Hat wavelet transform. Keitt and Urban (2005) 

found that wavelet transform and wavelet-coefficient regression performs well in 

characterizing scale-specific patterns in ecological data. Keitt and Fischer (2006) 

examine wavelet transformation to partition patterns of synchrony and 

compensation by time scale, finding that wavelet transforms provide insight into 

time scales to facilitate understanding ecological community patterns.  

Wavelet analysis was successfully used by Strand (Strand et al. 2006) as 

a repeatable background invariant technique for quantifying ecological patterns. 

Falkowski (Falkowski et al. 2006) demonstrated the ability to automatically 

estimate location, height, and crown diameter of individual trees within a mixed 

conifer open canopy stand using wavelet-based analysis. Forest stand density 
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estimation from high resolution imagery using wavelet texture measures is 

demonstrated by Verbeke (Verbeke, Van Coillie, and De Wulf 2006), where they 

use wavelet analysis to characterize local texture using wavelet coefficient 

statistics and found significantly better performance compared to a local 

maximum-based method. Chou, Chen, and Yeh (2007) demonstrate crop 

identification using wavelet analysis combined with weighted Bayesian distance 

based on crop texture and leaf features.  

Zhu and Yang (1998) describe their wavelet-based approach to 

characterize different scales of texture, finding that texture classifications for 

twenty five types are accomplished with few errors when using wavelet 

transforms. Wang and Liu (1999) propose multiresolution Markov Random Field 

modeling to describe textures and retain highpass information normally lost with 

other approaches. Acharyya and Kundu (2001) describe a successful application 

of automated M-band wavelets for identifying defects in textiles. Ruiz, Fdez-

Sarria, and Recio (2004) analyze and compare grey level coocurrence matrix 

(GLCM), energy filters and edgeness, Gabor filters and wavelet transforms for 

classifying textures in Mediterranean forested areas and growing urban areas, 

finding no approach works best in all the applications they studied. Arivazhagan 

and Ganesan (2003b) found that discrete wavelet transformation works better 

than other approaches and is expected to perform well in computer vision and 

pattern recognition applications. Texture classification using wavelet analysis is 

addressed by several researchers in the early 2000s (e.g., Arivazhagan and 

Ganesan 2003a, Ruiz et al. 2004, and Kim and Kang 2007). 
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Three additional general areas seeing significant use of wavelet analysis 

include target, pattern, signal detection and recognition, image fusion, and 

miscellaneous applications.  

He’s (1996) dissertation focused on pattern recognition and image 

processing of infrared astronomical satellite images, including wavelet analysis. 

Bailey and colleagues (Bailey et al. 1998) found plausible results on real data 

when using wavelet analysis to detect transient feature in noisy sound 

recordings. Tang and Stewart (2000) employed a multichannel texture 

classification algorithm based on wavelet and Fourier transforms for optical and 

sidescan sonar image classification. They found that wavelet transform methods 

perform more accurate feature extraction on seafloor data but less accurate 

results on Arctic ice canopy data. Li (2004) shows improvement of spectral 

unmixing using discrete wavelet transform analysis of hyperspectral signals. 

Arivazhagan and Ganesan (2004) presented an algorithm for detecting specific 

targets within noise based on comparison of wavelet coocurrence features.  

Tello, Lopez-Martinez, and Mallorqui (2005) demonstrate a wavelet transform-

based ship detection algorithm from synthetic aperture RADAR (SAR) data, 

finding that performance on both simulated and real SAR images confirmed the 

robustness of this method.  Elsayed (2007) used wavelet analysis to detect the 

dispersion and groupings of waves during a mistral event (cold northerly wind 

that descends the Rhone Valley). Chen and Wang (2009) show with their 

transform correlator experiments the potential of edge extraction using wavelet 

analysis as part of a successful approach to detect small targets and targets in 
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clutter scene.  Ghazvini et al. (2009) demonstrate a method to classify normal 

and defective tiles using wavelet analysis and artificial neural networks, showing 

a 90 percent validity for the cases tested. Pokhriyal and Lehri (2010) combine 

wavelet analysis and pseudo Zernike moments for fingerprint comparison and 

verification, finding this approach better than others and best results are 

achieved when the Symmlet wavelet of eighth order is used.  

One of the first publications describing the application of spatial frequency 

signatures to image matching was by Dunlop et al. (1989). Prior to this image 

matching was accomplished using correlation or feature matching, both of which 

have problems with certain image content types. Ulfarsson, Benediktsson, and 

Sveinsson (2003) found success using wavelet transform methods for data 

fusion and feature extraction. Hong and Zhang (2004) examine the effects of 

different types of wavelets on image fusion, finding the best results when wavelet 

transformation and IHS (intensity hue saturation) transformation are used 

together. The wavelet-based image fusion tutorial by Pajares and de la Cruz 

(2004) provides a clear wavelet transform tutorial and earth observation and 

medical imaging data fusion examples.   

In addition to the coherent streams of research featuring wavelet analysis, 

there has been a potpourri of applications that are interesting and potentially 

significant but do not yet have a well-developed body of research. Huang and 

Wechsler (1999) used wavelet packet for eye detection and radial basis functions 

for classification. Paul Arellano’s (2003) geoinformatics Master of Science thesis 

focuses on a wavelet-based approach to detecting and removing clouds and their 
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shadows.  Bruce, Mathur, and Byrd (2006) examined denoising followed by 

feature extraction methods, comparing Fourier and wavelet methods, finding that 

noise affected wavelet analysis, but that in spite of that the wavelet based 

analysis performed significantly better for discriminating vegetative classes. Cai’s 

(2007) dissertation focused on wavelet based transformation for hiding and 

recovering information from image data and identifying unique features in genetic 

microarray data. Osicka’s (2008) dissertation examines analysis and 

classification of lung nodules on CT scans using wavelet based methodologies.      

This research is significantly informed by Myint’s wavelet transform-based 

classification work, beginning with his dissertation (Myint 2001) research focused 

on classification of urban environments using wavelet analysis of high resolution 

multispectral image data. His evaluation (Myint 2010) of Shannon’s index, energy 

and log energy texture coefficients showed significantly better performance by 

the energy texture measure, informing the use of the energy texture measure in 

combination with wavelet transforms for this research. Myint’s examination of 

local window size with wavelet transformed high resolution imagery (Myint 2010) 

showed high accuracy with square windows of 63 and 95 meters on a side for 

residential areas, however he found considerable variability based on class, 

pointing out that there appears to be no ideal window for all applications (Myint 

2010). He observed that overall accuracy decreases with increasing window 

sizes. However, this is countered by the potential misclassification of small 

regions of classes that can be lost in large window sizes. The best window size 

computationally is the smallest window that produces the highest accuracy 
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(Hodgson 1998). This research focuses on hurricane and tornado damage of 

residential areas. The choice of 78 x 78 meter image subsample sizes was 

informed by Myint’s work on optimal residential classification performance and 

the utility of maximizing the information extraction from dyadic deconstruction of 

the wavelet transform process. A 78 x 78 meter window falls between the two 

most accurate residential windows examined by Myint and has the added benefit 

of supporting five level wavelet decompositions.  
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CHAPTER III 

METHODS 

Problem statement 

Can wavelet transform-based methodology identify storm (hurricane or 

tornado) damage to residential areas? Post event damage assessment is 

currently accomplished by acquisition and visual interpretation of remotely 

sensed imagery. Post hurricane landfall damage assessments have been 

performed and released by FEMA a few days to more than a week after imagery 

acquisition (e.g., Figure 1 is a FEMA damage assessment of Harrison County, 

Mississippi where the imagery was acquired on August 30, 2005 and the 

production is dated September 7, 2005). This delay, in part, is due to the process 

of visual interpretation of overhead imagery. Visual interpretation by different 

interpreters can produce unacceptable variability in damage assessments. Ad 

hoc visual interpretation of imagery to determine damage is difficult to reliably 

calibrate, making it difficult to systematically apply corrections and assess their 

impact on classification accuracy.  

Hypotheses 

The specific questions and associated hypotheses addressed include: 

• Question 1 - Can wavelet processed post storm (hurricane or tornado) 

overhead imagery identify areas of residential damage? 

• Null Hypothesis 1 - Wavelet transform processed post event imagery does 

not discriminate damage conditions (FEMA categories for hurricanes, F 
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level for tornadoes) at the 95 percent confidence level. All statistical tests 

are performed at the 95 percent confidence level. 

• Question 2 – What wavelet mother functions and levels identify damage in 

remotely sensed imagery? 

• Null Hypothesis 2a - Damage condition is not discriminated when informed 

by Haar, Myer, Coiflets, or Symlets wavelet function based classification. 

• Null Hypothesis 2b - Damage condition is not discriminated when informed 

by first, second, third, fourth, or fifth level wavelet transform 

decompositions.  

• Question 3 - How accurately does a wavelet transform-based discriminant 

function classify damage in imagery not used to inform the discriminant 

function 

• Null Hypothesis 3 - Damage condition is not discriminated in events not 

sampled to inform the discriminant function (e.g., hurricane Rita image 

samples are not discriminated with respect to damage level when 

evaluated with a discriminant function informed by hurricane Ike image 

samples). 

Selection of Hurricanes 

Three criteria guided the selection of hurricanes for study. First, a Gulf 

Coast land falling hurricane must have caused enough damage to coastal, 

residential areas so that at fifty to one hundred samples from each category can 

be extracted from the imagery. Congalton suggested that for large areas or more 

than 12 categories the minimum number of samples per category should be 
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increased from a good rule of thumb minimum of fifty to 75-100 samples per 

category (Congalton 1991).  Second, high resolution overhead imagery must 

have been collected and be available from civil or commercial sources. Third, a 

remote sensing based damage assessment must have been performed and this 

assessment must be currently available.  

Selection of Tornadoes 

Two well documented tornadoes were selected in an effort to eliminate the 

variability found within and between hurricane data sets, allowing an examination 

of wavelet transform classification apart from hurricane variability. The same 

three criteria were used to select tornadoes for analysis as was applied to 

hurricanes. The tornado must have caused enough damage so that 

approximately fifty or more image samples of damaged area could be extracted 

from the imagery. A damage assessment must have been performed and be 

available. High resolution imagery of the damaged areas must be publically 

available. The April 2011 Tuscaloosa and May 2011 Joplin tornadoes were flown 

by NOAA NGS and high resolution imagery similar to Hurricanes Ike, Rita, 

Katrina, and Ivan was posted for emergency response and research use shortly 

after the storms. While much smaller than hurricanes, these two tornadoes were 

unusually large, large enough to support collecting enough samples to meet 

Congalton’s sample size metric. Damage assessments were available from the 

National Weather Service and the University of Alabama’s Center for Advanced 

Public Safety. These two tornadoes also offered the benefit of their imagery 
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being collected and archived by the same organization (NOAA NGS) as for the 

hurricane imagery.  

Storms Examined - Similarities, Differences, and Challenges 

The research focus began with hurricanes on coastal areas of the U.S. 

Gulf of Mexico by acquiring the National Hurricane Center’s historical storm track 

data set (Franklin 2011) and selecting all Gulf of Mexico hurricanes making U.S. 

landfall from 1993 to 2010. There were 134 Atlantic basin hurricanes during this 

period. To qualify as a candidate for examination in this research, three factors 

were used to guide hurricane selection. First, high resolution (approximately 0.3 

meter [1 foot] spatial resolution), post storm overhead imagery must have been 

collected and be currently available from civil or commercial sources. Second, 

FEMA must have performed a remote sensing-based damage assessment and 

this assessment must be currently available. Third, the hurricane must have 

caused enough residential damage so that approximately 100 or more 

subsamples can be obtained from the high resolution overhead imagery. Four 

hurricane events met all three constraints (high resolution imagery available, 

FEMA damage assessment available, substantial coastal damage).  

The four hurricanes meeting these constraints are, from west to east, Ike 

(9/13/2008), Rita (9/24/2005), Katrina (8/29/2005), and Ivan (9/16/2004). Their 

paths in the Gulf of Mexico around the time of landfall are shown in Figure 5.  
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Figure 5. National Hurricane Center best track of Hurricanes Ike, Rita, Katrina 
and Ivan.  

Table 1 summarizes some of the characteristics of the hurricanes studied. 

The official National Hurricane Center determined Saffir-Simpson category for 

these storms belies the significant variations among these hurricanes. Hurricane 

Katrina’s category 1 or greater winds covered an area more than ten times larger 

than Rita and approximately twice the size Ike and Ivan. The maximum gust 

winds recorded or calculated from damage shows a similar variability with Ike’s 

strongest winds of 49.2 m/s (110 mph) at the low end and Rita and Katrina at the 

high end with winds of 77.3 m/s (173 mph). Embedded tornado frequency 

illustrates another facet of the variety among these hurricanes with none 
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recorded for Ike and 117 recorded for Ivan. Figure 7 shows the percent land 

cover for all the major National Land Cover Data major categories. Table 1 

summarizes this by listing the predominant landscapes for each storm area and 

the percent of the total area that is a developed class. Ike impacted a large area 

with the greatest percentage of developed land while Rita impacted a small area 

that was mostly open water and wetlands (94.4percent) with only 2.8 percent of 

land falling in a developed class.  

One underlying assumption of this research is that wavelet transform 

analysis can identify the expected addition high frequency content of residential 

images that have experienced storm damage. Storm damage to residential areas 

generally causes relatively low frequency content (e.g., a single home, a few 

trees and small garden sheds) to be transformed into higher frequency content 

(e.g., roofs are changed from a single roof structure to smaller debris spread 

throughout the property). Examining other land cover types along with residential 

properties injects potential errors into the discriminant analysis classification. 

Large open areas, open water and wide roads can appear to be similar in spatial 

frequency content as lots that have had all or most of their buildings and 

vegetation blown away. This same phenomena was the impetus for eliminating 

image samples with more than 50 percent, by visual inspection, of land covers 

other than residential area.    
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Table 1 

Hurricane characteristics for Ike, Rita, Katrina and Ivan 

  Ike Rita Katrina Ivan 

Landfall Date (YYYYMMDD) 20080913 20050924 20050829 20040916 

Landfall location 
Galveston 
Island, TX 

TX/LA 
border MS/LA border 

Gulf Shores, 
AL 

Saffir-Simpson Category per NWS 2 3 3 3 

Maximum recorded sustained winds at 
landfall (m/s) 49.2 51.4 56.8 58.1 

Maximum gust winds at landfall (m/s) 49.2 77.3 77.3 72.0 

Central pressure near landfall (mbars) 935 895 902 910 

Radius of hurricane winds at landfall (km) 204 138 167 167 

Radius of tropical storm winds at landfall 
(km) 444 333 370 417 

Storm surge height (m) > 3.0 > 4.3 >6.4 >3.7 

Storm surge extent (km) >214 >97 >161 >105 

Embedded tornadoes per NWS 0 21 43 117 

Area of category 1 or greater winds 
(square km) 22,647 2,857 36,143 16,825 

Predominant landscape (2006 NLCD) of 
category 1 or greater winds area 

Shrub/scrub 
and 

wetlands 

Wetlands 
and open 

water 

Forest, 
shrub/scrub 

and wetlands 
Forest and 

shrub/scrub 

Land cover percent developed class of 
category 1 or greater winds area (percent) 20.8 2.8 7.8 10.3 

 

Hurricane Ike 

Hurricane Ike made landfall on September 13, 2008 over Galveston, 

Texas with maximum sustained winds of approximately 49.2 m/s (strong 

Category 2) and a central pressure of 935 mbar. Hurricane force winds (greater 

than 32.6 m/s) extended outward approximately 193 km from the center at the 
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time of landfall. Tropical storm winds (greater than 17.4 m/s) extended outward 

approximately 443 km from the center at the time of landfall. A 3 meter storm 

surge accompanying the storm extended approximately 214 km along the coast. 

The National Weather Service reported no imbedded tornadoes associated with 

Hurricane Ike. Tens of thousands of homes were severely damaged or destroyed 

by wind or surge. For example, only 14 of the 3,400 homes in Bridge City, Texas 

are habitable after the storm (DeBlasio 2008). 

Hurricane Rita 

Hurricane Rita made landfall on September 24, 2005 near the 

Texas/Louisiana border with sustained winds of approximately 51.4 m/s (weak 

Category 3), with reports of winds up to 77.3 m/s. Hurricane force winds (greater 

than 32.6 m/s) extended outward over 137 km from center at landfall (Knabb, 

Brown, and Rhome 2006), with tropical storm winds (greater than 17.4 m/s) 

extending outward over 322 km from the center. The lowest recorded central 

pressure was 895 mbars. Landfall was accompanied by a 4.3 m storm surge that 

extended for greater than 97 km along the coast. The National Weather Service 

reported 21 embedded tornadoes within Rita. The Louisiana Recovery Authority 

reported 23,636 homes in Louisiana and Texas destroyed from Rita’s winds and 

surge (Kurth and Burckel 2006).   

Hurricane Katrina 

Hurricane Katrina made landfall on August 29, 2005 near the 

Mississippi/Louisiana border with officially recorded sustained winds of 

approximately 56.8 m/s (Category 3), with reports of winds up to 77.3 m/s. 
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Hurricane force winds extended outward over 161 km from the center at the time 

of landfall (Knabb, Rhome, and Brown 2005, Updated 2006). Tropical storm 

winds (greater than 17.4 m/s) extended outward over 370 km from the center. 

The lowest recorded pressure was 902 mbars. Landfall was accompanied by 

greater than 6.4 m surge extending over 161 km of coast. The National Weather 

Service reported forty three embedded tornadoes within Katrina. FEMA reported 

over 140,000 households damaged in just the three coastal Mississippi counties, 

affecting over 370,000 people (Richard 2005).  

Hurricane Ivan 

Hurricane Ivan made its first landfall on September 16, 2004 near Gulf 

Shores, Alabama with maximum sustained winds of 58.1 m/s (strong Category 

3), with reports of winds up to 72.0 m/s. Hurricane force winds (greater than 32.6 

m/s) extended outward over 161 km from the center at the time of landfall. 

Tropical storm force winds (greater than 17.4 m/s) extended outward from the 

center further than 402 km. The lowest recorded pressure was 910 mbars. 

Landfall was accompanied by a 3.7 m storm surge along more than 105 km of 

the coast. The National Weather Service reported 117 embedded tornadoes 

within Ivan. Florida’s Department of Environmental Protection reported major 

damage to 91 single family dwellings and 149 multi-family dwellings in the 

October 2004 damage assessment report (Barnett 2004).  

Joplin, Missouri Tornado 

The May 22, 2011 Joplin, Missouri tornado was the most deadly since the 

June 8, 1953 Flint, Michigan tornado. The Joplin tornado resulted in more than 
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150 deaths and more than 1,000 injured. It caused EF-5 damage and contained 

winds of greater than 89.4 m/s (Proenza 2011a). Its track was approximately 

35.6 km long and it was up to 1.6 km in width. The initial touchdown was 0.8 km 

southwest of JJ Highway and Newton Road in Newton County. Its dissipation 

was in Newton County at 32nd Street west of Kodiak Road (approximately 7.7 km 

north northwest of Granby Missouri (Maximuk 2011).  

Imagery of the damaged area was secured from NOAA. Georeferenced 

post storm imagery is available from NOAA National Geodetic Survey’s Tornado 

response site in UTM NAD 83 Zone 15 North projection (Aslaksen 2011a) in JPG 

with world file format. 

Tuscaloosa, Alabama Tornado 

The April 27, 2011 Tuscaloosa tornado was a long track, violent tornado 

event with maximum damage of EF-4 level. This tornado was produced by the 

supercell thunderstorm that began in Newton County Mississippi at 2:54 pm CDT 

and dissipated in Macon County North Carolina at 10:18 pm CDT. It initially 

touched down in northern Greene County, moved northeast through southern 

Tuscaloosa and western Jefferson Counties, lifting northeast of downtown 

Birmingham, Alabama. The damage path length was approximately 129.9 km. 

The EF-4 damage level was caused by an estimated maximum wind speed of 

84.9 m/s. The maximum path width of the tornado was 2.4 km when it crossed 

Interstate 65 (Proenza 2011b). Imagery of the damaged area was secured from 

NOAA. Georeferenced post storm imagery is available from NOAA National 
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Geodetic Survey’s Tornado response site in UTM NAD 83 Zone 16 North 

projection (Aslaksen 2011b) in JPG with world file format.  

Differences and Similarities 

Figure 6 shows the four hurricanes track with the extent of Category 1 or 

greater winds for each storm. The aerial extent of the Category winds for 

Hurricane’s Ike, Rita, Katrina and Ivan are 22,647 square km, 2,857 square km, 

36,143 square km and 16,825 square km, respectively. Hurricane Katrina’s 

severe winds covered 12+ times more ground than Hurricane Rita. Hurricanes 

Ike and Ivan covered roughly half the extent of Katrina and several times more 

land area than covered by Hurricane Rita. 

 
Figure 6. National Hurricane Center best track of Hurricanes Ike, Rita, Katrina, 
and Ivan and aerial extent Category 1 or greater winds for each. 
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The hurricanes and hurricane landfall areas in this study are significantly 

different. Those meeting the necessary data requirements for this research 

(significant coastal residential damage caused, high resolution imagery, 

published damage assessment) all made landfall on the Gulf Coast within a three  

week window in the calendar year between the end of August and late 

September. All can be grossly estimated to be similar in strength. Rita, Katrina 

and Ivan all were officially determined to be Saffir-Simpson category 3 

hurricanes, with Hurricane Ike ruled a strong category 2. These metrics belie the 

significant differences between these hurricanes. Hurricane Katrina’s category 1 

(32.6 m/s) or greater winds covered an area of 36,143 square km, approximately 

twice as big as covered by either Ike (22,647 square km) or Ivan (16,825 square 

km), and more than 10 times greater than Hurricane Rita’s category 1 winds area 

(2,857 square km). 

The maximum sustained winds recorded by the National Hurricane Center 

for these hurricanes appear similar (Ike – 49.2 m/s, Rita – 51.4 m/s, Katrina – 

56.8 m/s, Ivan – 58.1 m/s). But the winds, including the recorded embedded 

tornadoes, for these hurricanes are significantly different. Ike’s maximum gusts 

were recorded as 49.2 m/s with no embedded tornadoes recorded by the 

National Weather Service. Rita and Katrina had reports of gusts of 77.3 m/s, 

while Ivan had gusts reported as large as 72.0 m/s. Ike had no reported 

embedded tornadoes. Rita had twenty one embedded tornadoes recorded by the 

National Weather Service. Katrina had forty three embedded tornadoes recorded 

by the National Weather Service. The National Weather Service reported 117 
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embedded tornadoes for Ivan, though these were spread across the eastern Gulf 

Coast and eastern Atlantic coastal areas.  

A further meteorological difference among these hurricanes is the storm 

surge accompanying landfall. Ike was accompanied by a 3.0 m high storm surge 

extending for more than 214 km along the coast. Rita’s 4.3 m storm surge 

extended more than 97 km along the coast, similar to Ivan’s 3.7 m storm surge 

which extended more than 105 km along the coast. Katrina’s landfall was 

accompanied by a 6.4 m storm surge that extended more than 161 km along the 

coast, with reports of greater than an 8.5 m storm surge in some areas.  

The nature of hurricanes is varied and complex and the damage impact of 

hurricane landfalls are further complicated by the variations in the landscape of 

the landfall areas. Figure 7 shows the percent land cover for each of the 

hurricane’s category 1 or greater winds area. Hurricane Rita’s landfall impact 

area is on the eastern edge of Hurricane Ike’s landfall impact area. Despite the 

proximity of these landfall areas, the land cover impacted by the two storms is 

vastly different. Rita’s 2,857 square km of category 1 or greater winds impacted 

area is composed of 94.4 percent of open water or wetlands. Hurricane Ike’s 

22,647 square km of category 1 impacted area is composed of only 33.6 percent 

open water or wetlands. Hurricane Ivan’s 16,825 square km of category 1 or 

greater winds impacted area has the least open water or wetlands at 24.4 

percent. Hurricanes Ike and Katrina fall between these extremes at 33.6 percent 

and 34.6 percent, respectively. Rita’s category 1 or greater impact area contains 
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The Tuscaloosa and Joplin tornadoes were devastating storms impacting 

large residential areas. They were classified as EF-4 and EF-5, respectively. The 

large extent of damage offered the opportunity for collecting fifty or more samples 

per category, which can be problematic with frequent smaller tornadoes. 

Challenges 

The wide variability between and within hurricanes and the large areas 

covered by potentially damaging forces within hurricanes appears to inject 

variability beyond the variance in samples due to damage condition. Plots of 

discriminant functions 1 and 2 show two general shapes of the discriminant 

analysis discriminant function plots. The shape of these plots appear roughly as 

either a somewhat random, or shotgun blast, shape (e.g., Figure 32, Rita plot of 

DF 1 and 2 shows category separation with a random appearing, or shotgun 

blast appearing variability) or as a basketball free-throw line shape (e.g., Figure 

34, Katrina plot of DF 1 and 2 shows the damage categories separated but 

spread vertically in a line like shape (the free throw line), with the no damage 

category appearing as a separate group from the other categories, where the 

basket would be positioned). Combinations of hurricane data discriminant 

analysis plots of DF 1 and 2 show a combination of these two shapes from the 

individual hurricanes. 

This variability within and among hurricane data sets presented the 

challenge of not being able to separate the variability due to differences in 

hurricanes from the differences in damage categories. This suggested examining 

small area, relatively uniform damage events in an effort to explore the utility of 
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wavelet transform based image processing while minimizing landscape and 

hurricane variations. Tornado events appear ideal for this limited area, focused 

damage examination. Tornadoes in the U.S. have a ground footprint on average 

45.7 m wide and 1.6 to 3.2 km long (Ramsdell, Rishel, and Buslik 2007). Their 

ground footprints are significantly smaller than even small hurricanes. The large 

May 2011 Joplin tornado was approximately 1.6 km wide by 35.4 km long. Even 

this large tornado, at approximately 57.0 square km in ground footprint size is 

fifty times smaller than the category 1 or greater wind impacted area of the small 

hurricane Rita (2,857 square km). Limiting the geographic extent of the study 

area offers the possibility of minimizing the impact of variations between storms.  

Data and Processing 

Data 

Imagery data for Hurricanes Ike, Rita, Katrina and Ivan and the Joplin and 

Tuscaloosa tornadoes was acquired from NOAA National Geodetic Survey 

Emergency Response Imagery archive website (Aslasksen 2010). Imagery for 

Hurricanes Ike and Katrina, and the Joplin and Tuscaloosa tornadoes was 

available in georeferenced JPG format with world files. After acquisition it was 

imported directly into ArcGIS 2010. Imagery for Hurricanes Rita and Ivan was 

available only in ungeoreferenced JPG format.  

Damage assessment layers for hurricanes Ike, Rita, Katrina and Ivan were 

acquired from FEMA. The damage assessment maps for Ike, Rita and Katrina 

were available in shapefile format, while Ivan’s remote sensing based damage 

assessment were only available in PDF format. The damage assessment for the 
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Joplin and Tuscaloosa tornadoes was acquired from NOAA’s National Weather 

Service Weather Forecast Office in KML format.  

ESRI provided StreetMap USA background map layers were used for 

orientation and visualizations within the GIS.  

 Digital Ortho imagery was acquired from the United States Department of 

Agriculture’s GeoSpatial Data Gateway for each county affected by all storms for 

use in referencing ungeoreferenced imagery and damage assessment layers.  

The National Land Cover Data 2006 layer was acquired for Texas, 

Louisiana, Mississippi, Alabama, and Florida from the United States Department 

of Agriculture’s GeoSpatial Data Gateway to support comparison and contrast of 

land cover among the hurricanes.  

Tools 

Several tools were reviewed for potential use to acquire image samples, 

calculate wavelet transform coefficients for each image sample, and to perform 

statistical analysis. ArcView is the market leader in the GIS software space and 

contains all the necessary GIS tools for image selection and sampling. ArcView 

was selected as the tool for required GIS manipulation and analysis. ERDAS 

Imagine was selected as the tool for required image sampling (dicing the post 

event imagery into subsamples). Ninety wavelet software tools were reviewed as 

possibilities for performing the necessary wavelet transform analysis. MatLab 

and the MatLab Wavelet Toolbox were selected as the tools for calculating 

wavelet transform coefficients of each sample. IBM SPSS was selected as the 

tool for statistical analysis of the wavelet transform coefficient data.  
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Georeferencing 

Imagery for Ike, Katrina, Ivan, Joplin, and Tuscaloosa were directly 

ingested into ArcGIS. Imagery for Rita and Ivan were only available as 

ungeoreferenced image files. Areas of damage were identified from damage 

assessment maps to identify which images to load into the GIS. These were then 

georeferenced within ArcGIS using digital orthos as the reference layer. This 

same process was employed to georeference the Ivan imagery. Hurricane Ivan’s 

FEMA damage assessment was only available in ungeoreferenced PDF format. 

The Ivan FEMA damage assessment PDF was converted to a JPG file in Adobe 

Photoshop then loaded into ArcView and georeferenced using the digital orthos 

and StreetMap USA as reference layers. Georeferenced, shapefile layers were 

created for the each damage assessment category from the georeferenced 

FEMA damage assessment image.  

Sampling 

Myint’s research into window sample sizes for complex feature 

classification accuracy indicates optimal sample size ranges for classification of 

imagery with complex feature content. He found 63 x 63 meter and 95 x 95 meter 

window sizes provide the highest accuracy for operational wavelet based 

algorithm examination of high resolution imagery, though accuracy was found to 

be variable among classes. A 63 x 63 meter window produced an overall 

accuracy of 81.84 percent. A 95 x 95 meter window produced an overall 

accuracy of 78.19 percent accuracy (Myint 2010). Gulf of Mexico coastal property 

is quite varied in size and shape. Individual property sizes were considered as a 
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potential factor influencing optimal image sample size. Harrison County 

Mississippi’s property file contains 92,141 individual properties. The average 

property size for all Harrison County properties is 15,312 square meters with a 

median of 1,248 square meters and a standard deviation of 120,583 square 

meters. Property areas and shapes varied so widely along the Gulf of Mexico as 

to be of little value in guiding selection of sample size.  

An image sample size of 78 meters (256 feet) x 78 meters was chosen 

based on it being approximately the average value of the two highest accuracy 

sample sizes (63 meter and 95 meter) for residential class reported by Myint 

(Myint 2010) as well as being, in feet, a factor of 2 supporting 5 levels of wavelet 

transform deconstruction. Visual examination of imagery for the 4 selected 

hurricanes indicates that this sample size is generally large enough to contain 

one or more residential, coastal properties.  

In addition to the spatial frequency content of a sample, the number of 

samples practically available within areas classified by FEMA damage 

assessment maps was a factor considered in determining sample size. The 

accuracy of the classification of remotely sensed data is well documented by 

Congalton and Green (Congalton 1991, Congalton and Green 2009). They 

suggest collecting fifty samples for each category in an error matrix as a good 

rule of thumb for imagery sampling. For especially large areas they suggest 75 to 

100 samples for each category, with adjustments up suggested for categories 

with more variability or categories of particular interest.  
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Hurricane Ike Sampling 

Figure 8 shows a layout view of a part of the Ike GIS with the sample 

areas selected for each damage category.  

 

Figure 8. Hurricane Ike sampling areas. 

Imagery in each damage assessment category area was clipped from the 

post landfall imagery and saved by damage category area. The saved damage 

assessment category imagery was imported into ERDAS Imagine for dicing into 

78 x 78 meter (256 x 256 foot) sample image blocks. The sample image blocks 

were imported back into ArcView. Each sample image block was then visually 

inspected. Sample image blocks visually containing more than 50percent non-
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residential content (water, homogenous ground [e.g., bare grass, pavement, soil, 

dense forest], etc.) were eliminated from the sample set. Sample image blocks 

that contain foundations only, such as from Hurricane Katrina, were not 

eliminated from the sample image block sets. A total of 1,008 samples (274 no 

damage; 86 limited damage; 94 moderate damage; 105 extensive damage; 449 

catastrophic damage) were selected from post landfall hurricane Ike imagery. 

Figure 9 shows a hurricane Ike catastrophic sample area with non-residential 

areas eliminated. The purpose of this filtering of non-residential housing areas 

removes areas that might introduce bias into the damage assessment 

discriminant analysis. A block diagram representation of the process from data 

collection through WT damage assessment category prediction performance is 

shown in Figure 10.  
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Figure 9. Image sample blocks imported into GIS for filtering out non-residential 
areas.  
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Figure 10. Data processing/analysis block diagram. 

Hurricane Katrina Sampling 

Hurricane Katrina’s post landfall imagery and FEMA damage assessment 

were available in georeferenced format. This supported direct import of data into 

ArcGIS. Sampling proceeded as with Hurricane Ike. A total of 1,292 samples (79 

no damage; 201 limited damage; 470 moderate damage; 174 extensive damage; 

368 catastrophic damage) were selected from post landfall hurricane Katrina 

imagery for use in discriminant analysis and discriminant function creation. An 

additional 749 samples (73 no damage; 112 limited damage; 330 moderate 

damage; 74 extensive damage; 160 catastrophic damage) were collected from 

Katrina as distant as possible from the original 1,292 samples. These additional 
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samples were used for evaluating the accuracy of discriminant function models. 

They were not included in the sample set used to inform the Katrina discriminant 

function.  

Figure 11 shows Hurricane Katrina storm track and FEMA damage 

assessment in the western Mississippi area. The Hurricane Katrina damage 

assessment category samples were taken from Hancock and Harrison Counties 

in Mississippi. Figure 12 shows an example of catastrophic area samples 

imported back into the GIS and filtered for residential area only.  

 

Figure 11. Hurricane Katrina sampling areas. 
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Figure 12. Example of image sample blocks imported into GIS for residential 
area filtering. 

Hurricane Rita Sampling 

The FEMA damage assessment maps for Hurricane Rita were available in 

georeferenced format. These were imported directly into ArcGIS. The Hurricane 

Rita post landfall imagery was available from NOAA’s Emergency Response 

Imagery archive (Aslaksen 2010) only in non-georeferenced JPG format. These 

images were imported into ArcGIS and georeferenced. The Rita imagery was 

then sampled as with Hurricane Ike. A total of 1,298 samples (285 no damage; 

240 limited damage; 190 moderate damage; 177 extensive damage; 406 
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catastrophic damage) were selected from post landfall hurricane Rita imagery for 

use in discriminant analysis and discriminant function creation. 

Figure 13 shows the track of Hurricane Rita and the distribution of FEMA 

damage assessment areas. Figure 14 shows the largest catastrophic damage 

area associated with Hurricane Rita.  

 

Figure 13. Hurricane Rita imagery sampling area. 



50 
 

 

Figure 14. Hurricane Rita catastrophic damage sampling area.  

Hurricane Ivan Sampling 

The FEMA damage assessment maps for Hurricane Ivan were available 

only in non-georeferenced, PDF format. These PDFs were imported into ArcGIS 

as the source for creating georeferenced damage assessment shapes. The 

Hurricane Ivan post landfall imagery was available from NOAA’s Emergency 

Response Imagery archive (Aslaksen 2010) only in non-georeferenced JPG 

format. These images were imported into ArcView and georeferenced and 

sampled as with Ike. A total of 716 samples (73 no damage; 150 limited damage; 

401 moderate damage; 83 extensive damage;  
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9 catastrophic damage) were selected from post landfall hurricane Rita imagery 

for use in discriminant analysis and discriminant function creation. 

Figure 15 shows the track of Hurricane Ivan and the distribution of FEMA 

damage assessment areas. Figure 16 shows post landfall imagery sampled, 

diced, and imported back into ArcView.  

 

Figure 15. Hurricane Ivan sampling area.  
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Figure 16. Hurricane Ivan sampling area.  

Joplin Tornado Sampling 

The damage assessment maps for the Joplin tornado were available in 

georeferenced format from the National Weather Service. These were imported 

directly into ArcGIS. The imagery was available from NOAA’s Emergency 

Response Imagery archive (Aslaksen 2011a) in georeferenced JPG format. The 

imagery was then sampled as with Hurricane Ike. Two sets of samples were 

collected from the imagery. One set was used to inform a damage discriminant 

function. One set was used to assess the accuracy of the damage discriminant 

function. A total of 282 samples (130 no damage; 173 catastrophic damage) 

were selected from the imagery. 
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Figure 17 shows the samples selected from the Joplin imagery. Samples 

used to inform a damage model are outlined in purple. Samples used to assess 

the accuracy of the damage model are outlined in blue.     
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Figure 17. Two image sample groups were collected from the post Joplin tornado 
imagery. The group on the right, outlined in purple, was used to inform a 
discriminant function of tornado damage. The group on the left, outlined in blue, 
was used to test the accuracy of the tornado damage discriminant function.  
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Tuscaloosa Tornado Sampling 

Damage assessment maps for the Tuscaloosa tornado were available in 

non-georeferenced format from The University of Alabama’s Center for 

Advanced Public Safety. The imagery was imported directly into ArcGIS. The 

damage assessment was georeferenced as with hurricane Ivan. The imagery 

was then sampled as with Hurricane Ike. A total of 3,493 samples (1,713 no 

damage; 1,780 catastrophic damage) were selected from the imagery. 

Figure 18 shows the sample selection area from the Tuscaloosa imagery.  

 

Figure 18. A large image sample set (3,493 image samples) was collected from 
high resolution, post Tuscaloosa tornado imagery. The Joplin-based tornado 
damage discriminant function was applied to these samples to test this function’s 
damage assessment accuracy.  
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Wavelet Transforms 

Wavelet transform analysis is the extraction of signal or image information 

at different positions and at different scales (Watson 1999). Continuous wavelet 

transformation can be thought of as the convolution of the wavelet function with 

the signal function. When the wavelet function and the signal function are similar, 

the transform result is a high value. When the wavelet transform function and the 

signal function are dissimilar, the result is a low value. Another way to think of 

wavelet transform is as a high pass filter and low pass filter in the horizontal, 

vertical and diagonal directions (Rao and Bopardikar 1998).  

A test target with varying sized horizontal, vertical, diagonal and random 

image features was created to illustrate image wavelet transform analysis. Figure 

19 shows the test target image.  
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Figure 19. Test target image with horizontal, vertical, diagonal and random 
features for illustrating wavelet transform operations. Axis values are pixel 
number. 
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Figure 20. Five level Haar wavelet transform decomposition of the test target 
image.  
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Figure 21. First level diagonal detail coefficient image of the Haar wavelet 
transform of the test target image. Notice the presence of diagonal features only 
in this diagonal detail and the almost complete lack of any horizontal or vertical 
features. The Haar wavelet is particularly adept at identifying edges as exhibited 
by the presence of the triangle’s diagonal edge and the edges of the random 
orientation bars. Its ability to pick up fast changing features is illustrated by it 
sensing the corners of the horizontal and vertical bars.  

The Haar wavelet mother function, shown at upper left in Figure 22, 

functions as an edge detector (Watson 1999). When this function is convolved 

with a signal the result is an average of zero for constant signals. It returns a high 
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value when a discontinuity, or edge, is encountered. Figure 20 shows a five-level 

Haar wavelet transform decomposition of the test target. Figure 21 shows the 

first level diagonal Haar detail transform image of the test target. 

 

Figure 22. Wavelet mother functions investigated.  

The Meyer function is a relatively symmetrical, fast changing function. It 

senses or is similar to fast changing signals in the scene (for example, boards, 

tree branches and other debris would be picked up by the Meyer function). 

Stripes in a parking lot would also be picked up by the Meyer function in the 

direction perpendicular to the stripes. Figure 22 shows a Meyer function in the 

upper right corner. Figure 23 shows a five level Meyer wavelet transform 
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decomposition of the test target image. Figure 24 shows the first level Meyer 

diagonal detail transform image of the test target.  

 

Figure 23. Five level Meyer wavelet transform decomposition of the test target 
image.  
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Figure 24. First level diagonal detail coefficient image of the Meyer wavelet 
transform of the test target image. Notice the presence of diagonal features only 
in this diagonal detail and the lack of any horizontal or vertical features, similar to 
the Haar. The Meyer wavelet identifies fast changing edges and small features 
similar to Haar, though the Meyer is less sensitive to small, very fast changing 
edges as illustrated by it not picking up corners of the vertical and horizontal bars 
as well as the Haar transform.    

The Coiflets wavelet function, shown in the lower right of Figure 22, is 

similar to the Meyer wavelet function in that it is symmetrical. It has fewer zero 

with sharper peaks and a slightly broader base between the two negative peaks. 
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Generally, it will detect similar image features as the Meyer function, though it will 

sense simpler fast changing features. For example, a single board against a soil 

background would yield a high value with the Coiflets wavelet. In comparison, the 

Meyer wavelet function would yield a high value with three parallel boards 

against a soil background. Figures 25 and 26 show the five-level Coiflets 

decomposition image of the test target and the first level diagonal detail Coiflets 

wavelet transform image.  
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Figure 25. Five level Coiflets wavelet transform decomposition of the test target 
image.  
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Figure 26. First level diagonal detail coefficient image of the Coiflets wavelet 
transform of the test target image. 
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The Symlets wavelet function, shown in the lower left of Figure 22, is also 

a fast changing function, but unlike the Meyer, Coiflets or Haar wavelet functions 

it is not symmetrical. It is sensitive to signals that are non-symmetrical (e.g., it 

might pick up piles of debris where there is a smooth edge with a non-uniform, 

relatively wide signal shape, such as 3-tab shingles). Figures 27 and 28 show the 

five level Symlets decomposition image of the test target and the first level 

diagonal detail Symlets wavelet transform image.  
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Figure 27. Five level Symlets wavelet transform decomposition of the test target 
image. 
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Figure 28. First level diagonal detail coefficient image of the Coiflets wavelet 
transform of the test target image. 

Urban classification performance is increased when Haar wavelet 

coefficients are used in combination with the traditional spatial LOG, SHAN, and 

ENG indices (Myint and Mesev 2012). Wavelet analysis provides insight into 

trends, discontinuities, and self-similarity beyond the capability of other 

approaches such as Fourier analysis or windowed Fourier analysis (Misiti et al. 

2011). Storm winds and surge cause changes on the landscape that are higher 
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frequency than the undamaged landscape (e.g., buildings are decomposed from 

a single structure to many component parts). Wavelet mother functions were 

chosen for analysis that has strong edge and high frequency components to 

maximize the potential for identifying the high frequency spatial signature of post 

storm landscapes. Myint found good success using the Haar wavelet mother 

function on urban imagery (Myint 2001). The upper left quadrant of figure 22 

shows the Haar mother function (also known as the Daubechies1 mother 

function). Other wavelet mother functions investigated in this research include 

the Meyer (Figure 22 upper right), the Symlet2 (Figure 22 lower left) and the 

Coiflets1 (Figure 22 lower right).  

Each 78 x 78 meter (256 x 256 foot) image sample for each storm was 

wavelet transformed using MatLab and Wavelet Toolbox software. In addition to 

five-level wavelet transformations with each mother wavelet of each image 

sample, the signal mean, signal standard deviation and ENG index was 

calculated for each image sample and each transformed image sample. Haar 

wavelet transformation combined with ENG index was found by Myint to provide 

the highest classification accuracy for urban areas when compared with Haar 

wavelet transform compared with the LOG and SHAN index (Myint and Mesev 

2012).  

ENG, energy or the angular second momentum is equal to the absolute 

value of the sum of the rows and columns of the coefficients in a sample image, 

divided by the product of the number of rows and columns, where c(I, j) is a 
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wavelet coefficient of a sub-image, or sample, with M rows and N columns at I, j 

at one level.  

   
 

 

 
ENG can be thought of as a measure of how well the wavelet transform 

matches the signals in the sample image. When the wavelet function and the 

image match, the wavelet transform value will be high at that position in the 

image. ENG provides a measure of how well the wavelet function at that scale 

matches the image overall.  

Five level Meyer, Symlets, and Coiflets wavelet transforms were also 

performed on each image sample in addition to five-level Haar wavelet 

transforms. The image and transformed image calculations yielded 242 

independent variables as input for the discriminant analysis. A complete list and 

description of all 242 independent variables appears in Appendix B. The 

independent variables include sample image signal mean, sample image signal 

standard deviation, and wavelet transform coefficients image-based coefficients 

for Haar, Meyer, Symlets and Coiflets mother wavelet functions. Each wavelet 

transform mother and level results in the following coefficients: approximation 

mean, approximation standard deviation, approximation ENG index, horizontal 

mean, horizontal standard deviation, horizontal ENG index, vertical mean, 

vertical standard deviation, vertical ENG index, diagonal mean, diagonal 

standard deviation, and diagonal ENG index.   
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CHAPTER IV 

RESULTS AND DISCUSSION 

Statistical Analysis 

Discriminant analysis is valuable for investigating differences between 

groups or categories and is used to identify which independent variables 

contribute most to explaining the variability between groups. Discriminant 

analysis optimizes equations to minimize the variability within groups while 

maximizing the variability between groups (Burns and Burns 2008). The first 

question asked in this research is if wavelet processed overhead imagery can 

identify post storm damage categories. FEMA’s remote sensing damage 

assessment maps were used as damage category references for the hurricane 

storms. The National Weather Service’s damage assessment was used as the 

damage category reference for the Joplin tornado. The University of Alabama’s 

Center for Advanced Public Safety created a ground survey-based damage 

assessment for the Tuscaloosa tornado, which was used as the category 

reference it. These category reference maps informed the identification of the 

damage condition of post storm sample images. The independent variables 

resulting from the wavelet transformation of each image sample were inputs into 

discriminant analyses along with the damage condition identified from the 

damage category reference maps.  

The independent variables for each storm, and combinations of storms, 

were analyzed using discriminant analysis in SPSS statistical analysis software. 

Hurricane samples were combined and discriminant analyses performed to 
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assess the accuracy of damage category prediction with samples from individual 

hurricane and combinations of hurricane image sample data sets. Discriminant 

analysis was performed on the following hurricane data sets: Ike, Rita, Katrina, 

Ivan, Ike and Rita, Ike and Katrina, Ike and Ivan, Rita and Katrina, Rita and Ivan, 

Katrina and Ivan, Ike and Rita and Katrina, Ike and Rita and Ivan, Ike and Katrina 

and Ivan, Rita and Katrina and Ivan, and Ike and Rita and Katrina and Ivan. 

Table 2 shows the hurricane data set combinations analyzed with discriminant 

analysis. The table is sorted in descending order of accuracy performance, with 

the top row (Ike sample data) showing the highest percent of original cases 

correctly classified by the discriminant analysis. The last row (Rita sample data) 

shows the lowest accuracy performance. The green filled cells indicate what 

storm samples were included in the analysis that is summarized in the columns 

to the right for that row. For example, the third row has the cells in the Ike and 

Katrina columns colored green, indicating that the discriminant analysis results to 

the right in that row are for the instance where image samples from Ike and 

Katrina informed the discriminant analysis. Table 2 columns list the percent of 

variability explained by discriminant functions 1 and 2, the percent of the input 

samples correctly classified and the percent of cross-validated cases that were 

correctly classified.  
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Table 2 

Hurricane data sets analyzed with discriminant analysis, percent variation in 
samples explained by discriminant functions 1 and 2, percent of cases correctly 
classified, and percent of cross-validated cases correctly classified. 

Ike 
(2008) 

Rita 
(2005) 

Katrina 
(2005) 

Ivan 
(2004) 

percent 
variation 

explained by 
DF 1 and 2 

percent 
original cases 

correctly 
classified 

percent cross-
validated 

cases correctly 
classified 

X 99.2 89.5 88.7 

X 98.8 84.7 82.3 

X X 97.7 76.6 76.2 

X X X 92.7 71.7 70.8 

X 89.6 76.4 75.2 

X X 86.3 75.3 73.9 

X X X X 82.6 67.6 66.7 

X X X 82.4 73.7 72.5 

X X 80.5 77.2 75.7 

X 78.0 72.5 71.4 

X X X 75.3 69.4 68.2 

X X X 74.5 69.1 67.4 

X X 73.6 77.8 75.7 

X X 70.4 69.6 67.5 

X 69.9 86.0 84.7 

 

The statistical analyses for all combinations are based on independent 

variables extracted from post storm imagery using wavelet transformation of the 

image samples. Each image sample is wavelet transformed to five levels with 

each of the four wavelet functions examined (Coiflets, Haar, Meyer, Symlets). 

Appendix B lists all the independent variables. The Haar and Symlets wavelet 
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functions are edge detectors. The Haar function senses or is similar to sharp 

edges and will identify increased edges in a sample scene due to storm damage. 

The Symlets function is similar to the Haar in that it will return a low result for 

constant image areas and a higher result for areas in the image with edges. The 

difference between Haar and Symlets in this application is that the Symlets 

function senses or is more similar to relatively fast changing edges. Where the 

Haar function is a single edge the Symlets function begins with a fast reduction 

from zero followed by a fast increase with a final fast reduction back to zero. The 

Meyer and Coiflets functions will sense or are similar to fast changing scene 

content with two closely spaced edges such as lumber or tree branch debris. The 

literature does not yet contain a reference library of the spatial content of storm 

damaged areas. Without apriori knowledge of the spatial nature of storm 

damaged areas a suite of wavelet functions at five levels are used as 

independent variable to investigate the general capability of this approach. A 

valuable future research area is to identify average or characteristic damage 

images for spatial characterization.  
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Hurricane Ike  

 

Figure 29. Hurricane Ike sample groups plotted against canonical discriminant 
functions 1 and 2. Discriminant functions 1 and 2 account for 99.2percent of the 
total variance in the Hurricane Ike image sample data set.  

This discriminant analysis (see Figure 29 for discriminant function plot 

showing significant canonical discriminant at 95 percent confidence level) 

answers question 1 (can wavelet processed post storm overhead imagery 

identify areas of residential damage) affirmatively if the null hypothesis is rejected 

at the 95 percent confidence level. The null hypothesis is that wavelet transform 

classification does not discriminate among FEMA damage assessment 

categories (no discernible damage, limited damage, moderate damage, 
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extensive damage, catastrophic damage). Wilk’s Lambda tests differences of 

means and shows which variables’ contributions are significant. The value of 

Lambda ranges between 0 and 1. Lambda values close to 0 indicates group 

means differ. Lambda values close to 1 indicates group means are the same. 

The Wilk’s Lambda results for Hurricane Ike samples in Table 3 indicate that the 

group means are different for discriminant functions 1 and 2 at the 95percent 

confidence level (significance less than 0.05). The other rows in the Wilk’s 

Lambda table show the contribution and significance of the twenty seven 

independent variables contributing to discriminant functions 1 and 2 for the 

Hurricane Ike discriminant analysis. Therefore, the null hypothesis associated 

with question 1 is rejected. Significance levels for all statistical tests are reported 

at the 0.05 level. 

Based on post hurricane Ike imagery, the answer to research question 1 is 

yes, wavelet transform processed post storm imagery identifies areas of 

residential damage. Analysis of the other storms examined reveal that for all 

storms, wavelet transform processed imagery identifies areas of residential 

damage, albeit with classification accuracies as low as 66.7percent and as high 

as 88.7percent (percent of cross-validated cases correctly classified). 

Ike’s DF1 and DF2 plot (Figure 29) shows a distinct, free throw type, 

shape with the no damage samples clearly separated from all categories of 

damage samples. This separation is accomplished primarily by DF1, which 

explains 97.7 percent of the variability. DF2 only explains 1.6 percent of the 

variability. This suggests that the no damage samples are more different from all 
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the damage classes than all the variation between the damage samples. The 

vagueness of the damage definitions and the variability in visual interpretation of 

damaged areas may account for this large difference. The centroid of the no 

damage samples is 20 units from the centroids of all the damage classes 

centroids while the centroids of the damage classes are separated only by 4 

units. The top 20 percent (6 of 27) of the discriminant coefficients for DF1 and 

DF2 (by absolute value) show two coefficients in common among DF1 and DF2, 

level 1 Meyer vertical ENG and level 1Haar horizontal ENG. DF1 contained all 4 

wavelet functions considered at level 1 and the ENG coefficient for 5 of these 6 

coefficients. In contrast, DF2 coefficients are composed of Haar, Coiflet and 

Meyer coefficients. These appeared at levels 2, 2, 4, 1, 1, and 1, from largest to 

smallest.  The largest factor discriminating damage from no damage areas in 

DF1 is the Meyer level 1 diagonal ENG coefficient with a value approximately 

twice larger than the other top 6 DF1 factors.  
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Table 3 

Wilk’s Lambda results for Hurricane Ike discriminant analysis samples. 

Stp #Var Lmbd df1 df2 df3 

Exact F Approximate F 

Stat df1 df2 Sig. Stat df1 df2 Sig. 

1 1 .061 1 4 1003 3848 4 1003 .000     

2 2 .031 2 4 1003 1169 8 2004 .000     

3 3 .021 3 4 1003     726.920 12 2648.689 .000

4 4 .017 4 4 1003     536.432 16 3055.688 .000

5 5 .013 5 4 1003     453.254 20 3314.258 .000

6 6 .009 6 4 1003     406.289 24 3482.816 .000

7 7 .009 7 4 1003     352.617 28 3596.157 .000

8 8 .007 8 4 1003     319.360 32 3674.662 .000

9 9 .007 9 4 1003     293.308 36 3730.463 .000

10 10 .006 10 4 1003     270.750 40 3770.987 .000

11 9 .006 9 4 1003     302.985 36 3730.463 .000

12 10 .005 10 4 1003     278.260 40 3770.987 .000

13 11 .005 11 4 1003     254.774 44 3800.924 .000

14 12 .005 12 4 1003     236.377 48 3823.326 .000

15 13 .005 13 4 1003     219.904 52 3840.237 .000

16 14 .005 14 4 1003     205.759 56 3853.061 .000

17 15 .004 15 4 1003     193.544 60 3862.786 .000
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Table 3 (continued). 

Stp #Var Lmbd df1 df2 df3 

Exact F Approximate F 

Stat df1 df2 Sig. Stat df1 df2 Sig. 

18 16 .004 16 4 1003     182.741 64 3870.122 .000

19 17 .004 17 4 1003     173.090 68 3875.586 .000

20 18 .004 18 4 1003     164.385 72 3879.567 .000

21 19 .004 19 4 1003     156.589 76 3882.357 .000

22 20 .004 20 4 1003     150.009 80 3884.179 .000

23 21 .004 21 4 1003     143.952 84 3885.208 .000

24 22 .004 22 4 1003     138.229 88 3885.581 .000

25 23 .004 23 4 1003     132.966 92 3885.407 .000

26 24 .004 24 4 1003     128.171 96 3884.773 .000

27 25 .003 25 4 1003     123.504 100 3883.749 .000

28 26 .003 26 4 1003     119.188 104 3882.393 .000

29 27 .003 27 4 1003     115.225 108 3880.753 .000

 

Tests of equality of group means, high F and low Wilk’s Lambda, indicate 

significant difference between groups. Classification accuracy for Ike is 89.5 

percent of original grouped cases correctly classified and 88.7 percent of cross-

validated grouped cases correctly classified (shown in Table 4). Near perfect 

classification for no damage (100 percent) and catastrophic damage (92.4 

percent) categories suggests accurate predictive ability for these categories. 
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Sixty-five to 78 percent correct classifications for limited, moderate and extreme 

categories might be attributed to the poor definition of the categories in that they 

are not clear nor are they clearly mutually exclusive. The poor category 

definitions, with respect to application from remotely sensed imagery, are a 

contributor to confusion among damage categories. Wilk’s Lambda results for the 

other cases analyzed answer question 1 in the same way with similar 

significance, though with different sets of independent variables and differing 

levels of accuracy.  

Ike’s discriminant analysis yielded a discriminant function with 27 

coefficients. Level 1 coefficients include ENG or standard deviation of diagonal, 

horizontal and vertical detail for all four wavelet functions. This suggests that the 

image sample contents at level one are a mixture of edges and fast changing 

signals indicative of storm damage and debris. Level 2 coefficients include ENG 

and standard deviation of diagonal, horizontal and vertical detail for Haar, Meyer 

and Symlets functions. At this level there continue to be a mixture of fast 

changing image contents for damaged areas. Levels 3 through 5 contain fewer 

coefficients, with six at level 3 and three coefficients at level 4 and 5. Level 3 

continues to be composed of Haar, Meyer and Symlets coefficients. Level 4 

contains only one Coiflets coefficient and two Symlets coefficients. Level 5 

contains two Haar coefficients and one Symlets coefficient.  

Ike’s DF 1 and 2 plot shows separation between no damage and the other 

damage categories. This indicates that the image samples of no damage are 

significantly different in their spatial frequency content from all the damage 
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categories. The samples in the damage categories show a general tight linear 

layout with near catastrophic and extreme group means separated from the 

closely spaced limited and moderate group means. The lack of implementable 

category definitions and the potential variability in the visual interpretation of the 

damage categories may account for the tight grouping of the damage categories 

clearly separated from the no damage category.  

Figure 30 shows an ideal classification accuracy bar chart. This chart 

represents 100 percent accurate classification of all samples in all categories. 

The canonical discriminant function plots and classification results for the 

remaining hurricane storms are shown in Figures 32 through 37, Tables 5 

through 7 below, and Appendix C. The classification results of hurricane 

combinations appear in Appendix C. 
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Table 4 

Classification results of the discriminant analysis performed on the 1,008 
Hurricane Ike image samples.   

  

 category 

Predicted Group Membership 

Total   No Dmg Limited Moderat Extreme Cat 

Original Count No Dmg 274 0 0 0 0 274

Limited 0 67 18 0 1 86

Moderate 0 0 70 0 24 94

Extreme 0 0 4 71 30 105

Cat 0 1 11 17 420 449

percent No Dmg 100.0 .0 .0 .0 .0 100.0

Limited .0 77.9 20.9 .0 1.2 100.0

Moderate .0 .0 74.5 .0 25.5 100.0

Extreme .0 .0 3.8 67.6 28.6 100.0

Cat .0 .2 2.4 3.8 93.5 100.0

Cross-

validateda 

Count No Dmg 274 0 0 0 0 274

Limited 0 67 18 1 0 86

Moderate 0 0 69 0 25 94

Extreme 0 0 5 69 31 105

Cat 0 1 17 16 415 449

percent No Dmg 100.0 .0 .0 .0 .0 100.0

Limited .0 77.9 20.9 1.2 .0 100.0

Moderate .0 .0 73.4 .0 26.6 100.0

Extreme .0 .0 4.8 65.7 29.5 100.0

Cat .0 .2 3.8 3.6 92.4 100.0

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the 

functions derived from all cases other than that case. 

b. 89.5 percent of original grouped cases correctly classified. 

c. 88.7 percent of cross-validated grouped cases correctly classified. 
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by the discriminant analysis in the moderate damage category. Approximately 26 

percent of the moderate damage category samples are classified by the 

discriminant analysis in the catastrophic damage category. Approximately 42 

percent of the extensive damage category samples are classified as either 

catastrophic or moderate damage. A few of the catastrophic damage category 

samples are classified by the discriminant analysis as extensive, moderate or 

limited damage. Overall the shape of the classification accuracy bar chart shows 

that the damage categories are accurately discriminated. The misclassifications 

in the damage categories might be explained by the difficulty of correctly 

classifying damaged areas near the boundaries of damage categories. For 

example, an area of damage near the boundary between extensive and 

catastrophic damage could be classified by visual interpretation to either 

category. The definition of extensive damage is “some solid structures are 

destroyed; most sustain exterior and interior damage (e.g., roofs missing, interior 

walls exposed), most mobile home and light structures are destroyed.” (Gabe 

2005) The definition of catastrophic damage is “most solid and all light or mobile 

structures destroyed.” (Gabe 2005) If the area covered by a sample contains only 

solid structures it is difficult to determine the difference between some solid 

structures destroyed and most solid structures destroyed. Similar potential 

overlap exists between all the damage categories used by FEMA except for the 

no damage category. The overlap in sample points among the limited, moderate, 

extensive and catastrophic categories in the canonical discriminant functions 1 

and 2 plot (Figure 29) suggests that the discriminant analysis accurately 
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separates no damage from the damage categories, however it also shows 

overlap among the damage categories that might be attributed to category 

definition vagueness. This is also suggested by the nearness of the group 

centroids of the limited and moderate damage categories and the extreme and 

catastrophic categories. These pairs of adjacent damage category sample points 

are separated from each other and from the no damage category, further 

supporting the idea that the category definitions, or their implementation, are less 

than unambiguous.  
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Hurricane Rita 

 

Figure 32. Hurricane Rita sample groups plotted against canonical discriminant 
functions 1 and 2. Discriminant functions 1 and 2 account for 69.9 percent of the 
total variance in the Hurricane Rita image sample data set.  

Figure 32 and Table 5 show the discriminant function 1 and 2 plot and the 

classification accuracy results. Figure 33 shows the Rita classification bar chart. 

Separation of group means between all categories indicates accurate category 

differentiation. Overlap between category samples remains and includes 

noticeable overlap among the no damage and the catastrophic and extreme 

categories. Rita’s discriminant analysis resulted in 44 coefficients in the 

discriminant function. Of the 20 possible combinations of 5 levels and 4 wavelet 
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functions, five were without a coefficient, Level 1 contains 19 coefficients spread 

among Coiflets, Haar, Meyer and Symlets wavelet functions. The number of 

coefficients in the remaining levels drops precipitously with only nine, five, two, 

and eight coefficients in levels 2 through 5. The large number of coefficients in 

level one indicates significant complexity at higher spatial resolution in the Rita 

data. The reduced number of coefficients at higher levels indicates reduced 

complexity at lower spatial frequencies. Rita’s significant quantity of open water, 

wetland and undeveloped areas, which are intrinsically low spatial frequency land 

cover areas, explains the relatively few higher level coefficients.  

The shape of the DF 1 and 2 plot in the form of separated categories with 

random appearing variance suggests that the differences between no damage 

and damage categories are not unique. Unlike Ike and Katrina, which display a 

grouping among the damage categories and a separation of the no damage 

category from all the damage categories, Rita’s distribution of group centroids 

shows a similar separation among all the categories. This may be due to Rita’s 

landscape being relatively uniform (94.4 percent open water or wetlands). A 

comparison of the top 20 percent of Rita coefficients (9 of 44) reveals three 

coefficients in common between DF1 and DF2 (level 1 Haar diagonal ENG, level 

1 Symlet horizontal ENG, and level 1 Symlet diagonal ENG). DF1 explains 46.2 

percent of the variability while DF2 explains 23.7 percent of the variability. The 

range of distribution of the class centroids is approximately the same for DF1 and 

DF2 (10 units in either direction). In contrast to Ike and Katrina, this random 
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appearing spread of samples within each class and among the classes suggests 

that the differences between classes are similar.  

Table 5 

Classification results of the discriminant analysis performed on the 1,298 
Hurricane Rita image samples.   

  

 category 

Predicted Group Membership 

Total  No Dmg Limited Moderat Extreme Cat

Original Count No Dmg 255 1 2 7 20 285

Limited 0 223 0 1 16 240

Moderate 7 5 158 0 20 190

Extreme 6 1 0 130 40 177

Cat 25 5 16 10 350 406

percent No Dmg 89.5 .4 .7 2.5 7.0 100.0

Limited .0 92.9 .0 .4 6.7 100.0

Moderate 3.7 2.6 83.2 .0 10.5 100.0

Extreme 3.4 .6 .0 73.4 22.6 100.0

Catastrophic 6.2 1.2 3.9 2.5 86.2 100.0

Cross-

validateda 

Count No Dmg 253 1 2 9 20 285

Limited 0 222 0 1 17 240

Moderate 9 6 153 1 21 190

Extreme 6 4 0 126 41 177

Cat 26 6 18 11 345 406

percent No Dmg 88.8 .4 .7 3.2 7.0 100.0

Limited .0 92.5 .0 .4 7.1 100.0

Moderate 4.7 3.2 80.5 .5 11.1 100.0

Extreme 3.4 2.3 .0 71.2 23.2 100.0

Cat 6.4 1.5 4.4 2.7 85.0 100.0

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the 

functions derived from all cases other than that case. 

b. 86.0 percent of original grouped cases correctly classified. 

c. 84.7 percent of cross-validated grouped cases correctly classified.
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hurricane damage near the coast can render the landscape similar to open water 

or wetland, which may account for the misclassification of some samples from all 

the groups into the catastrophic category.  

Hurricane Katrina 

 

Figure 34. Hurricane Katrina sample groups plotted against canonical 
discriminant functions 1 and 2. Discriminant functions 1 and 2 account for 
98.8percent of the total variance in the Hurricane Katrina image sample data set.  

Separation of group means indicates accurate category discrimination. 

Katrina’s discriminant analysis resulted in forty five coefficients in the discriminant 

function. Of the twenty possible combinations of 5 levels and 4 wavelet functions, 

only four were without a coefficient, Haar and Meyer level 4 and Haar and 
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Symlets level 5. The wavelet functions sense or are similar to image features as 

in and described under Hurricane Ike above. The large number of level 1 (18) 

and level 2 (14) coefficients suggests that Katrina’s damage is heavily weighted 

with higher frequency (faster changing) spatial features. This large amount of 

debris on damaged property (e.g., large debris piles along the coast in the 

catastrophic damage areas) agrees with the notion that a large number of level 1 

and 2 coefficients indicated large quantities of debris resulting from this storms 

impact. The separation between the no damage and the damage categories in 

Katrina is similar to Ike. However, Ike’s discriminant function contained only 27 

coefficients compared with the 45 Katrina coefficients. The similar discriminant 

function 1 and 2 plots of Katrina and Ike might suggest the damage from these 

storms is similar. However Katrina’s almost twice as many coefficients suggests 

more complexity in the spatial content of the remotely sensed imagery from this 

storm.  

Katrina’s DF1/DF2 plot (figure 34) shows a distribution within classes and 

among the classes is similar to Ike’s distribution. The no damage class is widely 

separated from the other classes. The damage classes appear to be vertically 

aligned with statistically significant separation among the damage class 

centroids. The damage classes are separated much less than they all are from 

the no damage class (10 units versus 50 units). As with Ike, Katrina’s top 20 

percent of coefficients (9 of 45) DF1 and DF2 show only level one coefficients for 

DF1 with a mix of levels for DF2, suggesting high resolution features clearly 
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discriminate between damage and no damage while damage categories require 

levels 1 and 2 transformations to separate the damage classes.  
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Table 6 

Classification results of the discriminant analysis performed on the 1,292 
Hurricane Katrina image samples.   

  

 category 

Predicted Group Membership 

Total   No Dmg Limited Moderat Extreme Catastrophi 

Original Count No Dmg 79 0 0 0 0 79

Limited 0 172 12 10 7 201

Moderate 0 26 420 15 9 470

Extreme 0 16 14 126 18 174

Catastrophi 0 19 17 35 297 368

percent No Dmg 100.0 .0 .0 .0 .0 100.0

Limited .0 85.6 6.0 5.0 3.5 100.0

Moderate .0 5.5 89.4 3.2 1.9 100.0

Extreme .0 9.2 8.0 72.4 10.3 100.0

Catastrophi .0 5.2 4.6 9.5 80.7 100.0

Cross-

validateda 

Count No Dmg 79 0 0 0 0 79

Limited 0 166 15 12 8 201

Moderate 0 28 411 20 11 470

Extreme 0 21 18 115 20 174

Catastrophi 0 20 20 36 292 368

percent No Dmg 100.0 .0 .0 .0 .0 100.0

Limited .0 82.6 7.5 6.0 4.0 100.0

Moderate .0 6.0 87.4 4.3 2.3 100.0

Extreme .0 12.1 10.3 66.1 11.5 100.0

Catastrophi .0 5.4 5.4 9.8 79.3 100.0

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the 

functions derived from all cases other than that case. 

b. 84.7 percent of original grouped cases correctly classified. 

c. 82.3 percent of cross-validated grouped cases correctly classified.
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Hurricane Ivan 

 

Figure 36. Hurricane Ivan sample groups plotted against canonical discriminant 
functions 1 and 2. Discriminant functions 1 and 2 account for 78.0 percent of the 
total variance in the Hurricane Ivan image sample data set.  

Separation of group means between all categories indicates accurate 

category differentiation. Overlap between damage categories is similar to that 

seen with Rita, though Ivan’s discriminant functions 1 and 2 plot shows a shape 

between Ike’s well defined separation of the damage categories and the no 

damage category and Rita’s random appearing distribution of samples around 

separated group means. Ivan’s discriminant analysis resulted in eighteen 

coefficients in the discriminant function. Only 9 of the 20 possible combinations of 
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5 levels and 4 wavelet functions contained coefficients. As with the other three 

hurricanes, level 1  has the most coefficients which are spread among all four 

wavelet types. Levels 2 through 5 contain three, one, three and three coefficients 

respectively. Level 2 contains only Meyer coefficients (ENG and standard 

deviations). Level 3 contains a single coefficient for Haar (ENG). Level 4 contains 

3 Haar coefficients (ENG and approximation mean). Level 5’s three coefficients 

include ENG and standard deviation of the Coiflets function and ENG of the 

approximation for Haar.  

The majority of coefficients fall in either Level 1 or in the Haar function 

category. Level 1 coefficients indicate high spatial frequency content. Haar 

indicates sharp edge image content. Ivan’s DF1 DF2 plot shape is relatively 

shotgun shaped, similar to Rita’s. An examination of the largest 20 percent (4 of 

18) of Ivan’s coefficients shows no pattern in the differences between DF1 and 

DF2 coefficients. DF1 explains 47.0 percent of the variability. DF2 explains 30.9 

percent of the variability. The level 1 vertical Haar ENG coefficient appears in 

both DF1 and DF2 as does the level 1 vertical Symlet ENG coefficient. As with 

Rita and Joplin, high spatial frequency coefficients (level 1) dominate DF1 and 

DF2, with the top 20 percent of coefficients in both being composed of ENG 

coefficients.  
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Table 7 

Classification results of the discriminant analysis performed on the 716 Hurricane 
Ivan image samples.   

  

 category 

Predicted Group Membership 

Total   No Dmg Limited Moderat Extreme Catastrophi

Original Count No Dmg 44 7 19 2 1 73

Limited 3 99 41 6 1 150

Moderate 10 62 315 13 1 401

Extreme 1 6 14 59 0 80

Catastrophi 0 0 6 4 2 12

percent No Dmg 60.3 9.6 26.0 2.7 1.4 100.0

Limited 2.0 66.0 27.3 4.0 .7 100.0

Moderate 2.5 15.5 78.6 3.2 .2 100.0

Extreme 1.3 7.5 17.5 73.8 .0 100.0

Catastrophi .0 .0 50.0 33.3 16.7 100.0

Cross-

validateda 

Count No Dmg 44 7 19 2 1 73

Limited 4 96 43 6 1 150

Moderate 10 64 311 15 1 401

Extreme 1 6 14 59 0 80

Catastrophi 0 0 7 4 1 12

percent No Dmg 60.3 9.6 26.0 2.7 1.4 100.0

Limited 2.7 64.0 28.7 4.0 .7 100.0

Moderate 2.5 16.0 77.6 3.7 .2 100.0

Extreme 1.3 7.5 17.5 73.8 .0 100.0

Catastrophi .0 .0 58.3 33.3 8.3 100.0

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the 

functions derived from all cases other than that case. 

b. 72.5 percent of original grouped cases correctly classified. 

c. 71.4 percent of cross-validated grouped cases correctly classified. 
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cases correctly classified, the percent of cross-validated cases correctly 

classified and the number of independent variables in discriminant function 1 for 

that combination. 152 of the 242 unique independent variables are used in one or 

more of the discriminant functions.  

The discriminant function 1 and 2 plots for all the combinations appear in 

Appendix C, as are the classification accuracies. The combined hurricane data 

sets result in group separations and overlaps of groups that are combinations of 

the results found for the individual storms. For example, the Ike-Katrina 

combination yields the third highest percent of variability explained by 

discriminant functions 1 and 2, below the first and second highest accuracy held 

by Ike and Katrina.  
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Table 8 

Number of independent variables in discriminant functions for each of the 
hurricane data set combinations analyzed with discriminant analysis. Nineteen of 
the 242 independent variables appear in 8 or more of the 15 hurricane image 
sample combination discriminant functions. Table 8 below shows the frequency 
distribution for the most frequently occurring independent variables. 

Ike 
(2008) 

Rita 
(2005) 

Katrina 
(2005) 

Ivan 
(2004) 

percent 
variation 

explained by 
DF 1 and 2 

percent 
original cases 

correctly 
classified 

percent 
cross-

validated 
cases 

correctly 
classified 

# ind. 
variables 
in DF 1 

X 99.2 89.5 88.7 27 

X 98.8 84.7 82.3 45 

X X 97.7 76.6 76.2 19 

X X X 92.7 71.7 70.8 29 

X X 89.6 76.4 75.2 30 

X X 86.3 75.3 73.9 33 

X X X X 82.6 67.6 66.7 36 

X X X 82.4 73.7 72.5 57 

X X 80.5 77.2 75.7 52 

X 78.0 72.5 71.4 18 

X X X 75.3 69.4 68.2 44 

X X X 74.5 69.1 67.4 41 

X X 73.6 77.8 75.7 59 

X X 70.4 69.6 67.5 31 

X 69.9 86.0 84.7 44 

 

Table 8 above shows the classification accuracy of each storm model and 

each storm combination model. Rita samples were evaluated with the 

discriminant functions derived from Ike, Ike and Katrina, and Ike, Katrina and 
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Ivan discriminant functions. Table 9 shows how Hurricane Rita image samples’ 

classification improves as more hurricane sample data sets are added to the 

discriminant analysis. Hurricane Rita’s damaged area is troublesome to classify 

in 94.4 percent is either open water or wetlands. Much of the damaged area near 

the coast is camp like with more debris-looking features in the image samples 

than the other hurricanes. Using the discriminant function from Hurricane Ike 

discriminant analysis to classify Hurricane Rita image samples performs poorly. 

Almost all the Rita image samples classify as Extensive or Catastrophic using the 

Hurricane Ike discriminant function. Hurricane Rita image samples classified 

using the discriminant function from the Hurricanes Ike and Katrina discriminant 

analysis shows some increase in classification accuracy, though many samples 

continue to be misclassified. With the addition of Ivan to the Katrina and Ike 

image samples for the discriminant analysis, the resulting discriminant function 

begins to perform with more accuracy on Hurricane Rita image samples. Using 

the discriminant function from the Hurricanes Ike, Katrina and Ivan discriminant 

analysis results in almost 60 percent or greater of the image samples in each 

damage category being classified in the correct category. The Ike, Katrina and 

Ivan-based discriminant functions 1 and 2 explain 92.7 percent of the variation in 

the samples, correctly classify 71.7 percent of the original cases and 70.8 

percent of the cross-validated cases are correctly classified with this discriminant 

function.  
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Table 9 

Hurricane Rita image samples classification performance when scored using Ike, 
Ike and Katrina, and Ike, Katrina and Ivan discriminant functions improves as 
more hurricanes are added to the discriminant function. 

  Rita classified with Ike Discriminant Function 
    'Classified as' categories   
  Count / percent    No Damage Limited  Moderate Extreme Catastrophic Total

Original No damage 0 / 0 1  / 0.4 1 / 0.4 251 / 88.1 32 / 11.2 285

categories Limited damage 0 / 0 23 / 9.6 178 / 74.2 39 / 16.3 240

  Moderate damage 3 / 1.6 1 / 0.5 0 / 0 153 / 80.5 33 / 17.4 190

  Extensive damage 6 / 3.4 137 / 77.4 34 / 19.2 177

  Cat damage 14 / 3.4 1 / 0.2 305 / 75.1 86 / 21.0 406

  Rita classified with Ike and Katrina discriminant function 

    'Classified as' categories   

  Count / percent No Damage Limited Moderate Extreme Catastrophic Total

Original No damage 6 / 2.1 24 / 8.4 167 / 58.6 2 / 0.7 85 / 29.8 285

categories Limited damage 128 / 53.3 11 / 4.6 27 / 11.3 74 / 30.8 240

  Moderate damage 4 / 2.1 8 / 4.2 154 / 81.1 24 / 12.6 190

  Extensive damage 3 / 1.7 71 / 40.1 27 / 15.3 25 / 14.1 51 / 28.8 177

  Cat damage 21 / 5.2 36 / 8.9 116 / 28.6 13 / 3.2 220 / 54.2 406

  Rita classified with Ike, Katrina and Ivan discriminant function 

    'Classified as' categories   

  Count / percent No Damage Limited Moderate Extreme Catastrophic Total

Original No damage 177 / 62.1 2 / 0.7 25 / 8.8 1 / 0.4 80 / 28.1 285

categories Limited damage 5 / 2.1 151 / 62.9 5 / 2.1 79 / 32.9 240

  Moderate damage 41 / 21.6 7 / 3.7 113 / 59.5 5 / 2.6 24 / 12.6 190

  Extensive damage 14 / 7.9 5 / 2.8 2 / 1.1 105 / 59.3 51 / 28.8 177

  Cat damage 20 / 4.9 10 / 2.5 10 / 2.5 13 / 3.2 353 / 86.9 406
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The poor classification performance of the Ike, Ike-Katrina, and Ike-

Katrina-Ivan discriminant functions to correctly classify Rita samples raises the 

question of why these models perform poorly to classify Rita damage. Several 

factors play a role in the variability within and between hurricane data sets. The 

geographic extent of hurricane damage can be massive, extending hundreds of 

miles across the Gulf Coast and covering thousands of square miles. Rita’s 

hurricane force winds extended over 170 miles in width with tropical storm form 

winds extending over 400 miles along the coast. Hurricane Ike’s hurricane force 

winds exceeded 250 miles in width with tropical storm winds extending greater 

than 400 miles along the coast. Hurricanes also vary in the number of embedded 

tornadoes. Hurricane Ike had no reported embedded tornadoes while hurricane 

Ivan had 117 embedded tornadoes recorded by the National Weather Service. 

Rita contained twenty one embedded tornadoes and Katrina contained forty 

three. As indicated by Table 1, the hurricanes examined in this research vary 

significantly in their extent, severity and characteristics. Their impact size is 

another significant variable. Ike’s category 1 or greater winds covered an area of 

8,744 square miles. Rita’s category 1 or greater winds covered an area of only 

1,103 square miles. Katrina’s category 1 or greater winds covered a massive 

area of 13,955 square miles. Ivan’s category 1 or greater winds covered an area 

of 6,596 square miles. These factors suggest that each storm is significantly 

different from the others, which may account for the poor classification accuracy 

of one storm’s discriminant function applied to another storm.  
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A further difference that may account for the discriminant function 

performance variability is the landscape of the area damage. An analysis of the 

land cover within the area defined by category 1 or stronger winds for each 

hurricane reveals surprising differences. Figure 7 shows the percentage 

distribution of land cover for each hurricane’s category 1 or stronger winds. This 

shows, for example, that Rita’s damage area is composed predominantly of open 

water and wetlands. Hurricane Ike’s damage area land cover is relatively spread 

out over all the categories, with the majority of land cover falling in the developed 

classes (20.8 percent), forest classes (15.6 percent), and scrub/shrub/pasture 

classes (29.2 percent). Hurricanes Katrina and Ivan are the most similar in 

percentage land cover. Both are predominated by developed, forest and 

scrub/shrub/pasture classes.  

Based on Saffir-Simpson category, these storms appear to be similar. A 

closer look at the characteristics of each hurricane and the area impacted by 

them reveals that they are unique and in some respects very different. These 

factors could account for the poorer classification results from discriminant 

analysis for combinations of hurricane data sets.  

Appendix A lists the entire hurricane and hurricane combination cases 

which were examined with discriminant analysis along with which of the 242 

independent variables were included in each discriminant function for each case. 

Figure 60 shows an abbreviated histogram of the independent variables for all 

the hurricane storm cases examined along with the eighteen most commonly 

occurring coefficients.  
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The first question of this research inquired about the ability of wavelet 

processed, post storm imagery to identify areas of residential damage. The 

discriminant analysis of all fifteen hurricane combinations revealed that the 

answer to this question is yes with varying accuracies depending upon the storm 

combination. Classification accuracies ranged from 67.5 percent (Rita and Ivan 

combined) to 88.7 percent (Ike) using percent of cross validated cases as a 

metric. Using percent variation explained by discriminant functions 1 and 2 as the 

metric, the highest accuracy achieved with hurricanes remained Ike. The lowest 

accuracy using this metric changed to Rita, with 99.2 percent and 69.9 percent of 

the variation explained.  

Question 2 of this research asks what wavelet transform mother functions 

and decomposition levels identify damage in remotely sensed imagery. Wavelet 

mother functions investigated include Coiflets, Haar, Meyer and Symlets. 

Decomposition levels investigated included levels 1 through 5.  

One hundred fifty two of the 242 independent variables appear in one or 

more discriminant functions resulting from the discriminant analysis of 15 

hurricane combinations. All four wavelet function forms appear in every hurricane 

discriminant function. While several of the wavelet coefficients appear in many of 

the discriminant functions, none of them appear in all the discriminant functions. 

Eighteen of the 242 independent variables appear in more than half the fifteen 

discriminant functions, as shown in Figure 38. The Haar, level 1, diagonal ENG 

coefficient appears in all but the Hurricane Ike and Hurricane Ivan image sample 

discriminant function. Some form of Haar wavelet coefficient appears in every 
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hurricane or hurricane combination, appearing as between 15 and 39 percent of 

the discriminant function coefficients. 

Haar wavelet transformation is particularly well suited to identifying abrupt 

changes at all scales. Haar wavelets are useful for detecting abrupt change such 

as is found in hurricane damaged coastal, residential areas. Symlets, Coiflets, 

and Meyer wavelet transforms also appear in all the discriminant functions for 

individual and grouped hurricane image samples. These wavelet forms are 

symmetrical and relatively fast changing, which identify fast changing, relatively 

symmetrical landform changes typical of coastal hurricane damage. The second 

question asks what wavelet mother functions and levels identify damage in 

remotely sensed imagery. Taking all the hurricane combinations together, all four 

wavelet functions and all five decomposition levels identify damage in remotely 

sensed imagery.  
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Figure 38. Histogram of independent variable occurring most frequently in eight 
or more discriminant functions of individual and groups of hurricane image 
sample data sets.  

The third question examined in this research inquires about the 

performance of a discriminant function created with image data from one 

hurricane to accurately classifying damage from other hurricanes. 

Table 10 shows the results of classifying Rita, Katrina and Ivan samples 

using the hurricane Ike discriminant function. The hurricane Ike discriminant 

function inaccurately predicts hurricanes Rita, Katrina and Ivan damage 

categories. Table 9 shows the increase in damage category performance when 

classifying Rita samples when hurricane Ike samples are combined with 

hurricane Katrina, with hurricane Ivan and with hurricanes Katrina and Ivan. 

Based on the four hurricanes in this research, it is anticipated that the combined 
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hurricane Ike, Katrina and Ivan discriminant function will perform with 50 percent 

or greater classification accuracy predicting damage categories for hurricanes 

making landfall in the Gulf of Mexico from Texas to the Florida panhandle.  
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Table 10 

Hurricane’s Rita, Katrina and Ivan image samples classified using Ike-only based 
discriminant function. Generally poor damage classification results for all three 
hurricanes despite good self-classification results.  

  Rita classified with Ike Discriminant Function 
    'Classified as' categories   

  Count / percent    
No 

Damage Limited  Moderate Extensive Catastrophic Total 

Original No damage 0 / 0 1  / 0.4 1 / 0.4 251 / 88.1 32 / 11.2 285 

categories Limited damage 0 / 0 23 / 9.6 178 / 74.2 39 / 16.3 240 

  Moderate damage 3 / 1.6 1 / 0.5 0 / 0 153 / 80.5 33 / 17.4 190 

  Extensive damage 6 / 3.4 137 / 77.4 34 / 19.2 177 

  Cat damage 14 / 3.4 1 / 0.2 305 / 75.1 86 / 21.0 406 

  Katrina classified with Ike discriminant function 

    'Classified as' categories   

  Count / percent No Damage Limited Moderate Extensive Catastrophic Total 

Original No damage 3 / 3.8 60 / 75.9 16 / 20.3 79 

categories Limited damage 50 / 24.9 111 / 55.2 40 / 19.9 201 

  Moderate damage 25 / 5.3 85 / 18.1 294 / 62.6 66 / 14.0 470 

  Extensive damage 15 / 8.6 137 / 78.7 22 / 12.6 174 

  Cat damage 18 / 4.9 1 / 0.3 16 / 4.3 231 / 62.8 102 / 27.7 368 

  Ivan classified with Ike discriminant function 

    'Classified as' categories   

  Count / percent No Damage Limited Moderate Extensive Catastrophic Total 

Original No damage 73 / 100 73 

categories Limited damage 150 / 100 150 

  Moderate damage 383 / 95.5 9 / 2.2 4 / 1.0 5 / 1.2 401 

  Extensive damage 83 / 100 83 

  Cat damage 9 / 100 9 
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The answer to the question about how well a hurricane based discriminant 

function performs on a hurricane not used to inform the discriminant function is 

dependent upon how closely the impacted land cover and hurricane 

characteristics match those used to inform a discriminant function for 

classification. Based on an Ike informed discriminant function it can be concluded 

that the analysis does not recommend a single storm informed discriminant 

function for classifying other storm damage. Based on the increasingly accurate 

classification of Rita data by combining Ike, Katrina and Ivan to inform the 

discriminant function, it can be concluded that an Ike-Katrina-Ivan based 

discriminant function is likely to classify damage with better than 50 percent 

accuracy.  

Tornado Storm Damage Classification 

The large extent, wide separation and variation in land cover likely explain 

some of the variability in hurricane discriminant analysis found in this research. 

Discriminant analysis of the four individual hurricanes revealed damage 

classification accuracies ranging from 71.4 percent for Ivan to 88.7 percent for 

Ike. The same analysis of all combinations of these storms reveals reduced 

classification accuracies ranging from 66.7 percent for all four to 76.2 percent for 

Ike and Rita combined. Tornadoes provide an opportunity to test the wavelet 

transform methodology on damaged areas with reduced variation due to extent 

and land cover changes.  

Two sample groups were collected from the Joplin tornado, one was used 

to inform a discriminant analysis (Figure 39 shows discriminant functions 1 and 2 
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plot) resulting in a discriminant function. The other was used to assess the 

classification accuracy performance of the Joplin discriminant function with 

nearby samples that were not used in the discriminant function creation.  

 

Figure 39. Joplin tornado canonical discriminant functions 1 and 2. Discriminant 
functions 1 and 2 account for 98.6percent of the total variance in the Joplin 
tornado data set.   

Approximately 81.2 percent of the original cases were correctly classified 

using no damage, F1, F2, F3, F4 and F5 as groups. Approximately 76.8 percent 

of the cross-validated cases were correctly classified with these groups. The 

discriminant analysis yielded a discriminant function with six coefficients 

(compared to the smallest hurricane discriminant model (Ike and Katrina) which 
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is composed of 19 coefficients). The Joplin discriminant function’s coefficients 

are first level Meyer diagonal ENG, first level Meyer diagonal standard deviation, 

second level Meyer diagonal ENG, second level Meyer diagonal standard 

deviation, second level Symlets diagonal standard deviation, and third level Haar 

approximation standard deviation. Unlike the variety of coefficients in the 

simplest hurricane discriminate model, the tornado model uses four coefficients 

from the Meyer wavelet function and one each from the Haar and Symlets 

wavelet functions. These coefficients suggest that the tornado damage wrought 

by this F5 tornado results in remotely sensed imagery composed largely of 

relatively uniform, high frequency content. In other words, the Joplin discriminant 

function coincides what can be seen on the ground after one of these storms – 

low frequency content (e.g., homes and trees) are transformed into piles of 

debris.  Table 11 shows the classification results for the Joplin tornado, with over 

90 percent of the undamaged areas correctly classified.  
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Table 11 

Joplin tornado image samples classified with 6 categories (no damage, F1, F2, 
F3, F4 and F5).  
  

Category 
   

Predicted Group Membership 
Total 

  
  No Damage F1 F2 F3 F4 F5

Original Count No Damag 54 3 0 0 0 0 57

F1 2 20 1 0 0 0 23

F2 0 3 12 2 0 0 17

F3 0 0 4 12 1 3 20

F4 0 0 0 0 8 2 10

F5 0 0 0 3 2 6 11

percent No Damag 94.7 5.3 .0 .0 .0 .0 100.0

F1 8.7 87.0 4.3 .0 .0 .0 100.0

F2 .0 17.6 70.6 11.8 .0 .0 100.0

F3 .0 .0 20.0 60.0 5.0 15.0 100.0

F4 .0 .0 .0 .0 80.0 20.0 100.0

F5 .0 .0 .0 27.3 18.2 54.5 100.0

Cross-
validateda 

Count No Damag 52 4 1 0 0 0 57

F1 3 19 1 0 0 0 23

F2 0 3 12 2 0 0 17

F3 0 0 5 11 1 3 20

F4 0 0 0 0 7 3 10

F5 0 0 1 2 3 5 11

percent No Damag 91.2 7.0 1.8 .0 .0 .0 100.0

F1 13.0 82.6 4.3 .0 .0 .0 100.0

F2 .0 17.6 70.6 11.8 .0 .0 100.0

F3 .0 .0 25.0 55.0 5.0 15.0 100.0

F4 .0 .0 .0 .0 70.0 30.0 100.0

F5 .0 .0 9.1 18.2 27.3 45.5 100.0

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from 

all cases other than that case. 

b. 81.2 percent of original grouped cases correctly classified. 

c. 76.8 percent of cross-validated grouped cases correctly classified. 
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Figure 17 shows that the Joplin damaged area was sampled twice. The 

first sample informed the 6 coefficient discriminant function described above. The 

second sample is adjacent to the original sample. None of these comparison 

area samples were used in the previous discriminant analysis. This sample was 

classified using the Joplin discriminant function. The resultant 6 category 

classification is 50.7 percent accurate when considering all categories (no 

damage, F1, F2, F3, F4, and F5). Figure 41 shows the classification accuracy 

bar chart for the Joplin comparison area classified using the Joplin discriminant 

function. Despite the impression given by an overall 50.7 percent classification 

accuracy, it can be seen from the classification accuracy bar chart that most of 

the no damage areas are correctly classified (86.5 percent). This chart also 

illustrates that the damage category errors are into adjacent categories. 

Misclassification of samples into categories adjacent to their true damage level is 

operationally less significant than samples classified into non-adjacent 

categories.  
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

U.S. Hurricanes and tornadoes cause significant financial and human 

damage, on the order of billions of dollars and hundreds of lives per year (Pielke 

et al. 2008). One immediate response need to these disasters is an assessment 

of the damage as accurately and quickly as possible (Clarke et al. 2007). A 

speedy and accurate damage assessment can be used by first responders to 

rally and guide response, assess recovery and for long-term monitoring.  

Current methodologies employed by NWS, FEMA, and others who 

produce post disaster damage assessment depend predominantly on visual 

interpretation of remotely sensed imagery or ground surveys. In many cases 

ground surveys cannot be performed quickly enough for early first response. A 

damage assessment approach that speeds an accurate assessment into the 

hands of users would be welcomed by all.  

In addition to the direct financial and life loses caused by these storms, 

there are often legal disputes arising directly or indirectly from these disasters. 

Lawsuits brought because of the impacts of hurricane Katrina, for example, 

continue to the present, seven years after landfall (e.g., Mitchell v. Murphy). The 

damage condition and extent caused by Katrina is often in dispute or is an 

important fact in post-storm legal matters. Katrina spawned hundreds of large 

cases and thousands of smaller cases, many which needed clear, defendable 

damage assessment and attribution. Some of the Katrina related legal matters 



119 
 

include the fate, transport and cleanup of an oil spill from a coastal refinery, the 

cause of the destruction of the Louisiana Superdome roof, the likely cause of 

damage to Mississippi coastal residents’ homes and businesses, substantial 

business loss to a national medical diagnostic company and more. A common 

characteristic of many post Katrina cases is how much damage was wrought by 

the storm at specific locations. In some instances, cases only reach the stage 

where experts who can address the geographic questions occur years after an 

event. This can mean that the only contemporaneous objective evidence of 

damage is remotely sensed imagery. Damage assessment approaches 

addressing the court’s guidelines for acceptance of scientific evidence speeds, or 

least does not hinder, the possibility of trial or a settlement.  

Myint (2001) has established a body of wavelet transform image 

processing beginning with his dissertation on urban classification and continuing 

as recently as this year (2012) with a look at spatial indices and wavelet 

classification. Curran’s (2001) observation that the spatial domain has been 

historically neglected when it comes to extracting information from remotely 

sensed images using the spatial domain encouraged interest in extracting storm 

damage classification from this regime. The two major factors hindering the wide 

use of spatial domain information within remotely sensed imagery identified by 

Curran (the difficulty of extracting this information using computational methods 

and the ease of extracting this information by trained visual interpretation) have 

recently succumbed to nullifying forces. Computational capability on the desktop 

is advanced enough to allow almost limitless computational capability. This 
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research, for example, examined 8,838 image subsamples of 65,536 pixels each. 

Each of these samples were wavelet transformed with several wavelet functions 

to five decomposition levels on a desktop processing platform, yielding 242 

independent variables for each image sample. The capability to extract spatial 

content from remotely sensed imagery is possible like never before. Visual 

interpretation of remotely sensed imagery depends upon skilled technicians and 

is limited by the available qualified workforce. Hurricane events can cover many 

thousands of square miles (e.g., Katrina’s Category 1 or greater winds covered a 

land area of 13,955 square miles). Visual interpretation of large quantities of 

imagery can require significant time to complete. Automated algorithmic damage 

classification approaches can reduce the damage classification time such that 

the limiting factor in delivering a damage assessment is the time required to 

collect the imagery.  

This research examined three facets of extracting post storm damage 

from remotely sensed imagery using wavelet transform-based approaches. First, 

the ability of wavelet transform methods to identify post storm damage was 

examined. Second, wavelet functions and decomposition levels were examined. 

Third, discriminant functions were examined with regard to their classification 

accuracy when applied to storms not informing the discriminant function.  

Discriminant analysis of imagery collected immediately after hurricanes 

Ike, Rita, Katrina, and Ivan revealed classification accuracy near 90 percent for 

individual hurricane-based models (e.g., Ike – 89.5 percent of 1,008 original 

cases correctly classified). Combinations of hurricane storm imagery examined 
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yielded classification accuracy as high as 67 percent correctly classified or better. 

Table 12 shows the classification accuracy of all the hurricane cases 

investigated, sorted from highest to lowest in percent of cross-validated cases 

correctly classified. The individual cases of Ike, Rita and Katrina performed best, 

correctly classifying over 80 percent of cross-validated cases. Even the worst 

performers correctly classified more than 66 percent of the cross-validated 

cases.  

Table 12 

Classification accuracy of hurricane data set combinations sorted highest to 
lowest by the percent of cross-validated cases correctly classified.  

Ike 
(2008) 

Rita 
(2005) 

Katrina 
(2005) 

Ivan 
(2004)

percent 
variation 

explained by 
DF 1 and 2 

percent 
original cases 
correctly 
classified 

percent cross‐
validated cases 

correctly 
classified 

X  99.2  89.5  88.7 
X  69.9  86  84.7 

X  98.8  84.7  82.3 
X  X  97.7  76.6  76.2 
X  X  80.5  77.2  75.7 

X  X  73.6  77.8  75.7 
X  X  89.6  76.4  75.2 

X  X  86.3  75.3  73.9 
X  X  X  82.4  73.7  72.5 

X  78  72.5  71.4 
X  X  X  92.7  71.7  70.8 
X  X  X  75.3  69.4  68.2 

X  X  70.4  69.6  67.5 
X  X  X  74.5  69.1  67.4 

X  X  X  X  82.6  67.6  66.7 
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The wide variation of classification accuracy among these cases naturally 

raises the question of what accounts for this variability? At first glance these 

storms appear to be similar. Three of them are Saffir-Simpson Category 3 storms 

with the fourth a strong Category 2 storm. All four made landfall along the coast 

of the Gulf of Mexico. Three of them occurred within twelve months. If these 

storms are similar and they made landfall in similar areas, they would be 

expected to cause similar damage and be classifiable in a similarly accurate 

manner. The surface similarities belie the vast differences between these storms 

and the damage they wrought.  

The wavelet transform-based classification methodology extracts spatial 

content from the imagery. All the combinations examined had opportunity to use 

all 242 independent variables extracted from the imagery. The first hint of 

significant variability among and within the hurricanes was the quantity of 

independent variables included in the discriminant functions by the discriminant 

analysis. Appendix A lists all fifteen hurricane case combinations investigated 

and shows which of the 242 independent variables are included in each model. 

Figure 38 shows a histogram of the eighteen most frequently appearing 

independent variables. These most frequently occurring coefficients include all 4 

wavelet functions studied. Table 8 lists each hurricane case investigated along 

with classification accuracy metrics and the number of independent variables 

included by the discriminant analysis for each case. The simplest discriminant 

function was for the Ike-Katrina case, which included 19 independent variables. 
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The most complex discriminant function was for the Rita-Katrina case, which 

included fifty nine independent variables.  

This complexity combined with the low classification accuracy of even the 

best model on data not used to inform the discriminant function led to an 

investigation for why these models are so complex and classify damage with low 

accuracy. In other words, the search was on for an answer to why these 

hurricane models performed with such low classification accuracy. For example, 

the best hurricane classification model is the Ike-Katrina-Ivan model, which 

correctly classified 70.8 percent of the cross-validated cases using 29 of the 242 

independent variables. It correctly classified approximately 60 percent of the no 

damage, limited damage, moderate damage and extreme damage cases and 87 

percent of the catastrophic damage cases from the Rita samples.  

An answer to the source of the variability in damage classification of the 

hurricane models is in the variation among the hurricanes and the variability of 

the land impacted by the hurricanes. Table 1 is a summary of some of the 

hurricane characteristics that were found to vary between hurricanes. The size of 

the impacted area for each hurricane was more than an order of magnitude 

between the smallest and largest. Katrina’s Category 1 or greater winds 

impacted a land area of 36,143 square km. Rita’s Category 1 or greater winds 

impacted 2,857 square km. Ivan contained a reported 117 embedded tornadoes. 

Ike had no reported embedded tornadoes. Ivan was accompanied by a 3.7 m 

high 105 km wide storm surge. Katrina was accompanied by a storm surge more 

than 6.4 m high over more than 161 km of coast. As widely varying as some of 
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these hurricane characteristics are, the biggest variation appeared in the 

differences of impacted land cover among the hurricanes. Figure 7 shows the 

percent land cover distribution over the category 1 or greater winds affected area 

for the four hurricanes. Rita’s 2,857 square km of category 1 or greater winds is 

composed of more than 94percent open water or wetlands. Hurricane Ike’s 

22,647 square km of impacted area is composed of only 33.6percent open water 

or wetlands. The percent develop land cover for each hurricane’s category 1 or 

greater wind affected area was 2.8 percent, 7.8 percent, 10.3 percent, and 

20.8percent for Rita, Katrina, Ivan, and Ike respectively. While these open areas 

were not classified with the discriminant functions, their presence or absence can 

have a significant influence on the effects of storm winds and water.   

Hurricanes generally cover large areas, which naturally introduces 

variability that can change the spatial nature of the hurricane damage. As the 

impact area grows, changes in housing type, housing distribution, lot size, house 

size, land cover, landscape, proximity to open space, open water, the shore and 

varying height buildings, previous damage, and building codes are more likely. If 

the extent, dwell time and land cover of affected areas of hurricanes are the 

factors inducing the poor classification due to changes over the affected areas, 

then studying a small area should result in higher classification accuracy. 

Tornadoes are a small area extent, high wind speed type storm that might 

eliminate the variability seen across and among hurricanes.  

A discriminant analysis on a small, densely developed residential areas hit 

by the 2011 Joplin tornado yielded a discriminant function with six wavelet 
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transform-based coefficients (four Meyer, one Haar, one Symlet). This 

discriminant function (using 6 classes of damage – no damage, F1, F2, F3, F4, 

and F5) correctly classified 81.2 percent of the original cases, with 76.8 percent 

of the cross-validated cases correctly classified. When these 6 classes are 

collapsed to two categories (damage and no damage), the overall classification 

accuracy increased to 96.4percent of all the samples correctly classified. This is 

due to the elimination of errors due to misclassification into adjacent damage 

categories (e.g., F2 damage classified as F3 damage). When this discriminant 

function is applied to another sample of Joplin data that did not inform the 

discriminant analysis, the percent of correctly classified cases fell to 86.5 percent 

of the no damage samples correctly classified and 85.9 percent of the damage 

samples correctly classified.  

First responders need information about the extent of damage and 

severity of damage. An operational application of wavelet transform based 

damage classification could be applied using two categories, damage and no 

damage. When collapsed to two categories, the classification accuracy of the no 

damage category is unchanged, ranging from 60.3 percent to 100 percent 

accuracy (for the 15 combinations considered). The classification accuracies of 

the damage categories increase from a range of 16.7 percent to 96.3 percent to 

a range of 93.7 percent to 100 percent. The apparent increase in damage 

category accuracy is because most of the classification errors in the damage 

categories are due to misclassification into adjacent categories.  
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tornadoes damage much smaller areas than hurricanes. This limits the variation 

in land cover that can introduce variability in the classification results. For 

example, the samples used to create the Joplin discriminant function and the 

samples from the Joplin tornado not used to inform the discriminant function 

were all high density residential land cover areas. Second, strong tornadoes such 

as the Joplin and Tuscaloosa events typically cause either catastrophic damage 

or no damage. This damage is almost exclusively caused by high winds and 

flying debris within the tornado over a few seconds to a few minutes. This very 

small geographic extent, high intensity, short time period event intrinsically has 

less variation compared to hurricane events. The relative uniformity of damage 

factors over small areas likely accounts for the few wavelet transform coefficients 

required to accurately classify tornado damage.   

Another tornado was sampled to further test the robustness of the 6 

coefficient, Joplin damage classification discriminant function. Approximately 

3,500 image samples from one area of the 2011 Tuscaloosa tornado were 

collected and scored with the Joplin tornado informed discriminant function. The 

result was 74.7 percent of the no damage image samples were correctly 

classified and 96.1 percent of the damage image samples were correctly 

classified. In summary, the 6-coefficient Joplin tornado discriminant function 

correctly classified 85.2 percent of the Tuscaloosa image samples.  

Can wavelet processed post storm overhead imagery identify areas of 

residential damage? Yes, with demonstrated 85 percent classification accuracy 

for similar storms impacting similar land cover areas. The variations in hurricanes 
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and land cover of the areas impacted by large storms limits the damage 

classification accuracy of a discriminant function not informed by samples within 

that storm.  

What wavelet mother functions and levels identify damage in remotely 

sensed imagery? It depends on the storm, the resultant damage and the land 

cover of the impacted area. Discriminant analysis of four hurricanes and 

combinations of these resulted in damage classification discriminant functions 

composed of coefficients of all four wavelet functions examined at all 5 

decomposition levels. Discriminant analysis of tornado damage resulted in a 

relatively simple discriminant function composed of 6 coefficients.  

The sensitivity of wavelet transform-based classification accuracy 

depends upon the variability of the storms being classified and the variability of 

the land cover affected by the storms. Uniform storms impacting constant land 

cover types can be accurately classified with relatively simple discriminant 

functions. Complex storms impacting widely varying land cover areas require 

much more complex discriminant function models. In the cases studied herein, 

the widely varying hurricanes required 10s of wavelet transform-based 

coefficients to achieve classification accuracies greater than 60 percent. 

Classification accuracies of 85 percent were achieved with two different tornado 

storms over relatively similar land covered areas.  

How accurately does a wavelet transform-based discriminant function 

classify damage in imagery not used to inform that discriminant function? If the 

land cover and storm variations are minimal, as with tornadoes hitting similar 
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land cover areas, a wavelet transform-based discriminant function can classify 

damage in imagery not used to inform the discriminant function with 

approximately 85 percent classification accuracy.  

Spectral Limitations 

Radiometric image corrections were not performed on the imagery for this 

research. The focus on imagery typically collected for immediate storm response 

limited the spectral characteristics to what is available in the existing emergency 

response imagery (typically true color RGB imagery collected from aerial 

platforms as soon as the weather allows for aircraft flights at relatively low 

altitudes). Given that wavelet transformation relies on matching wavelet functions 

to similar features in the scene, enhancing or optimizing contrast could have an 

impact on damage classification accuracy.  

One of the simplest and longest used contrast enhancement techniques is 

dark pixel subtraction. This approach assumes that the lowest value, or darkest, 

pixel values in each band should be zero and any value above zero is a result of 

atmospheric additive errors (Pouncey, Swanson, and Hart 1999). Dark pixel 

subtraction is accomplished by subtracting the pixel value of the lowest, or 

darkest, pixel in the scene from all pixels in the scene. Future research could 

apply the dark pixel subtraction method to image samples prior to wavelet 

transform and classification to investigate the potential classification performance 

effect.  

Linear and nonlinear contrast stretches also improve the contrast of 

remotely sensed imagery. A linear contrast stretch applies a linear function to 
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improve the contrast of remotely sensed imagery. While this approach can 

improve mid-tone contrast, it can simultaneously reduce image contrast in the 

bright and dark areas. A piece wise linear contrast stretch addresses this 

limitation by the application of several linear functions to optimize contrast 

throughout the image signal range (typically in the dark, mid-tone and bright 

areas of an image). A nonlinear contrast stretch can be applied to smoothly and 

preferentially increase or decrease contrast over a range. Nonlinear stretches are 

used to gradually increase or decrease contrast over a range (e.g., significantly 

increasing contrast in dark areas, moderately increasing contrast in midrange 

areas and decreasing contrast in highlight areas (Al-amri, Kalyankar and 

Khamitkar 2010).  

Myint et al. (2004) analyzed band combinations (ATLAS visible, NIR and 

thermal), with wavelet transform levels (levels 1 and 2) and level differences 

(level 1 minus level 2). Using six urban texture feature samples, they found the 

highest classification accuracy when combining all three bands and subtracting 

wavelet transform level 2 from level 1. This approach yielded overall accuracies 

exceeding the standard acceptable accuracy of 85 percent (Townshend 1981). In 

all cases the subtraction of wavelet transform level 2 from level 1 resulted in 

increased accuracy. The increased performance of these methods was not 

investigated in this research and could improve damage classification. To 

investigate these methods using imagery collected immediately after storms a 

pre-storm plan would need to be in place to fly a sensor with NIR and thermal 

imagery capability (which is not available in the current event response imagery).  
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Recommendations 

One of the issues noticed during the execution of this research is the 

vague nature of published damage descriptions used by FEMA on post hurricane 

damaged areas. While these descriptions have been used for more than a 

decade, damage that falls at or near the boundary between two damage 

categories can easily be classified in the wrong category or classified randomly 

to one or the other adjacent categories. This introduces unwanted variability that 

can be minimized by the use of categories that are mutually exclusive and in 

terms that can be applied to remotely sensed imagery. Adopting better defined, 

mutually exclusive category descriptions could increase the classification 

accuracy achieved by either visual interpretation or algorithmic approaches.  

The density and distribution of residential structures was not considered in 

this research. Future work could include an analysis with residential density and 

surrounding land cover as factors. The overall nature of residential areas and the 

surrounding areas (e.g., density, elevation, wind tunnels, etc.) influence wind 

fields which could be expected to impact the resultant damage. For example, an 

analysis considering these factors might explain the variation between coastal 

hurricane Rita areas of low density surrounded by wetlands and open water 

versus other hurricane impacted areas with much denser residential structures 

surrounded by taller structures and forest-type vegetation.  

While this research focused on coastal residential areas, an investigation 

including land cover as an independent variable could reveal damage 

dependence on specific land cover classes. In combination with analysis of 
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density and surrounding land cover, land cover is expected to influence the 

spatial nature of damage. Adding these additional factors to the damage 

classification analysis could explain some of the variability found.  

A characteristic not revealed by this research is the nature or distribution 

of damage caused by hurricanes and tornadoes with respect to the specific 

spatial nature of damage. Future studies should consider a systematic 

examination of well characterized damage to investigate what, if any, specific 

wavelet function best reveals specific types of damage. For example, a series of 

wavelet functions can be examined for their ability to identify missing roof 

shingles from asphalt, 3-tab residential roofs. Another feature to investigate for 

specific wavelet function is residential tree branch debris. Several other features 

common to hurricane and wind damage could be investigated individually against 

a range of wavelet functions and decomposition levels.  

Four wavelet functions were investigated herein. Additional wavelet 

functions should be investigated. Those included in this research are the Haar, 

Meyer, Symlets2 and Coiflets1 wavelet function. Additional functions meriting 

investigation include Daubechies2, Daubechies10, Daubechies20, Symlets6, 

Symlets7, Coiflets4, Biorthogonal2.6 and Biorthogonal3.7. 

This research examined imagery collected by NOAA, FEMA and the U.S. 

Army Corps of Engineers in response to hurricanes and tornadoes. A valuable 

addition to the body of wavelet transform-based damage classification is a library 

of damage imagery for typical and representative damage. This could build on 

the test target image created for this research by creating idealized images of 
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types of damage. These could include surge created debris piles typical of 

hurricane storm surge, slab properties, minor roof and vegetation damage, and 

major roof damage, among others.  

This research focused on hurricanes and tornadoes which cause damage 

by high wind loads on human structures and other land cover. Earthquake 

damage is a common disaster around the world that has not been examined with 

wavelet transform-based classification methods. Examining the classification 

accuracy of wavelet transform-based methods of remotely sensed imagery of 

earthquake damaged areas could be valuable for the theoretical knowledge 

base, and if successful could provide significant benefit to first responders of 

these disasters.  

The high (93.7 percent-100 percent) accuracy of classification of damaged 

areas when considering only two categories (damage and no-damage) could be 

valuable for operational first response applications. An accurate estimate of the 

extent of areas damaged by tornadoes or hurricanes could be produced shortly 

after collection of imagery. Applying the wavelet transform methods examined in 

this research might best be tested in an operational setting using a two category 

approach.  

Finally, it might be possible to sample hurricane damaged areas by land 

cover and then apply a wavelet transform-based model informed by only that 

land cover damage type. If this approach proves fruitful it may be possible to 

develop a series of wavelet transform discriminant functions specific to each land 

cover type within a storm damaged area.   
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APPENDIX A 

DISCRIMINANT FUNCTION COEFFICIENTS 

Discriminant function coefficients for all fifteen hurricane models and the Joplin 
tornado model. 153 of the 242 wavelet coefficient independent variables appear 
in at least one of the hurricane discriminant function models. Only six coefficients 
appear in the Joplin damage discriminant function (five Meyer and one Haar 
wavelet coefficient). 
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coif1_h_1_energy X X X X X X X X X X X X X 13 

dmey_diag_1_energy X X X X X X X X X X X X X 13 

haar_diag_1_energy X X X X X X X X X X X X X 13 

haar_diag_2_energy X X X X X X X X X X X X X 13 

coif1_diag_1_sd X X X X X X X X X X X 11 

dmey_diag_2_energy X X X X X X X X X X X X 11 

sym2_diag_1_energy X X X X X X X X X X X 11 

coif1_diag_1_energy X X X X X X X X X X 10 

dmey_diag_1_sd X X X X X X X X X X 10 

dmey_diag_2_sd X X X X X X X X X 9 

dmey_v_1_energy X X X X X X X X X 9 

sym2_v_1_energy X X X X X X X X X 9 

coif1_v_5_sd X X X X X X X X 8 

dmey_v_1_sd X X X X X X X X 8 

haar_diag_1_sd X X X X X X X X 8 

haar_diag_3_energy X X X X X X X X 8 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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haar_h_1_energy X X X X X X X X 8 

sym2_diag_2_sd X X X X X X X X 8 

coif1_diag_2_energy X X X X X X X 7 

coif1_v_5_energy X X X X X X X 7 

dmey_h_1_sd X X X X X X X 7 

dmey_h_2_energy X X X X X X X 7 

dmey_v_2_energy X X X X X X X 7 

dmey_v_3_sd X X X X X X X 7 

sym2_diag_1_sd X X X X X X X 7 

sym2_h_1_energy X X X X X X X 7 

sym2_v_1_sd X X X X X X X 7 

coif1_a_3_energy X X X X X X 6 

dmey_diag_3_energy X X X X X X 6 

dmey_h_1_energy X X X X X X 6 

dmey_v_2_sd X X X X X X 6 

haar_h_5_sd X X X X X X 6 

haar_v_1_energy X X X X X X 6 

sym2_diag_4_sd X X X X X X 6 

coif1_a_4_energy X X X X X 5 

coif1_diag_3_sd X X X X X 5 

coif1_h_1_sd X X X X X 5 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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dmey_h_2_sd X X X X X 5 

dmey_v_5_energy X X X X X 5 

haar_a_5_sd X X X X X 5 

haar_diag_2_sd X X X X X 5 

haar_h_2_sd X X X X X 5 

sym2_diag_2_energy X X X X X 5 

sym2_diag_3_energy X X X X X 5 

sym2_diag_5_sd X X X X X 5 

sym2_h_5_energy X X X X X 5 

coif1_a_5_sd X X X X 4 

coif1_h_3_sd X X X X 4 

coif1_v_1_sd X X X X 4 

coif1_v_3_sd X X X X 4 

dmey_a_1_energy X X X X 4 

dmey_a_2_mean X X X X 4 

haar_a_5_energy X X X X 4 

haar_h_3_sd X X X X 4 

sym2_a_4_energy X X X X 4 

sym2_h_2_sd X X X X 4 

sym2_v_2_energy X X X X 4 

coif1_diag_2_sd X X X 3 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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coif1_diag_3_energy X X X 3 

coif1_diag_4_sd X X X 3 

coif1_h_2_energy X X X 3 

coif1_h_2_sd X X X 3 

coif1_h_4_energy X X X 3 

coif1_h_4_mean X X X 3 

coif1_h_5_energy X X X 3 

coif1_h_5_sd X X X 3 

coif1_v_1_energy X X X 3 

coif1_v_2_energy X X X 3 

dmey_diag_3_sd X X X 3 

dmey_h_3_sd X X X 3 

dmey_v_1_mean X X X 3 

haar_diag_3_sd X X X 3 

haar_diag_4_energy X X X 3 

haar_diag_4_sd X X X 3 

haar_h_2_energy X X X 3 

haar_h_4_energy X X X 3 

haar_v_2_energy X X X 3 

haar_v_2_sd X X X 3 

haar_v_5_energy X X X 3 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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sym2_a_2_sd X X X 3 

sym2_diag_3_sd X X X 3 

sym2_diag_4_energy X X X X 3 

sym2_h_1_sd X X X 3 

sym2_h_3_sd X X X 3 

sym2_h_5_sd X X X 3 

sym2_v_4_energy X X X 3 

coif1_a_5_energy X X 2 

coif1_diag_4_energy X X 2 

coif1_diag_5_energy X X 2 

coif1_diag_5_sd X X 2 

coif1_h_3_energy X X 2 

dmey_a_1_mean X X 2 

dmey_a_1_sd X X 2 

dmey_a_2_energy X X 2 

dmey_a_5_sd X X 2 

dmey_diag_4_sd X X 2 

haar_a_3_sd X X 2 

haar_a_4_mean X X 2 

haar_a_5_mean X X 2 

haar_diag_5_energy X X X 2 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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haar_h_3_energy X X 2 

haar_h_4_sd X X 2 

haar_h_5_energy X X 2 

haar_v_1_sd X X 2 

haar_v_3_energy X X 2 

haar_v_3_sd X X 2 

haar_v_4_energy X X 2 

haar_v_4_sd X X 2 

sym2_a_2_mean X X 2 

sym2_a_4_mean X X 2 

sym2_a_5_sd X X 2 

sym2_h_2_energy X X 2 

sym2_v_2_sd X X 2 

coif1_a_1_energy X 1 

coif1_a_2_energy X 1 

coif1_a_2_sd X 1 

coif1_a_3_mean X 1 

coif1_a_3_sd X 1 

coif1_a_4_mean X 1 

coif1_a_4_sd X 1 

coif1_a_5_mean X 1 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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coif1_h_4_sd X 1 

coif1_h_5_mean X 1 

coif1_v_1_mean X 1 

coif1_v_2_sd X 1 

coif1_v_4_energy X 1 

coif1_v_4_sd X 1 

dmey_a_2_sd X 1 

dmey_a_5_mean X 1 

dmey_diag_4_energy X 1 

dmey_diag_5_sd X 1 

dmey_v_3_energy X 1 

dmey_v_4_energy X 1 

dmey_v_4_sd X 1 

haar_a_4_sd X 1 

haar_diag_5_sd X 1 

haar_h_1_sd X 1 

haar_h_5_mean X 1 

haar_v_5_sd X 1 

signal_mean X 1 

signal_sd X 1 

sym2_a_1_energy X 1 
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DISCRIMINANT FUNCTION COEFFICIENTS (continued). 
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sym2_a_3_energy X 1 

sym2_a_3_sd X 1 

sym2_a_4_sd X 1 

sym2_a_5_mean X 1 

sym2_diag_5_energy X X X 1 

sym2_h_1_mean X X 1 

sym2_h_3_energy X 1 

sym2_h_5_mean X 1 

sym2_v_3_sd X 1 

sym2_v_4_sd X 1 

sym2_v_5_energy X 1 
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APPENDIX B 

242 INDEPENDENT VARIABLES 

List of 242 independent variables used in all discriminant analyses. As few as 
eighteen and as many as fifty seven appear in hurricane and hurricane 
combination discriminant functions. Only six appear in the Joplin tornado 
discriminant function.  

Variable Name Description 

hurr_name Text hurricane name such (e.g., Ike, Katrina, etc.) 

hurricane Numeric representation of hurricane name (e.g., 1 for 
hurricane Ike samples) 

category Numeric value representing the damage category (e.g., 
1 for No Damage) 

signal_mean Mean value of the image sample pixels 

signal_sd Standard deviation of the values of image sample 
pixels 

haar_a_1_mean Mean value of the first level Haar wavelet transform 
approximation coefficients  

haar_a_1_energy Energy, ENG, or angular second moment, of the first 
level Haar wavelet transform approximation 

 

 

Where c(i,j) is a wavelet coefficient of a subimage with 
M rows and N columns at i, j at one level 

haar_a_1_sd Standard deviation of the first level Haar wavelet 
transform approximation coefficients  

haar_h_1_mean Mean value of the first level horizontal Haar wavelet 
transform coefficients  
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

haar_h_1_energy ENG value of the first level horizontal Haar wavelet 
transform coefficients 

haar_h_1_sd Standard deviation of the first level horizontal Haar 
wavelet coefficients  

haar_v_1_mean Mean value of the first level vertical Haar wavelet 
coefficients 

haar_v_1_energy ENG value of the first level vertical Haar wavelet 
coefficients 

haar_v_1_sd Standard deviation of the first level vertical Haar 
wavelet coefficients 

haar_diag_1_mean Mean value of the first level diagonal Haar wavelet 
transform coefficients 

haar_diag_1_energy ENG of the first level diagonal Haar wavelet transform 
coefficients 

haar_diag_1_sd Standard deviation of the first level diagonal Haar 
wavelet transform coefficients 

dmey_a_1_mean Mean value of the first level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_1_energy ENG of the first level discrete Meyer wavelet transform 
approximation coefficients 

dmey_a_1_sd Standard deviation of the first level discrete Meyer 
wavelet transform approximation coefficients 

dmey_h_1_mean Mean of the first level discrete Meyer horizontal 
wavelet transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

dmey_h_1_energy ENG of the first level discrete Meyer horizontal wavelet 
transform coefficients 

dmey_h_1_sd Standard deviation of the first level discrete Meyer 
horizontal wavelet transform coefficients 

dmey_v_1_mean Mean of the first level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_1_energy ENG of the first level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_1_sd Standard deviation of the first level discrete Meyer 
vertical wavelet transform coefficients 

dmey_diag_1_mean Mean of the first level discrete Meyer diagonal wavelet 
transform coefficients 

dmey_diag_1_energy ENG of the first level discrete Meyer diagonal wavelet 
transform coefficients 

dmey_diag_1_sd Standard deviation of the first level discrete Meyer 
diagonal wavelet transform coefficients 

coif1_a_1_mean Mean of the first level Coiflet wavelet transform 
approximation 

coif1_a_1_energy ENG of the first level Coiflet wavelet transform 
approximation coefficients 

coif1_a_1_sd Standard deviation of the first level Coiflet wavelet 
transform approximation coefficients 

coif1_h_1_mean Mean of the first level horizontal Coiflet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

coif1_h_1_energy ENG of the first level horizontal Coiflet wavelet 
transform coefficients 

coif1_h_1_sd Standard deviation of the first level horizontal Coiflet 
wavelet transform coefficients 

coif1_v_1_mean Mean of the first level vertical Coiflet wavelet transform 
coefficients 

coif1_v_1_energy ENG of the first level vertical Coiflet wavelet transform 
coefficients  

coif1_v_1_sd Standard deviation of the first level vertical Coiflet 
wavelet transform coefficients 

coif1_diag_1_mean Mean of the first level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_1_energy ENG of the first level diagonal Coiflet wavelet transform 
coefficients 

coif1_diag_1_sd Standard deviation of the first level diagonal Coiflet 
wavelet transform coefficients 

sym2_a_1_mean Mean of the first level Symlet wavelet approximation 
coefficients 

sym2_a_1_energy ENG of the first level Symlet wavelet approximation 
coefficients 

sym2_a_1_sd Standard deviation of the first level Symlet wavelet 
transform approximation coefficients 

sym2_h_1_mean Mean of the first level horizontal Symlet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

sym2_h_1_energy ENG of the first level horizontal Symlet wavelet 
transform coefficients 

sym2_h_1_sd Standard deviation of the first level horizontal Symlet 
wavelet transform coefficients 

sym2_v_1_mean Mean of the first level vertical Symlet wavelet transform 
coefficients 

sym2_v_1_energy ENG of the first level vertical Symlet wavelet transform 
coefficients 

sym2_v_1_sd Standard deviation of the first level vertical Symlet 
wavelet transform coefficients 

sym2_diag_1_mean Mean of the first level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_1_energy ENG of the first level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_1_sd Standard deviation of the first level diagonal Symlet 
wavelet transform coefficients 

haar_a_2_mean Mean of the second level Haar wavelet transform 
approximation coefficients 

haar_a_2_energy ENG of the second level Haar wavelet transform 
approximation coefficients 

haar_a_2_sd Standard deviation of the second level Haar wavelet 
transform coefficients 

haar_h_2_mean Mean of the second level horizontal Haar wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

haar_h_2_energy ENG of the second level horizontal Haar wavelet 
transform coefficients  

haar_h_2_sd Standard deviation of the second level horizontal Haar 
wavelet coefficients 

haar_v_2_mean Mean value of the second level vertical Haar wavelet 
coefficients 

haar_v_2_energy ENG value of the second level vertical Haar wavelet 
coefficients 

haar_v_2_sd Standard deviation of the second level vertical Haar 
wavelet coefficients 

haar_diag_2_mean Mean value of the second level diagonal Haar wavelet 
transform coefficients 

haar_diag_2_energy ENG of the second level diagonal Haar wavelet 
transform coefficients 

haar_diag_2_sd Standard deviation of the second level diagonal Haar 
wavelet transform coefficients 

dmey_a_2_mean Mean value of the second level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_2_energy ENG of the second level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_2_sd Standard deviation of the second level discrete Meyer 
wavelet transform approximation coefficients 

dmey_h_2_mean Mean of the second level discrete Meyer horizontal 
wavelet transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

dmey_h_2_energy ENG of the second level discrete Meyer horizontal 
wavelet transform coefficients 

dmey_h_2_sd Standard deviation of the second level discrete Meyer 
horizontal wavelet transform coefficients 

dmey_v_2_mean Mean of the second level discrete Meyer vertical 
wavelet transform coefficients 

dmey_v_2_energy ENG of the second level discrete Meyer vertical 
wavelet transform coefficients 

dmey_v_2_sd Standard deviation of the second level discrete Meyer 
vertical wavelet transform coefficients 

dmey_diag_2_mean Mean of the second level discrete Meyer diagonal 
wavelet transform coefficients 

dmey_diag_2_energy ENG of the second level discrete Meyer diagonal 
wavelet transform coefficients 

dmey_diag_2_sd Standard deviation of the second level discrete Meyer 
diagonal wavelet transform coefficients 

coif1_a_2_mean Mean of the second level Coiflet wavelet transform 
approximation 

coif1_a_2_energy ENG of the second level Coiflet wavelet transform 
approximation coefficients 

coif1_a_2_sd Standard deviation of the second level Coiflet wavelet 
transform approximation coefficients 

coif1_h_2_mean Mean of the second level horizontal Coiflet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

coif1_h_2_energy ENG of the second level horizontal Coiflet wavelet 
transform coefficients 

coif1_h_2_sd Standard deviation of the second level horizontal 
Coiflet wavelet transform coefficients 

coif1_v_2_mean Mean of the second level vertical Coiflet wavelet 
transform coefficients 

coif1_v_2_energy ENG of the second level vertical Coiflet wavelet 
transform coefficients  

coif1_v_2_sd Standard deviation of the second level vertical Coiflet 
wavelet transform coefficients 

coif1_diag_2_mean Mean of the second level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_2_energy ENG of the second level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_2_sd Standard deviation of the second level diagonal Coiflet 
wavelet transform coefficients 

sym2_a_2_mean Mean of the second level Symlet wavelet 
approximation coefficients 

sym2_a_2_energy ENG of the second level Symlet wavelet approximation 
coefficients 

sym2_a_2_sd Standard deviation of the second level Symlet wavelet 
transform approximation coefficients 

sym2_h_2_mean Mean of the second level horizontal Symlet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

sym2_h_2_energy ENG of the second level horizontal Symlet wavelet 
transform coefficients 

sym2_h_2_sd Standard deviation of the second level horizontal 
Symlet wavelet transform coefficients 

sym2_v_2_mean Mean of the second level vertical Symlet wavelet 
transform coefficients 

sym2_v_2_energy ENG of the second level vertical Symlet wavelet 
transform coefficients 

sym2_v_2_sd Standard deviation of the second level vertical Symlet 
wavelet transform coefficients 

sym2_diag_2_mean Mean of the second level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_2_energy ENG of the second level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_2_sd Standard deviation of the second level diagonal Symlet 
wavelet transform coefficients 

haar_a_3_mean Mean of the third level Haar wavelet transform 
approximation coefficients 

haar_a_3_energy ENG of the third level Haar wavelet transform 
approximation coefficients 

haar_a_3_sd Standard deviation of the third level Haar wavelet 
transform coefficients 

haar_h_3_mean Mean of the third level horizontal Haar wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

haar_h_3_energy ENG of the third level horizontal Haar wavelet 
transform coefficients  

haar_h_3_sd Standard deviation of the third level horizontal Haar 
wavelet coefficients 

haar_v_3_mean Mean value of the third level vertical Haar wavelet 
coefficients 

haar_v_3_energy ENG value of the third level vertical Haar wavelet 
coefficients 

haar_v_3_sd Standard deviation of the third level vertical Haar 
wavelet coefficients 

haar_diag_3_mean Mean value of the third level diagonal Haar wavelet 
transform coefficients 

haar_diag_3_energy ENG of the third level diagonal Haar wavelet transform 
coefficients 

haar_diag_3_sd Standard deviation of the third level diagonal Haar 
wavelet transform coefficients 

dmey_a_3_mean Mean value of the third level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_3_energy ENG of the third level discrete Meyer wavelet transform 
approximation coefficients 

dmey_a_3_sd Standard deviation of the third level discrete Meyer 
wavelet transform approximation coefficients 

dmey_h_3_mean Mean of the third level discrete Meyer horizontal 
wavelet transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

dmey_h_3_energy ENG of the third level discrete Meyer horizontal 
wavelet transform coefficients 

dmey_h_3_sd Standard deviation of the third level discrete Meyer 
horizontal wavelet transform coefficients 

dmey_v_3_mean Mean of the third level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_3_energy ENG of the third level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_3_sd Standard deviation of the third level discrete Meyer 
vertical wavelet transform coefficients 

dmey_diag_3_mean Mean of the third level discrete Meyer diagonal wavelet 
transform coefficients 

dmey_diag_3_energy ENG of the third level discrete Meyer diagonal wavelet 
transform coefficients 

dmey_diag_3_sd Standard deviation of the third level discrete Meyer 
diagonal wavelet transform coefficients 

coif1_a_3_mean Mean of the third level Coiflet wavelet transform 
approximation 

coif1_a_3_energy ENG of the third level Coiflet wavelet transform 
approximation coefficients 

coif1_a_3_sd Standard deviation of the third level Coiflet wavelet 
transform approximation coefficients 

coif1_h_3_mean Mean of the third level horizontal Coiflet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

coif1_h_3_energy ENG of the third level horizontal Coiflet wavelet 
transform coefficients 

coif1_h_3_sd Standard deviation of the third level horizontal Coiflet 
wavelet transform coefficients 

coif1_v_3_mean Mean of the third level vertical Coiflet wavelet transform 
coefficients 

coif1_v_3_energy ENG of the third level vertical Coiflet wavelet transform 
coefficients  

coif1_v_3_sd Standard deviation of the third level vertical Coiflet 
wavelet transform coefficients 

coif1_diag_3_mean Mean of the third level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_3_energy ENG of the third level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_3_sd Standard deviation of the third level diagonal Coiflet 
wavelet transform coefficients 

sym2_a_3_mean Mean of the third level Symlet wavelet approximation 
coefficients 

sym2_a_3_energy ENG of the third level Symlet wavelet approximation 
coefficients 

sym2_a_3_sd Standard deviation of the third level Symlet wavelet 
transform approximation coefficients 

sym2_h_3_mean Mean of the third level horizontal Symlet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

sym2_h_3_energy ENG of the third level horizontal Symlet wavelet 
transform coefficients 

sym2_h_3_sd Standard deviation of the third level horizontal Symlet 
wavelet transform coefficients 

sym2_v_3_mean Mean of the third level vertical Symlet wavelet 
transform coefficients 

sym2_v_3_energy ENG of the third level vertical Symlet wavelet transform 
coefficients 

sym2_v_3_sd Standard deviation of the third level vertical Symlet 
wavelet transform coefficients 

sym2_diag_3_mean Mean of the third level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_3_energy ENG of the third level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_3_sd Standard deviation of the third level diagonal Symlet 
wavelet transform coefficients 

haar_a_4_mean Mean of the fourth level Haar wavelet transform 
approximation coefficients 

haar_a_4_energy ENG of the fourth level Haar wavelet transform 
approximation coefficients 

haar_a_4_sd Standard deviation of the fourth level Haar wavelet 
transform coefficients 

haar_h_4_mean Mean of the fourth level horizontal Haar wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

haar_h_4_energy ENG of the fourth level horizontal Haar wavelet 
transform coefficients  

haar_h_4_sd Standard deviation of the fourth level horizontal Haar 
wavelet coefficients 

haar_v_4_mean Mean value of the fourth level vertical Haar wavelet 
coefficients 

haar_v_4_energy ENG value of the fourth level vertical Haar wavelet 
coefficients 

haar_v_4_sd Standard deviation of the fourth level vertical Haar 
wavelet coefficients 

haar_diag_4_mean Mean value of the fourth level diagonal Haar wavelet 
transform coefficients 

haar_diag_4_energy ENG of the fourth level diagonal Haar wavelet 
transform coefficients 

haar_diag_4_sd Standard deviation of the fourth level diagonal Haar 
wavelet transform coefficients 

dmey_a_4_mean Mean value of the fourth level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_4_energy ENG of the fourth level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_4_sd Standard deviation of the fourth level discrete Meyer 
wavelet transform approximation coefficients 

dmey_h_4_mean Mean of the fourth level discrete Meyer horizontal 
wavelet transform coefficients 



  158 
 
 

242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

dmey_h_4_energy ENG of the fourth level discrete Meyer horizontal 
wavelet transform coefficients 

dmey_h_4_sd Standard deviation of the fourth level discrete Meyer 
horizontal wavelet transform coefficients 

dmey_v_4_mean Mean of the fourth level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_4_energy ENG of the fourth level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_4_sd Standard deviation of the fourth level discrete Meyer 
vertical wavelet transform coefficients 

dmey_diag_4_mean Mean of the fourth level discrete Meyer diagonal 
wavelet transform coefficients 

dmey_diag_4_energy ENG of the fourth level discrete Meyer diagonal 
wavelet transform coefficients 

dmey_diag_4_sd Standard deviation of the fourth level discrete Meyer 
diagonal wavelet transform coefficients 

coif1_a_4_mean Mean of the fourth level Coiflet wavelet transform 
approximation 

coif1_a_4_energy ENG of the fourth level Coiflet wavelet transform 
approximation coefficients 

coif1_a_4_sd Standard deviation of the fourth level Coiflet wavelet 
transform approximation coefficients 

coif1_h_4_mean Mean of the fourth level horizontal Coiflet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

coif1_h_4_energy ENG of the fourth level horizontal Coiflet wavelet 
transform coefficients 

coif1_h_4_sd Standard deviation of the fourth level horizontal Coiflet 
wavelet transform coefficients 

coif1_v_4_mean Mean of the fourth level vertical Coiflet wavelet 
transform coefficients 

coif1_v_4_energy ENG of the fourth level vertical Coiflet wavelet 
transform coefficients  

coif1_v_4_sd Standard deviation of the fourth level vertical Coiflet 
wavelet transform coefficients 

coif1_diag_4_mean Mean of the fourth level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_4_energy ENG of the fourth level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_4_sd Standard deviation of the fourth level diagonal Coiflet 
wavelet transform coefficients 

sym2_a_4_mean Mean of the fourth level Symlet wavelet approximation 
coefficients 

sym2_a_4_energy ENG of the fourth level Symlet wavelet approximation 
coefficients 

sym2_a_4_sd Standard deviation of the fourth level Symlet wavelet 
transform approximation coefficients 

sym2_h_4_mean Mean of the fourth level horizontal Symlet wavelet 
transform coefficients 



  160 
 
 

242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

sym2_h_4_energy ENG of the fourth level horizontal Symlet wavelet 
transform coefficients 

sym2_h_4_sd Standard deviation of the fourth level horizontal Symlet 
wavelet transform coefficients 

sym2_v_4_mean Mean of the fourth level vertical Symlet wavelet 
transform coefficients 

sym2_v_4_energy ENG of the fourth level vertical Symlet wavelet 
transform coefficients 

sym2_v_4_sd Standard deviation of the fourth level vertical Symlet 
wavelet transform coefficients 

sym2_diag_4_mean Mean of the fourth level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_4_energy ENG of the fourth level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_4_sd Standard deviation of the fourth level diagonal Symlet 
wavelet transform coefficients 

haar_a_5_mean Mean of the fifth level Haar wavelet transform 
approximation coefficients 

haar_a_5_energy ENG of the fifth level Haar wavelet transform 
approximation coefficients 

haar_a_5_sd Standard deviation of the fifth level Haar wavelet 
transform coefficients 

haar_h_5_mean Mean of the fifth level horizontal Haar wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

haar_h_5_energy ENG of the fifth level horizontal Haar wavelet transform 
coefficients  

haar_h_5_sd Standard deviation of the fifth level horizontal Haar 
wavelet coefficients 

haar_v_5_mean Mean value of the fifth level vertical Haar wavelet 
coefficients 

haar_v_5_energy ENG value of the fifth level vertical Haar wavelet 
coefficients 

haar_v_5_sd Standard deviation of the fifth level vertical Haar 
wavelet coefficients 

haar_diag_5_mean Mean value of the fifth level diagonal Haar wavelet 
transform coefficients 

haar_diag_5_energy ENG of the fifth level diagonal Haar wavelet transform 
coefficients 

haar_diag_5_sd Standard deviation of the fifth level diagonal Haar 
wavelet transform coefficients 

dmey_a_5_mean Mean value of the fifth level discrete Meyer wavelet 
transform approximation coefficients 

dmey_a_5_energy ENG of the fifth level discrete Meyer wavelet transform 
approximation coefficients 

dmey_a_5_sd Standard deviation of the fifth level discrete Meyer 
wavelet transform approximation coefficients 

dmey_h_5_mean Mean of the fifth level discrete Meyer horizontal 
wavelet transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

dmey_h_5_energy ENG of the fifth level discrete Meyer horizontal wavelet 
transform coefficients 

dmey_h_5_sd Standard deviation of the fifth level discrete Meyer 
horizontal wavelet transform coefficients 

dmey_v_5_mean Mean of the fifth level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_5_energy ENG of the fifth level discrete Meyer vertical wavelet 
transform coefficients 

dmey_v_5_sd Standard deviation of the fifth level discrete Meyer 
vertical wavelet transform coefficients 

dmey_diag_5_mean Mean of the fifth level discrete Meyer diagonal wavelet 
transform coefficients 

dmey_diag_5_energy ENG of the fifth level discrete Meyer diagonal wavelet 
transform coefficients 

dmey_diag_5_sd Standard deviation of the fifth level discrete Meyer 
diagonal wavelet transform coefficients 

coif1_a_5_mean Mean of the fifth level Coiflet wavelet transform 
approximation 

coif1_a_5_energy ENG of the fifth level Coiflet wavelet transform 
approximation coefficients 

coif1_a_5_sd Standard deviation of the fifth level Coiflet wavelet 
transform approximation coefficients 

coif1_h_5_mean Mean of the fifth level horizontal Coiflet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

coif1_h_5_energy ENG of the fifth level horizontal Coiflet wavelet 
transform coefficients 

coif1_h_5_sd Standard deviation of the fifth level horizontal Coiflet 
wavelet transform coefficients 

coif1_v_5_mean Mean of the fifth level vertical Coiflet wavelet transform 
coefficients 

coif1_v_5_energy ENG of the fifth level vertical Coiflet wavelet transform 
coefficients  

coif1_v_5_sd Standard deviation of the fifth level vertical Coiflet 
wavelet transform coefficients 

coif1_diag_5_mean Mean of the fifth level diagonal Coiflet wavelet 
transform coefficients 

coif1_diag_5_energy ENG of the fifth level diagonal Coiflet wavelet transform 
coefficients 

coif1_diag_5_sd Standard deviation of the fifth level diagonal Coiflet 
wavelet transform coefficients 

sym2_a_5_mean Mean of the fifth level Symlet wavelet approximation 
coefficients 

sym2_a_5_energy ENG of the fifth level Symlet wavelet approximation 
coefficients 

sym2_a_5_sd Standard deviation of the fifth level Symlet wavelet 
transform approximation coefficients 

sym2_h_5_mean Mean of the fifth level horizontal Symlet wavelet 
transform coefficients 
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242 INDEPENDENT VARIABLES (continued). 
 

Variable Name Description 

sym2_h_5_energy ENG of the fifth level horizontal Symlet wavelet 
transform coefficients 

sym2_h_5_sd Standard deviation of the fifth level horizontal Symlet 
wavelet transform coefficients 

sym2_v_5_mean Mean of the fifth level vertical Symlet wavelet transform 
coefficients 

sym2_v_5_energy ENG of the fifth level vertical Symlet wavelet transform 
coefficients 

sym2_v_5_sd Standard deviation of the fifth level vertical Symlet 
wavelet transform coefficients 

sym2_diag_5_mean Mean of the fifth level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_5_energy ENG of the fifth level diagonal Symlet wavelet 
transform coefficients 

sym2_diag_5_sd Standard deviation of the fifth level diagonal Symlet 
wavelet transform coefficients 
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Ideal discriminant analysis classification accuracy table. 

Ideal Classification Result – 100 percent correct classification 

 Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 73 0 0 0 0 73 

Limited 0 112 0 0 0 112 

Moderate 0 0 330 0 0 330 

Extensive 0 0 0 74 0 74 

Catastrophic 0 0 0 0 160 160 

              

 Percent No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 0.0 100.0 0.0 0.0 0.0 100 

Moderate 0.0 0.0 100.0 0.0 0.0 100 

Extensive 0.0 0.0 0.0 100.0 0.0 100 

Catastrophic 0.0 0.0 0.0 0.0 100.0 100 
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Ike discriminant analysis classification accuracy table. 

Ike DA Classification Result - 89.5 percent correct classification 

 Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 274 0 0 0 0 274 

Limited 0 67 18 0 1 86 

Moderate 0 0 70 0 24 94 

Extensive 0 0 4 71 30 105 

Catastrophic 0 1 11 17 420 449 

        

Percent No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 0.0 77.9 20.9 0.0 1.2 100 

Moderate 0.0 0.0 74.5 0.0 25.5 100 

Extensive 0.0 0.0 3.8 67.6 28.6 100 

Catastrophic 0.0 0.2 2.4 3.8 93.5 100 
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Rita discriminant analysis classification accuracy table. 

Rita DA Classification Result - 86.0 percent correct classification 

 Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 255 1 2 7 20 285 

Limited 0 223 0 1 16 240 

Moderate 7 5 158 0 20 190 

Extensive 6 1 0 130 40 177 

Catastrophic 25 5 16 10 350 406 

       

Percent No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 89.5 0.4 0.7 2.5 7.0 100 

Limited 0.0 92.9 0.0 0.4 6.7 100 

Moderate 3.7 2.6 83.2 0.0 10.5 100 

Extensive 3.4 0.6 0.0 73.4 22.6 100 

Catastrophic 6.2 1.2 3.9 2.5 86.2 100 
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Katrina discriminant analysis classification accuracy table. 

Katrina DA Classification Result - 84.7 percent correct classification 

 Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 79 0 0 0 0 79 

Limited 0 172 12 10 7 201 

Moderate 0 26 420 15 9 470 

Extensive 0 16 14 126 18 174 

Catastrophic 0 19 17 35 297 368 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 0.0 85.6 6.0 5.0 3.5 100 

Moderate 0.0 5.5 89.4 3.2 1.9 100 

Extensive 0.0 9.2 8.0 72.4 10.3 100 

Catastrophic 0.0 5.2 4.6 9.5 80.7 100 
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Ivan discriminant analysis classification accuracy table. 

Ivan DA Classification Result - 72.5 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 44 7 19 2 1 73 

Limited 3 99 41 6 1 150 

Moderate 10 62 315 13 1 401 

Extensive 1 6 14 59 0 80 

Catastrophic 0 0 6 4 2 12 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 60.3 9.6 26.0 2.7 1.4 100 

Limited 2.0 66.0 27.3 4.0 0.7 100 

Moderate 2.5 15.5 78.6 3.2 0.2 100 

Extensive 1.3 7.5 17.5 73.8 0.0 100 

Catastrophic 0.0 0.0 50.0 33.3 16.7 100 
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Ike, Rita and Katrina discriminant analysis classification accuracy table. 

Ike, Rita and Katrina DA Classification Result - 73.7 percent correct classification 

Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 519 6 42 3 68 638 

Limited 0 315 68 58 86 527 

Moderate 21 27 548 66 92 754 

Extensive 7 20 43 212 174 456 

Catastrophic 18 20 66 61 1058 1223 

       

Percent No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 81.3 0.9 6.6 0.5 10.7 100 

Limited 0.0 59.8 12.9 11.0 16.3 100 

Moderate 2.8 3.6 72.7 8.8 12.2 100 

Extensive 1.5 4.4 9.4 46.5 38.2 100 

Catastrophic 1.5 1.6 5.4 5.0 86.5 100 
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Ike, Rita, Katrina and Ivan discriminant analysis classification accuracy table. 

Ike, Rita, Katrina and Ivan DA Classification Result - 67.6 percent correct 
classification 

 Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 498 23 90 24 76 711 

Limited 5 360 141 32 139 677 

Moderate 97 100 823 37 98 1155 

Extensive 11 29 107 181 208 536 

Catastrophic 25 33 79 42 1056 1235 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 70.0 3.2 12.7 3.4 10.7 100 

Limited 0.7 53.2 20.8 4.7 20.5 100 

Moderate 8.4 8.7 71.3 3.2 8.5 100 

Extensive 2.1 5.4 20.0 33.8 38.8 100 

Catastrophic 2.0 2.7 6.4 3.4 85.5 100 
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Ike and Katrina discriminant analysis classification accuracy table. 

Ike and Katrina DA Classification Result - 76.6 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 353 0 0 0 0 353 

Limited 0 190 59 17 21 287 

Moderate 0 49 416 44 55 564 

Extensive 0 14 36 103 126 279 

Catastrophic 0 24 49 44 700 817 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 0.0 66.2 20.6 5.9 7.3 100 

Moderate 0.0 8.7 73.8 7.8 9.8 100 

Extensive 0.0 5.0 12.9 36.9 45.2 100 

Catastrophic 0.0 2.9 6.0 5.4 85.7 100 
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Ike and Ivan discriminant analysis classification accuracy table. 

Ike and Ivan DA Classification Result - 76.4 percent correct classification 

Count No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 299 8 21 16 3 347 

Limited 1 160 57 8 10 236 

Moderate 3 77 351 17 47 495 

Extensive 1 9 13 63 99 185 

Catastrophic 1 7 4 5 444 461 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 86.2 2.3 6.1 4.6 0.9 100 

Limited 0.4 67.8 24.2 3.4 4.2 100 

Moderate 0.6 15.6 70.9 3.4 9.5 100 

Extensive 0.5 4.9 7.0 34.1 53.5 100 

Catastrophic 0.2 1.5 0.9 1.1 96.3 100 
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Ike and Rita discriminant analysis classification accuracy table. 

Ike and Rita DA Classification Result - 77.2 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 475 1 30 14 39 559 

Limited 0 219 0 22 85 326 

Moderate 7 4 165 48 60 284 

Extensive 9 9 2 146 116 282 

Catastrophic 25 12 30 13 775 855 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 85.0 0.2 5.4 2.5 7.0 100 

Limited 0.0 67.2 0.0 6.7 26.1 100 

Moderate 2.5 1.4 58.1 16.9 21.1 100 

Extensive 3.2 3.2 0.7 51.8 41.1 100 

Catastrophic 2.9 1.4 3.5 1.5 90.6 100 
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Rita and Katrina discriminant analysis classification accuracy table. 

Rita and Katrina DA Classification Result - 77.8 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 292 7 24 2 39 364 

Limited 1 328 46 49 17 441 

Moderate 27 16 539 37 41 660 

Extensive 7 16 21 233 74 351 

Catastrophic 15 22 60 55 622 774 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 80.2 1.9 6.6 0.5 10.7 100 

Limited 0.2 74.4 10.4 11.1 3.9 100 

Moderate 4.1 2.4 81.7 5.6 6.2 100 

Extensive 2.0 4.6 6.0 66.4 21.1 100 

Catastrophic 1.9 2.8 7.8 7.1 80.4 100 
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Rita and Ivan discriminant analysis classification accuracy table. 

Rita and Ivan DA Classification Result - 69.6 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 235 7 33 23 60 358 

Limited 5 268 45 22 50 390 

Moderate 62 74 399 24 32 591 

Extensive 15 21 30 148 43 257 

Catastrophic 20 14 12 20 352 418 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 65.6 2.0 9.2 6.4 16.8 100 

Limited 1.3 68.7 11.5 5.6 12.8 100 

Moderate 10.5 12.5 67.5 4.1 5.4 100 

Extensive 5.8 8.2 11.7 57.6 16.7 100 

Catastrophic 4.8 3.3 2.9 4.8 84.2 100 
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Katrina and Ivan discriminant analysis classification accuracy table. 

Katrina and Ivan DA Classification Result - 75.3 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 119 15 6 12 0 152 

Limited 1 209 124 13 4 351 

Moderate 2 93 752 18 6 871 

Extensive 0 13 71 146 24 254 

Catastrophic 0 24 39 30 287 380 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 78.3 9.9 3.9 7.9 0.0 100 

Limited 0.3 59.5 35.3 3.7 1.1 100 

Moderate 0.2 10.7 86.3 2.1 0.7 100 

Extensive 0.0 5.1 28.0 57.5 9.4 100 

Catastrophic 0.0 6.3 10.3 7.9 75.5 100 
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Rita, Katrina and Ivan discriminant analysis classification accuracy table. 

Rita, Katrina and Ivan DA Classification Result - 69.1 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 278 29 49 23 58 437 

Limited 2 392 102 46 49 591 

Moderate 72 108 802 39 40 1061 

Extensive 6 51 107 180 87 431 

Catastrophic 9 26 72 47 632 786 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 63.6 6.6 11.2 5.3 13.3 100 

Limited 0.3 66.3 17.3 7.8 8.3 100 

Moderate 6.8 10.2 75.6 3.7 3.8 100 

Extensive 1.4 11.8 24.8 41.8 20.2 100 

Catastrophic 1.1 3.3 9.2 6.0 80.4 100 
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Ike, Katrina and Ivan discriminant analysis classification accuracy table. 

Ike, Katrina and Ivan DA Classification Result - 71.7 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 376 7 24 17 2 426 

Limited 1 177 192 18 49 437 

Moderate 23 94 756 31 61 965 

Extensive 0 9 96 134 120 359 

Catastrophic 0 13 63 34 719 829 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 88.3 1.6 5.6 4.0 0.5 100 

Limited 0.2 40.5 43.9 4.1 11.2 100 

Moderate 2.4 9.7 78.3 3.2 6.3 100 

Extensive 0.0 2.5 26.7 37.3 33.4 100 

Catastrophic 0.0 1.6 7.6 4.1 86.7 100 
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Ike, Rita and Ivan discriminant analysis classification accuracy table. 

Ike, Rita and Ivan DA Classification Result - 69.4 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 465 12 53 19 83 632 

Limited 6 251 47 21 151 476 

Moderate 67 68 420 57 73 685 

Extensive 18 10 28 162 144 362 

Catastrophic 20 14 16 17 800 867 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 73.6 1.9 8.4 3.0 13.1 100 

Limited 1.3 52.7 9.9 4.4 31.7 100 

Moderate 9.8 9.9 61.3 8.3 10.7 100 

Extensive 5.0 2.8 7.7 44.8 39.8 100 

Catastrophic 2.3 1.6 1.8 2.0 92.3 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Katrina-
Ivan discriminant function. 

NonDF Katrina Points Scored with Ike-Katrina-Ivan – 41 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 0 6 38 29 73 

Limited 7 0 77 4 24 112 

Moderate 0 0 140 0 190 330 

Extensive 0 1 4 4 65 74 

Catastrophic 0 0 0 0 160 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.0 8.2 52.1 39.7 100 

Limited 6.3 0.0 68.8 3.6 21.4 100 

Moderate 0.0 0.0 42.4 0.0 57.6 100 

Extensive 0.0 1.4 5.4 5.4 87.8 100 

Catastrophic 0.0 0.0 0.0 0.0 100.0 100 
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Classification accuracy table of NonDF Katrina samples scored with Katrina 
discriminant function. 

NonDF Katrina Points Scored with Katrina DF – 64 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 28 16 3 26 0 73 

Limited 0 93 19 0 0 112 

Moderate 0 1 329 0 0 330 

Extensive 0 42 22 2 8 74 

Catastrophic 0 133 0 0 27 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 38.4 21.9 4.1 35.6 0.0 100 

Limited 0.0 83.0 17.0 0.0 0.0 100 

Moderate 0.0 0.3 99.7 0.0 0.0 100 

Extensive 0.0 56.8 29.7 2.7 10.8 100 

Catastrophic 0.0 83.1 0.0 0.0 16.9 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike 
discriminant function. 

NonDF Katrina Points Scored with Ike DF – 24 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 73 0 0 0 0 73 

Limited 112 0 0 0 0 112 

Moderate 306 0 0 20 4 330 

Extensive 45 0 0 29 0 74 

Catastrophic 35 0 0 46 79 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 100.0 0.0 0.0 0.0 0.0 100 

Moderate 92.7 0.0 0.0 6.1 1.2 100 

Extensive 60.8 0.0 0.0 39.2 0.0 100 

Catastrophic 21.9 0.0 0.0 28.8 49.4 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Katrina 
discriminant function. 

NonDF Katrina Points Scored with Ike Katrina DF – 44 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 56 0 0 17 0 73 

Limited 39 13 0 44 16 112 

Moderate 178 1 91 0 60 330 

Extensive 4 0 1 11 58 74 

Catastrophic 1 0 0 2 157 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 76.7 0.0 0.0 23.3 0.0 100 

Limited 34.8 11.6 0.0 39.3 14.3 100 

Moderate 53.9 0.3 27.6 0.0 18.2 100 

Extensive 5.4 0.0 1.4 14.9 78.4 100 

Catastrophic 0.6 0.0 0.0 1.3 98.1 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Ivan 
discriminant function. 

NonDF Katrina Points Scored with Ike Ivan DF – 39 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 0 0 15 58 73 

Limited 5 0 0 2 105 112 

Moderate 6 0 130 3 191 330 

Extensive 0 0 2 2 70 74 

Catastrophic 0 0 0 0 160 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.0 0.0 20.5 79.5 100 

Limited 4.5 0.0 0.0 1.8 93.8 100 

Moderate 1.8 0.0 39.4 0.9 57.9 100 

Extensive 0.0 0.0 2.7 2.7 94.6 100 

Catastrophic 0.0 0.0 0.0 0.0 100.0 100 
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Classification accuracy table of NonDF Katrina samples scored with Katrina-Ivan 
discriminant function. 

NonDF Katrina Points Scored with Katrina Ivan DF – 62 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 67 0 0 6 0 73 

Limited 0 78 20 0 14 112 

Moderate 0 9 180 1 140 330 

Extensive 0 7 23 0 44 74 

Catastrophic 0 13 10 0 137 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 91.8 0.0 0.0 8.2 0.0 100 

Limited 0.0 69.6 17.9 0.0 12.5 100 

Moderate 0.0 2.7 54.5 0.3 42.4 100 

Extensive 0.0 9.5 31.1 0.0 59.5 100 

Catastrophic 0.0 8.1 6.3 0.0 85.6 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Rita-
Katrina-Ivan discriminant function. 

NonDF Katrina Points Scored with Ike Rita Katrina Ivan DF – 27 percent correct 
classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 5 0 2 65 1 73 

Limited 11 46 0 47 8 112 

Moderate 152 0 1 0 177 330 

Extensive 2 2 0 14 56 74 

Catastrophic 0 23 0 0 137 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 6.8 0.0 2.7 89.0 1.4 100 

Limited 9.8 41.1 0.0 42.0 7.1 100 

Moderate 46.1 0.0 0.3 0.0 53.6 100 

Extensive 2.7 2.7 0.0 18.9 75.7 100 

Catastrophic 0.0 14.4 0.0 0.0 85.6 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Rita-
Katrina discriminant function. 

NonDF Katrina Points Scored with Ike Rita Katrina DF – 28 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 0 0 73 0 73 

Limited 10 80 0 22 0 112 

Moderate 204 0 0 2 124 330 

Extensive 7 18 0 42 7 74 

Catastrophic 0 45 0 25 90 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.0 0.0 100.0 0.0 100 

Limited 8.9 71.4 0.0 19.6 0.0 100 

Moderate 61.8 0.0 0.0 0.6 37.6 100 

Extensive 9.5 24.3 0.0 56.8 9.5 100 

Catastrophic 0.0 28.1 0.0 15.6 56.3 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Rita 
discriminant function.  

NonDF Katrina Points Scored with Ike Rita DF – 30 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 66 0 7 0 73 

Limited 0 42 0 70 0 112 

Moderate 180 0 118 2 30 330 

Extensive 5 35 0 32 2 74 

Catastrophic 0 116 0 15 29 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 90.4 0.0 9.6 0.0 100 

Limited 0.0 37.5 0.0 62.5 0.0 100 

Moderate 54.5 0.0 35.8 0.6 9.1 100 

Extensive 6.8 47.3 0.0 43.2 2.7 100 

Catastrophic 0.0 72.5 0.0 9.4 18.1 100 
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Classification accuracy table of NonDF Katrina samples scored with Ivan 
discriminant function. 

NonDF Katrina Points Scored with Ivan DF – 54 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 73 0 0 0 0 73 

Limited 6 0 106 0 0 112 

Moderate 0 0 330 0 0 330 

Extensive 0 0 74 0 0 74 

Catastrophic 0 0 160 0 0 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 5.4 0.0 94.6 0.0 0.0 100 

Moderate 0.0 0.0 100.0 0.0 0.0 100 

Extensive 0.0 0.0 100.0 0.0 0.0 100 

Catastrophic 0.0 0.0 100.0 0.0 0.0 100 
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Classification accuracy table of NonDF Katrina samples scored with Ike-Rita-Ivan 
discriminant function. 

NonDF Katrina Points Scored with Ike Rita Ivan DF – 52 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 5 0 1 66 1 73 

Limited 17 36 21 24 14 112 

Moderate 11 0 212 0 107 330 

Extensive 3 4 5 10 52 74 

Catastrophic 0 30 2 0 128 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 6.8 0.0 1.4 90.4 1.4 100 

Limited 15.2 32.1 18.8 21.4 12.5 100 

Moderate 3.3 0.0 64.2 0.0 32.4 100 

Extensive 4.1 5.4 6.8 13.5 70.3 100 

Catastrophic 0.0 18.8 1.3 0.0 80.0 100 
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Classification accuracy table of NonDF Katrina samples scored with Rita-Katrina-
Ivan discriminant function. 

NonDF Katrina Points Scored with Rita Katrina Ivan DF – 46 percent correct 
classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 36 0 3 34 0 73 

Limited 14 77 1 11 9 112 

Moderate 18 0 120 7 185 330 

Extensive 0 11 3 24 36 74 

Catastrophic 74 0 0 2 84 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 49.3 0.0 4.1 46.6 0.0 100 

Limited 12.5 68.8 0.9 9.8 8.0 100 

Moderate 5.5 0.0 36.4 2.1 56.1 100 

Extensive 0.0 14.9 4.1 32.4 48.6 100 

Catastrophic 46.3 0.0 0.0 1.3 52.5 100 
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Classification accuracy table of NonDF Katrina samples scored with Rite-Katrina 
discriminant function. 

NonDF Katrina Points Scored with Rita Katrina DF – 20 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 5 0 1 67 0 73 

Limited 0 74 0 38 0 112 

Moderate 4 0 5 154 167 330 

Extensive 0 25 0 46 3 74 

Catastrophic 0 106 0 34 20 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 6.8 0.0 1.4 91.8 0.0 100 

Limited 0.0 66.1 0.0 33.9 0.0 100 

Moderate 1.2 0.0 1.5 46.7 50.6 100 

Extensive 0.0 33.8 0.0 62.2 4.1 100 

Catastrophic 0.0 66.3 0.0 21.3 12.5 100 
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Classification accuracy table of NonDF Katrina samples scored with Rita-Ivan 
discriminant function. 

NonDF Katrina Points Scored with Rita Ivan DF – 39 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 20 0 0 53 0 73 

Limited 7 3 92 3 7 112 

Moderate 0 0 233 0 97 330 

Extensive 1 15 17 6 35 74 

Catastrophic 0 106 22 0 32 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 27.4 0.0 0.0 72.6 0.0 100 

Limited 6.3 2.7 82.1 2.7 6.3 100 

Moderate 0.0 0.0 70.6 0.0 29.4 100 

Extensive 1.4 20.3 23.0 8.1 47.3 100 

Catastrophic 0.0 66.3 13.8 0.0 20.0 100 
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Classification accuracy table of NonDF Katrina samples scored with Rita 
discriminant function. 

NonDF Katrina Points Scored with Rita DF -  35 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 67 1 1 4 73 

Limited 0 109 0 0 3 112 

Moderate 0 1 126 9 194 330 

Extensive 0 48 0 0 26 74 

Catastrophic 0 134 0 0 26 160 

              

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 91.8 1.4 1.4 5.5 100 

Limited 0.0 97.3 0.0 0.0 2.7 100 

Moderate 0.0 0.3 38.2 2.7 58.8 100 

Extensive 0.0 64.9 0.0 0.0 35.1 100 

Catastrophic 0.0 83.8 0.0 0.0 16.3 100 
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Classification accuracy table of Ike samples scored with Katrina-Ivan discriminant 
function. 

Ike Scored with Katrina Ivan DF Classification Result – 17 percent correct 
classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 0 160 114 0 274 

Limited 0 32 54 0 0 86 

Moderate 0 52 33 9 0 94 

Extensive 0 60 41 0 4 105 

Catastrophic 0 175 164 0 110 449 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.0 58.4 41.6 0.0 100 

Limited 0.0 37.2 62.8 0.0 0.0 100 

Moderate 0.0 55.3 35.1 9.6 0.0 100 

Extensive 0.0 57.1 39.0 0.0 3.8 100 

Catastrophic 0.0 39.0 36.5 0.0 24.5 100 
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Classification accuracy table of Rita samples scored with Katrina-Ivan 
discriminant function. 

Rita Scored with Katrina Ivan DF Classification Result – 30 percent correct 
classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 69 164 2 50 285 

Limited 0 59 150 6 25 240 

Moderate 3 23 152 3 9 190 

Extensive 2 36 113 2 24 177 

Catastrophic 0 20 205 0 181 406 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 24.2 57.5 0.7 17.5 100 

Limited 0.0 24.6 62.5 2.5 10.4 100 

Moderate 1.6 12.1 80.0 1.6 4.7 100 

Extensive 1.1 20.3 63.8 1.1 13.6 100 

Catastrophic 0.0 4.9 50.5 0.0 44.6 100 
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Classification accuracy table of Rita samples scored with Ike discriminant 
function. 

Rita Scored with Ike DF - 17.2 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 1 1 251 32 285 

Limited 0 0 23 178 39 240 

Moderate 3 1 0 153 33 190 

Extensive 0 0 6 137 34 177 

Catastrophic 14 0 1 305 86 406 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.4 0.4 88.1 11.2 100 

Limited 0.0 0.0 9.6 74.2 16.3 100 

Moderate 1.6 0.5 0.0 80.5 17.4 100 

Extensive 0.0 0.0 3.4 77.4 19.2 100 

Catastrophic 3.4 0.0 0.2 75.1 21.2 100 
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Classification accuracy table of Rita samples scored with Ike-Katrina discriminant 
function.  

Rita Scored with Ike and Katrina DF - 41.4 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 7 24 167 2 85 285 

Limited 0 128 11 27 74 240 

Moderate 4 8 154 0 24 190 

Extensive 3 71 27 25 51 177 

Catastrophic 21 36 116 13 220 406 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 2.5 8.4 58.6 0.7 29.8 100 

Limited 0.0 53.3 4.6 11.3 30.8 100 

Moderate 2.1 4.2 81.1 0.0 12.6 100 

Extensive 1.7 40.1 15.3 14.1 28.8 100 

Catastrophic 5.2 8.9 28.6 3.2 54.2 100 

 

  



 

Classificati
discriminan

 

1

2

3

4

5

60

70

80

90

100

Pe
rc
en

t

Rita Scored
and Ivan 

ion accurac
nt function. 

0.0

10.0

20.0

30.0

40.0

0.0

0.0

0.0

0.0

0.0

0.0

d with Ike, Kat
DF Classificati
Result

cy bar chart

 

rina
ion 

t of Rita sammples scorred with Ike-Katrina-Iva

No Dmg

Limited

Moderat

Extensiv

Catastro

235 

 

an 

te

e

phic



236 
 

Classification accuracy table of Rita samples scored with Ike-Katrina-Ivan 
discriminant function. 

Rita Scored with Ike, Katrina and Ivan DF - 69.3 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 177 2 25 1 80 285 

Limited 5 151 0 5 79 240 

Moderate 41 7 113 5 24 190 

Extensive 14 5 2 105 51 177 

Catastrophic 20 10 10 13 353 406 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 62.1 0.7 8.8 0.4 28.1 100 

Limited 2.1 62.9 0.0 2.1 32.9 100 

Moderate 21.6 3.7 59.5 2.6 12.6 100 

Extensive 7.9 2.8 1.1 59.3 28.8 100 

Catastrophic 4.9 2.5 2.5 3.2 86.9 100 
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Classification accuracy table of Rita samples with Ike discriminant function. 

Rita Scored with Ike DF - 17.2 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 1 1 251 32 285 

Limited 0 0 23 178 39 240 

Moderate 3 1 0 153 33 190 

Extensive 0 0 6 137 34 177 

Catastrophic 14 0 1 305 86 406 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.4 0.4 88.1 11.2 100 

Limited 0.0 0.0 9.6 74.2 16.3 100 

Moderate 1.6 0.5 0.0 80.5 17.4 100 

Extensive 0.0 0.0 3.4 77.4 19.2 100 

Catastrophic 3.4 0.0 0.2 75.1 21.2 100 
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Classification accuracy table of Katrina samples scored with Ike discriminant 
function.  

Katrina Scored with Ike DF - 25.1 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0 0 3 60 16 79 

Limited 0 0 50 111 40 201 

Moderate 0 25 85 294 66 470 

Extensive 0 0 15 137 22 174 

Catastrophic 18 1 16 231 102 368 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 0.0 0.0 3.8 75.9 20.3 100 

Limited 0.0 0.0 24.9 55.2 19.9 100 

Moderate 0.0 5.3 18.1 62.6 14.0 100 

Extensive 0.0 0.0 8.6 78.7 12.6 100 

Catastrophic 4.9 0.3 4.3 62.8 27.7 100 
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Classification accuracy table of Ivan samples scored with Ike discriminant 
function.  

Ivan Scored with Ike DF - 10.2 percent correct classification 

Count  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 73 0 0 0 0 73 

Limited 150 0 0 0 0 150 

Moderate 383 9 0 4 5 401 

Extensive 83 0 0 0 0 83 

Catastrophic 9 0 0 0 0 9 

       

Percent  No Dmg Limited Moderate Extensive Catastrophic Total 

No Dmg 100.0 0.0 0.0 0.0 0.0 100 

Limited 100.0 0.0 0.0 0.0 0.0 100 

Moderate 95.5 2.2 0.0 1.0 1.2 100 

Extensive 100.0 0.0 0.0 0.0 0.0 100 

Catastrophic 100.0 0.0 0.0 0.0 0.0 100 
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Classification accuracy table of Joplin tornado samples informing discriminant 
function.  

Joplin DA Classification Result ‐ 81.2 percent correct classification 

Count  No Dmg  F1  F2  F3  F4  F5  Total 

No Dmg  54  3  0  0  0  0  57 

F1  2  20  1  0  0  0  23 

F2  0  3  12  2  0  0  17 

F3  0  0  4  12  1  3  20 

F4  0  0  0  0  8  2  10 

F5  0  0  0  3  2  6  11 

               

Percent   No Dmg  F1  F2  F3  F4  F5  Total 

No Dmg  94.7  5.3  0.0  0.0  0.0  0.0  100 

F1  8.7  87.0  4.3  0.0  0.0  0.0  100 

F2  0.0  17.6  70.6  11.8  0.0  0.0  100 

F3  0.0  0.0  20.0  60.0  5.0  15.0  100 

F4  0.0  0.0  0.0  0.0  80.0  20.0  100 

F5  0.0  0.0  0.0  27.3  18.2  54.5  100 
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Classification accuracy table of Joplin tornado samples not informing discriminant 
function scored with Joplin discriminant function.  

Joplin test area scored with Joplin DF Classification Result - 81.2  percent correct 
classification 

Percent  No Dmg F1 F2 F3 F4 F5 Total 

No Dmg 86.5 13.5 0 0 0 0 100 

F1 61.1 33.3 5.6 0 0 0 100 

F2 12.5 31.2 50 6.3 0 0 100 

F3 0 6.3 12.5 31.3 21.9 28 100 

F4 0 0 5.9 35.3 0 58.8 100 

F5 0 0 0 44.4 11.1 44.5 100 
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