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ABSTRACT

STUDIES OF MESON MASS SPECTRA IN THE

CONTEXT OF QUARK-ANTIQUARK BOUND STATES

by Mallika Dhar

August 2010

This dissertation deals with the computation of meson mass spectra in the context of quark-

antiquark (qq̄) bound-state. Traditionally the qq̄ bound-state problem is treated by solving

the non-relativistic Schrödinger equation in position representation with a linear confining

potential and a Coulomb-like attractive potential. For high energy, relativistic kinematics is

necessary. It is well known that relativistic kinematics cannot be treated properly in position

representation, but it can easily be handled in momentum representation. On the other hand, the

linear potential and Coulomb-like potential have singularities in momentum-space and compli-

cated subtraction procedure is necessary to treat the singularities properly. In order to deal with

the double conflict, we have developed a method to solve any Schrödinger-like wave equation

with/without relativistic kinematics in the mixed-space representation. In this representation,

the kinematic term is treated in momentum-space and the potential term is treated in position-

space. The results obtained from the mixed representation are in excellent agreement with

the results obtained from the position-space and momentum space representations of the non-

relativistic Schrödinger equation without the spin-dependent terms in potential. The success

of our computational scheme encouraged us to extend the investigation towards relativistic

treatment of the mesonic systems along with the spin-dependent interactions in potential. We

have included relativistic kinematics and spin-dependent potentials along with the regular lin-

ear and Coulomb-type potentials in our equation. Our predicted results of meson masses are in

excellent agreement with the experimental data.

ii



COPYRIGHT BY

MALLIKA DHAR

2010



The University of Southern Mississippi

STUDIES OF MESON MASS SPECTRA IN THE

CONTEXT OF QUARK-ANTIQUARK BOUND STATES

by

Mallika Dhar

A Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved:

Director

Dean of the Graduate School

August 2010

Dr. Khin Maung Maung

Dr. John Norbury

Dr. Lawrence Mead

Dr. Christopher Sirola

Dr. Sung Lee

Dr. Susan A. Siltanen



ACKNOWLEDGMENTS

I would like to thank all of those who have assisted me in this effort. I am forever thankful

to my adviser, Dr. Khin Maung Maung, who taught me with great patience and helped me

in many ways to complete my dissertation. He taught me with great care and helped me to

understand the nature of research in the field of theoretical physics and computations. I have

gained considerable amount of knowledge and experience while working under his supervision.

I would like to thank my other committee members, Dr. John Norbury, Dr. Lawrence Mead,

Dr. Sung Lee and Dr. Christopher Sirola, whose active support made it possible for me to

complete my dissertation. I would like to thank my friend Charles Werneth with all my heart;

without his active support, both academically and emotionally, it would not have been possible

for me to carry on. I would like to thank my parents, Sarashi Ranjan Dhar and Manju Dhar,

for their kindness, love and care. They are always very supportive. I would like to thank my

brother, Tanmay Dhar, for his continuous support and care.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . viii

NOTATION AND GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction 1
1.2 Brief Overview 1
1.3 Models of Quantum Chromodynamics (QCD) 4
1.4 The Two-Body Schrödinger Equation 5

2 THE SCHRÖDINGER EQUATION IN POSITION REPRESENTATION . . . 7
2.1 The Schrödinger Equation of a Two-Body Bound State in Position-Space 7

3 THE SCHRÖDINGER EQUATION IN MOMENTUM REPRESENTATION . 9
3.1 Momentum Representation of the Two-Body Schrödinger Equation 9

4 THE SCHRÖDINGER EQUATION IN MIXED REPRESENTATION . . . . . 12
4.1 The Schrödinger Equation in Mixed-Space 12

5 THE VARIATIONAL METHOD . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Solving the Schrödinger Equation Using the Variational Principle 14
5.2 Solution in Position-Space 15
5.3 Test Case Results in Position-Space 16
5.4 Solution in Momentum-Space 19
5.5 Test Case Results in Momentum-Space 20
5.6 Solution in Mixed Space 20
5.7 Test Case Results in Mixed-Space 22

6 SPINLESS SALPETER EQUATION IN MIXED REPRESENTATION . . . . 24
6.1 Spinless Salpeter Equation 24
6.2 Spinless Salpeter Equation in Mixed-Space 24
6.3 Results 27

7 EMPLOYING SPIN-DEPENDENT INTERACTIONS . . . . . . . . . . . . . 30
7.1 Spin-Dependent Potentials 30

iv



7.2 Spin-Orbit Coupling 31
7.3 Spin-Spin Interaction 31

8 MESON MASS SPECTROSCOPY . . . . . . . . . . . . . . . . . . . . . . . 33
8.1 Heavy-Heavy Systems 33

9 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . 39

APPENDIX

A GRAM-SCHMIDT ORTHOGONALIZATION . . . . . . . . . . . . . . . . . 41
A.1 Gram-Schmidt Procedure 41
A.2 Numerical Approach 43

B GAUSSIAN QUADRATURE . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.1 Gaussian Quadrature Method 45

C BASIS FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
C.1 Position-Space Basis Functions 47
C.2 Momentum-Space Basis Functions 48

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



LIST OF ILLUSTRATIONS

Figure

1.1 This is the pictorial description of the difference between the Quantum Electro-
dynamics (QED) and Quantum Chromodynamics (QCD). In QED, the exchange
particle is photon, they do not interact with each other. The effective electric charge
decreases as the distance increases from the electrically charged particle. In QCD,
the exchange particle is gluon, they interact with one another. As a result, gluons
cause anti-screening which gives rise to the property of asymptotic freedom. Each
quark has color charge, effective color charge increases as the distance from the
quark increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Diagram depicting center of mass and relative coordinates. . . . . . . . . . . . . . 5

5.1 This is the plot of ground state energy vs. variational parameter for Gaussian, ex-
ponential and Laguerre basis functions. Note that the ground state energy stays
constant over a the longest range of variational parameter for Laguerre basis func-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 The normalized Gaussian variational wave functions for the ground state are plot-
ted for number of basis Nmax = 1,3, and 5. The ground state Laguerre basis wave
function with 60 basis is also plotted as a standard wavefunction. The Gaussian
wave function converges to the Laguerre basis wave function( constructed with 60
basis functions) when Nmax is increased from 3 to 5. . . . . . . . . . . . . . . . . 17

5.3 The normalized Gaussian variational wave functions for the first excited states
are plotted for Nmax = 2,5, and 10. The first excited state Laguerre basis wave
function with 60 basis is also plotted as a standard wavefunction. Note that the
wave function converges to the Laguerre basis wave function constructed from 60
basis functions when Nmax is increased from 5 to 10. . . . . . . . . . . . . . . . . 18

vi



LIST OF TABLES

Table

1.1 A List of Quarks and Their Electric Charges . . . . . . . . . . . . . . . . . . . . . 2

5.1 S State (l = 0) Energies of the Gaussian, Exponential, and Laguerre Variational
Wave Functions for Nmax = 5 and Nmax = 10. The Last Column Contains the
Roots of the Airy’s Function Given by Abramowitz and Stegun (A & S) [1]Results
of The Laguerre basis with Nmax = 60 Agree to All Digits with A&S. . . . . . . . 19

5.2 S State (l = 0) Energies of the Gaussian, Harmonic Oscillator and Jacobi Varia-
tional Wave Functions for Nmax = 10 and Nmax = 20. The Last Column Contains
the Roots of the Airy’s Function Given by Abramowitz and Stegun (A & S) [1]. . . 21

5.3 S State (l = 0) Energies of the Gaussian, Harmonic Oscillator and Laguerre/Jacobi
Variational Wave Functions for Nmax = 10 and Nmax = 20. The Last Column Con-
tains the Roots of the Airy’s Function Given by Abramowitz and Stegun (A & S)
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Parameters Used for the Mixed-Space and Momentum-Space Equations. . . . . . . 27
6.2 Calculations of cc̄ Spin-Averaged Masses with the Mixed-Space and Momentum-

Space Equations Compared to Experiment[2]. The States Marked with † are a
Mixture of S and D States, but have been Assigned as Predominantly S or D Based
on the Analysis of Reference [3]. The States with the Error Bars have been Spin-
Averaged. We Fit to the 1S and 2S States within the Tolerance ε ≤ 0.0002. . . . . 28

6.3 Calculations of bb̄ Spin-Averaged Masses with the Mixed-Space and Momentum-
Space Equations Compared to Experiment[2]. The States Marked with † are a
Mixture of S and D States, but have been Assigned as Predominantly S or D Based
on the Analysis of Reference [3]. The States with the Error Bars have been Spin-
Averaged. We Fit to the 1S State within the Tolerance ε ≤ 0.0002. . . . . . . . . . 29

8.1 cc̄ Meson System, mc = 1.361 GeV, Linear Strength = σ = 0.191 GeV 2, Coulomb
Strength=0.5, Spin-Spin Interaction Parameter= k = 0.771, Spin-Orbit Parameters:
β = 1.573GeV 2 and VLS1 = 0.0129 GeV. Experimental Values are taken from the
Current Available Particle Data[2]. . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 cc̄ Meson System (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 bb̄ Meson System, mb = 4.787 GeV, Linear Strength = σ = 0.191 GeV 2, Coulomb

Strength=0.5, Spin-Spin Interaction Parameter= k = 0.4315, Spin-Orbit Parame-
ters: β = 2.73GeV 2 and VLS1 = 0.15 GeV. Experimental Values are Taken from
the Current Available Particle Data[2]. . . . . . . . . . . . . . . . . . . . . . . . 37

8.4 bb̄ Meson System (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



LIST OF ABBREVIATIONS

A& S - Abramowitz and Stegun
HO - Harmonic Oscillator

NRSE - Nonrelativistic Schrödinger Equation
QCD - Quantum Chromodynamics
QED - Quantum Electrodynamics

viii



NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational usage.
In many cases these fields tend to use different preferred notation to indicate the same concept,
and these have been reconciled to the extent possible, given the interdisciplinary nature of the
material.

The capital letters with tilde, H̃, D̃, · · · are used to denote matrices.The capital letters with
tilde and two indices, H̃i j are used to denote matrix elements. Letters with right angles, |φ〉, |ψ〉
are used to denote the ket vectors. Letters with left angles, 〈φ |,〈ψ| are used to denote the bra
vectors. Letters with hats, Ĥ, T̂ , p̂ are used to denote the operators. Lower case letters such as
i, j,k, l,m,n,α,β are used to denote indices.

ix
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Chapter 1

BACKGROUND

1.1 Introduction

According to the quark model, a quark is the fundamental building block of matter. A meson
is a two-body bound state of a quark and an antiquark. Quarks and antiquarks are subject to
the strong interaction. The theory which describes the mechanism of the strong interaction
is known as Quantum Chromodynamics(QCD). According to QCD, quarks and antiquarks
interact by exchanging gauge bosons called gluons. Lattice gauge calculations indicate that
the interaction between a quark and an antiquark could very well be approximated by a linear
plus a Coulomb-type potential. The linear part of the potential models the confinement and
Coulomb-part models asymptotic freedom [4]. These two important properties:confinement

and asymptotic freedom will be discussed later(Section 1.2).
The quark-antiquark(qq̄) pair has discrete energy levels corresponding to the different

modes of qq̄ excitations, rotations, vibrations etc. [5] These discrete energy levels must corre-
spond to the observed meson states.

The main motivation of this dissertation is to produce meson mass spectra in the context
of quark-antiquark (qq̄) bound states. A brief overview of the quark model and Quantum
Chromodynamics(QCD) is given in the next section.

1.2 Brief Overview

A large number of new particles were discovered from the particle accelerator experiments in
1960’s [6]. Soon, it became clear that they could not be elementary. Gell-Mann [7] and Zweig
[8] provided a simple idea which solved the problem. They proposed that the fundamental
building block of matter is the quark. Each meson is a two-body bound state of a quark and an
antiquark and each baryon is a three-body bound state of three quarks. For example, the meson
known as J/Ψ is a bound state of charm (c) and anticharm (c̄) quarks. The proton is a baryon;
it is a three-body bound state of two up (u) quarks and one down (d) quark and a neutron is a
three-body bound state of one up (u) quark and two down (d) quarks.

It is now widely accepted that there are six flavors of quarks: up(u), down(d), strange(s),
charm(c), bottom(b) and top(t). Each quark carries fractional electric charge: up(u), charm(c)
and top(t) quarks have charge +2

3e and down(d), strange(s) and bottom(b) quarks have charge
−1

3e. A complete list of quarks with their electric charges are presented in Table 1.1.
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Table 1.1: A List of Quarks and Their Electric Charges

Flavor Symbol Electric Charge
(e)

up u +2
3e

down d −1
3e

charm c +2
3e

strange s −1
3e

top t +2
3e

bottom b −1
3e

In addition to electric charge, quarks have a property known as color charge. This property
was introduced in 1964 by Greenburg [9] and in 1965 by Han and Nambu[10]. Color charge
is a fundamental property of quarks and antiquarks. Quarks come in three primary colors,
denoted as R, G and B. Antiquarks are assigned with complementary colors R̄, Ḡ and B̄. This
“color” has no relation to the real colors of everyday life, this color charge is simply a quantum
property.

Quarks and antiquarks combine together to form hadrons(mesons and baryons) in such
a way that all observed hadrons are colorless(color singlet) and carry integer electric charge.
This theoretical description works well because all the quark bound states that are detected in
various experiments are all colorless(color singlet).[5]

All modern theories of interactions are gauge theories. According to gauge theory, each
of the interactions between various particles is due to the exchange of gauge bosons. For ex-
ample, electromagnetic interaction is caused by the exchange of photons between the charged
particles. The theory that describes electromagnetic interaction is known as Quantum Electro-
dynamics(QED).

By analogy with Quantum Electrodynamics (QED), in which photons are the exchange par-
ticles of the electromagnetic interaction, particles known as gluons are the exchange particles
of the strong interaction. Gluons are exchanged between the particles with color charge. The
important difference between QED and QCD is that unlike photons which are chargeless, glu-
ons carry color charges. Since each gluon carries color charge, they interact with one another
[11] [12]. This leads to the fact that gluons in the system behave in such a way that the mag-
nitude of the interaction potential increases as the distance between the interacting particles
increases. This property is known as anti-screening. In Figure(1.1), a pictorial description is
given about the difference between the Quantum Electrodynamics (QED) and Quantum Chro-
modynamics (QCD) [5]. Notice that effective color charge increases as the distance increases
from the color-charged particle and the effective electric charge decreases as the distance in-
creases from the electrically charged particle.

Anti-screening is the cause of the important phenomenon known as asymptotic freedom [4].
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Asymptotic freedom suggests that at short distance (high energy) strongly interacting particles
behave as if they are asymptotically free; their effective coupling is very weak at very short
distance. On the other hand, the effective coupling between the strongly interacting particles
is very large at large distance(low energy) which gives rise to confinement.

Quantum Electrodynamics(QED)                                    Quantum Chromodynamics (QCD)

                                                                                            but also

                                                                                          

e­

e+ e­

e­
e+

e­

e+

q

q

q

q

q

q

q

q

g

g

g g

Figure 1.1: This is the pictorial description of the difference between the Quantum Electro-
dynamics (QED) and Quantum Chromodynamics (QCD). In QED, the exchange particle is
photon, they do not interact with each other. The effective electric charge decreases as the dis-
tance increases from the electrically charged particle. In QCD, the exchange particle is gluon,
they interact with one another. As a result, gluons cause anti-screening which gives rise to the
property of asymptotic freedom. Each quark has color charge, effective color charge increases
as the distance from the quark increases.

Asymptotic freedom was introduced in 1973 by Gross and Wilczec [4] and Politzer [13].
This is a very important and useful property to study the high energy behavior of QCD. Because
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of asymptotic freedom, the strong coupling constant is small for sufficiently small distances
and amenable to perturbative method. The one gluon exchange model was used successfully
to model the very small distance interactions of quarks [14].

Another important property of strong interaction is known as confinement. Quarks are
forever bound inside either a two-body system called a meson or a three-body system called
a baryon. Free quarks in nature have never been experimentally observed. To explain the
complete absence of an isolated quark, it is said that the color-charged particles cannot be
isolated. If one tries to isolate a quark, at some point it becomes energetically more favorable
for a new quark/antiquark pair to be created out of the vacuum than to allow the quarks to
separate farther.

Lattice gauge calculations and Wilson loop calculations show that for large distances the
potential between the quarks exhibit linear behavior[11] [15][16] [17] [18] [19]. As a result,
confinement appears as a property of QCD.

1.3 Models of Quantum Chromodynamics (QCD)

Quantum Chrmodynamics (QCD) was proposed in 1970’s as a theory of the strong interactions.
It was widely accepted after the discovery of asymptotic freedom in 1973. QCD offered a
satisfactory explanation of some of the puzzling experimental results at that time. Since then,
QCD continued to succeed in explaining the physics of strong interaction. [20]

QCD is especially successful in the high energy region. Effective methods derived from the
first principles have been developed for the high energy region. However, properties of medium
and low energy QCD is still a challenge and remains an open research area. Perturbation theory
is not applicable in low and medium energy region and no other rigorous analytical method has
been developed so far.[15]

One way is to invent models to capture the most important features of QCD. A great variety
of models have been developed. Those models are quenched lattice gauge theory, The Dyson-
Schwinger formalism, constituent quark models, light cone QCD and various effective field
theories. [21] [22]

Of all these models, we have chosen the constituent quark model in our studies of meson
mass spectra. In the constituent quark model, the gluon degrees of freedom are eliminated
in favor of confined constituent quarks with effective masses coming from chiral symmetry
breaking and quark-antiquark effective interactions. [23][24]

To start our studies of meson mass spectra, we began with a two-body Schrödinger equation.
In the next section, the two-body Schrödinger Equation is described.
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O

m
2
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r = r
2
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1

Figure 1.2: Diagram depicting center of mass and relative coordinates.

1.4 The Two-Body Schrödinger Equation

We are interested in investigating the meson mass spectra in the context of quark-antiquark(qq̄)
bound states. To do that, we need to solve the time-independent Schrödinger-type equation
with and without relativistic kinematics. [25] In this section we briefly describe how center of
mass motion and relative motion are separated out.

The time-independent Schrödinger equation for a two particle system with a central poten-
tial V (r) can be written as the following:[ p2

1
2m1

+
p2

2
2m2

+V (r)
]
Ψ(r1,r2) = EΨ(r1,r2), (1.1)

where m1 is the mass of particle 1 and m2 is the mass of particle 2 and the relative distance =
r ≡ r2− r1. If we separate the relative motion and the motion of the center of mass, then the
above equation can be rewritten as the following:[ P2

2M
+

p2

2µ
+V (r)

]
Ψ(R,r) = EΨ(R,r), (1.2)
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where P = total momentum = p1 + p2, p = relative momentum = m2p1−m1p2
m1+m2

, M = total mass=
m1 +m2, µ = reduced mass = m1m2

m1+m2
and r = relative distance between particle 1 and particle 2

= r2− r1 Now we write
E = Ecm +Erel, (1.3)

where Ecm is the center of mass energy and Erel is the relative energy. After the separation
of variables in center of mass and relative coordinates, the Schrödinger equation in relative
coordinates can be written as

[ p2

2µ
+V (r)

]
Ψ(r) = ErelΨ(r). (1.4)

Note that the potential between the two particles depends only on the relative distance.

In Figure 1.2, a schematic diagram of the center of mass and relative coordinates are given.
The two-body Schrödinger equation, could be expressed in position space, momentum space
and mixed space representations. In the following chapters we will discuss about those repre-
sentations and the solution methods.
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Chapter 2

THE SCHRÖDINGER EQUATION IN POSITION REPRESENTATION

2.1 The Schrödinger Equation of a Two-Body Bound State in Position-Space

The Schrödinger equation is usually solved in position-space. Let’s present a short derivation
of the position-space representation of the Schrödinger equation here. Since we are interested
only in the relative motion equation (1.4), all the quantities correspond to relative variables.
We start from the Schrödinger equation in Hilbert space,

Ĥ|Ψn〉= En|Ψn〉. (2.1)

The eigenstates |Ψn〉 make a complete orthonormal set of eigenstates in Hilbert space. Hamil-
tonian operator Ĥ can be written as a sum of the relative kinetic energy operator T̂ and the
potential energy operator V̂ . So, we have

[T̂ +V̂ ]|Ψn〉= En|Ψn〉. (2.2)

By projecting this equation on position-space basis :

〈r|[T̂ +V̂ ]|Ψn〉= En〈r|Ψn〉. (2.3)

The non-relativistic kinetic energy operator is expressed as

T̂ =
p̂2

2µ
, (2.4)

where p̂ is the relative momentum operator and µ = m1m2
m1+m2

is the reduced mass of the two-body
system of mass m1 and m2.
The position basis matrix element of the quantum mechanical momentum operator p̂ is:

〈r|p̂|r′〉=−ih̄∇rδ (r− r′), (2.5)

Inserting position completeness and using the relation given above, we can write the Schrödinger
equation as the following,

−h̄2

2µ
∇

2
ψn(r)+

∫
〈r|V̂ |r′〉〈r′|ψn〉dr′ = Enψn(r). (2.6)

Equation(2.6) is the most general form of the Schrödinger equation in position space. It is
an integro-differential equation with a non-local potential 〈r′|V̂|r〉. If the potential is a local
potential, then

〈r|V̂ |r′〉= V (r)δ (r− r′). (2.7)
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Using the property of a local potential, we can write

−h̄2

2µ
∇

2
ψn(r)+

∫
V (r)δ (r− r′)ψn(r′)dr′ = Enψn(r). (2.8)

Using the delta function we integrate and obtain the following:

−h̄2

2µ
∇

2
ψnl(r)+V (r)ψnl(r) = Enψnl(r). (2.9)

Equation(2.9) is the position-space representation of the Schrödinger equation. If the orbital
angular momentum ~L is good quantum number, we can separate the variables in radial and
angular parts as

ψnl(r) =
Unl(r)

r
Y m

l (r̂), (2.10)

where Unl(r) = rψnl(r) is the reduced wave function, r is the relative distance between the two
particles, Y m

l (r̂) is the spherical harmonic and r̂ is the unit vector along the direction of r. After
separating the angular variables, the Schrödinger equation becomes:

−h̄2

2µ

d2

dr2Unl(r)+V (r)Unl(r)+
h̄2

2µ

l(l +1)
r2 Unl(r) = EnUnl(r). (2.11)

The normalization of Unl(r) is given by∫
∞

0
|Unl(r)|2dr = 1. (2.12)

Equation (2.11) is the radial part of the Schrödinger equation in position space.
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Chapter 3

THE SCHRÖDINGER EQUATION IN MOMENTUM
REPRESENTATION

3.1 Momentum Representation of the Two-Body Schrödinger Equation

For high energy quantum systems, relativistic kinematics is necessary. In order to treat rela-
tivistic kinematics properly, the Schrödinger equation is solved in momentum-space.

We will first present a short derivation of the Schrödinger in the momentum representation.
In Hilbert space,

Ĥ|Φn〉= E|Φn〉. (3.1)

Since, Ĥ = T̂ +V̂ , above equation becomes

(T̂ +V̂ )|Φn〉= E|Φn〉, (3.2)

where T̂ = p̂2

2µ
, for non-relativistic case and T̂ =

√
p̂2 +m2

1 +
√

p̂2 +m2
2 for relativistic case.

V̂ is the operator for the potential and µ = m1m2
m1+m2

= reduced mass of the two-body system of
mass m1 and m2.
After projecting with 〈p| from the left we obtain the following:

〈p|T̂ |Φn〉+ 〈p|V̂ |Φn〉= E〈p|Φn〉. (3.3)

We insert a momentum-space completeness in the first and second term to obtain the following
form: ∫

〈p| p̂2

2µ
|p′〉〈p′|Φn〉dp′+

∫
〈p|V̂ |p′〉〈p′|Φn〉dp′ = E〈p|Φn〉. (3.4)

When there is no coupling between angular momenta we can write

Φn(p) = φnl(p)Y m
l (p̂). (3.5)

and the momentum-space potential can be expressed as

〈p|V̂ |p′〉=
∞

∑
l=0

l

∑
m=−l

Vl(p, p′)Y m
l (p̂)Y ∗m

l (p̂′). (3.6)

Now using the separation of variables and integrating the angular parts, we obtain the Schrödinger
equation for the lth partial wave as the following:

p2

2µ
φnl(p)+

∞∫
0

Vl(p, p′)φnl(p′)p′2d p′ = Enlφnl(p), (3.7)
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where p = |p|, n is the principal quantum number and l is the orbital angular momentum quan-
tum number. This equation (3.7) is the 1-D momentum-space representation of the Schrödinger
equation for φnl . The partial-wave components of the potential are readily obtained as

Vl(p, p′) = 2π

+1∫
−1

V (q)Pl(x)dx, (3.8)

where Pl(x) is the Legendre polynomial of the first kind, x ≡ cosθpp′ and θpp′ is the angle
between vectors p and p′ and V (q) is the momentum-space potential where q = p′−p.

If we start from a power-law potential in position-space

V (r) = λN lim
η→0

rNe−ηr, (3.9)

where λN is the strength of the potential and η is the screening parameter. The index N in-
dicates the type of potential under consideration, N = −1 corresponds to the Coulomb-like
potential and N = 1 corresponds to the linear potential.

The momentum space potential V (q) can be expressed as the Fourier transform of the
power-law potential in position-space as equation(3.9):

V N(q) =
λN

2π2 lim
η→0

(−1)N+1 ∂ N+1

∂ηN+1

[
1

q2 +η2

]
. (3.10)

Using this expression of V (q) in equation(3.8) we can express the partial-wave component of
the potential as

Vl(p, p′) =
λN

π
lim
η→0

(−1)N+1 ∂ N+1

∂ηN+1
Ql(y)
pp′

, (3.11)

where y = p2+p′2+η2

2pp′ and Ql(y) is the Legendre polynomial of the second kind. We’ll see that
the quantity Vl(p, p′) for the linear potential and the Coulomb potential have singularities. For
the Coulomb potential,

VC
l (p, p′) =

λC

π
lim
η→0

Ql(y)
pp′

. (3.12)

and for the linear potential,

V L
l (p, p′) =

λL

π
lim
η→0

∂ 2

∂η2
Ql(y)
pp′

=
λL

π
lim
η→0

[
Q′

l(y)
(pp′)2 +

η2

(pp′)3 Q′′
l (y)

]
, (3.13)

These potentials in equation(3.12) and in equation(3.13) have singularities (at η = 0) when
p = p′. In order to show the singularity structure clearly, we write Ql(y) in terms of Q0(y) as
the following:

Ql(y) = Pl(y)Q0(y)−wl−1(y), (3.14)

where wl−1(y) = ∑
l
m=1

1
mPl−m(y)Pm−1(y). In the expression of Ql(p), the singularity occur

in the term Q0(y) at η = 0. We see that

Q0(y) =
1
2

ln|y+1
y−1

|. (3.15)
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and

Q′
0(y) =

1
1− y2 = pp′

[
−1

(p′− p)2 +η2 +
1

(p′+ p)2 +η2

]
. (3.16)

and
η2

pp′
Q′′

0(y) = η
2(p2 + p′2 +η

2)
[

−1
(p′− p)2 +η2 +

1
(p′+ p)2 +η2

]
. (3.17)

So, we see that the Coulomb potential has a logarithmic singularity from Q0(y) and the
linear potential has higher order singularities coming from Q′

0(y) and Q′′
0(y). Note that Q′

0(y)
is a derivative with respect to y. We can take care of these singularities by a subtraction method
invented by other researchers. [25] [26] [27] [28] [29]
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Chapter 4

THE SCHRÖDINGER EQUATION IN MIXED REPRESENTATION

4.1 The Schrödinger Equation in Mixed-Space

The Schrödinger Equation can be expressed as a form where kinetic energy part of the equation
is expressed in momentum space and potential energy part is expressed in position space.[30]
[31] [32] [33] [34] [35] [36] .

By treating the potential term in position space we are able to avoid the singularities asso-
ciated with the linear and Coulomb potentials in momentum-space.

We will first present a short derivation of the Schrödinger in the mixed representation. In
Hilbert space,

(T̂ +V̂ |Ψ〉= E|Ψ〉 (4.1)

where T̂ is p̂2

2µ
, for non-relativistic case and T̂ is

√
p̂2 +m2

1 +
√

p̂2 +m2
2 for relativistic case.

V̂ is the operator for the potential and µ = m1m2
m1+m2

= reduced mass of the two-body system of
mass m1 and m2.
After projecting with 〈p| from the left we obtain the following:

〈p|T̂ |Ψ〉+ 〈p|V̂ )|Ψ〉= E〈p|Ψ〉 (4.2)

We insert momentum completeness in the first term and two position-space completenesses in
the second term to obtain the following form:∫

〈p| p̂2

2µ
|p′〉〈p′|Φn〉dp′+

∫ ∫
〈p|r〉〈r|V̂ )|r′〉〈r′|Ψ〉drdr′ = E〈p|Ψ〉 (4.3)

Using the definition of the plane wave i.e.

〈p|r〉=
1

(2π)3/2

∫
e−ip·r (4.4)

and the definition of a local potential i.e. 〈r|V̂ |r′〉= V (r)δ (r− r′) we obtain

p2

2µ
Φ(p)+

1

(2π)3/2

∫
e−ip·rV (r)Ψ(r)dr = EΦ(p) (4.5)

Here Φ(p) is the Fourier transform of the r-space wave function Ψ(r) and is given by

Φ(p) =
1

(2π)3/2

∫
e−ip·r

Ψ(r)dr (4.6)
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When there is no coupling between angular momenta we can write Ψ(r) = ψnl(r)Y m
l (r̂) and

Φ(p) = φnl(p)Y m
l (p̂). Now using this angular separation, expanding the plane-wave and after

performing the angular integration, we obtain

p2

2µ
φnl(p)+

√
2
π

∞∫
0

jl(pr)V (r)ψnl(r)r2dr = Eφnl(p) (4.7)

and φnl(p) and ψnl(r) are related by a Fourier-Bessel transform given by

φnl(p) =
√

2
π

∞∫
0

jl(pr)ψnl(r)r2dr (4.8)

ψnl(r) =
√

2
π

∞∫
0

jl(pr)φnl(p)p2d p (4.9)

In the last two equations(4.9), we have absorbed a factor of (−i)l into the definition of ψnl(r).
Equation (4.7) is the Schrödinger equation in the mixed representation. In the next section we
will discuss how to solve this equation by using the variational method.
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Chapter 5

THE VARIATIONAL METHOD

5.1 Solving the Schrödinger Equation Using the Variational Principle

The Schrödinger equation in Hilbert space is written as

Ĥ|ψ〉= E|ψ〉 (5.1)

where Ĥ is the Hamiltonian operator, E is the energy eigen value and |ψ〉 is the state vector.
The variational method is remarkably successful in the calculation of the approximate solutions
to the Schrödinger equation. We suppose that |ψ〉 is an arbitrary trial state which gives an
approximate solution to the Schrödinger equation. Let E be an energy defined by

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(5.2)

We can write |ψ〉 as a linear combination of the basis states as the following:

|ψ〉=
∞

∑
j=1

c j|g j〉 (5.3)

where c j are the coefficients and |g j〉 are the basis states. Since the basis states are not neces-
sarily orthogonal to each other, we can write

〈gi|g j〉= Di j (5.4)

Now substituting Equation(5.3) into Equation(5.2), we obtain the following

E
∞

∑
i=1

∞

∑
j=1

c∗i c j〈gi|g j〉=
∞

∑
i=1

∞

∑
j=1

c∗i c j〈gi|Ĥ|g j〉 (5.5)

Now we differentiate both sides of the Equation (5.5) with respect to one of the coefficients, c∗k
and we obtain the following:

∂E
∂c∗k

∞

∑
i, j

c∗i c jDi j +E
∞

∑
j

c jDk j =
∞

∑
j

c j〈gk|Ĥ|g j〉 (5.6)

A stationary value of the energy could be obtained by setting

∂E
∂c∗k

= 0 (5.7)
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Now we can see
∞

∑
j=1

Hk jc j −E
∞

∑
j=1

Dk jc j = 0 (5.8)

where Hk j = 〈gk|Ĥ|g j〉. We can write Equation(5.8) as

∞

∑
j=1

Hk jc j = E
∞

∑
j=1

Dk jc j (5.9)

When the process is repeated for other coefficients, additional equations of the type of
Equation(5.9) are obtained and the number of such equations are equal to the number of basis
functions in Equation (5.3). In principle, infinite number of basis should be used to construct
the trial wavefunction. In practice, we can not use infinite number of basis; we use a finite
number of basis. To compensate the truncation, we use a variational parameter in our basis.
These system of equations gives us the matrix eigenvalue equation like the following:

H11 H12 · · ·H1n
H21 H21 · · ·H2n

...
Hn1 Hn2 · · ·Hnn




c1
c2
...

cn

 = E


D11 D12 · · ·D1n
D21 D21 · · ·D2n

...
Dn1 Dn2 · · ·Dnn




c1
c2
...

cn

 (5.10)

We can write the above equation in short form like the following:

D̃−1H̃c = Ec (5.11)

This Equation(5.11) is a standard matrix eigenvalue problem and can be solved for a given
value of the variational parameter b in the basis function g j(r,b). [37] [38] [39] [40]

5.2 Solution in Position-Space

We do our computations using three different sets of basis functions independently. We use
Gaussian, exponential, and Laguerre basis for the expansion in equation (5.3). ( See Appendix
C )

The Gaussian and exponential basis functions are not orthogonal. In order to use an or-
thonormal set we employ the Gram-Schmidt orthonormalization procedure. This procedure is
discussed in Appendix A.

The Laguerre basis functions are orthonormal and they have the following property:∫
∞

0
gL

i (r,b)gL
j (r,b)dr = δi j (5.12)

The integrals involved in the matrix elements of H̃ can be computed analytically for the
variational wave functions constructed from the Gaussian and exponential basis functions by
utilizing [41]. ∫

∞

0
rαe−air2

dr =
Γ(α+1

2 )

a
α+1

2
i

(5.13)
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Figure 5.1: This is the plot of ground state energy vs. variational parameter for Gaussian,
exponential and Laguerre basis functions. Note that the ground state energy stays constant
over a the longest range of variational parameter for Laguerre basis functions.

and ∫
∞

0
rαe−airdr =

Γ(α +1)
aα+1

i
. (5.14)

The integrals involving the Laguerre variational wave functions are computed numerically
via Gaussian quadrature [1]. Gaussian quadrature is discussed in Appendix B.

5.3 Test Case Results in Position-Space

We write a computer program to compute the discrete energies of the two-body system.[42].
To check the reliability of our computational scheme, we compute the energy states of the sys-
tem with purely linear potential with unit linear strength (σ = 1GeV 2) and m1 = m2 = 1GeV

and l = 0.

Using this potential, equation (2.11) with l = 0 can be transformed into Airy’s differential
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Figure 5.2: The normalized Gaussian variational wave functions for the ground state are plotted
for number of basis Nmax = 1,3, and 5. The ground state Laguerre basis wave function with
60 basis is also plotted as a standard wavefunction. The Gaussian wave function converges to
the Laguerre basis wave function( constructed with 60 basis functions) when Nmax is increased
from 3 to 5.

equation
d2W
dx2 − xW = 0, (5.15)

where the x is a transformed unitless variable:

x ≡−
(

2µ

σ2h̄2

) 1
3

(E−σr). (5.16)

The normalizable solution to Airy’s differential equation is the Airy’s function:

W (x) = Ai(x). (5.17)

The energies are related to the roots of the Airy’s differential equation by the following relation:

En−1 =
(

σ2h̄2

2µ

) 1
3

|xn|, (5.18)
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Figure 5.3: The normalized Gaussian variational wave functions for the first excited states are
plotted for Nmax = 2,5, and 10. The first excited state Laguerre basis wave function with 60
basis is also plotted as a standard wavefunction. Note that the wave function converges to the
Laguerre basis wave function constructed from 60 basis functions when Nmax is increased from
5 to 10.

where xn are the roots of Airy’s function. The results are given in Table (5.1). In figure 5.1, we
have shown the plot of ground state energy as a function of variational parameter for Gaussian,
exponential and Laguerre basis functions.
In figure 5.2, we have shown the plot of normalized ground state wave functions for number of
basis Nmax = 1,3, and 5. The ground state Laguerre basis wave function with 60 basis is also
plotted as a standard wavefunction. The Gaussian wave function converges to the Laguerre
basis wave function( constructed with 60 basis functions) when Nmax is increased from 3 to 5.

In figure 5.3, we have shown the plot of normalized first excited state wave functions for
number of basis Nmax = 1,3, and 5. The first excited state Laguerre basis wave function with
60 basis is also plotted as a standard wavefunction. The Gaussian wave function converges to
the Laguerre basis wave function( constructed with 60 basis functions) when Nmax is increased
from 3 to 5.
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Table 5.1: S State (l = 0) Energies of the Gaussian, Exponential, and Laguerre Variational
Wave Functions for Nmax = 5 and Nmax = 10. The Last Column Contains the Roots of the
Airy’s Function Given by Abramowitz and Stegun (A & S) [1]Results of The Laguerre basis
with Nmax = 60 Agree to All Digits with A&S.

Basis Nmax = 5 Nmax = 10 A&S
function Laguerre

Nmax = 60

Gaussian
1S 2.33812724 2.33810741 2.33810741
2S 4.11837280 4.08794945 4.08794944
3S 6.27318301 5.52055984 5.52055983
4S 11.37677573 6.78673566 6.78670809
5S 30.01762906 7.94767045 7.94413359
Exponential
1S 2.33928309 2.33810944 2.33810741
2S 4.18895861 4.08827046 4.08794944
3S 5.86055714 5.52415263 5.52055983
4S 14.16858414 6.83240501 6.78670809
5S 75.58999149 8.34071492 7.94413359
Laguerre
1S 2.34136432 2.33811592 2.33810741
2S 4.13333525 4.08857563 4.08794944
3S 5.72534717 5.53209461 5.52055983
4S 8.11423780 6.83859440 6.78670809
5S 15.51904879 8.14892461 7.94413359

5.4 Solution in Momentum-Space

We will solve equation (3.7) by expanding the wave function in a complete set of basis func-
tions. Since equation(3.7) has momentum-space wavefunction, we’ll expand the wavefunction
as a linear combination of the momentum-space basis.
We expand the wavefunctions as

φnl(p) =
∞

∑
j=0

g j(p)c j (5.19)

where g j(p) are known functions(See Appendix C).
The Jacobi basis functions in momentum-space are given as

g j(p) =
1√
N jl

(p/b)l

[(p/b)2 +1]l+2 P(l+ 3
2 ,l+ 1

2)
j

[
p2−b2

p2 +b2

]
, (5.20)
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where Pα,β
j (p/b) are the Jacobi polynomials and N jl is

N jl =
b3

2(2 j +2l +3)
Γ( j + l + 5

2)Γ( j + l + 3
2)

j!Γ( j +2l +3)
(5.21)

Using above expansion given in equation(5.19), we get

∞

∑
j=0

p2

2µ
g j(p)c j +

∞

∑
j=0

∫
∞

0
Vl(p, p′)g j(p′)p′2d p′c j = E

∞

∑
j=0

g j(p)c j

Next we multiply through by p2gi(p) and integrate over the momentum and we get

∞

∑
j=0

c j

[∫
∞

0

p2

2µ
gi(p)g j(p)p2d p

]
(5.22)

+
∞

∑
j=0

c j

[∫
∞

0

∫
∞

0
Vl(p, p′)gi(p)g j(p′)p′2d p′p2d p

]
c j = E

∞

∑
j=0

c j
[
gi(p)g j(p)p2d p

]
This is a simple eigen equation and can be solved by standard method.

5.5 Test Case Results in Momentum-Space

To check the reliability of our computational scheme, we compute the energy states of the sys-
tem with pure linear potential with unit linear strength(σ = 1GeV 2) and m1 = m2 = 1GeV and
l = 0. We used these parameters because analytical results are available as the roots of Airy’s
function.

As we have noticed in the previous section that with the above mentioned parameters, the
two-body Schrödinger equation becomes equivalent to the Airy’s differential equation and the
energies are related to the roots of the Airy’s differential equation. The results are given in
Table(5.2)

5.6 Solution in Mixed Space

Now we will solve the mixed space equation (4.7) by expanding the wave function in a com-
plete set of basis functions. Since equation (4.7) has both the momentum-space and position-
space wave functions, we expand both in a complete set of basis functions which are Fourier-
Bessel transforms of one another. Two well known sets are the Laguerre/Jacboi [43] and the
harmonic oscillator basis [43].
We expand the wavefunctions as

ψnl(r) =
∞

∑
j=0

g j(r)c j (5.23)

φnl(p) =
∞

∑
j=0

g̃ j(p)c j (5.24)
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Table 5.2: S State (l = 0) Energies of the Gaussian, Harmonic Oscillator and Jacobi Variational
Wave Functions for Nmax = 10 and Nmax = 20. The Last Column Contains the Roots of the
Airy’s Function Given by Abramowitz and Stegun (A & S) [1].

Basis Nmax = 10 Nmax = 20 A&S

Gaussian
1S 2.33810815 2.33810750 2.33810741
2S 4.08795437 4.08794955 4.08794944
3S 5.52085236 5.52056003 5.52055983
4S 6.79481014 6.78671124 6.78670809
5S 8.00139967 7.94424647 7.94413359
H.O.
1S 2.33811101 2.33810749 2.33810741
2S 4.08899547 4.08794955 4.08794944
3S 5.56607385 5.52057865 5.52055983
4S 7.16626004 6.78810139 6.78670809
5S 9.24612681 7.97280314 7.94413359
Jacobi
1S 2.33811592 2.33810741 2.33810741
2S 4.08857562 4.08794946 4.08794944
3S 5.53209460 5.52056175 5.52055983
4S 6.83859440 6.78678502 6.78670809
5S 8.14892460 7.94526089 7.94413359

We note that the basis functions are related by the Fourier-Bessel transform

g̃i(p) =
√

2
π

∞∫
0

jl(pr)gi(r)r2dr (5.25)

gi(r) =
√

2
π

∞∫
0

jl(pr)g̃i(p)p2d p (5.26)

If we use the expansion in equation (4.7), we obtain

∞

∑
j=0

p2

2µ
g̃ j(p)c j (5.27)

+
∞

∑
j=0

√
2
π

∞∫
0

jl(pr)V (r)g j(r)r2drc j = E
∞

∑
j=0

g̃ j(p)c j
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Next we multiply through by p2g̃i(p) and integrate over the momentum

∞

∑
j=0

c j

∞∫
0

p2

2µ
g̃i(p)g̃ j(p)p2d p (5.28)

+
∞

∑
j=0

c j

√
2
π

∞∫
0

∞∫
0

jl(pr)V (r)g̃i(p)g j(r)p2r2drd p = E
∞

∑
j=0

c j

∞∫
0

g̃i(p)g j(p)p2d p

(5.29)

Using the equation(5.26) on the above equation and because of the orthonormality of the basis
functions we obtain the following:

∞

∑
j=0

c j

∞∫
0

p2

2µ
g̃i(p)g̃ j(p)p2d p (5.30)

+
∞

∑
j=0

c j

∞∫
0

V (r)gi(r)g j(r)r2dr = Eci

This is a simple matrix eigen-equation and can be solved by standard methods.

5.7 Test Case Results in Mixed-Space

To check the reliability of our mixed-space computational scheme, we compute the energy
states of the system with pure linear potential with unit linear strength(σ = 1GeV 2) and m1 =
m2 = 1GeV and l = 0. As we have noticed in earlier part that with the above mentioned
parameters, the two-body Schrödinger equation becomes equivalent to the Airy’s differential
equation and the energies are related to the roots of the Airy’s differential equation. The results
are given in Table(5.3)
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Table 5.3: S State (l = 0) Energies of the Gaussian, Harmonic Oscillator and Laguerre/Jacobi
Variational Wave Functions for Nmax = 10 and Nmax = 20. The Last Column Contains the
Roots of the Airy’s Function Given by Abramowitz and Stegun (A & S) [1]

Basis Nmax = 10 Nmax = 20 A&S

Gaussian
1S 2.34572367 2.33810331 2.33810741
2S 4.10596083 4.10308625 4.08794944
3S 6.06540293 5.64423865 5.52055983
4S 10.76819625 6.98916741 6.78670809
5S 19.35362119 10.08586765 7.94413359
H.O.
1S 2.33811102 2.33810749 2.33810741
2S 4.08899547 4.08794955 4.08794944
3S 5.56607368 5.52057876 5.52055983
4S 7.16625905 6.78811037 6.78670809
5S 9.24612427 7.97293645 7.94413359
Laguerre/Jacobi
1S 2.33811592 2.33810741 2.33810741
2S 4.08857563 4.08794947 4.08794944
3S 5.53209461 5.52056175 5.52055983
4S 6.83859440 6.78678503 6.78670809
5S 8.14892461 7.94526090 7.94413359
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Chapter 6

SPINLESS SALPETER EQUATION IN MIXED REPRESENTATION

6.1 Spinless Salpeter Equation

The spinless Salpeter equation is obtained by replacing the Schrödinger kinetic energy operator
by the relativistic kinetic energy T [44][45]. For the one body equation, the replacement is
T =

√
p2 +m2, where p≡ |p| is the 3-momentum of the particle and m is the mass. For the two

body equation, the replacement is T = T1 +T2 =
√

p2 +m2
1 +

√
p2 +m2

2, with p = p1 =−p2.
By doing this replacement, E now contains the rest masses m1 and m2.

6.2 Spinless Salpeter Equation in Mixed-Space

A short derivation of the spinless Salpeter equation in the mixed representation is now pre-
sented. In Hilbert space

(T̂ +V̂ )|Ψ〉= E|Ψ〉, (6.1)

where |Ψ〉 is the wave vector, T̂ ≡
√

p2 +m2
1 +

√
p2 +m2

2 and V̂ is the operator for the poten-
tial. E is the total energy.

After projecting with 〈p| from the left and inserting momentum space completeness, posi-
tion space completeness and using the definition of a local potential, i.e. 〈r|V̂ |r′〉= V (r)δ (r−
r′), we obtain (√

p2 +m2
1 +

√
p2 +m2

2

)
Φ(p)

+
1

(2π)3/2

∫
e−ip·rV (r)Ψ(r)dr = EΦ(p). (6.2)

This is the 3-dimensional spinless Salpeter equation in the mixed-space representation.
Φ(p) is the Fourier transform of the position space wave function Ψ(r) and is given by

Φ(p) =
1

(2π)3/2

∫
e−ip·r

Ψ(r)dr. (6.3)

When there is no coupling between angular momenta, then Ψ(r) = ψnl(r)Y m
l (r̂) and Φ(p) =

φnl(p)Y m
l (p̂). Using this angular separation, expanding the plane wave and performing the

angular integration, we obtain
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(√
p2 +m2

1 +
√

p2 +m2
2

)
φnl(p)

+

√
2
π

∞∫
0

jl(pr)V (r)ψnl(r)r2dr = Eφnl(p), (6.4)

where jl(pr) is the spherical Bessel function of order l. The position space and momentum
space wave functions are related by a Fourier-Bessel transform

φnl(p) =
√

2
π

∞∫
0

jl(pr)ψnl(r)r2dr, (6.5)

ψnl(r) =
√

2
π

∞∫
0

jl(pr)φnl(p)p2d p, (6.6)

In the last two equations a factor of (−i)l is absorbed into the definition of ψnl(r).

Equation (6.4) is the spinless Salpeter equation for the l partial wave in the mixed space
representation. It is solved by expanding the wave functions in a complete set of basis functions.
Since equation (6.4) has both the momentum space and position space wave functions, we
expand both in a complete set of basis functions which are Fourier-Bessel transforms of one
another. Two well-known sets are the Laguerre-Jacobi and the harmonic oscillator basis. We
expand the wavefunctions as

ψnl(r) =
∞

∑
j=0

g j(r)c j, (6.7)

φnl(p) =
∞

∑
j=0

g̃ j(p)c j. (6.8)

Here g j(r) and g̃ j(p) are the basis functions described in Appendix C. The c j terms are the
expansion coefficients.We note that the basis functions are related by the Fourier-Bessel trans-
form

g̃i(p) =
√

2
π

∞∫
0

jl(pr)gi(r)r2dr (6.9)

gi(r) =
√

2
π

∞∫
0

jl(pr)g̃i(p)p2d p. (6.10)

In the variational method, one expands the wave function in a complete orthonormal set of
basis functions as in equations. One minimizes the energy by varying the coefficients of the
expansion. This results in a matrix eigen-equation. If one uses a complete set of basis, the
matrix is an infinite dimensional matrix. Solving the matrix eigen-equation is equivalent to
minimizing the energy with respect to the coefficients. In practice, one cannot use an infinite
set of basis functions and therefore must use a finite set of basis functions. To compensate
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for this truncation, we introduce a parameter in the basis functions which can be used as a
variational parameter.

Using the above expansion in equation (6.4) gives

∞

∑
j=0

(√
p2 +m2

1 +
√

p2 +m2
2

)
g̃ j(p)c j

+
∞

∑
j=0

√
2
π

∞∫
0

jl(pr)V (r)g j(r)r2drc j = E
∞

∑
j=0

g̃ j(p)c j. (6.11)

Next, multiply through by p2g̃i(p) and integrate over the momentum,

∞

∑
j=0

c j

∞∫
0

(√
p2 +m2

1 +
√

p2 +m2
2

)
g̃i(p)g̃ j(p)p2d p

+
∞

∑
j=0

c j

√
2
π

∞∫
0

∞∫
0

jl(pr)V (r)g̃i(p)g j(r)p2r2drd p

= E
∞

∑
j=0

c j

∞∫
0

g̃i(p)g j(p)p2d p. (6.12)

Using the relation given in equation (6.10) on the second term of the above equation and
because of the orthonormality of the basis functions, we obtain

∞

∑
j=0

c j

∞∫
0

(√
p2 +m2

1 +
√

p2 +m2
2

)
g̃i(p)g̃ j(p)p2d p

+
∞

∑
j=0

c j

∞∫
0

V (r)gi(r)g j(r)r2dr = Eci. (6.13)

This can be written as
∞

∑
j=0

Hi jc j = Eci, (6.14)

where

Hi j =
∞∫

0

(√
p2 +m2

1 +
√

p2 +m2
2

)
g̃i(p)g̃ j(p)p2d p

+
∞∫

0

V (r)gi(r)g j(r)r2dr. (6.15)

Equation (6.14) is a simple matrix eigenvalue equation that can be solved by standard methods.
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6.3 Results

The spinless Salpeter equation in mixed space has been solved using the variational principle.
Both the mixed space and momentum space spinless Salpeter equations were solved in order
to confirm the results of the momentum space calculations with the mixed space results.

Before discussing the results, we discuss briefly to explain how experimental spin average
values are calculated. Each quark has spin 1/2. When two quarks are involved, one obtains
a total spin S = 0 or S = 1. For l = 0 (S state), one has the S = 0 state(singlet) and S=1
state(triplet). In spectroscopic notation of n2s+1LJ we can express these states as n1S0 and
n3S1. Here J is the total angular momentum and L is the orbital angular momentum. The spin
averaged mass ml=0

av (S state) is calculated as

ml=0
av ≡ (mn1S0

+3mn3S1
)/4. (6.16)

For l = 1 (P state), one has the S = 0 state(singlet) and S=1 state(triplet). In spectroscopic
notation of n2s+1LJ we can express these states as n1P1,n3P2,n3P1 and n3P0. The spin averaged
mass ml=1

av is calculated as

ml=1
av ≡ (3mn1P1

+1mn3P0
+3mn3P1

+5mn3P2
)/12. (6.17)

For l = 2 (D state), one has the S = 0 state(singlet) and S=1 state(triplet). In spectroscopic
notation of n2s+1LJ we can express these states as n1D2,n3D2,n3D1 and n3D3. The spin aver-
aged mass ml=2

av is calculated as

ml=2
av ≡ (5mn1D2

+5mn3D2
+3mn3D1

+7mn3D3
)/20. (6.18)

The following Table(6.1) contains the parameters used in our computation. The Table(6.2)
and Table(6.3) contain the results for the spin-averaged meson masses obtained by mixed-space
and momentum-space spinless Salpeter equation.

Table 6.1: Parameters Used for the Mixed-Space and Momentum-Space Equations.

Parameter Mixed Momentum
space space

σ (GeV2) 0.197 0.197
C -0.5 -0.5

mc(GeV) 1.35475 1.35475
mb (GeV) 4.7721 4.7721
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Table 6.2: Calculations of cc̄ Spin-Averaged Masses with the Mixed-Space and Momentum-
Space Equations Compared to Experiment[2]. The States Marked with † are a Mixture of S and
D States, but have been Assigned as Predominantly S or D Based on the Analysis of Reference
[3]. The States with the Error Bars have been Spin-Averaged. We Fit to the 1S and 2S States
within the Tolerance ε ≤ 0.0002.

State Mixed Momentum Experiment
space space

1S 3067.71 3067.71 3067.76 ± 0.31
2S 3673.84 3673.84 3673.82 ± 1.03
3S 4113.95 4113.95 4039†

4S 4483.13 4483.13 4421†

5S 4809.60 4809.60
6S 5106.43 5106.43

1P 3522.68 3522.68 3525.46 ± 0.15
2P 3982.45 3982.45
3P 4364.49 4364.49
4P 4700.32 4700.32
5P 5004.40 5004.40
6P 5284.84 5284.84

1D 3829.37 3829.37 3773
2D 4227.25 4227.25 4153†

3D 4574.38 4574.38
4D 4887.11 4887.11
5D 5174.48 5174.48
6D 5442.09 5442.09
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Table 6.3: Calculations of bb̄ Spin-Averaged Masses with the Mixed-Space and Momentum-
Space Equations Compared to Experiment[2]. The States Marked with † are a Mixture of S and
D States, but have been Assigned as Predominantly S or D Based on the Analysis of Reference
[3]. The States with the Error Bars have been Spin-Averaged. We Fit to the 1S State within the
Tolerance ε ≤ 0.0002.

State Mixed Momentum Experiment
space space

1S 9420.21 9420.21 9420.22 ± 7.2
2S 10015.82 10015.82 10023
3S 10373.57 10373.57 10355
4S 10661.68 10661.68 10579
5S 10913.24 10913.24 10865†

6S 11141.18 11141.18 11019†

1P 9929.15 9929.15 9900
2P 10293.90 10293.90 10260
3P 10587.28 10587.28
4P 10842.92 10842.92
5P 11074.15 11074.15
6P 11287.82 11287.82

1D 10186.83 10186.83
2D 10490.27 10490.27
3D 10752.94 10752.94
4D 10989.50 10989.50
5D 11207.43 11207.43
6D 11411.16 11411.16
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Chapter 7

EMPLOYING SPIN-DEPENDENT INTERACTIONS

7.1 Spin-Dependent Potentials

According to the quark model, each meson is a two-body bound-state of a quark and an an-
tiquark. Like any quantum mechanical system, the quark-antiquark(qq̄) pair has a discrete
energy level spectrum corresponding to the different modes of qq̄ excitations, rotations, vi-
brations and so on.[5] These discrete energies must correspond to the observed meson states.
Even in the absence of knowledge about the potential which binds the quark to the antiquark,
the model is very predictive. Each quark has spin 1

2 , so the total intrinsic spin of the qq̄ pair
can be either S = 0 or 1. The spin J of the composite meson is the vector sum of this spin S
and the relative orbital angular momentum L of the q and q̄.

The spin-dependent potential we used is given by

Vsd(r) = VLS(r)L.S+
8C

3µ2
√

π
VSS(r)S1.S2 +A (7.1)

where L.S|Ψ〉= [ j( j+1)−l(l+1)−s(s+1)
2 ]|Ψ〉

and VLS(r) =
[

σ

r +VLS1e−β r2
]

and S1.S2|Ψ〉=
[

s(s+1)
2 − 3

4

]
|Ψ〉

and VSS(r) = k3µ3e−k2µ2r2

A is an additive constant.

The first term is for the spin-orbit interaction and the second term is for the spin-spin
interaction and the last term is a constant. The spin-spin potential was approximated using a
smeared delta function, e−k2µ2r2

.
The conventional spin-orbit potential [46] [9] [47] [48] [49] is proportional to

1
r

dV
dr

=
σ

r
+

C
r3 (7.2)

The C
r3 term is too singular and can only be treated perturbatively. Therefore, we approximated

the C
r3 part of the spin-orbit potential by using a Gaussian function VLS1e−β r2

. The parameter
β is used to simulate the behavior of the 1

r3 term, whereas the constant VLS1 is the cutoff depth
of the spin-orbit potential.
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7.2 Spin-Orbit Coupling

Spin-orbit coupling comes from the interaction between the orbital angular momentum(L) and
spin(S) of the system. Since total angular momentum (J) is defined as the vector sum of L and
S, we can write

J2 = L2 +S2 +2L ·S (7.3)

So, the dot product L.S can be expressed as

L ·S =
1
2
(J2−L2−S2) (7.4)

Since J2, L2 and S2 are all eigen operators which commute with the Hamiltonian H, and we
know that

J2|Ψ〉= j( j +1)|Ψ〉 (7.5)

and
L2|Ψ〉= l(l +1)|Ψ〉 (7.6)

and
S2|Ψ〉= s(s+1)|Ψ〉 (7.7)

where j, l,s are scalars. We therefore obtain

L.S|Ψ〉=
1
2
[ j( j +1)− l(l +1)− s(s+1)]|Ψ〉 (7.8)

In a system of one quark and one antiquark, the total spin(s) is always 0(singlet) or 1(triplet).
In the triplet case we can have j = l(when s is 0) or j → l +1, l−1 .
The spin-orbit part of the potential is then

VLS(r)L.S → 1
2
[ j( j +1)− l(l +1)− s(s+1)]

[
σ

r
+VLS1e−β r2

]
(7.9)

This form of the potential has been used in our model to compute the fine splitting of the meson
mass spectra.

7.3 Spin-Spin Interaction

Spin-spin interaction is the cause behind the hyperfine splitting. In spin-spin interaction, the
spin of each particle interact on one another. Spin-spin interaction is expressed as:

VSS(r)S1.S2 (7.10)

S1.S2 can be written as the following:

S1.S2 =
S2

2
− 3

4
(7.11)
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where S=total spin of two particles.

For singlet states, when s = 0, the contribution of the spin-spin interaction is−3
4 . For triplet

states, when s = 1, the contribution of the spin-spin interaction is 1
4 . Note that for each l, this

spin-spin interaction gives the hyperfine splitting in the meson mass spectra.

The spin-spin part of the potential is taken to be:

8C
3µ2

√
π

(S1.S2)k3
µ

3e−k2µ2r2
(7.12)

The spin-spin potential was approximated using a smeared delta function, e−k2µ2r2
. Other re-

searchers also used similar type of smeared delta functions to handle spin-spin interactions[50].
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Chapter 8

MESON MASS SPECTROSCOPY

Meson mass spectroscopy plays a very important role in fundamental particle physics. Study-
ing meson mass spectra gives us the insight and the knowledge about the nature and dynamics
of strong interaction between the quarks. It also helps us to understand the nature of the con-
stituent glue, the exchange particle between quarks, known as gluons.

It is important that our theoretical description of the quark-antiquark system should be very
accurate and consistent. However, gluons carry color charge. Since they carry color charge,
gluons interact with one another. The strong self-interaction between gluons gives rise to such
complex non-linear equations that the detailed and accurate theoretical description of the qq̄

system becomes extremely difficult.
Lattice gauge calculations partially solved the problem. Lattice gauge calculations indi-

cates that in the static quark limit, a linearly rising confining potential and a Coulomb-type
potential can very well describe the true potential between quarks. Linearly rising potential
handles the property of confinement. Due to asymptotic freedom, one gluon exchange takes
place between quarks when they are very close to each other. One gluon exchange gives rise
to the Coulomb-type interaction [14].

8.1 Heavy-Heavy Systems

The models with a linearly rising and a Coulomb-type potential successfully describes the
mesonic system containing one heavy quark and one heavy antiquark [16]. We have included
the relativistic kinematics along with the linear, Coulomb-type and the spin-dependent poten-
tials in our computations. The two-body equation we used is known as mixed-space Salpeter
equation.
The potential we used for the mixed-space Salpeter equation is given by

V (r) = σr−C/r +VLS(r)L.S+
8C

3µ2
√

π
VSS(r)S1.S2 +A (8.1)

where VLS(r) =
[

σ

r +VLS1e−β r2
]

and VSS(r) = k3µ3e−k2µ2r2

A is an additive constant.
In equation(8.1), the first term is the linear confining term, the second term is for the Coulomb-
type interaction, the third term is for the spin-orbit interaction and the fourth term is for the
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spin-spin interaction and the last term is a constant. The spin-spin potential was approximated
using a smeared delta function, e−k2µ2r2

.
The conventional spin-orbit potential is proportional to

1
r

dV
dr

=
σ

r
+

C
r3 (8.2)

The C
r3 term is too singular and can only be treated perturbatively. Therefore, we approximated

the C
r3 part of the spin-orbit potential by using a Gaussian function VLS1e−β r2

. The parameter
β is used to simulate the behavior of the 1

r3 term, whereas the constant VLS1 is the cutoff depth
of the spin- orbit potential.
The following tables contains the mass spectra of cc̄ and bb̄ mesonic systems. These are
mesons made of two equal mass heavy quarks.
We fit to the experimentally available data for the singlet (11S0) and triplet(13S1) states of
cc̄ and obtain the values of the linear coupling constant σ , the Coulomb constant C and the
constituent mass of the charm quark. From the energy gap of singlet and triplet states, we
obtain the the spin-spin interaction parameter, k. Then we fit to the experimentally available
triplet states for P(l = 1) states for j = 0,1,2, the states are (13P0,13P1,13P2). From the energy
gap, we obtain the values of the parameters VLS1(cutoff depth) and β .

We repeat the same procedure for bb̄ spectra. We use the same linear coupling constant
σ and Coulomb constant C for bb̄. Obviously the constituent mass used for bottom quark is
different since mass of bottom quark is about four times than that of charm quark. Then we
find the spin-spin parameter and spin-orbit parameters by fitting to the energy gap of singlet
and triplet states.

The results for the higher excited states produced by our calculations are the predicted
theoretical values. We have shown the percent error of these predicted values compared to the
experimental values (in the cases where experimental values are available).

For the heavy-heavy systems, no additive constant is required. To produce the bb̄ and cc̄

spectra, we use additive constant A = 0 in our calculations.
All experimental data are taken from the particle data group’s latest meson summary table[2].
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Table 8.1: cc̄ Meson System, mc = 1.361 GeV, Linear Strength = σ = 0.191 GeV 2, Coulomb
Strength=0.5, Spin-Spin Interaction Parameter= k = 0.771, Spin-Orbit Parameters: β =
1.573GeV 2 and VLS1 = 0.0129 GeV. Experimental Values are taken from the Current Avail-
able Particle Data[2].

State Meson Exp. Val Uncertainty Mixed-Space Calculation Per Error
(MeV) (MeV) (MeV) (%)

1 1S0 ηc(1S) 2980.5 1.2 2979.91 0.02
2 1S0 ηc(2S) 3637 4 3628.99 0.22
3 1S0 4070.26
4 1S0 4437.04
5 1S0 4760.16
6 1S0 5053.36

1 3S1 J/Ψ(1S) 3096.916 0.011 3096.06 0.03
2 3S1 Ψ(2S) 3686.09 0.04 3675.42 0.29
3 3S1 Ψ(4040) 4039 1 4104.16 1.61
4 3S1 Ψ(4415) 4421 4 4464.89 0.99
5 3S1 4784.32
6 3S1 5074.99

1 3P0 χc0(1P) 3414.75 0.31 3369.09 1.34
2 3P0 3846.17
3 3P0 4235.29
4 3P0 4574.22
5 3P0 4879.43
6 3P0 5159.91

1 3P1 χc1(1P) 3510.66 0.07 3449.78 1.73
2 3P1 3911.95
3 3P1 4292.91
4 3P1 4626.51
5 3P1 4927.89
6 3P1 5205.44
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Table 8.2: cc̄ Meson System (Continued)

State Meson Exp. Val Uncertainty Mixed-Space Calculation Per Error
(MeV) (MeV) (MeV) (%)

1 3P2 χc2(1P) 3556.20 0.09 3598.22 1.18
2 3P2 χc2(2P) 3929 5 4034.88 2.69
3 3P2 4401.48
4 3P2 4725.55
5 3P2 5020.01
6 3P2 5292.21

1 1P1 hc 3525.67 0.32 3482.49 1.22
2 1P1 3942.60
3 1P1 4321.74
4 1P1 4653.81
5 1P1 4953.95
6 1P1 5230.48

1 3D1 Ψ(3770) 3772.92 0.35 3651.45 3.22
2 3D1 Ψ(4160) 4153 3 4062.95 2.17
3 3D1 4416.73
4 3D1 4732.95
5 3D1 5022.06
6 3D1 5290.38
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Table 8.3: bb̄ Meson System, mb = 4.787 GeV, Linear Strength = σ = 0.191 GeV 2, Coulomb
Strength=0.5, Spin-Spin Interaction Parameter= k = 0.4315, Spin-Orbit Parameters: β =
2.73GeV 2 and VLS1 = 0.15 GeV. Experimental Values are Taken from the Current Available
Particle Data[2].

State Meson Exp. Val Uncertainty Mixed-Space Calculation Per Error
(MeV) (MeV) (MeV) (%)

1 1S0 ηb(1S) 9388.9 4.0/-3.5 9388.76 0.00
2 1S0 10017.51
3 1S0 10373.48
4 1S0 10658.04
5 1S0 10905.81
6 1S0 11130.00

1 3S1 ϒ(1S) 9460.30 0.26 9460.80 0.01
2 3S1 ϒ(2S) 10,023.26 0.31 10035.98 0.13
3 3S1 ϒ(3S) 10,355.2 0.5 10385.82 0.30
4 3S1 ϒ(4S) 10,579.4 1.2 10667.83 0.84
5 3S1 ϒ(10860) 10,865 8 10914.14 0.45
6 3S1 ϒ(11020) 11,019 8 11137.35 1.07

1 3P0 χb0(1P) 9859.44 0.73 9658.88 2.03
2 3P0 χb0(2P) 10,232.5 0.9 10098.80 1.31
3 3P0 10423.53
4 3P0 10696.03
5 3P0 10937.50
6 3P0 11157.79

1 3P1 χb1(1P) 9892.78 0.57 9815.82 0.78
2 3P1 χb1(2P) 10,254.6 0.72 10208.36 0.46
3 3P1 10512.35
4 3P1 10772.84
5 3P1 11006.28
6 3P1 11220.75
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Table 8.4: bb̄ Meson System (Continued)

State Meson Exp. Val Uncertainty Mixed-Space Calculation Per Error
(MeV) (MeV) (MeV) (%)

1 3P2 χb2(1P) 9912.21 0.57 10069.79 1.59
2 3P2 χb2(2P) 10,268.65 0.72 10399.24 1.27
3 3P2 10672.51
4 3P2 10914.04
5 3P2 11134.28
6 3P2 11338.87

1 1P1 9934.13
2 1P1 10296.07
3 1P1 10585.67
4 1P1 10837.38
5 1P1 11064.74
6 1P1 11274.68
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Chapter 9

SUMMARY AND CONCLUSIONS

Studies of meson mass spectra is one of the keys to understand the strong interaction between
quarks. The strong interaction is mediated by massless particles called gluons. Since a meson
is a simple two-body bound state of one quark and one anti-quark, meson mass spectroscopy
provides a clue to the nature of the strong interaction and gives important hints about the
behavior of gluons.

Studies of meson mass spectra in the context of constituent quark model was performed
in this dissertation. The main goal of this research was to use relativistic kinematics and spin-
dependent potentials to produce the meson mass spectra.

We studied the two-body Schrödinger equation in position, momentum and mixed repre-
sentations. We studied the spinless Salpeter equation in mixed representation which is nothing
but the Schrödinger equation with relativistic kinematics. Then we included spin-orbit and
spin-spin interactions along with a linear confining potential and a Coulomb-like potential.

We used the variational principle to solve the equations numerically. We constructed the
matrix eigenvalue equations and solved for the energies of mesons made of two heavy quarks.
The main purpose of our work was to produce meson mass spectra with relativistic kinematics
and spin-dependent potentials.

We produced meson mass spectra for heavy-heavy systems, cc̄ and bb̄. We used constituent
quark masses for charm and bottom quarks. We produced the ground state and excited state
energies of S (l = 0,s = 0,1), P (l = 1,s = 0,1) and D (l = 2,s = 0,1) states of cc̄ and bb̄. We
used spectroscopic notation n2s+1L j for the states where n is the principal quantum number, s

is the total spin. L indicates the orbital angular momentum quantum number and j is the total
angular momentum quantum number.

The meson masses predicted by our computations and the experimentally available meson
masses were presented in the tables in previous chapter. The percentage error was calculated
and presented for the cases where experimental masses were available.

From the results we clearly saw that the predicted mass values for heavy-heavy systems are
close to the experimentally measured values.

Using relativistic kinematics and spin-dependent terms in the potential, we improved the
values of predicted meson masses in the mass spectra. Previously relativity was handled with
velocity dependent correction terms which involved many arbitrary constants [34] [16] [44]
[51]. Previously spin effects were handled with many arbitrary interaction terms which also
involved many arbitrary constants.[14] [9]
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In our scheme, we used a mixed space formulation where relativistic kinematics was in-
cluded directly into the equation. For the potential part, we used a linear plus a Coulomb-type
potential along with a spin-spin interaction term and a spin-orbit interaction term. We had only
three arbitrary constants to deal with, one for spin-spin term and other two for spin-orbit term
of the potential. For the linear and Coulomb-type interactions, we used the Cornell parameters
widely used by other researchers [16] [30] [52] [45]. So, in our computational scheme, we had
fewer arbitrary constants and we predicted meson masses more accurately than some of the
previous approaches.

Our predicted meson mass spectra and the comparison with experimental meson masses
were presented in previous chapter. The success of our computational scheme to predict the
meson mass spectra which are in good agreement with the experimental results encouraged us
to extend our investigation towards fully relativistic treatment of the mesonic systems.

In conclusion, we presented theoretical and numerical techniques to study meson mass
spectra in the context of quark-antiquark(qq̄) bound states. Meson mass spectra for heavy-
heavy systems were produced using the constituent quark model. Relativistic kinematics was
included in our equation. The potential we used were a linear plus a Coulomb-type potential
along with the spin-dependent potentials. The linear constant σ and the Coulomb-type constant
C were consistent with the values used by others.

The numerical approach we used was matrix formulation of the equation based on the
variational principle. That method turned out to be a powerful method to construct matrix
representation of the equations governing the two-body quark antiquark systems. We used
orthonormal basis functions like Jacobi basis and Laguerre basis to construct our variational
wavefunctions [42] [1].

We produced the meson masses up to the principal quantum number n = 6 for S,P and in
some cases D states. We produced spin singlet(s = 0) and spin triplets(s = 1). We fit to the
ground state and the xcited states were all predicted values. Our predicted values matched very
well with the experimental values.
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Appendix A

GRAM-SCHMIDT ORTHOGONALIZATION

A.1 Gram-Schmidt Procedure

This discussion about Gram-Schmidt procedure is taken from the paper of Charles et all.[53]
The Gram-Schmidt orthonormalization method is typically introduced as a way to construct a
set of orthonormal basis functions from a set of non-orthonormal basis functions. An orthonor-
mal set makes computations in quantum mechanics much easier. [41] [40] [54]

The Gram-Schmidt procedure is easily implemented when only a few orthonormal basis
functions are needed, but numerical techniques are usually employed when a larger set of
orthonormal basis functions is needed. We present the analytical and numerical approach of
constructing orthonormal basis functions via the Gram-Schmidt procedure and we discuss the
limitations of the numerical approach.[53]

Before discussing orthonormalization, we first establish some notation. Let {| fi〉} be a set
of column vectors and let 〈 fi| = | fi〉†, where | fi〉† is the complex conjugate and transpose of
| fi〉. The scalar product is defined as 〈 fi| f j〉= α , where α is a real number. If the vectors | fi〉
and | f j〉 satisfy 〈 fi| f j〉= δi j, then these vectors are said to be orthonormal and the set {| fi〉} is
an orthonormal set. The vector notation can be written in function language as

〈r| fi〉= fi(r)

and
〈 fi| f j〉=

∫
∞

0
f ∗i (r) f j(r)dr .

Therefore, in function language, orthonormality means∫
∞

0
f ∗i (r) f j(r)dr = δi j .

We are interested in orthonormalizing a set of functions {gi(r)} so that we obtain a new set
{ fi(r)} which is orthonormal according to the conditions above.
The Gram-Schmidt method is used to construct an orthonormal set of basis vectors | fi〉 from a
set of non-orthogonal but normalized basis vectors |gi〉. Two arbitrarily positioned vectors |g1〉
and |g2〉 are chosen, which are normalized, but not orthogonal. |g1〉 is chosen and set equal to
| f1〉.
We will construct vectors orthogonal to the new normalized basis vector | f1〉. First, we con-
struct another vector | f2〉 which is orthogonal to | f1〉. To do that, we use the vectors | f1〉 and
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|g2〉. We project 〈g2| onto | f1〉 giving the component of |g2〉 that is parallel to | f1〉. Now
subtract from |g2〉 the parallel component 〈g2| f1〉 along the | f1〉 direction giving

|g2⊥〉= |g2〉−〈g2| f1〉| f1〉 .

We label this orthogonal vector as |g2⊥〉, since it is the component of |g2〉 perpendicular
to | f1〉. Now that a vector orthogonal to | f1〉 has been constructed, the next step is to find the
normalization constant N2 such that | f2〉= N2|g2⊥〉,

| f2〉= N2 (|g2〉−〈g2| f1〉| f1〉) .

The normalization condition is 〈 f2| f2〉= 1, so that

N2
2 (〈g2|− 〈 f1|g2〉〈 f1|)(|g2〉−〈g2| f1〉| f1〉) = 1 ,

N2
2

(
1−〈 f1|g2〉2

)
= 1 .

Thus, the normalization constant is

N2 =

√
1

1−〈 f1|g2〉2 .

Now we construct a vector orthonormal to both | f1〉 and | f2〉 by using the same procedure,

| f3〉= N3 [|g3〉−〈 f2|g3〉| f2〉−〈 f1|g3〉| f1〉]

where
N3 =

1√
1−〈 f2|g3〉2−〈 f1|g3〉2

.

In general, we may construct a set of orthonormal basis | fn〉 from a set of normalized but
non-orthogonal basis |gn〉 by using

| fn〉= Nn

[
|gn〉−

n−1

∑
i=1

tin| fi〉

]
, (A.1)

where

Nn =

√√√√√√ 1

1−
n−1

∑
i=1

t2
in

, (A.2)

and
tin = 〈 fi|gn〉 .
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A.2 Numerical Approach

We will construct the orthonormal basis functions fi(r) using the non-orthogonal, but normal-
ized functions gi(r). We have shown that the orthonormal basis may be expressed in equation
(A.1) as

| fn〉= Nn

[
|gn〉−

n−1

∑
i=1

tin| fi〉

]
, (A.3)

where
tin = 〈 fi|gn〉=

∫
∞

0
fi(r)gn(r)dr ,

and the normalization is given by equation (A.2). As can be seen in equation (A.1), tin should
be computed before generating the orthonormal basis. Projecting 〈g j| onto equation (A.1)
gives

〈g j| fn〉= Nn

[
〈g j|gn〉−

n−1

∑
i=1

tin〈g j| fi〉

]
.

We define G jn ≡ 〈g j|gn〉 and we project with 〈g j| onto equation (A.1) to obtain the recursive
relation

t jn = Nn

[
G jn−

n−1

∑
i=1

tinti j

]
, (A.4)

where j > n > i. An expression for G jn is

G jn = Ng
j Ng

n

√
π

4(a j +an)
3
2

, (A.5)

where the normalization constants are given by equation (A.2). We note that since the functions
g(r) and f (r) are real, tin = tni and Gin = Gni. As described in the analytical approach, | f1〉=
|g1〉. Next, calculate the elements in which t j1 = G j1. Then, a general t jn is calculated from
equation(A.4) by iteration.
We can construct a matrix from the inner product of the orthonormalized basis functions,

D =


〈 f1| f1〉 〈 f1| f2〉 · · · 〈 f1| fm〉
〈 f2| f1〉 〈 f2| f2〉 · · · 〈 f2| fm〉

...
... . . . ...

〈 fm| f1〉 〈 fm| f2〉 · · · 〈 fm| fm〉

 , (A.6)

where m is the total number of orthonormal basis functions. Since the matrix elements of D

are 〈 fi| f j〉,
〈 fi| f j〉=

∫
∞

0
fi(r) f j(r)dr .

If | fi〉 and | f j〉 are indeed orthonormal, then D should be the identity matrix.
However, in practice, D will deviate from the identity matrix when a large number of

functions is used.
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The orthonormal basis functions were constructed numerically. The analytical functional
forms of all of the orthonormal basis functions are not required. The advantage of the numerical
approach is that one does not have to manipulate the cumbersome analytical functional forms.
Since the basis functions were constructed numerically, one can compute the matrix elements
of D and verify the orthonormality of 〈 fi| f j〉 using a numerical integration method known as
Gaussian Quadrature [42], which is discussed in Appendix B.



45

Appendix B

GAUSSIAN QUADRATURE

B.1 Gaussian Quadrature Method

This discussion about Gaussian Quadrature is taken from the paper Charles et. all. [53] Gaus-
sian Quadrature is a very useful computational tool to perform the numerical integration. It
approximates an integral as a sum as accurately as possible obeying the following relation:∫ 1

−1
f (x)dx ≈

n−1

∑
i=0

wi f (xi) (B.1)

where f is the function of interest, xi are the roots of the Legendre polynomials, n is the num-
ber of Gaussian points (number of roots of the Legendre polynomial) and wi are the weights
determined from the derivatives of the Legendre Polynomials evaluated at the roots using the
relation stated below.

wi =
2

(1− x2
i )[P

′
i (xi)]2

(B.2)

where P′i (xi) are the first derivatives of the Legendre Polynomials evaluated at the roots of the
Legendre polynomials. Recursion relations stated below could be used to compute the first
derivatives of the Legendre polynomials

P0(x) = 1 (B.3)

P1(x) = x (B.4)

and
(l +1)Pl+1(x) = (2l +1)xPl(x)− lPl−1(x) (B.5)

Using the recursion relations,first derivatives of the Legendre Polynomials can be written as,

P′l (x) =
(l +1)Pl(x)−Pl+1(x)

1− x2 (B.6)

The limits in the integrals must be transformed so that equation(B.1) is satisfied. That could be
done by the suitable substitution of the variable. Let’s suppose we have the following integral
to evaluate, ∫ b

a
f (x)dx (B.7)

then it is required to make the following transformation

x′ = mx+ c (B.8)
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where m = b+a
2 and c = b−a

2 and dx′ = mdx. So, we get

∫ b

a
f (x)dx →

∫ 1

−1
f (x′)dx′ ≈

n−1

∑
i=0

mwi f (mxi + c) (B.9)

If we have an infinite integral of the following form,∫
∞

0
f (x)dx (B.10)

the following transformation is used to perform Gaussian quadrature:

x′ = tan
[

π

4
(x+1)

]
(B.11)

With the above substitution, x′→ 0 as x→−1 and x′→∞ as x→ 1, so we obtain the following
relation∫

∞

0
f (x)dx →

∫ 1

−1
f (x′)dx′ ≈

n−1

∑
i=0

f
(

tan
[

π

4
(xi +1)

])
π

4
wi sec2

[
π

4
(xi +1)

]
(B.12)

After this proper transformation, we can apply Gaussian quadrature to evaluate the integral.
Other than tangent transformation, many other transformations are also possible. Depend-

ing on the particular problems to solve, the most suitable transformation is usually performed.
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Appendix C

BASIS FUNCTIONS

C.1 Position-Space Basis Functions

The Gaussian and exponential basis functions are defined as,

gG
i (r,b) = NG

i rl+1e−air2
where NG

i =

√√√√2(2ai)
2l+3

2

Γ(2l+3
2 )

, (C.1)

and

gE
i (r,b) = NE

i rl+1e−air where NE
i =

√
(2ai)2l+3

Γ(2l +3)
. (C.2)

The variational parameter is b and ai = (Nmaxb2)/i2, where i = 1,2,3, . . . are the indices. The
Laguerre basis functions are defined as

gL
i (r,b) =

(br)l+1

b
√

NL
i

L2l+2
i (2br)e−br, (C.3)

where Lβ

α(x) are the Laguerre polynomials and the normalization is given by

NL
i = b−3

(
1
2

)2l+3
Γ(i+2l +3)

i!
. (C.4)

The variational parameter is b and i = 0,1,2, . . . are the indices.[41] The Gaussian basis func-
tions are not orthogonal,

∫
∞

0
gG

i (r,b)gG
j (r,b)dr =

NG
i NG

j Γ(2l+3
2 )

2(ai +a j)
2l+3

2
, (C.5)

and the exponential basis functions are also not orthogonal,∫
∞

0
gE

i (r,b)gE
j (r,b)dr =

NE
i NE

j Γ(2l +3)

(ai +a j)2l+3 . (C.6)

Since the Gaussian and exponential basis functions are not orthogonal, in order to use an
orthonormal set we employ the Gram-Schmidt orthonormalization procedure. This procedure
is discussed in Appendix A. The Laguerre basis functions [1] are orthonormal and they have
the following property: ∫

∞

0
gL

i (r,b)gL
j (r,b)dr = δi j (C.7)



48

They form complete orthonormal set which we use in our computation for the mass spectra of
the quantum mechanical two-body system.
The Harmonic Oscillator basis functions in position-space are given by

gH
j (r,b) = N jl

rl

bl+1 e−
r2

2b2 L
l+ 1

2
j−1

( r2

b2

)
(C.8)

where N jl is the normalization constant and is given by

N jl =

√
2( j−1)

bΓ( j + l + 1
2)

(C.9)

The Harmonic Oscillator basis functions are orthonormal and satisfy the following property∫
∞

0
gH

i (r,b)gH
j (r,b)dr = δi j (C.10)

They form complete orthonormal set which we use in our computation for meson mass spectra.

C.2 Momentum-Space Basis Functions

The Jacobi basis functions [1] in momentum-space are given as

gJ
j(p) =

1√
N jl

(p/b)l

[(p/b)2 +1]l+2 P(l+ 3
2 ,l+ 1

2)
j

[
p2−b2

p2 +b2

]
, (C.11)

where Pα,β
j (p/b) are the Jacobi polynomials and N jl is

N jl =
b3

2(2 j +2l +3)
Γ( j + l + 5

2)Γ( j + l + 3
2)

j!Γ( j +2l +3)
(C.12)

The Jacobi basis functions are orthonormal and satisfy the following property∫
∞

0
gJ

i (p)gJ
j(p)dr = δi j (C.13)

They form complete orthonormal set which we use in our computation for meson mass spectra.
Note that the Laguerre and Jacobi basis functions are related by the Fourier-Bessel transform,

g̃(p) =
√

2
π

∞∫
0

jl(pr)g(r)r2dr, (C.14)

g(r) =
√

2
π

∞∫
0

jl(pr)g̃(p)p2d p. (C.15)

The Harmonic Oscillator basis functions in momentum-space are given by

gH
j (p,b) = N jl

pl

bl+1 e−
p2

2b2 L
l+ 1

2
j−1

( p2

b2

)
(C.16)
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where N jl is the normalization constant and is given by

N jl =

√
2( j−1)

bΓ( j + l + 1
2)

(C.17)

The Harmonic Oscillator basis functions are orthonormal and satisfy the following property∫
∞

0
gH

i (p,b)gH
j (p,b)dr = δi j (C.18)

They form complete orthonormal set which we use in our computation for meson mass spectra.
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