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ABSTRACT 

MECHANOCHEMICAL INVESTIGATION OF A GLASSY EPOXY-AMINE 

THERMOSET SUBJECTED TO FATIGUE 

by Stephen Finley Foster 

May 2015 

 Covalent bonds in organic molecules can be produced, altered, and broken 

through various sources of energy and processes.  These include photochemical, 

thermochemical, chemical, and mechanochemical processes.  Polymeric materials derive 

their physical properties from the time scale of motion, summation of intermolecular 

forces, and number of chain entanglements and crosslinks.  Glassy thermoset polymers 

experience mechanical fatigue during dynamic stress loading and properties diminish 

with inevitable material failure at stress levels below the ultimate tensile strength (UTS).  

Damage modeling has been successful in predicting the number of cycles required to 

induce failure in a specimen due to stress.  However, it does not directly provide an 

explanation of the origin of fatigue in polymers.  It is hypothesized herein that 

mechanical failure at stress levels below the ultimate strength property is due to the 

accumulation of mechanically induced homolytic chain scission events throughout the 

glassy thermoset network.  The goal of this research will be to quantify homolytic chain 

scission events with fatigue cycles with the ultimate goal of correlating mechanical 

property loss with degradation of covalent network structure. 

To accomplish this goal, stable free nitroxyl radicals were incorporated into an 

epoxy-amine matrix to detect homolytic chain scission resulting from fatigue.  Chapter II 

discusses a successful synthesis and characterization of the nitroxyl radical molecule, a 
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product of 4-hydroxy-2,2,5,5-tetramethylpiperdin-1-yl-oxyl (TEMPO) and isophorone 

diisocyanate designated as BT-IPDI.  In Chapter III, the epoxy-amine reaction was 

determined to be unaffected by incorporation of up to 5 wt% of BT-IPDI.  Although 50% 

UTS fatigue studies produced property degradation and fatigue failure as shown in 

Chapter IV, analysis of BT-IPDI through EPR did not detect homolytic chain scission.  

Chapter V reveals that mechano-radicals were produced from cryo-grinding the glassy 

epoxy-amine thermoset, and although the mechano-radicals reacted through 

recombination at elevated temperatures, the reaction between mechano-radicals and the 

BT-IPDI was not detected to occur within the glassy state.   

During mechanical testing, observations of unusual tensile yield behavior were 

coupled with production of atypical fracture surfaces.  In Chapter VI, physical aging was 

used as an investigative tool to verify that viscous deformation (plastic flow) was 

required to produce the atypical fracture surfaces.  Atomic force microscopy and 

scanning electron microscopy of the fracture surface both revealed a tendril nodule 

morphology.  It is our hypothesis that this morphology produces the unusual mechanical 

behavior.  In Chapter VII, NIR, AFM, and SEM were used to measure the conversion and 

morphology of the epoxy-amine thermoset correlated with mechanical properties.  The 

thermal cure profile of the epoxy-amine thermoset affects the size and formation of the 

nodular nanostructure.  Eliminating vitrification during thermoset polymerization forms a 

more continuous phase, reduction in size of the nodules, and eliminates the capacity of 

the material to yield in plastic flow.  Specific findings of this research reveal that 

morphology control through thermal cure design may indicate a route in which 

thermoplastic type failure mechanisms can be incorporated into glassy epoxy thermosets. 
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CHAPTER I 

INTRODUCTION 

Research Motives 

 Composite materials represent an increasing percentage of structural materials as 

suitable successors to high strength aluminum within the aerospace industry.  For 

structural materials, criteria such as stiffness, weight, chemical resistance, thermal 

envelope, and fatigue life performance are highly important.  For composite applications, 

epoxy-amine matrices are an attractive option because they are relatively cheap to 

manufacture and possess properties such as high modulus, good adhesion, good 

reactivity, good chemical resistance, and sufficiently high glass transition temperatures 

(Tg).  These characteristics make epoxy-amine thermosets popular as matrix materials for 

fiber reinforcement composites in applications that require a high strength to weight ratio.  

Global consumption of epoxy resin materials had an estimated value of USD $18.6 

billion in 2013 and is forecast to rise to USD $25.8 billion by 2018 and USD $33.6 

billion by 2022 at an annual growth rate of 6.8%, primarily in adhesive and composite 

markets.1 

 While the most common application for epoxy-amine thermosets is wind turbine 

blades, they are also being used now as primary structures within commercial aircraft 

such as the Boeing 787 where they offer great possibilities for reducing the aircraft 

weight.  Technology improvements in composite manufacture have led to carbon fiber 

reinforced polymers (CFRPs) being used to the extent of 50% by weight in current 

commercial Boeing 787s.2  This figure will continue to rise as the benefits of mechanical 

performance to weight ratio of fiber reinforced composites enable greater fuel savings for 
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commercial aircraft.  Private aircraft manufacturers have pushed for higher percentage 

weight of composites being able to manufacture even 100% of the airframe from 

composite materials.3,4 

What is Fatigue? 

 Within structural load applications, fatigue is an important criterion in designing 

parts for end use performance.  Brittle materials, such as epoxies, eventually fail under 

repetitive stresses with little to no warning.5  Current non-critical industry methodology is 

to over engineer a part with a safety factor between 3 to 5.6  Safety factor, defined as the 

ultimate property divided by the expected design load, is the degree to which a part has 

been over engineered relative to the expected stress load.  For spaceflight systems, NASA 

directs that design components with respect to CFRP be engineered to safety factors of 

1.5 to 2.0 for non-pressure vessel applications.7  As weight becomes a more critical issue, 

the safety factors are lowered (compared to other industries) to allow for lighter 

components.  With lower safety factors, the components become increasingly more 

scrutinized to ensure consistency of manufacture and accurate predictions of expected 

load.  Regarding fatigue and creep, NASA demands that spaceflight structures meet at 

minimum a service life factor of 4, i.e., all parts and components must be able to 

withstand four times the number of expected stress cycles of intended use.7  In practice, 

fatigue causes degradation and failure of polymeric materials when cycled at or above 

approximately 30% of the UTS.8  Polymer failure has been measured at approximately 

20% of the UTS.  However, the number of cycles required to reach failure becomes 

experimentally inconvenient.  In some cases, the 107-109 cycles needed to collect a single 
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data point can exceed one year of testing at appropriate frequency ranges to avoid self-

heating or other anomalies during testing.9,10 

 Manufacturers and engineers are fully capable of designing structures with 

regards to the anticipated loads so that sufficient safety and lifetime performance of the 

structure is met.  Current damage models exist for a wide variety of applications.  A 

simple model would be the Palmgren-Miner, which assumes a linear correlation of 

damage (cycle number) with remaining life (cycle to failure) at a constant sinusoidal 

amplitude of stress or strain.  There are more complex stress waveforms that can be used, 

varying the waveform from sinusoidal to square or triangle.  These models enable 

manufacturers to produce a part which can meet the in use performance requirements 

demanded by application.  These predictive models are excellent at meeting the 

performance needs for aerospace, automobile, and engineering structures.  However, the 

models are unable to provide the understanding of why the material fails under repetitive 

stress and lack the capability to provide data for intelligent design of future materials. 

Fatigue Behaviour of Glassy Epoxy Thermosets 

 This research project focuses solely on investigating an epoxy matrix when 

subjected to fatigue.  The literature is sparse in examples in which the epoxy thermoset 

alone has been subject to fatigue testing, although there are plenty of studies discussing 

thermoset composites reinforced with carbon fiber, graphite/graphene, rubber toughened, 

and silicate dispersions.  Xia published an in-depth study of epoxy thermoset systems via 

mechanical characterization and modelling that focused on multiple cyclic fatigue 

approaches such as biaxial,11 uniaxial tension/compression,12,13 and cyclic shear loading14 

as well as mean stress/strain effects15 and the accumulation of stress/strain throughout 



4 
 

 

fatigue tests.16  These studies measured deterioration of the in situ mechanical properties 

throughout the cyclic testing. 

Figure 1 depicts the in situ modulus of a crosslinked epoxy network subject to 

uniaxial tension/compression strain-controlled cycles of various strains.  Fatigue cycling 

at low strain causes the in situ modulus to decrease and then plateau into an induction 

period in which there is little to no change in value until catastrophic failure.12  Increasing 

strain aggravates this behaviour causing increasing property loss until failure.  The loss of 

modulus cannot solely be the cause of failure; multiple strain experiments do not 

diminish in modulus to the same numerical value prior to failure. 

 

Figure 1.  Modulus of an epoxy thermoset during strain-controlled fully reversed uniaxial 
fatigue tests.  Fitted lines are simulations.  An experimental study of uniaxial fatigue 
behavior of an epoxy resin by a new noncontact real-time strain measurement and control 
system, by G. Tao and Z. Xia, 2007, Polymer Engineering & Science, volume 47, p. 784.  
Reprinted with permission from the publisher.12

 

 Xia measured in situ changes in properties, viscous and elastic components, and 

energy absorption characteristics but did not propose a causality mechanism relating to 

the structure, either molecular or macroscopic.11-16  Xia developed accurate fatigue 

models to predict the lifetime of the pure epoxy, but a hypothesis to the origin of the 
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diminishment of properties was not posited.  Of the models used to predict lifetime, the 

author noted that strain-energy based approaches were the most accurate and consistent.   

 

Figure 2.  Hysteresis loops of the strain-range controlled fully reversed uniaxial fatigue 
tests.  (a)  Hysteresis loops of the first cycle, the mid-life cycle, and the last cycle from 
the test with the highest strain range level.  (b)  Hysteresis loops of the first cycle, the 
mid-life cycle, and the last cycle from the test with the lowest strain range level.  An 
experimental study of uniaxial fatigue behavior of an epoxy resin by a new noncontact 
real-time strain measurement and control system, by G. Tao and Z. Xia, 2007, Polymer 
Engineering & Science, volume 47, p. 783.  Reprinted with permission from the 
publisher.12 

Using a non-contact strain gauge, Xia measured full hysteresis loops of the 

material, observing increases in the area of the hysteresis loop with fatigue cycle for large 

strains and minimal increases for fatigue cycles at low strains (Figure 2).12  Decreases in 

the in situ modulus and the anelastic range were observed with increasing fatigue 

cycles.12  We hypothesize that the change in properties and eventual failure of the 

material result from accumulated chain scission events caused by mechanical force. 



6 
 

 

Mechanically Induced Chain Scission 

Mechanically induced chain scission was first reported by researchers in the 

1930s who measured and characterized viscosity decreases in polymer solutions that 

were repeatedly subjected to high shear rates.17-20  Mechanically induced chain scission 

has also been observed under certain ultrasonic frequencies and intensities.17,21-24  

Statistically, the force vectors (sonication, high shear rates, mastication, shear-strain 

yield) diverge at the center of the polymer chain causing the center to be the most 

probable location of bond scission in solution and solid state.9,17,18,25,26  As the rate of 

strain or shear increases, the scission points for polymer chains become increasingly 

random.17,18 

 Sperling et al. investigated anionically synthesized polystyrene latexes and 

quantified the number of chain scissions resulting from grinding based on time 

dependency and number of entanglements.27  Using a strain-controlled dental burr, 

Sperling was able to quantify the mechanical energy of fracture and correlate it to the 

fracture surface.  Analyzing the ground powder through gel permeation chromatography 

(GPC), the authors noted that only ~ 10% of the chains fractured through chain scission, 

and the resulting energy was dissipated through chain pull out and crazing mechanisms.  

Sperling extended his technique for evaluating linear polystyrene to measure changes in 

crosslinked polystyrene and polymethyl methacrylate.  The experiments were performed 

by digesting the ester crosslinks after grinding and determining the concentration of chain 

scissions, molecular weight changes, and energy of fracture per scission event.28   

Backman and Devries constructed a microtome capable of cutting thin slices of 

polymer under nitrogen atmosphere at various temperatures, rapidly quenching the 
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samples in liquid nitrogen and quantifying the radical concentration per fracture area.29  

In polyethylene samples, chain scission in the presence of oxygen was initiated via cyclic 

stress at 80% UTS (35 MPa at 0.01 and 0.002 Hz) and evaluated by monitoring the 

increase in aldehyde functionality through radical scavenging of oxygen molecules.30,31  

The by-products of grinding and stress-strain fracture of crosslinked epoxy samples 

showed the formation of radicals and unique chemical species analyzed by electron 

paramagnetic resonance (EPR) and matrix assisted laser deionization-time of flight 

(MALDI-TOF), respectively.32,33   

Profluorescent nitroxyl (PFN) radicals are fluorescing molecules selective to alkyl 

carbon centered radicals.34  Blinco et al. incorporated 0.05 wt% PFN (Appendix Figure 1) 

into crosslinked isocyanate coatings and then fractured the surface via known impact 

energy from falling weights.  After heating the sample to approximately 150 °C, the 

damaged area visually fluoresced under examination with a black light but was not 

further characterized for spatial or intensity quantification.35,36 

Polymer chains have been shown to mechanically fracture in the solid state by 

both homolytic and heterolytic chain scission.29,37-41  In the case of homolytic scission, 

the formation of conjugated end-groups from disproportionation leads to branching and 

crosslinking as radical migration from primary end-groups favor secondary and tertiary 

carbons.  Disproportionation or radical trapping results in molecular weight reduction 

while other radical abstraction processes lead to linear, branched, or crosslinked 

polymers.17 
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Characterization of Mechanical Activation for Covalent Bonds 

Electron paramagnetic resonance (EPR) techniques have been employed to 

monitor radical formation in grinding polymers as well as in situ for polymer fibers 

during stepwise strain events.9   Zhurkov et al. proposed that both mechanical stress and 

temperature add an energy contribution to the Arrhenius relationship to overcome the 

energy of activation barrier.9  Based on this concept, a pivotal experiment (Figure 3) was 

performed by Becht, Johnsen, and Klinkenberg.  Caprolactam-based polyamide fibers 

were cooled to 200 K, strained to 14.2%, and the temperature was increased in stepwise 

increments while monitoring radical formation in situ as the contribution of mechanical 

and thermal energy both exceeded Ea (188 kJ/mol) for bond disassociation.9 

 

Figure 3.  Concentration of free radicals and uniaxial stress in step-temperature test as a 
function of temperature and time for polycaprolactam fibers.  ESR-Messung von 
Kettenbrüchen in mechanisch beanspruchtem Polyamid, by U. Johnsen and D. 
Klinkenberg, 1973, Kolloid-Zeitschrift und Zeitschrift für Polymere, volume 251, p. 848.  
Reprinted with permission from the publisher.42 
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Considerations on Bond Strengths - Theoretical vs. Actual 

Ultimate tensile strength of ultra-high molecular weight (UHMW) polyethylene 

has been theoretically determined to vary from 13.5 GPa to 60 GPa by various 

methods.43-45  However, in practice, the actual tensile strength for UHMW polyethylene 

is 7.2 - 9.9 GPa.45  Theoretical estimations from models vary on the bond energy value 

used in calculating the force to rupture.  In reported literature, researchers use the full C-

C bond energy of 80 kcal/mol9,43,46 as well as reduced bond energies such as 26 kcal/mol 

for UHMWPE.47  Previous researchers also used the energy of activation for bond 

disassociation such as 188 kJ/mol reported for caprolactam-based polyamide,8 which, 

based on experimental data, appears to be a valid assumption.9  It must be noted that 

macroscopic force and molecular localized pressure can be two different values entirely.  

Force is transferred through the repulsion of electrons and distributed throughout polymer 

networks based on the connected morphology.  The influence of force distribution on 

chain scission and mechanical properties is illustrated quite clearly in the strained 

polyamide fibers experiment cited above.  Molecular mobility of a network is key in 

distributing force across as many bonds as possible.43,48 

The force to break a C-C bond is estimated to be 3 - 6 x 10-9 N.9,25,49,50  Seitz and 

Vincent examined the brittle fracture of approximately 18 different thermoplastics at 

temperatures below the beta transition.43,51  At these temperatures, crazing does not occur 

and the fracture is assumed to actually cleave through bonds.  Seitz normalized the brittle 

stress to the number of backbone segments the crack passed through and found that each 

of the 18 thermoplastics required 0.038 x 10-9 N per bond (Figure 4).43  This strongly 
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supports two possibilities: 1) only approximately 1% of the polymer chains are rupturing, 

or 2) there is a common local force multiplier of two orders of magnitude.43   

 

Figure 4.  Brittle strength vs. number of backbone bonds.  The estimation of mechanical 
properties of polymers from molecular structure, by J.T. Seitz, 1993, Journal of Applied 
Polymer Science, volume 49, p. 1346.  Reprinted with permission from the publisher.43 

How EPR Works 

One of the primary detection methods employed in this research is EPR 

spectroscopy.  The method is similar to 1H nuclear magnetic resonance (NMR) 

spectroscopy.  However, instead of observing coupling between a proton and connecting 

nuclei, coupling is observed between a radical and an adjacent nuclei.  The resulting 

spectra are dependent on the spin state of the adjacent nuclei, and the intensity is based 

on the concentration of radical species.  The principle of EPR is based on the Zeeman 

effect (Figure 5), which states that an electron spin in the β state in a magnetic field can 

be promoted to the α state by the absorption of electromagnetic energy (microwaves) 

provided that the radiation energy is equal to the energy difference between α and β.52  

Figure 5 depicts the relative energy levels of the spin states in the presence and absence 
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of a magnetic field.  Unlike NMR, the radio frequency (RF) emission is fixed and the 

magnetic field is varied until the magnetic field and the fixed frequency are in 

“resonance” with the promotion of a given radical to higher spin states resulting in 

absorption.  

α, β 

α

β

E

0 ∆E g µ B⋅ B0⋅

B0 0 B0 0≠

 

Figure 5.  Illustrating the Zeeman effect on the spin states of paramagnetic electrons. 

 

Nitroxyl Radicals for Homolytic Chain Scission Detection 

Stable free radicals, specifically nitroxyl radicals, possess three key aspects that 

are advantageous in detecting carbon radicals.  First, as the name implies, they are 

chemically stable under ambient and elevated temperatures.34  Nitroxyl radicals are used 

in controlled nitroxide mediated polymerizations at temperatures of 130 °C.53  Secondly, 

the nitroxyl radical does not form a stable bond with oxygen radicals, thus making the 

nitroxyl radical insensitive to oxygen.34  Nitroxyl radicals can react with C, N, and P 

radicals34 and do so at diffusion limited rates.   
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Figure 6.  Stable free radical nitroxide molecules.  (1) non-cyclic di-tertbutylnitroxide.  
(2) 2,2,5,5-tetramethylpyrrolidin-1-yloxyl.  (3) 2,2,5,5-tetramethylpiperdin-1-yl-oxyl 
(TEMPO).  (4) 1,1,3,3-tetramethylisoindoline-2-yloxyl.  Preparation and detection of 
degradation and chain scission events in epoxy-amine networks using a profluorescent 
nitroxide probe, by K.F. Fazende, 2013, The University of Southern Mississippi, p. 3.  
Reprinted with permission from the author.54 

Finally, nitroxyl radicals have distinct EPR spectra due to the quantum number of 

14N, and their concentration can be monitored in the solid state.  Therefore, with the two 

criteria of selectivity and stability, a reduction in concentration of nitroxyls in comparison 

to a control can accurately be assumed to directly correlate to the production and 

scavenging of homolytic chain scission by-products.  The advantage of this technique 

approach is that EPR is a sensitive spectroscopic technique with an experimental 

detection limit in the range of 7.5 x 1012 spins of paramagnetic species in the X-

band.9,55,56 

Hypothesis 

 We hypothesize that the degradation of mechanical performance and subsequent 

failure of glassy thermoset polymers originates from the accumulation of chain scission 

events.  This event occurs below the UTS of the material and results in mostly homolytic 

products (radicals).  To test this hypothesis, nitroxyl radicals will be incorporated within 

glassy epoxy-amine matrices to react with homolytic byproducts of chain scission events.  

The concentration of nitroxyl radicals will be monitored as a function of fatigue using 
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EPR spectroscopy and the loss of signal compared to controls will quantify homolytic 

chain scission events (Figure 7). 

                                     

Figure 7.  Illustration depicting chain scission resulting from force.  Figure A depicts the 
force distribution throughout the thermoset polymer chains.  Figure B depicts the 
homolytic cleavage of a bond near two nitroxyl probes represented by orange circles.  
Figure C depicts the reaction of the nitroxyl probes with the chain scission radicals and 
producing a detectable signal. 

Objectives 

1) To successfully incorporate a nitroxyl radical probe molecule within an epoxy-

amine thermoset and verify that the epoxy-amine reaction chemistry is not 

adversely affected by such incorporation  

2) To subject nitroxyl radical loaded epoxy-amine thermosets to varying levels of 

fatigue and analyze the samples via EPR to detect loss of nitroxyl radicals and, 

therefore, chain scission events. 

Challenges 

 The creation of a primary radical chain end can immediately lead to a series of 

beta hydrogen abstractions to reduce the high potential energy of the primary radical to a 

lower potential energy state of a secondary or tertiary radical.  This radical “migration” 

along the polymer backbone increases the difficulty of identifying primary scission 

events.17,18  Recombination with another radical species can result in branching, 

crosslinking, or scavenging of oxygen atoms.  Spectroscopically, a branch site does not 

represent a substantial functional group change from the initial structure, and radical 
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lifetimes can be short due to recombination.  Capturing these events and limiting their 

recombination is difficult while the prevention of beta hydrogen abstraction at ambient 

temperatures is impossible.17,18 

 A potentially significant challenge is the mobility of the glassy state.  The glassy 

state is an extremely viscous material with viscosities greater than 1013 Pa sec.50  This 

strongly impedes the diffusion and mobility of the probe molecule to diffuse and react 

with a fractured chain segment.  Literature research into diffusion and mobility of 

individual molecules within a glassy matrix under repetitive cycles of strain bore no 

answers.  Radicals can migrate based on hydrogen abstraction as mentioned previously, 

based on chemical mobility of the radical and the potential mobility enhancement of 

strain.  We acknowledge these challenges at the outset as we begin to test our hypothesis. 

Concluding Remarks 

 The goal of this research is to determine if chain scission events play a significant 

role in the fatigue lifetime of thermoset polymeric materials.  Understanding the degree 

and significance of chain scission will enable intelligent choices and design for future 

thermoset polymers. 
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CHAPTER II 

MATERIALS AND EXPERIMENTAL DETAILS 

Introduction 

 The studies throughout this research into epoxy-amine thermosets use specific 

materials selected for their chemistry type and thermal considerations.  Their structures 

are reported in Scheme 1.  Diglycidyl ether of bisphenol-A (DGEBA) is an epoxy 

monomer commonly used in research and industry.  Epon® 828 (Hexion Chemicals) is 

primarily DGEBA, with ~ 10% of the molecules being extended by one repeat unit to 

inhibit crystallization.   

Amine selection was predicated on the Tg of the final material being conducive to 

thermal characterization.  Previous thermogravimetric analysis (TGA) indicated the 

homolytic chain scission probes degraded at ~ 145 °C.  Therefore, a Tg of ~ 100 °C was 

considered appropriate to allow complete thermal cure without degrading the nitroxyl 

radicals.  Aliphatic amines were favored as their primary amine overtone would not 

overlap with the epoxy overtone during NIR analysis.  The amine employed in this 

research was 2-methyl-1,5-diaminopentane and purchased (> 99% pure) from TCI 

America.  The nitroxyl based molecule 4-hydroxy-TEMPO was donated by Evonik and 

used as received.  Isophorone diisocyanate (IPDI) was purchased from Bayer® and used 

as received. 

Epoxy-Amine Thermoset Materials 

 Purity and equivalence of DGEBA was confirmed by quantitative 1H NMR and 

13C NMR analysis as well as epoxide functional equivalent weight titrations following 

ASTM D 1652.  The purity and equivalence of 2-methyl-1,5-diaminopentane was 
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confirmed through quantitative 1H NMR and 13C NMR spectroscopy.  Total amine 

functional equivalent weight was determined via ASTM D 2073 methods.  Thermoset 

matrices were synthesized by mixing DGEBA and 2-methyl-1,5-diaminopentane in 1:1 

stoichiometric ratios (Scheme 2).  Cure schedules and conditions will be reported in their 

respective chapters and sections. 

 

Scheme 1.  Reaction of (A) DGEBA and (B) 2-methyl-1,5-diaminopentane to form (C) 
crosslinked epoxy-amine network.  R notation is an infinite continuation of the network.  
Theoretical crosslink density is 436 g/mol based on a 1:1 stoichiometric ratio. 

Synthesis of Stable Free Nitroxyl Radical Probes 

The low molecular weight TEMPO and 4-hydroxy-TEMPO volatilize at 

approximately 110 °C based on TGA data.  To increase thermal stability for epoxy-amine 

polymerization temperatures, 4-hydroxy-TEMPO was reacted with IPDI to form the 
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product bis-TEMPO-IPDI (BT-IPDI) as shown in Scheme 2.  The thermal stability of 

BT-IPDI extends to 150 °C as measured via TGA, approximately 50 °C higher than the 

original TEMPO materials.  Isophorone diisocyanate (IPDI) was purchased from Bayer® 

and used as received.   

 

Scheme 2.  Reaction of (A) 4-hydroxy TEMPO and (B) isophorone diisocyanate to form 
(C) bis-TEMPO IPDI (BT-IPDI). 

BT-IPDI was synthesized at 80 °C under dry nitrogen using chloroform as the 

solvent and dibutyltin dilaurate as catalyst.  A 2.01:1 molar ratio of 4-hydroxy TEMPO to 

isophorone diisocyanate was used to ensure that all the NCO groups were reacted.  The 

isocyanate was added drop wise to the reaction mixture over a two hour period, and the 

reaction was continued until the NCO stretching absorption band (2263 cm−1) could no 

longer be detected in the FTIR spectrum.  The product was concentrated under reduced 

pressure, and the final traces of solvent were removed in a vacuum oven at 60 °C.  The 

resulting product was a red crystalline powder. 

Characterization of Bis-TEMPO-IPDI 

Gel Permeation Chromatography 

Gel permeation chromatography was performed using a Varian PL GPC-50 

equipped with dual angle light scattering, differential pressure, refractive index detectors, 

a series of three Polymer Laboratory columns (two polypore and one 5 Ǻ PLGel column), 

and the eluent, tetrahydrofuran (THF), flow rate was 0.5 mL/min at 40 °C.  An internal 

standard was used with fixed volume quantities of toluene as a flow rate marker.  



23 
 

 

Polystyrene standards were used to calibrate the detectors.  The GPC trace in Figure 8 

shows a large single peak (50 min) with a slight shoulder that corresponds to over 

indexed IPDI that has advanced one repeat unit by reacting with trace amounts of water.   
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Figure 8.  GPC spectrum of BT-IPDI product.  Peak at 64 min is toluene, the flow rate 
marker. 

BT-IPDI Functional Equivalent Weight Titration 

EPR Spectroscopy 

 Quantitative EPR spectroscopy was performed using a Bruker EMXMicro X-band 

spectrometer using quartz tubes of approximately 3 mm outer diameter at ambient 

temperature.  Capillary inserts were used to reduce volume within the cavity due to the 

high dielectric constant of acetonitrile.  The following EPR instrumental settings were 

used to acquire each spectrum: a microwave power of 0.597 mW, receiver gain of 5020, 

frequency of 9.87 GHz, modulation amplitude of 2 gauss, modulation frequency of 100 

KHz, conversion time of 20.48 msec, time constant of 20.48 msec, and signal averaging 

of 4 scans.   

 Active nitroxyl radicals cannot be characterized via NMR methods due to the 

paramagnetic nature of a free radical.  Characterization through MALDI-TOF analysis 

was attempted, but the results were unsatisfactory.  The functional equivalent weight of 
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the active nitroxyl radicals was determined by titrating BT-IPDI using the radical 

photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO).  Quantitative 

reaction of nitroxyl radicals and TPO have been reported in literature.1  Experimental 

procedures were ccarefully selected to prevent side reactions from occurring.  This was 

achieved through selection of a solvent with hydrogens that are not susceptible to 

abstraction and the removal of oxygen from the reaction solution.  Acetonitrile was 

selected as a suitable solvent, with the reaction performed under a nitrogen atmosphere in 

a dry box.  The molar ratio of the photo-initiator to nitroxyl was kept in excess to favor 

reaction between the high potential energy radical initiator and the stable nitroxyl radical. 

Oxygen was removed from acetonitrile through a series of three freeze-pump-

thaw cycles.  The reaction was performed under dry box and darkroom conditions.  The 

light source was a 395 nm wavelength LED, and samples were irradiated for 

approximately one minute.  Because the intensity and wavelength distribution of the 

photo-source is unknown, lengthy exposure times to small concentrations were utilized to 

ensure complete reaction of the photo-initiator.  The initial BT-IPDI and TPO 

concentration were 1.5 mg/mL and 0.1 mg/mL respectively.  Serial dilution was used to 

generate three samples with three extractions measured via EPR spectroscopy to yield 

triplicate results.  Double integration was performed to obtain the spectral area.  In 

quantitative EPR analysis, the spectral area is directly proportional to concentration.2   

 Figure 9 presents a graphical illustration of the experiment.  Four vials were 

prepared, one initial concentration of 1.5 mg/mL BT-IPDI in acetonitrile and three vials 

of 1 mL solutions of TPO and acetonitrile at a concentration of 0.1 mg/mL.  The 

experiment began by extracting 1 mL of BT-IPDI and mixing it with the first vial of 



 

 

TPO.  Then 1 mL from this solution

mixing, all the vials were

then characterized using EPR spectroscopy.

Figure 9.  Illustration of BT

 

Scheme 3.  Radical photoinitiator 2,4,6
undergoing disassociation following exposure to 390 nm

Scheme 4.  Reaction of radical
oxide (TPO) with TEMPO nitr

In quantitative EPR spectroscopy, the spectral area is directly proportional to 

concentration.2  In Figure 10, e

linear dependence of EPR signal to radical concentration.

hen 1 mL from this solution was extracted and mixed with the second via

mixing, all the vials were exposed to the 395 nm wavelength photo-source 

EPR spectroscopy. 

 

Illustration of BT-IPDI titration serial dilution experiment.   

adical photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO)
disassociation following exposure to 390 nm radiation.1 

radical photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine 
with TEMPO nitroxyl radicals.1   

In quantitative EPR spectroscopy, the spectral area is directly proportional to 

In Figure 10, extrapolation to approximately zero intensity demonstrates

linear dependence of EPR signal to radical concentration. 
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Figure 10.  Integral area of EPR signal versus calculated concentration of nitroxyl 
radicals assuming 100% conversion. 

   

Figure 11.  Integral area of EPR signal versus functional ratio predicted concentration of 
nitroxyl radicals assuming 100% conversion.  The line is fitted to predict the x intercept. 

 In Figure 11, the observed trend to zero intensity at 1:1 molar ratios 

(Nitroxyl:TPO) confirmed that the reaction was quantitative and validated the functional 

equivalent weight of BT-IPDI.  The non-linear relationship between the integral area and 

functional molar ratio is due to the integral area of the EPR signal and is dependent upon 

radical concentration rather than the molar ratio.  However, Figure 11 illustrates that at a 
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1:1 molar ratio, no free radicals are present.  The shape of the curve solely depends upon 

the volumetric dilutions chosen in the experimental procedure.  The green line was fitted 

to confirm extrapolation to the x-axis was equal to one.  Figures 10 and 11 complement 

each other in that Figure 11 confirms the nitroxyl radical functionality while Figure 10 

yields the correct slope of EPR signal with concentration.  Using the slope of Figure 10, a 

mathematical simulation of various starting concentrations of BT-IPDI was generated 

(Figure 12), which confirm that the EPR signal reduces to zero as the molar ratio of 

nitroxyl radical to TPO approaches unity.  The simulation allows confirmation of Figure 

10 and 11 without experimentally measuring the reaction at nitroxyl to initiator ratios that 

would favor unwanted side reactions. 

   

Figure 12.  Mathematical simulations of various starting concentrations of BT-IPDI for 
the volumetric titration experiment.  Fitted slope and points are experimental data from 
Figure 10.  ◊ Simulation of starting BT-IPDI concentration of 1.4 mg/mL.  □ Simulation 
of starting BT-IPDI concentration of 1.2 mg/mL. 
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Pressure-Volume-Temperature High Pressure Dilatometry 

Free Volume of DGEBA and 2-methyl-1,5-diaminopentane 

 Epon 828 (DGEBA) was degassed for six hours under vacuum before being 

mixed with 2-methyl-1,5-diaminopentane at a 1:1 stoichiometric ratio.  The blend was 

cured at 60 °C for 1.5 hours followed by 120 °C for 1.5 hours under nitrogen atmosphere.  

Prior to PVT analysis, the sample was thermally treated under nitrogen atmosphere 

(Figure 13) to ensure complete cure and an exact thermal history to eliminate temporal 

aging effects. 

 

Figure 13.  Thermal cycle to remove aging prior to PVT analysis. 

 Density was measured via an immersion displacement method using a Mettler 

Toledo XS104 analytical balance equipped with a density determination kit and water as 

the immersion fluid.  Specific volume as a function of temperature and pressure was 

determined using a Gnomix dilatometer (Gnomix, Boulder, CO) as described by Zoller.3  

Dilatometric experiments were conducted using Pressure-Volume-Temperature (PVT) 

analysis.  Figure 14 shows the change in volume with temperature at various pressures.  
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The data points at zero pressure were extrapolated using Tait equations within the 

Gnomix software and are accurate to within ± 0.00015 cm3/g. 

 

Figure 14. PVT of DGEBA – 2-methyl-1,5-diaminopentane at various temperatures and 
pressures. 

 Sample free volume was calculated using the Simha-Somcynsky equation of state 

(SS-EOS, Equation 1).  The SS-EOS was first derived to describe spherical and chain 

molecule fluids but has since been applied to high molecular weight polymers.4  This 

equation describes free volume using a cell or lattice model and assumes a statistical 

mixture of occupied (o) and unoccupied cells ( u= 1-o) of the same size.  The SS-EOS in 

Equation 2 was derived assuming liquids under thermodynamic equilibrium conditions 

using the Helmholtz free energy and the partition function Z (Equation 1).5  In literature, 

the fraction of occupied lattice site variable “o” is originally denoted as “y”.  However, 

this equation is solved later using a graphical method by graphing “y” as x and reports the 

x axis intercept as the solution.  Therefore, the variable “y” is renamed to “o” to minimize 

confusion of the reader. 
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Equation 1.  Helmholtz free energy, F. 
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Equation 2.  Simha-Somcynski Equation of State (SS-EOS).5 
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Equation 3.  Reduced parameters ��, �� , and �� .5 

 Assuming a pressure of zero, Utracki and Simha simplified the equation of state 

in the equilibrium melt state to Equation 4, which relates the specific volume V to fit 

parameters �( and �(, as well as constants *� and *�.6   

���, �� 	 �( , exp �*� � *� 0 1
1(2

�
�� 

Equation 4.  Reduced SS-EOS at zero pressure.6 

 For PVT analyses of epoxy-amine thermosets, researchers have used the 

values of *�= - 0.1033 and *�= 23.85.7  Inserting these constants back into the expression 

and taking the natural logarithm of both sides yields Equation 5. 

ln � 	 ln �( 
 0.1033 � 23.85 , ��
� , � 1

�(�
6
& 

Equation 5.  Natural logarithm of reduced SS-EOS with *� and *� values. 

 Fit parameters �( and �( will remain constant with changing volume and 

temperature.  After inserting specific volume (V) measurements above the Tg, the 

equation can be solved to yield a value of 12343.8 K for �(and 0.86063 for �(.  Inserting 

these values of �( and �(into Equation 4 and graphing f(T) against specific volume, V 

(Figure 15), indicates the calculated values of V agree well with experimental values for 

the rubbery state.   
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Figure 15.  PVT of DGEBA – 2-methyl-1,5-diaminopentane.  Fitted line is reduced SS-
EOS (Equation 4) using solved �( (0.86063) and �( (12343.8 K). 

 Equation 2 gives the relationship between the reduced parameters ��, �� , ��  and o, 

the fraction of occupied lattice sites.  At zero pressure, the left side of the equation 

becomes zero as shown in Equation 6. 

0 	 �1 
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�������
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��

� �
��  2.002������# 
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Equation 6.  Simha-Somcynski Equation of State (SS-EOS) at zero pressure.5 

 Reduced parameters ��  and ��  can be calculated using the solved fit parameters �( 

and �( at measured specific volume and temperature points from the PVT experimental 

data.  By graphing equation 6 with fractional occupied lattice site variable o as the 

independent x variable, the x intercept at y = 0 solves for o.  Equations 7 and 8 relate the 

calculation of occupied volume and thus free volume using the fractional occupied lattice 

site variable o. 

�788 	 � , � 

Equation 7.  Occupied volume (Vocc) calculated from specific volume (V) and fractional 
occupied lattice site (o). 
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Equation 8.  Specific volume (V) as a sum of occupied volume (Vocc) and free volume 
(Vf). 

 Equations 7 and 8 relate the calculation of occupied volume and thus free volume 

using the fractional occupied lattice site variable o.  Figure 16 depicts graphically the 

calculated values of specific occupied volume (Vocc), specific free volume (Vf), and the 

experimentally measured specific volume (V) as reported in Table 1.  Of special 

importance that will be used in later chapters is the density measurement at 176 °C.  This 

measurement is approximately 50 °C above the glass transition temperature and will be 

used to calculate crosslink density via the storage modulus obtained through dynamic 

mechanical analysis (DMA) experiments.  Table 1 summarized the experimental data and 

calculated Vocc, Vf, and bulk modulus values from the PVT experiment of DGEBA and 2-

methyl-1,5-diaminopentane. 

 

Figure 16.  PVT data for DGEBA and 2-methyl-1,5-diaminopentane.  Plotted are specific 
volume (V), specific occupied volume (Vocc), and specific free volume (Vf). 
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Table 1 

PVT Experimental Data and Calculated Vocc, Vf, and Bulk Modulus 

  

 T (°C) ρ (g/cm3) V (cm3/g) Vocc (cm3/g) Vf (cm3/g) Bulk Modulus (GPa) 
 

 27.6 1.1564 0.8647 0.8162 0.0485 4.211 

 51.9 1.1500 0.8696 0.8181 0.0515 3.867 

 76.3 1.1435 0.8745 0.8199 0.0546 3.569 

 100.6 1.1364 0.8800 0.8216 0.0584 3.253 

 125.3 1.1221 0.8912 0.8220 0.0692 2.338 

 150.4 1.1072 0.9032 0.8224 0.0807 2.093 

 176.0 1.0918 0.9159 0.8229 0.0930 1.916 

 

 

Figure 17.  Bulk modulus versus temperature of DGEBA and 2-methyl-1,5-
diaminopentane. 
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Table 2 

Calculated Percent Fractional Free Volume at 300 K 

  

 Epoxy-(Amine) % Vf 
 

DGEBA-(2-methyl-1,5-diaminopentane) 5.6 

DGEBF-(3’3’-Diaminodiphenyl Sulfone) 4.7a 

DGEBF-(4’4’-Diaminodiphenyl Sulfone) 5.2a 

 

Note a:  Values calculated from experimental data reported in Figure II-12.7 

 Figure 17 depicts the bulk modulus versus temperature obtained from PVT 

experiments at variable pressures.  The offset in the slopes of the curve reflects the 

influence of the Tg.  The percent free volume relative to specific volume of DGEBA and 

2-methyl-1,5-diaminopentane is 5.6% at ambient temperature.  Although the fit 

parameters �( and �( were calculated through different methods, the calculated value for 

the DGEBA-(2-methyl-1,5-diaminopentane) system agrees well with the reported percent 

fractional free volume of other thermosets as determined by PVT analysis (Table 2). 

 The data in Table 2 for 3’3’-DDS and 4’4’-DDS were determined using the same 

PVT instrument reported here.  The aliphatic amine should yield higher amounts of free 

volume as compared with the more dense aromatic structure.  It should be noted that 

other values for free volume of epoxy-amine thermosets have been reported by 

researchers using PVT and SS-EOS methods8.  However, no justification was provided 

for cure temperatures, and the epoxy-amine conversion was not verified.  Therefore, the 
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fractional free volume values obtained remain suspect and are significantly larger than 

reported here. 
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CHAPTER III 

CHEMO-RHEOLOGICAL CHARACTERIZATION OF EMBEDDED REACTIVE 

MATERIALS 

Introduction 

The objective of this chapter is to establish that the incorporation of nitroxyl 

radicals and molecules containing urethane groups does not inhibit the reaction or 

network formation of DGEBA / 2-methyl-1,5-diaminopentane in view of the potential 

competing mechanisms between the additives and the epoxy and amine functional 

groups.  Blocked isocyanates synthesized by reacting IPDI individually with N-methyl 

aniline, e-caprolactam, and 4-hydroxy TEMPO were embedded into epoxy-amine 

thermosetting systems.  Near infrared spectroscopy and dynamic rheology were 

employed in combination to quantify the effects of conversion at 30 °C. 

  Gilbert et al. evaluated isocyanates as latent curing agents to affect final material 

properties such as water absorption characteristics.1-3  Other subsequent studies in 

blocked diisocyanate modified epoxies focused on spectroscopically identifying the 

modification mechanisms.  When systems containing blocked isocyanates are heated 

above the deblocking temperature, the deblocked and free isocyanates are capable of 

reacting into the network causing material property changes.  In this study, care was 

taken to ensure that the blocked isocyanates were chemically compatible and that our 

characterization quantified whether the premature reactions adversely affect network 

formation, pot life, or processability.  Critical for our long term research goals are to 

preserve the functional groups throughout polymer synthesis and avoid any epoxy-amine 

consumption in advance of network formation.   
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 Kinetic studies using FT-IR techniques are well known in the literature4 with real 

time spectroscopic techniques utilized to monitor functional group conversion.5  

Obtaining quantitative data in the mid-IR range is often challenging due to significant 

peak overlaps in the fingerprint region.  The NIR region contains overtone peaks that 

allow quantitative analysis of functional groups such as N-H, C-H, and O-H.6  Near 

infrared spectroscopy has been used to study the kinetics of a variety of epoxy systems, 

including aromatic and aliphatic monomers.7-9   

 Rheological techniques have been used extensively to probe the viscoelastic 

response of polymers and monitor a variety of parameters including cure.  The 

combination of spectroscopic data and rheology (chemorheology) has been successfully 

employed to study polymer systems10, including epoxy systems.11  Recent studies have 

incorporated both FT-NIR and rheological techniques to quantitatively elicit chemical 

and mechanical insight into the curing process.12-15
  

Materials 

Dibutyltin dilaurate, N-methyl aniline (NMA), e-caprolactam, 1,2-cyclohexane 

diaminopentane, and 2-methyl-1,5-diaminopentane were purchased from Sigma Aldrich.  

Chloroform and deuterated chloroform (99.8%+, 0.03 v/v% tetramethyl silane, TMS) 

were purchased from Fisher Scientific and Acros Organics (a division of Fisher 

Scientific) respectively.  Isophorone diisocyanate, Epon 828 (DGEBA) and 4-hydroxyl-

2,2,6,6 tetramethylpiperidine-1-oxyl were generously donated by Bayer MaterialScience, 

Hexion, and Evonik Industries, respectively.  Salt plates (32 mm x 3 mm) and Teflon 

spacers (0.2 mm) were purchased from Crystal Labs.  Bis(2-ethylhexyl) phthalate 
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(BEHP) was procured from Alfa Aesar.  All chemicals were used as received unless 

otherwise noted. 

 

Figure 18.  Blocked isocyanate additive structures with core comprising isophorone 
diisocyanate (IPDI) and R’ composed of N-methyl aniline, e-caprolactam, or 4-hydroxy-
TEMPO. 

 

 

Figure 19.  Thermoset epoxy-amine comprised of (A) Epon 828 (DGEBA) and (B) 2-
methyl-1,5-diaminopentane. 

Synthesis 

Blocked isocyanates were synthesized at 80 °C under dry nitrogen using 

chloroform as a solvent and dibutyltin dilaurate as catalyst.  A 2.01:1 molar ratio of 

blocking agent to isocyanate was used to ensure complete reaction of all the NCO groups.  

The isocyanate was added drop wise to the reaction mixture over two hours, and the 

reaction was continued until the -NCO stretching absorption band (2263 cm−1) could no 

longer be detected in the FT IR spectrum.  The product was concentrated under reduced 

pressure and final traces of the solvent were removed in a vacuum oven at 60 °C. 

A B 
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Sample Preparation 

 Prior to material blending and cure, Epon 828 was degassed for 24 hours under 

vacuum at 75 °C.  The functional equivalent weight of Epon 828 (DGEBA) was 

determined using the ASTM D162-97 protocols.  Amine equivalent weights were 

calculated from data provided by the manufacturer.  The procedure for blending the 

blocked isocyanates is as follows: DGEBA, NMA-b-IPDI, and e-cap-b-IPDI were 

individually heated to 100 °C before mixing with the epoxy resin.  The bis-TEMPO-IPDI 

additive was mixed with the epoxy resin at 50 °C.  After blending, all the formulations 

were degassed again (albeit only briefly) to remove any gases incorporated during 

mixing.  2-methyl-1,5-diaminopentane was added at a 1:1 functional equivalent ratio to 

the epoxy-additive blend and mixed briefly but efficiently.  The epoxy-amine-blocked 

isocyanate blend was partitioned for FT NIR and rheology studies.  A 25 minute 

preparation period was allowed for all samples before simultaneously starting the 

rheology and NIR analysis to provide the same temporal and temperature history of both 

samples.   

Results 

 Throughout the reaction, functional group concentrations were measured using 

the principles of Beer-Lambert’s law.  Using a fixed path length of 0.2 mm, spectra were 

acquired in the linear region of utilizing Beer-Lambert’s law so that the peak area was 

directly proportional to concentration.  Molar absorptivity coefficients were 

experimentally determined for each functional group via NIR spectroscopic analysis of 

the monomer at a known path length and concentration.  Table 3 lists the molar 

absorptivity coefficients determined experimentally for the primary + secondary amine, 
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primary amine, and epoxide absorption bands.  Figure 20 shows the time resolved NIR 

spectra of DGEBA and 2-methyl-1,5-diaminopentane NIR regions for the overlapping 

primary + secondary amine and single primary amine and epoxide absorption bands. 

 

Figure 20.  Wavenumber regions monitored for primary+secondary amine, primary 
amine, and epoxide absorption bands. 

Table 3 

Molar Absorptivity Values 

 

Absorption Bands Molar Absorptivity* 
 

Primary + Secondary Amine 1.111 
 
Primary Amine 1.243 
 
Epoxide 0.890 

 
 
*Units of Molar Absorptivity are A*kg*mol-1cm-1.  Variable A is defined as Peak Area. 

Experimental procedures were designed to ensure that the temporal and 

temperature history of the samples in the NIR heat cell and the rheometer forced air 

convection chamber were identical and that the samples were exposed to 30 °C at the 

same instant.  The first scan was obtained 25 minutes after the reaction was injected into 

the heat cell.  Differences in conversion prior to measurement (Figures 21 – 24) were 

attributed to the differences in laboratory temperatures during sample preparation.  

Moreover, the heat cell within the NIR varied in the isothermal temperature by 
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approximately ± 1 °C throughout the experiment, whereas the rheometer maintained 

temperature within ± 0.1 °C. 

Each of the chemorheological experiments indicated vitrification of the samples 

prior to infinite molecular weight, expected to occur at ~ 58% conversion as calculated 

through Flory’s equations.1  Within this study, it was apparent that two different types of 

vitrification occurred.  Mechanical vitrification occurs at the crossover point between the 

storage and loss modulus as the elastic nature of the network dominates the rheological 

properties.  However, this condition does not affect the reaction rate with respect to the 

chain ends because their mobility is not restricted until higher conversions are achieved 

as evidenced in Figures 21 – 24.  Based on these two criteria, we chose to assign 

vitrification as being achieved when the storage modulus reached its plateau.  

Mechanically, there are no further changes in the network.  Based on NIR spectroscopy, 

this point is close to the loss of mobility of the reacting chain ends evidenced by a sharp 

decrease in epoxide conversion rates.  Despite no measurable change in storage modulus, 

the epoxy-amine reaction continues at lower reaction rates, with crosslink density 

continuing to increase.  It is believed that although chain ends are continuing to react, 

they are not significant from a force distribution standpoint as the stiffness property is 

only affected by the lack of cooperative segmental motion at temperatures below the Tg 

and not the increasing crosslink density.  Interestingly, Dean et al. reported NIR 

vitrification data that was consistently lower than rheological values.12  However, they 

did not report a correlation between the two vitrification points in their study.  

At higher incorporation levels, the blocked isocyanate materials induced 

plasticization upon network formation and promoted higher degrees of conversion versus 
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controls at the same time/temperature points as shown in Figures 23 and 24 (conversions 

≥ 0.75).  The increasing amounts of blocked isocyanates produced a dilution effect on the 

functional group concentration, resulting in a consistent lower epoxy conversion rate.  

The data indicates the reactive materials are dormant during these characterization 

processes and do not affect the epoxy-amine reaction as a competing mechanism (Table 

6).  This was further supported by a series of stability studies in whereby each additive 

was combined with DGEBA and held at temperatures of 50 °C and 105 °C for over 24 

hours.  No conversion of the epoxy groups was detected after 24 hours at elevated 

temperatures.  After several weeks at 105 °C, the DGEBA - NMA-b-IPDI sample had 

increased in viscosity to the point that the sample could not be placed and measured 

accurately within the NIR cell.  Therefore, at 30 °C, there is very little reaction between 

the NMA isocyanate derivative and the epoxy resin within the timeframe of the 

chemorheology study.   

 Based on NIR stability studies, the single outlier from Figure 22 was questioned 

and determined to be the result of lower temperature conditions in our NIR heat cell.  If 

the curve is treated as anomalous, the calculated kinetic rate of the remaining curves 

decreased consistently by 0.0015 kg mole-1 min-1  for every 5 wt% increase in additive.  

Thus, incorporating 5 wt% of bis-TEMPO-IPDI decreased the reaction rate by 0.001 mol 

kg-1 min-1, whereas 10 wt% of the other two blocked isocyanates decreased the reaction 

rate by 0.003 mol kg-1 min-1 in comparison to the control.  These reaction rates were 

calculated using the initial reaction rates in the linear regions of Figures 21-24 prior to 

vitrification.  Compared to the control, the G’ and G”crossover point and times required 

to reach mechanical plateaus were elongated significantly at increasing blocked-
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isocyanate concentrations (Table 5).  The results were consistent, and the differences 

from the controls were attributed to increased plasticization of the epoxy-amine matrix 

that allowed higher mobility and increased the extent of conversion achievable prior to 

vitrification.  

 

Figure 21.  Chemorheological characterization of DGEBA and 2-methyl-1,5-
diaminopentane epoxy-amine reaction at 30 °C. 
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Figure 22.  Chemorheological characterization of DGEBA and 2-methyl-1,5-
diaminopentane epoxy-amine reaction in the presence of 5 wt% bis-TEMPO-IPDI at 30 
°C. 

 

Figure 23.  Chemorheological characterization of DGEBA and 2-methyl-1,5-
diaminopentane epoxy-amine reaction in the presence of 10 wt% e-cap-b-IPDI at 30 °C. 
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Figure 24.  Chemorheological characterization of DGEBA and 2-methyl-1,5-
diaminopentane epoxy-amine reaction in the presence of 10 wt% NMA-b-IPDI at 30 °C. 

Table 4 

Average Pre-vitrification Rates of Epoxide Conversion for DGEBA-2-methyl-1,5-

diaminopentane at 30 °C 

 

Material Rate of Epoxide Reaction (mol kg-1 min-1) 
 

Control -0.0121 ± 0.0002 
 
5 wt% Bis-TEMPO-IPDI -0.0110 ± 0.0008 
 
10 wt% e-cap-b-IPDI -0.0087 ± 0.0006 
 
10 wt% NMA-b-IPDI -0.0090 ± 0.0007 

 
 
Note:  Control is DGEBA and 2-methyl-1,5-diaminopentane reaction, subsequent entries are wt% added to the reaction mixture. 
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Table 5 

G’/G” Crossover Time Points in Dynamic Rheology Data at 30 °C 

 

Material G’/G” Crossover (min) Epoxide Conversion 
 

Control 181 ± 9 0.521 ± 0.029 
 
5 wt% Bis-TEMPO-IPDI 180 ± 3 0.502 ± 0.032 
 
10 wt% e-cap-b-IPDI 214 ± 7 0.608 ± 0.030 
 
10 wt% NMA-b-IPDI 206 ± 8 0.591 ± 0.041 

 
 
Note:  Control is DGEBA and 2-methyl-1,5-diaminopentane reaction, subsequent entries are wt% added to the reaction mixture. 

Table 6 

G’ Plateau Time Points in Dynamic Rheology Data at 30 °C 

 

Material G’ Plateau (min) Epoxide Conversion 
 

Control 202 ± 7 0.575 ± 0.026 
 
5 wt% Bis-TEMPO-IPDI 201 ± 2 0.553 ± 0.033 
 
10 wt% e-cap-b-IPDI 236 ± 9 0.649 ± 0.025 
 
10 wt% NMA-b-IPDI 225 ± 7 0.631 ± 0.036 

 
 
Note:  Control is DGEBA and 2-methyl-1,5-diaminopentane reaction, subsequent entries are wt% added to the reaction mixture. 

Conclusions 

 Compared to the control (no additive), variations in gel points and ultimate epoxy 

conversion were observed in systems containing blocked isocyanates based on N-methyl 

aniline and e-caprolactam.  However, no significant variation was detected with the 4-

hydroxy TEMPO blocked isocyanate.  The kinetic rate of the epoxy-amine reaction, 



48 
 

 

measured by NIR spectroscopy, decreased by 0.0015 mol kg-1 min-1 for every 5 wt% of 

additive within the matrix.   

Chemorheological techniques confirmed the chemical and mechanical 

compatibility of the epoxy-amine matrix system with blocked isocyanate additives and 

nitroxyl radicals.  Reduction in kinetic rates of the e-cap-b-IPDI and NMA-IPDI 

formulations are consistent with dilution effects from higher additive loadings.  These 

formulations also exhibited a plasticization effect due to the presence of small molecules 

not directly participating in network formation.  The observed plasticization effects 

elicited higher levels of conversion (supported by both FT NIR spectroscopic and 

rheological data) in systems containing NMA-IPDI and e-cap-b-IPDI by postponing 

vitrification.  The system containing bis-TEMPO-IPDI did not display a statistically 

significant change in gelation time when compared to the control but did exhibit a 

reduction in kinetic rates in the isothermal regime studies.  The consistent loss of reaction 

rates with increasing additive concentration suggests that the effect on kinetic rate is due 

to decreasing concentration of reacting functional groups and was not attributed to the 

presence of a competing mechanism. 
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CHAPTER IV 

FATIGUE OF A GLASSY EPOXY THERMOSET WITH HOMOLYTIC CHAIN 

SCISSION PROBES 

Introduction 

 In Chapter II, bis-TEMPO-IPDI was synthesized from 4-hydroxy-TEMPO and 

isophorone diisocyanate, and the nitroxyl radical functionality was shown to be retained 

through titration experiments.  Thermogravimetric analysis experiments have confirmed 

that the molecule is thermally stable to 150 °C.  In Chapter III, it was demonstrated that 

BT-IPDI and molecules possessing urethane functional groups could be incorporated 

without affecting the kinetics of the DGEBA/2-methyl-1,5-diaminopentane epoxy-amine 

reaction at loading levels exceeding 5 wt%.   

 Xia measured diminishing properties of glassy epoxy-amine thermosets in situ 

with fatigue studies.1-6  However, no studies have reported the underlying cause of 

property diminishment and subsequent failure with fatigue.  The goal of this study is to 

induce mechanical degradation through fatigue and determine if it is accompanied by 

molecular degradation.  Figure 25 demonstrates graphically the purpose of using nitroxyl 

radicals and detection by EPR spectroscopy.  In this chapter, BT-IPDI was incorporated 

into DGEBA - 2-methyl-1,5-diaminopentane matrices and subject to fatigue experiments 

to detect if mechanical forces cause homolytic chain scission. 
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Figure 25.  Illustration depicting chain scission resulting from force.  The left figure 
depicts the force distribution throughout the thermoset polymer chains.  The central 
figure depicts the homolytic cleavage of a bond near two nitroxyl probes represented by 
orange circles.  The right figure depicts the reaction of the nitroxyl probes with the chain 
scission radicals and producing a detectable signal. 

Materials 

 Materials used in this study are DGEBA and 2-methyl-1,5-diaminopentane as 

shown in Scheme 1 of Chapter II.  Epon 828 (DGEBA) was degassed under vacuum for 

approximately 6 hours prior to introduction of amine.  To introduce nitroxyl probes, BT-

IPDI was incorporated through volumetric addition of BT-IPDI/acetonitrile solution to 

the DGEBA at 0.005 wt% loading of final samples.  Acetonitirile (boiling point 82 °C) 

was removed from DGEBA by heating the sample to 80 °C under vacuum overnight.  

The DGEBA blend was then measured gravimetrically to ensure that the solvent has been 

removed completely.  The DGEBA / BT-IPDI blend and 2-methyl-1,5-diaminopentane 

were mixed together at a molar ratio of 1:1 based on epoxide to amine hydrogens.  After 

thorough mixing in a non-contact Flacktek® mixer, the samples were further degassed via 

sonication for 10 minutes before being injected into molds as shown in Figures 26 and 

27. 

Nitroxyl Loading Justification 

 The method discussed in this paper involves subtraction of the resulting signal 

from the original signal.  Because a low population of chain scission events were 
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expected, a low nitroxyl concentration was employed to ensure the number of nitroxyls 

reacting would be a significant fraction of the existing population enabling easy detection 

of the loss of signal.  It could be argued that using such a small concentration would 

minimize the detection potential.  However, it is hypothesized that larger populations of  

nitroxyl radicals would result in an even smaller chance of successful detection. 

Sample Preparation 

 The dimensions of the EPR solid state tissue holder limited the sample size that 

could be evaluated.  Composed completely of quartz, the holder encases samples 

measuring approximately 7 mm x 23 mm x 0.5 mm.  Molds were designed and used to 

cast samples having dimensions of 6 mm x 20 mm x 0.5 mm.  However, defects in 

sample shape can exert critical influence at such small dimensions and induce extensive 

variation in the experimental results.  To ensure dimensional consistency, samples for 

mechanical testing were prepared using reaction injection molding.  Machining of 

samples to the appropriate dimension was avoided as it could interfere with the 

measurement of chain scission events. 

The reaction injection molding setup (Figure 26) was composed of a syringe 

pump, Tygon® tubing, Y splitters, and 18 gauge syringe needles.  The needles were 

inserted into silicone molds and also into the injection port (object 2 in Figure 27).  To 

facilitate release from the silicon molds, a dry film mold release agent was used.  After 

the monomer mixture was degassed via sonication, it was loaded into a syringe and 

pumped into the silicone mold.  The syringe needles were angled downwards into the 

mold so that any trapped air would be caught at the tubing inverse points.  The rate of 

volume addition was programmed to fill the mold under constant pressure up to the 
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vitrification time point (3 hours).  Pumping through vitrification and overfilling the molds 

minimized the effects of volume shrinkage from epoxy conversion.  This process 

minimized artifacts such as bubbles and uneven surfaces from meniscus and levelling 

type effects.   

The mold was held together using C-clamps and a specially devised torque 

wrench that avoided any mold distortion due to over-tightening of the clamps.  A torque 

setting of approximate 5-7 in-lb. was found to be ideal.  The mold half was composed 

completely of silicone resin with a release paper backing that was then held together like 

a sandwich using flat metal backings and C-clamps (Figure 26). 

 

Figure 26.  Reaction injection molding setup for sample casting.  Preparation and 
detection of degradation and chain scission events in epoxy-amine networks using a 
profluorescent nitroxide probe, by K.F. Fazende, 2013, The University of Southern 
Mississippi, p. 9.  Reprinted with permission from the author.7 
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Figure 27.  Sample injection depiction and mold layout.  Sample molds (4) dimensions 
were width 6 mm, length 20 mm, and thickness 20 mm.  Preparation and detection of 
degradation and chain scission events in epoxy-amine networks using a profluorescent 
nitroxide probe, by K.F. Fazende, 2013, The University of Southern Mississippi, p. 9.  
Reprinted with permission from the author.7 

 The epoxy samples were then allowed to vitrify overnight and post-cured in the 

morning.  Based on NIR data from Chapter III, the epoxy conversion was approximately 

70% before post-curing.  The samples were post-cured in a nitrogen atmosphere forced 

air convection oven at 60 °C for 85 minutes followed by 120 °C for 145 minutes.  The 

nitrogen atmosphere is used to avoid oxidative degradation of the ntiroxyl radicals.  The 

samples were then removed from the mold and weighed on an analytical balance.  The 

samples were then thermally annealed under nitrogen purge according to Figure 28 to 

erase any aging effects, remove absorbed atmospheric water, and ensure consistent 

thermal histories between samples.  Since the DGEBA - 2-methyl-1,5-diaminopentane 

samples were measured to absorb up to 0.5 wt% of water over a 24 hour period, all 

mechanical testing was performed immediately after the thermal cycle in Figure 28.   
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Figure 28.  Thermal annealing temperature ramps for samples. 

Experimental 

 Monotonic tensile and cyclic tensile fatigue testing was performed on the BOSE 

ElectroForce® 3330 Series II Test Instrument.  This separate motor transducer (SMT) 

system is capable of monotonic testing as well as dynamic oscillation up to 100 Hz with a 

load envelope of ±3000 N.  The BOSE system is capable of being operated in controlled 

stress or controlled strain modes.  Fatigue experiments were carried out using a sinusoidal 

application of tensile force using an R value of 0.1 as shown in Equation 9.  Experiments 

were conducted at a frequency of 10 Hz to avoid strain induced heating at higher 

frequencies. 

: 	 ;<=>??@AB.
;<=>??@CD.

 

Equation 9.  Stress ratio equation. 

 Quantitative EPR spectroscopy was performed using a Bruker EMXMicro X-band 

spectrometer using a quartz solid tissue holder at ambient temperature.  The following 
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EPR instrumental settings were used to collect each spectrum: microwave power of 0.63 

mW, receiver gain of 5020, frequency of 9.82 GHz, modulation amplitude of 2 gauss, 

modulation frequency of 100 KHz, conversion time of 20.48 msec, time constant of 

20.48 msec, and signal averaging of 4 scans. 

EPR Spectra of Nitroxyl Radicals 

 In this research study, a primary method was analysis of EPR spectra, specifically 

of nitroxyl radicals.  Only radicals (paramagnetic species) produce signals within EPR 

experiments.  The line splitting pattern is determined by the quantum number of the 

coupling nuclei, in this case, for nitroxyl radicals, it would be equal to one, the quantum 

number for 14N.  The number of observed spectral lines will be equal to L in Equation 

10.8  The number of hyperfine splittings, L, is equal to 2 times the number of adjacent 

nuclei, n, times the quantum number I. 

E 	 2 , F , G � 1 

Equation 10.  Number of hyperfine splittings predicted by the Hartman equation.2 

 For a nitroxyl radical, the active radical is the oxygen atom, which is covalently 

bonded to nitrogen.  The nitrogen atom has a quantum number of one, which, based on 

the above equation, the expected number of hyperfine lines to be observed is then three.  

This can be clearly shown in the solution spectra in Figure 29.  The characteristic shapes 

of the splitting pattern can change based upon the local environment of the nitroxyl 

radical.  In NMR, it is well known that the degree of motion that a nuclei possesses 

affects the shape and broadness of the peak.  To a similar degree, the EPR spectra is 

affected as well, as shown in the solid state spectra in Figure 29.  These two spectra are 

examples of nitroxyl radicals in different environments.  However, the concentration of 

the species are different.  Therefore, the signal to noise differences evident within the 
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spectra should be ignored.  Within the context of this study, a quantitative measurement 

of population of radicals is important.  It is not critical at this point to spin count or know 

the relationship between EPR intensity and exact radical concentration.  It is, however, 

critical in that the EPR intensity is linearly proportional to radical population.  

Quantitative measurement in EPR is obtained through low power usage of microwave 

radiation and low concentration of radical species.  For more detail on conducting 

quantitative EPR experiments, the reader is referred to Eaton et al.
9 

 The ideal method of measuring changes of the spectra in reference to change in 

population would be to double integrate the resulting spectra to determine the area under 

the curve.  This would be the most accurate assessment of population.  Double integration 

is necessary because the EPR spectra in Figure 29 is the first derivative of the EPR signal 

output.  Double integration is necessary to remove the first derivative operation and then 

to integrate to determine the area under the curve.  However, the low concentration of 

radicals used in this experiment due to baseline and signal to noise makes double 

integration inaccurate.  Therefore, signal intensity of the central peak for the nitroxyl 

radicals will be used to assess population changes.  This procedure is not reported in 

literature, but due to the experimental conditions and design, we believe it provides the 

most accurate assessment of population changes within the context of these experiments. 



 

 

Figure 29.  Examples of EPR spectra of nitroxyl radicals in solution and solid state.  First 
spectrum on the right represents a
environment pertains to a

 The x-axis in the spectra of Figure 29 is expressed in units of Gauss.  This is a 

unit of magnetic field strength.  In NMR, field strength is held constant by a 

superconducting magnet suspended in liquid helium wh

wavelengths is emitted into the sample.  In continuous wave EPR, the emission 

frequency, which is microwave wavelengths

strength is swept.  Once the appropriate field strength is re

microwaves occurs and signal is produced.

Experimental Design of 50% UTS Experiments

 Samples were synthesized and cast through reaction injection molding as 

previously described.  This experiment will study two sample conditions

fatigue.  Nitroxyl radicals were incorporated through using BT

0.005 wt% as previously described.  The samples were thermally annealed as shown in 

Figure 28.  The ultimate strength of the materials was

through destructive testing of three control samples.  

EPR spectra of nitroxyl radicals in solution and solid state.  First 
represents a solution environment, while the spectr

pertains to a glassy solid (epoxy). 

axis in the spectra of Figure 29 is expressed in units of Gauss.  This is a 

unit of magnetic field strength.  In NMR, field strength is held constant by a 

superconducting magnet suspended in liquid helium while multiple frequencies of radio 

wavelengths is emitted into the sample.  In continuous wave EPR, the emission 

which is microwave wavelengths, is held constant and the magnetic field 

strength is swept.  Once the appropriate field strength is reached, absorption of the 

microwaves occurs and signal is produced.   

Experimental Design of 50% UTS Experiments 

Samples were synthesized and cast through reaction injection molding as 

previously described.  This experiment will study two sample conditions, control and 

fatigue.  Nitroxyl radicals were incorporated through using BT-IPDI at a loading level of 

wt% as previously described.  The samples were thermally annealed as shown in 

Figure 28.  The ultimate strength of the materials was determined and shown in Table 7 

through destructive testing of three control samples.   
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EPR spectra of nitroxyl radicals in solution and solid state.  First 
um on the left 

axis in the spectra of Figure 29 is expressed in units of Gauss.  This is a 

unit of magnetic field strength.  In NMR, field strength is held constant by a 

ile multiple frequencies of radio 

wavelengths is emitted into the sample.  In continuous wave EPR, the emission 

is held constant and the magnetic field 

ached, absorption of the 

Samples were synthesized and cast through reaction injection molding as 

, control and 

IPDI at a loading level of 

wt% as previously described.  The samples were thermally annealed as shown in 

d shown in Table 7 



60 
 

 

Table 7 

Mechanical Properties of 50% UTS Controls 

 

 Strain-at-Break Force-at-Break (N) Modulus (GPa) 
 
 0.138 217 1.417 
 
 0.128 235 1.525 
 
 0.117 222 1.459 
 
 

The average weight of the samples was 70.5 ± 3 mg, and the experimental design 

is shown in Figure 30.  Both control and test samples were measured via EPR before 

being subject to fatigue.  The fatigue test group was then exposed to 50% UTS sinusoidal 

force at a frequency of 10 Hz for 10,000 cycles using the BOSE Electroforce 3300 N.  

Experimental parameters were stress ratio (R) of 0.1 (Equation 9), force values of 11 Nmin 

and 115 Nmax, and a sample gauge length of 8 mm.  After the fatigue experiment, the 

samples were stressed to break at a loading rate of 2 N/sec to determine the resulting 

force-at-break.  Most of the samples endured the fatigue experiment.  However, some 

samples did fail from the 50% UTS fatigue stress input.  The weights of the fatigue 

samples were recorded to account for any loss of signal due to fractured specimens.  The 

control samples were exposed to the ambient temperature and atmosphere within the lab 

but were not subject to fatigue or stress-to-break.  Both the fatigue test samples and 

control samples were then evaluated via EPR spectroscopy to determine any change in 

the population of nitroxyl radicals resulting from mechanical force input. 



 

 

Figure 30.  50% UTS experimental design depiction.

 The data shown in the figures and tables to follow encompass

composed each of three control samples and three fatigue samples 

through quantitative EPR spectroscopy with the exception of trial four in which only two 

fatigue samples were tested due to 

in Figure 31 and Table 8, data for trial two are found in Figure 32 and Table 9, Figure 33 

and Table 10 contain data for trial three, and trial four data are depicted in Figure 34 and 

Table 11.  Samples that were broken due to fatigue c

“Fatigue Break.”   

 

50% UTS experimental design depiction. 

The data shown in the figures and tables to follow encompass four trials 

three control samples and three fatigue samples that were analyzed 

uantitative EPR spectroscopy with the exception of trial four in which only two 

fatigue samples were tested due to lack of sample availability.  Trial one data are shown 

in Figure 31 and Table 8, data for trial two are found in Figure 32 and Table 9, Figure 33 

and Table 10 contain data for trial three, and trial four data are depicted in Figure 34 and 

Samples that were broken due to fatigue cycles are listed in the tables as 
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four trials 

were analyzed 

uantitative EPR spectroscopy with the exception of trial four in which only two 

one data are shown 

in Figure 31 and Table 8, data for trial two are found in Figure 32 and Table 9, Figure 33 

and Table 10 contain data for trial three, and trial four data are depicted in Figure 34 and 

ycles are listed in the tables as 



 

 

50 % UTS 10,000 Cycles Trial One

Figure 31.  Trial one EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left 
right column are fatigue conditions.
 

 

50% UTS Fatigue Trials Results 

UTS 10,000 Cycles Trial One 

Trial one EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 
right column are fatigue conditions. 
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column are control conditions and graphs in 
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Table 8 

Trial One Residual Strength Properties at 50% UTS 10,000 Cycles 

 

 Strain-at-Break Force-at-Break (N) Modulus (GPa) ∆Weight (mg) 
 
 0.162 242 1.532 -1.489 
 
 0.150 220 1.425 -0.934 
 
 0.133 238 1.569 -4.273 
 
 
  



 

 

50 % UTS 10,000 Cycles Trial Two

Figure 32.  Trial two EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs 
right column are fatigue conditions.

 

UTS 10,000 Cycles Trial Two 

Trial two EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs 
right column are fatigue conditions. 
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Trial two EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 
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Table 9 

Trial Two Residual Strength Properties at 50% UTS 10,000 Cycles 

 

 Strain-at-Break Force-at-Break (N) Modulus (GPa) ∆Weight (mg) 
 
 Fatigue Break Fatigue Break Fatigue Break -0.962 
 
 0.115 209 1.480 -1.937 
 
 0.082 207 1.555 -0.765 
 
 

 

  



 

 

50 % UTS 10,000 Cycles Trial Three

Figure 33.  Trial three EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 
right column are fatigue conditions.

 

UTS 10,000 Cycles Trial Three 

Trial three EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 

column are fatigue conditions. 
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Trial three EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 
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Table 10 

Trial Three Residual Strength Properties at 50% UTS 10,000 Cycles 

 

 Strain-at-Break Force-at-Break (N) Modulus (GPa) ∆Weight (mg) 
 
 0.115 222 1.479 +0.081 
 
 Fatigue Break Fatigue Break Fatigue Break +0.084 
 
 0.168 239 1.529 -0.649 
 
 

 

  



 

 

50 % UTS 10,000 Cycles Trial 

Figure 34.  Trial four EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 
right column are fatigue conditions.

 

UTS 10,000 Cycles Trial Four 

 

Trial four EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 

are fatigue conditions. 
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Trial four EPR intensity measurements for control and fatigue conditions 
before and after treatment.  Graphs in left column are control conditions and graphs in 
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Table 11 

Trial Four Residual Strength Properties at 50% UTS 10,000 Cycles 

 

 Strain-at-Break Force-at-Break (N) Modulus (GPa) ∆Weight (mg) 
 
 0.095 202 1.535 +0.074 
 
 0.0501 160.2 1.526 -1.140 
 
 

50% UTS Discussion 

 Trials one through four show EPR spectra that did not exhibit any change based 

on fatigue inputs or fracture.  While some samples exhibited loss in properties from 

fatigue, none showed a decrease in EPR signal indicating that the nitroxyl radical 

concentration remained the same within the samples.  In EPR, the radical concentration is 

directly proportional to the signal area or intensity if the line shape remains constant.  

Figure 35 displays the starting intensities of the control prior to the time allotment of the 

fatigue experiment.  All 12 samples are shown with initial and post fatigue EPR signal 

intensities. 
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Figure 35.  EPR intensity of control samples from trials 1-4 before and after fatigue time 
allotment normalized to q-value. 

 Figure 36 shows the same graphical configuration for the 11 fatigue samples.  The 

EPR intensity was measured before and after fatigue treatment at 50% UTS – 10 Hz.  
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Figure 36.  EPR Intensity of fatigue samples from trials 1-4 before and after fatigue 
treatment normalized to weight and q-value.   
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 Figures 35 and 36 are plotted with the raw data of the EPR experiment.  Figure 37 

shows the EPR average intensities normalized to sample weight and q-value for both the 

control and the fatigue trials. 

 

Figure 37.  Average EPR intensity of control and fatigue samples from trials 1-4 before 
and after fatigue treatment normalized to weight and q-value. 

 In Figure 38, the signal was further refined to the normalized difference in signal 

before and after fatigue treatment.  Although changes in properties were observed, Figure 

38 indicated no statistical difference in population of nitroxyl signals at 50% UTS – 10 

Hz.   
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Figure 38.  ∆EPR Intensity values of control and fatigue samples from trials 1-4 before 
and after fatigue treatment normalized to weight and q-value. 

 All though the average intensities have decreased for the fatigue condition in 

Figure 37, it has not decreased sufficiently in comparison to the control.  Error is 

associated in this measurement due to the removal and replacement of the sample within 

the EPR cavity.  At 9.8 GHz, a standing microwave possesses a wavelength of 

approximately 3 cm.  This means that spatial placement of the sample to the exact point 

within the cavity is important for the magnitude of signal detected by the instrument.  

Since the specific treatment to the sample occurs outside of the cavity, spectra before and 

after treatment are taken, and placement back into the cavity for the second spectra will 

result in errors in signal of at least ± 7 %. 

 This technique is attempting to discern the subtraction of population from existing 

signal.  This makes the confirmed detection more difficult in that it places a requirement 

of how many events must occur before confidence of a positive result is obtained.  

Philosophically, it is easier to detect signal in the complete absence of overlapping or 
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conflicting sources.  Extremely low concentrations of radicals can be detected in fracture 

events.  However, this case differs in that before the event there was no EPR detectable 

source of radicals.  Therefore, detecting signal where before there was none is more facile 

experimentally.  In this experimental design, low concentrations of nitroxyl radicals were 

selected due to the previously mentioned reasons. 

50% UTS Conclusions 

 This study did not observe losses of nitroxyl radicals due to mechanically induced 

chain scission.  Some samples exhibited a loss in mechanical strength while other 

samples failed from the force input at 50 % UTS.  The modulus or stiffness was shown to 

stay the same or increase after fatigue exposures.  This study represents an aggressive 

approach by using 50 % UTS over a short amount of time.  The next study was conducted 

at lower UTS for an increased duration of time along with FTIR evaluation to measure 

any additional functional group changes. 

Experimental Design of 30% UTS Experiments 

 Samples were synthesized and manufactured through reaction injection molding 

as previously described.  The next experiment was conducted under two sample 

conditions, control and fatigue.  Nitroxyl radicals were incorporated into the epoxy-amine 

matrix via BT-IPDI at a loading level of 0.005 wt% as previously described.  The 

samples were thermally annealed as shown in Figure 28.  The UTS of the materials is 

determined in Table 12 through destructive testing of three control samples.   
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Table 12 

Mechanical Properties of 30% UTS Controls 

 

 Strain-at-Break Force-at-Break (N) 
 
 0.077 209 
 
 0.138 240 
 
 0.112 223 
 
 

Average weight of fatigue sample selections was 76 mg ± 1 mg, and the 

experimental design is shown in Figure 39.  Before the fatigue treatment, the samples 

were evaluated via EPR, ATR-FTIR, and NIR spectroscopic methods on both the control 

and fatigue groups.  The fatigue test group samples were then exposed to 30% UTS 

sinusoidal force at a frequency of 10 Hz for 1,000,000 cycles using the BOSE 

Electroforce 3300 N.  The experiment lasts for approximately 27 hours, and the 

parameters were a stress ratio (R) of 0.1 (Equation 9), force values of 7 Nmin and 69 Nmax, 

and a sample gauge length of 8 mm.  Post fatigue, the samples were evaluated via the 

spectroscopic methods listed above.  The fatigued samples were then strained to break at 

a strain rate of 10 %/min, and the resulting stress-strain curve, force-at-break, strain-at-

break, and modulus were recorded.  The control samples were maintained at ambient lab 

conditions for 27 hours and reevaluated using the same spectroscopic methods as 

conducted prior to the time allotment.  The control samples were then strained to break at 

a strain rate of 10 %/min, and the resulting stress-strain curve, force-at-break, strain-at-

break, and modulus were recorded. 



 

 

Figure 39.  30% UTS experimental design depiction.

NIR Fatigue Analysis 

 Near infrared spectroscopy was performed using

6700 infrared spectrometer using an InGaAs detector, CaF

halogen source.  Spectra were obtained in the 10,

Type C attenuator (provided by Thermo) was used during data acquisition while the 

optical velocity was held constant for all runs

transmission through the thickness of the sample (~ 0.5 mm) using a resolution of

and an aperture setting of 5.  

ATR-FTIR Spectroscopic 

 The ATR-FTIR spectroscopy was performed using

6700 infrared spectrometer using an 

halogen source.  Spectra were obtained in the 4

Type B attenuator (provided by Thermo) was used during data acquisition while the 

optical velocity was held constant for all runs.

diamond ATR crystal with a

 The data shown in the figures and tables to follow encompass six trials, each 

composed of one control sample and one fatigue sample that were analyzed through 

quantitative EPR spectroscopy, NIR, ATR

30% UTS experimental design depiction. 

Near infrared spectroscopy was performed using a Thermo Scientific Nicolet 

6700 infrared spectrometer using an InGaAs detector, CaF2 beam splitter

ctra were obtained in the 10,000 - 4,000 cm-1 region via 

ype C attenuator (provided by Thermo) was used during data acquisition while the 

held constant for all runs.  The samples were analyzed via 

transmission through the thickness of the sample (~ 0.5 mm) using a resolution of

and an aperture setting of 5.   

Spectroscopic Analysis 

spectroscopy was performed using a Thermo Scientific Nicolet 

6700 infrared spectrometer using an MCT/A detector, KBr beam splitter,

were obtained in the 4,000 - 750 cm-1 region via 

attenuator (provided by Thermo) was used during data acquisition while the 

held constant for all runs.  The samples were analyzed 

with a resolution of 2 cm-1 and an aperture setting of 7.

The data shown in the figures and tables to follow encompass six trials, each 

composed of one control sample and one fatigue sample that were analyzed through 

quantitative EPR spectroscopy, NIR, ATR-FTIR, and mechanical properties evaluated 
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a Thermo Scientific Nicolet 

beam splitter, and a quartz-

region via 32 scans.  A 

ype C attenuator (provided by Thermo) was used during data acquisition while the 

.  The samples were analyzed via 

transmission through the thickness of the sample (~ 0.5 mm) using a resolution of 4 cm-1 

Thermo Scientific Nicolet 

, and a quartz-

region via 32 scans.  A 

attenuator (provided by Thermo) was used during data acquisition while the 

The samples were analyzed using a 

and an aperture setting of 7. 

The data shown in the figures and tables to follow encompass six trials, each 

composed of one control sample and one fatigue sample that were analyzed through 

and mechanical properties evaluated 
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through pull-to-break experiments.  Figures 40, 44, 48, 52, 56, and 60 show the EPR 

spectroscopy of before and after fatigue treatment for trials one through six, respectively.  

The NIR spectroscopy for trials one through six before and after fatigue treatment are 

reported in Figures 41, 45, 49, 53, 57, and 61.  Before and after fatigue treatment 

analyzed via ATR-FTIR spectroscopy are presented in Figures 42, 46, 50, 54, 58, and 62 

for trials one through six, respectively.  The mechanical properties were evaluated 

through pull-to break experiments, and stress-strain curves of control and fatigue samples 

are depicted in Figures 43, 47, 51, 55, 59, and 63.  The resulting mechanical data from 

the six trials are reported in Tables 12, 13, 14, 15, 16, and 17. 

  



 

 

30 % UTS 1,000,000 Cycles Trial 

Figure 40.  Trial one EPR intensity measurements for control and fatigue conditions 
before and after treatment.

Figure 41.  Trial one NIR spectra of fatigue sample before and after treatment

 

30% UTS Fatigue Trials Results 

0,000 Cycles Trial One 

Trial one EPR intensity measurements for control and fatigue conditions 
before and after treatment. 

Trial one NIR spectra of fatigue sample before and after treatment
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Trial one EPR intensity measurements for control and fatigue conditions 

 

Trial one NIR spectra of fatigue sample before and after treatment. 
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Figure 42.  Trial one ATR-FTIR spectra of fatigue sample before and after treatment. 

  



 

 

Figure 43.  Stress-strain curves of trial one.

Table 13 

Trial One Residual Strength Properties at 30% UTS 1,000,000 Cycles

 

 Samples 
 
 Control 
 
 Fatigue 
 
 

 

strain curves of trial one. 

Strength Properties at 30% UTS 1,000,000 Cycles 

Strain-at-Break Force-at-Break (N) Modulus (GPa)

0.131 226 

0.135 227 
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Modulus (GPa) 

1.647 

1.588 



 

 

30 % UTS 1,000,000 Cycles Trial 

Figure 44.  Trial two EPR intensity measurements for control and fatigue conditions 
before and after treatment.

 

Figure 45.  Trial two NIR spectra of fatigue sample before and after treatment

 

0,000 Cycles Trial Two 

Trial two EPR intensity measurements for control and fatigue conditions 
before and after treatment. 

Trial two NIR spectra of fatigue sample before and after treatment
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Trial two EPR intensity measurements for control and fatigue conditions 

 

Trial two NIR spectra of fatigue sample before and after treatment. 
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Figure 46.  Trial two ATR-FTIR spectra of fatigue sample before and after treatment. 

  



 

 

Figure 47.  Stress-strain curves of trial two.  

Table 14 

Trial Two Residual Strength Properties at 30% UTS 1,000,000 Cycles

 

 Samples 
 
 Control 
 
 Fatigue 
 
 

 

strain curves of trial two.   

Trial Two Residual Strength Properties at 30% UTS 1,000,000 Cycles 

Strain-at-Break Force-at-Break (N) Modulus (GPa)

0.209 224 

0.137 219 
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Modulus (GPa) 

1.574 

1.541 



 

 

30 % UTS 1,000,000 Cycles Trial 

Figure 48.  Trial three EPR intensity measurements for control and fatigue conditions 
before and after treatment.

 

Figure 49.  Trial three NIR spectra of fatigue sample before and after treatment.

 

0,000 Cycles Trial Three 

Trial three EPR intensity measurements for control and fatigue conditions 
before and after treatment. 

Trial three NIR spectra of fatigue sample before and after treatment.

83 

 

Trial three EPR intensity measurements for control and fatigue conditions 

 

Trial three NIR spectra of fatigue sample before and after treatment. 
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Figure 50.  Trial three ATR-FTIR spectra of fatigue sample before and after treatment. 

  



 

 

 

Figure 51.  Stress-strain curves of trial three.

Table 15 

Trial Three Residual Strength Properties at 30% UTS 1,000,000 Cycles

 

 Samples 
 
 Control 
 
 Fatigue 
 
 

 

strain curves of trial three. 

Trial Three Residual Strength Properties at 30% UTS 1,000,000 Cycles 

Strain-at-Break Force-at-Break (N) Modulus (GPa)

0.189 232 

0.154 224 
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Modulus (GPa) 

1.678 

1.683 



 

 

30 % UTS 1,000,000 Cycles Trial 

Figure 52.  Trial four EPR intensity measurements for control and fatigue conditions 
before and after treatment.

 

Figure 53.  Trial four NIR spectra of fatigue sample before and after treatment

 

0,000 Cycles Trial Four 

Trial four EPR intensity measurements for control and fatigue conditions 
before and after treatment. 

Trial four NIR spectra of fatigue sample before and after treatment
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Trial four EPR intensity measurements for control and fatigue conditions 

 

Trial four NIR spectra of fatigue sample before and after treatment. 
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Figure 54.  Trial four ATR-FTIR spectra of fatigue sample before and after treatment. 

  



 

 

Figure 55.  Stress-strain curves of trial four. 

Table 16 

Trial Four Residual Strength 

 

 Samples 
 
 Control 
 
 Fatigue 
 
 

 

strain curves of trial four.  

Trial Four Residual Strength Properties at 30% UTS 1,000,000 Cycles 

Strain-at-Break Force-at-Break (N) Modulus (GPa)

0.125 229 

0.138 234 
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Modulus (GPa) 

1.623 

1.585 



 

 

30 % UTS 1,000,000 Cycles Trial 

Figure 56.  Trial five EPR intensity measurements for control and fatigue conditions 
before and after treatment.

 

Figure 57.  Trial five NIR spectra of fatigue sample before and after treatment.

 

0,000 Cycles Trial Five 

Trial five EPR intensity measurements for control and fatigue conditions 
before and after treatment. 

Trial five NIR spectra of fatigue sample before and after treatment.
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Trial five EPR intensity measurements for control and fatigue conditions 

 

Trial five NIR spectra of fatigue sample before and after treatment. 
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Figure 58.  Trial five ATR-FTIR spectra of fatigue sample before and after treatment. 

  



 

 

Figure 59.  Stress-strain curves of trial five.

Table 17 

Trial Five Residual Strength Properties at 30% UTS 1,000,000 Cycles

 

 Samples 
 
 Control 
 
 Fatigue 
 
 

 

strain curves of trial five. 

Trial Five Residual Strength Properties at 30% UTS 1,000,000 Cycles 

Strain-at-Break Force-at-Break (N) Modulus (GPa)

0.153 217 

0.121 224 
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Modulus (GPa) 

1.578 

1.582 



 

 

30 % UTS 1,000,000 Cycles Trial Six

Figure 60.  Trial six EPR intensity measurements for control and fatigue conditions 
before and after treatment.

 

Figure 61.  Trial six NIR spectra of fatigue sample before and after treatment

 

UTS 1,000,000 Cycles Trial Six 

Trial six EPR intensity measurements for control and fatigue conditions 
before and after treatment. 

Trial six NIR spectra of fatigue sample before and after treatment
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Trial six EPR intensity measurements for control and fatigue conditions 

 

Trial six NIR spectra of fatigue sample before and after treatment. 
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Figure 62.  Trial six ATR-FTIR spectra of fatigue sample before and after treatment. 

  



 

 

Figure 63.  Stress-strain curves of trial six.  

Table 18 

Trial Six Residual Strength Properties at 30% UTS 1,000,000 Cycles

 

 Samples 
 
 Control 
 
 Fatigue 
 
 

 

strain curves of trial six.   

Trial Six Residual Strength Properties at 30% UTS 1,000,000 Cycles 

Strain-at-Break Force-at-Break (N) Mod

0.142 226 

0.093 223 
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Modulus (GPa) 

1.667 

1.685 



95 
 

 

30% UTS Discussion 

 Monitoring the peak intensity of the nitroxyl signal across trials 1 - 6, an increase 

in peak intensity was observed for all samples except the trial 4 control.  It is not clear 

why Figures 52 and 64 show atypical peak decrease.  Since this was a control sample, it 

was not subject to mechanical fatigue, and the EPR experimental settings were nominal.  

Due to the abnormal result, the EPR data for this sample was not included in subsequent 

analysis with averages, standard deviations, and ∆EPR intensity graphs. 
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Figure 64.  EPR intensity values of control samples from trials 1-6 before and after time 
allotment normalized to q-value. 
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Figure 65.  EPR intensity values of fatigue samples from trials 1-6 before and after 
fatigue treatment normalized to q-value. 

The peak intensity values differ in magnitude from each other as is clearly 

indicated in the EPR spectra for all six trials as well as the summary intensities in Figures 

64 and 65.  This is attributed to the products generated via the Denisov cycle, which 

portrays the equilibrium of mechanisms when nitroxyl radicals react with atmospheric 

oxygen (Scheme 5).  While nitroxyl radicals do not react directly with oxygen10, oxygen 

will react with various functional groups within the polymer via radical mechanisms.  

Nitroxyl radicals can react with the various side products of oxidative degradation, even 

at ambient temperatures.  The starting intensities vary due to the varying ages of the 

samples, a necessity from the method of manufacturing through reaction injection 

molding.  However, the focus of this experiment was the change in magnitude of the EPR 

signal due to mechanical fatigue, not the initial intensities. 



 

 

Scheme 5.  Denisov cycle demonstrating major products of the reaction of alkyl, alkoxyl, 
and peroxyl radicals with TEMPO
do hindered amine light stabilizers 
degradation, by J.L. Hodgson and M.L. Coote
4582.  Reprinted with permission from the publisher.

 

Denisov cycle demonstrating major products of the reaction of alkyl, alkoxyl, 
and peroxyl radicals with TEMPO.  Clarifying the mechanism of the Denisov cycle: 
do hindered amine light stabilizers protect polymer coatings from photo-oxidative 
degradation, by J.L. Hodgson and M.L. Coote, 2010, Macromolecules, volume 43, p.

Reprinted with permission from the publisher.11 
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Denisov cycle demonstrating major products of the reaction of alkyl, alkoxyl, 
enisov cycle: How 

oxidative 
, 2010, Macromolecules, volume 43, p. 
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Figure 66.  EPR intensity average values of control and fatigue samples from trials 1-6 
before and after fatigue treatment normalized to q-value.  Trial 4 control has been 
excluded due to error. 

The EPR spectra and average intensity values in Figures 66, both control and 

fatigue conditions, were observed to increase.  Figure 67 shows that both control and 

fatigue conditions exhibited equal increases in EPR intensities (excluding trial control 

from analysis) indicating that the increase was caused by a mechanism other than 

mechanical degradation, possibly the Denisov cycle (Scheme 5). 
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Figure 67.  ∆EPR intensity normalized to q-value for control and fatigue conditions post 
treatment.  Trial 4 control has been excluded due to error. 

 Hodgson and Coote performed various chemical simulations to describe the 

possible mechanisms involving hindered amine light stabilizers (HALS).11  Structurally, 

HALS are very similar to TEMPO-based molecules in that the N-O nitroxyl radical is 

replaced with an amine-hydrogen N-H functional group.  Through various reactions, as 

shown in Scheme 5, the nitroxyl radical can be converted to various non-paramagnetic 

functional groups and then back to a nitroxyl radical in a cyclical manner.  Through these 

mechanisms, HALS protect coatings and polymer formulations from oxidative 

degradation. 

 Despite the samples being cured and annealed under an inert nitrogen atmosphere, 

it is possible that the sample has absorbed oxygen gas during storage or synthesis.  At the 

cure temperatures of 120 °C, oxygen radicals can react via any of the mechanisms shown 

in Scheme 5.  While the products of such reactions are not known, the increase in EPR 

signal suggests that nitroxyl radicals were likely converted to N-H or N-OH during 
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synthesis and then back to nitroxyl radicals over the 27 hour experimental time via the 

Denisov cycle. 

 This equilibrium effect was not observed in previous experiments, possibly due to 

the time differences.  The experiments for 10,000 cycles at 10 Hz lasted 15 minutes 

unlike the 27 hours required to complete 1,000,000 cycles.  Thus, within the context of 

27 hours, the equilibrium changes become significant.  Based on the fact that the control 

and fatigue conditions produced the same EPR result, we can conclude that chain scission 

events were not detected. 

 From the NIR spectra of all six trials, no changes or production of new functional 

groups were detected other than the uptake of atmospheric water at approximately 5200 

cm-1.  The ATR-FTIR spectra showed spectral overlap for both control and fatigue 

conditions indicating that the nature of functional groups did not change due to 

mechanical forces.  Unlike the 50% UTS trials, no mechanical degradation was noted 

with the samples subject to fatigue.  All samples were able to endure 1,000,000 cycles at 

30% UTS without failure.  In both the 30% UTS and 50% UTS trials, no chain scission 

events were detected via loss of signal with nitroxyl radicals.  However, this study did not 

indicate whether chain scission was produced from fatigue experiments. 

Conclusions 

 In this Chapter, nitroxyl radicals were incorporated into an epoxy matrix to detect 

mechanically produced homolytic chain scission events resulting from fatigue.  The 

epoxy-amine matrix was subject to 30% UTS and 50% UTS fatigue studies with 

subsequent EPR and FTIR spectroscopies to detect changes in nitroxyl radical 

populations and epoxy-amine functional groups.  Although mechanical property 
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decreases and fatigue failure of specimens were observed in the 50% UTS study, 

decreases in nitroxyl populations relative to controls were not observed.  This indicates 

that chain scission events were not detected.  No changes in properties or functional 

groups within the epoxy-amine matrix were observed in the 30% UTS study.  However, 

both control and fatigue conditions resulted in increases of nitroxyl radical population.  

This is attributed to the Denisov cycle significantly affecting nitroxyl populations within 

the 27 hour time frame of the study. 

 Non-detection of chain scission events can be attributed to several reasons.  The 

viscosity of the glassy state is relatively high and can impede diffusion of the radical 

chain end to a BT-IPDI molecule.  Also, it is unknown whether fatigue produces chain 

scission events prior to failure.  Radicals are known to be capable of migration based on 

hydrogen abstraction.  If radicals were known to be produced through mechanical 

destruction of the sample, it could then be determined experimentally if reactions could 

take place between the mechano-radicals and BT-IDPI.  This would help elucidate if the 

physical barrier of the glassy state impedes both physical migration and chemical 

migration of mechano-radicals during strain. 
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CHAPTER V 

CRYO-GRINDING OF EPOXY-AMINE THERMOSETS 

Introduction 

 As a summary of research findings so far, in Chapter II, Bis-TEMPO-IPDI was 

synthesized from 4-hydroxy-TEMPO and isophorone diisocyanate and the nitroxyl 

radical FEW shown to be retained through titration experiments.  In Chapter III, it was 

demonstrated that BT-IPDI possessing nitroxyl radical functionality and molecules 

incorporating urethane functional groups could be incorporated without affecting the 

kinetics of the DGEBA/2-methyl-1,5-diaminopentane reaction at loading levels 

exceeding 5 wt%.  In Chapter IV, BT-IPDI was used as a molecular probe to detect 

homolytic chain scission events resulting from mechanical fatigue at 30% UTS and 50% 

UTS.  The nitroxyl radicals were not observed to decrease in comparison to controls 

concluding that covalent bond scission was not detected.  An uncertainty exists in that it 

is unknown if covalent bond scission was produced in fatigue experiments.  If chain 

scission events were produced, could the nitroxyl radicals react with the mechano-

radicals?  It would be advantageous to produce chain scission events to then observe if 

the nitroxyl radicals are capable of reacting with the mechano-radicals. 

 Mechanical grinding of polymer and the production of radicals from broken 

bonds has been performed since the 1950s.1  Several papers have since been published 

regarding radical formation via mechanical fracture of samples.2-7  Liquid nitrogen 

temperatures of 77 K stabilize the radical functional group trapping it within a glassy 

matrix.  Forming mechano-radicals from grinding is a specific characteristic of polymers.  

Cryo-grinding materials composed of low molecular weight molecules only breaks the 
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Van der Waal attractive forces and hydrogen bonding, not the covalent bonds.  

Researchers have shown that radicals could be formed and stabilized at low temperatures 

until EPR spectroscopic analysis of the samples could be performed.  Literature has 

shown that grinding of epoxy-amine thermosets does indeed result in carbon centered 

radicals, specifically the cumyl radical by cleaving the phenyl group and the central 

carbon in the DGEBA repeat unit.4  The tertiary carbon radical is then stabilized by 

delocalization into the adjacent phenyl ring.4  No concrete evidence has been shown to 

indicate the detection of the phenyl radical counter partner, which is most likely due to 

the high reactivity of the phenyl radical.8  Therefore, the aim of the research in chapter 

five is to induce homolytic scission of the covalent bonds of an epoxy-amine matrix and 

determine if the resulting radicals are capable of reacting with nitroxyl radicals 

incorporated into the matrix.   

Experimental 

 Epoxy-amine thermosets used in this study were DGEBA / 2-methyl-1,5-

diaminopentane and in addition SC-15.  SC-15 is a rubber toughened 2 component 

formulation of DGEBA as an epoxy and a proprietary aliphatic amine as a hardener.  This 

set of experiments are reported here involving SC-15 because cryo-grinding experiments 

are difficult to perform, and the data gathered when this system was initially studied 

exemplifies nitroxyl EPR behavior at variable temperature.  It is included here as a case 

study to show how nitroxyl radicals should respond to variable temperature EPR 

experiments. 

 Materials used in this study are DGEBA and 2-methyl-1,5-diaminopentane as 

shown in Scheme 1 of Chapter II.  Epon 828 (DGEBA) was degassed under vacuum for 
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approximately 6 hours prior to introduction of amine.  For samples containing nitroxyl 

probes, BT-IPDI, synthesized in Scheme 2 was incorporated through volumetric addition 

of BT-IPDI - acetonitrile solution to DGEBA monomer to achieve target wt% loading of 

final samples.  Acetonitrile (boiling point 82 °C) was removed from DGEBA by heating 

the sample at 80 °C under vacuum overnight.  The DGEBA monomer was measured 

gravimetrically to ensure complete solvent removal and mixed with 2-methyl-1,5-

diaminopentane at a molar ratio of 1:1 based on epoxide to amine hydrogens.  The blend 

was poured into silicone molds, which had been sprayed with a dry film mold release 

agent to facilitate sample removal. 

 The samples were then allowed to vitrify overnight and post-cured in the morning 

in a nitrogen purged, forced air convection oven at 60 °C for 85 minutes followed by 120 

°C for 145 minutes.  The nitrogen atmosphere was maintained to avoid oxidative 

degradation of the nitroxyl radicals.  Prior to mechanical testing, the materials were 

annealed thermally under nitrogen as discussed earlier in Chapter IV, Figure 28 to erase 

any aging effects as well as remove absorbed atmospheric water and trapped oxidative 

radicals prior to conducting the experiment.  The same manufacturing procedures were 

used for the SC-15 formulations. 

Cryo-grinding Experimental 

 The fracturing of samples was performed in a dry box nitrogen atmosphere.  

Samples were cooled to liquid nitrogen temperatures and ground using a high speed 

grinder, which sprayed the powder directly into liquid nitrogen.  The powder was then 

collected quickly into an EPR tube and capped within the dry box nitrogen atmosphere.  

The EPR tube was then quickly submerged into a liquid nitrogen dewar and removed 
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from the dry box.  The sample was removed from the dewar and inserted into the EPR 

cavity, which had been precooled to 130 K.  Below, in Figure 8, is a depiction of the 

cryo-grinding procedure. 

 

Figure 68.  Cryo-grinding experimental procedure. 

EPR Analysis 

 The variable temperature (VT) EPR spectroscopic measurements were carried out 

on a Bruker EMXMicro X-band spectrometer using quartz variable temperature holder 

cooled to 130 K.  The following EPR instrumental settings were used to collect each 

spectrum: a microwave power of 0.6 mW, receiver gain of 5020, frequency of 9.5 GHz, 

modulation amplitude of 2 gauss, modulation frequency of 100 KHz, conversion time of 

20.48 msec, time constant of 20.48 msec, and signal averaging of 16 scans.  The 

temperature was increased in a stepwise manner pausing for several minutes at each 

temperature stage to equilibrate and collect spectra. 

Light Scattering Analysis for Particle Size 

 Particle size distribution of the ground powder samples was determined using the 

Zetatrac Particle Size Analyzer with Turbotrac attachment.  Index of refraction was 
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chosen to be 1.60 for ground particles with a detection range for particle sizes of 0.25 µm 

to 250 µm. 

Results 

 In this first experiment, SC-15 (rubber toughened DGEBA crosslinked with 

proprietary aliphatic amine) was cryo-ground using the previously mentioned synthesis 

and manufacturing procedures within the experimental section.  From Figure 69, a broad 

single peak was observed that decreased with increasing temperature.  There was a sharp 

peak present within the spectra that is a paramagnetic defect of the quartz EPR sample 

tube.  Although an artifact signal is present, continued analysis of this experiment is still 

beneficial.  As the signal increases and the matrix softens, radicals should recombine and 

EPR signal decrease accordingly.   

 

Figure 69.  VT-EPR spectra of cryo-ground SC-15. 

 It is well known that EPR and NMR signals vary in strength based upon 

Boltzmann statistics.  Within a magnetic field, spins are aligned against and with the 

magnetic field in two states as shown in Figure 5 of Chapter I.  The population of the 
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spins are divided fairly evenly between the two states.  The population differences is not 

exactly even, otherwise NMR and EPR spectroscopic techniques would not be possible.  

There is a slight difference in number between those in the upper and those in lower spin 

states with a slight excess being in the lower spin state.  The slight excess in spins is the 

source of all signal originating from EPR and NMR spectroscopy.  The higher the field 

strength of the magnet, the larger the number of excess spins and thus larger signal.  

Also, due to Boltzmann statistics, the lower the temperature, the larger the number of 

excess spins and thus larger signal.  Distinguishing between chemical events leading to 

loss of signal and temperature/Boltzmann effects required modeling using Equation 11. 

FC
FH

	 >
�IJ
K1  

Equation 11.  Boltzmann statistics equation calculating the difference in quantum states 
as a function of temperature.9 

 Equation 11 gives the ratio of spin states aligned against the magnetic field (na) 

and with the magnetic field (np).  The plank constant h is multiplied by the frequency of 

light, ν, which is approximately 9.5 GHz.  The Boltzmann constant, k, is multiplied by 

the temperature T (K).  At 130 K, the difference in quantum states is equal to 0.9965.  

This means that, out of a population of 10,000 spins, 35 spins are the difference in states 

and the actual source of EPR signal.  At a temperature of 390 K, the difference in states 

has decreased to 0.99883, or approximately 12 spins out of ten thousand. 

 Since signal is proportional to population, double integration of the spectra within 

Figure 69 reflects the change in either population or change in signal due to temperature.  

Using Equation 11, the signal can be modeled with a population of 10,000 spins to 

calculate the change in signal due to change in temperature.  Graphically, this can be 



109 
 

 

represented in Figure 70 as the orange curve showing the number of spins in EPR source 

signal as a function of temperature calculated from Equation 11. 

 

Figure 70.  SC-15 cryo-ground EPR integral areas compared to Boltzmann statistics 
calculation for decreasing differences in quantum states with increasing temperature. 

 Figure 70 shows that at low temperatures, the decrease in signal closely follows 

the Boltzmann calculation until 270 K.  Beyond this temperature, a sharp decrease in 

signal is noted with a slope greater in magnitude than that estimated via the Boltzmann 

prediction.  This indicates that the radicals are reacting and becoming unstable at this 

temperature.  To see if these radicals could be captured by BT-IPDI, the experiment was 

repeated with samples containing 0.1 wt% BT-IPDI (Figure 71), which shows a very 

large signal due to a high concentration of nitroxyl radicals.  The decrease in signal 

almost perfectly matches the Boltzmann prediction in Figure 72.  Signal deviation from 

the Boltzmann prediction at temperatures > 270 K was similar to measured deviations in 

Figure 70.  The high concentration of nitroxyl radicals limits the possibility of detecting 

any loss in signals resulting from the reaction between nitroxyls and mechano-radicals.  
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Therefore, the next experiment focused on a DGEBA - 2-methyl-1,5-diaminopentane 

matrix with optimized loading of nitroxyl radicals (Figure 73). 

 

Figure 71.  VT-EPR of cryo-ground SC-15 with 0.1 wt% BT-IPDI. 

 

Figure 72.  VT-EPR of SC-15 / 0.1 wt% BT-IPDI cryo-ground EPR integral areas 
compared to Boltzmann statistics calculation for decreasing differences in quantum states 
with increasing temperature. 
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Figure 73.  VT-EPR spectra of cryo-ground DGEBA and 2-methyl-1,5-diaminopentane. 

 

Figure 74.  VT-EPR: DGEBA and 2-methyl-1,5-diaminopentane cryo-ground EPR 
integral areas compared to Boltzmann statistics calculation for decreasing differences in 
quantum states with increasing temperature. 

 Figure 74 displays an erratic behavior that was probably not quantitative below 

270 K.  Sohma and Sakaguchi showed that in this temperature region, the mechano-

radical signal is in an unusual state of flux.7  The EPR spectra of mechano-radicals 

routinely show signal increases in these regions, but population increases due to rise in 

temperature are unlikely.  One postulate is that the sample, having been mechanically 
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ground and deposited into glassware, has built up an electrical charge that is unable to 

ground causing fluctuations in signals below 270 K.7  Researchers have measured the 

charge of the ground polymer and observed decreased fluctuation in samples that were 

uninsulated.7 

 Despite the potential cause in fluctuation, 270 K marks a turning point in which 

the radicals begin to irreversibly lose population.  This temperature region which marks 

the beginning of mechano-radical instability is where nitroxyl and mechano-radical 

reactions are most likely to occur.  Overlaying the mechano-radical spectra from that of 

samples containing BT-IPDI, it is apparent that the mechano-radical single peak overlays 

that of the central nitroxyl peak.  This presents an opportunity to monitor changes in 

nitroxyl and mechano-radical population independently of each other. The leftmost 

nitroxyl peak is directly proportional to nitroxyl signal while the central peak is the sum 

of the contribution from both the nitroxyl radicals and mechano-radicals.  A modulated 

temperature experiment was conducted to determine if the radical signal changes are 

reversible due to temperature and if reactions occur between the cryo-ground radicals and 

the nitroxyl radicals. 
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Figure 75.  EPR overlay of the nitroxyl radical and mechano-radical spectrums.  

 To optimize the concentration of nitroxyl radicals and cryo-ground mechano 

radicals, a loading level of 0.005 wt % BT-IPDI was selected.  BT-IPDI was incorporated 

with DGEBA and cured with 2-methyl-1,5-diaminopentane as previously discussed.  The 

material was cryo-ground and then inserted into the EPR instrument at 130 K.  The 

experiment represented in Figure 76 is a thermally modulated EPR experiment that is 

difficult to represent graphically.  The experiment was initiated at 130 K for the initial 

spectrum, and then the temperature was increased to 160 K, decreased to 130 K for the 

second modulated spectrum, increased to 190 K for the initial spectrum, decreased to 160 

K for the second modulated spectrum, and so on and so forth.  This “leap frog” approach 

ensures an initial spectra at all temperature points and second modulated spectra at 

previous temperature points.  The initial spectra intensity values are represented in blue 

and the second modulated intensity values are represented in red.  When only one color is 

visible, it indicates complete intensity overlap and no difference between initial and 

modulated scans.  The half-filled boxes represent the central peak intensity, which is the 
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nitroxyl / mechano-radical overlap.  The open squares represent the intensity values of 

the nitroxyl side band. 

 

Figure 76.  Modulated VT-EPR for cryo-ground DGEBA and 2-methyl-1,5-
diaminopentane containing 0.005 wt% BT-IPDI.  Red curves indicate the modulated 
spectra taken after temperature has been increased.  Blue curves indicate first spectra at 
that temperature.  Half-squares correspond to the intensity of the nitroxyl and cryo-
ground radical overlap.  Unfilled squares correspond to the nitroxyl only signal. 

 Figure 76 also shows the EPR signal fluctuation seen in previous experiments and 

by other researchers.7  Since nitroxyl radicals do not fluctuate in this region, the signal 

flux from the nitroxyl / mechano-radical overlap must be caused solely by the mechano-

radicals.  In agreement with the previous Boltzmann calculations in Figure 74, the 

mechano-radical signal overlap in Figure 76 shows irreversible loss of concentration after 

the material is heated above 270 K.  The loss in concentration of mechano-radicals at 270 

K was in agreement with the findings of other researchers.7  No irreversible changes 

occur to the nitroxyl signal until the material is heated above its Tg.  From these two 

conditions, mechano-radicals are reacting above 270 K but not with the nitroxyl radicals.  

This can be due to several reasons; either the cryo-ground radicals are concentrated at the 
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surface and unable to react with bulk nitroxyl radicals, or the glassy state is too immobile 

for the nitroxyl radicals to react with the cryo-ground radicals. 

Table 19 

Cryo-ground Particle Size Analysis 

 

Property Amount 
 
Amount of material (g) 0.0306 
 
FEW of broken bonds (g/mol) 436 
 
Density (g/mL) 1.159 
 
Broken bond density (mol/mL) 0.00266 
 
Surface area of particles (cm2) 126.95 
 
Width of crack (cm) 1 x 10-8 

 
Volume of crack (mL) 1.27 x 10-6 

 
Number of broken bonds (mol) 3.38 x 10-9 

 
BT-IPDI radicals in sample (mol) 5.72 x 10-9 

 
BT-IPDI radicals at surface (mol) 2.75 x 10-13 
 
 

Note:  Calculations are made assuming bonds broken from cryo-grinding is the 2-methyl-1,5-diaminopentane molecule residing 

between the crosslinks which forms two radicals.  The width of the crack is assumed to be 1 angstrom. 

 Table 19 presents a summary of calculations made from particle size analysis 

using the Zetatrac Particle Size Analyzer (static light scattering) instrument.  Although 

the calculations are based on simple algebraic equations and assumptions, the 

concentration of broken bonds is experimentally reasonable given the detection 

capabilities of the EPR instrument.  From the estimations, the deficit in concentration of 

nitroxyl radicals at the particle surface relative to the number of potential broken bonds is 
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readily apparent.  This represents a significant experimental challenge in that increasing 

the nitroxyl radical concentration would only dilute the signal ratio between nitroxyls and 

mechano-radicals.  Future experiments could investigate finer particle size grinding to 

maximize the ratio between the two species.   

Conclusions 

 In this chapter, mechanically formed radicals were produced by grinding epoxy-

amine thermosets.  The temperature dependent characteristics of the mechano-radicals 

match data reported in literature.7  The Boltzmann statistics model was used to predict 

temperature dependent EPR signal decreases and distinguish between irreversible loss of 

radical population due to recombination versus reversible decreases in signal due to 

temperature changes.  Modulated EPR was used to determine if reactions between 

nitroxyl and mechano-radicals occurred.  The modulated experiment showed that 

mechano-radicals decrease in population due to recombination, but they did not 

detectably react with the nitroxyl radicals of BT-IPDI.  Reduction in population of the 

nitroxyl radicals did not occur until temperatures were increased above the glass 

transition temperature.  Particle size analysis from light scattering revealed the deficit in 

potential population of surface broken bonds versus that of nitroxyl radicals in the bulk.   

Future experiments could increase their potential for success through finer grinds 

to maximize the mechano-radical to nitroxyl ratio.  In these experiments, it was assumed 

that the radical species is either a carbon-centered radical that, by itself or upon 

destabilization, forms products that can react with BT-IPDI similar to the Denisov cycle 

in Scheme 5 of Chapter IV.  It is also possible that the liquid nitrogen possesses sufficient 

liquid oxygen to contaminate the radical products and create peroxy radicals, which 
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cannot directly react with nitroxyl radicals.  Ball milling under both high vacuum and 

liquid nitrogen temperatures would have to be performed with transfer to an EPR tube 

also under high vacuum and cryo-temperatures.  The equipment to investigate this 

experimentally would involve cryo-grinding through specially manufactured equipment 

that is not commercially available as of yet. 
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CHAPTER VI 

INVESTIGATION OF TENSILE PLASTIC FLOW AND FRACTURE 

MORPHOLOGY OF A GLASSY EPOXY-AMINE THERMOSET 

Introduction 

 In Chapter 4, mechanical experiments were conducted using specific rectangular 

shapes that were ideal for EPR spectroscopic analysis.  Due to the negative results 

produced from those studies, it was decided that testing an ASTM Type V dogbone 

shape, a standard shape for mechanical experiments, would result in more consistent 

property degradation.  The Type V dogbone is larger than sample dimensions used 

previously, and the hourglass shape is designed to concentrate deformation and stress 

within the neck region and away from the mechanical grip – sample interface.  Samples 

were manufactured and tensile testing was performed to determine the ultimate tensile 

strength.  However, unusual mechanical behavior for glassy epoxy thermosets was 

observed as shown in Figure 77. 

 

Figure 77.  Tensile stress-strain curve of DGEBA-2-methyl-1,5-diaminopentane Type V 
dogbones. 



 

 

 Stress-strain terminology and its relation to the measured stress

depicted in Figure 78.  Yielding and plastic flow behavior within te

curves is common to linear glassy polymers such as 

polycarbonate (PC), poly(ethylene terephthalate) 

glassy polymers, plastic strains can occur through shear banding and

Considering the highly cross

the occurrence of plastic flow, the obvious question is what is the structural origin of this 

mechanical behavior? 

Figure 78.  Stress-strain terminology.  
so difficult, by R.S. Hoy, 2011, 
volume 49, p. 979.  Reprinted with permission from the publisher.

 Glassy epoxy thermosets are

thermosets possessing low fracture toughness, tensile elongation to breaks of 

approximately 5-7%, and lacking yield characteristics of linear engineering polymers. 

The plastic flow behavior in Figure 77 has

mechanically tested in compression deformation.  In their recent review on epoxy 

polymers and aging, Odegard and

not exhibit yield in tensile measurements.

strain terminology and its relation to the measured stress-strain curve is 

depicted in Figure 78.  Yielding and plastic flow behavior within tensile stress

curves is common to linear glassy polymers such as polymethyl methacrylate (

, poly(ethylene terephthalate) (PET), and many others.  For linear 

glassy polymers, plastic strains can occur through shear banding and cold drawing.

the highly crosslinked backbone structure of glassy epoxy thermosets and 

the occurrence of plastic flow, the obvious question is what is the structural origin of this 

 

strain terminology.  Why is understanding glassy polymer mechanics 
, by R.S. Hoy, 2011, Journal of Polymer Science Part B: Polymer Physics

Reprinted with permission from the publisher.2 

Glassy epoxy thermosets are viewed within the polymer discipline as brittle 

thermosets possessing low fracture toughness, tensile elongation to breaks of 

7%, and lacking yield characteristics of linear engineering polymers. 

The plastic flow behavior in Figure 77 has been often reported for crosslinked epoxies 

mechanically tested in compression deformation.  In their recent review on epoxy 

Odegard and Bandyopadhyay state that glassy epoxy thermosets do 

not exhibit yield in tensile measurements.3  This unchallenged statement is reinforced 
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through the visualization of the highly crosslinked network possessing little mobility with 

regards to strain. 

 Furthermore, unusual fracture surfaces were observed.  

plastic flow resulted in mirror

strain softening regions possessed notably rough surfaces.

denoted as mirror-mist-hackle fracture topography.  Figure 79 depicts the mirror

hackle topography and labels the fracture zones from whence the name arises.  

initiation begins in the mirror region and propagates outwards increasing in speed and 

roughness.4 

Figure 79.  Mirror-mist-hackle topography.

Samples experiencing failure within the plas

mist hackle surfaces but instead formed completely smooth mirror surfaces resembling 

polished glass.  Specimens failing prior to plastic flow with expected glassy epoxy 

mechanical behavior produced mirror

 The research within this chapter 

requirement for these mirror surfaces to form.  Plastic flow represents a viscous 

deformation.  If the capacity of the epoxy to experience plastic fl

would the complete mirror fractures still occur?  In 

through the visualization of the highly crosslinked network possessing little mobility with 

Furthermore, unusual fracture surfaces were observed.  Test specimens exhibiting 

in mirror-like finishes, whereas samples that failed during yield or 

strain softening regions possessed notably rough surfaces.  These rough surfaces are 

hackle fracture topography.  Figure 79 depicts the mirror

y and labels the fracture zones from whence the name arises.  

initiation begins in the mirror region and propagates outwards increasing in speed and 

 

hackle topography. 

Samples experiencing failure within the plastic flow region did not form mirror

mist hackle surfaces but instead formed completely smooth mirror surfaces resembling 

polished glass.  Specimens failing prior to plastic flow with expected glassy epoxy 

mechanical behavior produced mirror-mist-hackle surfaces as depicted in Figure 79.

The research within this chapter seeks to understand if plastic flow is 

requirement for these mirror surfaces to form.  Plastic flow represents a viscous 

f the capacity of the epoxy to experience plastic flow was eliminated, 

would the complete mirror fractures still occur?  In these experiments, physical aging 
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faces as depicted in Figure 79. 

to understand if plastic flow is a 

requirement for these mirror surfaces to form.  Plastic flow represents a viscous 
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, physical aging was 



 

 

used as a tool to inhibit the viscous movement of the epoxy without altering the epoxy 

thermosets’ mechanism of chemistry, degree of conversion

 The glassy state is a thermodynamic

polymers.  Physical aging occurs as a glass slowly approaches its equilibrium state and is 

characterized by increasing density and changes in molecular configur

in Figure 80.5  Property changes include decreases in toughness, visco

and permeability.3  Physical aging 

within 10 to 15°C below T

Figure 80.  Physical aging re
excess enthalpy (H). 

 It is hypothesized 

existence and deformation of structures within the network. 

of the structures, smooth plane fracture through the specimen will occur. 

hypothesis, physical aging of the network will restrict mobility of these structures, 

thereby reducing the yield behavior and promoting the formation of rough fracture 

surfaces. 

 Vacuum degassed DGEBA and 2

molar ratios, mixed, degassed 

used as a tool to inhibit the viscous movement of the epoxy without altering the epoxy 

thermosets’ mechanism of chemistry, degree of conversion, or crosslink density.

The glassy state is a thermodynamic, non-equilibrium state of amorphous 

Physical aging occurs as a glass slowly approaches its equilibrium state and is 

characterized by increasing density and changes in molecular configuration

Property changes include decreases in toughness, visco-elastic response, 

Physical aging can be accelerated by thermally annealing materials 

15°C below Tg.
5   

Physical aging resulting in simultaneous decreases in specific volume (V) and 

 that plastic flow of the glassy thermoset occurs through the 

existence and deformation of structures within the network.  Upon complete deformation 

structures, smooth plane fracture through the specimen will occur. 

hypothesis, physical aging of the network will restrict mobility of these structures, 

thereby reducing the yield behavior and promoting the formation of rough fracture 

Experimental 

Vacuum degassed DGEBA and 2-methyl-1,5-diaminopentane were 

molar ratios, mixed, degassed via sonication, and cast into test-specific molds.

122 

used as a tool to inhibit the viscous movement of the epoxy without altering the epoxy 

or crosslink density. 

equilibrium state of amorphous 

Physical aging occurs as a glass slowly approaches its equilibrium state and is 

ation represented 

elastic response, 

accelerated by thermally annealing materials 

 

sulting in simultaneous decreases in specific volume (V) and 

that plastic flow of the glassy thermoset occurs through the 

Upon complete deformation 

structures, smooth plane fracture through the specimen will occur.  To test this 

hypothesis, physical aging of the network will restrict mobility of these structures, 

thereby reducing the yield behavior and promoting the formation of rough fracture 

were blended in 2:1 

specific molds.  
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Formulations were vitrified overnight under ambient conditions and post-cured at 60 °C 

for 75 min followed by 120 °C for an additional 75 min.  Samples were polished first 

with 600 and then 800 grit sandpaper to remove any edge defects.  Physical aging 

treatments were conducted at 95 °C (10 °C below Tg) under nitrogen purge for up to ten 

days.  The DSC and TGA experiments were conducted at 10°C/min heating rates, 

whereas the heating rate for DMA was 2 °C/min.  The DSC physical aging analysis was 

conducted via a heat - quench - heat procedure with the quench stage decreasing at a rate 

of 50 °C/min.  Monotonic tensile testing was performed on Type V ASTM D638 

dogbones at a testing speed of 0.762 mm/min.  Non-Aged samples were tested on a 

BOSE Electroforce equipped with 3.3 kN loadcell.  Additional samples were aged for 10 

days, denoted as Aged-10 Days, and tested on an MTS Insight Series equipped with a 2.5 

kN loadcell. 

Results 

 There are potential sources or causes of thermoplastic behavior in stress-strain 

characterization that should be eliminated from consideration.  Viscous mechanical 

behavior could be attributed to samples being in a state of incomplete cure or possessing 

plasticizers.  To verify that the samples are “fully” cured, isothermal DSC analysis of the 

epoxy-amine thermal cure profile was employed. 
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Figure 81.  DSC isothermal scan of DGEBA and 2-methyl-1,5-diaminopentane cure 
temperatures followed by temperature sweep to 180 °C.  Exothermic reaction ceases after 
approximately 25 min at 120 °C.   

 In Figure 81, DSC samples were prepared exactly according to the procedure 

listed in the methods section with the caveat of not being exposed to the oven curing 

procedure.  Figure 81 shows the exothermic epoxy-amine reaction proceeding at 60 °C 

before revitrifying and diminshing.  Increasing the temperature to 120 °C finishes the 

reaction in approximately 25 min.  Cooling the sample to 25 °C and then thermally 

sweeping the sample to 180 °C reveals the Tg at 105 °C and does not detect additional 

exothermic reaction at the higher temperatures. 

  

Exo Up 
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Figure 82.  TGA thermal sweep of DGEBA-2-methyl-1,5-diaminopentane.  No detection 
of volatile monomers, solvents or plasticizers. 

 Another potential source for viscous behavior would be contamination of the 

matrix with plasticizing agents such as volatile solvents.  TGA was employed to detect 

these potential contaminants.  In Figure 82, samples were prepared and post cured exactly 

according to the procedure listed in the methods section.  In Figure 82, the TGA curve 

shows no degradation of the epoxy-amine network until approximately 350 °C.  

Maintaining 100 %wt. until this point strongly indicates the absence of volatile 

monomers, solvents, or plasticizers within the detection limits of TGA.  From DSC and 

TGA, the epoxy-amine thermoset is “fully” cured and absent volatile contaminants, 

which could produce viscous deformation. 

 To determine an appropriate aging protocol, samples were physically aged at 95 

°C (10 °C below the glass transition temperature) under nitrogen purge for varying times 

to determine an optimal procedure.  Within the DSC first heating cycles in Figure 83, the 

increase in enthalpy of recovery can be detected after only one day of aging.  As a glass 

ages, it releases excess enthalpy through configurational ordering.  Once the material is 

heated to the glass transition, the enthalpy must be regained as it transitions into the 



 

 

rubbery state producing an enthalpic signature within DSC traces.  This enthalpic 

recovery increases with the extent of the aging time.  For the purposes of this

days was selected as an appropriate time to age the samples.

Figure 83.  First heating cycles of 
with aging time. 

 The aging procedure was conducted under nitrogen purge to eliminate thermal 

oxidative degradation and atmospheric moisture adsorption.  The first heating cycle 

should erase the thermal history of the sample.  The second DSC heating cycles were 

employed to detect if any permanent changes to the glass transition temperature occurred

as a function of the aging treatment.  From Figure 84, the second heating cycle reveal

linear time based increase in T

including thermal oxidation, increases in cure of the epoxy

incomplete erasure of the thermal history from 

rubbery state producing an enthalpic signature within DSC traces.  This enthalpic 

recovery increases with the extent of the aging time.  For the purposes of this

days was selected as an appropriate time to age the samples. 

First heating cycles of aged samples showing increasing enthalpic recovery 

The aging procedure was conducted under nitrogen purge to eliminate thermal 

oxidative degradation and atmospheric moisture adsorption.  The first heating cycle 

should erase the thermal history of the sample.  The second DSC heating cycles were 

employed to detect if any permanent changes to the glass transition temperature occurred

as a function of the aging treatment.  From Figure 84, the second heating cycle reveal

linear time based increase in Tg with aging time.  This could represent several factors 

including thermal oxidation, increases in cure of the epoxy-amine reaction

incomplete erasure of the thermal history from the first DSC heating cycle.
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Figure 84.  Second heating cycles of 
aging treatment. 

 Dynamic mechanical analysis 

explanations of the increasing T

post cured according to procedure then aged at 95 °C for 10 days under nitrogen purge.  

From Figure 85, the mechanical thermal transitions completely overlay between th

Aged and Aged-10 Days samples as shown in Table 20.

Table 20 

DMA Mechanical Thermal Transitions for Figure 85

 

 Sample Storage Modulus Onset (°C)

 

 Non-Aged 107.5 ± 0.35

 Aged-10 Days 106.9 ± 0.28

 

Second heating cycles of aged samples revealing increasing T

Dynamic mechanical analysis was employed to discern between the poss

explanations of the increasing Tg in Figure 84.  The DMA samples were prepared and 

post cured according to procedure then aged at 95 °C for 10 days under nitrogen purge.  

From Figure 85, the mechanical thermal transitions completely overlay between th

10 Days samples as shown in Table 20. 

DMA Mechanical Thermal Transitions for Figure 85 

Storage Modulus Onset (°C) Peak Loss Modulus (°C) 

107.5 ± 0.35 111.4 ± 0.36 

106.9 ± 0.28 110.7 ± 0.19 
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increasing Tg from physical 

was employed to discern between the possible 

DMA samples were prepared and 

post cured according to procedure then aged at 95 °C for 10 days under nitrogen purge.  

From Figure 85, the mechanical thermal transitions completely overlay between the Non-

 Peak Tan δ (°C) 

118.4 ± 0.15 

118.4 ± 0.65 



 

 

Figure 85.  DMA thermal sweeps of Non
crosslink density remain constant.

 The three primary DMA T

constant regardless of the aging treatment.  This supports that T

Figure 84 are not likely due to chemical changes in the network.  This excludes the 

possibilities of oxidative degradation

seen in Figure 84.  The unchanged T

modulus, increased loss modulus, and decreases in tan 

results for physically aged epoxy

not explained why “apparent” T

treatment.  It is likely that the mechanical forces of DMA quickly facilitate the removal 

of physically aged thermal history.

 To further examine the potential of chemical changes causing the data observed in 

Figure 84, the crosslink density was calculated using the rubber elasticity theory 

DMA thermal sweeps of Non-Aged and Aged-10 Days samples.  T
crosslink density remain constant. 

The three primary DMA Tg measurements (Table 20) were observed to be 

constant regardless of the aging treatment.  This supports that Tg increases observed in 

Figure 84 are not likely due to chemical changes in the network.  This excludes the 

possibilities of oxidative degradation and incomplete cure causing the increases in T

seen in Figure 84.  The unchanged Tg and trends in magnitudes of increased storage 

modulus, increased loss modulus, and decreases in tan δ match previously reported 

results for physically aged epoxy-amine thermosets and DMA analysis.3,6

not explained why “apparent” Tg shifts are not observed in DMA from physical aging 

likely that the mechanical forces of DMA quickly facilitate the removal 

of physically aged thermal history. 

further examine the potential of chemical changes causing the data observed in 

Figure 84, the crosslink density was calculated using the rubber elasticity theory 
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measurements (Table 20) were observed to be 

increases observed in 

Figure 84 are not likely due to chemical changes in the network.  This excludes the 

and incomplete cure causing the increases in Tg 

and trends in magnitudes of increased storage 

 match previously reported 

3,6  Authors have 

shifts are not observed in DMA from physical aging 

likely that the mechanical forces of DMA quickly facilitate the removal 

further examine the potential of chemical changes causing the data observed in 

Figure 84, the crosslink density was calculated using the rubber elasticity theory 
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(Equation 12).  The density of DGEBA – 2-methyl-1,5-diaminopentane was 

experimentally determined from the PVT experiment conducted in Chapter II and is 

1.0918 g/mL at 176 °C.  The theoretical crosslink density (Mc) for this network is 436 

g/mol while the measured Mc from DMA data for Non-Aged was 412 ± 9 g/mol and 

Aged-10 Days was 415 ± 11 g/mol.   

LM 	 3N:�
O  

Equation 12.  Crosslink density calculation using storage modulus and density.  Mc is 
crosslink density in g/mol.  E is storage modulus.  T is temperature in Kelvin.  Ρ is 
density.  R is the gas constant. 

 The DMA experiments revealed identical glass transition temperatures and 

crosslink densities from Non-Aged and Aged-10 Days samples.  These results exclude 

explanations of oxidative degradation and incomplete cure of the epoxy-amine network 

from the underlying causes of Tg increase in Figure 84.  Incomplete thermal history 

erasure remains as the likely explanation of the Figure 84 results.  Literature uses dwell 

times in which the temperature is held above Tg for 15 minutes to remove all of the aging 

effects before subsequent heat cycles.  It was incorrectly assumed that thermally 

sweeping to the elevated temperature of 180 °C would be sufficient to erase all previous 

thermal history. 

 Since DMA confirmed that the epoxy-amine networks were not altered 

chemically from physical aging treatments, stress-strain data was collected with 

monotonic tensile testing of type V ASTM D638 dogbones as depicted in Figure 86.  

Fracture images were captured using the Keyence microscope.  
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Figure 86.  Tensile stress-strain curves of Type V ASTM D638 dogbones.  Highlighted 
sections correlate fracture surfaces to strain at break shown in Figures 87-89. 

 

Figure 87.  Non-Aged fracture surfaces correlated to the yield region in Figure 86. 

 

Figure 88.  Non-Aged fracture surfaces correlated to the plastic flow region in Figure 86. 
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Figure 89.  Aged-10 Days fracture surfaces correlated to the yield region in Figure 86. 

In Figure 86, stress-strain curves of Aged-10 Days samples exhibited an increased 

stress at break, a decreased strain at break, and an elimination of plastic flow behavior in 

comparison to Non-Aged samples.  The modulus of the epoxy-amine thermoset was not 

affected by the physical aging treatment and was consistent with literature results.3  

Samples failing during the yield region of Non-Aged and Aged-10 Days specimens 

produced fracture surfaces (Figures 87 and 89) labeled as mirror, mist, and hackle 

depicted in Figure 79.4  Non-Aged samples undergoing plastic flow exhibited only 

mirror-like fracture surfaces (Figure 88).  This suggests that the crack tip was not 

redirected due to local stress concentrations.  Integration of max strain curves of Aged-10 

Days and Non-Aged yields a 35% decrease in the simple toughness resulting from the 

physical aging treatment.  Literature suggests correlation between the increasing size of 

the mirror region and increasing toughness.4   

 Physically aging the epoxy-amine network eliminated the capacity of 

plastic flow as evidenced from the stress-strain curves in Figure 86.  The resulting 

fracture surfaces were all composed of the mirror-mist-hackle topography.  This confirms 

the relationship between the atypical viscous mechanical behavior and the atypical 

fracture surface.  This links the viscous deformation being required for both observations, 

but viscous deformation of what?  The deformation could result from the alignment of 

chain segments, but in a highly crosslinked glassy network, this seems unlikely.  It was 
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hypothesized that the results indicate the existence of a physical structure feature capable 

of viscous deformation.  The identity, size, and shape of the structure is unknown; 

therefore, atomic force microscopy (AFM) and scanning electon microscopy (SEM) were 

employed to image fracture surfaces at nanometer scales. 

Microscopy 

 The AFM images were collected using a Bruker Dimension Icon operating in 

tapping mode with Bruker RTESP probes (0.01 - 0.025 Ωcm Antimony (n) doped silicon 

probe, spring constant: 20-80 N/m).  Scanning electron microscopy images were 

collected using a Zeiss Sigma Variable Pressure, Field Emission Gun Scanning Electron 

Microscope (VP-FEG-SEM) with Thermo energy dispersive and wavelength dispersive 

X-ray detectors (EDS/WDS) at an acceleration voltage of 10 kV.  Mirror fracture 

surfaces from Figure 88 were then mounted and scanned by SEM and AFM.  Samples 

used for SEM analysis were sputter coated with silver at instrument reported thickness of 

5 nm. 

 Analysis of the mirror fracture surfaces from Figure 88 through AFM and SEM 

revealed a nodular morphology (Figure 90 and 91).  The images from both of these 

methods correlate nodule size in the 50 nm range.  The SEM images in Figure 91 show 

the nodules to be an almost wormlike tendril network of separate domains.  These images 

reveal multiple layers of this structure through the nooks and crevices residing in the 

image.  The AFM results agree very well with SEM.  However, the tip is unable to 

resolve the depth of the nooks due to the width of the wedge shaped tip.  The tip radius is 

a reported 8 nm, thus the failure to penetrate to the full depth of the sample crevices was 

most evident within the phase images in Figure 90.  The height image reveals a nodular 

morphology, but the phase image shows 0 phase (dark brown) in many areas.  This is due 
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to the wedge shape tip contacting multiple areas of the sample at once as it attempts to 

measure the depth of a crevice.  Nodular morphology has been reported by many 

researchers within the epoxy-amine discipline, and its existence as a true representation 

of the epoxy-amine bulk morphology is disputed.  The literature background of nodule 

morphologies within epoxy-amine thermosets will be discussed in the next chapter. 

  



 

 

Figure 90.  AFM images of DGEBA 
tensile fracture. Images in the left column are height images, whereas the images 
right column are phase images.

Figure 91.  SEM images of DGEBA / 2 methyl
tensile fracture. 

 Reproducible and uncharacteristic tensile 

epoxy-amine networks were observed to produce distinctive fracture surfaces. 

specimens exhibiting plastic flow resulted in mirror

failed during yield or strain softening regio

AFM images of DGEBA - 2 methyl-1,5-diaminopentane resulting from 
. Images in the left column are height images, whereas the images 

right column are phase images. 

 

SEM images of DGEBA / 2 methyl-1,5-diaminopentane resulting from 

Conclusions 

Reproducible and uncharacteristic tensile stress-strain behavior of cured glassy 

amine networks were observed to produce distinctive fracture surfaces. 

specimens exhibiting plastic flow resulted in mirror-like finishes, whereas samples that 

failed during yield or strain softening regions possessed notably rough surfaces. 
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hypothesized that viscous deformation was required to form the atypical complete 

mirrored fracture surfaces.  By using physical aging as an investigative tool, it was 

possible to eliminate the capacity of the epoxy-amine network for viscous deformation 

without adversely altering the polymer structure through chemical means.  The 

elimination of plastic flow resulted in the elimination of smooth fracture surfaces thus 

correlating the relationship between the atypical mechanical behavior and atypical 

fracture surfaces.  The results indicate the potential existence of a structural feature 

capable of viscous deformation. 

 The AFM and SEM images revealed wormlike nodule type structures at the 50 

nm size scale.  We hypothesize that these structures, as seen in Figures 90 and 91, are the 

underlying cause of the unusual mechanical yield behavior and atypical mirror fracture 

surfaces.  The development of the morphology and its impact on mechanical properties 

will be investigated in the next chapter. 
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CHAPTER VII 

CHEMORHEOLOGY INVESTIGATION OF A GLASSY EPOXY THERMOSET ON 

TENSILE PLASTIC FLOW AND FRACTURE MORPHOLOGY 

Introduction 

In Chapter VI, reproducible and uncharacteristic tensile stress-strain behavior of 

cured glassy epoxy-amine networks produced distinctive fracture surfaces.  Test 

specimens exhibiting plastic flow resulted in mirror-like fracture surfaces, whereas 

samples that failed during yield or strain softening regions possessed nominal mirror-

mist-hackle topography.  Atomic force microscopy and SEM revealed tendril nodule 

morphologies in the 50 nm size scale that may be responsible for the unusual tensile 

properties.  It is hypothesized that plastic flow of the glassy thermoset occurs through the 

existence and deformation of these nodular nanostructures.  The experiments within this 

Chapter seek to understand the causes that lead to the formation of nodule morphology 

and the impact it has on the mechanical properties of the epoxy-amine thermoset.   

 Epoxy resin is an important industrial material as its multiple reaction pathways 

facilitate a variety of chemistry options and comonomer selections that enable broad 

tailoring of the Tg, mechanical stiffness, surface adhesion, chemical resistance, and 

corrosion barrier properties.  Epoxy-amine thermosets are able to deliver broad tunability 

and high performance through high reactivity, robust chemistry, and excellent property 

development even at incomplete conversion while maintaining affordability.   

 Mechanical properties are governed by the molecular structure and architecture of 

the polymer matrix.1  The structure controls rigidity of the repeating backbone, number 

and strength of intermolecular forces, molecular and polymer strand density, crosslink 
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density, free volume, and the Tg.  These parameters drive the final bulk properties of the 

material through a variety of interactions.  Marks and Snelgrove measured decreasing 

mechanical properties of epoxy-amine thermosets with increasing conversion.2  Literature 

reported results have been consistent2,3 in that properties such as modulus and fracture 

toughness diminish as conversion increases from 0.8 to 1.0.  Marks measured the 

phenomenon using several amine monomers ranging from aliphatic to aromatic 

selections.2  The measured decrease in modulus was 25% or greater while advancing the 

epoxy-amine conversion from 0.9 towards 1.0 and was consistent across multiple amine 

monomer types.  Due to the wide assortment of monomers, the cure temperatures varied 

widely, yet the property loss trend was consistent and could not be explained by the 

occurrence of competing side reactions.  The authors proposed that the loss of properties 

with increasing conversion originated from decreasing intermolecular forces and 

inefficiency of polymer glass packing.   

 Sahagun and Morgan showed via AFM that epoxy-amine thermosets exhibit 

detectable heterogeneous microstructures on the 50 nm scale.4,5  Earlier studies supported 

these observations via electron microscopy of various epoxy-amine polymers6-9 and other 

thermosets.10  However, dissenting authors argued that the electron beam was responsible 

for these heterogeneous surfaces through surface etching.11  Sahagun and Morgan 

observed that in the absence of etched surfaces via atomic force microscopy, 

heterogeneous nanostructures were present within crosslinked epoxy-amine polymers.  

The nanostructures formed at the gel point and continued to develop throughout 

conversion up to vitrification.4  The authors hypothesized that the nodular morphology 

originated between regions of high crosslink density and low crosslink density as a part 
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of the complex diffusion-vitrification limited processes arising from infinite molecular 

weight at the gel point.5   

Haba et al. proposed a counter argument stating that the nodule morphology 

detected by AFM could result from an artifact known as tip convolution.  Tip convolution 

artifacts occur when AFM tip sizes are large relative to the surface features causing non-

spherical surface features to appear as spherical nodules.12  The author showed the size of 

the apparent nodule morphology was affected by the AFM tip radius and concluded that 

the nodule morphologies detected within glassy thermosets were likely not indicative of 

real surface features.  Although Haba et al. used a chain growth polymerization and did 

not report characterization of the epoxy-amine monomers or thermoset, the author was 

able to show surfaces with uniform surface modulus through ultra-microtoming.12   

 The contribution of epoxy-amine morphology to mechanical properties is poorly 

understood but relevant as recent literature has indicated that controlling and altering the 

morphology may improve strain-to-failure for epoxy-amine thermosets without 

diminishment of modulus.13  The research reported herein seeks to quantify and 

understand the effect of epoxy-amine morphology on its mechanical properties.   

Experimental 

 In this Chapter, we seek to understand how the morphology develops within the 

epoxy-amine thermoset and the mechanical properties it affects.  Dynamic rheology and 

FT-NIR will be used to track the conversion of the epoxy-amine reaction at the various 

stages of sample manufacture that have been used previously.  Images will be captured 

through both AFM and SEM to measure the formation and development of the 

morphology throughout the cure process.  By quantifying both the chemical structure 
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changes through NIR and the morphology changes through AFM and/or SEM, we can 

attempt to correlate contributions towards mechanical properties. 

Synthesis 

Epoxy-amine thermosets were prepared by blending vacuum degassed diglycidyl 

ether of bisphenol-A (Epon® 828, Momentive) and 2-methyl-1,5-diaminopentane (Sigma-

Aldrich) in a 2:1 molar ratio, degassed through sonication, and cast into test-specific 

molds.  The resin blends were cured for 15 hours under ambient conditions then post-

cured for the specified time and temperature under nitrogen.  Four distinct cure profiles 

were selected to create samples with specific characteristics targeting varying conversion 

values, mechanical properties, and morphology differences.  Samples cured at ambient 

for 15 hours were designated as α.  Samples cured at ambient for 15 hours and post-cured 

for 75 min at 60 °C under nitrogen were designated β.  Samples that were cured at 

ambient for 15 hours and post-cured for 75 min at 60 °C and 75 min at 120 °C under 

nitrogen were designated as γ.  Finally, samples that were cured at ambient for 15 hours 

and post-cured for 75 min at 60 °C and 195 min at 120 °C under nitrogen were designated 

as δ.  Additionally, a thermal cure profile was designed to eliminate vitrification from the 

cure process during polymerization.  The thermal profile was designed using rheological 

data from Figure 93, and was ambient for 4 hours, 20 minutes at 60 °C, and 3 hours at 

120 °C under nitrogen atmosphere.  This thermal profile is designated as non-vitrification 

(NV). 
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Mechanical Testing 

Mechanical testing samples were prepared and tested using ASTM D638-10 

procedure for Type V dogbone-shaped samples.  Samples were polished first with 600 

and then 800 grit sandpaper to diminish edge defects that are known to facilitate 

premature failure during tension testing.  Monotonic tensile testing was performed at a 

testing speed of 0.75 mm/min on an MTS Insight Series equipped with a 2.5 kN load cell 

with 28.5 mm gauge length.   

Bonded strain gauges were applied to the test region center using cyanoacrylate as 

per the manufacturer’s suggestion (Omega, Stamford, CT).  Tri-axial gauges were 

applied to one side of the sample to capture axial, bias, and transverse strain data.  The 

adhesive bonded gauge was allowed to rest at ambient for at least one hour before testing.  

Resistance strain data was captured at a rate of 100 points per second throughout the 

MTS test period.  The mechanical MTS data capture rate was set to 10 per second.  The 

initiation of the test cycle was synchronized to the failure point in both test methods.  

Digital image correlation experiments were conducted using a GOM Optical 

Measuring Techniques ARAMIS 3D Deformation Analysis System (Trilion Quality 

Systems).  The high visual contrast surface needed for the image capture technique was 

created by using a “speckle coat” technique.  The surface pattern was created using a 

basecoat of white acrylic latex and speckled with black aerosol commercial paints.  The 

water-based acrylic latex basecoat minimized solvent exposure from the aerosol with the 

test sample surface.  Gray scale images were captured with two 2M digital CCD cameras 

with 50 mm lenses at one frame per second.  Capture volume was calibrated with 

calibration panels (15 mm x 12 mm) supplied by Trilion Quality Systems. 
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Fracture toughness specimens were created by casting into rectangular shapes 

measuring 7 mm x 15 mm x 75 mm.  Testing was performed using three point bend 

geometry with a span of 59.2 mm (4xW) and a testing speed of 0.75 mm/min on an MTS 

Insight Series equipped with a 2.5 kN load cell.  The specimens were then machined to 

remove surface defects and pre-notched according to ASTM D 5045-99.  Samples were 

tested and KIC values calculated according to section A1.4 of ASTM D 5045-99. 

Thermal Characterization 

 Oscillatory rheometric experiments were performed on an ARES-G2 from TA 

Instruments, Inc. using 8 mm parallel plates at a frequency of 1 Hz.  The auto-strain 

feature and axial force adjustment was used to prevent damage to the instrument and 

capture the full cure of the epoxy thermoset.  The rheological experiments were staged in 

multiple phases to match the controlled cure conditions experienced by the mechanical 

test specimens.  The experiment began with the sample mixed and loaded onto the 

rheometer.  The forced air convection oven was turned off and the sample was cured for 

15 hours at ambient.  The auto-strain settings were set to 0.001% min to 10% max with 

minimum transducer force of 0.1 g-cm and a maximum of 25 g-cm.  The axial force was 

in tension mode set to 0 g with a max of 10 g.  The forced air convection oven was then 

ramped to 60 °C at 15 °C/min using nitrogen gas as a precise heating source and inert 

atmosphere.  The auto-strain settings were changed to a minimum transducer force of 0.1 

g-cm to a maximum of 100 g-cm.  The sample was held at 60 °C for 75 min, ramped to 

120 °C at 15 °C/min and held for 195 min, ramped to 176 °C at 15 °C/min and held for 15 

min.  The axial force was changed to compression mode and set to 0 g with a max of 10 

g.  The sample was then cooled from 176 °C to 25 °C at 2 °C/min. 
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 Dynamic mechanical analysis was performed using a DMA Q800 (TA 

Instruments, Inc.) in tension mode at a frequency of 1 Hz and heating rate of 2 °C/min 

ramping from 25 °C to 200 °C and analyzed by Universal Analysis 2000 software.  

Sample specimens were cured according to specific thermal profiles with dimensions 

approximately 1 mm thick and 5 mm wide.   

 Differential scanning calorimetry was performed using a DSC Q2000 from TA 

Instruments, Inc.  Approximately 7.5 mg was weighed into aluminum DSC pans, sealed, 

cured according to specific thermal profiles, heated at 10 °C/min and cooled at 5 °C/min 

through the temperature range of 25 °C to 200 °C, and analyzed by Universal Analysis 

2000 software. 

Spectroscopy 

Near infrared spectroscopy in transmission mode was conducted on a Thermo 

Nicolet 6700 using a CaF2 beamsplitter, wavenumber range of 4000 cm-1 to 8000 cm-1, 

thermo heat cell attachment, B screen filters, an aperture of 15 – 20, and sample thickness 

of 0.5 mm using Teflon® spacers.  Spectra were collected every 5 min and composed of 

32 scans at a resolution of 4 wavenumbers (cm-1).  The experiment began with the sample 

mixed as previously described and loaded into the heat cell.  The heat cell temperature 

was at ambient for 15 hours then ramped to 60 °C at 15 °C/min under purging nitrogen 

gas.  The sample was held at 60 °C for 75 min then heated to 120 °C at 15 °C/min and 

held for 195 min.  Spectra were processed using Omnic software automatic baseline 

corrections.  Molar absorptivities of monomers were measured by collecting spectra at 

ambient temperature, 60 °C, and 120 °C. 
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Microscopy 

 Visual light microscopy experiments were performed on Keyence VHS 600 

microscope at 50 x magnification.  The AFM images were collected using a Bruker 

Dimension Icon operating in tapping mode with Bruker RTESP probes (0.01 - 0.025 

Ωcm Antimony (n) doped silicon probe, spring constant: 20-80 N/m).  Scanning electron 

microscopy images were collected using a Zeiss Sigma Variable Pressure, Field Emission 

Gun Scanning Electron Microscope (VP-FEG-SEM) with Thermo energy dispersive and 

wavelength dispersive X-ray detectors (EDS/WDS) at an accelerating voltage of 10 kV.  

Samples used for SEM analysis were sputter coated with silver at an instrument reported 

thickness of 5 nm.  For fracture analysis, the samples were scored and fractured rapidly 

with a hammer driven razor blade.  The fractured samples were then mounted and 

scanned by SEM and AFM. 

Results and Discussion 

Chemorheology 

 Near infrared spectroscopy enables quantitative analysis of the epoxy-amine 

reaction through detection of the epoxide, primary amine, and secondary amine 

functional groups.  Specific peaks of interest were the epoxide overtone at 4530 cm-1, 

primary amine overtone at 4940 cm-1, and primary/secondary amine overlap overtone at 

6500 cm-1.3  Since the primary amine was completely consumed during the second post-

cure, the secondary amine molar absorptivity could be calculated since its non-linear 

contribution to peak area at the primary/secondary amine overlap overtone at 6500 cm-1 

had ceased.  The simultaneous calculation of epoxy, primary amine, secondary amine, 

and even tertiary amine concentrations has been reported.3,14,15  However, analyzing this 

system by these methods resulted in inconsistent concentrations of secondary amine.  For 
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simplicity, only the epoxy and primary amine concentrations were considered for the first 

stage of the reaction until the primary amine peak was eliminated during the second post-

cure stage.  The NIR spectroscopy of the DGEBA / 2-methyl-1.5-diaminopentane 

reaction revealed complete conversion of the epoxide functional group within 25 min at 

the 120 °C post-cure stage.  Decreases in the secondary amine functional group were 

observed to continue for an additional hour after the epoxy peak was no longer detectable 

(Figure 92). 

Table 21 summarizes the molar absorptivities of the epoxide, primary amine, and 

secondary amine.  The molar absorptivity of the secondary amine was twice as large in 

magnitude as that of the epoxide.  The increased absorption sensitivity of the secondary 

amine overtone allowed for smaller concentrations of the secondary amine to be detected 

than the epoxide.  In the last 120 °C post-cure stage, the NIR results showed subtle (< 

1%) changes in the secondary amine at > 99% conversion of the amine hydrogens while 

the epoxy peak was non-detectable.   



 

 

Figure 92.  Functional group concentrations measured by transmission NIR of the 
DGEBA - 2-methyl-1,5-diaminopentane epoxy
epoxy functional group, PA is concentration of primary amine, SA is concentration of 
secondary amine and TA is the calculated concentration of tertiary amine.  The dashed 
vertical lines separate the cure profile temperature zones; ambient for 15 hours, 60 °C for 
75 min., and 120 °C for 195 min.

 

Functional group concentrations measured by transmission NIR of the 
diaminopentane epoxy-amine reaction.  EP is concentration of 

epoxy functional group, PA is concentration of primary amine, SA is concentration of 
secondary amine and TA is the calculated concentration of tertiary amine.  The dashed 

ical lines separate the cure profile temperature zones; ambient for 15 hours, 60 °C for 
75 min., and 120 °C for 195 min. 
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Functional group concentrations measured by transmission NIR of the 
amine reaction.  EP is concentration of 

epoxy functional group, PA is concentration of primary amine, SA is concentration of 
secondary amine and TA is the calculated concentration of tertiary amine.  The dashed 

ical lines separate the cure profile temperature zones; ambient for 15 hours, 60 °C for 
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Table 21   

Molar Absorptivities 

 

 Functional Group (NIR Peak) Molar Absorptivity (A · kg · mol-1 · cm-1)a 

 

Epoxide (4530 cm-1) 4.15 

Primary Amine (4940 cm-1) 5.98 

Secondary Amine (6500 cm-1)b 8.42 

 

a The A unit in molar absorptivity is peak area. 

b Molar absorptivity of the secondary amine was not calculated from the monomer, but after complete consumption of the primary 

amine during the reaction.  Since relatively low temperatures were used, quantitative conversion was assumed to have taken place 

between epoxy and amine functional groups. 

  



 

 

Figure 93.  Rheology profile of DGEBA 
reaction.  The dashed vertical
60 °C for 75 min., and 120 °C for 195 min.

 The gel point occurred at approximately 390 minutes as indicated by the 

crossover during the ambient temperature stage (Figure

vitrified transitioning to the glassy state before post

storage modulus continued to increase during the 120 

within detection limits the reaction cessation

a physical change within the material and not due to a chemical process.  The mechanical 

Tg of the material, taken as the tan 

may be physically aging while g

Rheology profile of DGEBA - 2 methyl-1,5-diaminopentane epoxy
vertical lines separate the temperature zones; ambient for 15 hours, 

60 °C for 75 min., and 120 °C for 195 min. 

The gel point occurred at approximately 390 minutes as indicated by the 

crossover during the ambient temperature stage (Figure 93).  The material quickly 

vitrified transitioning to the glassy state before post-cure stages at 60 °C and 120 

storage modulus continued to increase during the 120 °C post-cure stage.  

within detection limits the reaction cessation, thus, the modulus increase was most likely 

a physical change within the material and not due to a chemical process.  The mechanical 

of the material, taken as the tan δ peak, was 122 °C, which indicates that the material 

may be physically aging while glassy domains may still exist in the material during the 
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the modulus increase was most likely 

a physical change within the material and not due to a chemical process.  The mechanical 

C, which indicates that the material 

lassy domains may still exist in the material during the 
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holding period at 120 °C (Figure 93).  An opposing possibility to the observed increase in 

modulus is that these results indicate a chemical change, and, as a result, the mechanical 

Tg has retarded the epoxy-amine reaction preventing full conversion of the material 

during the 120 °C post-cure stage of the rheology experiment.  NIR spectroscopy 

indicated complete conversion during the 120 °C post-cure stage, and no significant 

differences in mechanical properties were observed between samples cured according to 

γ and δ thermal cure profiles. 

 

Figure 94.  Dynamic rheology thermal sweep from high temperature to low temperature 
of the same experiment as Figure 93.   

 After the material was held at 120 °C for 195 min. (Figure 93), the sample was 

heated to 176 °C and cooled to 25 °C at a rate of 2 °C/min (Figure 94).  Transition from 

the rubbery plateau to the glass resulted in an accurate measurement absence of any 

thermal historical effects that would artificially alter the Tg.  Exposing the sample to high 

temperatures for extended time results in complete cure with a final Tg of 122 °C as 

indicated by the peak tan δ (Figure 94). 
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 The NIR experiments measured the epoxy functional group conversion at the 

various stages of cure (Table 22).  Although DMA is a more sensitive technique than 

DSC for Tg measurement, the relaxation times of polymers in response to deformation 

frequency yield Tg values higher than that obtained from purely thermal techniques.  In 

Table 22, midpoint analysis of the inflection in DSC heat flow curves indicated a Tg 

value slightly less than 120 °C.    

 DMA data in Figures 95 and 96 indicate subtle shifts in Tg between the γ and δ 

cure profiles.  Although the rubbery plateau moduli for the two cure conditions overlay 

very well, the onset storage modulus and peak tan δ was shifted by 2-3 °C for the 

extended cure profile δ.  These changes in Tg response of the cure profiles represent 

slight increases in conversion that are non-detectable from NIR spectroscopic techniques.  

Peak tan δ values for δ and NV cure profiles in Table 22 match the peak tan δ of the 

rheology experiment in Figure 94 confirming with reasonable certainty full cure for δ and 

NV thermal profiles. 
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Figure 95.  Storage modulus versus temperature of various cure profiles. 

 

Figure 96.  Tan δ versus temperature of various cure profiles. 
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Table 22   

NIR Epoxide Conversion with Thermal Cure Profiles and Measured Tg 

 

 Thermal Cure Conversiona Tg (°C)b G’-Tg (°C)c
  Tan δ-Tg (°C)d 

 

 α 0.69 48.1
e --- --- 

 β 0.86 83.9
e --- --- 

 γ 0.99f 114.5±0.7 110.8±0.7 120.0±0.6 

 δ 0.99f 119.4±0.8 114.0±0.5 122.6±0.8 

 NV 0.99g 116.2±1.4 114.1±0.1 123.4±0.1 

 

a Epoxide conversion measured using the peak area of the epoxide NIR overtone at 4530 cm-1 in combination with molar absorptivities 

reported in Table one.  b Glass transition temperature determined by DSC heat flow midpoint analysis.  c Glass transition temperature 

measured by DMA storage modulus onset.  d Glass transition temperature measured by DMA peak tan δ.  e Tg calculated through 

previously published Tg conversion relationships for DGEBA and 2-methyl-1.5-diaminopentane.16,17  f The epoxide overtone peak at 

4530 cm-1 is non-detectable, thus conversion is assigned to be greater than 0.99.  g Based on NIR conversion values of γ/δ thermal 

profiles and glass transition temperatures, conversion is reasonably assumed to be greater than 0.99. 

 The weight fraction of monomer species can be calculated using equations 

developed by Flory.18,19  These equations were originally developed for step-growth 

condensation polymerizations and assume equal reactivity of functional groups.  This 

assumption is not completely valid as there are potential reactivity differences between 

the primary and secondary amines.  This is demonstrated in that Flory’s model (Equation 

13) predicts elimination of finite species at conversion values exceeding 0.7 as shown in 

Figure 97.  However, from the NIR data in Figure 92 and Table 22, primary amine was 

still detected at conversion values greater than 0.7.  This potentially indicates that the 
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secondary amine reaction between an epoxide group is faster than that of the primary 

amine.   

 In Equation 13, ρ is defined as the ratio of non-branched units to the total units of 

the mixture.  Na is the mol of branched monomer and its functionality fa.  Nb is the mol of 

non-branched monomer and its functionality fb. 

N 	 PQRQ
PCRC � PQRQ

 

Equation 13.  Ratio (ρ) of non-branched units to the total units of the reaction mixture. 

 If r=1 and the conversion of pa=pb=p, then the critical branching coefficient α is 

given in Equation 14.  Here, it is assumed that the conversion of epoxide is equal to the 

conversion of amine hydrogens, N-H. 

S 	 T&N
1 
 T&�1 
 N� 

Equation 14.  The critical branching coefficient α as a function of conversion (p) and the 
ratio of non-branched units to the total units of the mixture (ρ). 

 The weight fraction of finite species, wx, is given in Equation 15.  The variable x 

is the degree of polymerization and f is the functionality of the branching species 2-

methyl-1,5-diaminopentane, which is equal to 4.  

UD 	  �RV 
 V�! R
�V 
 1�! �RV 
 2V � 2�!'SD���1 
 S�9D�&DX& 

Equation 15.  Weight fraction of finite species. 

 The consumption of finite species in Figure 97 at conversion values equal or 

exceeding 0.7 correlates well to the vitrification of the epoxy-amine thermoset in Figure 

93 and the NIR calculated conversion of 0.69 from Table 22.  
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Figure 97.  Weight fraction of finite species calculated using Flory’s statistical 
equations.18-20

 

Morphology 

Atomic force microscopy was used to probe fracture surfaces of DGEBA - 2 

methyl-1,5-diaminopentane throughout conversion to full cure.  Observations revealed 

nodule morphology similar to that reported by other authors.6-9  Sahagun and Morgan 

showed that these structures began to develop at the rheological gel point until 

vitrification of the material.4  Since the monomers used in this current study are liquid at 

room temperature, the epoxy-amine reaction continues until vitrification at ambient 

temperature preventing pre-vitrification measurement.  Fracture surfaces were imaged 

corresponding to the various thermal cure profiles in Figures 98 and 99. 



 

 

Figure 98.  AFM images of DGEBA 
profiles α and β with conversion values listed. Images in the left column are height 
images whereas the images 

 

AFM images of DGEBA - 2 methyl-1,5-diaminopentane resulting from cure 
 with conversion values listed. Images in the left column are height 

images whereas the images in the right column are phase images. 
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diaminopentane resulting from cure 
 with conversion values listed. Images in the left column are height 



 

 

 

Figure 99.  AFM images of DGEBA 
profiles γ and δ with conversion values listed.  Images in the left column are height 
images whereas the images 

 Fracture surface morphology show

post-vitrification conversion.  The consistent structure size was most evident within the 

height imaging of the α/β cure profiles versus the 

and 99.  The AFM phase imagin

and 101.  The phase image of the 

SEM image in Figure 100.

  

AFM images of DGEBA - 2 methyl-1,5-diaminopentane resulting from cure 
 with conversion values listed.  Images in the left column are height 

images whereas the images in the right column are phase images. 

Fracture surface morphology showed consistent structure sizes independent of 

vitrification conversion.  The consistent structure size was most evident within the 

α/β cure profiles versus the γ/δ cure profiles as shown in Figures 98 

AFM phase imaging results correlated well with SEM images in Figures 100 

and 101.  The phase image of the α cure profile closely matched the corresponding 

SEM image in Figure 100. 
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diaminopentane resulting from cure 
 with conversion values listed.  Images in the left column are height 

ed consistent structure sizes independent of 

vitrification conversion.  The consistent structure size was most evident within the 

 cure profiles as shown in Figures 98 

g results correlated well with SEM images in Figures 100 

 cure profile closely matched the corresponding α 
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 The SEM images of the polymer fracture surfaces are shown in Figures 100 and 

101 as a function of cure profile.  The size domains of the microstructure morphology, 

measured through AFM and SEM, were determined to be in the 50 nm range.  The SEM 

images indicate little, if any, difference in shape and size upon comparing α/β thermal 

cures versus those of γ/δ.  Once the morphology was formed, additional increases in the 

extent of the reaction exerted minimal effect on the size and shape.  These results are in 

agreement with the findings of Sahagun and Morgan from the AFM fracture surface 

images of a DGEBA and 3’-3’ diaminodiphenyl sulfone system prior to the gel point and 

through post-vitrification.4  The correlation of both AFM and SEM images indicate the 

existence and separation between the nodule morphology.  This strongly supports the 

existence of nodules as opposed to results of imaging artifacts reported by Haba.12  The 

post-vitrification morphology size and structure are constant with increasing conversion.  

Therefore, changes in mechanical properties must be due to traditional explanations of 

changing intermolecular forces.2 

  



 

 

 

Figure 100.  SEM images of DGEBA / 2 methyl
profiles α and β. 

Figure 101.  SEM images of DGEBA / 2 methyl
profiles γ and δ.   

Mechanical Testing 

 Stress-strain curves (Figure 102) indicate distinctive mechanical differences 

between the various thermal cure profiles of DGEBA 

Thermal profile α generated brittle samples that could not be secured in th

for analysis.  Samples subject to full conversion in cure profiles 

mechanical properties and supports previously observed results by Marks.

SEM images of DGEBA / 2 methyl-1,5-diaminopentane resulting from cure 

SEM images of DGEBA / 2 methyl-1,5-diaminopentane resulting from cure 

strain curves (Figure 102) indicate distinctive mechanical differences 

between the various thermal cure profiles of DGEBA - 2 methyl-1,5-diaminopentane.  

 generated brittle samples that could not be secured in th

for analysis.  Samples subject to full conversion in cure profiles γ/δ exhibited loss of 

mechanical properties and supports previously observed results by Marks.
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diaminopentane resulting from cure 

 

diaminopentane resulting from cure 

strain curves (Figure 102) indicate distinctive mechanical differences 

diaminopentane.  

 generated brittle samples that could not be secured in the MTS fixtures 

 exhibited loss of 

mechanical properties and supports previously observed results by Marks.2  Increase in 
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conversion from 0.86 for β to > 0.99 for γ/δ resulted in ~ 25% decrease in modulus 

(Table 23).  Thermal cure profiles γ/δ had minimal mechanical differences, which 

indicate minimal differences in degree of conversion. 

 

Figure 102. Tensile stress-strain curves of DGEBA - 2 methyl-1,5-diaminopentane at 
various stages of cure.  For each cure profile, n = 5. 
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Figure 103. Tensile stress-strain curves of DGEBA - 2 methyl-1,5-diaminopentane at 
various stages of cure.  Samples were sputter-coated for digital imaging.  For each cure 
profile, n =5. 

 In Figures 102 and 103, the stress-strain curves revealed atypical yield behavior in 

tension testing for the epoxy-amine thermoset.  Odegard and Bandyopadhyay stated that 

fully cured glassy epoxy thermosets lacked the ability to yield in monotonic tension 

testing.21  Researchers have noted this atypical behavior without explanation reporting 

yield in tension at testing temperatures within 20 °C below the Tg,
13,22,23 incomplete cure 

of the epoxy-amine thermoset,24 and reduced strain rates outside of the recommended 

time of failure in ASTM D-638-10.24  To specifically counter the known causes for yield 

in tension, mechanical testing was conducted at 80 °C below the Tg.  NIR analysis of this 

sample indicated full cure, no solvents were used in synthesis of the thermosets, and at a 

crosshead speed of 0.75 mm/min, the time-to-failure for all type V samples were within 

the recommended 0.5 - 5 min timeframe recommended by ASTM D-638-10.   
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 The digital strain map of the Aramis system reveals localized strain in excess of 

30% (Figure 104).  The sample imaged in Figure 104 was the sample exhibiting strain 

hardening behavior at nominal strains above 10% in Figure 103.  Digital image 

correlation experiments were used to resolve fracture formation with respect to the strain 

map tensile deformation.  Smooth mirror surface fracture formations resulted at localized 

strains higher than 25%.  Fractures in regions at lower strains resulted in mirror-mist-

hackle topographies.  These data further support the hypothesis for alignment of structure 

through plastic flow and strain deformation to be necessary for smooth fracture to occur 

through the specimen. 

 

Figure 104.  Strain map of sample surface calculated through digital image correlation.  
Inset photograph shows mounted sample with green highlights indicating the strain map 
zone, red squares indicating starting regions for facet field generation. 

 Fracture toughness data paralleled with Young’s modulus trends (Table 23).  K1C 

decreased by more than 50% as the material approached > 0.99 conversion.  No 
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significant mechanical differences were observed between the γ/δ cure profiles further 

indicating minimal or no increased conversion at extended times above Tg.  Young’s 

modulus decreased by approximately 25% as conversion increased from 0.86 to > 0.99 

(Table 23).  The decrease in Young’s modulus with conversion agreed with reported 

epoxy-amine thermoset data.2  The average Poisson’s ratio was shown to increase with 

conversion.  However, reproducibility was insufficient for firm conclusions to be made. 

Table 23   

Thermal Cure Profiles and Mechanical Properties 

 

 Conversiona KIC (MPa m0.5) LVDT Modulus (GPa)b Modulus (GPa)c Poisson’s ratio 

 

 β - 0.86 2.14 ± 0.14 3.15 ± 0.05 3.82 ± 0.11 0.367 ± 0.014 

 γ - 0.99 1.04 ± 0.08 2.56 ± 0.04 2.98 ± 0.32 0.375 ± 0.002 

 δ - 0.99 1.05 ± 0.06 2.58 ± 0.02 2.79 ± 0.22 0.382 ± 0.021 

 

a Cure profile α samples were to brittle to load in mechanical test fixtures.  b Linear variable displacement transducer (LVDT) modulus 

determined from slope of nominal strain versus engineering stress.  c Modulus calculated from bonded strain gauge data.   

Microscopy 

 Reproducible and uncharacteristic tensile stress-strain behaviors of cured glassy 

epoxy-amine networks were observed to produce distinctive fracture surfaces. Test 

specimens exhibiting plastic flow resulted in mirror-like finishes whereas samples that 

failed during yield or strain softening regions possessed notably rough surfaces.25  

Mirror-like fracture surfaces were noted within samples experiencing nominal strain 

values above 7.5% in the plastic flow region (Figure 105).  Fracture at nominal strain 



 

 

values below 7.5% resulted

fracture surfaces and mechanical behavior were present in both thermal profiles 

Tensile fracture surfaces of the complete mirror zone in Figure 105 have not been 

reported as yet.  Researchers who reporte

thermosets did not report fracture surfaces of samples experiencing plastic flow.

The samples experiencing plastic flow, like those imaged in Figure 105, were not 

observed to fail by necking through tradit

surfaces were flat and sample halves could be refitted with opposing halves.

Figure 105.  Microscopy images of pull
638 dogbone samples.  Image on the left is typical
topography.26  Image on the right is atypical mirror surfaces formed from samples 
experiencing plastic flow at nominal strains > 7.5%.

Crack initiation begins in the mirror region and propagates outwards increasing in 

speed and roughness, and 

increasing toughness.26  In thermoplastic terms, plastic flow represents chain 

reorientation and flow in the direction of extension eventually leading to strain 

hardening.27  On the other hand, a glassy crosslinked thermoset lacks chain mobility to 

flow and reorient itself.  The plastic flow behavior in Figures 102 and 103 

viscous movement.  However, the question remains, 

ed in typical mirror-mist-hackle topography.  These types of 

fracture surfaces and mechanical behavior were present in both thermal profiles 

Tensile fracture surfaces of the complete mirror zone in Figure 105 have not been 

reported as yet.  Researchers who reported yield in tension testing of epoxy

did not report fracture surfaces of samples experiencing plastic flow.

The samples experiencing plastic flow, like those imaged in Figure 105, were not 

observed to fail by necking through traditional ductile failure.  The mirror fracture 

surfaces were flat and sample halves could be refitted with opposing halves.

Microscopy images of pull-to-break fracture surfaces of Type V ASTM D
638 dogbone samples.  Image on the left is typical mirror-mist-hackle fracture 

Image on the right is atypical mirror surfaces formed from samples 
experiencing plastic flow at nominal strains > 7.5%. 

rack initiation begins in the mirror region and propagates outwards increasing in 

, and the increasing size of the mirror region correlates with 

In thermoplastic terms, plastic flow represents chain 

reorientation and flow in the direction of extension eventually leading to strain 

ther hand, a glassy crosslinked thermoset lacks chain mobility to 

flow and reorient itself.  The plastic flow behavior in Figures 102 and 103 

owever, the question remains, what is the source of the viscous 
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These types of 

fracture surfaces and mechanical behavior were present in both thermal profiles γ/δ.  

Tensile fracture surfaces of the complete mirror zone in Figure 105 have not been 

d yield in tension testing of epoxy-amine 

did not report fracture surfaces of samples experiencing plastic flow.13,22-24  

The samples experiencing plastic flow, like those imaged in Figure 105, were not 

ional ductile failure.  The mirror fracture 

surfaces were flat and sample halves could be refitted with opposing halves. 

 

break fracture surfaces of Type V ASTM D-
hackle fracture 

Image on the right is atypical mirror surfaces formed from samples 

rack initiation begins in the mirror region and propagates outwards increasing in 

correlates with 

In thermoplastic terms, plastic flow represents chain 

reorientation and flow in the direction of extension eventually leading to strain 

ther hand, a glassy crosslinked thermoset lacks chain mobility to 

flow and reorient itself.  The plastic flow behavior in Figures 102 and 103 was definitive 

what is the source of the viscous 
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behaviour?  It is hypothesized that the differentiation between the two fracture 

topographies is a result of structure alignment with the strain direction allowing planar 

fracture to propagate through the sample without macroscopic deviation resulting in a 

complete mirror surface. 

Controlling Morphology / Mechanical Properties through Thermal Cure Staging 

 The gel point as defined through rheology is a liquid transitioning into the solid 

state.  The epoxy-amine reaction begins in the liquid state with small monomer molecules 

that react to form larger molecules eventually reaching infinite molecular weight, which 

is accompanied by transition from the liquid state to the solid state.  Sahagun and Morgan 

used dynamic rheology combined with AFM to show that during epoxy-amine thermoset 

polymerization, nodule morphologies emerged at the gel point and continued evolving in 

shape and size until vitrification occurred.4   

 It is hypothesized that the heterogeneous structures originate from the disparity in 

sizes of molecules arising from step-growth chemistry.  The polydisperse domains 

increase in size until the apparent Tg of the domain reaches that of the cure temperature 

initiating vitrification.  This causes a glassy state phase separation to occur in which the 

larger domains become a glass while the smaller domains continue to react until their 

apparent Tg reaches cure temperature.  This process is depicted in Figure 106. This glass 

phase separation is responsible for the formation of heterogeneous nodular structures 

seen in Figures 98 - 101.   

  



 

 

Figure 106.  Depiction of isothermal phase transition from liquid state to vitrified glass 
for a step-growth thermoset.  Areas colored white indicate liquid fraction
shaded grey indicate solid domains.

 We further hypothesize that phase separation effects can be avoided by removing 

the vitrification event while epoxy

the material will result in a more continuous morphology, which will eliminate the 

capacity for plastic flow behavior.  

Figure 107.  Rheology profile of 
amine reaction.  The inset graph details initial time points for 

Depiction of isothermal phase transition from liquid state to vitrified glass 
growth thermoset.  Areas colored white indicate liquid fraction

shaded grey indicate solid domains. 

We further hypothesize that phase separation effects can be avoided by removing 

the vitrification event while epoxy-amine conversion is still taking place.  We expect that 

the material will result in a more continuous morphology, which will eliminate the 

apacity for plastic flow behavior.   

Rheology profile of the DGEBA - 2 methyl-1,5-diaminopentane epoxy
The inset graph details initial time points for 60 °C stage
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Depiction of isothermal phase transition from liquid state to vitrified glass 
growth thermoset.  Areas colored white indicate liquid fraction and areas 

We further hypothesize that phase separation effects can be avoided by removing 

amine conversion is still taking place.  We expect that 

the material will result in a more continuous morphology, which will eliminate the 

 

diaminopentane epoxy-
stage. 
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 Using the rheological data from Figure 107, a thermal cure profile was designed 

to avoid vitrification, produce sufficient conversion at each thermal stage to prevent 

subsequent volatilization of the amine monomer, and produce full conversion of the 

epoxy-amine reaction.  Staging the reaction using decreased times at ambient temperature 

and 60 °C avoids vitrification and keeps the physical state of the thermoset 

polymerization in either the liquid state or the rubbery state until full conversion is 

reached.  The non-vitrification cure profile (NV) was selected to be 4 hours at ambient, 

20 minutes at 60 °C, and 3 hours at 120 °C. 

 

Figure 108.  Tensile stress-strain curves of DGEBA - 2 methyl-1,5-diaminopentane with 
staged thermal cure (NV) to avoid vitrification during polymerization.  For cure profile 
NV, n = 14. 

 Samples prepared with the modified thermal cure procedure were monitored 

gravimetrically to ensure that the amine did not volatilize during polymerization.  

Mechanical testing of 14 samples made with the modified cure procedure did not 
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demonstrate plastic flow behavior (Figure 108).  All the specimens failed prior to 7.5% 

nominal strain and exhibited mirror

left image).  The LVDT modulus was determined to be 2.57 ± 0.03 GPa, 

identical to the LVDT modulus of 

significant in that the morphology reported in Figure 109 impacts the strain

not the initial elastic region or yield stress.  

Figure 109.  AFM images of DGEBA 
vitrification cure profile, left column (height image), right column (phase image).

 In Figure 109, the non

nodule morphology but resulted in great

domains of the nodules had decreased significantly, potentially promoting covalent 

connectivity between domains.  The continuous morphology inhibited mobility as 

predicted and caused a reduction in propensit

108).  Tuning morphology using thermal cure profiles has the potential to impart 

thermoplastic-like failure mechanisms within glassy thermosets without the loss of 

modulus, thermal stability, 

flow behavior (Figure 108).  All the specimens failed prior to 7.5% 

nominal strain and exhibited mirror-mist-hackle fracture topography patterns (Figure 105, 

left image).  The LVDT modulus was determined to be 2.57 ± 0.03 GPa, 

identical to the LVDT modulus of γ/δ samples in Table 23.  This observation is 

significant in that the morphology reported in Figure 109 impacts the strain

not the initial elastic region or yield stress.   

AFM images of DGEBA - 2 methyl-1,5-diaminopentane resulting from non
vitrification cure profile, left column (height image), right column (phase image).

In Figure 109, the non-vitrification cure profile did not completely eliminate the 

nodule morphology but resulted in greater amounts of a more continuous phase.  The size 

domains of the nodules had decreased significantly, potentially promoting covalent 

connectivity between domains.  The continuous morphology inhibited mobility as 

predicted and caused a reduction in propensity to yield for mechanical testing (Figure 

108).  Tuning morphology using thermal cure profiles has the potential to impart 

like failure mechanisms within glassy thermosets without the loss of 

modulus, thermal stability, or chemical resistance. 
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flow behavior (Figure 108).  All the specimens failed prior to 7.5% 

hackle fracture topography patterns (Figure 105, 

left image).  The LVDT modulus was determined to be 2.57 ± 0.03 GPa, which is 

 samples in Table 23.  This observation is 

significant in that the morphology reported in Figure 109 impacts the strain-at-failure and 

 

diaminopentane resulting from non-
vitrification cure profile, left column (height image), right column (phase image). 

vitrification cure profile did not completely eliminate the 

er amounts of a more continuous phase.  The size 

domains of the nodules had decreased significantly, potentially promoting covalent 

connectivity between domains.  The continuous morphology inhibited mobility as 

y to yield for mechanical testing (Figure 

108).  Tuning morphology using thermal cure profiles has the potential to impart 

like failure mechanisms within glassy thermosets without the loss of 
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Conclusions 

 This chapter has shown the various mechanical properties that an epoxy-amine 

thermoset can achieve at various stages of conversion.  Although literature claims that 

glassy epoxy-amine thermosets do not yield in tension, this study showed that fully cured 

epoxies exhibited plastic flow and strain hardening during tensile testing.  This unusual 

mechanical behavior for glassy thermosets also produced atypical complete mirror 

fracture surfaces for samples experiencing plastic flow.  It is hypothesized that the plastic 

flow and fracture surfaces resulted from the deformation and alignment of structures 

within the thermoset.   

Although nodule morphology in the 50 nm range can result from tip convolution 

artifacts, the existence of nodule morphology within epoxy-amine fracture surfaces was 

confirmed through two correlating techniques, AFM and SEM.  Post-vitrification, the 

nodule morphology changes little in size and structure with increasing conversion.  

However, by removing the vitrification process during synthesis through thermal cure 

design, the nodule morphology can be reduced in size or eliminated, and the bulk 

mechanical properties of the material remain unchanged.  However, the capacity of the 

material to yield in tension through plastic flow was eliminated.   

 It is hypothesized that the formation of heterogeneous structures originate from 

the disparity of network sizes arising from step-growth chemistry.  The poly disperse 

domains increase in size until the apparent Tg of the larger domains reaches that of the 

cure temperature initiating vitrification.  The vitrification of the large domains result in a 

glassy/liquid phase separation in which the larger domains become a glass while the 

smaller semi-liquid domains continue to react until their apparent Tg reaches cure 



169 
 

 

temperature and subsequently vitrify.  This glass phase separation causes the formation of 

uniform modulus, but heterogeneous structures were observed via AFM and SEM.  This 

understanding of morphology development in epoxy-amine conversion may indicate a 

way in which thermoplastic type failure mechanisms may be incorporated into glassy 

epoxy thermosets.     
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CHAPTER VIII 

SUMMARY 

Overview 

 The overall goal of this research was to understand the molecular mechanisms of 

why thermoset polymers fail from mechanical fatigue.  It was hypothesized that the 

degradation of mechanical performance and subsequent failure of glassy thermoset 

polymers originate from the accumulation of chain scission events.  This dissertation 

presented research findings on this subject, focusing on detecting chain scission events 

through measuring nitroxyl radical populations with EPR spectroscopic analysis.  The 

purpose of this chapter is to review the findings shared within this document and draw 

conclusions to guide future investigation of thermoset failure. 

Summary of Results 

The specific findings of this research were presented in the previous chapters with 

the goals to: 

1) Successfully incorporate a nitroxyl radical probe molecule within an epoxy-amine 

thermoset and verify that the epoxy-amine reaction chemistry is not adversely 

affected by such incorporation  

2) Subject nitroxyl radical loaded epoxy-amine thermosets to varying levels of 

fatigue and analyze the samples via EPR spectroscopy to detect loss of nitroxyl 

radicals and, therefore, chain scission events 

3) Investigate through physical aging the relationship of plastic flow and mirror 

fracture surfaces occurring within a highly crosslinked glassy epoxy-amine 

thermoset 
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4) Understand the contributions to mechanical properties that nodule morphologies 

impart to glassy epoxy-amine networks  

 In Chapter III, we investigated the incorporation of nitroxyl radicals into the 

epoxy matric.  Compared to the control (no additive), variations in gel points and ultimate 

epoxy conversion were observed in systems containing blocked isocyanates based on N-

methyl aniline and e-caprolactam.  However, no significant variation was detected with 

the 4-hydroxy TEMPO blocked isocyanate.  The kinetic rate of the epoxy-amine reaction, 

measured by NIR decreased by 0.0015 mol*kg-1*min-1for every 5 wt% of additive within 

the matrix.   

 Chemorheological techniques confirmed the chemical and mechanical 

compatibility of the epoxy-amine matrix system with blocked isocyanate additives and 

nitroxyl radicals.  Reduction in kinetic rates of the e-cap-b-IPDI and NMA-IPDI 

formulations are consistent with dilution effects from higher additive loadings.  These 

formulations also exhibited a plasticization effect from the presence of small molecules 

that did not directly participate in network formation.  The observed plasticization effects 

elicited higher levels of conversion (supported by both FT-NIR and rheological data) in 

systems containing NMA-IPDI and e-cap-b-IPDI owing to postponement of vitrification.  

The system containing bis-TEMPO-IPDI did not display a statistically significant change 

in gelation time when compared to the control but did exhibit a reduction in kinetic rates 

in the isothermal regime studies.  The consistent loss of reaction rates with increasing 

additive concentration suggests that the effect on kinetic rate is due to decreasing 

concentration of reacting functional groups and was not attributed to the presence of a 

competing mechanism. 
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 In Chapter IV, nitroxyl radicals were incorporated into an epoxy matrix to detect 

mechanically produced homolytic chain scission events resulting from fatigue.  The 

epoxy-amine matrix was subject to 30% UTS and 50% UTS fatigue studies with 

subsequent EPR and FTIR spectroscopic methods to detect changes in nitroxyl radical 

populations and epoxy-amine functional groups.  Although mechanical property 

decreases and fatigue failure of specimens were observed in the 50% UTS study, 

decreases in nitroxyl populations relative to controls were not observed.  This indicates 

that chain scission events were not detected.  No changes in properties or functional 

groups within the epoxy-amine matrix were observed in the 30% UTS study.  However, 

both control and fatigue conditions resulted in increases of nitroxyl radical population.  

This is attributed to the Denisov cycle significantly affecting nitroxyl populations within 

the 27 hour time frame of the study. 

 Non-detection of chain scission events can be attributed to several reasons.  The 

viscosity of the glassy state is relatively high and can impede diffusion of the radical 

chain end to a BT-IPDI molecule.  Also, it is unknown whether fatigue produces chain 

scission events prior to failure.  Radicals are known to be capable of migration based on 

hydrogen abstraction.  If radicals were known to be produced through mechanical 

destruction of the sample, it could then be determined experimentally if reactions could 

take place between the mechano-radicals and BT-IDPI within the glassy state.  This 

would help elucidate if the physical barrier of the glassy state impedes both physical 

migration and chemical migration of mechano-radicals during strain. 

 In Chapter V, mechanically formed radicals were produced by grinding epoxy-

amine thermosets.  The characteristics of the mechano-radicals match what is reported in 
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literature.  The Boltzmann statistics model was used to predict temperature dependent 

EPR signal decreases and distinguish between irreversible losses of radical population 

due to recombination versus reversible decreases in signal resulting from temperature 

changes.  Modulated EPR was used to determine if reactions between nitroxyls and 

mechano-radicals occurred.  The modulated experiment showed that mechano-radicals 

decrease in population due to recombination but did not detectably react with the nitroxyl 

radicals of BT-IPDI.  Particle size analysis from light scattering revealed the deficit in 

potential population of surface broken bonds versus that of nitroxyl radicals in the bulk.   

 Future experiments could increase the potential for success through finer grinds to 

maximize the mechano-radical to nitroxyl ratio.  In these experiments, it was assumed 

that the radical species is either a carbon-centered radical that, by itself or upon 

destabilization, forms products that can react with BT-IPDI similar to the Denisov cycle.  

It is possible that the liquid nitrogen possessed sufficient liquid oxygen to contaminate 

the radical products and create peroxy radicals, which cannot directly react with nitroxyl 

radicals.  Ball milling under both high vacuum and liquid nitrogen temperatures would 

have to be performed with transfer to an EPR tube also under these conditions.  The 

equipment to investigate this experimentally would involve cryo-grinding through 

specially manufactured equipment that is not commercially available as of yet. 

 In Chapter VI, reproducible and uncharacteristic tensile stress-strain behavior of 

cured glassy epoxy-amine networks were observed to produce distinctive fracture 

surfaces.  Test specimens exhibiting plastic flow resulted in mirror-like finishes, whereas 

samples that failed during yield or strain softening regions possessed notably rough 

surfaces.  We hypothesized that viscous deformation was required to form the atypical 
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complete mirrored fracture surfaces.  By using physical aging as an investigative tool, we 

were able to eliminate the capacity of the epoxy-amine network for viscous deformation 

without adversely altering the polymer structure through chemical means.  The 

elimination of plastic flow, resulted in the elimination of smooth fracture surfaces thus 

correlating the relationship between the atypical mechanical behavior and atypical 

fracture surfaces.  The results indicate the potential existence of a structural feature 

capable of viscous deformation.  AFM and SEM images revealed wormlike nodule type 

structures at the 50 nm size scale.  It is hypothesized that these structures, as seen in 

Figures 90 and 91, are the underlying cause of the unusual mechanical yield behavior and 

atypical mirror fracture surfaces. 

 The research in Chapter VII showed the various mechanical properties that an 

epoxy-amine thermoset can achieve at various stages of conversion.  Although literature 

claims that glassy epoxy-amine thermosets do not yield in tension, this study showed that 

fully cured epoxies exhibited plastic flow and strain hardening during tensile testing.  

This unusual mechanical behavior for glassy thermosets also produced atypical complete 

mirror fracture surfaces for samples experiencing plastic flow.  It is hypothesized that the 

plastic flow and fracture surfaces resulted from the deformation and alignment of 

structures within the thermoset.   

Although nodule morphology in the 50 nm range can result from tip convolution 

artifacts, it was confirmed through two correlating techniques, AFM and SEM, the 

existence of nodule morphology within epoxy-amine fracture surfaces.  Post-vitrification, 

the nodule morphology changes little in size and structure with increasing conversion.  

However, by removing the vitrification process during synthesis through thermal cure 
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design, the nodule morphology can be reduced in size or eliminated.  Although the bulk 

mechanical properties of the material remain unchanged, the capacity of the material to 

yield in tension through plastic flow was eliminated.   

 It is our hypothesis that the formation of heterogeneous structures originates from 

the disparity of network sizes arising from step-growth chemistry.  The poly disperse 

domains increase in size until the apparent Tg of the larger domains reaches that of the 

cure temperature initiating vitrification.  The vitrification of the large domains result in a 

glassy/liquid phase separation in which the larger domains become a glass while the 

smaller semi-liquid domains continue to react until their apparent Tg reaches cure 

temperature and subsequently vitrify.  This glass phase separation causes the formation of 

uniform modulus but heterogeneous structures observed via AFM and SEM.  This 

understanding of morphology development in epoxy-amine conversion may indicate a 

way in which thermoplastic type failure mechanisms may be incorporated into glassy 

epoxy thermosets.  Future work will ascertain the degree of development and control of 

morphology through thermal staging. 

Future Research Considerations 

 The work reported here in Chapters IV and V used a principal of measurement in 

which an existing population of radicals was monitored for slight decreases.  This makes 

the confirmed detection more difficult in that it places a requirement of how many events 

must occur before confidence of a positive result is obtained.  Using a large population of 

radicals would increase the ratio between nitroxyls and potential chain scission events 

favoring reaction probability but would eliminate the possibility of EPR detection as the 

small loss of signal would be outside the reproducibility of measurement.   
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 Error is associated in this experimental technique due to the removal and 

replacement of the sample within the EPR cavity.  At 9.8 GHz, a standing microwave 

possesses a wavelength of approximately 3.2 cm.  This means that spatial placement of 

the sample to the exact point within the cavity is important for the magnitude of signal 

detected by the instrument.  Since the fatigue treatment to the sample occurs outside of 

the cavity, spectra before and after treatment are taken, and placement back into the 

cavity for the second spectra will result in errors in signal of at least ± 7 %. 

 Experimentally, it is easier to detect signal in the complete absence of overlapping 

or conflicting sources.  Extremely low concentrations of radicals can be detected in 

fracture events, however, this case differs in that before the event, there was no EPR 

detectable source of radicals.  Therefore, detecting signal where before there was none is 

more facile experimentally.  Lengthy fatigue studies lasting for times in excess of 24 

hours are complicated through the Denisov cycle affecting the population of radicals. 

 Future experiments could avoid these problems by developing a technology that 

incorporates a blocked nitroxyl radical within the elastic backbone of the thermoset 

(Figure 110).  In this approach, the initial state of the epoxy-amine matrix would be 

absent of nitroxyl signals allowing fatigue cycles to be applied to the sample to detect if 

the nitroxyl radical forms from breakage of the N-O-R group.  The breakage of this bond 

would form an unstable radical and a stable nitroxyl radical increasing the possibility of 

detection.  This approach would seek detection of a positive signal in the absence of 

initial signal, a more facile experimental method than those mentioned previously.  All 

though the N-O-R bond is relatively weak (32 kcal) compared to C-C bonds (80 kcal), 

this technique would allow for the first time detection of broken covalent bonds in glassy 
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polymers from fatigue.  While this monomer unit would be relatively expensive, due to 

the sensitivity of EPR, very small concentrations would be needed.  By incorporating 

only 1% of the repeat units as this structure, EPR detection limits used in these studies 

could positively detect 0.001% of the backbone structures forming nitroxyl radicals.   

 

Figure 110.  Elastically active nitroxyl probe created from 4-hydroxy-TEMPO. 

 In chapters VI and VII, unusual yield and fracture behavior of glassy epoxy-

amine thermosets was reported.  These observation were coupled with measurement of 

nodule morphologies through AFM and SEM.  It was indicated that the formation of the 

nodules was due to phase separation through vitrification during polymerization.  By 

removing the vitrification from synthesis, the size of the nodules was greatly reduced or 

even eliminated.  This eliminated the capacity of plastic flow behavior and smooth 

fracture surfaces from tensile failure.   

 Future investigations should promote vitrification during cure as a potential 

toughening mechanism that does not detrimentally impact modulus.  Several samples 

investigated within this study demonstrated strain hardening, an even more unusual 

behavior for glassy thermosets.  It is unknown currently what the limiting strain-to-failure 

is for these types of systems, but performing tensile experiments with uniform cross-

sectional shapes, such as square or circle patterns, that are polished to remove edge 

defects can explore the upper strain-to-failure boundary.  This has the potential to 

increase the base toughness properties of thermoset materials before even toughening 

additives are incorporated.  These thermoplastic type failure mechanisms coupled with 
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thermoset ease of processing, thermal properties, and chemical resistance would be 

advantageous to composite technology.   
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