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ABSTRACT 

RUTHENIUM-BASED OLEFIN METATHESIS CATALYSTS  
 

BEARING PH-RESPONSIVE LIGANDS: 
 

EXTERNAL CONTROL OF CATALYST SOLUBILITY AND ACTIVITY 
 

by Shawna Lynn Balof 

May 2011 

 Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive 

ligands were synthesized. The pH-responsive groups employed with these catalysts 

included dimethylamino (NMe2) modified NHC ligands as well as N-donor 

dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-

responsive ligands provided the means by which the solubility and/or activity profiles of 

the catalysts produced could be controlled via acid addition. The main goal of this 

dissertation was to design catalyst systems capable of performing ring opening 

metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and 

aqueous media. 

In an effort to quickly gain access to new catalyst structures, a template synthesis for 

functionalized NHC ligand precursors was designed, in addition to other strategies, to 

obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts 

produced from these precursors showed external control of catalyst solubility was 

afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this 

protonation afforded external control of catalyst propagation rates for several catalysts. 

This is the first known independent external control for the propagation rates of ROMP 

catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures 

also provided the means for the external control of metathesis activity, as the protonation 

of these ligands resulted in an increased initiation rate based on their fast and 
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irreversible dissociation from the metal center. The enhanced external control makes 

these catalysts applicable to a wide range of applications, some of which have been  

explored by us and/or through collaboration. 

 Three of the catalysts designed showed remarkable metathesis activity in 

aqueous media. These catalysts displayed comparable RCM activity in aqueous media 

to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most 

active catalyst for aqueous olefin metathesis reactions. In ROMP reactions these 

particular catalysts dramatically outperformed the literature catalysts, accomplishing 

ROMP full conversion rates within 15 minutes compared to several hours observed with 

the literature catalyst. These catalysts were also able to accomplish these reactions at 

lower catalyst loadings than ever reported with the literature catalyst, making them the 

most active aqueous olefin metathesis catalysts to date.  
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CHAPTER I 

INTRODUCTION, BACKGROUND, AND LITERATURE REVIEW FOR OLEFIN 

METATHESIS AND OLEFIN METATHESIS CATALYSTS 

Introduction 

 Over the past five decades olefin metathesis has evolved into a powerful tool in 

the fields of organic1 and polymer2 chemistry. The 2005 Nobel Prize in Chemistry 

awarded to Yves Chauvin, Richard Schrock, and Robert Grubbs for their contributions to 

the field3 clearly demonstrates the importance of olefin metathesis and acknowledges 

the impact of this technology on the sciences and society.   Advantages of olefin 

metathesis for chemical synthesis include good product yields (often near quantitative) 

under mild reaction conditions, fewer synthetic steps to obtain the desired product, fewer 

side reactions when compared to many traditional methods of organic synthesis, and 

less generation of hazardous waste.4 Since the mid 1990s, much of the research has 

been focused on Ru-based, single-site olefin metathesis catalysts due to their high 

activity and tolerance toward air, moisture, and many functional groups in comparison to 

catalytic systems based on other transition metals.5  

 Ru-based olefin metathesis catalyst designs have been investigated intensely 

over the last decade, and much progress has been made to optimize the activity and 

thermal stability of these complexes. The most prominent catalyst designs still feature 

several limitations including narrow-range solubility profiles, costly removal after use, 

and a lack of external activity controls. Currently no economically feasible solution exists 

for effective catalyst removal, and few external activity controls have been identified 

which can improve the applicability of these catalysts on a large, industrial scale. Also, 
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only a few catalyst designs are available for homogenous aqueous applications,6 and 

those which were successfully developed are limited by their cumbersome syntheses. 

 The focus of this dissertation is the development of new Ru-based olefin 

metathesis catalysts bearing pH-responsive ligands. These ligands provide the means to 

externally control the solubility profile and activity of the catalyst. This allows for 

improved catalytic performance with respect to ring opening metathesis polymerization 

(ROMP) and ring closing metathesis (RCM) reactions. These ligands also provide the 

means to enhance the applicability of these catalysts in certain applications. 

Background and Literature Review 

Early Developments of Transition Metal-Mediated Polymerization and Olefin Metathesis 

 Karl Ziegler, a German scientist, is credited with discovering the first metal-

catalyzed olefin polymerization in 1953 when he made use of an ill-defined catalyst 

system generated from trialkyl aluminum and titanium chloride which produced relatively 

linear polyethylene.7 Similar catalysts were employed that same year by Giulio Natta for 

the production of mostly linear polymers from 1-alkenes, and the initial results led to the 

development of a wide variety of the so-called Ziegler-Natta catalysts.8 For their work 

they were both awarded the Nobel Prize in Chemistry in 1963.3 

 Based on the initial research of Ziegler and Natta, the petrochemical industry 

investigated ill-defined transition metal catalysts for the production of polymers from 

olefins throughout the 1950s and 1960s.9 During these investigations some researchers 

obtained unexpected products that could not be explained by any known olefin 

polymerization reaction. One example was observed by DuPont chemist Herbert S. 

Eleuterio in 1956.10 While passing propylene feed over a molybdenum-on-aluminum 

catalyst in an attempt to synthesize a propylene polymer he instead obtained a 
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propylene-ethylene copolymer. Further analysis of the output gas showed that it was 

composed of a mixture of ethylene, propylene, and 2-butene. When he repeated this 

experiment with cyclopentene he obtained a linear, unsaturated polymer that appeared 

to be the opened ring joined end to end (Scheme 1) instead of a cyclopentane polymer 

composed of connected cyclic units.  

  molybdenum on 
aluminum catalyst

propylene-ethylene copolymer

propylene polymer
X

+ +

* *

n

  molybdenum on 
aluminum catalyst

Scheme 1. Results Obtained by Herbert S. Eleuterio in 195610

(anticipated product)

(actual product)

+

 

 At first these reactions were not considered related to one another. It was not 

until four years later that it was recognized that these unexpected products were the 

result of a redistribution of C=C double bonds. In this redistribution one half of the C=C 

double bond of one olefin was exchanged for one half of the C=C double bond of a 

second olefin (Scheme 2).  In 1967 Nissim Calderon, a chemist with Goodyear Tire 

Company, dubbed this reaction “olefin metathesis.”11  

R2

R2R2

R2

R1

R1R1

R1

R2R2

R1 R1
R1 R1

R2R2

+ +

Scheme 2. Olefin Metathesis

R1, R2 = aryl, alkyl  
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Mechanism of Olefin Metathesis 

 Even after scientists recognized the products of olefin metathesis were formed 

through a redistribution of C=C bonds, the actual mechanism for the transition-metal 

mediated olefin metathesis reaction remained elusive. Over several years many different 

mechanisms were proposed.12 In 1971 Yves Chauvin and his student Jean-Louis 

Hérisson first introduced what is now the accepted mechanism of transition-metal 

mediated olefin metathesis (Scheme 3).13 This mechanism involves the 

[2+2]cycloaddition of a C=C double bond to a transition metal alkylidene species to form 

a metallacyclobutane intermediate. This metallacyclobutane intermediate then 

undergoes a retro [2+2]cycloaddition to give either the starting materials or a new alkene 

and alkylidene. The alkene’s interaction with the dxz or dyz orbitals on the metal catalyst 

lowers the activation energy, allowing for this reaction to proceed at moderate 

temperatures.1a 

R1

R2

M

R1

M

R2 R1

M

R2

M

R1

R1

Scheme 3. The Chauvin Mechanism13

M = transition metal fragment
containing Ti, Mo, W, or Ru

R = alkyl, aryl

 

 When Chauvin’s mechanism for olefin metathesis was first published it was 

widely ignored. It remained that way until 1975 when Thomas Katz and his research 

group began publishing a series of papers that recognized and supported the Chauvin 

mechanism,14 the first entitled “Mechanism of the Olefin Metathesis Reaction.”14a In 
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these papers, Katz unambiguously showed that the metal-carbene was essential to the 

olefin metathesis mechanism and also provided further insight into the reasons this 

reaction produces such a variety of products from different starting materials. Later 

mechanistic work published by Robert Grubbs15 and Richard Schrock16 also supported 

the Chauvin mechanism. In his mechanistic studies, Grubbs used isotopically labeled 

olefins to track the exchange of groups. The products obtained could only be formed via 

the metal-carbene mechanism. Five years later, Schrock showed that metal-carbynes 

react with various acetylenes to give the expected alkyne metathesis products.  The 

results of these studies resulted in an extension of, but also confirmed, the Chauvin 

mechanism, making it the accepted mechanism for olefin metathesis. 

Types of Olefin Metathesis Reactions 

 Olefin metathesis is a versatile reaction that breaks and reforms C=C double 

bonds, making many different types of alkene products accessible. Variations of olefin 

metathesis include cross metathesis (CM), ring closing metathesis (RCM), acyclic diene 

metathesis (ADMET), ring opening metathesis (ROM), and ring opening metathesis 

polymerization (ROMP) as the most prominent examples. The type of metathesis 

reaction that takes place is mainly determined by thermodynamics of the reaction. For 

example, in the case of highly strained cyclic olefins, ROM or ROMP is usually favored 

due to the release of energy upon the opening of the ring. Likewise RCM is often 

preferred by certain dienes when the product formed is a cyclic molecule with low ring 

strain (Scheme 4). These reactions are often reversible, so factors such as temperature 

or substrate concentration can be used to drive the equilibrium in favor of the desired 

product.17 Throughout this dissertation RCM and ROMP reactions were conducted to 

evaluate the activity for synthesized catalysts. The substrates for these reactions were 

selected to ensure that only one type of olefin metathesis reaction product was obtained.  
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* *
n

ADMET

ROMP

RCM

ROM

Scheme 4. Thermodynamically-Driven Metathesis Reactions

 

 RCM is an intramolecular olefin metathesis reaction of a diene that forms a 

cycloalkene with low ring strain. Most commonly used are α,ω-diolefins. In the first step 

of an RCM reaction, one C=C double bond of the diene coordinates a metal-methylidene 

(which is formed from any catalyst after the first reaction with an α,ω-diolefin), followed 

by a [2+2]cycloaddition of the alkene and metal carbene to form the metallacyclobutane 

intermediate as proposed in the Chauvin mechanism. This metallacyclobutane 

intermediate then breaks apart through a retro [2+2]cycloaddition reaction, resulting in a 

new metal-alkylidene complex and ethylene. The second C=C double bond of the 

original diene then coordinates to the metal and is followed by another 

[2+2]cycloaddition to form a second metallacyclobutane intermediate that then reverses 

the cycloaddition to reform the metal-methylidene complex and the desired cycloalkene 

product (Scheme 5). The formation of volatile ethylene drives this reaction to completion 

as the gas is released from the reaction mixture.18 RCM reactions are useful for the 

synthesis of cyclic alkenes, including macrocycles, or cyclic alkanes after hydrogenation, 

that are otherwise difficult to prepare by traditional synthetic methods. Hence, RCM is 

widely used by the pharmaceutical industry as a convenient synthetic step for the 

production of macrocyclic pharmaceutical products.1c,19  
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M M M

M M

M

Scheme 5. Mechanism of RCM

M = transition metal fragment
containing Ti, Mo, W, or Ru

 

 ROMP is a polymerization reaction that opens strained cycloalkenes. The main 

thermodynamic driving force behind ROMP reactions is the relief of ring strain; therefore, 

this reaction is usually not reversible for most ROMP substrates. Under optimal 

conditions, meaning very slow catalyst decomposition resulting in a low degree of 

termination, this reaction can propagate almost indefinitely, making ROMP one of the 

few living polymerization techniques.1a  

 ROMP propagates through coordination of the cyclic olefin to the metal-

alkylidene with subsequent formation of the metallacyclobutane intermediate. This 

intermediate opens to yield a new linear metal-alkylidene, which relieves the ring strain 

of the original olefin. The new metal-alkylidene then continues to repeat the reaction with 

more substrate to produce a polymeric chain (Scheme 6). In the absence of termination 

reactions, propagation continues until all monomer substrate is consumed. Since the 

ROMP reaction is living under these conditions, the ROMP reaction will continue with the 

addition of more monomer. Termination often is induced externally, e.g., by chemical 

quenching with ethylvinyl ether.20  
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M

M

R

M

R

R n

M

R

n+1

Scheme 6. Mechanism for ROMP

M = transition metal frgment containing Ti, Mo, W, or Ru
R = alkyl, aryl  

 ROMP is a useful synthetic tool for the production of specialized polymers, such 

as block copolymers.21 These polymers are synthesized by sequential addition of 

different monomers. For catalysts which exhibit fast initiation but only moderate 

propagation rates, the polymerization becomes a controlled living polymerization, 

meaning the molecular weights of the polymers produced can be controlled by the 

monomer to catalyst ratio. Since all polymer chains start growing almost simultaneously 

and at the same rate, the polymers produced with these catalysts also have narrow 

molecular weight distributions. As a consequence, linear polymers produced via 

controlled ROMP have well-defined material properties. 

Classes of Olefin Metathesis Catalysts 

 Over the past several decades, a variety of olefin metathesis catalysts have been 

developed. Catalytic systems have evolved from ill-defined, heterogeneous catalysts to 

well-defined, single site catalysts. There have been four distinct classes of olefin 

metathesis catalysts: (1) “black box” catalysts, (2) Titanocene-based (Tebbe-type) 

catalysts, (3) Mo- and W-based (Schrock-type) catalysts, and (4) Ru-based (Grubbs-

type) catalysts. 

 The first metathesis catalysts are often referred to as “black box” catalysts 

because very little was known about their structure and the mechanism by which they 

operated. These heterogeneous, ill-defined catalysts were derived from elements of the 

early transition metal series and were usually either grafted onto silica or combined with 
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a main group alkylating agent.22 They usually contain few active sites and therefore 

require high catalyst loadings. They are also often sensitive to air, moisture, and 

functional groups, which limits their applicability. Examples of “black box” catalysts still 

widely used today include WCl6/SnMe4 and WCl6/Et2AlCl, which are used to make a 

variety of plastics.23 

 The first well-defined olefin metathesis catalysts were the Titanocene-based, 

Tebbe-type catalysts. These were named after DuPont chemist Fred Tebbe who, in 

1978, reported the results of his investigation into the structure and reactivity of a well-

defined complex synthesized from titanocene dichloride and trimethylaluminum in a 

toluene solution24 known today as the “Tebbe Complex” or “Tebbe’s Reagent” 1.  Once 

activated with a mild Lewis base, such as pyridine, it forms an active carbene species 2 

(Scheme 7).25 Since this catalyst was well-defined and slow to react, both the starting 

and propagating carbene species could be observed during a metathesis reaction, 

making it the first catalyst system used for mechanistic study of olefin metathesis.26 

However, drawbacks of these catalysts were their low reactivity, sensitivity to air and 

moisture, and low functional group tolerance, which prevented their use in commercial 

applications.1a 

Ti

Cp

Cp Cl

Al

Me

Me

Ti

Cp

Cp

Lewis base

1 2

Scheme 7. Activation of Tebbe's Reagent25

 

 The catalyst activity was enormously improved with the development of the 

Schrock-type catalysts, which are tungsten-based27 and molybdenum-based28 carbene 

complexes originally developed by Richard Schrock in the mid-1980s. These catalysts 

even displayed a moderate functional group tolerance but still were sensitive to air and 
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moisture.  The most successful Schrock-type catalysts used today are the Mo-based 

catalysts, such as 3 (Figure 1).29 They preferentially coordinate olefins over several other 

functional groups such as ketones, esters, and amides.30 This makes these catalysts 

applicable to a wider variety of substrates than the Tebbe reagents. 

N

Mo
Ph

CH3

H3C

O

H3C
CF3

CF3

O

CH3
F3C

F3C

3

Figure 1. Mo-Based (Schrock-Type) Catalyst29
 

 The most recent class of olefin metathesis catalysts based on Ru-carbene 

complexes. In the late 1980s, Robert Grubbs and Bruce Novak found that ruthenium 

chlorides and ruthenium tosylates could catalyze ROMP of 7-oxanobornene derivatives 

in water.31 In these studies, it was observed that ruthenium was significantly more 

tolerant toward air, moisture, and functional groups than previous generations of 

catalysts. In 1992 Grubbs synthesized the first Ru-based carbene complex 4 (Figure 2), 

which exhibited very low metathesis activity and could only perform ROMP of a few 

select, highly strained cyclic systems.5a Since then, many modifications have been made 

to this original structure to produce a variety of functional, highly active catalysts that 

have revolutionized the field of olefin metathesis. 
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Figure 2. First Ru-Based Carbene Catalyst 45a
 

Varieties of Ru-Based Olefin Metathesis Catalysts 

 Over the past two decades, Ru-based olefin metathesis catalysts have been 

intensely studied.  Most of these investigations have been centered on 16-electron, 

pentacoordinate Ru-alkylidene complexes, or Grubbs-type catalysts. Since the discovery 

of complex 4 many improvements have been made to the original catalyst design. The 

first of these improvements was replacing the PPh3 in complex 4 with bulkier and more 

σ-donating tricyclohexylphosphine (PCy3)  to give complex 5 (Figure 3) with much higher 

olefin metathesis activity.32 This success was followed by the synthesis of what would 

later be referred to as Grubbs’ first generation catalyst 9, the most active Ru-based 

catalyst at the time. This catalyst could be produced in a straightforward one-pot 

synthesis5c in which RuCl2(=CHR)(PPh3)2 8 was first generated from RuCl2(PPh3)3 6 via 

an alkylidene transfer from an aryl diazoalkane 7 then transformed into catalyst 9 

through a simple phosphine exchange with excess PCy3 (Scheme 8). Catalyst 9, 

compared to all non-Ru-based olefin metathesis single-site catalysts at the time, 

exhibited superior tolerance towards air, moisture, and functional groups, though it did 

lack thermal stability at temperatures >60 oC.  Yet, this catalyst triggered an explosion of 

research in the field that has transformed olefin metathesis into a very powerful 

technique in organic and polymer synthesis. 
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Figure 3. Improved Ru-Based Carbene Catalyst 532

Ru

PCy3

PCy3

Ph

Ph

Cl

Cl

5

 

Ru

PPh3

PPh3

PPh3

Cl

Cl

H

N2

Ru

PPh3

PPh3

Cl

Cl

6

7

8

2.2 PCy3

CH2Cl2

RT

-2PPh3

9

CH2Cl2
-78oC

-N2, -PPh3

Scheme 8. Synthesis of Grubbs' 1st Generation Catalyst 934

Ru

PCy3

PCy3

Cl

Cl

 

 In 1998, Dixneuf et al. reported the synthesis of metathesis active, 18-electron 

Ru-allenylidene complexes.33 These complexes were synthesized by adding a bulky 

phosphine-containing ligand precursor to [(p-cymene)RuCl2]2. The resulting intermediate 

was then reacted with propargyl alcohols,  with subsequent reaction with NaPF6 and 

PCy3 in methanol to yield cationic allenylidene complexes, with complex 10 (Figure 4) as 

a prominent example. The advantage of these catalysts was that they could be 

synthesized without the use of the hazardous diazoalkanes employed in the synthesis of 

catalyst 9 and were thermally more stable than the Grubbs-type catalysts at the time. 

However, these complexes never gained the same popularity as the Grubbs-catalysts 

due to their much lower olefin metathesis activity. 
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 The limited thermal stability of catalyst 9 was improved upon by the development 

of catalysts coordinated by N-heterocyclic carbene (NHC) ligands, such as IMes34 (IMes 

= 1,3-bis(2-,4-,6-trimethylphenyl)-imidazol-2-ylidene) and H2IMes35 ligands (H2IMes = 

1,3-bis(2-,4-,6-trimethylphenyl)-4,5-(dihydro)imidazol-2-ylidene). Herrmann et al. 

reported a stable Ru-based olefin metathesis catalyst bearing an NHC ligand 11 (Figure 

5) in 1998, though the activity of their catalyst was considered poor due to its extremely 

slow metathesis initiation rate compared to catalyst 9, requiring 12 hours to several days 

to initiate olefin metathesis reaction.36 However, catalyst 11 did show the potential for 

NHC ligands to stabilize Ru-based catalysts.  

Ru
Cl

Cl Ph

11

Figure 5. Catalyst 11 by Herrmann et al.36

Pri iPr
NN
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 Further research into the use of NHC ligands was independently pursued by the 

groups of Nolan,37 Grubbs,38 and Herrmann,36,39 resulting in a variety Ru catalysts 

bearing NHC ligands, including Grubbs’ second generation catalyst 12, or 

(H2ITap)(PCy3)Cl2Ru=CH-Ph.38 This catalyst exhibited unseen high thermal stability 
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along with elevated activity compared to catalyst 9 as well as similar functional group 

tolerance. Complex 12 exhibited much slower initiation rates, typically requiring several 

minutes to initiate olefin metathesis reactions, but this was compensated by 

extraordinary propagation rates.40 Hence, catalyst 12 was extremely efficient in RCM 

reactions. The fast propagation displayed by catalyst 12 is a consequence of the bulky 

and strongly σ-donating NHC ligand.41 Catalyst 12 is synthesized through direct 

replacement of one PCy3 ligand in catalyst 9 with an H2IMes ligand which is obtained in 

situ from the dihydroimidazolium salt in the presence of a strong base (Scheme 9).42  

base
low-polar solvent

NN+

Cl-

9 12

Scheme 9. Synthesis of Grubbs' Second Generation Catalyst 1242
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 Another approach for modifying these Ru-based catalysts was first realized in 

1997 when it was observed that ortho-styrenyl ethers could form stable cyclic 

ruthenacarbenes with these catalysts through bidentate coordination.43 In 2000 this 

carbene modification was explored independently by the groups of both Hoveyda44 and 

Blechert45 who simultaneously reported a phosphine-free catalyst bearing the H2IMes 

ligand. This catalyst eventually became known as the Hoveyda-Grubbs catalyst 13. It 

was synthesized from Grubbs’ second generation catalyst 12 and i-propoxystyrene in 

the presence of copper chloride (Scheme 10). This catalyst had certain advantages over 

catalyst 12, most importantly it displayed enhanced stability in air, which is attributed to 

its bidentate coordination which protects the Ru-metal center from oxidation. For this 

reason, catalysts bearing the bidentate benzylidene ligand were developed for catalyst 

immobilization and recycling.46 Otherwise, catalyst 13 exhibited a similar activity profile 
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to catalyst 12, including slow initiation and fast propagation rates in comparison to first 

generation catalyst 9. Modifications of complex 13 at the benzylidene moiety have also 

been explored, such as p-substitution of the phenyl ring, which sometimes afforded 

increased initiation rates in comparison to catalyst 13.5d 

O

CuCl

-PCy3

Scheme 10. Synthesis of Hoveyda-Grubbs Catalyst 1344,45

12

N N

Ru

PCy3

Cl

Cl Ph
Ru

O

Cl

Cl

13

N N

 

 Another modified Grubbs-type catalyst bearing an NHC ligand is Grubbs’ third 

generation catalyst 14 (Figure 6).38 For this catalyst, which was also derived from 

catalyst 12, the phosphine ligand was replaced by two weakly donating 3-bromopyridine 

ligands. Because these ligands dissociated quickly to free up the necessary coordination 

site for metathesis, this catalyst exhibited a fast rate of initiation, fast propagation, and 

therefore extremely high overall catalytic activity. In fact, it is considered the most active 

olefin metathesis catalyst to date. This catalyst was ideal for specialized ROMP 

reactions but was not as widely used as catalysts 12 and 13 due to its much decreased 

thermal stability and its tendency to produce undesired side products as a result of 

several different types of simultaneous olefin metathesis and hydride shift reactions, 

both attributed to its extremely high activity.30  
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 Modifications of the Ru-carbene moiety were also intensely investigated, leading 

to a multitude of active Ru-catalyst structures. In 1996, Grubbs et. al. explored several 

different complexes with modified carbene structures, including para-substituted 

benzylidene complexes, such as complex 15, methylidene complex 16, alkylidene 

complexes, such as complex 17, and vinylidene complex 18 (Figure 7).5d,h This study 

showed that para substitution of the benzyilidene ligand did not have a strong effect on 

the overall activity of the catalyst, though faster initiation rate was observed with Grubbs’ 

first generation catalyst 9, which did not possess this modification. Complexes 16 and 18 

were low-active in metathesis reactions when compared to catalyst 9, which was 

attributed to their poor catalyst initiation. As a result of this decreased activity, catalysts 

with these carbene modifications have not been as widely explored as the traditional 

benzylidene motif. Alkyl methylidene complexes 17 exhibited higher activity than catalyst 

9. They were synthesized via carbene exchange from catalyst 9 using an excess of the 

respective alkene gas. However, complexes 17 were the only kinetic product and further 

converted into complex 16, which made their isolation cumbersome.5h 
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 In 1999 Schanz and coworkers reported the first coordinately unsaturated 16-

electron allenylidene structures 19 and 20.37c As with some of the previous catalysts, 

these structures utilized strongly donating, bulky PCy3 ligands, which provided the 

ruthenium center with a high electron density.  The use of the PCy3 ligands also allowed 

for straighforward phosphine-ligand exchange reactions, thereby giving access to NHC-

ligand bearing allenylidene structures (Scheme 11). Though this class of catalysts 

displayed significantly lower activity than aforementioned benzylidene catalysts, as they 

often required several hours to several days to complete a metathesis reaction under 

similar reaction conditions), allenylidene catalysts were attractive because they tend to 

exhibit high thermal stability.37c These catalysts were also attractive because they can be 

made from inexpensive, non hazardous starting materials in a straight-forward, one-step 

synthesis reaction33a,b,37c and, last by not least, because the intellectual property for this 

class of catalyst is not protected.  
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Scheme 11. 16-Electron Allenylidene Complexes 19 and 2037c
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 Simple rearrangement of allenylidene structures also granted access to 

indenylidene catalysts. An early example of this class of catalyst was structure 21 
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(Figure 8), which was originally synthesized by Hill and co-workers.47 This complex  was 

mistakenly first reported as a 16-electron allenylidene complex, but further studies by 

Jafarpour et al.37b determined it had an indenylidene structure, a result of an acid-

catalyzed rearrangement of the C=C=C spine.37 NHC-ligated 16-electron indenylidene 

complexes 22 and 23 were also reported in the same publication (Figure 8).37b In 

general, these indenylidene complexes exhibited better metathesis activity than their 

allenylidene counterparts combined with very high thermal stability. Today, Ru-

indenylidene complexes have become the most popular alternative to the Grubbs-type 

benzylidene complexes. Several generations of these catalysts are commercially 

available and are used in a large variety of applications.48 
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Figure 8. Early Indenylidene Complexes 21-2337b,47
 

 Another modification to the Ru-carbene moiety were the Fisher-type carbene 

complexes, such as those reported by Louie and Grubbs in 2002.38a In this study, a 

series of Fisher-type complexes with the structure (PCy3)2Cl2Ru=C(H)ER or 

(IMes)(PCy3)Cl2Ru=C(H)ER were synthesized with a π-electron donating group directly 

attached to the carbene carbon. The general activity for these complexes followed the 

trend E = C > N > S > O. Many of these Fisher-type complexes were metathesis active, 

but displayed much lower reactivity than catalyst 9, which was not surprising considering 

that the generation of Fisher-type carbene complexes, such as those formed upon the 

addition of excess ethyl vinyl ether, are often used to quench metathesis reaction. 



 19 

Further studies of Fisher carbene complexes conducted by Ozawa and company found 

that catalyst structures 24 and 25 (Figure 9) could perform highly selective ring opening / 

cross metathesis (ROCM) of certain norbornene derivatives with select vinyl 

chalcogenides, despite their low activity.49  
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Figure 9. Fischer-Type Carbene Complexes 24and 2549
 

Importance of Ru-Based Olefin Metathesis Catalysts 

 Ru-based Grubbs-type olefin metathesis catalysts have had an enormous impact 

on organic synthesis. These catalysts have a high preference for carbon-carbon double 

bonds and often tolerate the presence of alcohols, amides, aldehydes, and carboxylic 

acids, making them applicable to a wide variety of substrates.1 More importantly, their 

use often does not require severe reaction conditions, making them an attractive 

technology for large-scale industrial applications. These catalysts are also useful to 

synthetic organic chemists for the production of unique olefins that difficult to synthesize 

through more traditional organic synthesis methods.   

 Ru-based Grubbs-type catalysts are currently used to produce a wide variety of 

products, including highly specialized polymeric materials such as polydicyclopentadiene 

(poly-DCPD) which is a high-performance, lightweight, corrosion resistant material used 

to make many products, including unbreakable baseball bats, corrosion resistant piping, 

lightweight vehicle parts, and bathroom fixtures.50 These catalysts are also used by the 

pharmaceutical industry to make macrocyclic compounds which are processed to 
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generate pharmaceuticals, such as HCV protease inhibitor BILN 2061, which is used to 

treat hepatitis C,19a as well as antitumor macrolides Pladienolide B and D.19b The uses 

for these catalysts continues to grow quickly as more application-specific improvements 

are made to catalyst designs. 

Current Limitations of Ru-Based Olefin Metathesis Catalyst Systems 

 Even though Ru-based olefin metathesis catalysts have emerged as the 

preferred catalysts for ROMP and RCM reactions, many problems still exist with their 

large-scale use. One drawback to most Ru-based catalyst systems is that they are 

sensitive to air when in solution. While a few Ru-based olefin metathesis catalysts, such 

as the Hoveyda-Grubbs catalyst 13, can still perform somewhat effectively under non-

inert conditions,44,45 most Ru-based catalysts are commonly used under inert gas 

conditions to guarantee optimal performance. Some catalyst designs, such as catalyst 

13, utilize bidentate coordination ligands, which greatly improves the stability of the 

catalyst by protecting both the carbene ligand and the Ru-metal center.51 The main 

drawback to most of these catalyst designs is that upon initiation, metathesis and metal 

oxidation with molecular oxygen become competing reactions.  Hence, activity loss in 

reactions in air is often significant. 

 Another limitation for most Ru-based catalysts is a lack stereoselectivity control. 

There are very few efficient Ru-based olefin metathesis catalysts which exhibit a high 

degree of cis / trans selectivity, especially in ROMP and CM reactions. Recently several 

groups have explored a number of structural modifications, such as bidentate, bulky, and 

asymmetric ligands, but high cis / trans (E/Z) control is still elusive for Ru-based systems 

in ROMP and CM reactions.51 While some catalyst designs have afforded improved 

enantioselectivity in certain applications, particularly for asymmetric ring-closing 
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metathesis (ARCM),52,53 these catalyst designs lack high enantioselectivity for a range of 

different substrates and applications. Though Ru-catalyst stability and stereoselectivity 

are important limitations being studied, this will be the extent that these are discussed as 

improving these limitations are not a focus in this dissertation. 

 One drawback that is important for this dissertation and which is displayed by 

most Ru-based olefin metathesis catalyst systems is their limited solubility profiles. The 

majority of these catalysts can only be used in organic solvents of a small polarity range. 

Only a few designs exist which can be used homogenously in aqueous media.6 Water is 

an attractive solvent for many applications due to its low toxicity, relative abundance, 

and cost-effectiveness.51,54 Reactions in aqueous media have been carried out with 

water-insoluble Ru-based olefin metathesis catalysts by the means of sonication,55 or in 

the presence of an organic co-solvent56 or surfactant,57 however none of these methods 

were very efficient or environmentally advantageous. 

 Several water-soluble Ru-based olefin metathesis catalysts have been 

synthesized that promote metathesis reactions homogeneously in aqueous media.6,58  

Some of these catalysts bear NHC ligands modified with hydrophilic groups, such 

polyethylene glycol (PEG) along the NHC backbone. Hong and Grubbs published one 

notable example in 2006.6a This Hoveyda-Grubbs type catalyst 26 (Figure 10) displayed 

higher ROMP, RCM, and CM activity than most previous water-soluble catalysts. Other 

ligand modifications have incorporated charged ionic functionalities for enhanced 

solubility in aqueous media. This has typically been accomplished through ionic 

ammonium groups added to the backbone of the NHC ligand such as those present on 

complex 27 or through ammonium groups attached to the chelating benzylidene moiety 

in complexes 27 and 28 (Figure 10).6c,58 Catalyst 27 is very attractive due to its relatively 

straightforward synthesis, but it is not highly soluble in purely aqueous media, requiring 
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an alcohol co-solvent for homogenous conditions.  Catalysts 26 and 28, on the other 

hand, are highly water-soluble but require an intense synthetic effort, with up to eight 

additional synthetic steps. Additionally, these catalysts are limited as they do not perform 

well-controlled aqueous ROMP. Hence, these designs are not attractive beyond 

conceptual studies.  
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 Another limitation or Ru-based olefin metathesis catalyst systems is the removal 

of the Ru-metal catalysts from the product stream. Because Ru-based olefin metathesis 

catalysts are used homogenously, catalyst removal is often difficult and costly. This is 

particularly problematic for the pharmaceutical industry. Currently the pharmaceutical 

industry performs column chromatography over silica gel for effective Ru removal. This 

method is very costly and time consuming, often requiring several repetitive column 

cycles (typically 5-10) to reduce the Ru-contamination levels below 10 ppm, the upper 

limit for Ru contamination in pharmaceutical products.6b,59 Alternative methods for 

catalyst removal do exist, such as chemical scavenging60 and physical absorbtion,61 but 

to date these methods are generally not used due factors such as cost, toxicity, and long 

processing times. Additionally, none of these methods on their own successfully reduce 

the Ru-metal contamination <50 ppm, still far above the required pharmaceutical 

standard. 



 23 

 In recent years some advancements have been made with catalysts designed 

specifically for enhanced removal after metathesis reactions from the product stream.22 

Several catalysts were designed for improved separation via column chromatography, 

though most of these designs do not sufficiently reduce the level of Ru-metal 

contamination below the pharmaceutical standard through just one cycle.51 Other 

catalysts have been designed with modified solubility profiles that allow for extraction of 

the catalyst with water or ionic liquids, but to date only a few, such as catalyst complex 

29 (Figure 11), reduce the level of Ru below the required pharmaceutical standard.62 

Using another approach, some catalysts have been immobilized on solid support. 

Complex 30 (Figure 11) is the most successful example, which leaves less than 20 ppb 

Ru-metal contamination in its products.63 Though these catalyst designs were very 

successful at reducing Ru-metal contamination in metathesis products and could be 

reused several times, they still require high catalyst loadings (>2%) and an enormous 

synthetic effort to produce, which again makes them very little attractive for large-scale, 

industrial use. 
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Figure 11. Catalyst Complexes 2962 and 3063 With Improved Removability  

  The lack of external activity controls is another issue that is problematic in 

several applications. Typically, when a catalyst is added to substrate, the metathesis 

reaction proceeds until all substrate is consumed or the catalyst decomposes. This is 
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particularly problematic for the production of specialized polymers and poly-DCPD, 

whose physical properties and production safety suffer from this uncontrolled activity. 

These could be improved by externally triggering a latent catalyst, which would allow for 

safe mixing of substrate and catalyst. 

 In 2007, Schanz et al. published a method that chemically enabled the 

independent reversible inhibition and subsequent reactivation of a catalyst system.64 

This was accomplished through the addition of N-donor ligands to catalyst 9, resulting in 

the formation of an inhibited species with very little ROMP activity. The method allowed 

for mixing of a monomer substrate and inhibited catalyst without any catalytic activity 

until an acid was applied to reactivate the catalyst. This was the first reversible “off/on” 

switch for the olefin metathesis reaction. The two ligands utilized in this inhibition with 

subsequent reactivation protocol were 1-methyl imidazole (MIM) and 4-

dimethylaminopyridine (DMAP). The inhibition was based on the formation of low-active 

complex 31 additionally inhibited by free PCy3 ligand until the addition of acid generates 

complex catalyst 32, thereby restoring the catalyst’s activity (Scheme 12). Other 

catalysts bearing acid-responsive donor ligands have been developed. Many of these 

catalysts are coordinated by pentane-2,4-dione and salicyaldimine ligands, which 

dissociate from the Ru-metal center upon addition of a Lewis acid or Brönsted acid, such 

as HCl.64,65 
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 Heat is another straightforward stimulus that has previously been used to trigger 

ROMP reactions.  The catalysts used in these methods often contained a back-biting N66 

or S-donor ligand.67 ROMP reactions with these catalysts start by thermally triggering the 

dissociation of the bidentate ligand.  Although these catalysts were easily and safely 

handled, their application suffered from very low catalyst efficiencies due to the fact that 

they have to exhibit zero-activity at ambient temperature, as a result of extremely low 

rates of olefin metathesis initiation.  Since only a very low fraction (far below 5%) of the 

catalyst is typically activated during the reaction, high catalyst loadings (usually ≥2%) 

were required, which is not very economical.   

 In a few studies, light has been used as external stimulus for activation of Ru-

based olefin metathesis catalysts.  An early study of catalyst 9 found that photolysis with 

light (λ = 546 nm) triggered the dissociation of one phosphine ligand,68 however, no 

further studies for catalyst 9 were conducted with respect to enhanced metathesis 

initiation under these conditions.  Few Ru-based light-activated metathesis reactions 

have been described in the literature,69 but until quite recently the pre-catalysts used in 

these studies lacked the presence of an active alkylidene moiety.  For these catalysts, 

the alkylidene was generated in situ from the substrate.  The advantage of these light 

activated catalyst systems was that they do not rely on sophisticated and expensive Ru-
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alkylidene complexes as starting materials, but their drawback was the ill-defined nature 

of the reactive species, which made performance optimization difficult. Additionally, 

these catalysts only were successfully used with substrates of extremely high ROMP 

activity, namely norbornene. Because thermally and light triggered catalyst systems only 

worked at elevated temperatures and/or require long reaction times (up to 24 hours) for 

catalyst initiation, they generally did not demonstrate well-control ROMP reactions or low 

catalyst/substrate ratios. In 2009, Grubbs et al. reported the first successful photo-

activated metathesis reaction protocol for a Ru-alkylidene complex in combination with a 

photoacid generator, however a high catalyst/substrate ratio was required and many 

reactions did not go to completion.70 

Controlled Polymerizations (ROMP) 

 In 1956 Szwarc defined a “living polymerization” as one that proceeds “without 

chain transfer or termination”.71 When no noticeable catalyst decomposition occurs, 

ROMP is as a living polymerization (LROMP).1a One of the earliest examples of LROMP 

using Ru-based olefin metathesis catalysts was published by Kanaoka and Grubbs in 

1995.72 In this study, catalysts 4  (Figure 2) and 5 (Figure 3) produced homogenous 

polymers as well as block copolymers from silicon-containing norbornene derivatives, 

and several of these reactions proceeded in a somewhat controlled fashion. This method 

was applied in organic media, but to date only one Ru-based olefin metathesis catalysts 

has been reported to perform controlled ROMP homogenously in aqueous media. 6a 

 Key to controlled ROMP is a high ratio between the rates of initiation and 

propagation. A controlled polymerization must be living and additionally requires fast and 

complete initiation. When these conditions are met, the polymers produced have a 

polydispersity index (PDI) <1.5.1b,73 A few methods have been identified that enhance 

the initiation rate of Ru-based catalysts using Brønsted or Lewis acids.64,65 However, no 
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methods have been identified for external control of the rate of propagation in the 

LROMP reaction. The moderation of the rate of propagation could be a complementary 

approach to controlled LROMP, particularly considering the low thermal stability 

exhibited by fast ROMP initiators and the higher degree of secondary metathesis 

reactions exhibited by fast ROMP propagators.  

Dissertation Goals 

 The main purpose of this dissertation research was to develop Ru-based olefin 

metathesis catalysts with pH-responsive ligands. These pH-responsive ligands provided 

the means to externally control the solubility profile and, in many cases, the activity of 

the catalyst via acid addition. External control of the catalyst’s solubility allowed for use 

of these catalysts with a wider range of solvents and substrates, including olefin 

metathesis reactions in aqueous media. Some of these catalysts exhibited a reversible 

solubility profile, which made them useful for applications such as efficient catalyst 

removal after RCM reactions. External control of catalyst activity was used to alter the 

rate of initiation and/or propagation of the catalyst, thereby changing the overall activity 

of the catalyst. The overall goal of this research is to develop catalysts capable of 

performing RCM and ROMP reactions in both aqueous and organic media with extreme 

efficiency and high activity. 
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CHAPTER II 

NHC LIGAND PRECURSOR SYNTHESIS 

NHC Ligand Precursors Modified With pH-Responsive Dimethylamino Groups 

 Several modifications to the NHC ligands of Ru-based olefin metathesis catalysts 

have been made in an effort to improve several attributes of the catalyst, including 

solubility, activity, and selectivity.22,51 The modification of NHC ligand precursors is 

synthetically more straightforward than for phosphine ligands, and therefore is a more 

feasible approach to the synthesis of novel, Ru-based olefin metathesis catalysts.74 

Typically, NHC ligands are generated in situ via deprotonation of the NHC ligand 

precursor salt (A) with a strong base, such as  potassium hexamethyldisilazane 

(KHMDS) or potassium tert-butoxide (KOt-Bu) (Scheme 13). This yields the singlet 

carbene species B, which is in equilibrium with the imidazoline structure C. Structure B 

is the free ligand species needed for the phosphine-NHC ligand exchange reaction 

described in Chapter I. For imidazole-2-ylidenes, such as the IMes ligand, the free 

carbene B is preferred, as this configuration affords 4n+2 Hückel aromaticity resulting 

from the four-electron three-center π system of the N-C-N in combination with the two π-

electrons of the NHC ligand backbone.75,76 For dihydroimidazol-2-ylidenes, such as the 

H2IMes ligand, which lack Hückel aromaticity in configuration B, imidazoline C is 

dominant in the equilibrium as the thermodynamically more favored structure.75,76 When 

neutrally charged, the NHC free carbene readily undergoes ligand exchange with the 

phosphine in commercially available Grubbs’ first generation catalyst 9 when low-polar 

solvent conditions are applied. These low-polar solvent conditions are a requirement for 

complete ligand exchange.41,77 This phosphine-ligand exchange provides the means to 

generate new olefin metathesis catalysts.   
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Scheme 13. Deprotonation of NHC Ligand Precursor Salt
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 For this dissertation, several functionalized, pH-responsive NHC ligand 

precursors were synthesized. This was accomplished by incorporating pH-responsive 

dimethylamino (NMe2) groups into the NHC ligand precursors. NMe2 groups were ideal 

for this study because they are compatible with Ru-based systems78 and are neutrally 

charged, therefore they do not negatively impact the phosphine-NHC ligand exchange at 

the Ru-center in low-polar solvents, allowing for straightforward access to new catalyst 

structures. The resulting catalysts are pH-responsive, which opens up the possibility for 

external control of catalyst properties via acid addition. Once protonated, these NMe2 

groups become charged ionic species, which will alter catalysts’ solubility profiles. 

Protonation of these groups may also change the electronic environment of the ligand, 

depending on the position of the NMe2 group of the ligand, hence modifying the donating 

ability of the ligand, thereby impacting the overall activity profile of the catalyst.  

Synthesis of the H2ITap∙HCl and ITap∙HCl  Ligand Precursors 

 The first NHC ligand precursor salt synthesized for this project was H2ITap·HCl 

37 (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-

ylidene) containing two NMe2 groups bound directly to the aromatic NHC ligand 

substituents.79 Precursor 37 was synthesized from commercially available starting 

material N,N-3,5-tetramethylaniline 33. Compound 33 was converted into 

phenylenediamine derivative 34 according to literature procedures80 with 45% overall 

yield. Following the literature procedure for the production of the H2IMes ligand41 with a 

few modifications, 34 was then converted into the respective NHC ligand precursor salt 



 30 

37 in three steps (65% overall yield) via intermediates 35 and 36 (Scheme 14). In this 

process, an improved hydrogenation procedure was developed for diimine 35 utilizing 

NaBH4 and H3BO3 to afford the diamine 36 in high yield and purity.79  

NMe2
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NH2

NMe2

N

NMe2

N

NMe2

HN

NMe2

NH
NN+

Cl-
Me2N NMe2
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iviii

i

Scheme 14. Synthesis of Ligand Precursor 37 : (i) (1) NaNO2/conc. HClaq, 60 min, -5 oC, 

(2) Sn/HCl, 70 oC (45%); (ii) (CHO)2/MeOH [HCl], 24 h, RT (85%); (iii) NaBH4/ H3BO3/thf, 

60 min, 30 oC (88%); (iv) HC(OEt)3/NH4Cl, 12 h, 130 oC (87%).

33
34

35

36

37

 

 As a complimentary motif, NHC ligand precursor ITap·HCl 38 (ITap = 1,3-

bis(2’,6’-dimethyl-4’-dimethylaminophenyl)imidazol-2-ylidene) was synthesized with an 

unsaturated backbone. ITap•HCl 38 is the unsaturated analogue to H2ITap•HCl 37. In 

general, NHC ligands with unsaturated backbones (imidazole-2-ylidenes) typically have 

lower activity than catalysts bearing dihydroimidazol-2-ylidenes, their saturated 

counterparts.51 The synthesis of this ligand precursor was accomplished with a 78% 

yield by reacting diimine 35 with paraformaldehyde and Me3SiCl in ethyl acetate at 70 °C 

using a modified literature procedure (Scheme 15).81 
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Ligand Precursors Using a Template Synthesis 

 In an effort to quickly gain access to a library of additional unique NHC ligand 

precursors, a template synthesis for a variety of ligand precursor salts was developed. 

These, like ligand precursor salts 37 and 38, also contained two ancillary NMe2 groups. 

The key synthetic step to this template synthesis was the functionalization of diiodinated 

diamine intermediates 48-50 via Cu-mediated C-heteroatom coupling reactions,82 

allowing for simplified access to several unique ligand precursors. In the first part of this 

template synthesis method, iododiamine intermediates were synthesized from 

commercially available anilines. The anilines chosen were 2,6-dimethylaniline 39, 

2,6-diisopropylaniline 40, and 2,4-dimethyl aniline 41 (Figure 12). These anilines were 

first iodinated at their unsubstituted ortho or para positions.83 The resulting iodoaniline 

derivatives 42-44 were then converted into their corresponding double Schiff bases 45-

47 using glyoxal.78 These double Schiff bases were then reduced, resulting in the 

desired diamine intermediates 48-50 (Scheme 16). Using this strategy, three new 

di(iodophenyl)diamine intermediates were generated (Figure 13). 
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Scheme 16. Synthesis of Diamine Intermediates 48-50

 

I

NH

NH

I

I

NH

NH

I

I

NH

NH

I

48 49 50

Figure 13. Iododiamine Intermediates 48-50  

 More ligand diversity was introduced starting from the iododiamine intermediates, 

which were functionalized through Cu-mediated coupling reactions to obtain 

functionalized diamines 51-54 and 59, 60 with the aryl substituents E-CH2-CH2-NMe2 (E 
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= S or O). These ether and thioether groups possessed the pH-responsive NMe2 groups 

that allowed for external control of a catalyst via acid addition. Since these NMe2 groups 

were separated from the aryl groups of the NHC ligand substituents by an E-CH2-CH2 

spacer, the electronic effect on the donor ability of the NHC ligand by protonating these 

groups were significantly reduced (vide infra). Four of these functionalized diamines (51-

54) were successfully converted into NMe2 functionalized NHC ligand precursor salts 55-

58 by performing a ring closing reaction78 with triethyl orthoformate (Scheme 17).  For 

functionalized diamines 59 and 60 no pure NHC ligand precursor salt could be isolated 

due to extensive formation of unknown side products (Scheme 18). Therefore, the ortho 

functionalized ligand precursors were not further pursued in this project. Overall, four 

new NHC ligand precursors 55-58 (Figure 14) were prepared using the template 

synthesis. Throughout this dissertation, the ligands generated from these precursors will 

be referred to as IXyONMe2 (IXyONMe2 = 1,3-bis(4’-[2’’-dimethylaminoethoxy]-2’,6’-

dimethylphenyl)-4,5-dihydroimidazol-2-ylidene), IXySNMe2 (IXySNMe2 =1,3-bis(4’-[2’’-

dimethylaminoethanethio]--2’,6’-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene), 

IDippONMe2 (IDippONMe2 =1,3-bis(2’,6’-diisopropyl-4’-oxo-N,N-

dimethylethanaminophenyl)-4,5-dihydroimidazol-2-ylidene), and IDippSNMe2 

(IDippONMe2 =1,3-bis(2’,6’-diisopropyl-4’-thio-N,N-dimethylethanaminophenyl)-4,5-

dihydroimidazol-2-ylidene), respectively. 
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CHAPTER III 

CATALYST SYNTHESIS 

Ru-Based Olefin Metathesis Catalysts Bearing pH-Responsive Ligands 

 The purpose of this dissertation was to synthesize Ru-based olefin metathesis 

catalysts bearing pH-responsive ligands. The catalysts that were generated for this 

project bear NHC ligands modified with NMe2 groups, as described in Chapter II. Once 

protonated, these groups are converted from neutral amino groups into cationic 

ammonium groups, allowing for external control of catalyst solubility profiles and via acid 

addition. For some of these catalysts, the functionalized NHC ligand also permits the 

external control of catalyst activity, particularly for those bearing an H2ITap or ITap 

ligand, due to a change in the electronic environment and therefore overall donating 

ability of the NHC ligand.  

 Several of the catalysts generated for this study also bear basic, pH-responsive 

N-donor ligands. As described in Chapter I, the Schanz research group has pioneered a 

method that uses N-donor ligands for the inhibition of catalyst systems with subsequent 

reactivation via acid addition.73 Kinetic studies for these complexes showed that the 

overall reaction times for all reactivated ROMP reactions were faster than the same 

reactions with the precursor catalyst 9 due to the near-instant formation of a very fast-

initiating species. The N-donor ligands chosen for this work were DMAP and the 

bidentate 3-(o-pyridyl)propylidene moiety. The use of these ligands in conjunction with 

NMe2 modified NHC ligands should yield unprecedented catalyst systems that exhibit 

simultaneous external control of catalyst solubility and activity in metathesis reactions via 

the degree of protonation of the pH-responsive functionalities.  
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Synthesis of Catalysts Bearing pH-Responsive Ligands 

Grubbs-Type Benzylidene Catalyst Synthesis 

 The first pH-responsive NHC ligand precursor used to generate the catalyst for 

this study was the H2ITap ligand precursor salt 37. This was reacted in situ with Grubbs’ 

first generation catalyst 9 in the presence of a strong base to produce the second 

generation-type catalyst (H2ITap)(PCy3)Cl2Ru=CH-Ph 61 in 70% yield via phosphine 

ligand exchange in accordance with literature procedure.38,78 It should be noted that a 

similar catalyst, with two NEt2 instead of NMe2 groups, was simultaneously synthesized 

by Plenio et al., though external control of the catalyst via acid addition was not initially 

explored by this group.84 Catalyst 61 was then converted into Hoveyda-Grubbs-type 

catalyst (H2ITap)Cl2Ru=CH-(C6H4-O-iPr) 62, also in 70% yield, using 2-i-propoxystrene 

in the presence of CuCl (Scheme 19), also in accordance with literature procedures.44,45 

The bidentate coordination of this catalyst’s modified benzylidene ligand has previously 

been shown to enhance the overall stability of the catalyst without causing a significant 

loss of activity compared to its PCy3-coordinated benzylidene counterpart.44,45 Suitable 

crystals of complexes 61 and 62 were then grown, and their structures in solid state  

were solved via X-ray crystallography (Figures 15 and 16).79  
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Scheme 19. Synthesis of Catalyst Complexes 61 and 62: (i) 9/KOtBu/heptane, 24 h, 60 oC

(70%); (ii) 2-i-propoxystyrene/CuCl, 2 h, 35oC (70%).
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Figure 15. Oak Ridge Thermal-Ellipsoid Plot
Program (ORTEP) Diagram of Catalyst 61

Figure 16. ORTEP Diagram of Catalyst 62

 

 Analysis of the crystal structures showed that complexes 61 and 62 exhibit a 

distorted square pyramidal ligand environment, which is typical for pentacoordinate Ru–

carbene complexes. The base is formed by the donor ligands and the chlorides, and the 

benzylidene moiety is in the apex. In catalyst 61, all bond distances and bond angles 

involving the ruthenium center were in the same range as for catalyst complex 63    

(Figure 17) bearing a 1,3-dimesityl-1,4,5,6-tetrahydropyrimidin-2-ylidene ligand, the only 

other crystal structure published for a Grubbs second generation-type complex bearing 

an unsaturated NHC ligand backbone, within a margin of 0.01 Ǻ and 0.6o.85 The only 

exception was the Ru-CNHC distance of 2.075 Å, which was actually shorter in complex 
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61 by more than 0.03 Å (2.106 Å) than observed for complex 63. This bond distance was 

more similar to the Ru–CNHC distance of the corresponding (IMes)(PCy3)Cl2Ru=CHPh 

complex 64 (Figure 17) with a Ru-CNHC distance of 2.069 Å.37a  This was not surprising 

as the mesityl substituents are less angled towards the metal center in catalyst 61 than 

in the tetrahydropyrimidin-2-ylidene complex 63 due to its shortened NHC ligand 

backbone. As a result, the steric interference with the benzylidene moiety was less 

pronounced. This was also reflected in the longer distance between the mesityl ipso-

carbon atom to the benzylidene carbon atom in catalyst 61  compared with complex 63 

(3.01 Å vs. 2.9 Å). The long distance between the aromatic ring and the carbene moiety 

was speculated to be responsible for lowered metathesis activity of the 

tetrahydropyrimidin-2-ylidene complex 64 in comparison to Grubbs’ second generation 

catalyst 12.85 
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Figure 17. Catalyst Complexes 6385 and 6437a
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 The unit cell of the crystal structure of catalyst 62 contained two discrete complex 

molecules and one molecule of CH2Cl2 in solvation. The averaged bond distances of 

both molecules were similar to those of the H2IMes analogue 1344 (deviations <0.01 Å) 

with one exception. The distance between the Ru-center and the benzylidene carbon 

atom was extremely short in catalyst 62 (1.735 Å), shorter by almost 0.1 Å than in 

catalyst Hoveyda-Grubbs catalyst 13. As the only structural difference between the two 

catalyst complexes was the presence of the remote p-NMe2 groups in catalyst 62 

instead of the p-methyl groups in catalyst 13, it is likely that this shortening of the metal–
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carbene bond was less due to steric reasons than electronic differences. In comparison 

to catalyst 13, the trans bond angles at the metal center and the C–Ru–C cis angle were 

slightly larger in catalyst 62 by approx. 2–3o. However, the C–Ru–O cis angle for catalyst 

62 (78.1o) is smaller by 1.3o than in catalyst 13. This was unexpected due to the shorter 

Ru–carbene bond, which should have caused a widening of this angle assuming 

comparable bond angles in the relatively rigid benzylidene chelate. The small C–Ru–C 

cis angle also caused a large distance between the mesityl ipso-carbon atom to the 

benzylidene carbon atom in catalyst 62 (3.08 Å) in comparison to PCy3 coordinated 

complex 61. 

Table 1. Selected Bond Angles [°] and Distances [Å]  for Catalysts 61 and 6279 

 61 62 

Ru=C(H) 1.826(2) 1.735(9) 

Ru-C(NHC) 2.0746(19) 1.966(7) 

Ru-O - 2.260(5) 

Ru-P 2.4419(6) - 

Ru-Cl 2.4080(6) 
2.3809(6) 

2.330(2) 
2.339(2) 

P-Ru=C(H) 91.45(9) - 

O-Ru=C(H) - 78.1(3) 

C(H)=Ru-C(NHC) 99.49(9) 103.2(3) 

P-Ru-C(NHC) 179.41(9) - 

O-Ru-C(NHC) - 178.5(3) 

Cl-Ru-Cl 169.64(4) 159.69(8) 

 

 Catalyst 61 was also used to synthesize two catalysts with pH-responsive N-

donor ligands. The first was (H2ITap)(DMAP)2Cl2Ru=CH-Ph 65 (Figure 18), which was 

synthesized by reacting catalyst 61 in the presence of excess DMAP in t-butyl methyl  

ether, in accordance with the procedure developed in our laboratories.64 Since this 

catalyst was virtually insoluble in the reaction solvent it was isolated through vacuum 

filtration of the green precipitate, giving complex 65 in very high yield (90%) and purity 

(>99%, 1H NMR spectroscopy). The incorporation of the pH-responsive DMAP ligands 

allows for the control of catalyst activity via acid addition. Thus, protonation with excess 
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non-nucleophillic acid would cause the DMAP ligands of this catalyst to dissociate, 

freeing up the necessary ROMP coordination site, thereby accelerating the initiation rate 

of the catalyst. 
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Figure 18. DMAP Catalyst Complex 65         
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Figure 19. Catalyst Complex 66  

 (H2ITap)Cl2Ru(=CH-CH2-CH2-C5H4N) 66 (Figure 19) is another complex 

synthesized from catalyst 61 that bears a pH-responsive N-donor ligand. In this 

structure, the PCy3 and carbene ligands of catalyst 61 were replaced by a backbiting N-

donor ligand. This ligand was incorporated into the catalyst structure by reacting 

complex 61 in the presence of excess 2-(3-butenyl)pyridine, generating complex 66 via 

simple carbene exchange. This product complex 66, like DMAP complex 65, was not 

soluble in the reaction solvent and was isolated as a green precipitate with an 88% yield. 

This backbiting ligand affords much slower initiation than observed with precatalysts 9 

and 61, but upon protonation the nitrogen of this ligand dissociates from the metal 

center, thereby accelerating the rate of catalyst activity. 

 The next pH-responsive ligand precursor examined for the synthesis of Grubbs-

type benzylidene catalysts was ITap·HCl salt 38. This salt was first used to synthesize 

(ITap)(PCy3)Cl2Ru=CH-Ph 67, followed by complexes (ITap)Cl2Ru=CH-(C6H4-O-iPr) 68, 

and (ITap)(DMAP)2Cl2Ru=CH-Ph 69 (Figure 20) following the procedures described for 

their unsaturated analogues, catalysts 61, 62, and 65. They were obtained in yields 

between 67-95%. Attempts to synthesize the ITap analogue to catalyst 66 were not 
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successful, which might be attributed to the decreased activity of its precursor complex 

67.  
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Figure 20. Catalyst Complexes 67-69 With Unsaturated NHC Ligand Backbones  

 Previous studies with complexes bearing IMes and H2IMes ligands demonstrated 

that catalysts possessing an unsaturated NHC backbone generally have lower activity 

than their counterparts with a saturated backbone. On the other hand, such catalysts 

frequently exhibit enhanced thermal stability, making them the preferred catalyst motif 

for certain applications.51 As such, we expected that complexes 67-69 would exhibit 

significantly lower activity than seen with complexes 61, 62, and 65. 

 The syntheses of Grubbs-type catalysts bearing the NHC ligand precursors 55-

58 (Figure 21), which were produced via the template synthesis described in Chapter II, 

have proven much more difficult. To date, the only Grubbs second generation-type 

catalyst successfully isolated from any of these ligand precursors is 

(IXyONMe2)(PCy3)Cl2Ru=CH-Ph 70 (Figure 22). This complex was obtained via a ligand 

exchange reaction with catalyst 9 using the IXyONMe2 precursor salt 55, as was used to 

synthesize complex 61.79 This ligand exchange reaction required prolonged reaction time 

(48 hours) compared to that required for catalyst complex 61. Since catalyst 61 

precipitated from solution in heptanes, isolation of the pink product proceeded via 

vacuum filtration. The isolated yield (40%) was lower than for catalysts 61 and 67. 

Though similar in structure to ligand precursor salt 55, attempts to synthesize analogous 
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complex 71 (Figure 22) using IXySNMe2 precursor salt 56 did not afford any noticeable 

ligand exchange from catalyst 9, even after running the reaction for ten days. As such, 

other target complexes bearing the IXySNMe2 ligand were not pursued.   
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Figure 21. NHC Ligand Precursor Salts 55-58
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Figure 22. Catalyst Complexes 70 and 71  

 Two other second generation Grubbs-type complexes, 72 and 73 (Figure 23), 

have been generated in situ from reactions with catalyst 9 and ligand precursor salts 57 

and 58, respectively, but to date neither complex has been successfully isolated and 

purified. The presence of these complexes was indicated by both 1H and 31P NMR 

spectra obtained after solvent removal. For example, when the 1H NMR spectra for 

complex 73 was examined, the Ru=CH signal present at 19.7 ppm was indicative of the 

formation of a second generation-type catalyst, as was the 31P signal present at 29.0 

ppm (Figures 24 and 25, obtained before completion of the reaction). However, these 

catalysts exhibited appreciable solubility in heptane as well as in a 1:1 mixture of 2-

propanol/water, the solvents or solvent mixture which are usually used for precipitation. 

Attempted precipitation of complexes 72 and 73 with other solvents and solvent mixtures 

were not successful. Product isolation via column chromatography was also not 

successful as the complexes adhered to acidic, neutral, and basic stationary phases 

regardless of what solvent conditions were applied. It is likely that this was a result of 

catalyst degradation on the column.  
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Figure 23. Catalyst Complexes 72 and 73 Generated in situ  

 

Figure 24. 
1
H NMR Spectrum of Complex 73 Generated in situ (300.1 MHz, 20 

o
C, C6D6) 
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Figure 25. 
31

P NMR Spectrum of Complex 73 Generated in situ (300.1 MHz, 20 
o
C, C6D6) 

 Though complexes 72 and 73 could not be isolated, attempts were made to 

generate Hoveyda-Grubbs-type complexes 75 and 76 (Scheme 20). One strategy was to 

filter the reaction solutions containing the parent complexes and to react them in situ 

with 2-i-propoxystrene and CuCl. Once again, 1H NMR indicated the presence of the 

desired complexes, however attempts to isolate these complexes by removing the CuCl 

and other impurities via column chromatography or recrystallization proved fruitless. It 

should be noted that removal of the Cu-based byproduct in the exchange reaction has 

only been accomplished via flash column chromatography to date. Hence, complexes 75 

and 76, which contain very basic NMe2 groups, very likely decomposed on a basic 

column, as OH- ions are known to decompose Grubbs-type catalysts.40c The catalysts 

also could not be separated from neutral or acidic column media due to protonation of 

the NMe2 groups, which made the catalysts adhere very strongly to the stationary phase. 
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An alternate synthetic route based on a literature procedure developed by Grela et al. 

was also attempted.86 In this procedure, first generation Hoveda-Grubbs complex 74 

was first synthesized, isolated, and purified. Then this complex was reacted with ligand 

precursor salts 57 or 58 in an attempt to form catalyst complexes 75 and 76 (Scheme 

20). Though fewer impurities were present in this reaction solution, attempts to isolate 

the product complexes via flash column chromatography were once again unsuccessful.  
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Scheme 20. Synthesis of Complexes 75 and 76 via an Alternate Syntetic Route

 

 Synthesis and isolation of DMAP derivatives (IDippONMe2)(DMAP)Cl2Ru=CHPh 

77 and  (IDippSNMe2)(DMAP)Cl2Ru=CH-Ph 78 (Figure 26) from complexes 72 and 73 

proved much more fruitful. As with the initial attempts to synthesize Hoveyda-Grubbs-

type catalysts, derivative complexes 77 and 78 were obtained via direct filtration of the 

reaction solutions of the parent complexes 72 and 73, followed by subsequent reaction 

in situ with excess DMAP. The new solutions were then either sonicated or stirred for 

periods of 2-24 hours. Complexes 77 and 78 then precipitated from solution, allowing for 

their isolation via filtration. As with catalyst complexes 65 and 69, complexes 77 and 78 

contain a DMAP ligand and a pH-responsive NMe2, allowing for external control of 

solubility and activity. However, complexes 77 and 78 only bear one DMAP ligand, very 

likely as a result of the larger steric bulk provided by the NHC ligands. Pentacoordinate 

Ru-alkylidene complexes bearing only one N-donor ligand have been islated before,51 
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and the DMAP ligand is always coordinated trans to the NHC donor ligand in these 

complexes. 
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Figure 26. DMAP Catalyst Complexes 77 and 78
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 Because catalyst complexes 70, 77, and 78 possess an unsaturated NHC ligand 

backbone, they were expected to have similar activity to their H2ITap ligand bearing 

analogues 61 and 65 under non-acidic conditions. Under acidic conditions, however, the 

NHC ligation of these catalysts were anticipated to exhibit less influence on the activity 

due to the proximity of their NMe2 groups from the aryl substituents of their NHC ligands 

by an E-CH2-CH2 spacer, where E = O or S. This spacer minimizes the interference of 

the protonated N+HMe2 with the electron donating properties of the NHC ligands. This 

allows for the external control of catalyst solubility with pH-responsive N-donor ligands 

being the only influence on the catalyst activity upon protonation where present (vide 

infra). The alkyl NMe2 groups of these NHC ligands are also much more basic than the 

aryl NMe2 groups of the H2IMes ligand, so gradual protonation of complexes 77 and 78 

should afford protonation of these NMe2 groups before significant protonation at the N-

donors occurs. 
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Synthesis of Catalysts With a SPh Modification to the Carbene Ligand 

 Previous studies have shown that catalysts containing Ru-carbenes modified 

with SPh groups are capable of some degree of substrate selectivity under certain 

conditions.49 These catalysts have also shown decreased activity when compared to 

their traditional benzylidene counterparts,38a though this decreased activity could be an 

advantage when applied to substrates that exhibit very high metathesis activity since 

reduced catalyst activity also means a lower degree of side reactions.51 These properties 

make the SPh modified Ru-carbene catalysts an interesting alternative to the 

benzylidene Ru-carbene catalysts which were the main focus of this dissertation for the 

use in specialty applications. By incorporating NMe2 modified NHC ligand precursors 

H2ITap or ITap, these phenylthiomethylidene catalysts should also exhibit externally 

controllable activity and solubility profiles. 

 Hence, catalyst complexes (H2ITap)(PCy3)Cl2Ru=CH-SPh 79, and 

(ITap)(PCy3)Cl2Ru=CH-SPh 80 (Figure 27) were synthesized from catalyst precursor 24 

(Figure 9) using ligand precursor salts 37 and 38 respectively,  employing protocols very 

similar to those employed to generate corresponding benzylidene catalysts. Because 

SPh precatalysts are much slower initiators than their benzylidene counterparts, 

complete phosphine-ligand exchange required much more time (4-6 days) to obtain 

complete conversion to obtain second generation products when compared to the 

synthesis of catalyst 61. The isolated yields obtained were also lower, with 68% for 

complex 79 and 78% for complex 80. By reacting these products with excess DMAP, 

structures 81, (H2ITap)(DMAP)2Cl2Ru=CH-SPh, and 82, (ITap)(DMAP)2Cl2Ru=CH-SPh, 

were also synthesized (Figure 27) in very high yields (>90%). Dissociation of these 

DMAP ligands via acid addition was expected to improve catalyst initiation, thereby 

improving the overall activity of these catalysts.  
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 Suitable crystals were obtained for catalyst complex 81, and its structure in solid 

state was solved via X-ray crystallography (Figure 28). As expected, analysis of the 

crystal structure showed that this hexacoordinate complex exhibits a slightly distorted 

octahedral geometry. When compared with (H2IMes)(DMAP)2Cl2Ru=CH-Ph 83 (Figure  

29), a similar NHC-ligand bearing DMAP catalyst complex previously published by the 

Schanz research group,87 the results showed that all bond distances in 81 are slightly 

shorter (0.01-0.06 Å) than in catalyst 83 with the exception of one of the Ru-Cl bonds. 

The Ru-N distance to the DMAP trans to the alkylidene was shorter by 0.06 Å in 

complex 81 than 83, suggesting that this DMAP ligand should be more labile in complex 

83 (Table 2).  The bond angles also showed a few more significant differences between 

the structures. First was the trans bond angle between the same DMAP and the Ru-

carbene, which was nearly 180o in complex 83 but bent more by 13o in complex 81. The 

second noticeable difference was the trans angle between NHC ligands and the other 

DMAP ligand, which was nearly linear in complex 81 but smaller by 15o in complex 83. 

The differences suggested that less internal geometric strain exists in complex 81 
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between the alkylidene and the NHC ligand, very likely due to the presence of the sulfur, 

which increases the distance between the phenyl group and the metal center, allowing 

for a tighter arrangement (shorter distances) of the ligands around the Ru-metal center 

without significantly distorting the octahedral arrangement. This was also reflected by the 

trans chloride ligands of complex 81, which had nearly identical bond lengths and more 

linearity to their trans bond angle when compared to those of complex 83. 

Figure 28. ORTEP Diagram of Catalyst 81  
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Figure 29. DMAP Catalyst Complex 83  
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Table 2. Selected Bond Angles [°] and Distances [Å] for Catalysts 81 and 83 
 81 83 

Ru=C(H) 1.849 (3) 1.873 (2) 

Ru-C(NHC) 2.031 (3) 2.051 (2) 

Ru-N 2.184 (3) 2.1933 (16) 

 2.272 (3) 2.3309 (17) 

Ru-Cl 2.4132 (9) 
2.4255 (9) 

2.3847 (5) 
2.4372 (5) 

(NHC)C-Ru=C(H) 96.05 (13) 95.00 (9) 

N-Ru=C(H) 163.82 (10) 176.64 (7) 

86.23 (12) 101.27 (7) 

N-Ru-C(NHC) 99.26 (11) 97.01 (7) 

 177.73 (13) 162.41 (8) 

Cl-Ru-Cl 179.25 (4) 177.54 (2) 

 

 Attempts were also made to generate complexes 84, 85, and 86 (Figure 30) 

using ligand precursor salts 55, 57, and 58, respectively. Though these catalysts would 

also be low active catalysts, they were expected to exhibit enhanced stability. This 

quality would have been advantageous for applications in aqueous media upon 

protonation of the NMe2 groups of their NHC ligands. Unfortunately, none of these ligand 

precursors afforded complete ligand exchange with catalyst precursor 24, with only 30-

70% conversion to product obtained. Attempts to isolate these products from the starting 

complex were unsuccessful.  
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Figure 30. Target Complexes 84, 85, and 86  
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Synthesis of Indenylidene Catalyst Complexes 

 Indenylidene Ru-catalyst complexes are also an attractive alternative to the 

traditional benzylidene (Grubbs-type) catalysts. These catalysts are easily obtained via 

acid-catalyzed rearrangement of the C=C=C spine of allenylidene catalysts structures,37b 

which makes them as commercially attractive as their allenylidene counterparts. Many of 

these complexes display high activity, though they are often not quite as active as 

benzylidene catalysts. Their main advantage over most of their benzylidene counterparts 

is their high thermal stability, which makes them the preferred catalysts for many 

applications, in particular at elevated temperatures.51 

 Another advantage is the stability of the (PPh3)2Cl2Ru-3-phenylindenylidene 

precursor catalyst 21. Hence, catalyst modifications may avoid the use of the expensive 

PCy3 ligand, which usually is sacrificed in later catalyst modifications. So far, the only 

indenylidene complexes that could be generated in the project were made using ITap 

ligand precursor salt 38. To synthesize these complexes, phenylindenylidene parent 

complex 21 was first synthesized according to literature procedure.37b,47 Complex 21 was 

then used to generate (ITap)(PPh3)Cl2Ru-3-phenylindenylidene 87 in moderate yield 

(67%) via phosphine ligand exchange. An excess of DMAP was then added to this 

complex to generate (ITap)(DMAP)2Cl2Ru-3-phenylindenylidene 88, which was afforded 

in 87% yield (Scheme 21). For complexes 87 and 88 the protonation of their pH-

responsive groups was expected to change their solubility and activity. They were also 

expected to exhibit higher thermal stability than benzylidene counterparts 67 and 69.  



 53 

N N

Me2N NMe2

Ru

PPh3

Cl

Cl

Ph

PPh3

Ru

PPh3

Cl

Cl

Ph

N N

Me2N NMe2

Ru

N

Cl

Cl

Ph
NMe2N

NMe2

38
KOtBu

toluene
RT

DMAP (xs)

tBuOMe

21 87

88

Scheme 21. Synthesis of Phenyl Indenylidene Catalyst Complexes 87 and 88

 

Summary 

 For this dissertation, many different catalyst structures were attempted. Most of 

these were benzylidene-carbene (Grubbs-type) catalysts, though other alkylidene motifs 

were also explored. All of the catalysts generated bear pH-responsive NMe2 modified 

NHC ligands, though some also possess pH-responsive DMAP or 3-(o-

pyridyl)propylidene N-donor ligands. In all, a total of 16 new catalyst complexes were 

synthesized, isolated, and characterized. Most of these were generated using H2ITap or 

ITap ligands precursor salts 37 and 38. Catalysts made with ligand precursor salts 55-58 

proved much more difficult to synthesize and isolate, and hence, they are only found in 

three of the new catalyst structures. 
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CHAPTER IV 

KINETIC STUDIES IN ORGANIC MEDIA 

Substrates and Methods for Relative Kinetic Studies in Organic Media 

 To assess the basic olefin metathesis activity for each of the new catalysts 

described in Chapter III, ROMP and RCM reactions were conducted in organic media. 

The substrates selected for these studies were chosen in order to avoid competing 

secondary metathesis reactions. The activity of the new catalysts was compared to 

commercially available catalysts under the same reaction conditions. Relative kinetic 

studies for some of these catalysts were also conducted in the presence of acid to 

assess the change in catalyst solubility and activity afforded by their pH-responsive 

ligands upon protonation. 

 The substrates selected for ROMP reactions in organic media included 

cyclooctene (COE) and exo-7-oxanorbornene derivative 89 (Scheme 22). Experiments 

with COE were conducted small scale in an NMR tube, and the progress of the reaction 

was directly monitored via 1H NMR.79 To monitor conversion of norbornene substrate 89 

to poly-89, kinetic studies were conducted by quenching aliquots of a reaction solution 

collected over specific time intervals with ethyl vinyl ether,20 which were then individually 

analyzed via 1H NMR spectroscopy after solvent removal. The relative amounts of 

monomer and polymer present were determined by integration of the sufficiently 

separated monomer and polymer signals for select hydrogen atoms of each substrate at 

specific time intervals. Unless otherwise stated, all ROMP reactions were conducted in 

benzene with [Ru] = 0.5 mM and 0.5% catalyst loadings. In a few reactions, polymers 

were produced on a larger scale and isolated according to literature procedures.64 The 

isolated polymers were then analyzed via gel permeation chromatography (GPC) to 

determine the average molecular weights and polydispersity indices (PDIs) of the 
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polymers produced in order to establish the degree of control and initiation efficiency 

provided under specific conditions.  
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Scheme 22. ROMP Substrates

ROMP

 

 For RCM reactions, diethyldiallylmalonate (DEDAM) and 3,3-diallylpentane-2,4-

dione (DAP) were the substrates chosen for kinetic studies in organic media (Scheme 

23). These two substrates dramatically favor their cyclopentene RCM products 90 and 

91 over all other olefin metathesis products under most reaction conditions. For these 

substrates, as with COE, small-scale reactions were monitored directly in an NMR 

tube,78 and conversion to product was determined via 1H NMR by integration of 

sufficiently separated substrate and product signals for their allylic hydrogens. Unless 

otherwise stated, these reactions were conducted in benzene with [Ru] = 1.0 mM and 

1.0% catalyst loadings. It has been established that terminal olefins, such as those found 

in DEDAM and DAP, are generally more reactive substrates for olefin metathesis than 

the 1,2-disubstituted olefins used in ROMP, therefore initiation is faster in RCM than in 

ROMP.1g This increase in activity, however, does come at a price, as many RCM 

reactions never reach full conversion to product due to the formation of unstable Ru-

methylidene intermediate complexes that degrade noticeably in the reaction solution, in 

particular when the RCM activity is low.64 According to our observations, DMAP ligated 

catalysts generally exhibit faster decomposition in RCM reactions than other pyridine 

complexes.64 The reason for this is not known for certain, but the elevated nucleophilicity 

of the DMAP in comparison to far less basic pyridines is likely the most important factor. 

The result is a very low stability for the corresponding Ru-methylidene complex 

generated during the RCM reaction. 
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 Once ROMP and RCM kinetic profiles were obtained for each of the new 

catalysts, they were then compared to those obtained for commercially available 

catalysts under similar reaction conditions. The commercially available catalysts 

selected were Grubbs second generation catalyst 12 and Hoveyda-Grubbs catalyst 13 

(Figure 31). These catalysts were chosen not only for their structural similarity to many 

of the catalysts that were examined, but also because they are widely used for 

commercial applications. Therefore, catalysts 12 and 13 provide a standard for 

comparing the relative profiles of the new catalysts, based on their modified NHC 

ligands.  

Ru
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12 13

N N

Ru

PCy3

Cl

Cl Ph

N N

Figure 31. Commercially Available Catalysts 12 and 13  

 After obtaining kinetic profiles under standard, non-acidic conditions, many of 

these studies were repeated in the presence of various equivalents of acid. The two 

acids that were chosen include H3PO4 and p-toluenesulfonic acid (TsOH). Non-

nucleophillic acids were chosen because they do not significantly affect the coordination 

at the Ru-center, which is sometimes observed in the presence of nucleophillic acids. 

These studies were conducted to determine the degree of external control on the 

solubility and activity profiles for these catalysts afforded via protonation of their pH-

responsive ligands. Specific emphasis was placed on the study of ROMP kinetic profiles, 
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particularly on the rates of initiation and propagation relative to those acquired under 

standard conditions, to evaluate the change in activity upon protonation of the pH-

responsive groups.  

Kinetic Studies 

Kinetic Studies of Benzylidene Catalysts Bearing an H2ITap Ligand 

 The first two catalysts evaluated using ROMP and RCM reactions were 

(H2ITap)(PCy3)Cl2Ru=CH-Ph 61 and (H2ITap)Cl2Ru=CH-(C6H4-O-iPr) 62 (Figure 32). 

Their catalytic activity was then compared to that of commercially available catalysts 12 

and 13 under similar reaction conditions. Since the overall structure of catalysts 61 and 

62 were very similar to their commercially available counterparts, they were expected to 

exhibit similar activity profiles under standard conditions. Any differences in activity were 

attributed to the electronic effects afforded by the NMe2 groups of their H2ITap ligands.  

61
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Figure 32. Complexes 61 and 62  

 Relative kinetic results showed that both H2ITap catalysts 61 and 62 were very 

active in olefin metathesis and performed ROMP of COE with similar activity to their 

commercially available counterparts (Figure 33). Evaluation of the kinetic profiles 

suggested that catalyst 62 had a faster rate of initiation, as catalyst 13 exhibited a 

significantly longer induction period before the dramatic rate increase was observed. 

Such long induction times are typical for slow-initiating but fast-propagating olefin 

metathesis catalysts and thus strongly affect the overall reaction rates.3 The kinetic 

results also showed that both PCy3 ligated complexes 12 and 61 initiated at significantly 

faster rates than Hoveyda-Grubbs-type catalysts 13 and 62.  
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Figure 33. ROMP of COE With Catalysts 12, 13, 61, and 62 
([Ru] = 0.5mM, 0.5% Catalyst Loading, Room Temperature)
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 RCM reactions of DEDAM were then conducted in benzene (Figure 34). 

Examination of these kinetic profiles showed catalysts 12 and 61 performed at nearly 

identical rates. As with the ROMP reactions, both of these catalysts exhibited a much 

faster rate of initiation, as shown by the faster initial conversion, compared to catalysts 

13 and 62. Interestingly, commercially available catalyst 13 was slightly more active than 

catalyst 62 in the RCM reaction, which is in contrast to the performances observed for 

the ROMP reaction. It should be noted that catalysts 12 and 13 are considered highly 

active olefin metathesis catalysts,22,51 therefore the kinetic results from both the ROMP 

and RCM reactions mean that catalysts 61 and 62 also belong in the same category. 



 59 

Figure 34. RCM of DEDAM With Catalysts 12, 13, 61, and 62 
([Ru] = 1.0 mM, 1.0% Catalyst Loading, Room Temperature)
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 To evaluate the effect of protonation of the NMe2 groups of the H2ITap ligand on 

the activity profile of catalysts 61 and 62, additional ROMP reactions using exo-7-

oxanorbornene derivative 89 were conducted in the presence of variable amounts of p-

toluenesulfonic acid (TsOH).88 TsOH was chosen for this study because it is a non-

nucleophilic acid that does not cause precipitation of the catalysts from the organic 

reaction medium via formation of an insoluble salt. These reactions were conducted in 

1.0 mM catalyst solutions with 1.0 % catalyst loadings in polar organic solvents (CD2Cl2 

and CDCl3) to maintain solubility of the protonated species. The results (Figures 35 and 

36) showed that the rate of ROMP conversion for both catalysts slowed dramatically with 

increasing equivalents of acid. This was counterintuitive to all previous reports, where 

addition of acid to a Ru-based olefin metathesis catalyst accelerated the overall 

rate.58a,64,77,89  

 The effect of different substitution in the 4-position of the phenyl rings on the 

NHC ligand properties has been studied by Plenio et al. by generating a small library of 

symmetric and unsymmetric ligands.84,90 Through these studies, it was found that the 
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change from electron-withdrawing to donating groups in the phenyl-para position had a 

significant impact on the redox potentials of Ir and Ru complexes.   NHC-Ir complexes 

bearing σ-donating NEt2 groups had the lowest cathodic redox potential in the series 

indicating significantly enhanced donating properties of this ligand.89b  This effect also 

translated into elevated RCM and CM activities of the corresponding NHC-Ru carbene 

complexes.84  In light of this information, we hypothesized that transformation of the π-

donating NMe2 group into a σ-withdrawing NMe2H
+ moiety must have caused significant 

electronic changes in the H2ITap ligand that also impacted the overall catalyst’s 

electronic environment and thus caused reduced metathesis activity.  This allowed for a 

novel and unique external activity control for the ROMP reaction via degree of 

protonation.   

Figure 35. ROMP of 88 With Catalyst 61 in CD2Cl2
([Ru] = 1.0 mM, 1.0% Catalyst Loading, Room Temperature)
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Figure 36. ROMP of 88 With Catalyst 62 in CDCl3
([Ru] = 1.0 mM, 1.0% Catalyst Loading)
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 To determine whether the observed deceleration of the ROMP reaction with 

complexes 61 and 62 upon acid addition was mostly due to a change initiation rate or 

propagation rate, poly-89 was also produced on a larger scale under identical reaction 

conditions as the kinetic investigations and analyzed by GPC analysis (Table 3). Due to 

the unfavorable ratio of the rates of initiation and propagation, the H2IMes ligated 

catalysts 12 and 13 do not promote controlled ROMP, meaning that the polymer 

molecular weights obtained with these catalysts are substantially higher than the 

theory.51  Since catalysts 61 and 62 exhibit a similar reactivity profile, the measured 

average molecular weights (MP) of poly-89 (Table 3) in the absence of acid were 

likewise significantly larger (> 150,000 for catalyst 61, 80,000 for catalyst 62) than the 

theory (27,600), indicating incomplete initiation under these reaction conditions (Table 

3). However, with increased TsOH amounts present in the ROMP reaction, the average 

molecular weights of the polymers produced grew progressively smaller. For catalyst 61, 

the Mp was reduced to 55,500 (approx. one third of the MP obtained for the acid-free 

ROMP) when two equivalents of TsOH was added. For catalyst 62, the addition of 1.6 



 62 

equiv. of TsOH produced poly-89 with an MP of 34,600, which is very close to the 

theoretical value.  Further addition of TsOH reduced the molecular weights far below the 

theoretical value, which was partially due to incomplete polymerizations attributed to 

catalyst decomposition. The improved molecular weight control indicates that the acid 

addition mostly affected the rates of propagation, which resulted in more favorable 

kinitiation / kpropagation. 

Table 3. GPC Results for ROMP Polymers (Poly-89) From TsOH Studies  
[Ru] = 1.0 mM, 1.0% Catalyst Loading, Room Temperature 

Catalyst TsOH 
(equiv.) 

Time [min] 
(>95% conv.) 

Mp (theory) MP (GPC) PDI 

61
a 

0 14 27,600 > 150,000 1.23 

0.4 32 138,700 1.34 

0.8 56 141,000 1.31 

1.2 210 119,200 1.33 

1.6 600 95,900 1.6 

2.0 - 55,500 1.73 

62
b 

0 8 80,000 1.64 

0.4 14 75,300 1.57 

0.8 20 68,200 1.52 

1.2 24 66,800 1.46 

1.6 60 34,700 1.63 

2.0 100 9,000
c 

1.8 
a
 with CH2Cl2 as solvent; 

b
 with CHCl3 as solvent; 

c
 incomplete polymerization attributed to 

catalyst decomposition 

 
 Slowing the propagation in olefin metathesis usually is not desired for most 

applications since it reduces the activity and also the potential turnover numbers, making 

the reaction less efficient. However, decreased propagation rates can be advantageous 

for controlled ROMP reactions, where a low propagation/initiation ratio is desired to 

ensure a simultaneous start of all growing polymer chains. Unfortunately the PDIs for the 

polymers produced in these reactions did not give a consistent picture of the improved 

ROMP control that was expected with the improved propagation control of catalysts 61 

and 62 upon the addition of TsOH.  Catalyst 62 exhibited the expected development of 

the PDIs for the better controlled ROMP reactions with increasing acid amounts present 
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during the polymerization up to 1.2 equivalents of TsOH were added, reducing the 

values from 1.64 to 1.46. Further increase of the TsOH amount then led to a higher 

PDI’s again (1.8 for 2.0 equiv. of acid).  For catalyst 61, the increased ROMP 

propagation control was not reflected in lower PDIs.  However, the “uncontrolled” ROMP 

with the acid-free catalyst produces a polymer with an amazingly low PDI of 1.23, which 

is in stark contrast to the high experimental Mp.  The PDIs then gradually increased to 

1.73 with increased TsOH amounts present during the reaction. Very likely, despite the 

lowered propagation rates, the ROMP reaction with catalysts 61 and 62 was not 

sufficiently controlled to give well-defined polymeric materials.    

 To confirm these findings of the external propagation control with acid, DFT 

calculations performed by Dr. Yong Zhang (The University of Southern Mississippi) were 

used to determine the Mulliken atomic charges for model complexes 93, 93a and 93b 

(Figure 37) which bear a PMe3 ligand instead of the PCy3 ligand and differ in the degree 

of protonation at the H2ITap ligand (Table 4). The charges were calculated using a 

B3LYP method with a large basis (6-311++G(2d.2p)) for first coordination shell atoms on 

geometries optimized by using the mPW1PW91/sdd method (details in Chapter VIII), 

which were found to give good predictions of geometric and electronic properties for late 

transition metal complexes.91 A recent report described a correlation between the 

Mulliken atomic charges at the metal center in Ru-carbene complexes and the rate of 

metathesis initiation.92  In this report it was demonstrated that the Ru-center in slow-

initiating Grubbs’ second generation catalyst 12 in fact is more positively charged than in 

fast-initiating Grubbs’ first generation catalyst 9.  This was used as a rational to explain 

the influence of the remaining donor ligand (NHC versus PCy3) on the dissociation rates 

of the other PCy3 ligand which determines the initiation rate.    For this reason, the 

calculations also included catalysts 91 and 92 (Figure 37), the PMe3-ligated counterparts 
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of complexes 9 and 12, for comparison.  Similar to the reported calculations,92 the Ru-

center was found to be more positively charged in the NHC ligated complex 92 than in 

complex 91.  The Mulliken atomic charges for the Ru-center in complex 93 were nearly 

identical to complex 92 which was not surprising with respect to the similar activities for 

catalysts 12 and 61 in the ROMP and RCM reactions. More interestingly, the charges 

became less positive with increasing protonation to complexes 93a and 93b, however, 

these charges were still more positively charged than complex 91.  This was somewhat 

surprising since the H2ITap ligand became positively charged and thus an increase in 

the charge at the metal center was expected.  Following the rational of the previous 

calculations,92 it can only mean that the π-acceptor capability of the H2ITap ligand was 

reduced upon protonation.  These results also meant that the initiation rates of model 

complexes 93a and 93b should not be lower in comparison to complex 93.  Therefore, 

these calculations confirmed that the reduced overall activity exhibited by gradual 

protonation of catalysts 61 and 62 was a result of slower ROMP propagation.   
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Figure 37. Complexes Used for DFT Calculations  
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Table 4. DFT-Calculated Mulliken Atomic Charges at the Ru-Center for Model Complexes 

complex q
Mlk 

Δq
Mlk

 (90) Δq
Mlk

 (91) 

91 0.313 - - 0.621 

92 0.834 + 0.621 - 

93 0.851 + 0.638 + 0.017 

93a 0.831 + 0.618 - 0.003 

93b 0.712 + 0.499 - 0.122 

 

 As further proof, the relative initiation rates for complexes 61 and 62 were 

determined experimentally without and in the presence of TsOH.  This was 

accomplished by monitoring the conversion of the Ru-species with ethylvinyl ether 

(EVE). 40b The reaction affords only one turnover to form the metathesis-inactive Fischer-

carbene complexes 93 (Scheme 24) and hence is only dependent on the metathesis 

initiation.  We monitored the changes for the 1H NMR signal for the benzylidene-H atom 

(δ = 19.02 ppm for 61; δ = 16.80 ppm for 62).  PCy3-containing complex 61 was 

converted into the respective ethoxymethylidene species 94 which was observed via the 

methylidene-H signal at δ = 13.73 ppm.  Reactions with TsOH did not afford a stable 

ethoxymethylidene complex containing a 1H NMR signal which could be reliably 

integrated.  With TsOH, a species at δ = 13.73 ppm was observed with complex 61, 

however, over time the signal disappeared, very likely due to degradation.  Complex 62 

solutions generated multiple broad signals in the range between 9 and 16 ppm in the 

presence of EVE.  Hence, the conversion was monitored by the reduction of the 

benzylidene-H signal versus an internal standard in these reactions.   

N N

NMe2(H+)(+H)Me2N

Ru

L
OEtCl

Cl

94
L = PCy3 or vacant site

61 or 62

O

TsOH
(0-2 equiv.)

Scheme 24. Conversion of Catalysts 61 and 62 with EVE into Ethoxymethylidene Complexes 94
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 As expected, the catalyst conversion increased slightly with increased acid 

amounts.  Only 24 % of catalyst 61 initiated in 60 min without TsOH, but the presence of 

1 equivalent of TsOH afforded 52.7% conversion. With 2 equiv. of TsOH, > 50% 

conversion was reached after 5 min, but after 30 min a plateau at 67% conversion was 

observed (Figure 38), most likely a result of catalyst decomposition.  Catalyst 62 

generally exhibited faster initiation than catalyst 61, though the differences in the 

conversion of EVE in the presence of TsOH were much less pronounced (Figure 38).  

However, the overall trend showed that the EVE conversion proceeded marginally faster 

at higher acid concentrations.  For example, after 6 min complex 62 was converted by 

52.0% (acid-free), 58.2% (1 equiv. TsOH) and 63.3% (2 equiv. TsOH). All conversions 

with complex 62 went > 95%.   These results, when combined with the results from the 

ROMP reactions and DFT calculations, unambiguously show the decreased activity 

observed for catalysts 61 and 62 was exclusively due to a decrease in propagation rate. 

To the best of our knowledge, this is the first example of external control of the ROMP 

propagation rates, almost independent from the initiation values.   

 

Figure 38. Conversion of Catalysts  With 100 Equivalents EVE

a) Catalyst 61 [Ru] = 4 mM, CD2Cl2, 20 oC, b) Catalyst 62 [Ru] = 2 mM, CDCl3, 20 oC
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 The next benzylidene catalyst bearing a pH-responsive H2ITap ligand examined 

was DMAP catalyst 65, or (H2ITap)(DMAP)2Cl2Ru=CH-Ph. Because this catalyst had 

multiple protonation sites, we expected gradual protonation with non-nucleophillic acid 

would produce several complexes (65, 65a, and 65b), each with a different ROMP 

reaction activity profile (Scheme 25), allowing for external control of catalyst activity via 

acid addition. The order of anticipated protonation was based on the approximate pKa 

values of the conjugate acids for the pH responsive ligands, with the more basic  DMAP 

ligands (DMAPH+ pKa = 9.2) dissociating before protonation of the aryl amines (aryl 

ammonium pKa ~ 4-6). In contrast to catalysts 61 and 62, this catalyst was expected to 

exhibit lower olefin metathesis activity than commercially available catalyst 12 under 

standard, non-acidic conditions due to the presence of the inhibiting DMAP ligands. 

Upon dissociation of these DMAP ligands via addition of two equivalents of non-

nucleophillic acid, highly active, fast initiating complex 65b would then be formed. Acid 

addition beyond two equivalents would then protonate the NMe2 groups, thereby slowing 

catalyst propagation, as seen with catalyst 61 and 62. 

 

Scheme 25. Gradual Protonation of Catalyst Complex 65  
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 The anticipated activity profile for catalyst complex 65 was confirmed by 

performing ROMP reactions of COE with zero, two, and four equivalents of H3PO4 

(Figure 39). Catalyst complex 65 displayed slightly lower activity than commercially 
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available catalyst complex 12 under similar reaction conditions. Based on previous 

studies by the Schanz research group, the high ROMP activity of hexacoordinate 

NHC(DMAP)2Ru alkylidene complexes is caused by relatively fast initiation rates 

compared to catalysts 12 but slower propagation.64 As expected, upon the addition of 

two equivalents of H3PO4, catalyst activity for complex 65 was greatly enhanced, 

dramatically exceeding the activity for catalyst 12, with 96.8% conversion to ROMP 

polymer achieved within 15 minutes. Upon protonation of the DMAP ligand, the 

predicted effect was observed, generating species 65a with significantly faster initiation 

and propagation. When four equivalents of H3PO4 were added, the initial activity 

observed for catalyst 65b were very similar to those seen with catalyst 12, however the 

conversion quickly reached a plateau and precipitation of the catalyst complex was 

observed, resulting in only 41.3% conversion to polymer after 30 minutes. It is likely that 

the precipitation was a result of rapid degradation of the fast initiating species 65b. 

Figure 39. ROMP of COE With Complexes 12, 65, 65a, 65b

[Ru] = 0.5 mM, 0.5% Catalyst Loading, 20 oC
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Table 5. RCM of DEDAM With Catalysts 12 and 65 
[Ru] = 1.0 mM, 1.0% Catalyst Loading 

Catalyst Equivalents of H3PO4 Time (min) % Conversion to Product 

12 0 3 1.2 

12 0 15 15.8 

12 0 30 30.2 

65 0 3 1.9 

65 0 30 7.2 

65a 2 3 31.5 

65a 2 15 43.5 

65a 2 30 46.7
 

65b 4 3 10.2 

64b 4 15 13.3
 

64b 4 30 14.4
 

 

 RCM reactions of DEDAM with catalyst 65 (Table 5) confirmed the change in the 

activity and solubility tends observed in the ROMP reactions. For the RCM reactions, 

catalyst 65 displayed noticeably lower RCM activity than catalyst 12 in the absence of 

acid, rather than the comparable activity seen in the ROMP reactions. Once again, upon 

addition of two equivalents of H3PO4 the activity rate of catalyst 65 initially increased 

beyond catalyst 12, however, this was soon followed by significant catalyst degradation 

which was observed as a plateau in conversion within 15 minutes, as well as significant 

precipitation of the catalyst. With four equivalents of H3PO4, decreased activity and 

significant catalyst precipitation was observed, similar to the ROMP reaction. This once 

again implies that the fast-initiating catalyst species most likely degraded quickly in 

solution. 

 Catalyst 66, or (H2ITap)Cl2Ru(=CH-CH2-CH2-C5H4N), was the final benzylidene 

catalyst bearing an H2ITap ligand that was evaluated. This catalyst contained a pH-

responsive, backbiting 3-(o-pyridyl)propylidene N-donor ligand in addition to the NMe2 

groups of its NHC ligand. We hypothesized that this back-biting ligand would cause very 

low catalyst activity until protonation via addition of excess non-nucleophillic acid caused 

dissociation of the coordinated nitrogen from the metal center, thereby forming activated 
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catalyst complex 66a (Scheme 26). The anticipated degree of inhibition afforded by the 

3-(o-pyridyl)propylidene in catalyst 66 was expected to be much greater than the 

inhibition observed with the DMAP ligands of catalyst 65. Unlike catalyst 66, gradual 

protonation studies were not conducted with catalyst 66 because the aryl NMe2 groups 

and the N-donor ligand were expected to exhibit similar pKa values, therefore gradual 

protonation would most likely have produced a mixture of complexes, each with a 

different kinetic profile.  

Stronly Inhibited
Very Low Activity

Activated
Superior Catalytic Activity

H+ (xs.)

D = H2O

or acid

N N

Me2HN NHMe2

Ru
Cl

Cl
H
N

D

N N

Me2N NMe2

Ru

N

Cl

Cl

66 66a

Scheme 26. Activation of Catalyst Complex 66

 

 Kinetic profiles obtained for ROMP of COE (Figure 40) with catalyst 66 confirmed 

that stronger inhibition of catalyst activity was observed for catalyst 66 than seen for 

DMAP catalyst 65. As expected, with the addition of four equivalents of H3PO4 an 

increase in activity was observed. This was most likely due to an increase in initiation, 

but because protonation of the NMe2 groups also reduce the catalyst’s propagation 

rates, complex 66a still performs at lower rates than those seen for catalysts 12 and 61. 

Catalyst 66 also displayed lower activity than catalyst 62, but upon acidification complex 

66a displayed significantly increased rates initiation compared to catalyst 62, as 

indicated by the sudden increase in ROMP activity, which is present from the very 

beginning of the reaction with complex 66a. Also, as with complex 65b, significant 

precipitation of the catalyst complex was observed, which implies that fast-initiating 

complex degrades quickly. 
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Figure 40. ROMP of COE With Complexes 12, 61, 62, 66, and 66a

[Ru] = 0.5 mM, 0.5% Catalyst Loading, 20oC
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 RCM of DEDAM was also conducted with catalyst 66.  Conversion rates with 

DEDAM in the absence of H3PO4 of complex 66 were very low, with only 6.2 % 

conversion to product observed after 30 minutes. The addition of excess H3PO4, 

afforded only a slight improvement, with 12.9% conversion after 30 minutes. Once again, 

precipitation of the catalyst was observed, which likely accounted for the extremely low 

rate of RCM conversion observed with complex 66a. 

Kinetic Studies of Benzylidene Catalysts Bearing ITap Ligands 

 The next catalysts studied in the standard ROMP and RCM reactions in organic 

media were benzylidene catalysts 67-69 bearing ITap ligands (Figure 41). Since 

catalysts with unsaturated NHC ligand backbones are generally less active than their 

counterparts with saturated backbones,51 (ITap)(PCy3)Cl2Ru=CH-Ph 67, 

(ITap)Cl2Ru=CH-(C6H4-O-iPr) 68, and  (ITap)(DMAP)2Cl2Ru=CH-Ph 69 were expected 

to perform ROMP of COE and RCM of DEDAM at much slower rates than observed with 

unsaturated analogues 61, 62, and 65. ROMP and RCM kinetic results at room 

temperature confirmed this hypothesis (Tables 6 and 7). Because catalysts with 
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unsaturated backbones tend to exhibit enhanced thermal stability, kinetic studies were 

also conducted at elevated temperature (60 oC) with catalyst 67 and 69. This elevated 

temperature provided an extraordinary improvement in the conversion rates for ROMP of 

COE with both of these catalysts, as well as a superior RCM reaction for phosphine-

ligated catalyst 67. Acceleration of kinetic rates at elevated temperature was expected 

and has been demonstrated before with other catalyst systems.51,67,68 However, the 

activity was improved by at least two orders of magnitude, and the overall activity is 

significantly higher than the activity of catalysts 12 and 13 at ambient temperature. This 

is without precedence for this moderate temperature increase. Very likely, most of this 

activity jump is caused by much elevated initiation rates, thus generating a larger 

number of active species.  
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Figure 41. Catalyst Complexes 67-69  

 

Table 6. ROMP of COE With Catalysts 67-69 
[Ru] = 0.5 mM, 0.5% Catalyst Loading 

Catalyst Time (min) Temperature (˚C) % Conversion to Polymer 

67 60 20 8.5 

67 120 20 22.3 

67 790 20 76.5 

67 6 60 >99 

68 60 20 54.1 

68 120 20 93.3 

69 60 20 72.3 

69 120 20 90.4 

69 5 60 95.5 
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Table 7. RCM of DEDAM With Catalysts 67-69 
[Ru] = 1.0 mM, 1.0% Catalyst Loading 

Catalyst Time (min) Temperature (˚C) % Conversion to Product 

67 60 20 23.2 

67 240 20 77.2 

67 6 60 >99 

68 60 20 64.7 

68 120 20 87.4 

68 180 20 96.0 

69 60 20 8.9 

69 120 20 12.6 

69 180 20 13.5 

69 10 60 20.9 

69 60 60 30.6 

 
 
Kinetic Studies of Benzylidene Catalysts Bearing Other pH-Responsive Ligands 

 Kinetic studies in organic media were also conducted with 

(IXyONMe2)(PCy3)Cl2Ru=CH-Ph 70, (IDippONMe2)(DMAP)Cl2Ru=CHPh 77, and 

(IDippSNMe2)(DMAP)2Cl2Ru=CH-Ph 78 (Figure 42) to establish their metathesis activity 

under standard conditions. Though the electronic influence of the NMe2 groups of these 

catalysts was considered minimal with these catalysts, it was unknown how the sterics of 

these bulky NHC ligand precursors would affect the metathesis activity of the catalyst. 

DMAP catalysts 77 and 78 were expected to have lower metathesis activity than Grubbs 

second generation catalyst 12, since this has been previously observed for analogous 

IMes ligated DMAP complex 83. This catalyst exhibited a reduced rate for ROMP od 

COE by a factor of 0.57 from those observed for homologous catalyst 12.87   
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 A study of the relative kinetic profiles obtained through ROMP of COE showed 

catalysts 70, 77, and 78 each have lower ROMP metathesis activity than catalyst 12 

(Figure 43). Compared to the other catalysts, complex 70 exhibited a much lower rate of 

initiation, as seen by the delay in initial conversion, as well as an unexpectedly low 

ROMP activity compared to complex 12. Catalysts 77 and 78 exhibited nearly identical 

activities, as was expected by their very similar structure. They were faster in the ROMP 

reaction than complex 70, and showed only slightly lower activity than seen with catalyst 

12, though this decrease in activity was much less than what was previously reported for 

complex 83. However, the activities of 77 and 78 were not quite unexpected. Although 

DMAP Ru-alkylidene complexes are generally slower than their second generation 

counterparts,87 the bulky o-iPr groups in the NHC ligand have been shown to accelerate 

both the rates of initiation and propagation compared to their o-CH3 substituted 

counterparts.93 Furthermore, the pentacoordinate structure containing only one DMAP 

ligand is also expected to generate a lower amount of free DMAP in the reaction mixture, 

and it was shown that increased amounts of N-donor ligand reduced the conversion 

rates in ROMP reactions with Ru-alkylidene complexes. Hence, the reduced reactivity 
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due to the presence of the DMAP ligand in these catalysts was more than compensated 

by the bulkier NHC ligand and the low DMAP content of the catalyst. Therefore, these 

catalysts exhibited a higher activity than catalyst 70. 

Figure 43. ROMP of COE With Catalysts 12, 70, 77, and 78 
([Ru] = 0.5 mM, 0.5% Catalyst Loading)
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 The RCM reactions with DEDAM exhibited a markedly different activity trend for 

this group of catalysts (Table 8). Catalyst 78 dramatically outperformed catalyst 12, with 

>95% conversion within one hour. Catalyst 77 accomplished only 36.5% conversion 

observed at one hour, which was slightly less than standard setting catalyst 12. This 

difference in activity between catalysts 77 and 78 was unexpected due to their structural 

similarities as well as the nearly identical activity seen in their ROMP reactions. Catalyst 

70 displayed very little RCM metathesis activity, with only 2.1% conversion observed 

within the same time frame, indicating the very slow initiation also observed in the 

ROMP reaction. 

Table 8. RCM Reactions of DEDAM With Catalysts 12, 70, 77, and 78 
[Ru] = 1.0 mM, 1% Catalyst Loading 

Catalyst Time (min) % Conversion to Product 

12 60 46.1 

70 60 2.1 

77 60 36.5 

78 56 95.2 
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Kinetic Studies of Phenylthiomethylidene (Ru=CH-SPh) Catalysts 

 Previous studies of phenylthiomethylidene (Ru=C-SPh) catalysts have shown 

that these catalysts perform at much slower rates than their benzylidene counterparts in 

ROMP and RCM metathesis reactions. As such, the activity profiles for 

(H2ITap)(PCy3)Cl2Ru=CH-SPh 79, (ITap)(PCy3)Cl2Ru=CH-SPh 80, 

(H2ITap)(DMAP)2Cl2Ru=CH-SPh 81, and (ITap)(DMAP)2Cl2Ru=CH-SPh 82  were 

expected to show much lower activity in ROMP and RCM reactions than observed with 

their benzylidene counterparts, complexes 61, 65, 67, and 69, respectively. The 

experimental data supports this prediction, with very little activity observed for most of 

these complexes at room temperature (Tables 9 and 10). When these reactions were 

repeated at elevated temperatures, all of these catalysts displayed dramatically 

improved metathesis activity, which should be attributed mostly to an increase of catalyst 

initiation rates. It should be mentioned that the nature of the alkylidene group only 

influences the initiation, since the first metathesis turnover generates the same 

propagating species from different Ru-alkylidene catalysts. Hence, once initiated, these 

catalysts should exhibit the same activity as their otherwise equally ligated counterparts 

which display much faster metathesis reactions at ambient temperature as seen 

throughout this chapter. For catalyst 81, two and four equivalents of H3PO4 were added, 

and the ROMP and RCM reactions were monitored at both 20˚C and 60˚C. This was 

implemented in an effort to improve catalyst activity by means of dissociation of the 

DMAP ligands, however no metathesis activity was observed in any of these reactions 

with acid, likely due to catalyst degradation in the presence of acid. Since no metathesis 

activity was observed for these reactions, it is likely that complex 81a, formed upon 

dissociation of the DAMP ligand, rapidly decomposed following the known dimerization 

pathway,40c in particular if this process for this pathway is faster than the first catalyst 

turnover (Scheme 27). 
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Table 9. ROMP Reactions of COE With Catalysts 79-82 
[Ru] = 0.5 mM, 0.5% Catalyst Loading 

Catalyst Time (min) Temperature (˚C) % Conversion to Polymer 

79 60 20 <1
 

79 24 60 96.1 

80 60 20 20.5 

80 120 20 39.6 

80 790 20 99.1 

80 60 60 77.0 

80 108 60 95.2 

81 60 20 3.9
 

81 30 60 32.4 

81 60 60 36.3 

81 120 60 37.8
 

82 180 20 <2
 

82 30 60 52.2 

82 60 60 77.0 

82 90 60 91.6 
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Table 10. RCM Reactions of DEDAM With Catalysts 79-82 
[Ru] = 1.0 mM, 1.0% Catalyst Loading 

Catalyst Time (min) Temperature (˚C) % Conversion to Product 

79 60 20 2.2 

79 60 60 89.4 

80 720 20 19.9 

80 50 60 85.4 

81 60 20 1.2 

81 60 60 67.2 

82 300 20 3.6 

82 60 60 16.7 
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Kinetic Studies of Indenylidene Catalyst Complexes 

 The final catalysts tested in organic media were (ITap)(PPh3)Cl2Ru-3-

phenylindenylidene 87 and (ITap)(DMAP)2Cl2Ru-3-phenylindenylidene 88 (Figure 45). 

Because indenylidene catalyst structures typically exhibit enhanced thermal stability 

when compared to their benzylidene counterparts, we hypothesized that these catalysts 

would remain stable under acidic conditions as well as at elevated temperatures. As 

such, ROMP and RCM reactions were conducted with catalyst under acidic conditions 

and at elevated temperature (60 oC) in addition to the standard kinetic studies. For 

catalyst complex 87, results showed this complex exhibited very low activity in both 

ROMP and RCM reactions (Tables 12 and 13). Additionally, reactions conducted at 

elevated temperatures did not afford any metathesis products, most likely due to an 
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advanced rate of decomposition. This was in very stark contrast to results observed for 

benzylidene counterpart 67, which showed a dramatic increase ion activity at elevated 

temperature. The addition of H3PO4 did improve the metathesis activity for complex 87, 

though faster rates of catalyst degradation were also observed, which resulted in a lower 

overall yield in the ROMP reaction. 
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Figure 45. Phenylindenylidene Catalyst Complexes 87 and 88  

Table 11. ROMP Reactions of COE With Catalyst Complex 87 
[Ru] = 0.5 mM, 0.5% Catalyst Loading 

Temperature (˚C) Equivalents of H3PO4 Time (h) % Conversion to Polymer 

20 0 1 <1 

20 0 24 12.1 

20 0 48 20.9
 

60 0 1 <1
 

20 2 1 <1 

20 2 5 10.6
 

 
Table 12. RCM Reactions of DEDAM With Catalyst Complex 87 
[Ru] = 1.0 mM, 1.0% Catalyst Loading 

Temperature (˚C) Equivalents of H3PO4 Time (h) % Conversion to Product 

20 0 1 <1 

20 0 5 <1 

60 0 1 <1 

20 2 1 11.9 

20 2 2 24.0 

20 2 3 28.9
 

 

 Since the DAMP ligands of catalyst complex 88 are much more basic than the 

aryl NMe2 groups of its ITap NHC ligand, we hypothesized that the addition of just 2 

equivalents of H3PO4 would yield fast initiating, fast propagating complex 88a (Scheme 

28) as seen with DMAP catalyst complex 65. Examination of the ROMP kinetic profile 

(Figure 46) shows that this is indeed the case, as catalyst complex 88a displays a much 
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higher activity than 88 in neutral solution based on the much faster rates of initiation, and 

therefore higher overall activity. In fact, catalyst 88a is slightly more active than catalyst 

12, which is extrodinary considering the unsaturated backbone of the ITap ligand, which 

usually provides catalysts with a significantly reduced activity compared to catalysts 

bearing NHC ligands with saturated backbones.51 Surprisingly, DMAP catalyst 88 also 

showed higher ROMP activity than its PPh3 ligated precursor 87 under both non-acidic 

and acidic conditions.  Increased activity was also observed in the RCM reactions with 

two equivalents of H3PO4, with complex 88a displaying higher rates of initiation and 

higher overall activity when compared to complexes 12 and non-acidified complex 83 

(Figure 47). This confirms that the activity profile of catalyst 88 can be externally 

controlled via addition of acid. More importantly, the somewhat sluggish performance of 

catalyst 88 can be externally stimulated to make it comparable in performance to 

catalyst 12, a catalyst considered to have excellent activity. 
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Figure 46. ROMP of COE With Complexes 12, 88, and 88a

[Ru] = 0.5 mM, 0.5% Catalyst Loading, 20 oC
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Figure 47. RCM of DEDAM With Complexes 12, 88, and 88a

[Ru] = 1.0 mM; 1.0% Catalyst Loading; 20 oC  

Summary 

 Kinetic studies were conducted in organic media to asses the metathesis activity 

for each of the new catalysts bearing NMe2 modified NHC ligands. This activity was 

determined through a series of ROMP and RCM reactions using appropriate metathesis 

substrates. The kinetic profiles that were generated were then compared to those 

obtained for commercially available catalysts under similar reaction conditions to asses 

the relative rates of activity. The general trend observed was that in the absence of acid 

in organic solution catalysts bearing the H2ITap ligand were more active than their 

counterparts bearing other pH-responsive NHC ligands synthesized in this project, with a 

few even outperforming their commercially available counterparts 12 and 13, which are 
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considered the standard of high metathesis activity. As expected, benzylidene carbene 

catalysts outperformed the phenylthiomethylidene complexes, though the performance 

of these catalysts was improved, for some by several orders of magnitude, at elevated 

temperature (60 oC). Under standard conditions, the indenylidene complexes also 

exhibited lower activities than their homologous benzylidene carbene catalysts though, 

unlike the phenyltiomethylidene complexes, no major increase in metathesis activity was 

observed at elevated temperature.  

 For several of these catalysts, additional kinetic studies were conducted in the 

presence of non-nucleophillic acid in order to determine the influence on the catalyst 

activity by the protonation of their pH-responsive groups. For those catalysts bearing the 

H2ITap ligand, protonation of this ligand typically reduced catalyst activity. 

(H2ITap)(PCy3)Cl2Ru=CH-Ph (61) and (H2ITap)Cl2Ru=CH-(C6H4-O-iPr) (62)  were used 

to conduct ROMP polymer studies and relative initiation kinetics with EVE, which, when 

coupled with DFT calculations for several model complexes, unambiguously confirmed 

that this decrease in catalyst activity was a result of a reduced rate of propagation. To 

the best of our knowledge, this is the only example of independent propagation control of 

a metathesis reaction to date. 

 For several of the catalysts additionally coordinated by N-donor ligands, selective 

protonation was used to determine the ROMP kinetic profiles afforded by protonation of 

specific pH-responsive groups. Upon dissociation of the N-ligands via acid addition, all 

catalysts exhibited faster initiation, which was expected based on previous studies by 

the Schanz research group.64 For (H2ITap)(DMAP)2Cl2Ru=CH-Ph 65, 

(H2ITap)Cl2Ru(=CH-CH2-CH2-C5H4N) 66, and (ITap)(DMAP)2Cl2Ru-3-

phenylindenylidene 88 this resulted in an increase in overall catalyst activity. For 

phenylindenylidene catalyst 88, this increase in activity was particularly dramatic, as it 

was converted from a very sluggish catalyst to one with comparable activity to catalyst 
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12 upon the addition of acid. However, (H2ITap)(DMAP)2Cl2Ru=CH-SPh 81 and 

(ITap)(PPh3)Cl2Ru-3-phenylindenylidene 87 experienced fast decomposition with the 

addition of acid, resulting in very low conversion into metathesis products. 
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CHAPTER V 

KINETIC STUDIES IN ACIDIC PROTIC MEDIA 

Substrates and Methods for Relative Kinetic Studies in Acidic Protic Media 

 The main goal of this dissertation was to generate Ru-based olefin metathesis 

catalysts capable of performing ROMP and RCM reactions in both organic and aqueous 

media. To this end, several target catalysts were synthesized, each bearing an NHC 

ligand modified with pH-responsive NMe2 groups. These NMe2 groups provided the 

means for external control of catalyst solubility profiles via acid addition, which converts 

these basic NMe2 groups into ionic ammonium groups (N+HMe2). Benzylidene catalyst 

(H2ITap)Cl2Ru(=CH-CH2-CH2-C5H4N) 66, phenylthiomethylidene catalysts 

(H2ITap)(PCy3)Cl2Ru=CH-SPh 79, (H2ITap)(DMAP)2Cl2Ru=CH-SPh 81, and 

phenylindenylidene catalysts phenyl(ITap)(PPh3)Cl2Ru-3-phenylindenylidene 87, 

(ITap)(DMAP)2Cl2Ru-3-phenylindenylidene 88 all exhibited insufficient solubility in acidic 

aqueous media, so kinetic studies with these catalysts were not conducted. The other 

catalysts exhibited sufficient solubility in acidic protic media, and they were employed in 

homogenous ROMP and RCM reactions with water-soluble substrates. 

 The following metathesis reactions were conducted: ROMP of exo-7-

oxanorbornene derivatives 95 and 96 and RCM of diallylmalonic acid 97 (Scheme 29). 

Acidic protic solvents selected for the metathesis reactions conducted in these studies 

included 1 M HClaq–2-propanol (1:9 v/v) or 0.1M HClaq. Because these substrates are 

solids, accurate addition to an NMR tube was not feasible. Hence, relative kinetic studies 

were only conducted by taking aliquots of the reaction solution in precise time intervals, 

quenching them with ethyl vinyl ether (EVE),20 followed by removal of the volatiles. The 

samples were then dissolved in D2O and individually analyzed via 1H NMR spectroscopy 

(300 MHz, 20 oC) by integrating signals representing the substrate and product.  
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Kinetic Studies 

Aqueous Metathesis Reactions for Catalysts Bearing H2ITap and ITap Ligands 

 The first two catalysts examined for metathesis reactions in acidic protic and 

aqueous media were complexes 61,  (H2ITap)(PCy3)Cl2Ru=CH-Ph, and 62, 

(H2ITap)Cl2Ru=CH-(C6H4-O-iPr). Both of these complexes appeared to exhibit an 

externally controllable solubility profile, as they both precipitated from organic solutions 

upon the addition of two equivalents of DCl, which made them very attractive candidates 

for this study. However, catalyst 61 exhibited low solubility in purely aqueous media 

when protonated with two equivalents of DCl. 1H NMR analysis indicated this was 

partially due to the incomplete protonation of the NMe2 groups of its NHC ligand. 

Instead, a mixture of complexes 61a-61d was formed (Scheme 30), including unstable 

phosphine-deficient complexes plus the PCy3D
+ cation, formed by partial protonation of 

the phosphine ligand, which was observed by 31P NMR spectroscopy. The mixture 

exhibited low stability, as it decomposed within a few hours in solution.79 Catalyst 62 was 

soluble in 0.1M DCl / D2O and formed complex 62a (Scheme 31), which exhibited very 

slow hydrolysis of the Ru-NHC bond (51% in 7 d).  
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Scheme 30. Protaonation of Catalyst 61  
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Scheme 31. Protonation of Catalyst Complex 62  
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 Based on these results, ROMP of cationic exo-7-oxanorbornene derivative 95 

and RCM reactions of diallylmalonic acid 97 were carried out in acidic protic media with 

a 1 M HClaq–2-propanol (1:9 v/v) solution for catalyst 61 and a 0.1 M HClaq solution for 

catalyst 62. The catalyst loadings were 4% in each of these experiments, with [Ru] = 2.0 

mM and a reaction temperatures of 50 oC. The catalytic performance of both catalysts 61 

and 62 in acidic protic media was quite disappointing, as neither complex produced any 

noticeable amounts of polymer during the ROMP reaction. Furthermore, the RCM of 97 

reached only 56% for catalyst 61 and 44% for catalyst 62 in 30 minutes at 50 oC. 

Additional reaction times did not afford further conversions, likely due to catalyst 

decomposition. As shown in Chapter IV, converting the π-donating NMe2 groups into σ-

withdrawing NMe2H
+ moieties had decreased catalyst activity. The fact that the ROMP 
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activity was almost zero must be attributed to the solvent since the deprotonated species 

61 and 62 exhibit metathesis activity in organic solvents (vide supra). In our experience, 

reactions in water are sluggish. We believe that water may act as an inhibitor to many 

catalysts, including 61 and 62.93 Hence, as a result of slower propagation of species 62a 

and 61b-d, respectively, and additional H2O inhibition, the tested ROMP reactions did 

not afford noticeable amounts of product. 

 The next catalyst studied was (H2ITap)(DMAP)2Cl2Ru=CH-Ph 65. In Chapter IV, 

a gradual protonation scheme (Scheme 25) was proposed in which fast initiating, slow 

propagating complex 65b would be formed upon protonation with four equivalents of 

acid. A similar methodology was attempted, using an excess of acid to form this complex 

(Scheme 32).  Upon protonation in 0.1M solutions of acid in water this catalyst was 

soluble, though small amounts of catalyst did precipitate. As with catalyst complexes 61 

and 62, no noticeable amounts of polymer were produced during the ROMP reaction of 

norbornene substrate 96 under similar reaction conditions. RCM reactions of substrate 

97 did afford conversion, though at low levels (Table 13). The low observed activity in 

aqueous media was likely caused by extremely slow propagation based on the presence 

of the N+HMe2 groups. For all ROMP and RCM reactions, catalyst loadings were 4%, 

with [Ru] = 2.0 mM and a reaction temperatures of 50 oC. The higher conversion with 

H3PO4 may be a result of a lower degree of protonation by the weaker acid, which may 

have resulted in a faster propagating species. However, at this point, this is pure 

speculation. 



 88 

D = H2O

or acid

Slow Initiator
Fast Propagator

Fast Initiator
Slow Propagator

N N

Me2N NMe2

Ru

N

Cl

Cl
Ph

N

NMe2

Me2N

N N

Me2H+N N+HMe2

Ru

D

Cl

Cl
Ph

65 65b

Scheme 32. Protonation of Catalyst Complex 65 With Excess Acid

HCl or H3PO4

H2O

 

Table 13. RCM of 97 With Catalyst 65 
[Ru] = 2.0 mM, 4% Catalyst Loading, 50 

o
C 

Acid Time (min) % Conversion 

H3PO4 30 25.2
 

HCl 30 8.7 

HCl 60 10.3
 

 
 The same effect was observed for all of the complexes bearing an ITap ligand 

(Figure 48). For all of these reactions catalyst loadings were 4%, in 0.1M HClaq, with [Ru] 

= 2.0 mM, and reaction temperatures of 60 oC. For these complexes, 

(ITap)(PCy3)Cl2Ru=CH-Ph 67, (ITap) (ITap)Cl2Ru=CH-(C6H4-O-iPr) 68, 

(DMAP)2Cl2Ru=CH-Ph 69, (ITap)(PCy3)Cl2Ru=CH-SPh 80, and 

(ITap)(DMAP)2Cl2Ru=CH-SPh 82, some precipitation of the catalyst was observed. 

ROMP reactions of norbornene derivative 96 afforded no ROMP activity with any these 

catalysts. Lower conversion rates were also observed for RCM reactions of 97 than was 

seen for catalysts 61 and 62 with similar reaction conditions (Table 14). The kinetic 

results for these ITap bearing catalysts further emphasize the strong influence that 

acidification of the aryl NMe2 of the NHC ligand substituent has on the activity profile of 

catalysts with these types of modified NHC ligands. 
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Table 14. RCM of DAM With Catalysts Bearing ITap Ligands 
[Ru] = 2.0 mM, 4% Catalyst Loading, 0.1M HClaq, 60 

o
C 

Catalyst Time (min) % Conversion 

(ITap)(PCy3)Cl2Ru=CH-Ph 67 60 6.9 

(ITap)Cl2Ru=CH-(C6H4-O-iPr) 68 60 7.2 

(ITap)(DMAP)2Cl2Ru=CH-Ph 69 60 2.7 

(ITap)(PCy3)Cl2Ru=CH-SPh 80 60 1.0 

(ITap)(DMAP)2Cl2Ru=CH-SPh 82 60 0.3 

 
Aqueous Metathesis Reactions for Catalysts Bearing NHC Ligand With Remote NMe2 

Groups 

 ROMP and RCM reactions for catalysts bearing NHC ligands modified with 

remote NMe2 groups were also conducted in aqueous media. For these catalysts (70, 

77, and 78), the NMe2 groups were separated from the aryl substituents of the NHC 

ligand by an E-CH2-CH2 spacer, where E = O or S. For these catalysts, their activity in 

organic solvents was significantly lower than their H2ITap counterparts. In aqueous 

media, however, it was anticipated that the formation of the NMe2H
+ groups should not 

dramatically affect the electronic catalyst environment. Thus, these catalysts were 

expected to exhibit a faster propagation in aqueous media than the H2ITap and ITap 

ligand bearing catalysts.  
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 The first of these catalysts to be studied was (IXyONMe2)(PCy3)Cl2Ru=CH-Ph 70 

(Scheme 33). Similar to catalyst complex 61, sufficient catalyst solubility was 

accomplished using 1 M HClaq–2-propanol (1:9 v/v), so this was the solvent chosen for 

aqueous olefin metathesis reactions with this catalyst. As before aqueous ROMP and 

RCM reactions for this catalyst were initially conducted with [Ru] = 2.0 mM solution with 

4% catalyst loading. The results for ROMP reactions of norbornene substrate 96 with 

catalyst 70 were surprising (Table 15). The ROMP reaction was first conducted at 60 oC, 

which afforded >99% conversion to polymer within 15 minutes. This reaction was then 

repeated at room temperature using the same concentrations, which yielded almost the 

same conversion. Decreasing the catalyst loading to 2% did result in a slight decrease in 

the conversion, and no further conversion was observed after 15 minutes, indicating a 

loss of activity due to catalyst degradation. However, the conversions observed were a 

dramatic improvement over catalyst 61. In fact, in these ROMP reactions catalyst 70 

even outperformed Grubbs’ water soluble catalyst 26 (Figure 49), which is considered to 

be the most active Ru-based olefin metathesis catalyst for use in homogenous aqueous 

olefin metathesis applications. That catalyst, by comparison, required three hours to 

achieve the same ROMP conversion of a similar substrate, at similar catalyst loadings, 

afforded by catalyst 70 within 15 minutes. Catalyst 97 was less active in the RCM 

reaction of DAM in acidic protic media, with only 75.1% conversion achieved after 15 

minutes at 60 oC with no further conversion after this time, however, this result was 

comparable to those observed with catalyst 26 after several hours with other α,ω-

diolefins.6a Based on these results, catalyst 70 is definitely a highly active olefin 

metathesis catalyst in protic media. 
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Figure 49. Grubbs' Water Soluble Catlyst 26  

Scheme 33. External Control of Solubility for Catalyst 70 via Protonation  
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Table 15. ROMP of Norbornene Substrate 96 With Catalyst 70 
[Ru] = 2.0 mM 

% Catalyst Loading Temperature (
o
C) Time (min) % Conversion to Polymer 

4 60 15 99.38 

4 20 15 98.17 

2 20 15 86.53
 

 

  The last two catalysts examined via ROMP and RCM olefin metathesis reactions 

in aqueous media were (IDippONMe2)(DMAP)Cl2Ru=CH-Ph 77 and 

(IDippSNMe2)(DMAP)2Cl2Ru=CH-Ph 78. Like catalyst 70, these two catalysts possess 

remote NMe2 groups. These catalysts additionally bear pH-responsive DMAP ligands, 

resulting in higher initiation rates upon acid addition. The simultaneous protonation of the 

NMe2 groups and the DMAP ligands of catalyst complexes 77 and 78 produced water 

soluble complexes 77a and 78a (Scheme 34). We hypothesized that these two 

complexes could afford an unprecedented olefin metathesis catalyst system capable of 

performing both ROMP and RCM reactions in aqueous media, especially considering 

the high activity exhibited by catalyst 70.  
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Scheme 34. Protonation of Catalyst Complexes 77 and 78  
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 Aqueous ROMP and RCM reactions were conducted with catalysts 77 and 78 

using 0.1M HClaq. The ROMP and RCM reactions proceed fast at room temperature. 

RCM of 97 ([Ru] = 2 mM with 4% catalyst loading) only reached 62.9% and 52.5% 

conversion, respectively, after 30 minutes. Again, further conversion was not observed, 

indicating catalyst decomposition due to the fast initiation.  The ROMP reactions with 

substrate 96 proceeded to complete conversion at extraordinary rates, with >95% ROMP 

conversion achieved in each reaction within 15 min (Table 16). This extremely high 

activity clearly demonstrates that these two catalyst systems dramatically outperform 

Grubbs’ water soluble catalyst 26 in aqueous media,6a making them the most active 

catalysts for aqueous olefin metathesis applications to date.  

Table 16. ROMP Reactions of Norbornene Substrate 96 With Catalysts 77 and 78 
[Ru] = 2.0mM 

Catalyst % Catalyst Loading Time (min) % Conversion to Polymer 

77 4 15 >99 

77 1 15 97.2 

78 4 15 97.6 

 

 For catalyst 77, >99% ROMP reaction conversion was even achieved with 

catalyst concentrations as low as 1.0 mM at 1.0% catalyst loading, a concentration more 

often applied to reactions with ROMP substrates in organic media. Very few examples 

can be found in the literature of Ru-based olefin metathesis catalysts for efficient ROMP 

in aqueous media.6a,51 The closer examination of the kinetics of this reaction indicated 
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that this is, in fact, a fast initiating catalyst, as no long induction period is observed prior 

to the sudden onset in activity (Figure 50). This likely accounts for the increased activity 

displayed by these catalysts, showing that external control of catalyst solubility was 

afforded via protonation and subsequent dissociation of the DMAP ligand. The 

logarithmic plot is linear which indicates that the ROMP followed pseudo first order 

kinetics for much of the reaction, though some deviation is seen at high conversions and 

long reaction times, indicating slow catalyst decomposition (Figure 51). Catalyst 77 can 

be considered the most active catalyst for aqueous ROMP to date. The efficient initiation 

may make this catalyst suitable for controlled aqueous ROMP, however, detailed 

polymer analyses are needed to confirm these kinetic results. 
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Summary 

 ROMP and RCM reactions were conducted both acidic protic and aqueous 

media using catalysts bearing pH-responsive ligands. Many, but not all, catalysts 

exhibited solubility in acidic aqueous or aqueous/alcoholic media confirming our goal to 

generate a catalyst with an externally controllable solubility profile. For catalysts bearing 

H2ITap or ITap ligands, a dramatic loss of activity was observed upon protonation of the 

aryl NMe2 groups of their NHC ligands, which clearly showed that conversion of the their 

π-donating dimethylamino groups into σ-withdrawing ammonium groups significantly 

reduced their catalyst activity. For systems with these aryl NMe2 groups, no noticeable 

ROMP activity was achieved in aqueous media, and no RCM reaction was observed 

accomplishing >56% substrate conversion. In most cases, complete catalyst 

decomposition was observed. 

 Much higher activities were exhibited by catalyst systems with remote NMe 

substituted NHC ligands in aqueous media. The ROMP reactions with these catalysts 

were very fast, often giving >95% within 15 minutes or less, making them the fastest 

ROMP catalysts for aqueous metathesis to date. Catalyst 77  (Figure 52) was 
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particularly impressive, achieving nearly complete conversion to ROMP polymer in  

aqueous media at concentrations as low as 1.0 mM with 1.0% catalyst loading in 60 

minutes at room temperature. Previously published catalysts by Grubbs et al.6a did not 

even remotely exhibit such high activity. Closer examination of the ROMP kinetic profile 

for this reaction showed that this catalyst may be suitable for controlled polymerization in 

aqueous media due to the fast dissociation its pH-responsive DMAP ligand, however, 

analysis of the polymers obtained in this reaction has not yet been completed to 

substantiate this theory.  
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CHAPTER VI 

APPLICATIONS FOR OLEFIN METATHESIS CATALYSTS WITH PH-RESPONSIVE 

LIGANDS 

 There are many practical applications available for catalysts with externally 

controllable solubility and activity profiles. The ability to perform homogenous olefin 

metathesis reactions in aqueous and acidic protic media, as explored in Chapter V, 

greatly expands the substrate availability for Ru-based olefin metathesis catalyst 

systems. Catalysts systems with reversible solubility profiles, externally controlled via 

acid addition, might be very economical, as these systems could be used to perform 

olefin metathesis reactions in both organic and aqueous media with a large variety of 

substrates of different solubilities. Interest has steadily grown to use olefin metathesis in 

aqueous and biological media.22,51,95 This chapter describes practical applications that 

were or are currently being explored in our laboratories or via collaboration. 

 In a collaboration with Dr. Andrea Robinson (Monash University, Austrailia) we 

have provided (H2ITap)Cl2Ru=CH-(C6H4-O-iPr) 62 to synthesize oligopeptides containing 

unnatural amino acids grafted on solid support. The analogous natural peptides have 

therapeutic value as potential drugs and antidotes to natural venoms but suffer from 

rapid digestion in the human body based on breaking their labile S-S bonds.96 These S-

S bonds enforce the active tertiary bicyclic structures. Thus, their replacement with 

HC=CH bonds is highly desirable, since they provide much elevated stability of the 

peptide under physiological conditions. The –CH=CH- moieties are generated via RCM. 

The use of aqueous media in the synthesis is much more benign to the peptides than 

organic solvents, thus an olefin metathesis catalyst was needed which can perform 

under these conditions. The project is still ongoing and we have not received any 

preliminary results.  
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 The external control of the catalyst solubility afforded by the pH-responsive 

ligands in these catalyst systems was also proven useful when employed for the removal 

of the Ru-metal catalyst from olefin metathesis reactions in organic media. The effective 

removal of Ru-metal has become an important issue for the pharmaceutical industry, 

which currently uses very expensive column chromatography to remove Ru-metal 

contamination from their products.6b,59 The pH-responsive catalyst systems developed 

for this dissertation are obviously very attractive for this process, as they have been 

shown to precipitate from organic reaction media upon acid addition, which would allow 

for easier catalyst removal. 

 We applied this concept by developing a protocol for catalyst 62 which reduces 

the Ru-metal contamination in RCM reaction mixtures (Scheme 35).79 Catalyst 62 was 

selected because of its enhanced hydrolytic stability and low solubility in organic media 

upon protonation, a result of the formation of low-soluble dicationic Ru-species 62a 

(Scheme 35). For this study, RCM reactions of diethyldiallylmalonate (DEDAM) and 3,3-

diallyl-2,4-pentanedione (DAP) (Figure 53) ([Ru] = 3.3 mM, 2% catalyst loading) were 

carried out in either  toluene or ethyl acetate at 50 oC for 30 minutes. All reaction 

provided >99% conversion. These reactions were then quenched through addition of 

ethyl vinyl ether. After 10 minutes, concentrated acid (HCl or H2SO4) was added via 

microliter syringe (approximately 10 equivalents with respect to the catalyst). This 

caused precipitation of the Ru-metal species within seconds of acid addition (Scheme 

36). The slurry was then filtered through a plug of Na2SO4, followed by solvent removal 

under reduced pressure. The complete RCM conversion was verified via 1H NMR 

spectroscopy before aliquots of 20–22 mg were taken and digested with concentrated 

HNO3 for analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The 

residual product that remained after the aliquots were taken was then extracted with t-

BuOMe and washed with water. The solvent was once again removed under reduced 
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pressure and additional aliquots of 20–22 mg were once again taken and digested with 

concentrated HNO3 for ICP-MS analysis.  
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Figure 53. Substrates for Catalyst Removal Studies  
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The results showed that products obtained from substrate DEDAM contained 

significantly lower amounts ruthenium than the products obtained from substrate DAP 

(Table 17). The results also showed that products obtained via filtration with subsequent 

extraction in water exhibit improved Ru-removal when compared to filtration alone, but 

significant amounts of the RCM product are also lost through this extra step. The 

conditions with lowest residual Ru-metal content in the RCM products were observed 

when the removal protocols were applied to a reaction solution with DEDAM as 

substrate, in toluene, and H2SO4 as acid. The residual Ru levels under these conditions 

of 24 ppm (after filtration only) and 11 ppm (after filtration and subsequent wash) are 

very close to the pharmaceutical standard of ≤ 10 ppm. This represents the most 
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effective, single-step Ru-removal protocol for homogenous metathesis reactions to date, 

including column chromatography and all scavenging methods.60,61 Hence, this method 

could be a very attractive alternative to column chromatography in the pharmaceutical 

industry based on its effectiveness and economic feasibility. It should be noted that 

attempts to reuse the precipitated catalyst after deprotonation with NEt3 were not 

successful. 

Table 17. Results for Studies of Ru-Metal Removal After RCM Reactions 
[Ru] = 3.3 mM, 2% Catalyst Loading, 50 

o
C 

Substrate Acid Solvent Method
a 

Yield (%)
b 

ppm Ru 

DEDAM HCl Toluene F 86.5 82 

DEDAM HCl Toluene W 58.8 48 

DEDAM H2SO4 Toluene F 72 24 

DEDAM H2SO4 Toluene W 60.3 11 

DEDAM HCl AcOEt F 76.9 34 

DEDAM HCl AcOEt W 52.9 45 

DEDAM H2SO4 AcOEt F 85.7 140 

DEDAM H2SO4 AcOEt W 45.7 48 

DAP HCl Toluene F 43.2 498 

DAP HCl Toluene W 68.9 160 

DAP H2SO4 Toluene F 79.1 213 

DAP H2SO4 Toluene W 44.5 80 

DAP HCl AcOEt F 78.2 335 

DAP HCl AcOEt W 63.3 144 

DAP H2SO4 AcOEt F 68.1 149 

DAP H2SO4 AcOEt W 44.3 90 
a
 F = filtration alone, W = filtration with subsequent extraction; 

b
 Isolated yields for W were based 

on the extraction step alone 

 In collaboration with Dr. Kevin Müller of BASF (Ludwigshafen, Germany), several 

catalysts produced for this dissertation were investigated for emulsion ROMP,97 which 

has little precedence in literature.2c,98 The scope of studies with water-soluble catalysts 

was limited to highly strained norbornene,7a  since less reactive monomers did not result 

in high conversions. Also, the catalyst loadings were high (3.3%). The current studies by 

BASF demonstrated that catalysts (H2)ITapRu=CH-Ph, and 79-82 were capable of 

polymerizing cyclooctene (COE) and dicyclopentadiene (DCPD) in emulsion under 

acidic conditions to afford complete polymerization with loadings as low as 180 ppm. 

Stable latexes were successfully generated for not only COE and DCPD, but also for 
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copolymers from mixtures of these two monomers. For the first time, other, less-reactive 

monomers than norbornene (the most active ROMP monomer known) were successfully 

polymerized with this technique. Also, the catalyst loading could be lowered by two 

orders of magnitude than in previous examples.98 A patent application for this process 

has been submitted and no detailed results have been released by our partner.97 

 Additionally, the effect of acid addition to pH-responsive catalysts 65 and 79-82 

(Figure 54) on gelation times of ROMP substrates was also investigated by BASF.97 The 

gelation times for DCPD (in hexadecane) and COE was monitored with these catalysts 

(66 mg per 5.35g of substrate, or 0.16-0.17% catalyst loading for DCPD and 0.14% 

catalyst loading for COE) at room temperature. The same experiments were then 

conducted in the presence of excess toluenesulfonic acid (TsOH) (0.2g). The results 

show that gelation times responded differently to the acid addition, depending on the 

nature of the catalyst and the substrate. It was observed that gelation times for DCPD 

are faster in the presence of acid with all catalysts tested. With COE,  gelation times for 

catalysts bearing H2ITap ligands were also faster in the presence of acid, particularly for 

Ru=CH-SPh catalysts 79 and 82. For catalysts bearing ITap ligands (catalysts 90 and 

91), gelation times were longer in the presence of acid, which was in stark contrast to 

what was observed with DCPD. Most contradictory are the results for catalyst 82. With 

this catalyst, the increase in gelation time was for COE was dramatic, which took two 

hours in the presence of acid versus 0.5 min observed without acid.  
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Figure 54. Catalysts Used in Gelation Studies of DCPD and COE  

Table 18. Gelation Studies
a
 of DCPD and COE 

 DCPD
b 

COE 

No Acid TsOH
c 

No Acid TsOH
c 

Catalyst Time (min) Time (min) Time (min) Time (min) 

65 0.03 0.03 1.1 0.03 

79 0.8 0.03 46.0 0.7 

80 10.6 0.8 2.2 3.9 

81 1.1 0.3 120 3.3 

82 5.0 1.5 1.5 120 
a
 66 mg catalyst / 5.35 g substrate at room temperature (0.16-0.17% catalyst loading for DCPD, 

0.14% catalyst loading for COE); 
b 
in hexadecane; 

c
 0.2 g TsOH 

 
 The data from these gelation studies provides some interesting implications for 

ROMP reactions conducted with these catalysts bearing pH-responsive ligands. As with 

previous kinetic studies, this data shows that the rate of ROMP reactions, and therefore 

overall catalyst activity profiles, may be altered through protonation of these catalysts 

with pH-responsive ligands in different directions for different monomers. Because 

different activity trends were observed for catalysts 80 and 82 with COE and DCPD, acid 

addition may additionally change the catalyst affinity for one substrate over another. This 

implies the degree of protonation may be a parameter which could be adjusted to 

produce truly statistical co-polymers of monomers whose reactivity with certain catalysts 
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change in different directions upon protonation. This, for the first time, could allow for the 

generation of statistical ROMP co-polymers with different compositions. Detailed studies 

of this phenomenon beyond the gelation studies, however, were not conducted. 
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CHAPTER VII 

SUMMARY 

 For this dissertation, novel Ru-based olefin metathesis catalysts bearing pH-

responsive ligands were produced. These pH responsive ligands provided the means by 

which the solubility and activity profiles of the catalyst could be externally controlled via 

acid addition. All of the catalysts generated for this dissertation contain pH-responsive, 

NMe2 modified NHC ligands. Additionally, some of the catalysts produced also contained 

pH-responsive N-donor ligands. The overall goal of this project was to generate catalysts 

systems capable of performing olefin metathesis reactions in both organic and aqueous 

media.  

 To achieve this goal, a series of NMe2 modified NHC ligand precursor salts 37, 

38, and 55-58 (Figure 55) were first produced. H2ITap.HCl 37 and ITap.HCl 38 were 

made by following literature procedures, with slight modifications, for similar imidazolin-

2-ylidene and imidazole-2-ylidene complexes, after the dimethylamino groups were 

introduced to the starting aniline compound. Both of these ligand precursors bear NMe2 

groups attached directly to the aryl substituents of their NHC ligands. By contrast, 

IXyONMe2
.HCl 55, IXySNMe2

.HCl 56, IDippONMe2
.HCl 57, and IDippSNMe2

.HCl 58 

each bear NMe2 groups that are removed from the aryl group of the NHC ligand by an E-

CH2-CH2 spacer (E = O or S). These precursors were synthesized via a template 

synthesis, based on the synthesis of precursor salt 37, which was developed in an 

attempt to gain fast access to a library of ligand precursors. Key to this template 

synthesis is the formation of diiodinated diamine intermediates which could be 

functionalized through Cu-mediated C-heteroatom coupling reactions,81 enabling a 

straightforward access to several unique ligand precursors. 
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Figure 55. NMe2 Modified NHC Ligand Precursors
 

 After these NHC ligand precursors were synthesized, they were used to make 

novel Ru-based olefin metathesis catalysts. These NHC ligands were incorporated into 

these structures via ligand exchange reactions with phosphine-ligand bearing 

precatalysts. In addition, some of the product catalysts were reacted with excess N-

donor ligand, which produced other derivative catalyst complexes. Most of the catalysts 

produced for this dissertation were benzylidene-carbene (or Grubbs-type) complexes, 

though phenylthiomethylidene, phenylindenylidene, and bidentate propylidene 

complexes were also generated.  

 Most of the catalysts produced for this dissertation bear either an H2ITap or ITap 

ligand (Figures 56 and 57), the catalyst syntheses were straightforward in accordance 

with literature procedures. By contrast, complexes with remote NMe2 groups on their 

NHC ligands proved much more difficult to synthesize and isolate. Alternative synthesis 

methods attempted with these ligand precursors, but were unsuccessful. As a result, 

only three of the catalysts generated for this study bear this NHC ligand motif (Figure 

58). In total, 16 novel catalyst complexes were generated for this study. 
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Figure 56. Catalysts Bearing an H2ITap Ligand  
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Figure 57. Catalysts Bearing an ITap Ligand  
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Figure 58. Catalysts Bearing NHC Liagnds With Remote NMe2 Groups  

 To assess the olefin metathesis activity of these catalysts in comparison to 

literature catalyst complexes, ROMP and RCM reactions were conducted in organic 

media. The kinetic profiles that were generated were then compared to those obtained 

for commercially available catalysts 12 and 13 under similar reaction conditions to asses 

the relative activities. In the absence of acid, metathesis reactions in organic showed 

that H2ITap ligand ligand bearing counterparts were more active than catalysts bearing 

other pH-responsive ligands synthesized in this project. As expected, benzylidene-

carbene catalysts outperformed analogous phenylthiomethylidene catalysts and 

phenylindenylidene-carbene complexes. However, with the phenylthiomethylidene 

complexes, catalyst performance was dramatically improved with elevated temperature 

(60 oC).  

 For some catalysts generated in this study, kinetic studies in organic media were 

also conducted in the presence of non-nucleophillic to asses the change in catalyst 

solubility and activity profiles afforded via protonation of the pH-responsive groups. The 

first to be examined in the acid studies were catalysts 61 and 62. Under standard, non-

acidic conditions, these two catalysts exhibited very similar activity profiles to their 

commercially available counterparts, catalysts 61 and 62. However, upon protonation of 
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their pH responsive NMe2 groups with increased concentrations of TsOH, a significant 

decrease in activity was observed. Analysis of polymers produced in ROMP reactions 

under these conditions indicated that the slowing of catalyst activity was due to a 

decrease in the rate of propagation, since better molecular weight control was afforded 

with increased amounts of acid. Additional DFT calculations were used to determine the 

Mullikan atomic charges for similar model complexes. These indicated that the π-

acceptor capability of the H2ITap ligand was reduced upon protonation, showing that the 

protonation of the NMe2 groups of the ITap ligand greatly interfered with the electronic 

environment of the ligand, thus causing an overall decrease in catalyst activity. Initiation 

kinetics conducted by reacting complexes 61 and 62 with EVE confirmed that slightly 

increased rates of initiation were observed when acid was added. Combined, these 

results unambiguously showed that the decrease of activity upon protonation of the 

NMe2 groups of the H2ITap ligand was a result of decreased rates of propagation. To our 

knowledge this is the first example of an external control for propagation in metathesis 

reactions. 

 Kinetic studies upon the addition of acid were also conducted with catalysts 

bearing pH-responsive N-donor ligands. As expected, an increase in the rate of initiation 

in ROMP and RCM reactions was observed when these N-donor ligands were 

dissociated from the metal center upon acid addition. For catalysts 65, 66, and 88, 

dissociation of the DMAP ligand not only resulted in increased initiation efficiency, but 

also in an increase in overall catalyst activity. For catalyst 88 this increase was 

extraordinary, since this phenylindenylidene complex was converted from a slow catalyst 

system into one with activity similar to commercially available catalyst 12, which is 

considered to have excellent metathesis activity. This was not unexpected, as these 

trends had previously been observed in literature for other DMAP catalyst systems.1g,64 
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Unfortunately, for catalysts 81 and 87 decreased metathesis conversions were 

observed, most likely due to increased catalyst decomposition in the presence of acid. 

 Since the main goal in this dissertation was to generate catalysts capable of 

performing metathesis reactions in aqueous media, the catalysts made for this project 

were tested in aqueous ROMP and RCM reactions. The protonation of the NMe2 groups 

of the NHC ligand of these catalysts afforded complexes bearing two cationic NMe2H
+ 

groups, which, for most catalysts produced in this project, provided sufficient catalyst 

solubility in aqueous or acidic protic media. Therefore, external control of catalyst 

solubility was established via protonation of the pH-responsive groups. For catalyst 

systems with H2ITap and ITap ligands, the conversion of the π-donating dimethylamino 

groups into σ-withdrawing ammonium groups upon protonation once again resulted in a 

dramatic slowing of catalyst propagation. For systems with these aryl NMe2 groups, no 

noticeable ROMP activity was observed in acidic aqueous media, and no RCM reaction 

provided more than 56% substrate conversion with a 4% catalyst loading. In most cases, 

significant catalyst decomposition was also observed. 

 Much better activity was observed with catalysts bearing NHC ligands modified 

with remote NMe2 groups in acidic, protic media. These catalysts (70, 77, and 78) each 

completed ROMP reactions faster than Grubbs water-soluble catalyst 26, which is 

considered to be the most active catalyst in aqueous olefin metathesis reactions. This 

catalyst has been reported to afford full ROMP conversion of norbornene substrates in a 

little over three hours with 3.3% catalyst loading. All three of our catalysts, by 

comparison, allow for the same conversion in just 15 minutes at 4% catalyst loading. 

Catalyst 70 was also shown to exhibit nearly complete conversion to ROMP polymer 

with the same norbornene substrate within 15 minutes at just 2% catalyst loading, lower 

than ever observed with catalyst 26, as well as comparable RCM activity to catalyst 26. 

Catalyst 77 also performs ROMP of norbornene substrate at lower concentrations, with 
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97.2% conversion to polymer observed with just [Ru] = 1.0 mM with 1.0% catalyst 

loading, which is more similar to reaction conditions applied in organic media and is 

significantly lower than what has ever been observed with Grubbs’ catalyst 26. This 

catalyst is by far the most active aqueous ROMP catalysts ever reported to date. 

 Many applications exist for our catalyst systems that exhibit externally 

controllable solubility and activity profiles. One application developed in our laboratories 

has enabled the removal of Ru-metal contamination after RCM reactions by way of 

external manipulation of catalyst solubility profile via acid addition. Another application 

currently being explored in collaboration with Dr. Andrea Robinson (Monash University, 

Austrailia) is the use of these catalysts to graft cyclic oligopeptides containing unnatural 

amino acids. Other collaborations with BASF have found application for use in the 

synthesis of stable latexes of COE, DCPD, and mixtures of the two. Other exciting 

results generated by our collaborators at BASF include gelation studies of these two 

monomers using our catalysts both in the presence and absence of TsOH. The results of 

this study imply that acid addition might not just afford an external control of activity and 

solubility, but may additionally change the catalyst affinity for one substrate over another. 

However, no further studies have yet been conducted to explore this phenomenon. 
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CHAPTER VIII 

EXPERIMENTALS 

General Procedures 

 All experiments with organometallic compounds were performed under a dry 

nitrogen atmosphere using standard Schlenck techniques or in an MBraun dry-box (O2 

<2 ppm). NMR spectra were recorded on a Varian Inova instrument (300.1 MHz for 1H, 

75.9 MHz for 13C, and 121.4 MHz for 31P). 1H and 13C NMR spectra were referenced to 

the residual solvent, 31P NMR spectra were referenced using H3PO4 (δ = 0 ppm) as 

external standard. For sonication a Fischer Scientific Ultrasonic Cleaner FS 30 was 

used. The bath temperature was set to 30 oC. ICP-MS analyses were conducted by Dr. 

Alan M. Shiller. X-ray crystallography was conducted by Dr. Edward J. Valente. Absolute 

Size-Exclusion Chromatography (ASEC) of ROMP polymers was conducted by Dr. 

Andrew B. Lowe and Dr. Bing Yu. DFT calculations were conducted by Dr. Yong Zhang. 

Size exclusion chromatographic analysis was performed on a Waters system comprised 

of a Waters 515 HPLC pump, Waters 2487 Dual λ absorbance detector, and Waters 

2410 RI detector equipped with a PolymerLabs PLgel 5μm guard column and a 

PolymerLabs PLgel 5μm MIXED-C column, in THF stabilized with 281 ppm BHT at a 

flow rate of 1.0 mL/min. The column was calibrated with a series of narrow molar mass 

distribution poly(methyl methacrylate) standards. The data was analyzed with Empower 

Pro 1154. 

 DFT calculations were conducted using the Gaussian 03 program.104 All atoms in 

the model complexes were considered in the calculations. Geometries were optimized 

by using the hybrid DFT method mPW1PW91105 together with an effective-core potential 

basis SDD106 which were found to give good geometries for late transition metal 

complexes.91 To compute the Mulliken charges, a hybrid DFT method B3LYP together 

with a large basis set was used, namely a full-electron basis DGDZVP for Ru, a 6-
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311++G(2d,2p) for first coordination shell atoms, and 6-31G(d) for the rest part of the 

atoms. The same approach was used to calculate various electronic properties of late 

transition metal complexes.91b In case of the monoprotonated 93b, structures of 

protonating the NMe2 group in both sides of the NHC ligands were considered and their 

Mulliken charges were found to be very similar. The average value was reported. 

Materials and Methods 

 All solvents for manipulations under inert gas (heptane, thf, CH2Cl2, tBuOMe, 

toluene) were dried by passage through solvent purification (MBraun-Auto-SPS). Water 

was filtered, deionized (DI), and distilled prior to use. All NMR solvents used in 

combination with catalyst complexes (D2O, DCl–D2O, CD2Cl2, CDCl3) were degassed 

prior to use. Other solvents were used as purchased. Reagents were purchased from 

commercial sources were degassed and stored in the dry-box when directly used in 

combination with organometallic complexes, and otherwise were used without further 

purification. 2-i-Propoxystyrene,99 diethyldiallylmalonate (DEDAM) 79,100 diallylmalonic 

acid (DAM) 80,101 and 3,3-diallylpentane-2,4-dione (DAP) 81102 and monomer 77103 were 

synthesized according to literature procedures. Grubbs’ catalyst 1 was purchased from 

Aldrich, degassed and stored in the dry-box. Phenylindenylidene catalyst precursor 21 

was synthesized in accordance with literature procedure.37b,47 BASF provided Ru=CH-

SPh catalyst precursor 24. Purity of all complexes was determined via 1H NMR 

spectroscopy.  

ICP MS Analyses 

 The aliquots of RCM product were digested in hot conc. HNO3 (1 mL). The solid 

residue was then dissolved in 0.16 M HNO3 containing 2 ppb In as an internal standard. 

The final analytical solution contained about 0.67 mg of product per mL acid. [Ru] was 

determined in this solution using a sector-field ICP-MS (ThermoFinnigan Element 2). 

Equivalent results were obtained from five different Ru isotopes (masses 99, 100, 101, 
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102, and 104); likewise, no difference was noted between results obtained in low 

resolution (m/Δm = 300) or medium resolution (m/Δm = 4000), suggesting a lack of 

interferences. Blank samples of the digested starting materials gave Ru contents of <0.1 

ppm (DEDAM) and 0.6 ppm (DAP) Ru-content. 

Synthesis of N,N-3,5-Tetramethyl-1,4-phenylenediamine (34)107 

 A solution of NaNO2 (9.922 g, 143.8 mmol) in water (20 mL) was added slowly to 

a solution of N,N-3,5-tetramethylaniline 33 (20.032 g, 134.4 mmol) in conc. HClaq (50 

mL) under vigorous stirring via a capillary which was immersed in the reaction solution at 

-5 oC over a period of 60 min. During the addition, a yellow precipitate (4-nitroso-N,N-

3,5-tetramethylaniline·HCl) was formed. After the addition, the slurry was stirred for 

another 60 min at 0 oC and then filtered cold through a Buchner funnel. The yellow 

residue (4-nitroso-N,N-3,5-tetramethylaniline·HCl) was washed with ethanol (3 x 50 mL) 

and suction-dried for 60 min. Then the powdered filter residue was added in small 

portions to a slurry of powdered tin (7.360 g, 61.8 mmol) in conc. HClaq (50 mL) at 70oC. 

While adding the nitrosoaniline the solution turned intensely yellow in color and reverted 

back to colorless within a few seconds. Once all tin was consumed, the yellow color 

persisted. The residual nitrosoaniline salt not used in the conversion was stored for a 

later transformation. It should be noted that this procedure avoids the addition of excess 

tin. Otherwise an insoluble precipitate is formed during the basic work-up, and this 

causes a significant reduction of the yield. The resulting slightly yellow solution was 

slowly added to ice-cold 3 M aqueous NaOH (300 mL). The aqueous phase was 

extracted with CH2Cl2 (3 x 50 mL), and the organic phases were combined and dried 

over NaSO4. The solvent was removed to give compound 34 (9.770 g, 60.3 mmol, 45%) 

in over 98% purity (1H NMR) as a golden-colored viscous liquid. 

Synthesis of Glyoxalbis(4-dimethylamino-2,6-dimethylphenyl)imine (35) 
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 Compound 34 (6.373 g, 39.4 mmol) was added to a solution of 40% aqueous 

glyoxal (3.852 g, 26.6 mmol) in methanol (100 mL) and one drop of conc. HClaq (approx. 

20 mL) and stirred for 24 hrs at room temperature. During the reaction, a deep-yellow 

colored precipitate was formed. The slurry was filtered, the residue was washed with 

methanol (3 x 20 mL), dried on the filter, and then dried in the vacuum oven at 60 oC for 

3 h to give compound 35 (5.874 g, 16.8 mmol, 85%) in >99% purity (1H NMR) as a 

golden-yellow powder. 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 8.11 (s, 2 H, N=CH), 6.50 

(s, 4 H, C6H2), 2.94 (s, 12 H, N(CH3)2), 2.24 (C6H2–CH3); 
13C NMR (75.9 MHz, 20 oC, 

CDCl3): δ 162.5 (N=CH), 148.1, 140.6, 128.9, 112.8 (C6H2), 40.8 (N(CH3)2), 19.2 (C6H2–

CH3). 

Synthesis of N,N-Bis(4’-dimethylamino-2’,6’-dimethylphenyl)ethylene-1,2-diamine (36) 

 A solution of compound 35 (3.380 g, 9.66 mmol) in thf (100 mL) containing 

NaBH4 (0.821 g, 21.6 mmol) and boric acid (1.781 g, 28.8 mmol) was stirred at 30 oC 

over a period of 60 min. In this time period the solution turned colorless. The solution 

was cooled to room temperature and water (40 mL) was added carefully and then conc. 

HClaq (10 mL) was added dropwise until the solution stopped developing gas. The 

solution was warmed to 50 oC under stirring for 10 min and then cooled to room 

temperature. The thf was removed under reduced pressure and the aqueous solution 

was neutralized with Na2CO3. The aqueous phase was extracted with tBuOMe (60 mL), 

and the organic layer was washed with brine (3 x 40 mL). The organic phase then was 

dried over Na2SO4 and filtered. The solvent was removed under reduced pressure with a 

rotary evaporator, and the residue was dried in the vacuum oven at 60 oC for 2 h to give 

compound 36 (3.000 g, 8.47 mmol, 88%) as a colorless, viscous liquid in >98% purity 

(1H NMR) which solidified at room temperature over 12 h. 1H NMR (300.1 MHz, 20 oC, 

CDCl3): δ 6.51 (s, 4 H, C6H2), 3.11 (s, 4 H, NH–CH2), 2.89 (s, 12 H, N(CH3)2), 2.34 (s, 12 
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H, C6H2–CH3); 
13C NMR (75.9 MHz, 20 oC, CDCl3): δ 146.7, 136.7, 131.5, 113.9 (C6H2), 

49.7 (NH–CH2), 41.3 (N(CH3)2), 18.8 (C6H2–CH3). 

Synthesis of 1,3-Bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazolium 

chloride, H2ITap·HCl (37) 

 A solution of diamine 36 (2.567 g, 7.25 mmol) and ammonium chloride (0.380 g, 

7.22 mmol) in triethyl ortho-formate (30 mL) was heated under stirring at 130 oC for 16 h. 

The excess triethyl ortho-formate was distilled under reduced pressure (0.1 Torr) and 

collected to be reused. Cyclohexane (30 mL) was added to the solid residue and 

sonicated for 30 min at 30oC. The slurry was filtered, washed with cyclohexane (3 x 20 

mL), sucked dry on the filter for 10 min and dried in the vacuum oven at 60oC for 3 h to 

give ligand precursor 37 (2.499 g, 6.31 mmol, 87%) as a slightly off-white powder in 

>99% purity (1H NMR). 1H NMR (300.1 MHz, 20 oC, d6-DMSO): δ 8.97 (s, 1 H, N–

CH=N), 6.55 (s,4H, C6H2), 4.37 (s, 4H, N–CH2), 2.92 (s, 12 H, N(CH3)2), 2.32 (s, 12 H, 

aryl-CH3); 
13C NMR (75.9 MHz, 20 oC, d6-DMSO): δ 160.8 (N-CH=N), 150.8, 135.9, 

122.2, 111.7 (C6H2), 51.3 (N–CH2), 40.0 (N(CH3)2), 17.8 (C6H2–CH3). 

Synthesis of 1,3-Bis(2’,6’-dimethyl-4’-dimethylaminophenyl)imidazolium chloride, 

ITap.HCl (38)   

 Under non-inert conditions, a solution of chlorotrimethylsilane (0.345 g, 3.20 

mmol) in ethyl acetate (20 mL) was added to a solution of diimine 35 (1.086 g, 3.09 

mmol) in ethyl acetate (50 mL) containing paraformaldehyde (0.139 g, 4.64 mmol) under 

stirring at 70 °C over a period of 5 h.  After the addition, the reaction was kept under 

stirring at 70 °C for another 16 h.  During this time, a slightly reddish-purple precipitate 

formed.  After cooling to room temperature, the slurry was filtered, the residue was 

washed with ethyl acetate (2 × 10 mL) and dried in the vacuum oven at 60 °C to give 

ligand precursor 38 (0.998 g, 2.50 mmol, 78 %) as a slightly off white powder in >99 % 

purity (1H NMR).  1H NMR (300.1 MHz, CDCl3, 20 oC): δ 10.09 (t, 3J[1H1H] = 1.5 Hz, 1H), 
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7.67 (d, 3J[1H1H] = 1.5 Hz, 2H, C3H3N2), 6.46 (s, 4H, 2 × C6H2), 3.00 (s, 6H, N(CH3)2),  

2.17 (s, 6H, 2 × C6H2(CH3)2); 
13C NMR (75.9 MHz, CDCl3, 20 oC): δ 151.3, 138.9, 121.8, 

111.6 (C6H2), 134.7, 125.3 (C3H3N2), 40.2 (N(CH3)2), 18.2 (C6H2(CH3)2). 

Synthesis of 4-iodo-2,6-dimethylbenzenamine (42)108  

 Iodine (22.622 g, 89.1 mmol) was added to a solution of compound 2,6-

dimethylaniline (10.027 g, 82.7 mmol) and NaHCO3
 (8.367 g, 99.5 mmol) in 250 mL 

CH2Cl2–H2O 1:1 v/v in air with stirring at -5 oC over a period of 60 min.  After the addition 

was complete, the reaction was stirred for 60 min at room temperature. Sodium 

thiosulfate (9.000 g, 36.2 mmol) was added and the reaction was stirred an addition 10 

min to reduce the residual iodine. The organic phase was separated, washed with H2O 

(3 x 100 mL), and the organic phase was separated and dried over NaSO4. The solvent 

was removed to give compound 42 (19.610 g, 79.3 mmol, 96%) in >98% purity (1H 

NMR) as a dark-colored solid.  

Synthesis of 4-iodo-2,6-diisopropylbenzenamine (43)109   

 Iodine (22.015 g, 86.7 mmol) was added to a solution of 2,6-diisopropylaniline 

(14.552 g, 82.1 mmol) and NaHCO3
 (8.308 g, 98.9 mmol) in 250 mL CH2Cl2 – DI H2O 1:1 

(v/v) in air with stirring at -5 oC over a period of 60 min.  After the addition was complete, 

the reaction was stirred for 60 min at room temperature. Sodium thiosulfate was added 

and the reaction was stirred an addition 10 min to reduce the residual iodine. The 

organic phase was separated, washed with H2O (3 x 100 mL), and the organic phase 

was separated and dried over NaSO4. The solvent was removed to give compound 43 

(19.610 g, 79.3 mmol, 96%) in >97% purity (1H NMR) as a dark-colored solid.  

Synthesis of 2-iodo-4,6-dimethylbenzenamine (44)110   

 Iodine (17.818 g, 70.2 mmol) was added to a solution of 2,4-dimethylaniline 

(7.008 g, 57.9 mmol) and NaHCO3
 (5.881 g, 70.0 mmol) in 120 mL CH2Cl2 - DI H2O 1:1 

(v/v) in air with stirring at -5 oC over a period of 60 min.  After the addition was complete, 
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the reaction was stirred for 60 min at room temperature. Sodium thiosulfate was added 

and the reaction was stirred an addition 10 min to reduce the residual iodine. The 

organic phase was separated, washed with H2O (3 x 100 mL), and the organic phase 

was separated and dried over NaSO4. The solvent was removed to give compound 44 

(17.070 g, 69.1 mmol, 94%) in >96% purity (1H NMR) as a dark-colored solid.  

Synthesis of Glyoxalbis(4-iodo-2,6-dimethylphenyl)imine (45)  

 Aniline 42 (9.800 g, 32.9 mmol) was added to a solution of 40% aqueous glyoxal 

(3.982 g, 27.5 mmol) in methanol (100 mL) and one drop of conc. HClaq and stirred for 

24 hrs at room temperature. During the reaction, a deep-yellow colored precipitate was 

formed. The slurry was filtered, the residue was washed with methanol (3 x 20 mL), 

sucked dry and the dried in the vacuum oven at 60 oC for 3 h to give compound 45 

(5.562 g, 10.8 mmol, 54%) in >98% purity (1H NMR) as a yellow powder. 1H NMR (300.1 

MHz, 20 oC, CDCl3): δ 8.06 (s, 2H, N=CH), 7.44 (s, 4H, C6H2), 1.57 (s, 12H, C6H2–CH3); 

13C NMR (75.9MHz, 20 oC, CDCl3): δ 163.4 (N=CH), 149.7, 137.2, 129.1, 89.3 (C6H2), 

18.1 (CH3). 

Synthesis of Glyoxalbis(4-iodo-2,6-diisopropylphenyl)imine (46)   

 Aniline 43 (4.323 g, 14.2 mmol) was added to a solution of 40% aqueous glyoxal 

(2.059 g, 14.3 mmol) in methanol (50 mL) and one drop of conc. HClaq and stirred for 24 

hrs at room temperature. During the reaction, a deep-yellow colored precipitate was 

formed. The slurry was filtered, the residue was washed with methanol (3 x 20 mL), 

sucked dry and the dried in the vacuum oven at 60oC for 3 h to give compound 46 (5.432 

g, 5.61 mmol, 79%) in >98% purity (1H NMR) as a golden-yellow powder. 1H NMR 

(300.1 MHz, 20 oC, CDCl3): δ 8.03 (s, 2H, N=CH), 7.44 (s, 4H, C6H2), 2.84 (m, 4H, iPr-

CH), 1.18 (d, 3J[1H1H] = 6.9 Hz, 24H, iPr–CH3); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 

160.4 (N=C), 147.8, 139.5, 132.7, 90.5 (C6H2), 28.5 (iPr–CH), 23.4 (iPr-CH3). 

Synthesis of Glyoxalbis(2-iodo-4,6-dimethylphenyl)imine (47)  
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 Aniline 44 (12.454 g, 41.9 mmol) was added to a solution of 40% aqueous 

glyoxal (6.096 g, 42.1 mmol) in methanol (100 mL) and one drop of conc. HClaq and 

stirred for 24 hrs at room temperature. During the reaction, a deep-yellow colored 

precipitate was formed. The slurry was filtered, the residue was washed with methanol 

(3 x 20 mL), sucked dry and the dried in the vacuum oven at 60 oC for 3 h to give 

compound 47 (5.562 g, 10.8 mmol, 54%) in >96% purity (1H NMR) as a yellow powder. 

1H NMR (300.1 MHz, 20 oC, CDCl3): δ 8.14 (s, 2H, N=CH), 7.57 (s, 2H, C6H2), 7.03 (s, 

2H, C6H2), 2.29 (s, 6H, C6H2–CH3), 2.21 (s, 6H, C6H2–CH3); 
13C NMR (75.9MHz, 20 oC, 

CDCl3): δ 165.3 (N=C), 156.7, 138.3, 137.9, 130.4, 133.2, 84.6 (C6H2), 24.1 (CH3), 15.3 

(CH3). 

Synthesis of N,N’-Bis(4’-iodo-2’,6’-dimethylphenyl)amino-1,2-ethane (48)   

 A solution of compound 45 (4.822 g, 9.31 mmol) in thf (100 mL) containing 

NaBH4 (0.932 g, 24.6 mmol) and boric acid (1.568 g, 25.3 mmol) was stirred at 30 oC 

over a period of 90 min. In this time period the solution turned colorless. The solution 

was cooled to room temperature and water (40 mL) was added carefully and then conc. 

HClaq (16 mL) was added dropwise until the solution stopped developing gas. The 

solution was warmed to 50 oC under stirring for 10 min and then cooled to room 

temperature. The thf was removed under reduced pressure and the aqueous solution 

was neutralized with Na2CO3. The aqueous phase was extracted with tBuOMe (60 mL), 

and the organic layer was washed with brine (3 x 50 mL). The organic phase then was 

dried over Na2SO4 and filtered. The solvent was removed under reduced pressure with a 

rotary evaporator, and the residue was dried in the vacuum oven at 60 oC for 2 h to give 

compound 48 (4.500 g, 8.71 mmol, 94%) as an off-white solid in >98% purity. 1H NMR 

(300.1 MHz, 20 oC, CDCl3): δ 7.33 (s, 4H, C6H2), 3.31 (br, 2H, NH) 3.17 (s, 4H, NH–

CH2), 2.25 (s, 12H, C6H2–CH3); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 145.9, 137.6, 

132.1, 85.4 (C6H2), 48.8 (NH-CH2), 18.6 (CH3). 
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Synthesis of N,N’-Bis(4’-iodo-2’,6’-diisopropylphenyl)amino-1,2-ethane (49)  

 A solution of compound 46 (5.003 g, 8.02 mmol) in thf (100 mL) containing 

NaBH4 (1.587 g, 15.9 mmol) and boric acid (1.3300 g, 21.1 mmol) was stirred at 30 oC 

over a period of 90 min. In this time period the solution turned colorless. The solution 

was cooled to room temperature and water (40 mL) was added carefully and then conc. 

HClaq (17 mL) was added dropwise until the solution stopped developing gas. The 

solution was warmed to 50 oC under stirring for 10 min and then cooled to room 

temperature. The thf was removed under reduced pressure and the aqueous solution 

was neutralized with Na2CO3. The aqueous phase was extracted with tBuOMe (60 mL), 

and the organic layer was washed with brine (3 x 50 mL). The organic phase then was 

dried over Na2SO4 and filtered. The solvent was removed under reduced pressure with a 

rotary evaporator, and the residue was dried in the vacuum oven at 60 oC for 2 h to give 

compound 49 (4.661 g, 7.41 mmol, 93%) as an opaque solid in >98% purity (1H NMR). 

1H NMR (300.1 MHz, 20 oC, CDCl3): δ 7.39 (s, 4H, C6H2), 3.26 (br., 2H, NH), 3.20 (m, 

4H, iPr-CH), 3.10 (s, 4H, NH–CH2), 1.22 (d, 3J[1H1H] = 7.2 Hz, 24H, iPr-CH3); 
13C NMR 

(75.9MHz, 20 oC, CDCl3): δ 145.3, 143.3, 133.1, 88.9 (C6H2), 52.2 (NH-CH2), 28.0 (iPr–

CH), 24.3 (iPr-CH3). 

Synthesis of N,N’-Bis(2’-iodo-4’,6’-dimethylphenyl)amino-1,2-ethane (50)   

 A solution of compound 47 (5.174 g, 10.0 mmol) in thf (100 mL) containing 

NaBH4 (2.0670 g, 54.7 mmol) and boric acid (1.695 g, 27.4 mmol) was stirred at 30 oC 

over a period of 90 min. In this time period the solution turned colorless. The solution 

was cooled to room temperature and water (40 mL) was added carefully and then conc. 

HClaq (16 mL) was added dropwise until the solution stopped developing gas. The 

solution was warmed to 50 oC under stirring for 10 min and then cooled to room 

temperature. The thf was removed under reduced pressure and the aqueous solution 

was neutralized with Na2CO3. The aqueous phase was extracted with tBuOMe (60 mL), 
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and the organic layer was washed with brine (3 x 50 mL). The organic phase then was 

dried over Na2SO4 and filtered. The solvent was removed under reduced pressure with a 

rotary evaporator, and the residue was dried in the vacuum oven at 60oC for overnight to 

give compound 50 (3.928 g, 7.51 mmol, 75%) as an off-white solid in >98% purity (1H 

NMR). 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 7.43 (s, 2H, C6H2), 6.91 (s, 2H, C6H2), 3.49 

(br, 2H, NH) 3.15 (s, 4H, NH–CH2), 2.34 (s, 6H, C6H2–CH3), 2.20 (s, 6H, C6H2–CH3); 
13C 

NMR (75.9MHz, 20 oC, CDCl3): δ 151.6, 137.6, 130.8, 128.4, 126.6, 81.2 (C6H2), 49.1 

(NH-CH2), 23.9 (CH3), 15.0 (CH3). 

Synthesis of N,N’-Bis(4’-[2’’-dimethylaminoethoxy]-2’,6’-dimethylphenyl)amino-1,2-

ethane (51)   

 Diamine 48 (2.105 g, 4.00 mmol) was added to a solution of KOtBu (1.820 g, 

16.2 mmol) in N,N-Dimethylethanolamine (30 mL) and stirred under inert gas conditions 

at 60 oC for 60 min. After 60 min, CuCl (1.01, 10.2 mmol) was added under N2 gas. Then 

vacuum was applied and the reaction was stirred at 130 oC overnight.  tBuOMe (100 mL) 

and aqueous ammonia (1.5M, 100 mL) was added and the solution was stirred in air at 

room temperature for 60 min. The yellow-colored organic phase was separated, washed 

with brine (6 x 100 mL), then dried over Na2SO4 and filtered. The solvent was removed 

from the filtrate under reduced pressure with a rotary evaporator, and the residue was 

dried in the vacuum oven at 60 oC for 3 h to give compound 51 (1.438 g, 3.23 mmol, 

80%) as a dark-colored solid in >98% purity (1H NMR). 1H NMR (300.1 MHz, 20 oC, 

CDCl3): δ 6.61 (s, 4H, C6H2), 4.01 (t, 3J[1H1H] = 5.7 Hz, 4H, O-CH2), 3.49 (br, 2H, N-H), 

3.08 (s, 4H, NH-CH2), 2.70 (t, 3J[1H1H] = 5.7 Hz, 4H, CH2-NMe2), 2.32 (s, 12H, C6H2-

CH3), 2.29 (s, 12H, N(CH3)2); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 146.3, 137.8, 127.6, 

112.2 (C6H2), 65.3 (O-CH2), 59.6 (CH2-NMe2), 52.6 (NH-CH2), 46.2 (N(CH3)2), 16.2 

(CH3).  
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Synthesis of N,N’-Bis(4’-[2’’-dimethylaminoethanethio]-2’,6’-dimethylphenyl)amino-1,2-

ethane (52)   

 Diamine 48 (2.005 g, 3.90 mmol) was added to a solution of 2-(Dimethylamino) 

ethanethiol hydrochloride (1.643 g, 12.0 mmol) and KOtBu (3.479 g, 31.0 mmol) in 1-

methyl-2-pyrrolidinone (60 mL) and stirred under inert gas conditions at 60 oC for 60 min. 

After 60 min, CuCl (1.187 g, 12.0 mmol) was added under inert gas atmosphere. 

Vacuum was applied for 10 sec and the flask was sealed off. The reaction was stirred 

under vacuum at 110 oC for 16 h.  tBuOMe (100 mL), aqueous ammonia (100 mL)  and 

0.1 M NaOH (4 mL) was added and the solution was stirred in air at room temperature 

for 2 hrs.  The organic phase was separated, washed with 0.1 M NaOH (3 x 80 mL) and 

brine (5 x 80 mL), and then dried over Na2SO4. The solvent was removed under reduced 

pressure with a rotary evaporator, and the residue was dried in the vacuum oven at 60 

oC for overnight to give compound 52 (1.409 g, 3.01 mmol, 77%) as a light yellow 

powder with >96% purity (1H NMR) . 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 8.80 (s, 4H, 

C6H2), 3.39 (br, 2H, N-H), 3.18 (s, 4H, NH-CH2), 2.96 (t, 3J[1H1H] = 8.1 Hz, 4H, S-CH2), 

2.52 (t, 3J[1H1H] = 8.1 Hz, 4H, CH2-NMe2), 2.30 (s, 12H, N(CH3)2), 2.26 (s, 12H, C6H2-

CH3); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 145.1, 131.5, 130.4, 127.9 (C6H2), 59.1 

(CH2-NMe2), 48.9 (S-CH2), 45.6 (NH-CH2), 33.1 (N(CH3)2), 18.8 (CH3). 

Synthesis of N,N’-Bis(4’-[2’’-dimethylaminoethoxy]-2’,6’-diisopropylphenyl)amino-1,2-

ethane (53) 

 Diamine 49 (4.007 g, 6.32 mmol) was added to a solution of KOtBu (1.493 g, 

13.3 mmol) in N,N-dimethylethanolamine (25 mL) and stirred under inert gas conditions 

at 60 oC for 60 min. After 60 min, CuCl (1.318, 13.3 mmol) was added under N2 gas. 

Then vacuum was applied and the reaction was stirred at 120 oC for 16 h.  tBuOMe (100 

mL) and aqueous ammonia (1.5M, 100 mL) was added and the solution was stirred in air 

at room temperature for 60 min. The organic phase was separated, washed with brine (8 
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x 100 mL), then dried over Na2SO4 and filtered. The solvent was removed from the 

filtrate under reduced pressure and the filtrate residue was dried in the vacuum oven at 

60oC for 3 h to give compound 53 (2.792 g, 5.04 mmol, 79%) as a viscous brown liquid 

in >95% purity (1H NMR). 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 6.70 (s, 4H, C6H2), 4.06 

(t, 3J[1H1H] = 6.0 Hz, 4H, O-CH2), 3.37 (sept, 3J[1H1H] = 6.9 Hz, 4H, iPr-CH), 3.06 (s, 4H, 

NH-CH2), 2.73 (t, 3J[1H1H] = 6.0 Hz, 4H, NMe2-CH2), 2.35 (s, 12H, N(CH3)2), 1.67 (br, 

2H, N-H), 1.24 (d, 3J[1H1H] = 6.0 Hz, 24H, iPr-CH3); 
13C NMR (75.9MHz, 20 oC, CDCl3): 

δ 155.7, 144.7, 136.7, 109.8 (C6H2), 65.9 (O-CH2), 58.7 (N-CH2), 52.8 (NH-CH2), 46.2 

(N(CH3)2), 28.2 (iPr–CH), 24.5 (iPr-CH3). 

Synthesis of N,N’-Bis(4’-[2’’-dimethylaminoethanethio]-2’,6’-diisopropylphenyl)amino-1,2-

ethane (54) 

 Diamine 49 (3.041 g, 4.82 mmol) was added to a solution of 2-

(Dimethylamino)ethanethiol hydrochloride (14.921 g, 14.8 mmol) and KOtBu (3.358 g, 

29.9 mmol) in 1-methyl-2-pyrrolidinone (80 mL) and stirred under inert gas conditions at 

60 oC for 60 min. After 60 min, CuCl (1.500, 15.2 mmol) was added under inert gas 

atmosphere. The reaction was stirred under vacuum at 110 oC 16 h.  tBuOMe (100 mL), 

aqueous ammonia (1.5M, 100 mL)  and 0.1 M NaOH (4 mL) was added and the solution 

was stirred in air at room temperature for 2 hrs.  The organic phase was separated, 

washed with 0.1 M NaOH (3 x 80 mL) and brine (4 x 80 mL), and then dried over 

Na2SO4. The solvent was removed under reduced pressure with a rotary evaporator, 

and the residue was dried in the vacuum oven at 60 oC for 3 h to give compound 54 

(2.091 g, 3.63 mmol, 74%) as a dark-colored oil which slowly solidified at room 

temperature to give the desired compound with >98% purity (1H NMR). 1H NMR (300.1 

MHz, 20 oC, CDCl3): δ 7.13 (s, 4H, C6H2), 3.31 (sept, 3J[1H1H] = 7.2 Hz, 4H, iPr-CH), 

3.21 (s, 2H, N-H), 3.14 (s, 4H, NH-CH2), 3.02 (t, 3J[1H1H] = 6.9 Hz, 4H, S-CH2), 2.57 (t, 

3J[1H1H] = 6.9 Hz, 4H, CH2-NMe2) 2.24 (s, 12H, N(CH3)2), 1.24 (d, 3J[1H1H] = 6.6 Hz, 
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24H, iPr-CH3); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 143.6, 135.4, 126.2, 114.3 (C6H2), 

59.4 (N-CH2), 55.6 (NH-CH2), 46.1 (N(CH3)2), 31.6 (S-CH2), 28.9 (iPr–CH), 24.2 (iPr-

CH3). 

Synthesis of Ligand Precursor Salt 55 (IXyONMe2
.HCl)  

 Diamine 51 (1.200 g, 2.70 mmol) and ammonium chloride (0.183 g, 3.42 mmol) 

was heated in a mixture of triethyl ortho-formate (13 mL) and ethanol (5 mL) under reflux 

at 110 oC for 16 h. Then the solvent was distilled off under reduced pressure (0.1 Torr), 

and the unreacted triethyl-ortho-formate was collected to be reused. CH2Cl2 (5 mL) was 

added to dissolve the solid residue. Ethyl acetate (30 mL) was added, and the CH2Cl2 

was removed under reduced pressure.  The resulting slurry was sonicated for 30 min at 

30 oC then filtered, washed with ethyl acetate (3 x 20 mL), sucked dry on the filter for 10 

min and dried in the vacuum oven at 60 oC for 3 h to give NHC ligand precursor 55 

(1.000 g, 2.04 mmol, 75%) as a white solid with >98 % purity (1H NMR). 1H NMR (300.1 

MHz, 20 oC, CDCl3): δ 9.18 (s, 1H, N–CH=N), 6.68 (s, 4H, C6H2), 4.58 (s, 4H, N-CH2), 

4.04 (t, 3J[1H1H] = 5.7 Hz, 4H, O–CH2), 2.72 (t, 3J[1H1H] = 5.7 Hz, 4H, NMe2-CH2), 2.41 

(s, 12H, C6H2-CH3), 2.33 (s, 4H, N(CH3)2); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 160.4 

(N-CH=N), 159.7, 137.0, 125.8, 115.2 (C6H2), 66.2 (O-CH2), 58.4 (CH2-NMe2), 52.3 (=N-

CH2), 46.1 (N(CH3)2), 18.5 (C6H2-CH3). 

Synthesis of Ligand Precursor Salt 56 (IXySNMe2
.HCl)  

 Diamine 52 (1.297 g, 2.73 mmol) and triethyl ammonium chloride (0.571 g, 4.16 

mmol) was heated in a mixture of triethyl ortho-formate (13 mL) and ethanol (5 mL) 

under reflux at 100 oC for 16 h. Then the solvent was distilled off under reduced pressure 

(0.1 Torr), and the unreacted triethyl-ortho-formate was collected to be reused. CH2Cl2 

(5 mL) was added to dissolve the solid residue. Ethyl acetate (30 mL) was added, and 

the CH2Cl2 was removed under reduced pressure.  The resulting slurry was sonicated 

for 30 min at 30 oC then filtered, washed with ethyl acetate (3 x 20 mL), sucked dry on 
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the filter for 10 min and dried in the vacuum oven at 60 oC for 3 h to give NHC ligand 

precursor 56 (1.025 g, 1.97 mmol, 72%) as a white solid with >95 % purity (1H NMR). 1H 

NMR (300.1 MHz, 20 oC, CDCl3): δ 10.21 (s, 1H, N–CH=N), 7.19 (s, 4H, C6H2), 4.50 (s, 

4H, N-CH2), 3.23 (t, 3J[1H1H] = 7.8 Hz, 4H, S–CH2), 2.91 (t, 3J[1H1H] = 6.0 Hz, 4H, NMe2-

CH2), 2.59 (s, 12H, C6H2-CH3), 2.43 (s, 4H, N(CH3)2); 
13C NMR (75.9MHz, 20 oC, CDCl3): 

δ 160.7 (N-CH=N), 140.3, 136.2, 130.3, 128.3 (C6H2), 58.1 (S-CH2), 52.0 (CH2-NMe2), 

45.3 (=N-CH2), 30.6 (N(CH3)2), 18.5 (C6H2-CH3). 

Synthesis of Ligand Precursor Salt 57 (IDippONMe2
.HCl) 

 Diamine 53 (2.604, 4.70 mmol) and ammonium chloride (0.306 g, 5.72 mmol) 

was heated in a mixture of triethyl ortho-formate (13 mL) and ethanol (5 mL) was heated 

under reflux at 110 oC for 16 h. Then the solvent was distilled off under reduced pressure 

(0.1 Torr), and the unreacted triethyl-ortho-formate was collected to be reused.  CH2Cl2 

(5 mL) was added to dissolve the solid residue. Ethyl acetate (30 mL) was added, and 

the CH2Cl2 was removed under reduced pressure.  The slurry was sonicated for 30 min 

at 30 oC then filtered, washed with ethyl acetate (3 x 20 mL), sucked dry on the filter for 

10 min and dried in the vacuum oven at 60 oC for 3 h to give ligand precursor 57 (0.952 

g, 1.51 mmol, 31%) as a white powder with >98 % purity (1H NMR). 1H NMR (300.1 

MHz, 20 oC, CDCl3): δ 8.09 (s, 1H, N–CH=N), 6.78 (s, 4H, C6H2), 4.80 (t, 3J[1H1H] = 11.4 

Hz, 4H, N-CH2) 4.08 (t, 3J[1H1H] = 5.7 Hz, 4H, O–CH2), 3.00 (sept, 3J[1H1H] = 10.4 Hz, 

4H, iPr-CH), 2.75 (t, 3J[1H1H] = 5.7 Hz, 4H, NMe2-CH2), 2.36 (s, 12H, N(CH3)2), 1.22 (d, 

3J[1H1H] = 6.6 Hz, 12H, iPr-CH3), 1.37 (d, 3J[1H1H] = 6.9 Hz, 12H, iPr-CH3); 
13C NMR 

(75.9MHz, 20 oC, CDCl3): δ 161.0 (N-CH=N), 158.9, 147.9, 122.2, 111.0 (C6H2), 66.1 (O-

CH2), 58.4 (N-CH2), 55.7 (=N-CH2), 46.1 (N(CH3)2), 29.6 (iPr-CH), 25.6, 23.9 (i-Pr-CH3). 

Synthesis of Ligand Precursor Salt 58 (IDippSNMe2
.HCl) 

 Diamine 54 (2.091, 3.61 mmol) and ammonium chloride (0.235 g, 4.40 mmol) in 

a mixture of triethyl ortho-formate (13 mL) and ethanol (5 mL) was heated under reflux at 
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110 oC for 16 h. Then the solvent was distilled off under reduced pressure (0.1 Torr), and 

the unreacted triethyl-ortho-formate was collected to be reused. CH2Cl2 (5 mL) was 

added to dissolve the solid residue. Ethyl acetate (30 mL) was added, and the CH2Cl2 

was removed under reduced pressure.  The slurry was sonicated for 30 min at 30 oC 

then filtered, washed with ethyl acetate (3 x 20 mL), sucked dry on the filter for 10 min 

and dried in the vacuum oven at 60 oC for 3 h to give ligand precursor 58 (1.112 g, 1.91 

mmol, 52%) as a white powder with >97 % purity (1H NMR). 1H NMR (300.1 MHz, 20 oC, 

CDCl3): δ 8.96 (s, 1H, N–CH=N), 7.09 (s, 4H, C6H2), 4.64 (s, 4H, N-CH2), 3.04 (t, 

3J[1H1H] = 6.6 Hz, 4H, S–CH2), 2.89 (sept, 3J[1H1H] = 6.9 Hz, 4H, CH(CH3)2), 2.59 (t, 

3J[1H1H] = 6.6 Hz, 4H, Me2N-CH2), 2.26 (s, 12H, N(CH3)2), 1.30 (d, 3J[1H1H] = 6.9 Hz, 

12H), 1.19 (d, 3J[1H1H] = 6.9 Hz, 12H, CH(CH3)2); 
13C NMR (75.9MHz, 20 oC, CDCl3): δ 

159.2 (N-CH=N), 146.3, 141.2, 126.6, 123.6 (C6H2), 58.0 (=N-CH2), 55.0 (Me2N-CH2), 

45.3 (N(CH3)2), 30.6 (S-CH2), 29.1 (CH(CH3)2), 25.2, 23.4 (CH(CH3)2). 

Synthesis of N,N’-Bis(2’-[2’’-dimethylaminoethoxy]-4’,6’-dimethylphenyl)amino-1,2-

ethane (59) 

 Diamine 50 (1.650 g, 3.23 mmol) was added to a solution of KOtBu (1.067 g, 

9.51 mmol) in N,N-dimethylethanolamine (25 mL) and stirred under inert gas conditions 

at 60 oC for 60 min. After 60 min, CuCl (0.944, 9.52 mmol) was added under inert gas 

atmosphere. Then vacuum was applied and the reaction was stirred at 120 oC for 16 h.  

tBuOMe (100 mL) and aqueous ammonia (1.5M, 100 mL) was added and the solution 

was stirred in air at room temperature for 60 min. The organic phase was separated, 

washed with brine (8 x 100 mL), then dried over Na2SO4 and filtered. The solvent was 

removed under reduced from the filtrate pressure and the residue was dried in the 

vacuum oven at 60oC for 3 h to give compound 59 (0.854 g, 1.79 mmol, 56%) as a 

viscous brown liquid in >93% purity. 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 7.10 (s, 2H, 

C6H2), 6.86 (s, 2H, C6H2), 4.42 (br, 2H, N-H), 3.19 (s, 4H, NH-CH2), 2.87 (t, 3J[1H1H] = 
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7.8 Hz, 4H, O-CH2), 2.48 (t, 3J[1H1H] = 6.6 Hz, 4H, CH2-NMe2), 2.30 (s, 6H, C6H2-CH3), 

2.30 (s, 6H, C6H2-CH3), 2.27 (s, 6H, C6H2-CH3), 2.23 (s, 12H, N(CH3)2). 
13C NMR data 

was not determined for this compound. 

Synthesis of N,N’-Bis(2’-[2’’-dimethylaminoethanethio]-4’,6’-dimethylphenyl) amino-1,2-

ethane (60)   

 Diamine 50 (1.529 g, 2.92 mmol) was added to a solution of 2-

(Dimethylamino)ethanethiol hydrochloride (1.275 g, 9.00 mmol) and KOtBu (2.603 g, 

23.2 mmol) in 1-methyl-2-pyrrolidinone (35 mL) and stirred under inert gas conditions at 

60 oC for 60 min. After 60 min, CuCl (0.891 g, 9.04 mmol) was added under inert gas 

atmosphere. Vacuum was applied for 10 sec and the flask was sealed. The reaction was 

stirred under vacuum at 110 oC 16 h.  tBuOMe (60 mL), aqueous ammonia (1.5M, 60 

mL)  and 0.1 M NaOH (3 mL) was added and the solution was stirred in air at room 

temperature for 2 hrs.  The organic phase was separated, washed with 0.1 M NaOH (4x 

60 mL) and brine (3 x 60 mL), and then dried over Na2SO4. The Na2SO4 was removed 

via filtration. The solvent was removed from the filtrate under reduced pressure with a 

rotary evaporator, and the residue was dried in the vacuum oven at 60 oC for 16 h to 

give compound 60 (0.902 g, 1.90 mmol, 66%) as a viscous brown liquid in >90% purity 

(1H NMR). 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 6.60 (s, 2H, C6H2), 6.41 (s, 2H, C6H2), 

4.46 (br, 2H, N-H), 3.31 (s, 4H, NH-CH2), 2.91 (m, 4H, O-CH2), 2.68 (m, 4H, CH2-NMe2), 

2.38 (s, 6H, C6H2-CH3), 2.34 (s, 6H, C6H2-CH3), 2.21 (s, 6H, C6H2-CH3), 2.23 (s, 12H, 

N(CH3)2). 
13C NMR data was not determined for this compound. 

Synthesis of (H2ITap)(PCy3)Cl2Ru=CH-Ph (61)  

 Ligand precursor 37 (0.637 g, 1.61 mmol) and KOtBu (0.178 g, 1.60 mmol) were 

heated under stirring to 60 oC in n-heptane for 60 min under inert gas conditions. After 

cooling to room temperature, Grubbs’ first generation catalyst 9 (1.003 g, 1.22 mmol) 

was added and the slurry was heated to 65 oC for 24 h also under inert gas conditions. 
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In this time period an orange-brownish precipitate was formed. The solution then was 

cooled to room temperature, the solvent was removed under reduced pressure and 

methanol was added under non-inert conditions. The resulting slurry was sonicated for 

30 min in air and then filtered. The filter residue was washed with water (10 mL) and 

methanol (3 x 10 mL). The resulting light brown powder was dried in the vacuum oven at 

60oC for 60 min to give catalyst 61 (0.794 g, 0.86 mmol, 70%) in >98% purity (1H and 31P 

NMR spectroscopy). 1H NMR (300.1 MHz, 20 oC, CD2Cl2): δ 19.02 (s, 1 H, Ru=CH), 8.95 

(br, 2 H), 7.07 (br, 3 H,C6H5), 6.49 (s, 4 H,C6H2), 3.91 (br, 4H,N–CH2), 2.96 (s, 

12H,N(CH3)2), 2.72 (s, 12H,C6H2–CH3), 2.42–2.60 (br m, 3H), 2.12–2.37 (br m, 3 H), 

1.92–2.05 (br m, 3 H), 1.29–1.55 (br m,12 H), 0.92–1.12 (br m, 12 H, PCy3); 
13C NMR 

(75.9MHz, 20 oC, CD2Cl2): δ 294.1 (br, Ru=C), 221.4 (d, 2J[31P13C] = 80.1 Hz, 

NHCC),164.4, 129.7, 128.0, 127.5 (s, =CH–C6H5), 152.1, 150.5, 150.1, 140.0 (br), 137.6 

(br), 128.3, 112.3, 111.7 (s, NHC-Ph-CH), 53.1 (d, 4J[31P13C] = 3.3 Hz), 52.1 (s, N–CH2), 

40.5, 40.4 (s, N(CH3)2), 20.9 (s), 19.3 (br, C6H2), 31.7 (d, 1J[31P13C] = 16.5 Hz), 29.6 (br), 

28.3 (d, 3J[31P13C] = 10.2 Hz), 26.8 (s, PCy3-C); 31P NMR (121.4 MHz, 20 oC, CD2Cl2): δ 

30.2 (s). 

Synthesis of (H2ITap)Cl2Ru=CH-(C6H4-O-iPr) (62) 

 Catalyst 61 (0.303 g, 0.33 mmol) in CH2Cl2 (15 mL) was stirred at room 

temperature under inert gas conditions with CuCl (0.036 g, 0.40 mmol) and 2-i-

propoxystyrene (0.054 g, 0.33 mmol) for 2 h. The solution turned from brown to green in 

this time period. Then the solvent was removed under reduced pressure and the residue 

was taken up in 10 mL of a mixture of CH2Cl2–heptane 1:1 v/v in air. The solution was 

filtered, and then was loaded onto a flash column with silica gel. The column was 

washed with a mixture of CH2Cl2–ethanol 95:5 v/v until all green color was removed from 

the stationary phase. The solvent was removed under reduced pressure and the residue 

was taken up in CH2Cl2 (10mL). Heptane (30 mL) was added and the residual CH2Cl2 



 127 

was removed under reduced pressure. The product precipitated and the slurry was 

filtered. The filter residue was washed with n-heptane (3 x 10 mL), sucked dry for 5 min 

and dried in the vacuum oven at 60oC for 60 min to give catalyst 62 (0.162 g, 0.23 mmol, 

70%) as a green powder in >98% purity (1H NMR).  1H NMR (300.1 MHz, 20 oC, CDCl3): 

δ 16.80 (s, 1 H, Ru=CH), 7.47(m, 1H), 7.01 (m, 1H), 6.85(m, 1H), 6.78 (m, 1H, C6H4), 

6.58 (s, 4 H, NHC-C6H2), 4.15 (s, 4 H,N–CH2), 3.00 (s, 12 H, N(CH3)2), 2.44 (br, 12 H, 

C6H2–CH3), 4.89 (sept., 3J[1H1H] = 6.0 Hz, 1H, CH(CH3)2), 1.28 (d, 3J[1H1H] = 6.0 Hz, 6 

H, CH(CH3)2); 
13C NMR (75.9 MHz, 20 oC, CDCl3): δ 299.0 (Ru=C), 211.7 (N=C–N), 

161.0, 150.8, 122.8, 122.2, 112.9, 112.2 (s, =CH–C6H4), 152.2, 145.5, 129.3, 112.2 (s, 

C6H2), 74.8 (CH(CH3)2), 26.9 (CH(CH3)2), 40.8 (s, N(CH3)2), 21.1 (C6H2–CH3). 

Crystal Structure Determination of Catalysts 61 and 62 

 Deep brown crystals of 61 are triclinic, a = 9.6949(5) Å, b = 13.969(2) Å, c = 

17.5080(7) Å,  = 99.287(7)o,  = 99.451(4)o,  = 90.001(7)o, volume = 2307.4(4)Å3, two 

molecules per cell in space group P-1 (#2); very small green crystals of 62 are 

monoclinic,    a = 19.6502(11) Å, b = 10.9433(5) Å, c = 33.440(2) Å,  = 104.928(7)o, 

volume = 6948.2(7)Å3, eight molecules per cell in space group P2(1)/a (#14).  Data was 

collected with MoK radiation ( = 0.71073Å) at 295(2)K, and an analytical absorption 

correction was applied. Structures were solved with SHELXS-86;81 non-H atoms were 

modeled with anisotropic vibrational parameters, H-atoms were located in difference 

electron density maps but placed in idealized positions with isotropic vibrational 

parameters 20% larger than the equivalent isotropic vibrational factor of the adjacent 

carbon atom. In each structure, aryl methyl H’s are disordered over alternate trigonal 

positions; these were modeled by refining occupancy factors. Structural models were 

refined to convergence by full-matrix least-squares using SHELXL-97.82 Final R for 61 
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was 0.040 for 9628 reflections with I > 2I, 513 parameters, goodness-of-fit 1.04; for 62, 

final R was 0.086 for 5128 reflections with I > 2I, 774 parameters, goodness-of-fit 0.99.   

Synthesis of (H2ITap)(DMAP)2Cl2Ru=CH-Ph (65) 

 4-Dimethylaminopyridine (DMAP, 0.488 g, 4.00 mmol) was added to a slurry of 

catalyst 61 (1.232  g,  1.36 mmol) in t-butyl methyl ether (50 mL) and the solution was 

stirred for 16 h.  In this time, a bright green precipitate formed and the supernatant 

solution turned colorless from a previous light brown.  The precipitate is filtered in air and 

washed once with a 1 mM solution of DMAP in t-butyl methyl ether (20 mL) and the 

residue was dried in the vacuum oven at 60 oC for 2 h to give compound 65 (1.065 g,  

1.22 mmol,  90 %) in > 99 % purity (1H NMR).  1H NMR (300.1 MHz, C6D6, 20 oC): δ 

19.81 (s, Ru=CH),  8.57 (d, 3J[1H1H] = 7.2 Hz, 2H), 7.23 (t, 3J[1H1H] = 8.4 Hz, 1H), 7.01 

(m, 2H, =CH-C6H5), 8.29 (d, 3J[1H1H] = 7.5 Hz, 2H), 8.18 (d, 3J[1H1H] = 6.3 Hz, 2H), 6.08 

(d, 3J[1H1H] = 7.5 Hz, 2H), 5.43 (d, 3J[1H1H] = 6.3 Hz, 2H, 2 × C5NH4), 6.59 (s, 2H), 6.34 

(s, 2H, 2 × C6H2), 3.57 (m, 2H), 3.48 (m, 2H, CH2-CH2), 3.01 (s, 6H), 2.61 (s, 6H), 2.58 

(s, 6H), 2.54 (s, 6H, 4 × N(CH3)2), 2.20 (s, 6H), 1.80 (s, 6H, 2 × C6H2(CH3)2).   
13C NMR 

(75.9 MHz, 20oC, C6D6): δ 309.8 (Ru=CH), 221.2 (N-C-N), 153.7, 153.5, 152.5 (2 

signals), 152.1, 150.5 (2 signals), 150.4, 140.8, 138.7, 130.9, 130.6, 128.9, 128.6, 113.1, 

112.6, 106.7, 106.2 (aryl-C), 51.9, 51.1 (N-CH2-CH2-N), 40.5, 40.3, 38.2, 37.8 (N-CH3), 

21.7, 19.6 (C6H2(CH3)2). 

Synthesis of (H2ITap)Cl2Ru(=CH-CH2-CH2-C5H4N) (66) 

 Complex 61 (0.100 g, 0.110 mmol) and 2-but-3’-enylpyridine (0.022 g, 0.17 

mmol) were stirred in tBuOMe (20 mL) for 16 h at room temperature.  After this time, the 

resulting greenish slurry was filtered in air, and the residue washed with tBuOMe (2 × 10 

mL) and dried in the vacuum oven (60 °C, 4 h) to give complex 66 (0.064 g, 0.097 mmol, 

88%) as a gray-green powder in >96% purity (1H NMR).  1HNMR (300.1 MHz, 20 oC, 
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C6D6): δ 18.99 (t, 3J[1H1H] = 2.5 Hz, 1H, Ru=CH), 8.26 (m, 1H), 6.56 (m, 1H), 6.27 (m, 

1H), 6.16 (m, 1H, C5H4N), 6.59 (s, 4H, C6H2), 3.53 (s, 4H, N-CH2-CH2-N), 3.41 (t, 

3J[1H1H] = 6.0 Hz, 2H), 2.84 (m, 2H, CH2-CH2), 2.77 (br, 12 H, C6H2(CH3)2), 2.61 (s, 12H, 

N(CH3)2). 
13C NMR (75.9 MHz, 20oC, C6D6): δ 334.4 (Ru=CH), 217.8 (N-C-N),162.2, 

150.5, 150.2, 140.1, 138.6, 135.5, 123.3, 120.8, 112.4 (aryl-C), 53.9 (CH2), 51.7 (CH2), 

40.2 (N(CH3)2), 34.0 (CH2), 22.3 (CH3), 19.6 (CH3). 

Synthesis of (ITap)(PCy3)Cl2Ru=CH-Ph (67) 

 ITap ligand precursor 38 (0.303 g, 0.76 mmol) and Potassium 

bis(trimethylsilyl)amide (0.158 g, 0.79 mmol) were heated under stirring to 60 oC in n-

heptane for 60 min under inert gas conditions. After cooling to room temperature, 

Grubbs’ 1st Generation catalyst 9 (0.400 g, 0.49 mmol) was added and the slurry was 

heated to 60oC for 24 h also under inert gas conditions. In this time period the solution 

turned brown. The solvent was removed under reduced pressure. A mixture of 2-

propanol and water 1:1 v/v (50 mL) was added under non-inert conditions. The resulting 

slurry was sonicated for 30 min in air and then filtered. The filter residue was washed 

with water (3 x 10 mL) and methanol (2 x 10 mL). The resulting light orange-brown 

powder was dried in the vacuum oven at 60oC for 16 h to give catalyst 67 (0.379 g, 0.42 

mmol, 95%) in >97% purity (1H NMR and 31P NMR spectroscopy). 1HNMR (300.1 MHz, 

20 oC, C6D6): δ 20.01 (s, Ru=CH), 7.19 (br. m, 1H), 7.12 (br. m, 2H, =CH-C6H5), 7.02 (br. 

m, 2H), 6.53 (br. s, 4H, C6H2), 6.35 (m, 1H), 6.30 (m, 1H, N-CH=CH-N), 2.68 (s, 12H, 2 

× N(CH3)2), 2.47 (s, 12H, 2 × C6H2(CH3)2), 2.60 (m, 3 H) 1.73 (br. m, 6H), 1.55 (br. m, 

9H), 1.12 (br. m, 15H, PCy3); 
13C NMR (75.9 MHz, CD2Cl2, 20 oC): δ 294.7 (br., Ru=CH), 

190.4 (d, 2J[31P13C] = 84.8 Hz, N-C-N), 152.1, 150.6, 150.2, 138.8, 137.4, 137.3, 128.9, 

128.0, 127.7, 125.3 (2 signals), 124.9, 111.3, 110.7 (aryl-C + N-CH=CH-N), 40.1(2 

signals, N-CH3), 20.2, 18.8 (C6H2(CH3)2), 31.5 (d, 1J[31P13C] = 17.2 Hz), 29.4 (br. s), 28.0 

(d, 2J[31P13C] = 9.6 Hz), 26.5 (s, PCy3);  
31P NMR (121.4 MHz, C6D6, 20 oC): δ 32.4 (s). 



 130 

Synthesis of (ITap)Cl2Ru=CH-(C6H4-O-iPr) (68) 

 Complex 67 (0.301 g, 0.33 mmol) was stirred at room temperature under inert 

gas conditions with 2-i-propoxystyrene (0.190 g, 1.17 mmol) and CuCl (0.042 g, 0.43 

mmol) for 16 h.  Then the solvent was removed under reduced pressure and the residue 

was taken up in 3 mL of CH2Cl2 in air. The solution was filtered, and then loaded onto a 

flash column with silica gel. The column was washed cyclohexane (30 mL). This filtrate 

was discarded. The column was then washed with a mixture of ethyl acetate–

cyclohexane 90:10 v/v until all of a thick brown band was removed from the stationary 

phase. The solvent was removed under reduced pressure and the residue was taken up 

in CH2Cl2 (10mL). Heptane (30 mL) was added and the residual CH2Cl2 was removed 

under reduced pressure. The product precipitated and the slurry was filtered. The filter 

residue was washed with n-heptane (3 x 10 mL), sucked dry for 5 min and dried in the 

vacuum oven at 60oC overnight  to give catalyst 68 (0.152 g, 0.22 mmol, 67%) as a 

green powder in > 96% purity (1H NMR). 1H NMR (300.1 MHz, 20 oC, C6D6): δ 17.01 (s, 

1H, Ru=CH), 7.34 (m, 1H), 7.10 (m,1H), 6.67 (m,1H), 6.31 (m, 1H, C6H4), 6.58 (s, 4H, 

C6H2), 6.38 (s, 2H, N-CH=CH-N), 4.49 (sept., 3J[1H1H] = 6.0 Hz, 1H, iPr-CH), 2.63 (s, 12 

H, N(CH3)2), 2.51 (s, 12H, C6H2(CH3)2), 1.43 (d, 3J[1H1H] = 6.0 Hz, 6H, CH(CH3)2). 
13C 

NMR (75.9 MHz, 20 oC, C6D6): δ 287.7 (Ru=C), 177.7 (N=C–N), 152.7, 151.4, 146.1, 

139.0, 135.2, 124.8, 122.1, 122.0, 113.1, 112.1, (aryl-C), 111.8 (N-C=C-N), 75.0 

(CH(CH3)2), 40.3 (N(CH3)2), 21.4 (CH(CH3)2), 20.1 (CH3), 18.3 (CH3). 

Synthesis of (ITap)(DMAP)2Cl2Ru=CH-Ph (69) 

 4-Dimethylaminopyridine (DMAP, 0.165 g, 1.36 mmol) was added to a slurry of 

complex 67(0.300 g,  0.33 mmol) in t-butyl methyl ether (80 mL) and the solution was 

sonicated at 30 oC for 2 h and then stirred at room temperature for another 16 h.  The 

grayish-green precipitate was filtered in air, washed once with a 1 mM solution of DMAP 

in t-butyl methyl ether (20 mL) and the residue was dried in the vacuum oven at 60°C for 
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2 h to give compound 69 (0.251 g,  0.28 mmol,  84 %) in a purity of >99 % pure. 1H NMR 

(300.1 MHz, 20 oC, C6D6): δ 20.18 (s, 1H, Ru=CH),  8.82 (br., 2H), 7.26 (m, 1H), 7.04 

(m, 2H, =CH-C6H5), 8.36 (d, 3J[1H1H] = 7.5 Hz, 2H), 8.18 (d, 3J[1H1H] = 7.2 Hz, 2H), 6.00 

(d, 3J[1H1H] = 7.5 Hz, 2H), 5.43 (d, 3J[1H1H] = 6.3 Hz, 2H, 2 × C5NH4), 6.50 (s, 2H, N-

CH=CH-N), 6.45 (br., 2H), 6.38 (br., 2H, 2 × C6H2), 2.87 (br. s, 6H), 2.58 (s, 12H), 2.51 

(br. s, 6H, 4 × N(CH3)2), 2.12 (s, 6H), 1.76 (s, 6H, 2 × C6H2(CH3)2).   
13C NMR (75.9 

MHz, 20oC, C6D6): δ 311.8 (Ru=CH), 188.1 (N-C-N), 153.3, 153.1, 152.0, 150.7,150.5, 

131.0, 128.4, 124.6, 112.1, 106.4, 105.9 (aryl-C), 139.4, 138.2 (N-CH=CH-N), 40.2 

(N(CH3)2), 38.1 (C6H4-N(CH3)2), 37.7 (C6H4-N(CH3)2), 20.9 (CH3), 19.6 (CH3). 

Synthesis of (IXyONMe2)(PCy3)Cl2Ru=CH-Ph (70) 

 Ligand precursor salt 55 (0.260 g, 0.53 mmol) and potassium 

bis(trimethylsilyl)amide (0.111 g, 0.55 mmol) were heated under stirring to 60 oC in n-

heptane for 60 min under inert gas conditions. After cooling to room temperature, 

Grubbs’ 1st Generation Catalyst 9 (0.357 g, 0.43 mmol) was added and the slurry was 

heated to 60 oC for 48 h also under inert gas conditions. The solution was then filtered, 

and the filter residue was dried in a vacuum oven at 60 oC.  The solvent was removed 

from the filtrate. The filtrate residue was sonicated in 2-propanol – DI H2O 1:1 v/v (20 

mL) for 30 min. The filter residue was washed with water (3 x 10 mL) and methanol (1 x 

10 mL). The resulting light pink powder was dried in the vacuum oven at 60 oC for 

overnight to give catalyst 70 (0.171 g, 0.17 mmol, 40%) in >99% purity (1H NMR). 1H 

NMR (300.1 MHz, 20 oC, C6D6): δ 19.71 (s, Ru=CH),  7.23 (m, 3H), 7.10 (m, 2H), 6.84 

(br., 4H, 2 × C6H2), 3.94 (t, 3J[1H1H] = 5.7 Hz, 2H), 3.61 (t, 3J[1H1H] = 6.0 Hz, 2H, 2 x O-

CH2), 3.30 (br., 6H), 2.75 (br., 6H, 2 × N(CH3)2), 2.62 (t, 3J[1H1H] = 5.7 Hz, 2H), 2.54 (t, 

3J[1H1H] = 6.0 Hz, 2H, 2 x N-CH2),  2.19 (s, 12H, 2 × C6H2(CH3)2), 2.55 (br., m, 3H), 1.60 

(br., m, 12H), 1.15 (br. m, 18H, PCy3);  
13C NMR (75.9 MHz, 20 oC, d6-benzene): δ 272.6 

(br., Ru=CH), 189.5 (d, 2J[31P13C] = 87.6 Hz, N-C-N), 150.8, 150.0, 141.9, 139.3, 138.0, 
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129.2, 128.7, 127.1, 125.6, 125.4, 124.9, 124.8, 112.0, 111.3 (s, aryl-C + N-CH=CH-N), 

39.9, 39.5, (N-CH3), 20.7, 19.8 (C6H2(CH3)2), 32.5 (d, 1J[31P13C] = 16.1 Hz), 29.8 (s), 28.1 

(d, 2J[31P13C] = 10.2 Hz), 26.7 (s, PCy3);  
31P NMR (121.4 MHz, 20 oC, C6D6): δ 30.4 (s). 

Synthesis of (IDippONMe2)(DMAP)Cl2Ru=CH-Ph (77) 

 Ligand precursor 57 (0.332 g, 0.55 mmol) and KOtBu (0.066 g, 0.59 mmol) were 

stirred under vacuum at 90 oC in n-heptane for 5 h. After cooling for 5 min, Grubbs’ first 

generation catalyst 9 (0.301 g, 0.36 mmol) was added and the slurry was stirred at 60 oC 

for 48 h under vacuum. The solution was then filtered under inert gas into a schlenk flask 

containing 4-Dimethylaminopyridine (DMAP) (0.1512 g, 1.24 mmol). The solution was 

then sonicated for 3 h under inert gas conditions. The resulting slurry was cooled on ice 

for 30 min, then filtered in air. The filter residue was washed with heptane (3 x 10 mL). 

The resulting green powder was dried in the vacuum oven at 60 oC for overnight to give 

catalyst 77 (0.215 g, 0.20 mmol, 55%) in >95% purity (1H NMR). 1H NMR (300.1 MHz, 

20 oC, C6D6): δ 19.63 (s, 1 H, Ru=CH), 8.21 (d, 3J[1H1H] = 6.6 Hz, 2 H, DMAP), 8.10 (d, 

3J[1H1H] = 7.5 Hz, 2 H, o-Ph), 7.18 (m, 2H, m-Ph), 7.03 (m, 1H, p-Ph), 6.98 (s, 4H, 

C6H2), 5.48 (d, 3J[1H1H] = 6.6 Hz, 2 H, DMAP), 4.36 (m, 4H, CH2), 4.02 (m, 4H, CH2), 

3.81 (m, 4H, CH2), 2.66 (m, 4H, CH-CH3), 2.21 (6H, N(CH3)2), 2.14 (6H, N(CH3)2), 1.78 

(6H, N(CH3)2), 1.73 (d, 3J[1H1H] = 5.7 Hz, 6 H, CH-CH3), 1.36 (d, 3J[1H1H] = 6.0 Hz, 6 H, 

CH-CH3), 1.22-1.28 (m, 12H, CH-CH3). 
13C NMR (75.9 MHz, 20 oC, d6-benzene): δ 

310.1 (Ru=CH), 224.2 (N-C-N), 160.3, 159.9, 153.5, 152.5, 152.1, 152.0, 149.7, 132.0, 

130.1, 129.5, 111.0, 110.3, 106.2 (aryl-C), 66.9, 66.4 (O-CH2), 58.7 (N-CH2-CH2-N), 

54.8, 54.0 (N-CH2), 46.1 (4 x N(CH3)2), 37.8 (N(CH3)2), 29.8, 28.7 (4 x CH), 27.5, 26.7, 

26.5, 24.1 (CH-CH3).  

Synthesis of (IDippSNMe2)(DMAP)Cl2Ru=CH-Ph (78) 

 Ligand precursor 58 (0.256 g, 0.41 mmol) and potassium bis(trimethylsilyl)amide 

(0.086 g, 0.43 mmol) were heated under stirring to 60oC in n-heptane for 60 min under 
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inert gas conditions. After cooling to room temperature, Grubbs’ first generation catalyst 

9 (0.262 g, 0.32 mmol) was added and the slurry was heated to 60 oC for 24 h also 

under inert gas conditions. The solution was then filtered under inert gas.  4-

Dimethylaminopyridine (0.159 g, 1.32 mmol) was added to the filtrate and sonicated in 

tBuOMe for 60 min under inert gas conditions.  In this time period, a bright green 

precipitate was formed.  The resulting slurry was stirred at room temperature 16 h, then 

sonicated an additional 60 min and filtered.  The filter residue was washed with a 1 mM 

DMAP solution in tBuOMe (3 x 10 mL).  The resulting green powder was dried in the 

vacuum oven at 60oC for overnight to give catalyst 78 (0.084 g, 0.10 mmol, 24%) in 

>95% purity (1H NMR).  1H NMR (300.1 MHz, 20 oC, C6D6): δ 19.51 (s, 1H, Ru=CH), 

8.12 (d, 3J[1H1H] = 7.2 Hz, 2H), 8.03 (d, 3J[1H1H] = 7.2 Hz, 2H), 7.06 (d, 3J[1H1H] = 7.2 

Hz, 2H), 5.57 (d, 3J[1H1H] = 7.2 Hz, 2H, 2 × C5NH4), 7.65 (s, 2H), 7.41 (s, 2H, 2 x C6H2), 

7.17 (m, 2 H), 7.09 (m, 3H, =CH-C6H5), 4.26 (m, 2 H), 4.00 (m, 2H, N-CH2), 3.78 (m, 4H, 

CH(CH3)2),  3.03 (m, 4H, S–CH2), 2.61 (m, 4H, Me2N-CH2), 2.06 (s, 12H), 1.81 (s, 6 H), 

1.19 (s, 6H, 4 x N(CH3)2), 1.65 (d, 3J[1H1H] = 5.7 Hz, 12H), 1.29 (d, 3J[1H1H] = 6.0 Hz, 

12H, 4 x CH(CH3)2); 
13C NMR (75.9 MHz, 20 oC, C6D6): δ n.o. (Ru=CH), 222.4 (N-C-N), 

158.0, 153.0, 140.0, 128.6, 127.0, 125.7, 114.2, 114.1, 106.2, 105.9 (aryl-C), 66.4, 65.8, 

58.6, 58.5, 51.8 (N-CH2-CH2-N), 46.1 (N(CH3)2), 38.1, 37.7, 27.1, 27.0, 26.7(CH3), 

26.6(CH3), 20.3 (CH3), 20.0 (CH3). 

Synthesis of (H2ITap)(PCy3)Cl2Ru=CH-SPh (79) 

 H2ITap.HCl 37 (0.374 g, 0.93 mmol) and KOtBu (0.120 g, 1.07 mmol) were 

heated to 80 °C in heptane (60 mL) for 30 min.  After the slurry cooled to room 

temperature, precatalyst 24 (0.606 g, 0.77 mmol) was added and the mixture was stirred 

at 60°C for 6 d in a closed vacuum.  In this time period, a light-pink precipitate was 

formed.  The reaction mixture was cooled to room temperature and then filtered in air.  

The residue was washed with heptanes (2 x 10 mL) and then dried in the vacuum oven 
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at 60 °C for 4 h.  A mixture of 2-propanol and 0.5 M aqueous ammonium chloride (3:1 

v/v, 50 mL) was added to the dry residue under non-inert conditions and the mixture was 

sonicated at 30 °C for 60 min.  The slurry was filtered in air, the residue was washed 

with methanol (2 × 10 mL) and then dried in the vacuum oven at 60°C for 2 h to give 

compound 79 (0.474 g, 0.50 mmol, 65 %) in >99 % purity (1H NMR).   1H NMR (300.1 

MHz, 20oC, C6D6): δ 17.98 (s, Ru=CH),  7.21 (d, 3J[1H1H] = 7.2 Hz, 2H), 6.97 (t, 3J[1H1H] 

= 8.4 Hz, 1H), 6.88 (m, 2H, =CH-C6H5), 6.50 (s, 2H), 6.13 (s, 2H, 2 × C6H2), 3.35 (m, 4H, 

CH2-CH2), 2.90 (s, 6H), 2.75 (s, 6H, 2 × N(CH3)2), 2.60 (s, 6H), 2.28 (s, 6H, 2 × 

C6H2(CH3)2), 2.57 (br., m, 3H), 1.88 (br., m, 6H), 1.65 (br., m, 6H), 1.55 (br., m, 3H), 

1.45-1.02 (br., m, 18H, PCy3).   
13C NMR (75.9 MHz, 20 oC, d6-benzene): δ 272.2 (br., 

Ru=CH), 219.4 (d, 2J[31P13C] = 81.6 Hz, N-C-N), 150.5, 149.5, 141.8, 140.4, 138.6, 

129.3, 128.7, 126.5, 125.5, 125.4, 112.7, 111.9 (s, aryl-C), 52.3, 52.1 (s, N-CH2-CH2-N), 

40.5, 40.3, 40.0, 39.6 (N-CH3), 21.0, 20.0 (C6H2(CH3)2), 32.3 (d, 1J[31P13C] = 15.6 Hz), 

29.7 (s), 28.1 (d, 2J[31P13C] = 10.2 Hz), 26.7 (s, PCy3);  
31P NMR (121.4 MHz, 20 oC, 

C6D6): δ 23.4 (s). 

Synthesis of (ITap)(PCy3)Cl2Ru=CH-SPh (80) 

 ITap.HCl 38 (0.599 g, 1.50 mmol) and KOtBu (0.193 g, 1.72 mmol) were heated 

to 80°C in heptane (120 mL) for 30 min.  After the slurry cooled to room temperature, 

precatalyst 24 (0.992 g, 1.16 mmol) was added and the mixture was stirred at 60 °C for 

96 h in a closed vacuum.  In this time period, a light-pink precipitate was formed.  The 

reaction mixture was cooled to room temperature and then filtered in air.  The residue 

was washed with heptanes (2 x 10 mL) and then dried in the vacuum oven at 60°C for 4 

h.  A mixture of 2-propanol and 0.5 M aqueous ammonium chloride (3:1 v/v, 50 mL) was 

added to the dry residue under non-inert conditions and the mixture was sonicated at 30 

°C for 60 min.  The slurry was filtered in air, the residue was washed with methanol (2 × 

10 mL) and then dried in the vacuum oven at 60°C for 2 h to give compound 80 (0.820 g, 
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0.91 mmol, 78 %) in >99 % purity (1H NMR).  1H NMR (300.1 MHz, 20 oC, C6D6): δ 18.21 

(s, Ru=CH),  7.25 (d, 3J[1H1H] = 7.5 Hz, 2H), 6.99 (t, 3J[1H1H] = 7.5 Hz, 2H), 6.89 (t, 

3J[1H1H] = 7.5 Hz, 1H, =CH-C6H5), 6.48 (s, 2H), 6.11 (s, 2H, 2 × C6H2), 6.29 (m, 1H), 

6.27 (m, 1H, N-CH=CH-N), 2.73 (s, 3H), 2.60 (s, 3H), 2.57 (s, 3H), 2.28 (s, 3H , 2 × 

N(CH3)2 + 2 × C6H2(CH3)2), 2.61 (br., m, 3H), 1.93 (br., m, 6H), 1.64 (br., m, 6H), 1.52 

(br., m, 3H), 1.45-1.08 (br., m, 18H, PCy3).   
13C NMR (75.9 MHz, 20 oC d6-benzene): δ 

272.6 (br., Ru=CH), 189.5 (d, 2J[31P13C] = 87.6 Hz, N-C-N), 150.8, 150.0, 141.9, 139.3, 

138.0, 129.2, 128.7, 127.1, 125.6, 125.4, 124.9, 124.8, 112.0, 111.3 (s, aryl-C + N-

CH=CH-N), 39.9, 39.5, (N-CH3), 20.7, 19.8 (C6H2(CH3)2), 32.5 (d, 1J[31P13C] = 16.1 Hz), 

29.8 (s), 28.1 (d, 2J[31P13C] = 10.2 Hz), 26.7 (s, PCy3);  
31P NMR (121.4 MHz, 20oC, 

C6D6): δ 26.0 (s). 

Synthesis of (H2ITap)(DMAP)2Cl2Ru=CH-SPh (81) 

 4-Dimethylaminopyridine (DMAP, 0.412 g, 3.38 mmol) was added to a slurry of 

catalyst 79 (1.237  g,  1.32 mmol) in t-butyl methyl ether (80 mL) and the solution was 

sonicated at 30°C for 2 h and then stirred at room temperature for another 16 h.  The 

grayish-green precipitate was filtered in air, washed once with a 1 mM solution of DMAP 

in t-butyl methyl ether (20 mL) and the residue was dried in the vacuum oven at 60°C for 

2 h to give compound 81 (1.110 g,  1.23 mmol,  93 %) in >98 % purity (1H NMR). 1H 

NMR (300.1 MHz, 20 oC, CDCl3): δ 17.33 (s, Ru=CH),  8.26 (br., 2H), 7.16 (br., 2H), 6.49 

(br., 2H), 6.22 (br., 2H, 2 × C5NH4), 6.47 (s, 2H), 6.15 (s, 2H, 2 × C6H2), 7.13 (m, 5H, S-

C6H5), 4.11 (m, 2H), 3.98 (m, 2H, CH2-CH2), 3.00 (s, 6H), 2.96 (s, 6H), 2.90 (s, 6H), 2.69 

(s, 6H, 4 × N(CH3)2), 2.60 (s, 6H), 2.40 (s, 6H, 2 × C6H2(CH3)2).   
13C NMR (75.9 MHz, 20 

oC, CDCl3):  The compound was not sufficiently soluble in C6D6.  Thus, the spectra were 

recorded in CDCl3.  The compound suffered from partial degradation during the 

recording time (approx. 20% in 16 h).  This was observed for all bis-DMAP Ru-carbene 

complexes in chlorinated solvents thus far.  However, several signals for the compound 
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were observed. 220.9 (n-C-N), 154.2, 152.6, 150.3, 149.3, 138.7, 129.2, 128.4,127.8, 

127.2, 126.7, 112.2, 111.4, 106.5 (s, s, aryl-C), 52.3 (DMAP-CH3), 40.7, 40.1, 39.8, 39.2 

(N-(CH3)2), 20.9, 19.6 (C6H2(CH3)2). 

Crystal Structure Determination of Catalyst 81 

 Dark red or brown crystals of 81 are triclinic, a = 10.2523(5) Å, b = 12.3752(6) Å, 

c = 18.3356(6) Å,  = 86.269(4)o,  = 88.750(4)o,  = 78.653(4)o, volume = 

2275.91(19)Å3, space group P-1 (#2). Data was collected with MoK radiation ( = 

0.71073Å) at 300(2)K, and an analytical absorption correction was applied. Structures 

were solved with SHELXS-86111 and refinements were done using SHELXL-97;112 non-H 

atoms were modeled with anisotropic librational factors, H-atoms were located in 

difference electron density maps but placed in idealized positions with isotropic 

displacement parameters of 120% of the U (eq) of the attached atom.82 Final R for 81 

was 0.0555 for 4827 reflections with I > 2I, 520 parameters, goodness-of-fit 1.009. 

Synthesis of (ITap)(DMAP)2Cl2Ru=CH-SPh (82) 

 4-Dimethylaminopyridine (DMAP, 0.244 g, 2.00 mmol) was added to a slurry of 

catalyst 80 (0.601 mg,  0.64 mmol) in t-butyl methyl ether (30 mL) and the solution was 

sonicated at 30 °C for 2 h and then stirred at room temperature for another 16 h.  The 

bright-green precipitate was filtered in air, washed once with a 1 mM solution of DMAP in 

t-butyl methyl ether (10 mL) and the residue was dried in the vacuum oven at 60 °C for 2 

h to give compound 82 (0.498 g,  0.55 mmol,  86 %) in >99 % purity (1H NMR). 1H NMR 

(300.1 MHz, 20 oC, CDCl3): δ 17.68 (s, 1H, Ru=CH), 7.17 (m, 5H, S-C6H5), 6.85 (br., 2H, 

N-CH=CH-N), 8.61 (br., 2H), 8.03 (br., 2H), 6.09 (br., 8H, 2 × C5NH4 + 2 × C6H2), 2.93 

(br., 12H), 2.77 (br., 6H), 2.65 (br., 6H,  4 × N(CH3)2), 2.27 (br., 12H, 2 × C6H2(CH3)2).   

13C NMR (75.9 MHz, 20 oC, CDCl3):  The compound was not sufficiently soluble in C6D6.  

Thus, the spectra were recorded in CDCl3.  The compound suffered from partial 
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degradation during the recording time (approx. 20% in 16 h).  This was observed for all 

bis-DMAP Ru-carbene complexes in chlorinated solvents thus far.  However, several 

signals for the compound were observed.   δ 288.0 (br., Ru=CH), 187.5 (N-C-N), 151.3, 

149.1, 130.1, 128.1, 124.5, 111.8, 106.6 (s, aryl-C + N-CH=CH-N), 40.1(2 x N-CH3), 

39.1 (4 x N(CH3)2), 26.9 (C6H2-CH3), 19.6 (C6H2-CH3). 

Synthesis of (ITap)(PPh3)Cl2Ru-3-phenylindenylidene (87) 

 ITap.HCl ligand precursor 38 (0.678 g, 1.67 mmol) and KOtBu (0.220 g, 1.96 

mmol) were heated under stirring to 60 oC in toluene (50 mL) for 60 min under inert gas 

conditions which resulted in the formation of a relatively clear solution with small salt 

crystals settling quickly.  After cooling to room temperature, catalyst 21 (1.154 g, 1.30 

mmol) was added and the slurry was heated to 60 oC for 24 h also under inert gas 

conditions.  The solvent was then removed under reduced pressure.  A mixture of 2-

propanol and water 1:1 v/v (50 mL) was added under inert conditions. The resulting 

slurry was sonicated for 60 min and then filtered. The filter residue was washed with 

methanol (4 x 10 mL). The resulting light deep purple powder was dried in the vacuum 

oven at 60 oC overnight to give catalyst 87 (0.811 g, 0.82 mmol, 63%) in >97% purity (1H 

NMR). 1H NMR (300.1 MHz, 20 oC, CDCl3): δ 7.80 (d, 3J[1H1H] = 7.5 Hz, 1H), 7.62 (m, 

2H), 7.51 (m, 1H), 7.34 (m, 2H) 7.20 (m, 9H), 7.06 (m, 6H), 6.90 (m, 1H), 6.86 (t, 

3J[1H1H] = 7.5 Hz, 1H), 6.66 (2 × s, 2 × 1H), 6.65 (s, 1H), 6.64 (s, 1H), 6.46 (s, 1H), 5.94 

(m, 1H), 5.61 (m, 1H), 3.61 (s, 6H), 2.67 (s, 6H, 2 × N(CH3)2), 2.53 (s, 3 H) 2.47 (s, 3H), 

2.01 (s, 3H), 1.73 (s, 3H, aryl-CH3); 
13C NMR (75.9 MHz, 20 oC, CDCl3, significant 

signals): δ 300.7 (d, 2J[31P13C] = 12.9 Hz, Ru=C), 185.1 (d, 2J[31P13C] = 96.0 Hz, N-C-N), 

40.4, 39.9 (N-CH3), 20.6, 19.0 (C6H2(CH3)2);  
31P NMR (121.4 MHz, 20 oC,C6D6): δ 28.8 

(s). 
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Synthesis of (ITap)(DMAP)2Cl2Ru-3-phenylindenylidene (88) 

 4-Dimethylaminopyridine (DMAP, 0.209 g, 1.71 mmol) was added to a slurry of 

complex 87 (0.414 g,  0.42 mmol) in t-butyl methyl ether (50 mL) and the solution was 

stirred at 50 °C for 24 h.  The reddish-purple precipitate was filtered in air, washed once 

with a 1 mM solution of DMAP in t-butyl methyl ether (20 mL) and the residue was dried 

in the vacuum oven at 60 °C for 2 h to give compound 88 (0.355 g,  0.37 mmol,  87 %) in 

>96% purity (1H NMR).  1H NMR (300.1 MHz, 20 oC, C6D6): 10.08 (1H), δ 9.37 (m, 2H), 

9.19 (m, 2H), 8.44 (m, 1H), 8.07 (m, 4H) 7.72 (m, 2H), 7.18 (m, 2H), 7.12 (m, 2H), 6.80-

7.07 (m, 5H), 6.58 (m, 1H), 6.53 (m, 1H), 6.33 (m, 1H), 6.26 (m, 1H), 5.96 (m, 2H), 5.73 

(m, 2H), 5.64 (m, 1H),  2.79 (s, 3H), 2.70 (s, 3H) 2.70 (s, 6H), 2.35 (s, 6H), 2.26 (s, 3H), 

1.99 (s, 3H, 4 × N(CH3)2), 2.07 (s, 3 H) 2.06 (s, 9H, aryl-CH3); 
13C NMR (75.9 MHz, 

20oC, CDCl3, significant signals): δ 301.0 (s, Ru=C), 185.7 (s, N-C-N), 40.4, 40.1, 38.5 (2 

signals, N-CH3), 21.6 (2 signals), 19.7, 19.6 (C6H2(CH3)2). 

General Procedure for ROMP of COE  

 COE (7.8 mL, 60 mmol) was added to the catalyst solution (0.60 mL, 0.50 mM, 

0.30 mmol, organic solvent) under inert conditions via a microlitre syringe and the 

monomer conversion was monitored via 1H NMR spectroscopy (300.1MHz, 20 oC) by 

integration of the sufficiently separated multiplet signals at δ = 5.51 ppm (COE, =CH–) 

and 5.46 ppm (polymer, =CH-) in regular intervals over a period of 15 min to 10days. 

General Procedure for RCM of DEDAM  

 DEDAM (14.4 mL, 60 mmol) was added to the catalyst solution (0.60 mL, 1.00 

mM, 0.60 mmol, oranic solvent) under inert gas conditions via a microlitre syringe and 

the monomer conversion was monitored via 1H NMR spectroscopy (300.1 MHz, 20 oC) 

by integration of the sufficiently separated multiplet signals at δ = 2.87 ppm (DEDAM, 

allyl-CH2) and 3.16 ppm [90, ring allyl-CH2] in regular intervals over a period of 1 h to 3 

days. 
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General Procedure for ROMP of 89 With Various Amounts of TsOH  

 Monomer 89 (15.9 μL, 60 μmol) in CH2Cl2 or CHCl3 was added to the catalyst 

solution (0.60 mL, 1.0 mM, 0.60 μmol [61 in CH2Cl2; 62 in CHCl3]) containing various 

molar equivalents of a 0.12 M solution of p-Toluenesulfonic acid in the same solvent (2.0 

μL, 0.24 μmol, 0.4 equiv.) which were added 2 minutes prior via microliter syringe. The 

monomer conversion was monitored via 1H NMR spectroscopy (300.1 MHz, 20 oC) by 

integration of the signals δ 6.46 ppm (s, 2H, monomer 89) and δ 5.91, 5.51 ppm (m, 2 

cis-H and trans-H, poly-89). 

General Procedure for Synthesis of Poly-89  

 A stock solution of monomer 89 (0.10 M, 2.0 mL, 0.20 mmol) in CH2Cl2 or CHCl3 

was added to a catalyst stock solution (1.0 mM, 2.0 mL, 2.0 μmol [61 in CH2Cl2; 62 in 

CHCl3]) containing various molar equivalents of a 0.25 M solution of TsOH in 2-propanol 

(3.2 μL = 0.4 equivalents) which were added 2 minutes prior via microliter syringe. After 

appropriate time intervals (20 min – 10 h), the reactions were quenched with ethylvinyl 

ether and dried under vacuum. The resulting residue was dissolved in ethyl acetate 

(from catalyst 61) or CH2Cl2 (from catalyst 62), filtered through a short flash column of 

silica gel (1 cm) and additional solvent (5 ml) was used for elution. The solvent was 

removed from the filtrate in the vacuum oven (60 °C) and the residue was analyzed via 

ASEC.  

General Procedure for the Reaction of Catalysts 61 and 62 With EVE  

 Ethylvinyl ether (EVE) (31 μL, 320 μmol) in CH2Cl2 or CHCl3 was added to the 

catalyst solution (0.60 mL, 4.0 mM, 3.2 μmol [61 in CD2Cl2; 62 in CDCl3]) containing 

various molar equivalents of a 0.60 M solution of p-Toluenesulfonic acid in 2-PrOH (0.60 

M, 4.0 μL = 1 equiv.) which were added 2 minutes prior via microliter syringe. The 

monomer conversion was monitored via 1H NMR spectroscopy (300.1 MHz, 20 °C) by 

integration of the signals δ 19.02 ppm (s, 1H, 61) or δ 16.25 ppm (s, 1H, 62) and δ 13.73 
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ppm (s, 1H, for catalyst 61 without acid), δ 7.50 ppm (m, 1H, 2-

ipropoxybenzylidene/styrene, for catalyst 62 without acid) or δ 7.86 ppm (m, 2 H, TsOH). 

General Procedure for ROMP of Monomers 95 and 96 

 The catalyst (8 mmol) and monomer 95 (67.8 mg, 0.50 mmol) or monomer 96 

(40.5, 0.5 mmol) were dissolved in the protic solvent (either in 2-PrOH–1 M HClaq 9 : 1 

v/v or 0.1 M HClaq, 2.0 mL) under inert gas conditions and the solution was heated to 50 

oC under stirring. An aliquot (0.3 mL) was taken after 30 min, quenched with ethylvinyl 

ether, dried under vacuum, and the monomer conversion was monitored via 1H NMR 

spectroscopy (300.1 MHz, 20 oC, D2O) by integration of the signals δ 6.49 ppm (m, 2 H, 

95), δ 5.97 ppm (m, 2 trans-H, polymer) and δ 5.81 ppm (m, 2 cis-H, polymer) for 

monomer 95 and δ 6.46 ppm (m, 2 H, 96), δ 5.99 ppm (m, 2 trans-H, polymer) and δ 

5.79 ppm (m, 2 cis-H, polymer) for monomer 96. 

General Procedure for RCM of 97  

 The catalyst (8 mmol) and 97 (36.8 mg, 0.20 mmol) were dissolved in the protic 

solvent (2-PrOH–1MHClaq 9 : 1 v/v or 0.1 M HClaq, 2.0 mL) under inert gas conditions 

and the solution was heated to 50 oC under stirring. Aliquots (0.3 mL) were taken after 

30 min and 60 min, quenched with ethylvinyl ether, dried under vacuum, and the product 

conversion was monitored via 1H NMR spectroscopy (300.1 MHz, 20oC, D2O) by 

integration of the signals δ 2.58 (97-CH2) and δ 2.98 ppm (cyclopentene-CH2).  

1H NMR Investigation of the Hydrolytic Stability of 61a 

 Complex 61a (2.0 mg, 3 mmol) was dissolved in 0.1 M DCl/D2O in air and kept at 

room temperature in an NMR tube. 1H NMR pectra were recorded in certain time 

intervals and the intensities were monitored for the corresponding NMR signals for 

complex 61 and the hydrolysis product 61a. 1H NMR (300.1 MHz, 20 oC, 0.1 M DCl/D2O) 

δ 16.29 (s, 1 H, Ru=CH), 7.04 (s, 4 H, C6H2), 7.11 (m, 1 H), 6.49 (m, 1 H), 6.43 (m, 2 H, 

C6H4), 4.46 (m, 1H, CH(CH3)2), 3.64 (s, 4 H, N–CH2), 2.81 (s, 12 H, N(CH3)2), 1.91 (s, 12 
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H, aryl-CH3), 0.58 (m, 6 H, CH(CH3)2; 
13C NMR (75.9 MHz, 20 oC, 0.1 M DCl/D2O) δ 

(Ru=C, n.o.), 207.2 (N=C–N), 139.2, 132.1, 122.6, 122.0, 113.7 (1 signal n.o., =CH–

C6H4), 152.0, 145.0, 142.3, 120.4 (s, C6H2), 74.8 (CH(CH3)2), 26.9 (CH(CH3)2), 40.8 (s, 

N(CH3)2), 21.1 (C6H2–CH3). 

General Procedure for RCM of DEDAM / DAP With Subsequent Ru Removal 

 The substrate (DEDAM: 96 mg, 0.40 mmol; DAP: 108 mg, 0.60 mmol) was 

added to a solution of catalyst 61 (DEDAM: 5.4 mg, 8 mmol; DAP: 8.1 mg, 12 mmol) in 

toluene or ethyl acetate (DEDAM: 2.0 mL; DAP: 3.0 mL) under inert gas conditions and 

the solution was kept stirring for 60 min at 50 oC. Then the solution was cooled to room 

temperature and acid (4 mL, conc. HClaq or H2SO4 [96%]) was added under inert gas 

atmosphere and stirred for another 2 min causing the formation of a precipitate. The 

solution was filtered through Na2SO4, washed with the solvent (3 x 2 mL), and the 

solvent was removed under reduced pressure. The product was dried in the vacuum 

(0.1Torr) for 30 min. Isolated yields were obtained in the range of 72–87% (DEDAM) and 

43–79% (DAP). 1H NMR (300.1 MHz, 20 oC, D2O)  was used to determine the 

conversion (all >99%) by integration of distinct signals for the starting material and RCM 

product [(δ 2.86 ppm (DEDAM-CH2) vs. δ 3.16 ppm (cyclopentene-CH2); δ 2.65 ppm 

(DAP-CH2) vs. δ 2.91 ppm (cyclopentene-CH2)]. An aliquot of 20–22 mg was taken from 

each reaction for Ru analysis via ICP MS. The residual product was dissolved in t-

butylmethyl ether (20 mL) and washed with water (3 x 20 mL), the organic phase was 

dried over Na2SO4 and the solvent was removed and the product was dried in the 

vacuum (0.1 Torr) for 30 min. Product recoveries after the washing steps were between 

44–69%. Aliquots of 20–22 mg were taken for Ru analysis via ICP MS. 
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