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ABSTRACT

MODELING THAT LEADS TO

THE PREDICTION OF PHOTOCATALYTIC COATINGS CHARACTERIZATION

by Biju Bajracharya

August 2014

One of the abundant sources of energy on earth is a solar energy which is the clean and

safest energy source. It is also known as universal energy, the most important source of

renewable energy available today. On realizing that the light source has a crucial role in

daily life, several scientists and researchers from centuries ago have studied to establish

photo induced systems and utilized them. Long after the knowledge of thermal energy,

photovoltaic energy, and photosynthesis in plants, two prominent scientists, Fujishima and

Honda, have discovered the electrochemical photolysis of water with the Titanium dioxide

electrode which was reported in "Nature by Analogy" with a natural photosynthesis in 1972

[21]. This discovery leads to the development of heterogeneous photocatalysis in various

applications including air and water purification treatment and organic synthesis. Since then

it has drawn the wide scientific interest of many academicians and commercial industries.

Over the past few decades, the extensive study focused on photocatalysis. Titanium

dioxide photocatalysis has been promoted as a leading and emerging green technology for air

and water purification systems because of its versatile nature being non-toxic environment

friendly, stability to photocorrosion, low cost and potential to function under solar light

better than any other artificial light source. It can be exploited for both harvesting solar

energy and the destruction of organic and inorganic pollutants, even micro-organisms, in

water and air by solar light irradiation.

Recently several researches have been focused on improving the operating efficiency of

the photocatalytic process on both the mechanistic aspects and other operating parametric

aspects including catalyst concentration load, irradiation time, relative humidity, reaction

temperature and many more; however, rate limiting properties still remain elusive. Many

ii



issues hindering its application on large scale production still exists. Several chemists

and materials scientists focused mainly on the synthesis of more efficient materials and

the investigation of degradation mechanism while engineers and computational scientists

focused mainly on the development of appropriate models both mathematical and statistical,

graphical representations to evaluate the intrinsic kinetics parameters and to build the

prediction models that allow the scale up or re-design of efficient large-scale photocatalytic

reactors.

The number of raw data points and raw data files collected by sensors during several

experiments grows rapidly over a time. With a large number of raw data sets, a tool to

handle such a large raw data set is a practical necessity both for visualization and data

analysis along with the computing power. With an aim to build the prediction model of

the photocatalytic characterization, scientific computing tools NumPy, SciPy, Pandas, and

Matplotlib based on the python programming language are used. For graphical analysis and

statistical significance, a custom tool was built using the wxPython package.

iii
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Chapter I

Introduction

I.1 Introduction

One of the greatest achievements in the history of science and engineering is the invention
of a computer whose primary purpose is to solve problems in science and engineering
by obtaining solutions to mathematical models that represent physical phenomena. The
techniques used to obtain such solutions are part of a general area called scientific computing.
The use of these techniques to elicit insight into scientific or engineering problems is
called computational science [14]. Scientific computing is concerned with constructing
mathematical models and quantitative analysis techniques and using computers to analyze
and solve scientific problems [37]. Its objective is to gain an understanding of underlying
physical phenomena, mainly through the analysis of mathematical models implemented on
computers. With the aid of computer programs, these models are studied with various sets of
input parameters which may require high performance computing or distributed computing
platforms.

Today with a plethora of modeling software or schemes there is a challenge in finding the
model that is most suitable and best fit for a specific problem. Mathematicians and numerical
data analysts dealt with various numerical and analysis methods but had a hard time finding
the suitable scientific problems to apply the methods. On the other hand, a scientist needs
more time to delve into the numerical methods thoroughly. Computational scientist interest
is to fill this gap by transferring numerical analysis to a scientific problem. This can be
achieved by using appropriate analysis tools and visualization tools or developing a user
application that aids both visualization and analysis.

Photocatalytic characteristics of semiconductor is one major interest of chemists, environ-
mentalists, and material scientists. With the aid of numerical data analysis and visualization
tools, scientists have success in predicting different variables in photocatalytic activities.
With an immense number of variables associated with the photocatalysis, it became hard to
analyze a single variable, and yet several researchers and scientists are gaining momentum
in research.

In understanding the underlying behavior of each particular variable on the photocatal-
ysis process, mathematical models are invaluable. As the number of conducted physical
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experiments in the laboratory environment increases over years, it becomes more complex to
analyze each experiment. These physical experiments are limited by the mechanical design
of the equipment or the sensor’s inability to function in certain specific conditions like high
temperature, pressure, humidity, etc. In order to better understand the underlying phenomena
that is limited by the physical conditions, it is very important to mathematically represent
the experiment which has greater control over the experimental parameters. And while there
is difficulty in creating the physically realistic scenarios, it is still very useful to analyze
the experiment in each variable that can affect the experiment. To deal with the complexity
of the experimental data sets, a suitable analysis and visualization tool or software will
be required, which simplifies the application of numerical tools. In the meantime, it also
attracts the interest of scientists to deal with the experiments.

The choice of appropriate tools that has all the necessary numerical methods and data
types for the scientific data analysis is a great factor of interest for the computational
scientists. However, the scripting languages, particularly Python, is gaining more popularity
recently in the scientific community because of a plethora of python extension modules, its
simplicity and greater number of analyzer, and computational scientists and researchers of
similar interests who are dedicated to enhance the scientific libraries and modules. The high
quality extension modules such as NumPy, SciPy, Matplotlib, Pandas and more efficiently
written modules aid visualization, numerical analysis of huge data sets and mathematical
approximation, simulation or prediction models.

The main objective of this dissertation is to explain the use of computational and cus-
tomized package to visualize and analyze the experimental data, and to deduce the prediction
model which will aid the understanding of underlying phenomena of the photocatlytic pro-
cess.
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I.2 Significance of the Dissertation

There are several raw data that are collected from photocatalytic experimental design.
From these several experiments, it is necessary to extract some knowledge and direction
which will help re-design, modify, and guide in the right direction of the research in the
arena of photocatalysis science. Using scientific computational techniques, knowledge of
underlying mechanisms that control the photocatalytic activity can be inferred. This will
guide experimental research and mechanisms for controlling and regulating the experiments
can be developed. One of the major tasks of this research is to build a mathematical
model representing the experiments. This mathematical model leads to the prediction of
conditions which are limited by several constraints like mechanical design, environmental
issues, etc. Using such a model, experiments can be verified or falsified or revised before
real experiments are conducted.

A mathematical model is required to be constructed that represents the photocatalytic
process. To construct such a model, several experiments are required to be conducted;
however, it is not possible to conduct all the experiments that include all the underlying
mechanisms. To tackle and construct such a mathematical model, a computational method
is required, which is a growing interest of many researchers.

I.3 Problem Statement

As scientific research progresses, it seeks to build its own devices as per the demand of
the specific research interest. There has been a growing interest of many chemists, photo-
chemists, material scientists, and environmental scientists in the process of photocatalytic
characterization. Traditionally, the devices lack electronic controls and measurements. To-
day, use of electronics and raw sensors are common in the design of new devices. This is an
interest in most of the research, which speeds up the research work.

In the course of photocatalytic characterization, the system incorporating automation
of the system and raw sensors for instrumentation have been developed. Instrumentation
sensors used in the device can produce several measurable outputs, which is the main
interest of the fundamental task of the system. In an ideal situation, each sensor provides
the response to the single physical phenomenon without any interaction with surrounding
physical environments. Without the knowledge of known facts relating to the used or
selected sensors in this research work, it is a major interest of analyzing the raw sensor data.
These raw sensors provide continuous time series signals for the quantitative determination
of the amount of multiple components of the physical phenomena.
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Photoreactor is a newly designed and devised apparatus incorporating automation and
instrumentation systems. It is designed to monitor the chemical activity, the photocatalytic
process. The input signal to the device is the control signals to automate the reactor. The
output of the system is the raw time series data, which contains the underlying photocatalytic
activity undergone during the experiments conducted in the reactor. The output signal shapes
are very much similar to the probability density function, which doesn’t follow the periodic
nature of the signals. With this nature of the output signal, it is not applicable for most of the
traditional signal and data analysis. The estimation, optimization, and prediction modeling
approach is based on the stochastic nature of the collected signal, which is used to extract
the relevant information.

The underlying photocatalytic process produces carbon dioxide, CO2 in the expense of a
volatile organic compound. The VOC generates a peak of CO2 and declines the signal as the
VOC gets decomposed. Therefore, a fundamental approach of mathematical modeling of
the underlying CO2 and VOC components will be analyzed at multiple physical conditions,
which will provide the modeling parameters. During construction of the model, several
procedures need to be performed which analyze the sample, sensor response and data
acquisition system and the photocatalytic process.

I.4 Objectives of the Dissertation

The main objective of this dissertation is

• to develop the Mathematical Model that leads to the prediction of of the Photocatalytic
Coatings characterization.

The specific objective of this dissertation is

• to design and build a new experimental setup based on the instrumentation and
automation design to obtain accurate and precise raw experimental data;

• to run a sequence of experiments with varying quantities of the specified simulants at
varying humidity ranges;

• to observe assembly performance as a function of various system parameters;

• to continue to develop a model that relates system parameters to performance parame-
ters;

• to build the customized data analysis and visualization tool using computational tools;

• to design data acquisition software using LabVIEW;
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I.5 Hypothesis of the Dissertation

• when some fluids are introduced to the continuous flow stream, its measurement rises
and reaches peaks and comes down unless there is another amount of fluid added or
generated inside the system, which resembles our equipment setup for photocatalytic
activity;

• the cooling fan with a constant speed keeps the temperature of the reactor constant;

• at same experimental conditions, the same quantity of simulant will give the same
repeatable results;

• a mathematical model can be formulated and analyzed from the acquired experimental
data sets.

I.6 Motivation

Scientific computing is a well studied field in modern computer science and engineering.
With various computational tools available to perform the basic required operations, the
choice of using existing tools in the public domain or building new tools are prudent activities
that will lead to a completely new architecture and computational framework.

With increasing amounts of raw data being collected over a series of experiments, a
visual and computational method can be applied to perform data mining or analysis to
achieve a mathematical that can lead to prediction model.

I.7 Organization of the Dissertation

This dissertation is divided into five chapters.
Chapter I: Introduction

This chapter will be an introduction to the topic of the project covering the background,
objectives, and hypothesis of the project. This chapter will give an overview to the readers
to understand the significance of data analysis and a mathematical model, as well as its
implementation and applications in the current scenario.

Chapter II: Literature Review
This chapter will give an overview on the literature of previous work done that is related to the
mathematical model of the photocatalytic process. This chapter will help in understanding
the comparative studies and analysis.
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Chapter III: Experimental Apparatus and Computational Tools
This chapter will reflect the design of the desired experimental apparatus design and setup
that will be used to conduct the photocatalytic activities under a controlled automated
environment. This chapter will discuss the selection of scientific computing tools.

Chapter IV: Experimental and Computational Methods
This chapter will give the experimental setup and procedure to conduct the experiment.
The second portion of this chapter gives the data collection methods, visual analysis, and
computational analysis to formulate a prediction model.

Chapter V: Data Analysis and Evaluation of the Experimental Result
This chapter will explain the data analysis methods to validate the prediction model and
evaluate the experiments. This will show information about the experiments that will be
performed on the implemented systems using third party tools or comparative analysis
methods. This chapter would show the details of the different experiments performed on the
system.

Chapter VI: Conclusions and Future Work
This is the final chapter that will be composed of the conclusion and the future work.
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Chapter II

Review of Literature

II.1 Overview

This chapter presents a comprehensive literature survey on scientific computing and appli-
cation of computing tools in the scientific application of photocatalysis. Fundamentals of
the photocatalytic process are presented in this chapter. The main processes involved in the
photoinduced reaction are described. Catalysts used in photocatalytic oxidation reactions are
presented, with special attention given to titanium dioxide. Operational parameters involved
in photocatalytic degradation processes are discussed, namely catalyst loading, pollutant
concentration, pH of the reaction media, presence of oxygen, temperature, and photon flow.
Current mathematical methods to improve TiO2 photocatalytic efficiency are discussed.

II.2 Scientific Computing

Scientific computing is the field of study "concerned with constructing mathematical models
and quantitative analysis techniques and using computers to analyze and solve problems in
science and engineering domains. Its approach is to gain understanding, mainly through the
analysis of mathematical models implemented on computers" [37].

Computing often builds models of real world scenarios such as weather prediction,
material science, structural biology, superconductivity, vehicle dynamics, air flow around
planes, explosives, etc. With the aid of computer software, models are studied with various
sets of input parameters. However, algorithms and mathematical methods used in these
models may vary from one domain to another domain. These models may require massive
amounts of calculations which are often executed on supercomputers or distributed with
computing platforms.

Scientific computing draws on mathematics and computer science to develop the best
ways to use computer systems to solve problems from science and engineering [14]. This is
depicted schematically in Figure II.1.

In general, scientific computing is solving problems efficiently by harnessing the power
of modern computers and exploiting the mathematical relations and theories. Being of a
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Figure II.1: Scientific Computing and Related Area [14]

multidisciplinary nature, it is used to solve the problems of various applications in science
and engineering to give rise to mathematical models. From the raw data acquired from those
applications, data analysis is done by implementing the modern numerical methods and
high performance computing tools to produce efficient mathematical models. One of the
topics of interest is the photocatalytic process. Models of a photocatalysis have evolved
over the years and have been refined and integrated into the study of photocatalytic coatings
characterization.

II.3 Fundamentals of Photocatalysis

Photocatalytic oxidation is a very rapidly expanding technology in indoor air treatment
and waste-water treatment because of its superior characteristics over other costly con-
ventional methods like activated carbon adsorption, chemical scrubbers, biofiltration, or
thermal catalysis. Because of its inert nature, photostability, harmless bi-products, and cost
effective solution to degradation of pollution, many researcher have widely investigated this
phenomenon. Several research analyses has been conducted for improving the efficiency of
photo-degradation processes considering physical or chemical factors.

There are several types of pollutants that present in indoor air such as nitrogen oxide
(NOx), carbon dioxide, carbon monoxide, volatile organic compound (VOC), dust particles,
etc. These pollutants come from different sources such as domestic activities like cooking,
construction materials, office equipment, wall paints, and other household products. One of
the well known indoor pollutants is VOC. VOCs are widely used in (and produced by) both
industrial and domestic activities. This extensive use results in their occurrence in aquatic,
soil, and atmospheric environments. Many VOCs are toxic, and some are considered to be
carcinogenic, mutagenic, or teratogenic [2]. These VOCs have a close relation with the
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sick building syndrome (SBS), which is one of many terms used by occupants to describe
symptoms of reduced comfort or health [34].

There are various conventional methods to remove these VOCs. Advanced oxidation
processes (AOP) such as thermal oxidation destruction and photocatalytic oxidation (PCO)
are promising technologies for air purification because the pollutants can be oxidised into
H2O and CO2. However, thermally catalytic oxidation requires high temperatures of 200-
1200 ◦C for efficient operation, and are therefore expensive [34].

A lot of investigations conducted in photocatlytic oxidation of gaseous VOCs made
over the past few years have made several photocatalyst systems. Several investigations are
made to analyze the important factors that influence the catalytic activity. However, there
are limited studies on the photodegradation of VOC pollutants at typical indoor levels [34].
Several factors, such as ambient operating conditions, photocatalyst design, and radiation
intensity are considered to determine the rate of degradation.

II.4 Photocatalysis

Photocatalysis is the reaction induced by the action of light in the presence of a catalyst
where the catalyst facilitates the chemical reactions without being consumed or transformed.
More specifically, IUPAC defines photocatalysis as "change in the rate of a chemical reaction
or its initiation under the action of ultraviolet, visible or infrared radiation in the presence
of a substance? the photocatalyst? that absorbs light and is involved in the chemical
transformation of the reaction partners" [28].

With the discovery of the electrochemical photolysis of water with Titanium dioxide
(TiO2) electrodes by Fujishima and Honda in 1972 [21], it has taken much attention from
several scientists and researchers around the world. Since then, TiO2, also known as titania
mediated photocatalysis, has been reported as a much promising route to destroy toxic and
hazardous organic substances both in the air and water, which yields end product of water
(H2O), carbon dioxide (CO2), and inorganic ions upon complete oxidation of the pollutants.
However, there are several other semiconductor photocatalysts, but TiO2 is more superior
because of its high activity, large stability to light illumination, low price, and nontoxicity.

Heterogeneous photocatalysis is a catalysis that involves the acceleration of photore-
action in the presence of a semiconductor photocatalyst, which affects partial or total
mineralization of a gas phase or liquid phase contaminate to benign substances [13]. As
for classical heterogeneous catalysis, the overall process can be decomposed into five
independent steps [17]:

• Diffusion of the reactants from the bulk phase to the surface of the catalyst;
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• Adsorption of at least one of the reactants;

• Reaction in the adsorbed phase;

• Desorption of the products;

• Removal of the products from the interface region.

In conventional catalysis, the mode of catalyst is activated with thermal activation which
is being replaced by photonic activation. This mode of activation is concerned in step
three which includes several photoelectronic processes: absorption of photons by the solid
catalyst; creation of electron/hole pairs which dissociate into photoelectrons and positive
photo-holes; electron transfer reactions [17].

II.4.1 Basic Mechanisms of TiO2 Photocatalysis

Photocatalytic activity has been reported to occur in the presence of oxygen, water, and
light intensity. In addition to the crystalline forms of TiO2, the photocatalytic efficiency
of TiO2 also varies widely with respect to illumination conditions, species, concentration,
temperature, and humidity [15].

The basic chemical reaction mechanism is depicted in Figure II.2, which illustrates the
chemical actions at the catalyst surface by an organic pollutant. When the catalyst is exposed
to photons whose energy is equal to or greater than band gap energy (Ebg) (~3.2 eV or
~380nm), it absorbs the photons. This stimulates the electron transfer from the valence band
(VB) causing them to move to the empty conduction band (CB) creating positive holes in the
VB. The possible recombination of a highly reactive photoproduced electron hole (e-/h+)
pair can produce heat and can reduce or can oxidize the species at the catalyst surface which
could be either promoting or limiting factors for photocatalytic efficiency.

Generated electron hole (e−/h+) pairs, when reacted with the adsorbed water molecules,
creates a highly reactive hydroxyl radical (·OH), which initiates the oxidation reactions.
These powerful oxidative redox reactions will scavenge the surface of the material to degrade
any organic material that may be present on the film. Under optimal reaction conditions,
organic pollutants can be completely oxidized to form environmentally friendly products
CO2, H2O, etc. The following equations describe a reaction’s pathways using titanium
dioxide (TiO2) as the catalyst.

TiO2 +hν → h+V B + e−CB (II.1)
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H2O(ads)→ OH−+H+ (II.2)

OH−+h+V B→ ·OH (II.3)

O2 + e−CB→ O−2 (II.4)

2 ·OOH→ O2 +H2O2 (II.5)

·OOH +H2O+ e−CB→ ·OH +OH− (II.6)

H2O2+ e−CB→ ·OH +OH− (II.7)

·OH +Pollutant +O2→ Products(CO2 +H2O+ etc) (II.8)

Figure II.2: Surface Generation of an Electron Hole Pair and Subsequent Mechanism of the
Photocatalytic Process
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Although several examinations yielded insight into the mechanism of the reaction of
TiO2 with organic substrates in solution, not as much information is available for this
chemistry in the solid state. This project has been designed to examine the degradation
of common organic compounds to study the rates of decontamination in a photocatalytic
coating. Novel TiO2−SiO2 thin films were used to produce superhydrophilic surfaces,
which promotes a self-cleaning attribute that facilitates environmental cleaning applications.
Since dispersion stability has been correlated to several coating characteristics (i.e., surface
coverage, adhesion, and uniform topology), the initial focus was on the development of a
stable dispersion. A polyhedral oligomeric silsesquioxane derivative, trisilanol isobutyl, was
chosen for the sterics provided to promote repulsion throughout the dispersion.

Many researchers have synthesized various photocatalysts to decompose different VOCs.
The degradation of VOCs and therewith the performance of the photocatalytic reaction
is governed by physicochemical as well as product-related parameters. There are several
external influencing factors of the degradation process. They are as follows:

i. Hydrogen Peroxide (H2O2)

ii. UV-A Irradiance

iii. concentration of water expressed by Relative Humidity

iv. Light Intensity

v. Wavelength

vi. Reaction Temperature

vii. pH

viii. Contact Time and Surface Area

II.5 Effect of H2O2

Effect of hydrogen peroxide on photocatalytic degradation has been studied and found to
have two main functions affecting it. Due to photo-generated conduction band electrons,
promoting the charge separation, it forms hydroxyl radical (OH ·). The addition of H2O2

increases the concentration of the OH· radical since it inhibits the electron-hole recombi-
nation. From the experimental evaluation of the H2O2 on touluene/p-xylene degradation,
is found that it follows a flow rate of 1L/min, initial concentration of 0.1 mol/m3, relative
humidity of 35% and photocatalyst of pure TiO2 [35].
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Experiments were conducted to evaluate the effect of H2O2 on the touluene/p-xylene
degradation. It was found that it follows flow rate of 1L/min, initial concentration of 0.1
mol/m3, relative humidity of 35%, and photocatalyst of pure TiO2. As the reactants and/or
byproducts accumulated on the catalyst, and there was no new super-oxidation supplied, the
catalyst deactivated and the degradation rate increased slowly after 2 hr. Hydroxyl radical
were produced due to the presence of hydrogen peroxide. This decreased the recombination
of electron hole pairs and consequently the final acetone degradation rate was up to 91.8%
after 8 hr. Consumption of hydroxyl radicals likely played an important role in deactivation
of the catalysts, and appropriate volume of hydrogen peroxide could enhance the degradation
rate, while too much could decrease the degradation rate [35].

II.6 Effect of Gas Flow Rate

Gas flow rate is the important factor in photocatalytic activity. With higher gas flow rate,
pollutant gets less residence time on the photocatalyst surface. At lower gas flow rate,
pollutant gets higher residence time on the photocatalyst surface. With more time to interact
with the photocatalyst, there will be more degradation activity. There has been several
studies conducted over the effect of gas flow. Wenjung et. al studied on gas flow rate on ATP
degradation and attempted to find the optimum gas flow rate. The effect of gas flow rate
on ATP degradation at an initial concentration of 0.1mol/m3 and relative humidity of 35%,
is as shown in Figure II.3. When the flow rate was increased from 3-9 L/min, degradation
of toluene and acetone decreased. With a flow rate > 3 L/min the reactants have shorter
residence time on the photocatalyst surface and consequently do not bind to the active sites.
From his finding, the degradation rate of ATP at 1 L/min was the lowest. For p-xylene, the
degradation rate was the highest when the flow rate was 7L/min. The highest degradation
rates for acetone, toluene, and p-xylene were 77.7, 61.9 and 55% respectively [35]. The gas
flow rate remarkable influences on the degradation rate.

II.7 Effect of Relative Humidity

The influence of the relative humidity depends to a large extent on the characteristics of
contaminants. It has been observed that the surface OH groups and/or physiorbed H20,
as well as the anion radicals, can play a significant role as key active species in the PO
reactions of various VOCs. In the absence of water vapor, the photocatalytic degradation
of some chemical compounds (eg. toluene, formaldehyde) is seriously retarded and the
total mineralization to CO2 does not occur. However, excessive water vapor on the catalyst
surface will lead to the decrease of reaction rate because water molecules can occupy the
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(a) Acetone (b) Toluene

(c) P-xylene

Figure II.3: Effect of Flow Rate on the Degradation of Acetone, Toluene, and P-xylene by
TiO2/UV Process [35]

active sites of the reactants on the surface and the hydrophilic effect at the surface prevails
over the oxidizing effect. The hydrophlic effect at the surface prevails over the oxidizing
effect when high values of relative humidity are applied.

TiO2 surface carries weakly or strongly bound molecular water, as well as hydroxyl
groups created by the dissociative chemisorption of water.

Obee and Brown investigated the effect of humility on photoxoidation rate of formalde-
hyde, toluene, and 1,3-butadiene on titania. The data showed that competitive adsorption
between water trace contaminants had significant effect on the oxidation rate.

However, Joe et al. found that the humidity had little effect on photocatalytic oxidation
of benzene, ethyl benzene, and o-, m-, p-xylenes, trichloroethyline and perchloroethylene the
PCO destruction efficiencies were close to 100% for four different RH range from 18 to 78%.
As and Lee compared the effect of humidity on photocatalysis oxidation of BTEX on TiO2
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and TiO2/AC systems and the results indicated that TiO2/Ac exhibited higher resistance to
humidity effect. This negative effect of water vapor on TOL removal was in agreement with
results obtained by other authors investigating photocatalytic TOL degradation by TiO2/UV.

The practical evaluation by installation of the TiO2/ac filter in an air cleaner was also
conducted. The use of TiO2/AC not only increased the target pollutant removal efficiency
but also reduced the amount of intermediate exiting the system. The study showed that the
enhancement effect of the TiO2/Ac shown in the laboratory scale using the photoreactor was
also achieved by installing it into an air cleaner available in the commercial market.

Except the factors, the volatile organic compound structure sis also an import feature.
O’Malley and Hodneett found that a primary factor in determining the reactivity of volatile
organic compounds in oxidation reaction was the strength of the weakest C-H bond in the
structure, which implicated that destruction of volatile organic compounds over oxidation
catalysts proceeded by initial rupture of the weakest C-h bond in the compound, followed by
further steps that may involve free radical chemistry. The research showed that the reactivity
of VOCs with different functional groups for total oxidation varied as alcohols> aromatics>
ketones>carboxylic acids> alkanes.

II.8 Modeling of Photocatalysis

Mathematical models are used in several occasions to analyze the photocatalytic degra-
dations. These mathematical models are developed and verified by correlating them to
the experimental data along with theoretical suppositions and hypothesis. With lots of
parameters governing the complex photocatalytic process, a mathematical model is used to
simplify the process, which is ultimately used to predict and optimize the parameters needed
to control and enhance the photocatalytic process that allow the scale up or re-design of
efficient large-scale photocatalytic reactors. Many researchers have used several varieties of
mathematical models. The following section describes the mathematical models that are
used in photocatalytic process.

II.8.1 Model Development

In a research study conducted by Lalman et al. [8], the photocatalytic degradation of
phenolic compounds in the presence of titanium dioxide (TiO2) nano-particles and UV light
had investigated. A regression model was used to develop to relate the apparent degradation
constant to the various factors. A full factorial design was used to examine the effect of
particle size, temperature, and reactant type on the apparent degradation rate constant. The
individual effect of TiO2 particle size (5, 10 and 32 nm), temperature (23, 30 and 370C),
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and reactant type (phenol, o-cresol and m-cresol) on the apparent degradation rate constant
was determined.

A second-order quadratic polynomial order selected by the Minitab (statistical software)
was used to relate the coded factors and the response. After regression analysis using coded
units, the regression model was built given by equation II.9 and II.10, which gives 97.33%
of the variation in the degradation rate constant values. The predicted R2 of 0.9362 is in
reasonable agreement with the adjusted R2 of 0.9615. The model was found to be predictive,
which showed the model was reliable within the range of factors under consideration.

k = 0.10985+0.00833x1−0.00266x2 +0.00189x2
1−0.003994x2

2−0.000158x1x2

+0.001672z−0.000200zx1 +0.000392zx2
(II.9)

k
′
= 0.01111+0.00833x1−0.00266x2−0.00399x2

2 +0.01672z (II.10)

Figure II.4: Predicted vs. Experimental Degration Rate Constant bases on (a) Equation II.9
and (b) Equation II.10 [8]

This model equation II.9 contains insignificant and significant terms. The modified
model equation II.10 was developed by neglecting the insignificant terms in the quadratic
equation (Equation II.9). The predicted values obtained from the two equations (Equations
II.9 and II.10) are shown in Figure II.4. The comparison indicated no significant difference
between the predicted response values for the two models (Figure II.4).

Using the D-optimal criterion, the maximum degradation rate were calculated. The
D-optimal criterion selects design points from a list of candidate points, such that the
variances of the model regression coefficients are minimized. By using the model, for largest
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photocatalytic activity of the three compounds, the optimum TiO2 particle size was obtained.
The maximum degradation rate constant were obtained. These obtained optimum values
of the factors can be adopted for further laboratory experiments and pilot-scale organic
pollutants removal processes.

In the research study by Yang et al. [36], the photocatalytic degradation kinetics of
carbofuran was optimized using a central composite design (CCD) based on response
surface methodology (RSM). Three variables, TiO2 concentration, initial pH value and the
concentration of carbofuran, were selected to determine the dependence of degradation
efficiencies on independent variables. Analysis of experimental data by using Design-Expert
Software, these three variable were investigated in the multivariable experimental design
where these variables were converted into dimensionless (x1,x2,x3) with the coded values of
-α , -1, 0, +1,+α .

From experimental results, a semiempirical expression in equation II.11, which consisted
of 10 statistically significant coefficient was obtained and expressed as where Y is the re-
sponse variable of the degradation efficiency of carbofuran. The x1,x2 and x3 represent three
experimental factors, respectively. The comparison of experimental values (Yexp) against the
responses predicted by the model (ycal) for the degradation efficiencies of carbofuran with a
good correlation (R2=0.98) indicate that this model explains the experimental range very
well. From Figure II.5, it can be concluded that model obtained is adequate to describe the
relationship between the degradation efficiency and these three above mentioned parameters.

Y = 83.70−0.17x1−72.4x2 +5.26x3−2.29x1x2 +2.66x1x3 +0.41x2x3

−1.59x2
1−0.99x2

2−1.06x2
3

(II.11)

In the research conducted by Wantala et al. [22], the extended photocatlytic conditions
were studied as functions of catalyst loading, number of black light, and initial pH of solution
using Response surface Methods (RSM) based on Box-Behnken Design (BBD). The effects
of these three operating variables (X1, X2 and X3) on the degradation efficiency of alachlor
were examined. The independent variables and factor levels were listed in Figure II.6.

A quadratic-second degree polynomial regression was used to approximate a mathemati-
cal relationship of all three variables and could be expressed by the equation II.12.

y = β0 +
4

∑
i=1

βiXi +
4

∑
i=1

β
2
i X2

i +
3

∑
i=1

4

∑
j 6=i

βi jXiX j± ε (II.12)



18

Figure II.5: Experimental and Calculated Values for Removal Efficiencies of Carbofuran
during the Photocatalytic Process [36]

Figure II.6: Independent Variables and Levels of Factors used for Optimization [22]

where Y is the response (% removal of alachlor), β0,βi,β 2
i and βi j are the constant

coefficients, X is the coded independent variable, and ε is the experimental error.
RSM was utilized to verify the main and interactive effects of operating variables. The

optimization design process based on BBD involves mainly four major steps explained by

• preforming statistically designed experiments according to the experimental plan,

• proposing the mathematical model based on the experimental results and elaborate
the result of analysis of variance (ANOVA),

• checking the adequacy of the model through diagnostic plots,
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• predicting the response and confirm the model.

An approximate function of alachlor removal efficiency based on the experimental results
was evaluated and given as Equation II.13 as given coefficient data in Figure II.7.

Figure II.7: Estimated Regression Coefficients of Percent Alachlor Removal at 60 min. [22]

Y = 70.046+18.636X1 +1.591X2 +0.404X3−1.529X1X2 +2.066X1X3

−1.177X2X3−7.50X2
1 −1.947X2

2 −0.830X2
3

(II.13)

where y is predicted alachlor degradation (%removal), X1, X2 and X3 are corresponding
coded variables of catalyst loading, number of black, light, and pH of solution respec-
tively. Figure II.8 shows relationship between predicted values calculated by equation II.10
evaluated from model and experimental values.

II.9 Applications of TiO2

TiO2 photocatalysis is widely used in a variety of applications and products in the envi-
ronmental and energy fields, including self-cleaning surfaces, air and water purification
systems, sterilization, hydrogen evolution, and photoelectrochemical conversion as shown
in Figure II.9 [29].
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Figure II.8: The Actual and Predicted Plot of Percent Alachlor Removal at 60 minutes [22]

Figure II.9: Applications of TiO2 [29]
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Chapter III

Experimental Apparatus and Computational Tools

III.1 Overview

The main objective of this research was to design a photoreactor from an existing reactor
to incorporate a fully integrated instrumentation system and to automate a reactor that
enables higher precision, accuracy, and continuous measurement environment with only few
human intervention. This chapter gives an overview of the reactor design, control devices,
instrumentation devices, and operating procedures of the reactor. The second portion of
this chapter describes the computational tools that are used to perform the data analysis
and build the prediction model and selection of integrated development environment (IDE)
platform.

Figure III.1: General Schematic Diagram of Photocatalytic Reactor
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III.2 Photocatalytic Reactor Design

A new photoreactor is designed to incorporate renovations to an existing photoreactor to
provide a laboratory environment and automate the system. The photoreactor is fabricated
with all the necessary circuitry, automation, and instrumentation components that are
required to conduct a photocatalytic activity. A snapshot of three dimensional computer aided
design (CAD) model designed and produced in Autodesk Inventor is shown in Figure III.2.
The photoreactor consists of two main distinct compartments. First compartment consists
of circuitry and controllers. Second compartment consists of a form of two sandwiched
anodized steel chambers to increase durability and corrosion resistance where feeding of
an organic compound (simulant) sprays over the sample panel coatings(catalyst) . The
reactor enclosure is built with the framework of aluminum bars for structural support and
the plastic panels painted to keep the light within the chamber and to make safe from outside
environment. The light source sits on top of the reactor as shown in Figure III.2 from where
light will be introduced inside the chamber.

Figure III.2: Photocatalytic Reactor and the Light Source Unit (on top)
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III.3 Photocatalytic Reactor Automation

The second compartment of the reactor consists of a form of two sandwiched chambers as
shown in CAD diagram III.4 (a). The top chamber includes a one piece anodized steel and
a quartz top lid, which incorporates gas inlet and outlet connections as well as o-ring sealing
of the quartz window. The lid is attached with screws as shown in Figure III.4(b). The
quartz window provides exposure with the light source that sits on top of the reactor. The
bottom chamber Figure III.4(c) acts like a tray designed to allow sample panel placement
and sprays over the sample test panel. The system is automated by attaching a vertical
actuator to move the bottom chamber down to insert the sample test panel. After insertion
of the sample test panels in place, from the computer user interface Figure III.3, an operator
starts the process by selecting a number of sprays after which the bottom chamber lifts up
and sandwiched with the top chamber.

Figure III.3: Front Panel GUI of Photoreactor
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(a) Sandwiched Chamber CAD Model (b) Top Chamber with Quartz Window

(c) Bottom Chamber (Sample Test Tray ) (d) Chamber with Actuator

Figure III.4: Chamber Assembly
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The automation of the photoreactor is controlled by a Microcontroller (Figure III.6 (e)).
This is the integration of several hardware components: ultrasonic sprayer, servo motor,
vertical actuator, solid state relay, solenoid value, h-bridge circuit, voltage regulator, and
cooling fan. The purpose of the Microcontroller is to control the vertical lift actuator, sprayer,
sprayer arm, solid state relays, cooling fan, and solenoid valve. It has current feedback from
the servo motor and the ridge switch from the access door of the reactor that halt the process
if the access door was accidentally opened or actuator become stuck and immovable by
incorporating the hardware interrupt. The Wiring and circuit diagram of the Microcontroller
is shown in the Figure III.7. The Microcontroller communicates with the reactor software,
a graphical user interface written in LabVIEW (Figure III.3) via serial communication,
which sends it to devices through general purpose input/output (GPIO) interface. Every
time the reactor is turned on or recovered from power failure, startup function is executed to
start/restart the reactor in initial condition.

Figure III.5: Photochamber and its components
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For the automation of the reactor several hardware components are used, shown in Figure
III.6. They are solenoid valve, server motor, solid state relay switch, vertical chain actuator,
Microcontroller, cooling fan, flow controller, h-bridge, sprayer, and swagelok value.

For accurate dispensing of the simulant over a target, the automatic electronic sprayer
(Figure III.6 (i)) is used. It is powered with 24V DC and controlled by a pulse width
modulation (PWM) of power signal which is controlled by a Microcontroller. It has a
replaceable nozzle tip which can be selected according to type of spray pattern required. The
sprayer is used to spray, de-pressurize, and purge the simulant. A single spray cycle is two 6
millisecond (ms) pulses, which are adjusted by varying pulse width of the power signal to
the sprayer. The de-pressurization is done to relieve line pressure by opening a nozzle for
10 seconds before a filling process of the simulant. The purging is done by spraying 200
times (100 cycles) with the solenoid valve open to remove all the simulants present in the
sprayer. The nozzle is capable of delivering 0.47 gpm (1.8 l/min) at 100 psi (7 bar). With a
maximum spray rate of 10,000 cycles per minute (once every 6 ms) it is possible to achieve
spray volumes ≈ 10µL per cycle.

The sprayer nozzle is attached to a spray arm. The other end of sprayer arm is attached
to a servo motor which is at the corner of the chamber, as shown in Figure III.5. The servo
motor is used to move the sprayer arm which has 900 of angular movement. The angular
movement is controlled by a Microcontroller by sending signal pulses to the servo. It has 12
bit digital resolution at 347.2 oz-in of torque.

The vertical actuator moves up and down, and the sprayer arm moves right or left in
angular motion. To accomplish this, polarity of the power signal needs to be reversed. An
h-bridge (Figure III.6 (c)) is used to reverse the polarity. It is operated by 24v DC and can
support up to 3A of continuous current. By utilizing the current feedback from the actuator
motor to the Microcontroller, the actuator is turned off at a predetermined current value. The
PWM signal source to the bridge is used to vary the speed of motor movement as well.

The bottom chamber (Figure III.4), a sample tray is raised by a 24VDC chain vertical
lift actuator which provides a force of 300 Newtons, or about 67 lbs. The vertical lift actuator
is moved along the steel guide rails and slides (Figure III.6). The bottom chamber is lifted
up by this chain actuator and sandwiched with the top chamber forming a sealed chamber.
After completion of the experiment, the actuator lowers down so that a new sample can be
loaded on the bottom chamber.

A sample tray is heated during the progress of the experiment by the Xenon light source,
which sits on top of a quartz glass window. A cooling fan with heat sink is provided by
attaching it to the bottom of the sample tray to keep the temperature of the chamber constant.
The cooling fan is operated by the Microcontroller via PWM signal to a solid-state relay
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(SSR) switch. The fan is turned off during loading of the sample test and spraying by
solid-state relay switch.

An in-line solenoid valve is used to supply the pressurized air to the sprayer. It is
activated by the Microcontroller to control the flow of air which also isolates the sprayer
from the line pressure of the air cylinder. Line pressure needs to be cut off during refilling
of simulant into the sprayer. The quarter inch ported 3-way valve with pressure range of
1-125psia serves as the control value to limit or stop the pressurized air stream to the sprayer.

(a) Solenoid Value (b) Servo Motor (c) Solid State Relay Switch

(d) Vertical Chain Actuator (e) Microcontroller (f) Cooling Fan

(g) Flow Controller (h) H-Bridge (i) Sprayer with Swagelok

Figure III.6: Photochamber Control Devices
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Figure III.7: Microcontroller Circuit Diagram
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III.4 Photoreactor Instrumentation Design

Instrumentation was developed to accurately measure with higher precision sensors and
integrated into the photoreactor. From automating the reactor, initiation of spraying over the
sample test panel was achieved. This automation system protects the human from exposure
to the harmful chemical agent, the simulant. By integrating instrumentation to the reactor,
this allows the capture of sensor data continuously in making statistical and graphical data
analysis.

After the sample test loading and spraying system are complete, no human intervention
is required in the reactor. The instrumentation devices will collect the data and send to the
computer via the National Instruments data acquisition device (NI DAQ) as shown in Figure
III.8.

Figure III.8: Data Acquisition System
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III.5 Sensors

III.5.1 Volatitle Organic Compound Sensor

A high accurarcy with a minimum detection of 50 ppb, piD-TECH plus Plug-in Photoioniza-
tion Sensor was chosen for measuring the a Volatile Organic Compound (VOC). The sensor
is build upon the principle of photoionization principle, which uses a 10.6 eV ultraviolet
(UV) light lamp. The UV light causes ionization of the sample that is detected by the sensor
instrument and reported as a concentration of the VOC. It has the sensing range of 0 to
2000ppm and response time of less than 3 seconds. With a capability to withstand the
temperature of range -200C to 400C and relative humidity response to less than 0.2ppm
@90%, it is an ideal VOC sensor required by our apparatus setup. Its operating voltage is
32.V to 10V with a power consumption of 64mW - 300mW. Its output signal is 0.05 - 2.5V,
which can be detected by the data acquistion device and mapped to 0-2000ppm depending
upon the VOC materials.

III.5.2 Carbon dioxide Sensor

One of the harmless byproduct of the photocatalytic process is the carbon dioxide. An
ISO9001 compliant, a highly accurate Vaisala CARBOCAP Carbon Dioxide Transmitter
GMT222 CO2 sensor was used to detect the level of carbon dioxide. The sensor is based on
the single beam of infrared signal which is used to measure the amount of CO2. This sensor
is capable of detecting 0 to 2000 ppm. Its nominal operating voltage is 24V AD/DC. It has a
interchangeable probes which can be removed and reattached without needing to calibrate
and adjust. It has analog outputs of 0-20mA, 4-20mA, and 0-10V with ±(1.5% of range +
2% of reading) which is connected to the Data Acquisition Device. Its warm-up response
time is 30 seconds. Its operating temperature range is from -200C to 600C, and it is rated to
operate from 0 to 100% relative humidity.

III.5.3 Humidity Sensor

One of the byproducts of the photocatlytic process is water molecules, which will add
humidity on the controlled chamber. It is also one of the limiting or promoting factors of the
photocatalytic process which needs to be evaluated and analyzed during the experimental
analysis. A capacitive humidity sensor, model HM1500LF, was used to measure the humidity
in a photoreactor. This sensor is reliable, accurate, and designed for OEM application. The
operating voltage requirement is 3 to 10VDC. With operating temperature range of -200C to
+600C, it can detect the humidity in the range of 0 - 100% with ±3% error.



31

(a) Ni USB DAQ (b) Snapshot of Sensor Array

Figure III.9: USB DAQ and Sensor Array Arrangement

(a) VOC Sensor (b) CO2 Sensor (c) Humidity Sensor

Figure III.10: Instrumentation Sensors
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III.6 Photoreactor Setup and Operational Procedure

Connecting the air cylinder to the Reactor:

i. Avoid sandals and wear steel toe shoes.

ii. Wear safety eye glasses, lab coat, and industrial quality gloves.

iii. Make sure the air cylinders are standing straight and tightened.

iv. Make sure the regulator pressure control valve is relieved.

v. Pressurize regulators slowly and ensure that valve outlets and regulators are pointed
away from you or any personnel.

vi. Make sure the relief valve is working by relieving pressure.

vii. Before connecting air cylinders to the reactor, make sure the reactor electrical switch
is turned off.

viii. Connect the outlets from regulators to the sprayer inlet at the reactor.

ix. Pressurize regulators slowly to 10psi that goes to sprayer inlet.

x. Pressurize regulators slowly to 10psi that connects to flow controller.

Operating Reactor

i. Make sure the reactor is plugged in to 11OVAC power outlets.

ii. Make sure the USB cable from Reactor and USB from DAQ controller are connected
to the PC.

iii. Make sure the power supply of 3.2-10VDC is connected to VOC Sensor.

iv. Turn on the PC that has Reactor Software.

v. Execute the Reactor Software.

vi. Turn on the Reactor. A red LED light will turn on for a few seconds. Wait until the
red LED light goes off.

vii. Click De-pressurize on the software.
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viii. Click Fill on the software.

ix. Open the Reactor Door.

x. Open the swagelok valve in the sprayer.

xi. Load the fill syringe with the desired amount of simulant.

xii. Load the simulant on the sprayer by inserting the syringe into the sprayer and dispens-
ing it.

xiii. Close the swagelok valve.

xiv. Insert the test panel coupon onto sample tray.

xv. Close the reactor door.

Every time, after loading the simulant,

i. Insert the blank panel and select 5 number of sprays and click "Start Process."

ii. Click "Finish Process" and open the door.

iii. Insert the test panel coupon onto the sample tray.

iv. Click start process on the software with desired number of sprays.

v. Open the Data acquisition software. Select the file name to store the sensor data.

vi. Click "Finish Process" on reactor software.

Reactor Maintenance

i. Fill the syringe with a cleaning agent.

ii. Click Maintenance.

iii. Open the access door.

iv. Slide the container tray over and place a small beaker on it so it sits snugly over the
end of the sprayer.

v. Click Purge. Repeat until sprayer is empty.
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vi. Click Depressurize .

vii. Open the green handle.

viii. Insert and empty the syringe into the sprayer.

ix. Remove the syringe and close the sprayer valve.

x. Make sure the overflow container is in place and close the access door.

xi. Click Purge. Repeat until sprayer is empty.

xii. Open the access door and remove the overflow container from the enclosure.

xiii. Click End Maintenance.

III.7 Computational Tools

There are numerous packages available for computational analysis of experimental data
sets. These tool packages vary from open source to commercial products suited for small
size to huge data sets both available for academic and commercial units. However, these
software packages are suited for general systems or limited by a set of calculations on
specific systems. For a photocatalytic researcher, the specialized software will be very useful
given the scope to fit the raw data into a system to get the desired mathematical or prediction
model. For a computational scientist, specialized programs are often needed to be made
with specific results in mind in addition to some specific features.

In creating a prediction model from a set of raw experimental data, a custom tool will be
very useful in preprocessing the raw data before analyzing it. A custom tool is therefore
designed to pre-process the data and to simplify the analysis process to build the prediction
model. This is achieved by utilizing the scientific computing tools available in the Python
extended modules with which the user can create a specialized program for analysis.

III.8 Programming

Python is preferred for both building customized tools and data analysis. It is an object-
oriented, interpreted, and interactive high-level programming language with scientific com-
puting and optimization packages and GUI capabilities.

There are several Python-compatible libraries available based on the needs of various
fields of software and hardware, which makes Python so compelling. Its compiler and many
packages are open source and free that provides maximum flexibility. The most established
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numerical computation packages, NumPy and SciPy are the fundamental package in Python
for scientific computing and data analysis in Python, which are built together to provide
many user-friendly and efficient numerical routines like integration, optimization, and more.
In order to creating the user friendly GUI, wxPython is used. Matplotlib is used to create
visualization of the data sets by creating interactive plots. For processing large data set,
pandas is used.

III.9 IDE: Spyder

For the development environment platform, Scientific PYthon Development EnviRonment,
Spyder is selected, which is a powerful interactive development environment for the Python
language with advanced editing, interactive testing, debugging, and introspection features
[?]. It is a free IDE tool with built in python shell. In addition to syntax highlighting the
editor offers code completion, code analysis, function/class browser and horizontal/vertical
splitting features. It also has a MATLAB-like workspace for browsing global variables and
a document viewer that automatically show documentation for any function call made in a
Python shell. Figure III.11 shows an image of the Spyder software.

Figure III.11: Integrated Development Environment: Spyder
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III.10 SciPy

SciPy is a module of scientific tools for the Python programming language. It provides a
vast number of options for data analysis. The module has a highly Object Oriented (OO)
approach to design, with classes being of a very fine level of granularity. For example, even
the genes that make up a genotype are defined as being classes. As with libGE, this detailed
and complex nature of the design results in a system that is very powerful, yet extremely
difficult to come to grips with. Hence we should also bear this system in mind throughout
the design stage of this project, so as to ensure that we are able to produce a framework that
is simple and easy to understand.

III.11 NumPy

NumPy is a Python extension module which adds a powerful multidimensional array class
ndarray to the Python language. NumPy also provides scientific computing capabilities such
as basic linear algebra and Fourier transform support. NumPy is the de facto standard for
scientific computing in Python and the successor of the other numerical Python packages
Numarray and numeric.

III.12 Pandas

Pandas ia an open-source Python package designed for data analysis which offers data
structures and operations for managing and handling data in efficient way. Its feature is
similar to sql which provides data slicing, indexing, grouping, merging, handling missing
data etc. Its has a feature to interact with well known data formats including csv, excel, sql
databases, JSON, etc.

III.13 Matplotlib

The Python library, matplotlib is the most popular graphical library, which is very similar
to gnuplot and a graphical interface similar to Matlab. It is a python 2D plotting library,
which produces publication quality figures in a variety of hardcopy formats and interactive
environments across platforms [?]. It is used in creating many interactive visualization like
plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc.
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III.14 wxPython

wxPython is a cross-platform GUI toolkit for the Python programming language. It allows
Python programmers to create programs with a robust, highly functional graphical user
interface, simply and easily. It is implemented as a Python extension module that wraps the
popular wxWidgets cross platform GUI library, which is written in C++ [?].

The open source cross-platform, wxPython libraries, is the frameworks for windowing
and visualization of an application. Graphical user interface (GUI) is developed using wx-
Python to incorporate several computational functions, graphical analysis, and experimental
data handling as shown in Figure III.12.

Figure III.12: A Graphical User Interface(GUI)
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Chapter IV

Experimental and Computational Methods

IV.1 Overview

In this chapter, a detailed description of the experimental procedures adopted in this project
is presented, to ensure the repeatability of the project. The first part gives all the preparation
of the equipment and materials. This part describes the main steps taken to conduct the
experiment. The second part gives the data analysis methods using visual analysis of data,
computational tools, and building the customized tool to analyze the raw experimental data.
The last part of this chapter explains the process of building the mathematical model of the
experiments.

IV.2 Experimental Setup

Each experiment is a time series data consisting of four parameters: CO2, VOC, relative
humidity and air flow quantity, which are obtained through a series of experiments. Experi-
ments are performed in two different conditions. At first, experiments were performed in
dark conditions at three different simulant quantities at different humidities. These experi-
mental sets give the baseline for analysis of the data where there is no photocatalytic activity.
In the second condition, experiments are performed in light without the photocatalyst and
then with the photocatalyst at three different simulant quantities at three different humidities.
All these experiments are conducted in constant air flow stream of 100mL per second. These
experimental sets are as depicted in the Figure IV.1.

IV.3 Calibration

Before conducting an experiment, the measuring devices need to be calibrated as specified
by the product vendors. It is a process of establishing a fixed relationship between a known
quantity and variables of a sensing device. So its purpose is to relate the known quantity to
the measured attributes. In our experimental apparatus, the sensors that we used are already
calibrated by the manufacturer which removes the burden of calibrating the devices again
and again. However, over time, it needs to be calibrated again. To tackle this problem,
through mathematical and statistical methods, calibration error can be minimized. Since in



39

Figure IV.1: Experimental Setup

this dissertation, all the recorded data are used to do ratio analysis of the area generated by
the curves of respective parameters, total area generated by the curve of each parameter are
not affected by any offset error in the reading; however, there needs to be a method to derive
a baseline of the curve. The method to detect the baseline of the curve is described in the
next chapter.

IV.4 System Integration

To conduct a photocatalytic activity, there is a need to develop a complete system which
automates the entire photocatalytic process including preparation of the consumable, deliv-
erables, and the data analysis component. The program has implemented a hardware and
software system that enables functional modules to be linked together to perform desired
data analysis. The software for hardware control and computational analysis is categorized
into two groups, on-line software and off-line software, which is depicted in Figure IV.2.
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Figure IV.2: A Overview of the System Architecture

IV.5 User Interface

IV.5.1 On-line User Interface

All the associated process are initiated by preparation of the deliverables and consumables,
which are then used for the photocatalytic process inside a controlled chamber via user
control through a software interface. A user interface based on the LabVIEW system is used
as a control software interface for the complete automation system of the process in the
photoreactor. The communication between the software and hardware controller is executed
via a USB serial communication link. The LabVIEW executable interface program is used
for data acquisition (Figure IV.3), and device control LabVIEW executable (Figure III.3) will
communicate to Arduino Controller via USB communication. This software is categorized
as on-line software because it directly interacts with the hardware in action for operating the
photocatalytic chamber.
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Figure IV.3: A LabVIEW User Interface for Data Acquisition

IV.5.2 Off-line User Interface

All of the graphical analysis used to interpret the model is used from the customized off-line
tool, which is built in Python Programming environment, and wxPython is used to build for
windows environment. Interactive user actions to make appropriate displays, selection of
experiments, and handling the raw experiments are done via this off-line user interface. All
the experiments have a uniquely identified experiment identification number (ExpID). The
programming software environment is Python 2.7 64-bit version. Even though the Python
3.4 version is available, most of the libraries do not yet support the 64-bit libraries. Version
2.7 widely supported most of the tools built on the 64-bit system, which helps to remove
unnecessary burden to deal with the different versions and 32-bit vs 64-bit issues.

IV.6 Preparation of Deliverables/Consumables

The photocatalytic process requires deliverables and consumables. The following section
briefly describes the preparation of the deliverables. They are as follows:

• Preparation of Light Source
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• Preparation of Dispersion

• Coating Preparation and Activation

• Surface Decomposition of Chemical Analogue

• Preparation of Sprayer

• Maintenance of the Sprayer

IV.7 Light Source

The synthesis or degradation of a simulant in the presence of the TiO2 photocatalyst requires
a light source. A light source with different wavelengths or intensities has a great impact on
the degradation of the simulant. Several experiments concerning the synthesis of a simulant
and a light source have been well documented via the published studies concerning its
degradation by-products in the presence of TiO2 photocatalysts. Although not performed
under real-world scenarios, they provide a ready source of information [24].

During this project, the agent was applied to the substrate, a sample test q-panel via a
spraying method. These coated sample test q-panels are pretreated with humidity and a
UV light source. The high pressure mercury lamp was used with the provided intensity
of ultraviolet radiation during the experiment as the light source as shown in Figure IV.4.
To conduct a photocatlytic degradation, these coated panels are exposed to the simulant
in the presence of light irradiation inside the reactor. Constant illumination of light is
provided throughout the period of reaction. Over a period of reaction, volatile organic
compounds along with CO2 and water were produced. These products are measured using
a designed sensor array, based on reported success of simple conductivity-based detectors
[25]. Throughout all experiments, thermal and dark controls (coatings present in the reactor
but shielded from irradiation) of experiments as well as catalytic controls (substrates with
no photocatalytic coating) were performed as a reference.

IV.8 Dispersion Preparation

The TiO2 and trisilanol isobutyl polyhedral oligomeric silsesquioxane (TSI-POSS) composi-
tions were held constant at 10:1 wt/wt% in the following procedure.

• Using a Flacktek speed mixer, TiO2 and TSI-POSS solids were combined and placed
under high sheer for 5 minutes.
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Figure IV.4: Ocean Optics Spectra of High Pressure Mercury Lamp

• Acetone was added to the solids to achieve a 5 wt % solids dispersion.

• Combining the speed mixer and a Fisher Scientific Model FS110 FS 20 sonicator, the
dispersion was alternatively placed under high shear with glass beads followed by
sonication in 5 minute increments each for three cycles.

IV.9 Coating Preparation and Activation

Photocatalysts used throughout the experiments were simple physical mixtures of metal and
semiconductror nano-particles. The specific methods used to prepare these photocatalysts
are described in the following sections. In general, all of the nano-particles were suspended
in ethanol, then mixed to create composite suspensions. Using ethanol, the solvent was
important. Water could not be used because its surface tension is too high, and it did not
properly wet the substrates, which caused uneven drying and sometimes led to solids flaking
off when submerged in water.

The dispersions were transferred to an Iwata Eclipse Gravity Feed Airbrush-CS-Size:
0.35mm/ Testors Blue Mini Airbrush with compressor. The substrates, aluminum Q-panels
(3" x 6"), glass microscope slides (3 x 1 x 1.0mm), and silicon wafer chips, were sprayed
with the dispersions in an interlaced spray-pattern at a distance of 30 cm. A horizontal pass
plus one vertical pass over the substrate is considered one coat, and a total of 10 coats were
applied. Coatings were dried between each coat in a Fisher Isotemp Oven at 50oC for 2
minutes. All coatings were stored in a desiccator at ~2% RH prior to use.



44

The 23.594"L x 17.719"W x 14.438"H photoreactor features a temperature controlled
20.625"L x 9.563"W x 1.531"H sample plate, 5 lamp holders, 30 CFM exhaust fan, and
independent controls for the fan and lamps. Humidity is measured with an installed
semiconductor-based 10-95% relative humidity range sensor. Temperature is measured via a
thermocouple type K with a range of -200 to +1250 0C. The sample chamber is constructed
of a 8.375" x 5.375" x 1" (7" x 4" x 0.8" internal) aluminum rectangular housing with an
o-ring seal and pressure controlled latching. An inlet allows flow of desired pressurized air
or gas and an outlet connection is provided for application to a bubbler container and/or a
gas analysis system.

Figure IV.5: Novel Photoreactor Manufactured to conduct UV-conditioning of Samples
while controlling Humidity, Temperature, and Light Exposure

Figure IV.6: Sample Coating Q Panel
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IV.10 Surface Decomposition of Chemical Analogue

The chemical agent that the team decided to analyze is 2-chloroethyl ethyl sulfide (half-
mustard). Experiments with varying concentration and humidity have been performed with
the simulant shown in Figure IV.7. This simulant was chosen due to the significant threat
the agent poses and due to its ability to readily absorb into substrates, a characteristic of
importance to this project. Furthermore, the agent is also inexpensive, readily available, and
requires minimal special handling protocols.

Figure IV.7: Molecular Structure of Mustard Gas Chemical Agent Simulant

IV.11 Preparation of Sprayer

The automatic sprayer nozzle provides accurate spray placement with desired spray pattern.
One of the objectives in using the automatic sprayer is to save the expensive chemical by
spraying only the required amount of it. Every time before starting the experiment, the
sprayer needs to be cleaned; if not we need to proceed with the cleaning procedure.

The spraying reservoir is need to be filled with simulant by feeding syringe. Every time,
after filling the simulant, it needs to spray at least five times, which can be done through
given reactor software. This is required to build up the line pressure into the sprayer. Since
the nozzle delivers at a rate of 0.47 gpm at 100 psi, the amount of spray will be different
at different pressures. We need to measure the amount of spray a couple of times. If the
measure is not consistent, we need to check the line pressure.

IV.11.1 Cleaning/Maintenance of the Sprayer

After completion of an experiment or when the photoreactor is not required after an ex-
periment is finished, the sprayer needs to be cleaned to remove any residual simulant in
the sprayer. This can be done by dis-assembling the sprayer. The dis-assembled sprayer is
shown in the Figure IV.8. All the parts of the sprayer need to be cleaned with alcohol.
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Figure IV.8: Dis-assembled Sprayer

IV.12 Computational Methods

Several sensors’ raw data is collected over a series of experiments conducted over the
years of the research period. This raw data needs to be analyzed either computationally or
graphically. Graphical analysis can be conducted by leveraging human capabilities using
interactive graphics. Computational methods are used to analyze the huge raw data sets,
while the interactive visualization is used to get the deeper insight into the underlying hidden
phenomena on the data sets. With only computational methods, data analysis may lead in the
wrong direction and needs to be reanalyzed and redesigned all over again both theoretically
and mathematically. To aid the computational analysis, an interactive visual analysis needs
to be done, which provides the insight to the data analysis to choose the proper settings of
computational tools and parameters.

The user interface is used to enable a user to interactively explore and configure the
experiments, which will help for both visual processing and modeling operations that are
needed for the analysis of photocatalysis. The whole analysis system consists of two
systems:

• Interactive Visual Analysis

• Computational Analysis

IV.13 A Software GUI: Interactive Visual Analysis

The base layout of the main user interface is shown in Figure IV.9. The main window of
the user interface is a collection of Plot Frames, Window Frames and Panels embedded into
the single large window. The plot frames are graphical displays of a number of raw and
pre-processed raw data. The windows have interactive mouse control of the zoom limits,
and pane views. A scrolling table is used for viewing the raw data sets, which can be viewed,
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modified, and saved, although it is not advised to modify the raw data sets manually.
For effective visual analysis, an appropriate visual tool is required. However, there is

no perfect tool available that suits our needs. For analysis of raw data and managing it, a
customized tool is required. This customized tool is built by using the Python programming
languages and wxPython library to make a user friendly graphic user interface GUI as shown
in Figure IV.9. From this user interface, users can manage and explore the experiments
identified by the experiment IDs as shown in Figure IV.10. The raw data can also be
explored, edited, and saved.

Figure IV.9: Photocatalytic Data Analysis, Visualization and Modeling Software Platform
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Figure IV.10: Experiments and Data Explorer
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IV.14 Importing Raw Data

The raw data collected from the sensor array of the reactor in the txt format is imported as
shown in Figure IV.11. The user interface allows browsing the file location and selecting
the file to import. The second step allows selection of the experimental condition. In the
third step, the user can either select the coatings type or give a new name for the coatings.
Finally, unique experiment IDs need to be entered and the file is imported into the system.

(a) Select File (b) Select Light Condition

(c) Select or Give Coatings (d) Give Experimental ID

Figure IV.11: Experimental Raw Data Import
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IV.15 Raw Data View and Area under Curve

By using the Python Matplotlib library, a canvas figure is built as shown in Figure IV.12.
This is an interactive plot with three different y-axes, CO2 in ppm, VOC in mV and relative
humidity in %. Each y-axis represents the same color as the color of the corresponding
curve. The area under the curve is based on the initial value of each component so that
the total produced CO2, VOC or humidity can be calculated. This plot has all the figures
provided by the Matplotlib which can be zoomed in/out, moved around, and saved in any
location provided by the standard Toolbar given at the bottom of the plot. The x-axis scales
in the bottom of the plot are in seconds whereas the top x-axis scales are in hours. With
appropriate selection of the slider value or from the text value, the area is calculated and
displays in the top right corner of the plot.

Figure IV.12: Area Plotting for 4 Hour Data
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IV.16 Preprocessing of Raw Data

Preprocessing of the raw measured data enables a more robust operation of the subsequent
data analysis. The preprocessing consists of removal of the noise and trimming of long
recorded data. The baseline of the raw data is estimated to calculate the area under the curve
taking weighted average of the initial response of the sensor. Some unusual noise is filtered
to visualize the raw data more clearly on the screen. The following section explains in more
detail the preprocessing of the raw data.

IV.17 Trimming the Raw Data

The raw experimental data is captured by the sensors and recorded by data acquisition
software. Since the reactor and data acquisition software run unattended, this may record
the data over an extended period. From visual inspection, we can easily identify from
the plot shown in Figure IV.13, that CO2 production has already finished and trailing
values recorded are not necessary. These trailing data unnecessarily add the payload on the
computing performance. So we can trim them by selecting the window from the top section
of the plot. The bottom section of the plot will display the curve from selected window. After
selecting the needed portion of the curve, this needs to be saved by clicking the save button
available on the toolbar. During the experiment, four parameters are recorded, which are
given in the tabbed pages and can be selected and perform interactive actions individually.
Trimming the data will ease the processing unit.
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Figure IV.13: Trimming Raw Data
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IV.18 Filtering Data

Raw experimental data occasionally collects the noise as shown in Figure IV.14. Noise
is usual or normal in most of the experimental cases. Removing the noises eliminates the
complexity of the mathematical pattern and also removes the extra burden to the processing
unit. However, there are several filtering methods available for pretreatment of the data
before analysis based on the nature of the noise presented in the data. In our experimental
case, two methods are used, median filter and Wiener filter.

Figure IV.14: Filtering Raw/Trimmed Data

The median filter is a non-linear filtering method in signal processing and smoothing
function. The median filter is based on the median values of neighboring data points
specified in the kernel size. Another filtering method called the Wiener filter is also provided
in the software, which is based on a linear time-invariant filter. A user can apply a median



54

filter, a wiener filter, or both, which is sufficient to remove the noises as shown in Figure
IV.15. A filter can be applied to the raw data or trimmed data.

(a) Filtered Data (b) Zoomed Filtered Data

Figure IV.15: Filtered Raw/Trimmed Data Import

IV.19 Smoothing Data

The exponentially-weighted moving average can be applied to the raw data or trimmed
data. Smoothing data removes the irregularities of the data by slowly decaying them to
produce a smooth curve. It is used to remove the noise in time series by taking the average
of neighboring points about the given value. Smoothing of data is shown in Figure IV.16.
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Figure IV.16: Smoothing Data
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IV.20 Plotting Preprocessed Data

Preprocessed data is the data after noise removal, smoothed or trimmed data. After prepro-
cessing, these data sets can be plotted as shown in Figure IV.17, IV.18, and IV.19. From
this interactive plotting, each experiment can be selected by clicking the corresponding
checkbox given in the left side of the plot. If the data recording software is executed after
the start of the experiment, then the curve may not be aligned in the same location. This
can be adjusted by clicking the "Center Curve." There may be some offset error on the
experimental data. This means sensors need to be re-calibrated, otherwise, this can be
adjusted programatically.

By default, curves are adjusted to 4 hour time window. By clicking on "Auto Scale," all
the data points in the curves are automatically adjusted and made to fit in the visible plot.

Figure IV.17: CO2 Plotting
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The selected experiment IDs are remembered. Selections are immediately saved on its
program initialization file, so after restarting the program or accidental shutdown of the
computer, it doesn’t lose the selection. There are tabbed pages, which can be loaded by
clicking on the ribbon bar on the main GUI. Data will be loaded only if they are visible or
made visible by clicking from the menu or ribbon bar.

Figure IV.18: VOC Plotting
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Figure IV.19: Humidity Plotting
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IV.21 Computational Analysis Methods

Computational analysis is the process of building a mathematical model from the collected
raw experimental data. In this section, the step by step process is explained to formulate
the mathematical model. The data analysis and model are developed for CO2 and VOC
separately.

IV.22 Analysis of CO2 Data

Several experiments’ worth of data are collected. Since the purpose of the study is to analyze
the photocatalytic activities, experiments are conducted in three different sets, presence of
light, without light, and without any catalyst as shown in Figure IV.20. From these figures, it
is clear that at the first peak of the curve, CO2 is introduced into the reactor during spraying
of the simulants, which lasts for a few seconds. During this opening of the chamber, there is
a chance of CO2 being present in the air to introduce inside the chamber. The amount of
CO2 may be different depending on the air movement near the chamber; however, they are
consistent in most of our experiments.

In a continuous flow system, it is obvious to have a rise in the curve and a descend of the
curve. Ultimately these curves comes down to a position where they started. There would be
another rise of curve if additional amounts of CO2 are introduced into the system. Since the
chamber is closed, the second peak must have occurred from the degradation of the simulant
inside the chamber, which also diminishes ultimately to a starting level of CO2 depending
on the degradation rates.

The first peak of the curve always appears due to the opening of the chamber, which
can’t be avoided due to design factors of the reactor. This can be removed by decomposing
this composite curve into separate curves.

IV.23 Decomposing CO2 Curve

Since the first peak of the curve occurred with the introduction of CO2 into the chamber, it
needs to be decomposed so that we can isolate this from the real CO2 curve occurred by the
degradation of the simulant. By visually analysing the curves as shown in Figure IV.22, it
is possible to separate the curves. We can roughly estimate whether we can directly remove
the first curve and use the second curve. For this, the area under the curve is calculated. By
deducting the red area from the total curve and the green area is almost equal as shown in
the following steps.



60

(a) Blank Panel in Dark (b) Photocatalyst in Dark (c) Blank Panel in Light

Figure IV.20: CO2 Curves in Photocatalytic Process

Figure IV.21: CO2 Curves in Light with Photocatalyst
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Total Area under Curve = 219.41 (IV.1)

Red Shaded Area = 72.63 (IV.2)

Green Shaded Area = 145.79 (IV.3)

Total Area−Red Shaded Area = 146.78 (IV.4)

error = 146.78−145.79 = 0.14 (IV.5)

(a) Area under First Curve (b) Area under Second Curve (c) Overlapping Curves

(d) Area from Dark Experiment (e) Area under Second Curve (f) Overlapping Curves

Figure IV.22: CO2 Curves from Degradation Process

IV.23.1 Method of Decomposing the CO2 Curves

It is roughly estimated in the above procedure to check if it is possible to directly get the
second curve by removing the first curve from the point of intersection between the curves.
The raw CO2 data from multiple experiments set under the same conditions are visually
inspected (Figure IV.23). The Raw Data of experiment ID 179 is selected for further analysis
to decompose into two separate curves. Preprocessed curves, as shown in Figure IV.23, are
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separated from the first curve from the point of intersection, which is the minimum point
of the well formed by two peaks. This separated curve is then analyzed to form the model,
which is described in further procedures below.

(a) Raw Data Sets (b) Selected Raw Data

(c) Filtered Data (d) Isolated Second Curve

Figure IV.23: CO2 Curves from Raw Data Sets

IV.23.2 Segmenting the Curve

From Figure IV.23 (d), it is clear that the curve before reaching the peak is different from
the curve that is declining after the peak. So the curve is further broken down into two
segments to build the mathematical model.
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IV.24 Mathematical Model Fitting

The mathematical model is constructed in two phases. In the first phase, the curve is
separated into segments, and the model is fitted for each segment separately. Then from
both model segments, they are connected again. This eliminates the initial high number of
iterations in computing processes.

There are several types of model fitting methods. Among those, Multiple Linear Re-
gression (MLR), polynomial regression, and nonlinear regression are popular. However,
analysis of each separate model is not covered in this dissertation; instead, it focused on the
final fitting model adapted to build the mathematical model of the photocatalytic system.

These curve fitting models are executed to find the optimal in a least squared-error. It is
an iterative process that performs a nonlinear least squares fit of the model to the measured
raw data. The baseline and interference are also observed in some of the experiments and are
subtracted from the observed data to the fitting process if they exist. After the completion of
each iteration of model fitting, a functional module tests the residual error to determine if
any systematic error is present in the system. The residual error is the difference between
the model and the new raw data. These errors indicate that the model being fitted requires
next iterations if the model might generate a better fit. These iterations will continue until
the preset threshold value of minimum error is obtained.

After it gives the tolerable residual error, the next step is to analyze the correlation
between the raw measured data and fitted model data. The model fitting operation is
repeated using the final results of the previous fit, which is discussed more in the next
chapter. To find baseline and interferences, a python script is used, which is also discussed
in more detail in the next chapter.

After this, minimizing the residual error and fitting are obtained. The next parameter to
validate this estimated model is to analyze a single numeric variable called R-squared value
(R2 Value). R2 value is calculated using a NumPy libraries.

IV.24.1 Modeling the First Segment of the Curve

First segment of the curve is modeled using the Linear/Quadratic Rational Model which is
given by the equation:

y = f (x) =
a+bx

1+ cx+d(x2)
(IV.6)

The Python script to calculate the R2-value is shown in Figure IV.24. This function
returns the correlation coefficient matrix, Pi j and of the covariance matrix, Ci. The opti-
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mization function call is as shown in Figure IV.25. This optimization fitting is based on the
Levenberg-Marquardt algorithm through least square minimization of error. This algorithm
determines the optimal parameters for each iteration step. This process converges much
faster than the steepest descent method or robust Gaussian method.

Pi j =
Ci j√

Cii×C j j
(IV.7)

Figure IV.24: Code Snippet to Calculate R2 Value

Figure IV.25: Code Snippet of Curve Fitting for First Segment

After optimization function call, it gives the co-efficients of the model:

a = 3.81028139470043E +01 (IV.8)

b =−3.590162978441551E−03 (IV.9)

c =−1.914079164031134E−04 (IV.10)

d = 9.510001989619733E−09 (IV.11)

(IV.12)

Using this optimized model, the curve is produced, which is shown in Figure IV.26.
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IV.24.2 Modeling the Second Segment of the Curve

The second segment of the curve follows the pattern of distribution curve. After analyzing
several distribution curves, the Weibull distribution curve gives the best co-relation value.

y = f (x) = a−be−c(x2) (IV.13)

After optimizing the model, the co-efficients are found to be

a = 1.8195029015758E +02 (IV.14)

b = 1.377567319779588E +02 (IV.15)

c = 1.613955994354129E +09 (IV.16)

d =−2.331313826647612E +00 (IV.17)

(IV.18)

after two separate segments are modeled. These two segments are connected again as
shown in Figure IV.27.

(a) First Segment of the Curve (b) Second Segment of the Curve

Figure IV.26: Mathematical Model of the Curves

Since the curves are connected, they are not smoothly transitioned. To smoothly connect
the curve, the Wiener filter is applied, which gives the smooth transition of the curve at the
connected sections of the curve.
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Figure IV.27: Connected Segments of the Modeled Curve

IV.25 Model Selection for CO2 and VOC

Mathematical model fittings are used by using polynomial by polynomial rational model
for both CO2 and VOC data. However, there are other mathematical models; they are also
tested. Among them chebyshev fittings for VOC and distribution curve fitting for CO2

are evaluated. For the CO2 curve, first rise of curve and fall of curve follows different
distribution function. So among the best fitting curve, rational model is selected. A rational
function model is a generalization of the polynomial model. Rational model has several
features and flexibilities.

Some of the Advantage of Rational Model are[1]

• Rational function models have a moderately simple form.

• Rational function models are a closed family. As with polynomial models, this means
that rational function models are not dependent on the underlying metric.

• Rational function models can take on an extremely wide range of shapes, accommo-
dating a much wider range of shapes than does the polynomial family.
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• Rational function models have better interpolatory properties than polynomial models.
Rational functions are typically smoother and less oscillatory than polynomial models.

• Rational functions have excellent extrapolatory powers. Rational functions can typi-
cally be tailored to model the function not only within the domain of the data but also
so as to be in agreement with theoretical/asymptotic behavior outside the domain of
interest.

• Rational function models have excellent asymptotic properties. Rational functions
can be either finite or infinite for finite values, or finite or infinite for infinite x values.
Thus, rational functions can easily be incorporated into a rational function model.

• Rational function models can often be used to model complicated structure with a
fairly low degree in both the numerator and denominator. This in turn means that
fewer coefficients will be required compared to the polynomial model.

• Rational function models are moderately easy to handle computationally. Although
they are nonlinear models, rational function models are a particularly easy nonlinear
models to fit.

IV.25.1 CO2 Model Fitting

From this completed two model based curve, a single model is formulated using the Polyno-
mial by Polynomial Rational model.

y = f (x) =
a+bx+ cx2 +dx3 + ex4 + f x5

1+gx+hx2 + ix3 + jx4 + kx5 + lx6 (IV.19)
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a = 2.05556205e−12

b =−4.02266307e+05

c = 3.95210915e+05

d = 1.46603897e+04

e =−3.32822111e+00

f = 2.38684721e−04

g =−3.25407062e+06

h = 4.01654265e+06

i =−1.46558223e+03

j = 2.39588044e−01

k =−2.06460919e−05

l = 7.98146285e−10

Figure IV.28: Smoothly Transitioned Curve
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Figure IV.29: Mathematical Model of the Full Curve

IV.25.2 VOC Model Fitting

VOC data is collected by the sensor array, which are recorded in the same raw file along with
CO2 data, relative humidity, and flow stream. VOC raw data are very smooth in comparison
to CO2 data. There were several experiments conducted at two sprays from the sensor under
different humidity settings. Some of those VOC data are shown in the Figure IV.30. These
VOC curves represent the total VOC amount introduced into the chamber by simulant.

VOC model curve is also obtained by using non-linear fitting method, polynomial by
polynomial rational model as shown in the Figure V.10.
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(a) VOC Experimental Data (b) Selected VOC Curve for Modelling

Figure IV.30: Raw VOC Data Curves

Figure IV.31: Mathematical Model of the VOC Curve
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Chapter V

Data Analysis

V.1 Overview

This chapter discusses the various tools and techniques used to construct the mathematical
model of the photocatalysis process that leads to prediction of photocatalytic characterization.
It explains the use of scientific computing tools provided by SciPy and NumPy libraries for
descriptive and exploratory analysis of data and for developing and extending techniques to
build the mathematical model of the photocatalytic process.

V.2 Data Analysis

In the previous chapter, the several raw experimental data collections were performed. With
the aid of graphical analysis, mathematical interpretation of data are presented for CO2 and
VOC individually. CO2 data is decomposed into two sections. The raw data is collected
over some pre-experiment without inducing the photocatalytic activity. The CO2 and VOC
data are collected. When photocatalytic activity is induced, the CO2 curve is observed as
second rise in the curve. By performing initial analysis of these two sections of the curve,
these are decomposed into two portions. And an elaborate attempt is made to reconstruct
the complete second portion of the curve into a mathematical model.

The mathematical model of the second portion of the curve needs to infer the validity
of the underlying photocatalytic phenomena. To infer the validity of the experiments, the
model is transferred into an experiment and comparative analysis performed. The validity
of the model is estimated and the model is re-adjusted to fit the experimental sets. The
experimental data underlying photocatalytic activity is sparse. For a large part of the model,
an initial model is used, compared with other sets of experiments, and validated and adjusted.

To construct a mathematical model of high validity, several methods are used. One of
the methods is to detect the offset values of CO2 and VOC, which also removes the chance
of calibration error of the sensor. A script is written to detect the offset of the experiment
by moving it around to match with the mathematical model, which yields the lowest least
square error value. The experimental data is electronically recorded into the computer
system from an automated experimental apparatus. During the dispensing of the simulant
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into the photochamber, it needs to open the chamber and electronically dispense the simulant
and close again. This process is done in the computer process and there is a chance for
delay of a few seconds delays in the user click event to execute the action of the chamber
dispensing process. This results in either early recording of data or missing the data points.
This problem is tackled with the software by aligning the curves so that the first curve
declines from the same point. The advantages of this model are to the development of new
experiments. These methods allow a faster refinement and correction of the model, while
the choice of process implies a fundamental relevancy of the findings from this model. As
the experimental data are sparse, they can be adjusted programatically so that they improves
the model validity. This work aims at amplifying knowledge and understanding of the
development of the process by critical evaluation of the visual analysis.

Mathematical models are the representation of the experimental data after pre-treatment
of the raw experiments. Using appropriate methods and the right tools, almost every system
can be modeled. The mathematical modeling is the formalization of the hypotheses and
process of validating these hypothesis. The general data modeling process adopted in this
research is as shown in Figure V.1. In the previous chapter, the initial mathematical model
was constructed and estimated. The estimated model needs to be validated. Validation of
the model is done by comparing the model with the experimental data. The comparison of
the model is done by co-efficient of determination called r-squared value (R2 Value).

V.2.1 Non-Linear Least Square Modeling

The non-linear least square method is adapted to obtain the best fitting of the curve between
the model and raw measured data. It is a process of measurement of fitting the model and
raw measured data by taking the sum of the squares of difference between the two signals.
The squares of difference between the signal is then minimized using the optimization
method. By using iterative changes of the values, the model parameters are obtained. The
concept behind this is to obtain the single numeric descriptive variable from the two signal
model and raw data, which can be mathematically expressed as below:

S =
n

∑
i=1

ε
2
i (V.1)

εi = (Yi− Ŷi) (V.2)

Thus, the general method of least squares is a procedure which either explicitly deter-
mines or iteratively changes the values of the model parameters in order to minimize the sum
of square residuals. In this application, the form of the model is nonlinear, so an iterative
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method is required to determine the model parameters. The following sections will give
additional detail on several key aspects of applying nonlinear least squares to the problem of
fitting functions.

For statistical analysis, R2 is used to explain how well the predicted values match with
the experimental data. Its value lies between zero and one. One means an exact match and
zero means there is no relation between predicted value and the experimental value. So the
value closer to one is more desirable than the value further from one.

Figure V.1: Data Modeling Process

The model is compared with each experiment and the R2 value is calculated. If R2 is not
satisfactory, the model is revised and re-modified until satisfactory results are obtained.

As the CO2 curve is not linear, a non-linear regression model needs to be selected.
Non-linear model fitting is a very common mathematical model; however, there are several
non-linear models existed depending on the nature of the data that needs to be fitted. In
most cases, the linear multiple regression or polynomial regression model is preferred.

V.3 Experiment Data Sets

There are several experimental data sets conducted in the main two different conditions: light
and dark conditions. Experiments in dark conditions are used to set the baseline estimation
and the sensor verifications. Then experiments in light conditions are conducted at three
different concentrations. The concentration of the simulant is controlled by the sprayer. The
mass of the simulant also depends on the in-line pressure supplied to the sprayer. Pressure
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Figure V.2: Code Snippet to Calculate the Least Square Error

of 20 psi is supplied to the sprayer in all the experiments. Based on this pressure setting, the
mass is measured three times. The average value of the measurement is considered for the
rest of the calculations.

Number of
Sprays Readings (Mass in mg) Average (mg)

1 2 3

1 7.47 7.42 7.35 7.41

2 16.06 16.44 16.87 16.46

3 38.23 39.43 39.45 39.04

Table V.1: Number of Sprays and their Corresponding Mass



75

V.4 Time Delay Adjustment

Time delay adjustment (x-offset) is adjustment in the time scale. Time delay occurs when
experiments are not recorded at the same exact time to make more comparisons between the
experiments in the same experimental conditions. This section explains the time delay ad-
justment in five spray experiments. The same procedures are applicable for all experiments.

The set of experiments was conducted using five sprays at 50% Relative Humidity. The
first set of experiments was compared with the mathematical model. Their R2 value is listed
in Table V.2. Based on this table, these experimental sets are closer to the model. There is
some chance of time delay between the experiments when they are recorded by the software.
This may cause some deviation within the model curve. This is adjusted by measuring time
delay alignment (Table V.2). Based on the experiments conducted in the dark environment,
the first peak of the curve of CO2 occurs exactly at the same time. So they are aligned to the
same time by adjusting these time delay alignment values. From Table V.2, the first peak
occurs at almost the same time around 1100 seconds. Experiment 179 is started earlier than
other experiments. So experiments 166 and 179 are shifted forward on the time scale by 72
and 11 seconds respectively, that they all start at the same exact time. However, time delay
adjustment has little impact on the R2 value of the model.

V.5 Base Line Detection and Adjustment

Base line is the measurement of the initial sensor reading. In the presence of noises in
the signal, it is hard to estimate the base line value. For the calculation of area under the
curve of the sensor data, it is required to have the base line value, which heavily impacts the
area calculations. On other hand, it eliminates the y-scale or y-offset adjustment caused by
calibration error in the sensors.

In preprocessing steps, the area under the curve of the experiments is roughly estimated.
The base line is estimated by taking the weighted average of sensor readings until the curve
ascends. Then this baseline value is used to calculate the area under the curve.

In Table V.3, baseline values are detected by moving the experimental data until it gives
the least square of error with the model. From this table, these baseline values are slightly
different. Although these differences about 11 are very small compared to the corresponding
reading of 1100 on the scale, on a smaller scale it will have a bigger impact. Baseline
detection is done to fine tune or refine the model curve to make it closer to the experimental
curve. The curves after baseline adjustment are shown in Figure V.3.
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Experiment ID R2 Value Time Delay Alignment

166 0.84270155 1057

178 0.99305581 1118

179 0.99762939 1129

Table V.2: Initial Model and Coefficient of Determination for 5 Sprays at 50%RH

Experiment
ID R2 Value

Time Delay
Alignment

Baseline
Values New R2 Value

166 0.8427016 1057 26.95434481 0.843246

178 0.9930558 1118 33.46858373 0.992307

179 0.9976294 1129 37.65347372 0.997734

Table V.3: Initial Model and Coefficient of Determination for 5 Sprays at 50%RH

(a) Initial Model and Raw Experiments of 5 Sprays at
50%RH

(b) Refined Model and Raw Experiments of 5 Sprays
at 50%RH

Figure V.3: Refined Model and Raw Experiments of 5 Sprays at 50%RH
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V.6 Estimation and Evaluation of the Model for Different Sprays Experiment

V.6.1 Initial Estimates

For any modeling methods, the most successful and precise estimation depends on the initial
parameter values of the experiment. If initial estimates are heavily deviating from the real
estimates, instead of converging to the solution, the optimization routine will diverge and
execute the function loop infinitely. However, this can be controlled by defining the loop
constraints by specifying the maximum number of iterations but still does not reach the
solution. The only viable strategy to prevent this is to visually estimate the parameter and
feed to the "Optimize" routine to get the closest possible value.

We generated the initial model from the 5-spray conditions. This model needs to be
evaluated for 2-sprays and 1-spray for which experiments have been performed. So for
different sprays, from visual inference, experiments are roughly detected as stretched in x
direction and y direction. Here in this section, we analyze the curves of five sprays to the
two sprays and one sprays by stretching the curves, which we called x value transformation
and y value transformation.

The routine call can be optimized by minimizing the least square error by changing two
factors, x-scale for x-axis transformation and y-scale for y-axis transformation. The model
is analyzed with the experimental data of two sprays and one sprays. Before optimizing,
the baseline of measured data is brought to zero reference. The base line values or y-offset
values are detected by the baseline detection routine. There are several methods that exist,
like the Fourier Series, Polynomial Fit, and Split Fit, for baseline detection. There are two
approaches to detect the baseline estimation. One method can be accomplished by searching
for the signal minimum within non-overlapping segments. These points are used to compute
a linear least squares error. Here in this work, the baseline is detected by moving the y-values
up and down until they yield least square error with the model. However, there is no role of
baseline in the final ratio analysis of the CO2 and VOC. So the effect of baseline detection
error is eliminated. There is only some chance of baseline effect if there exists the effect of
a chemical on the photocatalysis process, which would be another research interest. The
objective of this procedure is to adjust the offset values to eliminate the calibration error of
the sensors. This is done after the model is estimated and later based on these offset values,
the model is redefined.

Owing to the fact the first peak of the time series measured data that occurs at the same
exact time, the experiment is conducted. However, there is still a chance for a lag due to
the user having to click the "Start Process" on the user interface. From Table V.4, there is
a maximum difference of 88 seconds, about 1 minute. So in this process the first peak is
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detected in the time scale and aligned with the other raw measured data.
However, there are several methods that exist to detect the peaks in time series. Here in

this work, a peak is detected by using a sliding windows of certain width. In our experimental
case, it is not tough to find the peaks. And window width in time scale is guessed from
visual plotting. The maximum difference between the peaks is also specified and fed to the
peak detection routine, which easily identifies the peaks in all the experimental data. Once
the two peaks are detected, the minimum point is detected between the two peaks to find the
intersection of two segments of the curves. From the intersection point of the raw data to
total length the raw data is compared against the same length of the model.

V.7 Constraints for the Estimates

In several cases performing the modeling operation, it is required to add constraints to the
model parameters. There are two types of constraints. One type of constraints is used
during the optimization process. These constraints are devices for a model such that y-scale
factor which cannot be zero because it needs to be zero only if there is no photocatalytic
activity. The other constraints are in the final model because the photocatalytic reaction
occur immediately after the exposure to simulant. The model still gives the predicted value
over a very large time value in the time series, which needs to be rejected if they were below
the baseline.

V.8 CO2 Model for 2 Sprays

After the initial parameter is determined, the fitting of the model is done by a nonlinear least
square minimization procedure. Based on the visual inference of the peak shapes, the x-axis
transformation is applied. The x-axis transformation factor is calculated by minimizing
the least square. After the x-axis transformation factor is applied to the model, the new
R2 values are calculated as shown in Table V.4. Based on this table, x-axis transformation
is acceptable. In Figure V.4, each experiment was fitted to the model by optimizing the
parameter. The x-axis transformation factor is taken by averaging the values from Table V.4.
Since there exists a difference between baseline and time delay, and baseline equalization,
time delay adjustments are applied. After these adjustments, the new R2 value is calculated
as shown in Figure V.5. The new R2 value is slightly improved after these adjustments.

Experiment
ID R2 Value

Time Delay
Alignment

Baseline
Values

x-axis Transformation
Factor
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25 0.99125841 968 31.5776 0.719748

29 0.98946178 1032 24.7386 0.593265

35 0.99355515 999 33.57413 0.747428

Table V.4: Estimation of X-scale Transformation for 2 Sprays at 50%RH

(a) ExpID 25 with Model (b) ExpID 29 with Model (c) ExpID 35 with Model

Figure V.4: Comparison of Model Raw Data of 2 Sprays at 50%RH

(a) Initial Model and Raw Experiments of 2 Sprays
at 50%RH

(b) Refined Model and Raw Experiments of 2 Sprays
at 50%RH

Figure V.5: Refined Model and Raw Experiments of 2 Sprays at 50%RH



80

V.9 CO2 Model for 1 Spray at 50% Relative Humidity

The x-axis transformation is also applied for 1 spray. It is calculated by minimizing the least
square. After the x-axis transformation factor is applied to the model, the new R2 values
are calculated as shown in Table V.5. Based on this table, the x-axis transformation is in
acceptable range. In Figure V.4, each experiment was fitted to the model by optimizing the
parameter. The x-axis transformation factor is taken by averaging the values from Table V.5.
Since there exists a difference between baseline and time delay, and baseline equalization,
time delay adjustments are applied. After these adjustments, the new R2 value is calculated
as shown in Figure V.7. The new R2 value is slightly improved after these adjustments.

Experiment
ID R2 Value

Time Delay
Alignment

Baseline
Values

x Transformation
Scale

43 0.97619343 1057 42.4804 0.566912

59 0.94546228 1118 41.9357 0.472486

63 0.95746208 1129 48.9383 0.492714

Table V.5: Estimation of X-scale Transformation for 1 Sprays at 50%RH

(a) ExpID 43 with Model (b) ExpID 59 with Model (c) ExpID 63 with Model

Figure V.6: Comparison of Model Raw Data at 1 Sprays at 50% RH
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(a) Initial Model and Raw Experiments of 1 Sprays at
50%RH

(b) Refined Model and Raw Experiments of 1 Sprays
at 50%RH

Figure V.7: Refined Model and Raw Experiments of 1 Sprays at 50%RH

V.10 CO2 Model for 2 Sprays at 30% Relative Humidity

Relative humidity is changed from 30% to 50% in this set of experiments. By visual
inference, it can be seen that the CO2 curve peak rises more. So an attempt has been made
to compare with the model by transforming the y-scale by optimizing the least square as in
the previous section. From Table V.6, the model is very much closer to the experimental
data as reflected by the R2 value. Since there exists a difference between baseline and time
delay, baseline equalization and time delay adjustment are applied. After these adjustments,
the y-scale transformation factor is re-calculated, which is shown in Table V.6.

Experiment
ID R2 Value

Baseline
Vales

y-axis
Transforma-

tion
Factor

y Transformation
Scale Adjusted

76 0.9743077828 43.0998 1.273079 1.26966

77 0.9473205255 56.5344 1.067848 1.11441

78 0.9359911815 33.0234 1.271378 1.22355

Table V.6: Estimation of Y-scale Transformation, Y-scale Transformation after Baseline and
Time Delay Adjustment for 2 Sprays at 30%RH
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(a) ExpID 76 with Model (b) ExpID 77 with Model (c) ExpID 78 with Model

Figure V.8: Comparison of Model Raw Data for 2 Spray at 30 % Relative Humidity

V.11 CO2 Model for 2 Sprays at 70% Relative Humidity

In this experiment set, relative humidity is changed to 70%. By visual inference, it is
determined that the CO2 curve peak rises less than at 50%. So y-scale transformation
is made by optimizing the least square as in the previous sections. From Table V.7, the
model is very much closer to the experimental data as reflected by the R2 value. Since
there is a slight difference between baseline and time delay, baseline equalization and time
delay adjustments are applied. After these adjustments, the y-scale transformation factor is
re-calculated, which is shown in Table V.7.

Experiment
ID R2 Value

Baseline
Vales

y Transfor-
mation
Scale

y Transformation
Scale Adjusted

84 0.9048243032 43.0753 0.753594 0.733

88 0.9387016491 47.1136 0.735 0.702

89 0.8773965590 42.7616 0.7 0.757

Table V.7: Estimation of Y-scale Transformation, Y-scale Transformation after Baseline and
Time Delay Adjustment for 2 Sprays at 70%RH
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(a) ExpID 84 with Model (b) ExpID 88 with Model (c) ExpID 89 with Model

Figure V.9: Comparison of Model and Raw Data for 2 Sprays at 70% Relative Humidity

V.12 VOC Modeling

For VOC, the fitting of the model is also done by nonlinear least square minimization
procedure. Based on the visual inference of the peak shapes, y-axis transformation is
applied. The y-axis transformation factor is calculated by minimizing the least square. Since
there are several experiments conducted at 2-sprays, 2-sprays is considered as the base
model. The R2 value of 2-sprays at 30%, 50%, and 70% are shown in Tables V.8, V.9, and
V.10. Based on R2 value, the experimental data is closer to the model. However, there are
slight differences in baseline values and time delays. Time delay adjustment and baseline
adjustment are applied to obtain the optimized y-scale transformation factor, and the model
is refined based on these values. The y-axis transformation factor is calculated for 1 and 5
sprays are calculated. This y-axis transformation factor is shown in Table V.12 and V.13. By
applying the y-scale transformation, VOC models for 1, 2, and 5 sprays are constructed and
compared with the raw experimental data of VOC, which is shown in Figure V.10.

Experiment
ID R2 Value Time Delay Alignment Baseline Values

76 0.999849866 1098 59.96704

77 0.997893528 1173 53.87878

78 0.997894251 1262 53.92456

Table V.8: Time Delay Alignment Values and Baseline Values for VOC for 2 Sprays 30%RH
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Experiment
ID R2 Value Time Delay Alignment Baseline Values

25 0.978879327 1098 45.22705

28 0.990561023 1173 29.57153

29 0.997894251 1262 45.45593

Table V.9: Time Delay Alignment Values and Baseline Values for VOC for 2 Sprays at
50%RH

Experiment
ID R2 Value Time Delay Alignment Baseline Values

87 0.945753776 1098 44.08264

88 0.968051585 1173 45.3186

89 0.985602594 1262 59.41772

Table V.10: Time Delay Alignment Values and Baseline Values for VOC for 2 Sprays at
70%RH

Experiment
ID R2 Value

Time Delay
Alignment

Baseline
Values

y Transformation
Scale

87 0.954063854 1098 7.23267 0.84023437

88 0.990561023 1173 6.5918 0.83896484

89 0.997894251 1262 0.8697 1.03623047

Table V.11: Estimation of Y-scale Transformation after Baseline and Time Delay Adjustment
for 2 Sprays at 70% Relative Humidity

Experiment
ID R2 Value

Time Delay
Alignment

Baseline
Values

y Transformation
Scale
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166 0.984896100 1098 7.32422 3.89697266

178 0.901417813 1173 29.38843 4.49033203

179 0.968623172 1262 29.57153 5.10644531

Table V.12: Estimation of Y-scale Transformation after Baseline and Time Delay Adjustment
for 5 Sprays at 50% Relative Humidity

Experiment
ID R2 Value

Time Delay
Alignment

Baseline
Values

y Transformation
Scale

59 0.995781489 1098 2.88391 0.39667969

63 0.973896761 1173 0.82397 0.44169922

Table V.13: Estimation of Y-scale Transformation after Baseline and Time Delay Adjustment
for 1 Sprays at 50% Relative Humidity

(a) 1 Spray (b) 2 Sprays (c) 5 Sprays

Figure V.10: VOC Curves and VOC Model at 1,2, and 5 Sprays
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V.13 Mathematical Model for the CO2 and VOC

After a series of procedures, a final mathematical model is constructed. The CO2 model is
given by Equation V.3 and the VOC model is given by Equation V.8. The co-efficients of
function f(x) are the optimized results of the preprocessing of CO2 and VOC curves. The
mass factors are calculated by the polynomial fitting of the three mass taken at one, two
and five sprays (Table V.7). The humidity factors are also calculated from the polynomial
fitting of the three humidity values, 30%, 50% and 70%. The mass factors for CO2 and
VOC are independently calculated so the mass factor for CO2 can not be used in VOC. The
co-efficients of each equation are given below. Using these mathematical models, all the
experiments can be reproduced. New experiments can be predicted by these mathematical
models.

CO2 Model is given by

y = yo + rhF× f (x) (V.3)

Where y is the CO2 level in ppm.
yo = Initial value of CO2 Reading
t = time in seconds
mF = Mass Factor
rhF = Humidity Factor

f (x) =
a+bx+ cx2 +dx3 + ex4 + f x5

1+gx+hx2 + ix3 + jx4 + kx5 + lx6 (V.4)

Where

a = 2.05556205e-12 g = -3.25407062e+06
b = -4.02266307e+05 h = 4.01654265e+06
c = 3.95210915e+05 i = -1.46558223e+03
d = 1.46603897e+04 j = 2.39588044e-01
e = -3.32822111e+00 k = -2.06460919e-05
f = 2.3868472e-04 l = 7.98146285e-10

x = t/mF (V.5)
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Where mF is given by

nsF = a+b.M+ c.M2 +d.M3 (V.6)

where M is the mass of Sprays
a = 7.66566140e-05,
b = -4.92632329e-03,
c = 1.01104414e-01,
d = 1.11022302e-15

Where rhF is given by

sF = a+b.RH + c.RH2 +d.RH3 (V.7)

where RH is the Relative Humidity
a = -2.44249065e-15,
b = 8.95535714e-02,
c = -2.04285714e-03,
d = 1.30357143e-05

VOC Model is given by

y = yo +mF× f (x) (V.8)

Where y is the VOC level in millivolts (mV).
yo = Initial value of VOC Reading
t = time in seconds
mF = Mass Factor

f (x) =
a+bx+ cx2 +dx3 + ex4 + f x5

1+gx+hx2 + ix3 + jx4 + kx5 + lx6 (V.9)

Where

a = -5.07250445e-03 g = 8.23852704e-04
b = 6.42181321e-05 h = 6.35657408e-05
c = -1.59232229e-06 i = -1.02822938e-07
d = 1.01064074e-08 j = 9.00980021e-11
e = 5.51012156e-13 k = -2.14447961e-14
f = -2.31932521e-16 l = 3.85182402e-18
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f (x) = f (t) (V.10)

Where mF is given by

mF = a+b.M+ c.M2 +d.M3 (V.11)

where M is the mass of Sprays
a = 3.55328306e-05,
b = 2.87836292e-04,
c = 4.98729100e-02,
d = 3.05311332e-16
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V.14 Analysis of Mathematical Models

Mathematical models for both CO2 and VOC are built in the previous sections. For graphical
analysis, the experimental data curves are plotted as shown in Figure V.12. The results from
the mathematical models are shown in Figure V.11. In these figures, curves are represented
by the number of sprays instead of mass. This number of sprays can be mapped to the
mass; however, the mathematical model takes the mass as an input. As in the mathematical
model, the CO2 curves are decomposed into two representing the first curve occurred during
spray of simulant by the opening of the chamber, and the second curve occurred due to the
photocatalytic activity inside the sealed chamber. So the CO2 curve is the composite of two
overlapping curves. They are represented as first CO2 as shown in Figure V.12.

Area ratios are used to analyze the photocatalytic process. The area under the curve is
calculated by using the trapezoid method. The two parameters of interest in this research
work are relative humidity and mass of the simulant. So experiments are conducted at
different relative humidity and different mass, keeping all other parameters constant. If these
parameters are changed, the quantity of byproduct of the photocatalytic process, CO2, also
changes. These changes are evaluated by the total area produced by the CO2 and VOC from
the baseline.

(a) Models at 50%RH (b) Models of 2 Sprays (c) Models of VOC at 1,2 and 5
Sprays

Figure V.11: CO2 and VOC Models at 1,2 and 3 Sprays at 50% RH; 2 Sprays at 30%,50%
and 70% RH
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(a) 5 Sprays at 50%RH (b) 2 Sprays at 50%RH (c) 1 Sprays at 50%RH

(d) 2 Sprays at 30%RH (e) 2 Sprays at 50%RH (f) 2 Sprays at 70%RH

(g) 5 Sprays of VOC (h) 2 Sprays of VOC (i) 1 Sprays of VOC

Figure V.12: Experimental CO2 Curves of 1, 2 and 3 Sprays at 50 %RH; Curves of 2 Sprays
at 30%, 50% and 70%RH; Experimental VOC Curves of 5,2 and 1 Sprays

From the raw experimental data, area ratio is estimated, which is shown in Figure V.13.
These area ratios are calculated by taking the area under the curve at four hours. From the
mathematical modeling, total area under the curve is calculated. From this area, area ratio is
calculated, which is shown in Table V.14. The results say an increase in humidity decreases
the area ratio, which means a decrease in CO2 production or less photocatalytic activity. Less
humidity results in higher area ratio, meaning more CO2 or more photocatalytic activities. If
the simulant mass increases, the area ratio decreases. So the catalyst can degrade the lower
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(a) Area Ratio of 5 Sprays at 50%RH (b) Area Ratio of 2 Sprays at 50%RH

(c) Area Ratio of 1 Sprays at 50%RH (d) Area Ratio of 2 Sprays at 70%RH

(e) Area Ratio of 2 Sprays at 30%RH

Figure V.13: Estimation of Analytical Solution of Area Ratios of CO2 and VOC
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quantity of VOC at a higher rate and less humidity also increases the rate of reaction.

5 Sprays
@50% RH

2 Sprays
@50% RH

1 Sprays
@50% RH

2 Sprays
@70% RH

2 Sprays
@30% RH

CO2 158.55 140.74 119.93 102.75 168.89

VOC 770.73 171.26 68.5 171.26 171.26

Ratio 0.21 0.82 1.75 0.60 0.99

Table V.14: Ratio of CO2 and VOC calculated from Models
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Chapter VI

Summary and Conclusion

VI.1 Conclusion

The overall purpose of this dissertation is to characterize the experimental photocatalytic
data into the mathematical model. With the research outcome of this dissertation work,
the mathematical model of the photocatalytic activity will add contributions to the field of
computational, quantitative, graphical analysis, and photocatalytic activities. The mathemat-
ical model that leads to prediction and the raw measured data have demonstrated improved
processing capabilities for different ranges of spray quantities of the simulant and different
ranges of the relative humidity. Several significant software systems have been developed
and tested. Finally, the effort of investigation of this research work has put forward a new
approach to analyze the photocatalytic activities, which could build the foundation laid by
this work area.

VI.2 Summary

The major purpose of this dissertation was to construct the best mathematical representation
of the photocatalytical model that can reproduce all the raw measured data, and based on
this raw measured data, to generate and to predict new data sets. The next purpose was to
provide a better understanding of the interpretation of the mathematical model. All of the
intermediate processing of the analysis that was required to build the final mathematical
model are discussed in this dissertation.

A complete system of a fully integrated, automated and instrumented system into an
existing photo reactor was designed to conduct several series of photocatalytic process.
With various quantities of specific simulant of interest at different relative humidity settings,
photocatalytic experiments were conducted. The system level control and communication
software necessary for the automatic system of the photoreactor and recording the raw
sensor data into a standard data files has been developed and implemented in a LabVIEW
environment. This system uses industry standard communication, and serial USB com-
munication protocols to communicate with the hardware system that are embedded in the
photoreactor. These raw measured data files are then fed into the fully developed system,
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a user interface based on Python programming languages with wxPython libraries. This
software enables an off-line analysis of raw measured data including the necessary standard
preprocessing procedures. The software provides all the required computational modules,
data handling, and data management. By using this off-line analysis system, a mathematical
model is generated, which will reproduce the experiments at various quantities of simulant
and at different relative humidity systems.

A suite of preprocessing procedures has been implemented to facilitate an extraction
of the information from the raw measured data. In the first step of preprocessing, data
is trimmed, which is collected during an extended period of the experiment. In the next
step, based on the noise level, a filter is applied to remove unusual noise. Based on the
preprocessed raw data, a best fit initial mathematical model is constructed, which is refined
and reprocessed to construct the final mathematical model. A baseline is estimated by
using a baseline detection method and then the y-scale (weight) parameter and x-scale are
optimized using non-linear least square error minimization, which are used to mathematical
the various quantities of the simulant and the relative humidity settings.

The mathematical model is then evaluated with the ratio analysis done by using analytical
methods for the conducted experiments. With an aim to reproduce all of the conducted
experiments, they were conducted and validated with the new series of experiments.

VI.3 Contributions

Several contributions are made to the field of application of computational tools and methods
applied to photocatalytic characterization by this research. It is a kind of first continuous
measurement of parameter of interest (quantity of simulant, relative humidity) in photocat-
alytic activity. It is an approach to characterize the photocatalytic process using a ratio of
CO2 and VOC. In addition, it uses polynomial by polynomial rational modeling to represent
experiments and effect of the parameter of interest. With this approach, an entire data set is
modeled and refined by decomposing CO2 introduced by the opening of the chamber and by
the photocatalytic process. The mathematical model contributes to the different settings of
quantity and relative humidity. The computational methods used in this research resulted in
the most effective approach to modeling the nonlinear curves.

In the course of this research work, several software modules were generated, which
can operate as standalone or be made executable. The major software components are
the control and communication software written in LabVIEW, the off-line tool for data
handling, preprocessing, computations, graphical user interface, GUI written in platform
independent programming language Python. This software provides a convenient interactive
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user interface and portability.

VI.4 Limitations of the Research

However, the existing experimental setup is designed to perform best at a given setup, it has
certain limitations as well, which are listed below.

i. Due to the toxicity of the simulant, experiments are not conducted at a higher amount.

ii. Since the experiments are conducted in very harsh conditions, sensors were not able
to withstand these situations.

iii. Since the VOC sensors are verified for a certain family of VOC content, its readings
cannot be directly mapped to ppm values.

iv. All the experiments are conducted at constant air flow stream and light source.

VI.5 Future Research

Several potential new research issues have become apparent in the process of this dissertation
work, both for computational scientists and photochemists. In this dissertation work, param-
eters of interest are quanitity of the simulant and relative humidity. But there are several
other parameters that can be considered like initial simulant, concentration, temperature, air
flow streams, and light source, which requires refining the mathematical model that leads to
prediction model.

Some of the experiments can only be identified by experiments not using this mathemat-
ical model. For example, the model can predict beyond 100% humidity but this is false. We
don’t know at which point photocatalytic process begins different pattern like at 90%, 99%,
etc. This can be performed on this designed experimental setup, using the designed software
and same deliverables and consumables.
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Appendix A

List of Sensors and its Specifications



 

Baseline-MOCON, Inc. 19661 HWY 36 
Lyons, CO 80540 
PH 303-823-6661 

piD-TECH® plus  
- Data Sheet 

DWG No. 7400-0105-011 Rev. C

Part No. ZPP6018001  

Sheet  1  of  2

                                                                                                             
piD-TECH® plus  Photoionization Sensor 
Data Sheet 
 
                           
Performance Characteristics 

 
Target Gases: VOCs and other gases with Ionization Potential  <10.6 eV 
Lamp Energy: 10.6 eV 
Linear Range:  0 - 2000 ppm Isobutylene, Accuracy at 2000ppm is %20 with  
calibration point at 100ppm.   
Minimum Detectable Quantity:  0.1 ppm  Isobutylene 
T90 Response Time: < 20 seconds (diffusion mode) 

Temperature Range: -20 oC to 40 oC (Maximum temperature is 60 oC). 
Temperature Dependence: Maximum deviation from the average temperature  
dependence curve is less than %20. 
Relative Humidity Range: 0 to 90% non-condensing 
Humidity Response: < 1ppm @ 90% r.h., 25 oC, with zero gas applied. 
Humidity Effect: Reduction of response to Isobutylene @ 90% r.h. < 15% of response @ 0% r.h. 
Onboard Filter: To remove liquids/ particles 
Operating Life: > 1 year 
Storage Life: > 2 year 
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Baseline-MOCON, Inc. 19661 HWY 36 
Lyons, CO 80540 
PH 303-823-6661 

piD-TECH® plus  
- Data Sheet 

DWG No. 7400-0105-011 Rev. C

Part No. ZPP6018001

Sheet  2  of  2

 

Electrical Characteristics 
 

Supply Voltage(J1): 3.2V – 10V 
Current: 20mA  -  30mA 
Power Consumption: 64mW  -  300mW, Dependent on supply voltage. 
Output Signal(J2):  0.05V - 2V  (Maximum Voltage = 2.85V) 
 0ppm:  0.05V – 0.06V 
 100ppm (Isobutylene):  0.09V – 0.167V (.4mV/ppm  -  1.07mV/ppm) 
 2000ppm (Isobutylene):  0.68V – 2V, (Based on non-linearity of –10% @ 2000ppm) 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conditions for safe use: 
 

- The sensor shall be installed inside of a suitable enclosure in 
accordance with the end product standards. 

- The sensor is to be powered from an intrinsically safe circuit in the 
end product. 

- Refer to control drawing (7400-0108-011)for entity parameters and 
additional information. 

 
 
 

5.1V

2K

62mA

Simplified Sensor Circuit

J3, GND

J2, SIG

J1, V+

LAMP

5.1V

Vreg
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Baseline-MOCON, Inc. 19661 HWY 36 
Lyons CO 80540 
PH 303-823-6661 

PiD-TECH 
- Control Drawing 

DWG No. 7400-0108-011 Rev. B

BMI No. ZPP60180 **

Sheet  1  of  1Date: 07/15/06 

                                                                                                             
                           

Mechanical Details: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entity Parameters:  

   

  Pins J1,J2,J3 
Comments 

Vmax, Ui 10V   

Imax, Ii - 
The current is limited by an 
internal fuse. 

Pi - 

Power is limited to .581W by 
an internal fuse, resistor and 
zener diodes. 

Ci 0uF   

Li 0H   
 

 
 

Manufacturer and Applicant: Baseline-MOCON, Inc., Lyons, Colorado 80540, USA 
 
Label Information:  
 

                                                                                              

                                                                                                   

Note 1: 
No changes permitted 
without reference to 
notified body. 

0539  II 2 G EEx ia IIC 
DEMKO 06 ATEX 0547796U 
Ex ia IIC IECEx UL 06.0011U 
Class I, Division 1, Groups A,B,C,D 
Tamb = -20°C to +60°C 

CtZD1
R1 1.58K

F1

62mA

Equivalent Circuit

4 Ohm

J3, GND

J2, SIG

J1, V+
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TECHNICAL DATA1
RELATIVE HUMIDITY MODULE HM 1500

Based on the rugged HS1101 capacitive humidity sensor, HM1500 is a dedicated humidity transducer 
designed for OEM applications where a reliable and accurate measurement is needed. Direct interface with a
micro-controller is made possible with the module’s linear voltage output.

MAIN FEATURES

HUMIDITY SENSOR SPECIFIC FEATURES

� Small size
� Not affected by water immersion
� Full interchangeability
� High reliability and long term stability
� Typical 1 to 4 Volt DC output for 0 to 100 % RH at 5 V DC supply
� Calibrated within +/- 2 % RH @ 55 % RH
� Very low temperature dependence
� Ratiometric to voltage supply within the specified range
� Suitable for 3 to 7 Volts supply voltage

� Instantaneous de-saturation after long periods in saturation phase.
� Patented solid polymer structure.
� High resistance to chemicals.
� Fast response time.

MAXIMUM RATINGS

CHARACTERISTICS

Ratings Symbol Value Unit

Storage Temperature Tstg -30 to 70             °C

Supply Voltage (Peak) Vs                      7                  Vdc

Humidity Operating Range     RH               0 to 100            % RH

Temperature Operating Range  Ta              -30 to 60              °C

Characteristics Symbol Min. Typ. Max. Unit.

Humidity measuring range RH     1 99 % RH

Relative Humidity accuracy (10 to 95 % RH) RH            +/- 3                +/- 5                % RH

Voltage supply                                                                             Vs 4.75                 5.00                 5.25                    V

Nominal output @ RH = 55 %                                                         Vout 2.42                 2.48                 2.54                    V

Current consumption                                                                       Ic 0.4                    0.8                  mA

Temperature coefficient (10 to 50 °C )                                               Tcc + 0.1                                      % RH/°C

Averaged Sensitivity from 33% to 75% RH                               ∆mV /% RH                                    + 25                                       mV /% RH 

Sink current capability (RL = 15 kΩ)                                          Is 300                   µA

Recovery time after 150 hours of condensation                                 t                                              10                                             s

Humidity Hysteresis                                                                                                           +/-1.5                                       % RH

Long term stability                                                                                                               0.5                                       % RH/yr

Response time (33 to 76 % RH, static, @ 63 %)                              τ 10                                             s

Output impedance Z     70 Ω

(Ta = 23°C, Vs = 5Vdc, RL > 1MΩ otherwise stated)

HPC009 Rev. H October 2001

Peak conditions : less than 10% of the operational time.
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TECHNICAL DATA2

HPC009 Rev. H October 2001

REFERENCE OUTPUT VALUES

HM 1500 Typical Measuring Ranges in HumidityMEASUREMENT CONDITIONS
� HM1500 is specified for accurate measurements 

within 10 to 95% RH.

� Excursion out of this range (< 10% or > 95% RH,
including condensation) does not affect the reliability  
of HM1500 characteristics.

� Dedicated HM15XX Product are available for
extreme RH conditions (as HM1520 for low dewpoints)

Consult HUMIREL for further information.

HM1500 MODELLED LINEAR VOLTAGE OUTPUT (VS = 5V)

ERROR BUDGET AT 23°C

Temperature coefficient compensation 
RHCor% = RH% Read * (1 -(Ta -23)* 2.4E-3)

Reversed Polynomial Equation
Vout = 9E-4RH3 -1.3E-1RH2 + 30.815RH + 1030

All equations Vout in mV, RH in %, Ta in °C.

Non linearity and temperature compensation 

RH% = -1.919E-9Vout
3+ 1.335E-5Vout

2
 + 9.607E-3Vout - 21.75

1 + (Ta-23) * 2.4E-3

LINEARITY ERROR OF HM1500 MODULE

HM1500 ERROR LIMITS
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TECHNICAL DATA3

HPC009 Rev. H October 2001

Steps of 1% RH are
achievable by using 
8-bit A/D.
If more resolution is
required a 10 -bit A/D
needs to be used and a
third display will be
added, giving steps of
0.2% RH

Read AINO

Send data to display

Convert RH% to
BCD code

Calculate RH%
using equation

or
using alook up table
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TECHNICAL DATA4

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsability is assumed for inaccuracies. Furthermore, this information does not convey
to the purchaser of such devices any license under the patent rights to the manufacturer. Humirel reserves the right to make changes without further notice to any product herein. Humirel
makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Humirel assume any liability arising out of the application or use
of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. « Typical » parameters can and do vary in different
applications. All operating parameters, including « Typical » must be validated for each customer applications by customer’s technical experts. Humirel does not convey any license under its
patent rights nor the rights of others. Humirel products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other appli-
cation intended to support or sustain life, or for any application in which the failure of the Humirel product could create a situation where personal injury or death may occur. Should buyer
purchase or use Humirel products for any such unintended or unauthorized application, Buyer shall indemnify and hold Humirel and its officers, employees, subsidaries, affiliates and distribu-
tors harmless against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of presonal injury or death associated with such unin-
tended or unauthorized use, even if such claim alleges that Humirel was negligent regarding the design or manufacture of the part.Humirel is a registred trade mark of Humirel.

HPC009 Rev. H October 2001

ORDERING INFORMATION (MULTIPLE PACKAGE QUANTITY OF 10 PIECES).
HM1500 : HUMIDITY ANALOG VOLTAGE OUTPUT MODULE.

* specific length available on request

A 9.70 10.20

B 5.00 5.50

C 52 54

D 11.2 11.6

E* 200 250

email : sales@humirel.com

SAMPLE KIT OF HM1500
IS AVAILABLE THROUGH

HUMIREL WEB SITE

www.humirel.com

Dim          Min (mm)          Max (mm)

W1 White GROUND

W2 Blue SUPPLY VOLTAGE

W3 Yellow OUTPUT VOLTAGE

Wire              Color                  Function

PACKAGE
OUTLINE
HM1500

A

B

C

E

W1 W2 W3

D

� RESISTANCE TO PHYSICAL AND CHEMICAL STRESSES
- HM1500 has passed through qualification processes of HUMIREL including vibration, shock, storage, high temperature 

and humidity, ESD.
- Additional tests under harsh chemical conditions demonstrate good operation in presence of salt atmosphere, SO2 (O.5%), 

H2S (0.5%), O3, NOx, NO, CO, CO2, Softener, Soap, Toluene, acids (H2SO4, HNO3, HCl), HMDS, Insecticide, Cigarette 
smoke, a non exhaustive list.

- HM1500 is not light sensitive.

� SPECIFIC PRECAUTIONS
- HM1500 is not protected against reversed polarity - Check carefully when connecting the device.
- If you wish to use HM1500 in a chemical atmosphere not listed above, consult us.
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www.vaisala.com

GMT220 Series Carbon Dioxide Transmitters 
for Industrial Applications 

The Vaisala CARBOCAP® Carbon 
Dioxide Transmitter Series GMT220 is 
designed to measure carbon dioxide 
in harsh and humid environments. 
The housing is dust- and waterproof 
to IP65  standards. 

The GMT220 series transmitters 
incorporate the advanced Vaisala 
CARBOCAP® Sensor. The patented 
sensor has unique reference 
measurement capabilities. Its critical 
parts are made of silicon; this gives 
the sensor outstanding stability 
over both time and temperature.  By 
lengthening the calibration intervals, 
the user saves both time and money.

Interchangeable Probes
The user has a choice of 
measurement ranges up to 20% 
of CO2. The GMT221 is for higher 
concentrations of CO2 and the 

The GMT220 transmitters withstand harsh and humid environments.

Features/Benefits

▪ Incorporates Vaisala 
CARBOCAP® - the silicon-
based NDIR sensor

▪ IP65 protected against dust 
and spray water

▪ Several measurement ranges

▪ Easy installation

▪ Standard analog outputs 
and two configurable relays 
available

Applications include:

▪ Horticulture and fruit storage

▪ Greenhouses and mushroom 
farming

▪ Safety alarming and leakage 
monitoring

▪ Demand controlled ventilation 
in harsh environments

GMT222 for lower concentrations 
of CO2. The GMT220 probes are 
interchangeable. They can be 
removed and reattached or replaced 
at any time – without the need for 
calibration and adjustment. The 
probes can be attached directly to 
the transmitter body or, when used 
with a cable, installed remotely into 
hard-to-reach places or areas with 
dangerously high levels of CO2.

The interchangeability of the GMT220 
transmitter’s probes truly facilitates 
field maintenance. 

The end user can carry out field 
maintenance without any additional 
equipment or heavy and expensive 
calibration gas bottles by simply 
replacing a probe.

Probes that have been replaced can 
be sent to Vaisala for recalibration.

CEN-TIA-G-GMT220-Datasheet-B210827EN-E.indd   1 25.11.2013   15.51
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Technical Data

Performance
Measurement Ranges

GMT221 0 ... 2 %
for high concentrations 0 ... 3 %

0 ... 5 %
0 ... 10 %
0 ... 20 %

GMT222 0 ... 2000 ppm
for low concentrations 0 ... 3000 ppm

0 ... 5000 ppm
0 ... 7000 ppm

0 ... 10 000 ppm
Accuracy (including repeatability, non-linearity and  
calibration uncertainty) at 25 °C and 1013 hPa

GMT221 ±(1.5 % of range + 2 % of reading)
(applies for concentrations above 2 % of full scale)
GMT222 ±(1.5 % of range + 2 % of reading)

Temperature dependence, typical -0.3 % of reading / °C
Pressure dependence, typical +0.15 % of reading/hPa
Long-term stability <±5 %FS/2 years
Response time (63 %)

GMT221 20 seconds
GMT222 30 seconds

Warm-up time 30 seconds, 15 minutes full specifications

Mechanics
Housing material

transmitter body ABS plastic
probe PC plastic

Housing classification IP65
Weight:

GMT221 max. 280 g
GMT222 max. 300 g

Probe cable length 2 m and 10 m (optional)

Inputs and Outputs
Outputs 0 ... 20 or 4 ... 20 mA

and 0 ... 10 V
Resolution of analog outputs 12 bits
Recommended external load:

current output max. 400 Ohm
voltage output min. 1 kOhm

Two pre-or user-defined relay 
outputs
Relay contacts max. 30VAC/60VDC, 0.5A
Connections screw terminals, 0.5 ... 1.5 mm2

Operating voltage 16 ... 35 VDC or 24 VAC (±20%)
Power consumption <4 W

Operating Environment
Operating temperature -20 ... +60 °C (-4 ... +140 °F)

with display 0 ... +50 °C (+32 ... +122 °F) 
Storage temperature -30 ... +70 °C (-22 ... +158 °F)
Operating pressure (compensated range) 700 ... 1300 hPa
Humidity 0 ... 100 %RH, non-condensing
Electromagnetic compatibility EN61326-1, Generic Environment

Accessories
Spare probe GMP221, GMP222

(use the order form to define measurement range etc.)
Clips (2 pcs) for attaching the probe 25245GM
Mounting flange for the probe GM45156SP
Probe cables

2 m 25665GMSP
10 m 210848GMSP

Calibrator for interchangeable probes GMK220
Wall Assembly Plate GM45160
In-soil adapter for probe 211921GM
Serial COM adapter 19040GM
Calibration adapter for probe 26150GM

GMT220 transmitter GMP222 probe

GMP221 probe

Dimensions
Dimensions in mm (inches)  

119 (4.69)

31.8 (1.25)

11
9

 (
4

.6
9

)

109 (4
.29)

∅18.5 (0.73)

155 (6
.10

2)

∅18.5 (0.73)

Ref. B210827EN-E ©Vaisala 2013
This material is subject to copyright protection, with all 
copyrights retained by Vaisala and its individual partners. All 
rights reserved. Any logos and/or product names are trademarks 
of Vaisala or its individual partners. The reproduction, transfer, 
distribution or storage of information contained in this brochure 
in any form without the prior written consent of Vaisala is strictly 
prohibited. All specifications —  technical included —  are subject 
to change without notice.

Please contact us at 
www.vaisala.com/requestinfo

www.vaisala.com Scan the code for 
more information

CEN-TIA-G-GMT220-Datasheet-B210827EN-E.indd   2 25.11.2013   15.51
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The Brooks 4800 Series features a broad flow range, compact size, a variety of analog
and digital I/O options, a MEMS-based sensor that provides lightning fast response times,
and many other benefits for a variety of applications. The 4800 Series of mass flow
controllers and mass flow meters is fully RoHS compliant and is an excellent choice for
measurement and control of many common gases including air, N

22222
, O

22222
, Ar, He, H

22222
, CO

22222
,

CO, N
22222
O, CH

44444
, C

33333
H

66666
, and C

33333
H

88888
. The optional Local Operator Interface (LOI) provides a

convenient user interface to view, control, and configure the 4800 Series devices
eliminating the need for remote secondary electronics.

The 4800 Series MEMS-based sensor provides lightning fast response times.The 4800 Series MEMS-based sensor provides lightning fast response times.The 4800 Series MEMS-based sensor provides lightning fast response times.The 4800 Series MEMS-based sensor provides lightning fast response times.The 4800 Series MEMS-based sensor provides lightning fast response times.
The 4800 Series utilizes a Micro Electro Mechanical System (MEMS) based thermal sensor.
Similar to typical thermal sensors, it measures a change in temperature to determine
mass flow rate. The difference is that gas flows directly across the sensor, achieving
extremely fast response times.

Data Sheet

4800 Series
Thermal Mass Flow

OverviewOverviewOverviewOverviewOverview

PrPrPrPrProduct Descriptionoduct Descriptionoduct Descriptionoduct Descriptionoduct Description

Ultra-Fast Responding
Mass Flow Controllers & Meters

Model 4850

Figure 1 Gas Flow Across the MEMS Sensor
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PrPrPrPrProduct Description (Conoduct Description (Conoduct Description (Conoduct Description (Conoduct Description (Continued)tinued)tinued)tinued)tinued)

Fast settling times and stable control come standard with theFast settling times and stable control come standard with theFast settling times and stable control come standard with theFast settling times and stable control come standard with theFast settling times and stable control come standard with the
4850 controller.4850 controller.4850 controller.4850 controller.4850 controller.
The Model 4850 uses a proprietary PID algorithm to optimize
the control valve response to ensure rapid settling times. The
4850 can be counted on to quickly match actual mass flow to
any changes in setpoint.

Good things come in small packages.Good things come in small packages.Good things come in small packages.Good things come in small packages.Good things come in small packages.
The MEMS sensor enables a dramatic reduction in size
compared to traditional thermal mass flow controllers and
thermal mass flow meters. In fact the compact size of the 4800
Series 1” x 3” x 4” (25mm x 76mm x 101mm) takes up less
than half the space of typical thermal mass flow controllers.

The 4800 Series is ideal for OEMs.The 4800 Series is ideal for OEMs.The 4800 Series is ideal for OEMs.The 4800 Series is ideal for OEMs.The 4800 Series is ideal for OEMs.
The broad flow range, fast response time and compact size
make for a perfect fit in any OEM system where gas flow needs
to be measured or controlled. You can download a free
LabView VI to monitor and zero the device.

The Local OperThe Local OperThe Local OperThe Local OperThe Local Operator Inator Inator Inator Inator Interface (Lterface (Lterface (Lterface (Lterface (LOI) simplifies set-up andOI) simplifies set-up andOI) simplifies set-up andOI) simplifies set-up andOI) simplifies set-up and
operoperoperoperoperation.ation.ation.ation.ation.
The LOI mounts securely on top of the 4800 Series device.
With status LEDs and a large backlit LCD it provides a
convenient user interface to view, control and configure the
Brooks 4800 Series thermal mass flow devices. This option also
allows the user to power the device with a simple power adapter
that plugs right in to the wall.

RoHS complianRoHS complianRoHS complianRoHS complianRoHS complianttttt
Fully RoHS compliant per EU Directive 2011/65/EU.

VVVVVariety of input/output options.ariety of input/output options.ariety of input/output options.ariety of input/output options.ariety of input/output options.
The 4800 Series thermal mass flow controllers and thermal
mass flow meters come standard with voltage or current and
RS-232 I/O.

Easily integrated into modular gas delivery systemsEasily integrated into modular gas delivery systemsEasily integrated into modular gas delivery systemsEasily integrated into modular gas delivery systemsEasily integrated into modular gas delivery systems
The 4800 Series is available with downport connections making
it easy to integrate into modular gas delivery systems.

Figure 2 Fast Settling Time

Figure 3 Low Pressure Drop

Figure 4 Modular Gas Delivery System

Downport
Connections

RS232 I/O
Shut-off
Valves
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FeaturFeaturFeaturFeaturFeatureseseseses BenefitsBenefitsBenefitsBenefitsBenefits

Fast response time Ensure rapid step during process recipe changes

Compact size Reduces space and eases installation

Optional Local Operator Interface (LOI) Provides a turnkey solution for local indication, set point control and device configuration eliminating the
need for remote secondary electronics

Low pressure drop across the sensor Provide flow measurement with minimal pressure budget

Variety of analog and digital I/O Easily aligns with user requirements

Fully RoHS compliant Meets emerging environmental requirements

FeaturFeaturFeaturFeaturFeatures and Benefitses and Benefitses and Benefitses and Benefitses and Benefits

Local Operator
Interface Module

Power Connector

Compact size

Figure 5 4800 Series with Local Operator Interface

Status
LEDs

Large backlit LCD

Easy to use
Jog dial button

Variety of mechanical
connections available
including downport

Secure mount to
4800 Series device

Compact size
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PrPrPrPrProduct oduct oduct oduct oduct ApplicationsApplicationsApplicationsApplicationsApplications

Heat Treating, Cutting/Welding, And Other Thermal ProcessesHeat Treating, Cutting/Welding, And Other Thermal ProcessesHeat Treating, Cutting/Welding, And Other Thermal ProcessesHeat Treating, Cutting/Welding, And Other Thermal ProcessesHeat Treating, Cutting/Welding, And Other Thermal Processes
The thermal process market is diverse, but the application
demands are similar: reliable, accurate control of inert
shielding gases and excellent control of O

22222
 and combustion

gasses to ensure that the desired outcome is achieved time
after time.

The Model 4850 provides an economical thermal mass flow
control solution for flows up to 40 slpm. The 4800 Series
utilizes a MEMS mass flow sensor designed specifically for inert
and non-corrosive gasses such as those found in thermal
applications.

Solar / Solar / Solar / Solar / Solar / Thin Film PrThin Film PrThin Film PrThin Film PrThin Film Processing (Physical ocessing (Physical ocessing (Physical ocessing (Physical ocessing (Physical VVVVVapor Deposition)apor Deposition)apor Deposition)apor Deposition)apor Deposition)
Physical vapor deposition or sputtering is commonly used for
creating films of material, often metal, on a substrate. Plasma
is used to move and accelerate the atoms of interest toward the
target placed in a vacuum chamber. Mass flow controllers are
used to control the gas flow to the chamber. Our advanced
control valve PID controller can eliminate overshoot that can
quench and destabilize the plasma.

The Brooks 4800 Series is a great solution for controlling argon
in a plasma process. This product has a very fast response to
setpoint without overshoot along with having a very small
footprint.

Analytical OEMAnalytical OEMAnalytical OEMAnalytical OEMAnalytical OEM
Analytical OEMs need to measure and control reagent,
calibration and sample gas flows. These applications often
require that the flow control device have small physical size,
low pressure drop, excellent repeatability and be easy to
integrate into their system. The Brooks 4800 Series provides all
this and much more. The Model 4850 mass flow controller can
store multiple gas calibrations to reduce spares and inventory
requirements. This product can also be private labeled for
specific OEM requirements.
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PrPrPrPrProduct Specificationsoduct Specificationsoduct Specificationsoduct Specificationsoduct Specifications

PerformancePerformancePerformancePerformancePerformance
Full Scale Flow RangeFull Scale Flow RangeFull Scale Flow RangeFull Scale Flow RangeFull Scale Flow Range 50 ml/min - 40 l/min

(50 sccm - 40 slpm)
(N

22222
 eq., at 0oC Ref)

Control RangeControl RangeControl RangeControl RangeControl Range 2 - 100%

Flow AccuracyFlow AccuracyFlow AccuracyFlow AccuracyFlow Accuracy +/- 3.0% of FS, +/- 1.0% FS optional

Flow RepeatabilityFlow RepeatabilityFlow RepeatabilityFlow RepeatabilityFlow Repeatability +/- 0.15% of FS

Response TimeResponse TimeResponse TimeResponse TimeResponse Time Flow signal: <0.3 sec
Flow control: Settling time <0.75 sec from 0 to 100% FS (typical <0.5 sec for all steps)

Temperature CoefficientTemperature CoefficientTemperature CoefficientTemperature CoefficientTemperature Coefficient +/- 0.1% of FS/oC (N
22222
)

RatingsRatingsRatingsRatingsRatings
GasesGasesGasesGasesGases Air, N

22222
, O

22222
, Ar, He, CO

22222
, CO, N

22222
O, CH

44444
, C

33333
H

66666
, C

33333
H

88888
 (other gases upon request)

Operating LimitsOperating LimitsOperating LimitsOperating LimitsOperating Limits Pressure 0 - 10 barg (0 - 150 psig)
Temperature 0 - 50oC
Humidity 5 to 95% R.H. (ambient)

Differential Pressure RangeDifferential Pressure RangeDifferential Pressure RangeDifferential Pressure RangeDifferential Pressure Range Minimum: 0.35 bar (5 psid)
(Controllers)(Controllers)(Controllers)(Controllers)(Controllers) Maximum: 10 bar (150 psid)

Leak IntegrityLeak IntegrityLeak IntegrityLeak IntegrityLeak Integrity Inboard to Outboard: 1x10-9 atm scc/sec Helium max.

MechanicalMechanicalMechanicalMechanicalMechanical
Materials of ConstructionMaterials of ConstructionMaterials of ConstructionMaterials of ConstructionMaterials of Construction Wetted parts: stainless steel, fluoroelastomers, silicon-based sensor

RoHSRoHSRoHSRoHSRoHS Fully RoHS compliant per EU Directive 2011/65/EU

Outline DimensionsOutline DimensionsOutline DimensionsOutline DimensionsOutline Dimensions Refer to Figures 6 through 8

Process ConnectionsProcess ConnectionsProcess ConnectionsProcess ConnectionsProcess Connections Inlet/Outlet threads: 9/16” - 18 UNF threads, Refer to Figure 6 for available process connections.

ElectricalElectricalElectricalElectricalElectrical
Electrical ConnectionsElectrical ConnectionsElectrical ConnectionsElectrical ConnectionsElectrical Connections 15-pin D-sub connector

Analog/RS-232: 15-pin D-sub connector

Power Supply Voltage**Power Supply Voltage**Power Supply Voltage**Power Supply Voltage**Power Supply Voltage** +15 Vdc + 10% or
+24 Vdc + 10%
Device only uses single sided power supply
Inrush current: < 1 A

Power RequirementsPower RequirementsPower RequirementsPower RequirementsPower Requirements Model   Device 15 Vdc 24 Vdc
            Type Typical (mA)  Max (mA)        Typical (mA)  Max (mA)
4850    Controller 130               160       150              200
4860    Meter 30                  60       30                60

Analog Input/OutputAnalog Input/OutputAnalog Input/OutputAnalog Input/OutputAnalog Input/Output 0-5 Vdc or 4-20 mA

Digital Input/OutputDigital Input/OutputDigital Input/OutputDigital Input/OutputDigital Input/Output RS-232 (Standard with all analog I/O options)

Valve Override SignalValve Override SignalValve Override SignalValve Override SignalValve Override Signal Valve Controller: Input Open
Valve Closed: <0.3 V; open valve: >4.8 V

** For high flows and/or low differential pressures (using orifices 0.049” (1.25mm) or 0.079” (2.0mm)) only 24 Vdc power is available.

Local Operator Interface (LOI)Local Operator Interface (LOI)Local Operator Interface (LOI)Local Operator Interface (LOI)Local Operator Interface (LOI)
DisplayDisplayDisplayDisplayDisplay Effective display area: 28mm wide, 11mm high

Display Contents: 8x2 dot matrix display

Operating LimitsOperating LimitsOperating LimitsOperating LimitsOperating Limits Temperature 0-50oC
Operating Humidity 5 to 95% R.H. (ambient)

Electrical ConnectionsElectrical ConnectionsElectrical ConnectionsElectrical ConnectionsElectrical Connections 2 15-pin D-sub connectors, one for the connection to the 4800 Series and one for the remote connection

Power Supply VoltagePower Supply VoltagePower Supply VoltagePower Supply VoltagePower Supply Voltage The LOI optionally includes a wall mount power adaptor with a 3.5-mm DC-plug. The adaptor works with input
voltages of AC 90-240 V/47-63Hz. The adaptor supports European, U.K., Australia and U.S. wall plugs. Power can
also be supplied by a remote connection via the D-connector.

Materials of ConstructionMaterials of ConstructionMaterials of ConstructionMaterials of ConstructionMaterials of Construction Enclosure: ABS plastic with CU-Ni plating

RoHSRoHSRoHSRoHSRoHS Fully RoHS compliant per EU Directive 2011/65/EU.

Outline DimensionsOutline DimensionsOutline DimensionsOutline DimensionsOutline Dimensions Refer to Figure 8
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Figure 6  Dimensions for 4800 Series Devices with Standard Process Connections

PrPrPrPrProduct Specificationsoduct Specificationsoduct Specificationsoduct Specificationsoduct SpecificationsPrPrPrPrProduct Dimensionsoduct Dimensionsoduct Dimensionsoduct Dimensionsoduct Dimensions

Table 1  4800 Series  Pin-Out Diagram

15 Pin D-Sub Connector
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PrPrPrPrProduct Specificationsoduct Specificationsoduct Specificationsoduct Specificationsoduct SpecificationsPrPrPrPrProduct Dimensionsoduct Dimensionsoduct Dimensionsoduct Dimensionsoduct Dimensions

Figure 7  Dimensions for 4800 Series Devices with Downport Connections

Figure 8  Dimensions for 4800 Series LOI Module
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Product SpecificationsProduct SpecificationsProduct SpecificationsProduct SpecificationsProduct SpecificationsProduct CertificationsProduct CertificationsProduct CertificationsProduct CertificationsProduct Certifications

These certifications cover the 4800 Series thermal mass flow devices as well as the Local Operator Interface (LOI).

EMC DirEMC DirEMC DirEMC DirEMC Directive 2004/108/EC:ective 2004/108/EC:ective 2004/108/EC:ective 2004/108/EC:ective 2004/108/EC: per EN 61326:2006per EN 61326:2006per EN 61326:2006per EN 61326:2006per EN 61326:2006

HazarHazarHazarHazarHazardous Location Classificationdous Location Classificationdous Location Classificationdous Location Classificationdous Location Classification
The modules shall be installed in a suitable enclosure providing a degree of protection of at least IP54 according to EN 60529, taking
into account the environmental conditions under which the equipment will be used. Provisions shall be made to prevent the rated
voltage from being exceeded by transient disturbances of more than 40%.

Enclosure: Type 1/IP40
Ambient Temperature:
0oC > Tamb < 50oC (32oF > Tamb < 122oF)
United States and Canada

Non-Incendive
Class 1, Division 2
Groups A, B, C&D; T4

150464
Per UL 1604 and CSA-C22.2 no. 213-m87

Class 1, Zone 2, AEx nA II T4
ANSI/UL 60079-15

Ex nA II T4
Per CSA - E60079-15.02
CSA C22.2 No. 60529-05

Europe - ATEX Directive 94/9/EC
KEMA 06ATEX 0251X  EN 60079-0: 2006  EN 60079-15:2005

       II 3G Ex nA II T4

Pressure Equipment Directive (97/23/EC):Pressure Equipment Directive (97/23/EC):Pressure Equipment Directive (97/23/EC):Pressure Equipment Directive (97/23/EC):Pressure Equipment Directive (97/23/EC):
Sound Engineering Practice

114



9

Model CodeModel CodeModel CodeModel CodeModel Code

Code DescriptionCode DescriptionCode DescriptionCode DescriptionCode Description Code OptionCode OptionCode OptionCode OptionCode Option Option DescriptionOption DescriptionOption DescriptionOption DescriptionOption Description
I.I.I.I.I. Base Model Number 48504850485048504850 Flow Controller, Body 0 (50 sccm-40 slpm)

48604860486048604860 Flow Meter, Body 0 (50 sccm-40 slpm)

II.II.II.II.II. Digital I/O Communications AAAAA RS-232 + Analog, Select applicable analog I/O

III.III.III.III.III. Model Revision Level BBBBB Revision

IV.IV.IV.IV.IV. Analog I/O, Input / Output BBBBB 0-5 Vdc / 0-5 Vdc
CCCCC 4-20 mA / 4-20 mA
DDDDD 0-5 Vdc / 4-20 mA
EEEEE 4-20 mA / 0-5 Vdc
00000 None

V.V.V.V.V. Power Supply 11111 15 Vdc
22222 24 Vdc

VI.VI.VI.VI.VI. Mechanical Connections 1A1A1A1A1A 9/16” -18unf straight thread
B1B1B1B1B1 1/4” tube compression w/filter
C1C1C1C1C1 1/8” tube compression w/filter
D1D1D1D1D1 3/8” tube compression w/filter
E1E1E1E1E1 1/4” VCR w/filter
F1F1F1F1F1 1/4” VCO w/filter
G1G1G1G1G1 1/4’ NPT-F w/filter
H1H1H1H1H1 6mm tube compression w/filter
J1J1J1J1J1 10mm tube compression w/filter
S1S1S1S1S1 Downport, no O-ring cavity
T1T1T1T1T1 1/4” Rc (BSPT) w/filter
X1X1X1X1X1 Downport, with O-ring cavity
Y1Y1Y1Y1Y1 1/4” tube w/filter (5850TR replace)

VII.VII.VII.VII.VII. Body Body O-Ring Seal Seat Valve Type
AAAAA 316ss Viton None (Meter Only) None (Meter Only)
BBBBB 316ss Viton Viton Normally Closed

VIII.VIII.VIII.VIII.VIII. Area Classification 11111 Standard Location (Safe Area)
22222 ATEX Zone 2
44444 CSA Div 2/Zone 2 (Recognized)

IX.IX.IX.IX.IX. Valve Orifice Size AAAAA No Orifice (Meter Only)
BBBBB 0.001 inch / 0.03mm
CCCCC 0.002 inch / 0.05mm
DDDDD 0.003 inch / 0.08mm
EEEEE 0.005 inch / 0.125mm
FFFFF 0.008 inch / 0.2mm
GGGGG 0.012 inch / 0.315mm
HHHHH 0.020 inch / 0.5mm
JJJJJ 0.031 inch / 0.8mm
KKKKK 0.049 inch / 1.25mm only available with power supply option code=2 (24 Vdc)
MMMMM 0.079 inch / 2.0mm only available with power supply option code=2 (24 Vdc)
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Model CodeModel CodeModel CodeModel CodeModel Code

Sample Model CodeSample Model CodeSample Model CodeSample Model CodeSample Model Code

IIIII I II II II II I IIIIIIIIIIIIIII I VI VI VI VI V VVVVV V IV IV IV IV I VI IVI IVI IVI IVI I VIIIVIIIVIIIVIIIVIII IXIXIXIXIX XXXXX XIXIXIXIXI XIIXIIXIIXIIXII XIIIXIIIXIIIXIIIXIII XIVXIVXIVXIVXIV

4 8 5 04 8 5 04 8 5 04 8 5 04 8 5 0 AAAAA BBBBB BBBBB 11111 1 A1 A1 A1 A1 A AAAAA 22222 DDDDD KKKKK EEEEE 22222 99999 AAAAA

Code DescriptionCode DescriptionCode DescriptionCode DescriptionCode Description Code OptionCode OptionCode OptionCode OptionCode Option Option DescriptionOption DescriptionOption DescriptionOption DescriptionOption Description
X.X.X.X.X. Mass Flow Restrictor Type                                                                  Type or Restrictor                                                                  Type or Restrictor                                                                  Type or Restrictor                                                                  Type or Restrictor                                                                  Type or Restrictor Restrictor Range (sccm NRestrictor Range (sccm NRestrictor Range (sccm NRestrictor Range (sccm NRestrictor Range (sccm N

2 2 2 2 2 Equivalent @ 0 Deg C ref)Equivalent @ 0 Deg C ref)Equivalent @ 0 Deg C ref)Equivalent @ 0 Deg C ref)Equivalent @ 0 Deg C ref)
AAAAA No Restrictor NA NA
CCCCC Plug 0 180
KKKKK K 160.4 228.53
MMMMM M 218.4 310.6
NNNNN N 265.7 377.7
PPPPP P 332 471.6
QQQQQ Q 424.8 603
RRRRR R 554.8 787
SSSSS S 736.7 1044.6
TTTTT T 991.4 1405
UUUUU U 1348 1910
VVVVV V 1847 2617
WWWWW W 2546 3607
XXXXX X 3524 4992
YYYYY Y 4894 6932
11111 1 6811 9647
22222 2 9496 13,453
33333 3 13,250 18,773
44444 4 18,520 30,143
55555 5 30,100 50,143

XI.XI.XI.XI.XI. Calibration Calibration ConditionCalibration ConditionCalibration ConditionCalibration ConditionCalibration Condition AccuracyAccuracyAccuracyAccuracyAccuracy TracabilityTracabilityTracabilityTracabilityTracability
AAAAA None-Uncalibrated NA NA
BBBBB Single Gas +/- 3.0% of FS None
CCCCC Single Gas +/- 1.0% of FS None
DDDDD Single Gas +/- 3.0% of FS NIST
EEEEE Single Gas +/- 3.0% of FS CMC Cert. (NMI)

XII.XII.XII.XII.XII. Accessories 00000 None
11111 LOI with Power Adapter
22222 LOI without Power Adapter

XIII.XIII.XIII.XIII.XIII. Certificates 00000 None
99999 Multiple Certs. Describe required certs in notes. Add all applicable changes to list price.
AAAAA Declaration of Compliance 2.1 (Certificate of Conformance)
BBBBB Declaration of Compliance 2.1 Leak Test
CCCCC Declaration of Compliance 2.1 Pressure Test
DDDDD Declaration of Compliance 2.1 Oxygen Service
EEEEE Declaration of Compliance 2.1 Materials

XIV.XIV.XIV.XIV.XIV. OEM Code AAAAA Standard Brooks Label
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Brooks is committed to assuring all of our customers receive the ideal flow solution for their application, along with outstanding
service and support to back it up. We operate first class repair facilities located around the world to provide rapid response and
support. Each location utilizes primary standard calibration equipment to ensure accuracy and reliability for repairs and
recalibration and is certified by our local Weights and Measures Authorities and traceable to the relevant International Standards.

Visit www.BrooksInstrument.com to locate the service location nearest to you.

STSTSTSTSTARARARARARTTTTT-UP SERVICE -UP SERVICE -UP SERVICE -UP SERVICE -UP SERVICE AND IN-SITU CALIBRAAND IN-SITU CALIBRAAND IN-SITU CALIBRAAND IN-SITU CALIBRAAND IN-SITU CALIBRATIONTIONTIONTIONTION

Brooks Instrument can provide start-up service prior to operation when required. For some process applications, where ISO-9001
Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this service
can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standards.

CUSTCUSTCUSTCUSTCUSTOMER SEMINARS OMER SEMINARS OMER SEMINARS OMER SEMINARS OMER SEMINARS AND AND AND AND AND TRAININGTRAININGTRAININGTRAININGTRAINING

Brooks Instrument can provide customer seminars and dedicated training to engineers, end users, and maintenance persons.

Please contact your nearest sales representative for more details.

HELP DESKHELP DESKHELP DESKHELP DESKHELP DESK

In case you need technical assistance:
Americas  1 888 554 FLOW
Europe  +31 (0) 318 549 290
Asia  +81 (0) 3 5633 7100

Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.

BrBrBrBrBrooks Service and Supportooks Service and Supportooks Service and Supportooks Service and Supportooks Service and Support

DS-TMF-4800-MFC-eng (0913)
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LabView IV ......................................................................... National Instruments
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