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ABSTRACT 

DYNAMICS OF PERCEPTUAL ORGANIZATION IN COMPLEX VISUAL 

SEARCH: THE IDENTIFICATION OF SELF ORGANIZED CRITICALITY WITH 

RESPECT TO VISUAL GROUPING PRINCIPLES 

by Attila Jozsef Farkas 

August 2013 

The current project applies modern quantitative theories of visual perception to 

examine the effect of the Gestalt Law of proximity on visual cognition.  Gestalt Laws are 

spontaneous dynamic processes (Brunswik & Kamiya, 1953; Wertheimer, 1938) that 

underlie the principles of perceptual organization.  These principles serve as mental 

short-cuts, heuristic  rule-of-thumb  strategies that shorten decision-making time and 

allow continuous, efficient processing and flow of information (Hertwig & Todd, 2002).  

The proximity heuristic refers to the observation that objects near each other in the visual 

field tend to be grouped together by the perceptual system (Smith-Gratto & Fisher, 1999). 

Proximity can be directly quantified as the distance between adjacent objects (inter-object 

distances) in a visual array.  Recent studies on eye movements have revealed the 

interactive nature of self organizing dynamic processes in visual cognition (Aks, 

Zelinsky, & Sprott, 2002; Stephen, & Mirman, 2010).  Research by Aks and colleagues 

(2002) recorded eye-movements during a complex visual search task in which 

participants searched for a target among distracters.  Their key finding was that visual 

search patterns are not randomly distributed, and that a simple form of temporal memory 

exists across the sequence of eye movements.  The objective of the present research was 

to identify how the law of proximity impacts visual search behavior as reflected in eye 
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movement patterns.  We discovered that 1) eye movements are fractal; 2) more fractality 

will result in decreased reaction time during visual search, and 3) fractality facilitates the 

improvement of reaction times over blocks of trials.  Results were interpreted in view of 

theories of cognitive resource allocation and perceptual efficiency.  The current research 

could inspire potential innovations in computer vision, user interface design and visual 

cognition.  
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CHAPTER I 

INTRODUCTION 

Finding your friend at a ball game in a crowd of people, spotting your favorite 

candy bar in your local supermarket’s candy aisle are everyday examples of visual search 

tasks performed routinely.  Traditionally, visual search has been investigated using 

typical cognitive psychology measures such as reaction time and hit rate.  In recent years 

there has been much interest in the analysis of eye movements as prime indicators of 

cognitive processes involved in visual cognition.  What do eye movement patterns reveal 

about visual perception and cognition?  How can researchers make sense of the 

seemingly chaotic dynamics of eye movements during visual search?  Our present 

investigation is an attempt to contribute to this growing body of research by analyzing 

eye movement patterns during the emergent processes of perceptual organization.   

The Gestalt movement started by Max Wertheimer in 1912 has made great strides 

in the study of perceptual organization.  Gestalt psychologists of the early twentieth 

century had developed a set of laws to describe the perceptual organization of visual 

stimuli.  The Gestalt movement was not just a new theory, but also a revolution 

developed in direct response to the traditional theories of perception at that time (Rock & 

Palmer, 1990).  The true legacy of this revolution lies within the integration of Gestalt 

concepts into today’s modern theories of perception (Palmer, 1990).   

The present project focuses specifically on the law of proximity, which states that 

objects or visual items that are near each other tend to be grouped together (Smith-Gratto 

& Fisher, 1999).  Proximity as a grouping principle has been incorporated into the latest 

research on object recognition algorithms (Kim, Yoon, & Kweon, 2008), ecological 
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statistics (Martin, Fowlkes, Tal, & Malik, 2001) and computer vision (Sarkar & Boyer, 

1993).  Kim et al.’s study on object recognition found that the accuracy of object 

identification can be increased by including algorithms that resemble Gestalt rules such 

as information about the relative closeness of items used in defining related contours. 

Earlier quantitative studies suggested that the perceptual system is particularly responsive 

to proximity cues (Uttal, Bunnel, & Corwin, 1970).  

Quantification of Gestalt laws can be better understood if we consider that the 

human visual system organizes figural unity based on many characteristics (e.g. color, 

orientation, motion) of the perceived stimuli (Brunswik & Kamiya, 1953).  These 

characteristics guide the integration and segregation of visual input into separate areas of 

distinctive objects.  The emergent segmentation of the perceived visual world can be 

described by mathematical equations to define the relations of visual elements using 

relative distance, level of brightness or orientation of edges.  These variables form the 

foundation of contextual information that is used by the visual system to calculate which 

elements are parts of the same object and which are not (Elder & Goldberg, 2002). 

According to the Gestalt laws, visual items can be considered as sets where each set 

contains elements that contribute to the perception of similar spatial direction (the law of 

common fate), nearness (the law of proximity), and many other spatial patterns.  By using 

a collection of sets that represent distinct parts of the visual world, the perceptual system 

arranges all parts (Elder & Goldberg, 2002) to generate a perceptual experience of the 

whole visual field.  This percept is qualitatively different than the mere collection of its 

individual sets, indicating that perception is more than the simple aggregate of visual 

stimuli.  Elder and Goldberg (2002) demonstrated that it was possible to quantify contour 
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organization.  Their basic aim was to determine the statistical utility of Gestalt grouping 

mechanisms on natural images.  The investigation discovered that among the three 

classical Gestalt rules of grouping (good continuation, proximity and similarity), 

proximity had the greatest inferential power for grouping contours together (Elder & 

Goldberg, 2002).  Another significant property of the law of proximity is that it can be 

directly measured.  Modifying the distance between arrays of dots is how Wertheimer 

represented the rule of nearness (Wertheimer, 1938).  If we think in terms of a lattice of 

black dots on a white background and the distances between rows a, b, c, and d the 

distance between rows can be defined by a single variable.  If distance l, between rows a, 

b, c, and d, and distance o, between columns 1, 2, 3, and 4 are equal, then the set of dots 

should not be organized into vertical or horizontal arrays (see Figure 1).  

 

Figure 1.  Equally spaced dot lattice (l=o): distance l, between rows a, b, c, and d, and 

distance o, between columns 1, 2, 3 and 4 are equal. 

 

Based on equal interdot distances the chance that the perception of a dot lattice 

will become spontaneously organized into rows should not be greater than the chance of 

seeing columns.  However, if a constant value is added to l (as illustrated in Figure 2), the 

vertical distance will be increased between rows a, b, c, and d and the emergent law of 
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proximity will organize dots into horizontal arrays, resulting in the perception of distinct 

rows (Hochberg & Silverstein, 1956).  

 

Figure 2.  Horizontally organized dot lattice (l>o): by adding a constant value to l, the 

vertical distance  increased between rows a, b, c, and d and the emergent law of 

proximity will organize dots into horizontal arrays. 

 

In summary, if equal distance among the dots is not preserved, the probability of 

perceptual outcomes (the visual experience of rows or columns) will change based on the 

nature of the manipulation (Kubovy & Wagemans, 1995).  A paper by Elder and 

Goldberg (2002) identified Oyama (1961) to be the first to engage in the precise 

quantification of the law of proximity.  He suggested a mathematical relationship called 

the power law to describe the emergence of different perceptual outcomes as a function 

of interdot distances.  Power law phenomena have been observed in many experiments 

investigating human performance in various cognitive tasks (Aks et al., 2002; Anderson 

& Schooler, 1991; Lemoine, Torre, & Delignieres, 2006; Oyama, 1961; Ritter & 

Schooler, 2001). Power law can be used as the quantitative description of improvement 

with practice over time, where the grade of improvement seems to follow the same 

pattern across different tasks (Ritter & Schooler, 2001).  According to this pattern the 

standard deviation from the mean of performance or reaction times will decrease, as well 
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as the skew of the distribution over time.  The power law explains that practice always 

improves performance regardless of the task, but the most dramatic changes will occur 

early and then slowly decrease with some fluctuation over time (Ritter & Schooler, 

2001).  In relation to the perceptual organization of dots, Oyama (1961) has found that 

the variability of the two possible visual experiences of seeing rows or columns has 

followed a power law as a function of relative item spacing.  

Oyama’s idea was recently reformulated in an experiment that measured grouping 

strength and used an exponential model to express the effects of dot spacing on 

perception (Kubovy, Holcombe & Wagenmans, 1998).  Kubovy et al., (1998)  tested 

sixteen different configurations (e.g. hexagonal, rectangular, and square structures) of dot 

lattices.  The data analysis showed that the probability of dot lattices grouped into vertical 

lines by observers followed an exponential function of relative interdot distances on the y 

axis. Results also revealed that perceptual organization is unaffected by the spatial 

configuration of dot lattices and the emergence of the law of proximity seems to be only 

sensitive to changes in the equality of adjacent dot spacing (Kubovy et al., 1998; Kubovy 

& Wagemans, 1995).  

Based on the extensive literature on Gestalt grouping laws (Brunswik & Kamiya, 

1953; Elder & Goldberg, 2002; Hochberg & Silverstein, 1956; Kubovy et al., 1998; 

Oyama, 1961; Wertheimer, 1938), the law of nearness appears to play a crucial role in 

computer and human visual processing because it is quantifiable, flexible, and possibly 
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the most fundamental of all Gestalt rules (Kubovy & Holcombe, 1998)
1
.  The wide range 

of vision and visualization research that has employed the law of nearness as a variable 

has also advanced the basic science of how the visual system’s operation reflects the law 

of proximity.  

How does vision science describe the mechanisms of the law of nearness? Where 

we look is what we see, or more precisely, focal visual information is determined by the 

gaze orientation of our eyes.  The eyes serve as the gate to visual processing as their 

movements create the trajectory of how we scan our visual environment.  If we consider 

that the law of proximity was used to enhance object recognition algorithms (Kim et al., 

2008), modeling contour grouping (Elder & Goldberg, 2002) and user interface design 

(Chang, Dooley, & Tuovinen, 2002) it becomes conceivable that this law is an essential 

part of visual perception for both humans, and computers.  Previously mentioned studies 

(Aks, 2005; Kubovy et al., 1998; Kubovy & Wagemans, 1995) have described how 

organization of visual elements produces perceptual grouping. However, it is currently 

not known how proximity cues guide visual attention to form the related perceptual 

experience.  

Visual search can be expressed as a non-random quantifiable pattern (Aks, 2005; 

Bridgeman, Van der Heijden, & Velichkovsky, 1994; Stephen & Mirman, 2010).  It is 

considered an interaction-dominant self organized process (Aks et al., 2002; Stephen & 

Mirman, 2010).  As such, exploring how proximity cues are revealed by this structured 

                                                           

1
 The law of spatial proximity is applicable in many areas, such as interface design for visual education 

purposes. The proximity principle was successfully applied in organizing visual instructions for nursing 

students’ wound management (Chang et al., 2002). The proximity law was also applied to spatially arrange 

multiple screens for displaying related information (Chang & Nesbitt, 2006).   
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search pattern could serve as additional data for understanding the dynamics of visual 

cognition. In the field of computer vision, object recognition algorithms could be further 

enhanced by a search mechanism specified for accommodating proximity cues.  The 

efficiency and ergonomics of user interfaces and multiple displays applied in aviation 

control could be improved by combining data from eye movements and probability 

distributions of perceptual organization in relation to proximity information.  The idea is 

to present stimuli at a location where the perceptual system would automatically drive 

our attention with the highest probability.  

To establish a common conceptual framework for the previously mentioned 

applications the relationship between changes in gaze locations and variations of 

perceptual experience has to be substantiated as a function of manipulated proximity 

cues.  During a typical visual search experiment participants inspect a display and then 

localize a target item presented among a field of distracter items.  Targets can differ from 

distracter items in a range of features, such as orientation or color.  Differences between 

distracters and target determine the complexity of the task and the type of search used. 

For example, it is easier to find a target if it has a unique color among a field of 

distracters that are achromatic, whereas, if the target has the same color and only differs 

in orientation the task becomes harder. 

Different types of search tasks also differ in their efficiency.  In a simple feature 

search task items are defined by the presence of a single feature such as color or 

orientation.  Reaction times required to find the target will increase as the number of 

items escalate.  On the contrary, if the target item sufficiently stands out visually from its 

neighbors, the number of distracter items present does not seem to affect the search 
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meaningfully.  It was also found that the visual system is able to process color or 

orientation of all items at the same time (Wolfe & Horowitz, 2004).  This type of parallel 

visual search is supported by stimulus properties that are easily observable like size, 

orientation, color, and motion (Treisman & Gelade, 1980; Wolfe & Horowitz, 2004).  

The ease of search attributed to parallel processing can be perturbed by using visual 

search tasks that operate with targets and distracters that contain the same basic features. 

Defining basic features as vertical and horizontal bars, the visual appearance of the letter 

L is not much different from the appearance of the letter T.  Both target and distracter 

items are composed of the same basic features, vertical and horizontal bars.  During a 

visual search observers need to pay attention to all of the individual items in order to be 

able to distinguish the arrangement of basic features.  This search requires scanning all 

items, adding about 20-30 ms processing time per unit to successfully localize a target 

(Friedman-Hill & Wolfe, 1995).  This type of unit-by-unit scan is described as a serial 

self-terminating search (Donders, 1969; Sternberg, 1966; Wolfe, Cave, & Franzel, 1989) 

where the additional processing time is spent examining stimuli one after another 

(serially) until the target is found or all items have been scanned (Julesz & Bergen, 1983). 

This type of serial search has proven to be slow and ineffective.  Even if we consider that 

an observer can localize the target by chance right after the onset of the stimuli, typically 

about half of the items would have been scanned before the target is identified.  If the 

target is not present observers will scan each individual item (Friedman-Hill & Wolfe, 

1995).  According to Treisman’s feature integration theory (Treisman & Gelade, 1980) 

conscious attention is required in order to complete the integration of features.  For 

example, in the case of Ts and Ls observers may be able to simultaneously process basic 
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features, such as horizontal and vertical lines, but in order to define how these features 

are spatially related to one another participants must actively direct attention to each 

individual item.  According to a review of computational models of visual attention, eye 

movements and attention jointly create the spatial pattern that controls foveal visual 

attention (Itti & Koch, 2001).  If we treat the perceived visual scene as a map, then 

attention breaks down this map into smaller areas, like squares in an atlas.  These areas 

represent portions of the whole map and contain only local information that can, due to 

its relatively small size (or limited detail), be rapidly analyzed. Computationally, the 

process of attention decreases the workload by segmenting the visual map into smaller 

information packages (Itti & Koch, 2001).  By moving from one area to another, attention 

gathers information about the whole visual map.  Data that describes the dynamics of 

visual attention can be employed in many applications such as computer vision, 

automatic target detection, human computer interaction (Jacob & Karn, 2003) and 

navigation (Itti & Koch, 2001).  

The aim of this project is to investigate how we integrate visual information from 

successive fixations in the presence of proximity cues.  How can we describe the nature 

of the trajectory formed by fixations over time? According to Aks (2005) the pattern 

produced by visual search is the key to understanding the mechanism that drives search 

behavior.  Let us consider everyday search and selection problems. Selecting items or 

targets involves organizing our perceptions into objects based on the Gestalt rules 

(Wertheimer, 1938) and then integrating the specific features with the help of attention 

(Treisman & Gelade, 1980).  Search itself can be described with a set of measurements 

on speed, accuracy, and performance.  What is the nature of the mechanism that makes 
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the search effective, precise, and rapid?  At the level of neural functioning the inhibition-

of-return mechanism constrains the pattern of effective scanning trajectories.  The brain 

is involved in a tagging procedure of sorts that marks visited items to inhibit the return of 

the eyes to the same location (Posner & Cohen, 1984).  After viewing and noting the 

position of the item, memory of the item’s location is formed.  In order to avoid 

redundancy and inefficiency attention is subsequently oriented towards other areas of the 

visual field.  The memory for the location of visited items does not seem to be permanent 

as reexamination of items does occur in all search tasks (Horowitz & Wolfe, 1998).  The 

complete absence of memory may be reflected in the randomness of eye movements 

(Aks, 2005).  The existence of a special type of memory that guides eye movements was 

discussed in several studies that explored visual search (Horowitz & Wolfe, 1998; Irwin, 

1992; Jonides, Irwin, & Yantis, 1982). Research by Aks (2005) presented a novel view 

on the nature of memory that guides scanning behavior.  According to Aks, previous 

studies, such as Horowitz and Wolfe (1998), have failed to detect the existence of 

memory across saccades because the measurement was not focused on the direct analysis 

of eye movement patterns.  The key finding in Aks’ study was that visual search is not 

random and contingencies do exist across fixations.  These contingencies refer to a 

special type of memory which can be described by a power law function.  Interestingly, 

an earlier finding by Oyama (1961) already indicated that the interval of perceiving 

horizontal versus vertical perceptual organization can be modeled as a power law
2
 of the 

                                                           

2
 Power law distributions occur in many scientific measurements and reflect dynamics in complex natural 

and artificial systems. Data that exhibit power law patterns have been found in many perceptual and 

cognitive processes such as self-paced tapping (Lemoine et al., 2006) and the slope of the forgetting curve 

(Anderson & Schooler, 1991). 



11 

 

 

ratio of interdot spacing (ratio of distances on x and y axes).  Research by Aks and 

colleagues has found the same pattern occurring in visual cognition (Aks et al., 2002).  

The study of Aks and colleagues in 2002 recorded the duration and x, y coordinates of 

successive eye fixations while participants performed a visual search task where the goal 

was to find a target T among distracters (randomly rotated Ts). Results showed similar 

trends for x and y eye positions.  Locations of fixations (measured in pixel units) created 

clear clusters in the center and at the boundaries of the screen.  Using the Iterated 

Function systems test (IFS), which can reliably detect divergence from randomness in 

data (Jeffrey, 1992); it was revealed that emerging fractal
3
 structures are present in eye 

movements.  Self-similar patterns in eye movements are markers of an efficient memory 

guided search (Aks, 2005; Aks et al., 2002).   

An efficient information process is not only fast, but also uses minimal resources. 

To achieve the above mentioned goals a system could apply a simple set of rules that are 

iterated during the search and complex processes will emerge from the interaction of 

these rules (Aks, 2005).  If these rules emerge in a repetitive way while guiding the 

search itself, then the pattern created by fixation points should not consist of independent 

locations in the search field.  If we think in terms of commands that are repeated over 

time, then the points that are defined by these commands at a point in time should not be 

independent from one another.  Thus, they can be characterized by some form of 

temporal correlation.  Dynamics of human behavior are known to produce variability 

                                                           

3
 One of many significant properties of fractals is that the smaller components can be comprehended as a 

reduction or a minimized copy of larger parts that make up the whole structure (Liebovitch & Scheurle, 

2000). 
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(noise) that can be characterized by temporal self similarity (Farrell, Wagenmakers, & 

Ratcliff, 2006).  1/f noise is considered to be appropriate for modeling dynamically 

changing systems, and it is often used to demonstrate the correlation of past events with 

present behavior (Keshner, 1982).  The occurrence of pink noise in visual cognition tasks 

indicates that long term correlations exist between data points, which also reflect the 

existence of memory guided search.  Based on an extended analysis using models of 

complex systems and statistical procedures it was concluded that the movement trajectory 

of the eyes reflects self organized search patterns that require a number of complex 

processes while minimizing computational load (Aks, 2005). Stephen and Mirman (2010) 

revealed the interactive nature of visual cognition and provided further evidence of non 

random self organizing dynamics of eye movements.  By using complex analyses of eye-

movements we can detect the emergent structure of processes that are broadly distributed 

among subsystems serving visual search.  

Oyama (1961) discovered that perception is biased toward vertical organization. 

Aks and colleagues indicated that differences across vertical eye positions are gradually 

increased over time.  Can the bias toward vertical organization be related to the gradual 

increase of gaze location distances on the y axis over time?  If the answer is yes, then we 

can conclude that the Gestalt law of proximity is biased by the inherent properties of 

visual search behavior.  This could also mean that the experienced outcome (vertical 

versus horizontal organization) exhibits power laws in relation to changes in inter-item 

distance and reflects the gradual increase of vertical distances inherent in successive gaze 

locations of the search behavior.  Another intriguing finding is that Euclidean distances 

measured between successive fixation coordinates over time showed signs of 1/f pink 
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noise (Aks et al., 2002).  We may reason that if the law of proximity influences the 

memory that guides visual search over time the dichotomy of perceptual outcomes 

(perceived rows or columns) may also interact with the 1/f noise of successive gaze 

locations and reaction times. 

It has already been documented that eye movements will naturally follow paths 

derived from the presented visual space (Chang et al., 2002).  Taking an example from 

visual screen design:  functional groups of visual instructions for wound care are closely 

arranged together to create a guide for visual attention.  Closely coupled visual elements 

provide an easy comprehension of associated groups.  Screen design that applied the 

proximity gestalt law has been proven superior as compared to homogenous displays 

(Chang et al., 2002).  When the proximity law exerts its influence as a function of inter-

item spacing the search field will be perceived as organized into columns or rows of 

items. 

Efficiency of Visual Search 

To perform an efficient visual search, both humans (Estes & Taylor, 1966) and 

computer programs (Sivic & Zisserman, 2006) are required to encode a given visual 

field.  Efficiency in this setting is a measure of speed and accuracy (Julesz & Bergen, 

1983; Wolfe, 1998).  If we consider speed and the area that needs to be scanned 

efficiency also means doing the same (scan the same amount of elements) or more in 

equal or less amount of time.  Consequently if an efficient scan pattern exists, it should be 

reflected by a relationship between the fractal measurement of gaze locations and a 

decrease in reaction time.  Our current thinking is that more fractal eye movements 
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should be associated with more efficient visual searches resulting in faster reaction times 

in visual search tasks. 

The logic of our empirical test was organized around four hypotheses. Hypothesis 

1 states that Euclidian distances of successive gaze locations are not random during 

typical visual search tasks.  Visual search is a complex behavior that requires the 

coordination of both higher and lower level (e.g.: visual memory and basic feature 

perception) visual processes (Horowitz & Wolfe, 1998; Irwin, 1992; Jonides et al., 1982).  

Besides visual cognition, it has been shown that fractally configured neural networks 

increase the speed of the given computations e.g. image compression (Jiang, 1999). 

Hypothesis 2 claims that fractal fluctuations of eye movements may improve the 

efficiency of visual search.  Specifically, based on the results of recent investigations 

(Stephen & Anastas, 2011; Stephen, Mirman, Magnuson, & Dixon, 2009) the measured 

magnitude of fractal fluctuations is expected to be associated with a decrease in reaction 

time on a given trial.   

Hypothesis 3 posits that vertical perceptual organization based on the Gestalt law 

of proximity will result in faster and more efficient visual search than horizontal 

organization.  This assumption is based on the findings of Oyama (1961) and Aks (2005). 

While experimenting with the organization of dot lattices it has been revealed that 

emergence of perceptual outcomes is biased toward vertical organization (Oyama, 1961). 

Aks and colleagues (2002) indicated that differences across vertical eye positions are 

gradually increased over time.  Due to the nature of the bias toward vertical organization 

(both in perception and in fixation location distances) a preference toward a vertically 
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organized visual field is expected.  This preference is hypothesized to emerge as a 

decrease in reaction times while scanning a vertically organized visual field. 

Hypothesis 4 expresses a prediction that scanning patterns may reflect gender 

differences.  The expectation is that males will typically find targets faster whereas 

females will use a distinctive strategy to scan the visual field.  Gender related divergences 

in scanning behavior should be reflected by the distinctive relationship between fractal 

measurements and reaction time.  There is a large body of literature on gender differences 

in relation to various spatial cognitive and perceptual abilities.  Specifically, gender 

differences have been discovered in relation to a variety of spatial skills.  An example has 

been provided by a research on playing videogames that demonstrated the existence of 

gender difference in the distribution of spatial attention.  It has also been argued that with 

training these differences can be reduced (Feng, Spence, & Pratt, 2007).  Research on 

spatial orientation found that males are more likely to utilize spatial cues while 

navigating whereas females show greater tendency to orient themselves by landmarks 

(Halpern & LaMay, 2000).  Besides navigation skills, it has been revealed that males tend 

to outperform females in mental rotation tasks (De Lisi & Cammarano, 1996; Kimura, 

1992; Parsons et al., 2004; Terlecki & Newcombe, 2005).  

The aforementioned four hypotheses were tested in a single experiment that 

employed a typical visual search task. 
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CHAPTER II 

METHOD 

Six male and six female graduate students between the ages of 20 and 30 from the 

University of Southern Mississippi participated in the study.  Participants did not have 

any vision deficits, and had normal or corrected-to-normal eyesight.  Subjects were 

recruited using a snowball sampling method among psychology graduate students at 

USM.   All procedures were approved by the Institutional Review Board that ensures 

ethical principles of treatment of human subjects follow federal guidelines. 

Materials and Apparatus 

Participants were using a chin rest to minimize head movements and seated 

approximately 50cm away from an ACER LCD monitor with a size of 1570×1250 in 

pixels and a default refresh rate of 60Hz.  Monocular data was sampled with a Basler 

210Hz Mono 648×488 Gigabit Camera with a sampling rate of 200Hz.  The live video 

signal of the eyeball was recorded in real-time and post-processed with a custom made 

MATLAB eye tracking software. 

Stimuli and Measurements 

The display for the visual search task, demonstrated in Figure 3, consists of 

eighty-one white T shapes presented on a black background to ensure maximum contrast 

(Aks, 2005).   
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Figure 3.  A screenshot of the experimental display.  The stimuli matrix consists of 

eighty-one white T shapes including the target. The task is to find the target, an upward T 

which in the current case is located at the lower right corner. 

 

The target item differs in orientation by 90° from distracters (Aks, 2005).  Items 

were presented in a 9x9 matrix where all locations have an equal chance to contain the 

target.  Depending on constraints of the actual condition inter-item distances (horizontal 

or vertical) gradually increased.  The participant’s task was to search the screen and press 

a space bar on a keyboard when the target was located.  Elapsed time until successful 

target localization was recorded electronically.  Data from eye movements was collected 

as a series of x and y coordinates of consecutive pupil locations, and was used to map the 

trajectory of eye movements.  

 

Figure 4.  A screenshot of the video camera feed illustrating the current position of the 

tracked eye.  The numbers indicate calculated coordinates of the pupil’s position during a 

typical experimental trial.  The rectangle shows a bounding box around the cluster of 

pixels representing the pupil. The circle with dashed lines indicates the full size of the 
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pupil based on its vertical perimeter. The full line ellipsoid indicates the actual size of the 

pupil that is visible to the camera. The star at the middle indicates the center of the pupil 

calculated by the program. 

 

The resulting trajectories for different orientation conditions were compared.  

Data from the vertical and horizontal trajectory time series was subject to further analysis 

to trace signs of long term correlation across data points over time.  The time range of a 

typical experimental session was between 45 minutes and 1 hour. 

Design and Procedure 

Participants started the experiment either in a vertical or horizontal orientation 

condition (based on how inter-item spacing was gradually changed over trials).  The first 

experimental session consisted of 620 stimulus presentations.  Each participant was 

introduced to a homogenous visual field (equally spaced items) in the first 260 trials 

(Block 1), followed by a transition period of 100 trials (Block 2), and ending with another 

260 trials of either horizontally or vertically arranged items (Block 3).  To avoid the 

possibility of a confounding trial order effect, the presentation sequence was 

counterbalanced so that half of the participants were introduced to the horizontal 

condition during the first session, and the other half received the vertical condition first.  

As a consequence, the whole experiment consisted of two sessions, on separate days.  

The inter item distances gradually changed from trial to trial during the transition period 

(Block 2) which was concluded by reaching the maximum horizontal or vertical distance 

between items.  After the transition period, participants continued to perform the search 

task with the horizontally/vertically organized visual field for another 260 trials (Block 

3).  Trial-by-trial incremental change of inter-item distance was linear.  The incremental 

manipulation technique is based on previous explorations of perceptual and action 
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boundaries that describe affordances (Coello, Bartolo, Amiri, Devanne, Houdayer, & 

Derambure, 2008; Cornus, Montagne, & Laurent, 1999).  The study by Cornus and 

colleagues on the perception of stepping-across affordance revealed that taking action 

(stepping across an obstacle) followed a logistic curve as a function of distance of the 

obstacle from the participant.  Coello et al. (2008) have found the same pattern in visual 

perception of what is reachable. The second session did not include the homogenous 

trials, therefore consisting of only 360 trials (100 transition trials, and 260 

nonhomogenous trials). 

The recording equipment was calibrated for each subject to ensure accuracy of 

eye positions in relation to location of stimuli (Figure 5).  The calibration procedure was 

conducted in a single one minute session where participants had to fixate on a white cross 

that continuously changed position with 1 second pauses.  

 

Figure 5.  The presentation and locations of calibration stimuli were defined by the 

borders and the center of the screen. The central cross is the initial fixation location. 

 

Eye movements that were recorded during the calibration session served to 

establish a reference coordinate system to match x, y eye position data with x and y 

location data of the presented stimuli. 
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Data Analysis 

In a previous investigation in which researchers collected eye movement data in 

two dimensions (x, y) Detrended Fluctuation Analysis (DFA; Peng et al., 1994; Peng, 

Havlin, Stanley, & Goldberger, 1995) was used to test fractality of fluctuations in gaze 

orientation (Stephen & Anastas,  2011).  In this experiment the authors estimated the 

scaling exponents H of the collected angular-change time series of six participants by 

utilizing the DFA method.  In the pioneering research by Aks in 2005 they used only one 

participant’s data to reveal fractal dynamics of visual search.  The present investigation 

collected data from 12 participants.  Based on the number of participants >1 the current 

analysis will differ in the analysis procedure that Aks used in 2005 and utilize the DFA 

method presented in the work of Stephen and Anastas (2011). The analysis will follow 

two main steps: 1) testing data for the presence of colored noise, 2) checking for possible 

predictors of changes in reaction time series in relation to the organization of the visual 

field.  Following the work of Aks et al., (2002) and Aks (2005) the analysis is intended to 

replicate prior results by searching for signs of 1/f noise within the Euclidian distance 

distribution of consecutive samples of gaze locations over time.  In order to detect 1/f 

noise in the data a detrending method should be applied.  Detrending is required due to 

the non-stationary nature of the collected data.  An example of non-stationary time series 

would be collecting data on the distribution of body fat over centuries.  The analysis of 

the collected data should consider the changes in nutrition over time.  The term stationary 

signifies a time series whose statistical properties remain constant over time, whereas in 

non-stationary series statistics vary over time (Huang et al., 1998).  The Detrended 

Fluctuation Analysis (DFA) is also known as a modified root-mean-square (rms) method 
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applied to analyze data characterized as random walk.  According to previous researches, 

the sequence of absolute eye positions resembles a random walk (Aks et al., 2002; Aks, 

2005) thus suitable for DFA.  Based on the summary of Xu et al., (2005) the procedure of 

applying DFA method starts with acquiring a signal u(i).  N stands for the length of the 

signal and i can be defined as the sample number,  i=1,…, N. The first stage is the 

integration of u(i) which can be defined by the following equation, y(i) 
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After integration of u(i) in equation 3 y(i) is divided into bins of equal n elements. A local 

trend in each bin is then represented by a polynomial function yn(i) that fits y(i) in every 

single bin. In the following step y(i)  is further detrended by subtracting the local trend   

yn(i) in each bin of length n as follows: 

                                                 (i)y - y(i) (i)Y nn                                  (3) 

thus providing us with the residual (Yn(i)) of the local polynomial fit.  In our present 

contribution we chose a linear regression fit, as it is consistent with past research on the 

fractality of eye movements. In the final step for each bin the root-mean-square 

fluctuation for the detrended signal is calculated: 
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This calculation is then iterated for various bin lengths (n) to acquire the fluctuation 

function, F(n)  over a broad range of scales (Xu et.al., 2005). A power-law relationship 

can be established between the rms fluctuation function F(n)   and the scale n:  

                                                                 nnF


~                                                        (5) 

Due to the scale invariant nature of power-laws F(n) is the scaling function and α is the 

scaling exponent.  The value of α is the indicator of the extent of the correlation in the 

signal.  The value of α ranges from 0 to 1 where 0.5 indicates an uncorrelated time series 

(random or white noise), α> 0.5 indicates that the signal exhibits positive log term 

correlations (persistence) and α<0.5 shows that the signal shows negative long term 

correlations (antipersistence).  

In the present investigation this method was used to test the time series of eye 

location coordinates.  Time series collected from x and y coordinates of consecutive gaze 

locations were treated as independent vectors during the analysis.  Differences between 

data points were calculated as xn-xn+1 horizontally and as yn-yn+1 vertically.  Frame by 

frame eye gaze displacements were expressed as (Δx
2 

+ Δy
2
)
½
, where Δx and Δy indicate 

displacements (Euclidian distances).  The time series of the Euclidean distance between 

neighboring samples was submitted to fractal analysis using the DFA method.  The aim 

was to detect statistical correlations between data points over time (Aks et al., 2002).  The 

analysis strategy followed the dynamical approach used in the study of Aks (2005), and 

utilized a direct numerical examination of data collected from consecutive gaze locations. 
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Multilevel modeling 

The multilevel modeling method was used to explore variables that best describe 

variances in reaction times.  The reason to diverge from standard statistical tests (e.g., 

ANOVA) in the current analysis is that ordinary least-squares (OLS) regressions are 

based on the assumption of homogeneous variance across participants and experimental 

conditions over time.  Due to the likely significant magnitude difference of individual 

variances in scan paths and reaction times across subjects we used a multiple linear 

regression technique (Multilvevel Modeling, MLM, sometimes also called Growth Curve 

Modeling) to explain results.  MLM is a statistical procedure that uses a maximum-

likelihood (ML) estimation well suited to estimating effects of time-varying predictors 

and fitting random effects to account for individual differences across subjects (Singer & 

Willett, 2003).  MLM has proven to be an effective way to handle changes over time 

which may result in heteroscedasticity (Maerten-Rivera, 2010; Singer & Willett, 2003).    

In the present analysis the MLM method was used to test the effects of a time-

varying predictor (the trial-by-trial Hurst exponents of Euclidian distances between 

consecutive gaze locations) on the length of reaction times.  The MLM method has been 

successfully applied in previous experiments engaged in analyzing complex perceptual 

responses such as information sharing between anatomically distinctive systems and 

fractal fluctuations of gaze orientation during visual search (Mirman, Dixon, & 

Magnuson, 2008; Stephen & Hajnal 2011; Stephen & Anastas, 2011). 

 

 

 



24 

 

 

CHAPTER III 

RESULTS 

To test Hypothesis 1, we computed and analyzed the Hurst exponents on 

Euclidian distances of gaze locations.  The one sample t-test confirmed that the average 

Hurst exponent is 0.589, which is significantly larger than 0.5 (corresponding to random 

white noise), t(7555) =62.5, p<.0001.  An H value significantly greater than 0.5 

corresponds to 1/f (pink) noise (Xu, et.al., 2005) which is an indicator of the presence of 

long term auto correlations (Aks et al., 2002; Stephen & Mirman, 2010). 

The multiple linear regression model we used included reaction time (RT) as a 

dependent variable, whereas Block, Orientation, Gender and Hurst were used as 

predictors (fixed effects).  Block, Orientation and Gender were dummy coded categorical 

variables, and Hurst was a continuous variable.  Due to the incompleteness of the design 

we omitted the first block (homogenous trials) from all but one analysis.  The model 

looked like this: 

RT ~ Block x Orientation x Gender x Hurst. 

Due to heavy positive skew, reaction time was transformed by taking the natural 

logarithm of individual values.  The coefficient values and significance levels of the 

significant interactions are listed in Table 1.  No main effects were statistically 

significant. 
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Table 1 

Significant interactions measured on the Euclidian distances of consecutive gaze 

locations.   

 

Predictor B SE p 

Support for Hypothesis 2: 

Block × Hurst -1.464 0.719 < .043 

Support for Hypothesis 4: 

Block × Gender -1.473 0.590 < .013 

Gender × Hurst -6.597 2.806 < .019 

Block × Gender × Hurst 2.708 1.016 < .008 

Note.  B is the regression coefficient, SE is the standard error, and p is the significance level (criterion is p<0.05). 

Support for Hypothesis 2 was provided by a significant Block x Hurst interaction. 

Table 1 shows interaction effects returned from the model (interaction of trial block and 

Hurst exponents measured on the Euclidian distances between x, y coordinates of 

consecutive gaze locations (Hxy); B = -1.464, SE=.719, p < .043). Data indicates that as 

the Hurst exponent increases, reaction time decreases, and this decrease is steeper (see 

Figure 6) in the last blocks (Block 3, vertical and horizontal combined). 

 
Figure 6.  Interaction between the magnitude of the Hurst exponent and Blocks of trials. 
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All the remaining significant interactions support Hypothesis 4.  Table 1 shows a 

significant Block × Gender interaction (B = -1.473, SE =.590, p < .013).   Results in 

Figure 7 indicate that males were faster, and did not change across blocks of trials, 

whereas females became slower in Block 3. 

 

Figure 7.  Gender Differences revealed by reaction time series obtained in Block 2 and 

Block3. The first block of trials is included for illustration purposes only, and was not 

incorporated into the statistical analysis. 

The interaction between gender and the magnitude of fractal fluctuations 

measured on the time series of x, y fixation location distances was also significant.  The 

outcome suggests that there is a significant difference between the scan pattern produced 

by males and females as the Hurst exponent changes from low to high values (B = -6.597, 

SE =. 2.806, p < .019). As the Hurst exponent increases, reaction time decreases, and this 

decrease is larger for females. This finding also supports Hypothesis 4 (see Figure 8). 
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Figure 8.  The interaction of gender and the Hurst exponent. 

The Significant Block × Gender × Hurst interaction indicates that not only does 

increased fractality benefit female performance more than males, but it does so the most 

in Block 3. Increase in H will go along with the steepest relative decline in reaction time 

within Block 3 for females (B = 2.708, SE = 1.016, p < .008). 

 

Figure 9.  Support for Hypothesis 4 is provided by a three-way interaction of Gender x 

Block x Hurst: as the Hurst exponent increases, reaction time decreases, and this decrease 

is faster for females as we compare Block 2 to Block 3. 
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No support has been found for Hypothesis 3. Even though the Gestalt principle of 

proximity influences perceptual reorganization, there is no difference between perception 

of horizontal rows and vertical columns. The regression model we used has not returned 

any significant effects or interactions related to Orientation (vertical versus horizontal) of 

the visual display.   

Possible indicators of efficient visual search may include 1) decrease in reaction 

time (observed in significant interactions just reported); 2) decrease in number of 

fixations (not analyzed in present contribution); 3) increase in fractality of visual search 

(observed and reported in present contribution; and 4) decrease in fixation durations. In 

fact, Block 3 fixations turned out to be shorter than in Block 2, F(1, 10) =25.8, p<.005, as 

measured by a within-subjects analysis of variance (ANOVA). The results of fixation 

duration are presented in Figure 10. 

 

Figure 10. Fixation durations are shorter in Block 3 (nonhomogenous trials) compared to 

Block 2 (transition trials). 
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CHAPTER IV 

DISCUSSION 

The aim of the present research was to identify how Gestalt principles of 

perceptual organization impact visual search behavior as reflected in eye movement 

patterns.  The law of spatial proximity appears to play a crucial role in both human and 

computer vision, and it may possibly be the most fundamental of all Gestalt rules 

(Kubovy et al., 1998).  Based on the extensive literature on Gestalt grouping laws 

(Brunswik & Kamiya, 1953; Elder & Goldberg, 2002; Hochberg & Silverstein, 1956; 

Kubovy et al.,1998; Oyama, 1961; Wertheimer, 1938), the law of nearness was found to 

be easily quantifiable, flexible, and a reliable indicator of how the visual system 

organizes our perceptual experiences.  At a basic level, the emergence of all our visual 

experiences starts with ocular movements that execute the scanning of the visual array.  

Recent studies have revealed that eye movements are not random, and visual scan 

patterns are reflecting the self organizing dynamic processes of visual cognition (Aks et 

al., 2002; Stephen & Mirman, 2010).  The interaction dominant dynamics of visual 

processes have been indicated by the fractal fluctuations in the time series of consecutive 

eye position distances (Aks, 2005; Stephen & Anastas, 2011).  In our current 

investigation results indicated an interaction between the fractal nature of scanning 

patterns and the emergence of perceptual experiences in relation to the law of nearness.  

        The first Hypothesis, that eye movements are fractal in nature was based on the 

results of previous investigations (Aks, 2005; Stephen & Anastas, 2011).  Current 

analysis shows that the Euclidian distances of successive gaze locations are characterized 

by fluctuations in the fractal range.  The outcome also points out that the results are 
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possible to replicate, and the novel analysis (DFA of Euclidian distances between fixation 

positions) is a reliable detector of fractal fluctuations in eye movement data.  These 

fluctuation patterns produced by the shifting of visual attention reflect the interaction 

dominated nature of visual cognition (Stephen & Mirman, 2010).  Due to the presence of 

fractal dynamics, in Hypothesis 2 we expected to find an interaction between the 

magnitude of fractal fluctuations and the effectiveness of scanning behavior.  This 

assumption was based on a recent study where results indicated that the extent of 

fractality in eye gaze orientation has an impact on reaction time (Stephen & Anastas, 

2011).  The analysis of eye movements and reaction time series shows that the fractality 

of distances of consecutive fixation locations influences the effectiveness of visual 

search.  Results indicate that the visual system modifies the parameters of scanning 

behavior as the organization of the visual field changes from homogenous to non-

homogenous.  A possible explanation is that the emergence of different perceptual 

outcomes (perceiving rows or columns) is a function of inter-dot distances (Oyama, 

1961).  For example, as the inter-item distance increases or decreases, our perception 

shifts accordingly by perceiving the visual array as rows or columns.  It is possible that 

scanning behavior is also sensitive to changes in the visual array.  The above assumption 

can be backed up by a recent theory that describes visual cognition as a dynamic 

interaction dominated system (Stephen & Mirman, 2010).  

 According to Stephen and Mirman (2010), visual cognition is a result of many 

interacting agents (both high and low level visual functions such as feature processing 

and visual memory) that organize themselves into a complex structure.  When interaction 

is the dominating method of communication among distinctive functions, then the 
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organization of functions is context dependent.  In the current investigation the context is 

provided by the organization of the visual field (homogenous, nonhomogenous).  

Conversely, a context independent process would be reflected by the independent 

variance of reaction times and the scaling exponents H in relation to changes in the visual 

field.  According to a proposed framework by Kay (1988), functions in a complex system 

are not encapsulated which means that elements within the system arrange themselves in 

relation to the actual strains of context.  Stephen and Mirman (2010) explained this 

framework as a system where constituent parts (parts responsible for specific cognitive 

functions) could run alongside or disconnect to accommodate the changing conditions.  

Perceptual outcomes can be considered as an output of this system just as the resultant 

scanning behavior.  Taking into account that in an interaction dominated system 

functions are not encapsulated and may bind together to suit current circumstances, based 

on the results it is reasonable to assume a connection between a given perceptual outcome 

and an ongoing scanning behavior.  Consequently, data that describes the changing 

properties of the output over time possibly carries information about how the system 

accommodates its functions in relation to the actual input.  As our data signals significant 

differences in scanning behavior (output) in relation to the organization of the visual field 

(input) a possible connection between perception and scanning can be established.  

Results indicate that as different perceptual outcomes emerge the visual system responds 

to it by modifying the scanning pattern.  This pattern can be thought of as an algorithm 

that describes how to construct the trajectory of visual information processing.  The 

trajectory itself represents a map that contains the x and y coordinates of eye movements 

in relation to the observed visual array.  Our data shows that if the visual array changes 
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the algorithm of constructing the trajectory will change as well.  This algorithm refers to 

the rules of how distances between successive fixations are governed.  As it has been 

discussed in the introduction section, Aks in 2005, referred to this governing function as 

an iteration of a simple set of rules over time that produces temporal dependency among 

data points.  Our data shows changes in these rules in relation to the organization of the 

visual field which is in line with recent findings (Aks et al., 2002; Aks, 2005) and 

theories of interaction dominated systems (Kay, 1988; Stephen & Mirman, 2010).  Data 

analysis performed in the current paper has confirmed the occurrence of pink noise in eye 

tracking data, as a signature of such an interaction dominated complex system. 

 In terms of perceptual efficiency and cognitive resource management we can 

conclude that the trajectory of eye movements reflects a self organized search pattern that 

requires a whole host of complex processes while minimizing computational load (Aks, 

2005).  In summary, a self organized system carries the capacity to change its operational 

rules in order to dynamically adapt to changes in circumstances.  By fitting the rules 

(rules to plan and generate the scanning path) to actual demands, the visual system is 

inherently capable of minimizing computational loads while maximizing efficiency.  Due 

to the unique properties of a complex system this type of resource management can be 

captured in the data produced by eye movements.  Traditional investigations of visual 

search attributed changes in reaction time to activation of higher level functions such as 

the visuospatial sketch pad in visual working memory (Aks, 2005; Stephen & Anastas, 

2011).  Resource management in this case refers to the reallocation of available 

computational power among higher level visual processes.  The advantage of fractal 

measurements of gaze trajectory is that it can be directly measured in relation to reaction 
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time.  By analyzing the structure of eye movements, resource management can be 

directly measured as a function of efficient distribution of fixation locations and time.  

Measuring higher level visual functions such as the visuospatial sketch pad, would 

require more complex equipment (e.g.: positron emission tomography) for detecting 

online changes in relation to variations in reaction time (Cupini et al., 1996). However, 

even sophisticated brain imaging measurements have not completely mapped out the 

exact mechanisms that govern activation of high level cognitive functions. In addition, 

these imaging techniques have not provided us with the exact details of the algorithms or 

computations that may underlie such efficient resource allocation over extended periods 

of time. Behavioral data from recent research (Stephen & Anastas, 2011) and from 

present research indicates that ocular movements can serve as a reliable measure of a 

special type of resource reallocation manifested by the management of the spatial 

distribution of gaze locations.  Results suggest that fluctuations in consecutive gaze 

location distances may support efficiency of how visual cognition engages in active 

exploration of the visual world.   

Regarding differences in fractal fluctuations in relation to the organization of the 

visual field, the current analysis did not find support for Hypothesis 3.  The expectation 

was that vertical perceptual organization will result in faster and more efficient visual 

search than horizontal organization.  This assumption was based on the discovery of the 

extended bias toward vertical organization both in perception by Oyama (1961) and in 

eye position distances by Aks (2005).  While our participants anecdotally reported that 

the vertically organized visual field was easier to scan, statistical analysis has not 

identified any significant change in search efficiency in relation to vertical organization.  
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This might be due to the nature of the analysis. Current investigation used the DFA 

method to define the magnitude of the Hurst exponent which was then used as a trial by 

trial predictor of changes in reaction time.  The analysis only focused on the distances 

between gaze locations and disregarded other aspects of oculomotor behavior such as the 

number of fixations.  While trial by trial Hurst exponents have proven to be a useful 

predictor of changes in reaction times, it is possible that the properties of the scanning 

path are not sensitive to changes in the visual field.  At this point, the verbal reports of 

participants need to be considered.  It is possible that the perceived ease of scan was not a 

result of fractal fluctuations; rather it is a byproduct of the number of fixations.  It can be 

speculated that scanning a vertically organized visual field requires less fixations 

compared to a horizontal organization.  In this case the number of fixations that were 

required to find the target would be a better indicator of differences between vertical and 

horizontal organizations.  Support for this assumption may reside in a previous finding by 

Aks (2005).  Her extended analysis of eye movement data indicated that distances of 

fixation positions tend to increase on the vertical axes.  If we consider fixations as resting 

locations over the course of an eye’s trajectory, the fewer stops we make the more 

distance we can cover between pauses.  During scanning it means that we can cover a 

given area of space (e.g., the size of the display) with fewer fixations.  This speculation 

points toward a future investigation that involves the analysis of the number of fixations 

produced in relation to the organization of the visual field.  
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Gender Differences in Visual Search 

Regarding gender differences in visual scan, the overall pattern of results was in 

agreement with predictions from Hypothesis 4.  While male participants tended to be 

faster, and did not change across blocks of trials; females became slower in Block 3.  

Data also indicates that the presence of fractal fluctuations in gaze patterns has a 

distinctive effect on genders.  Male participants seem to perform the same way regardless 

of the magnitude of the Hurst exponent whereas females tend to benefit from the 

presence of stronger correlations between Euclidian distances of consecutive fixations.  

This effect is best revealed by the changes in reaction times from Block 2 (transition 

period) to Block 3 (nonhomogeous, vertical or horizontal organization).  While females 

were slower in Block 3 compared to Block 2, data also shows a significant decrease in 

reaction time in relation to the increase in magnitude of the Hurt exponent (Hypothesis 2) 

across Blocks and Gender, as noted in the significant Gender x Block x Hurst interaction.  

The success of information selection lies within the interaction dynamics of the 

selection method and the organization of the visual field.  The knowledge of gender 

differences in visual search allows us to more appropriately design and organize visual 

fields for the different genders which may have applications for manufacturing 

personalized user interface designs, such as computer screens.  Different types of visual 

searches are dependent on the nature of the required underlying cognitive process 

(Treisman & Gelade, 1980; Wolfe & Horowitz, 2004).  Current research applies a search 

task that qualifies as a difficult conjunction search where the target has a unique 

orientation (i.e., upward T).  When distracters differ from the target in orientation, visual 

searches become inefficient (Wolfe, 1998).  In addition, the present investigation 
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manipulated the spatial configuration of the visual array.  However, due to the nature of 

the search task the collected data mirrors distinctive cognitive processes, such as mental 

rotation, spatial orientation and search strategy.  Accuracy and reaction time of finding 

the target reflects a decision making process that requires mental rotation due to the 

orientation of various items.  Furthermore, scanning behavior requires the use of 

spatiotemporal coordination.  As a result, the search task requires simultaneous handling 

of several visually dependent cognitive processes.  Different strategies of efficient 

resource management among genders during the execution of these processes may point 

toward an evolutionary basis of said behavior.  It has been suggested that these gender 

differences evolved as a result of divisions in labor types (Joseph, 2000).  For example, in 

traditional ancient societies men were typically hunters and women gatherers, thus it is 

possible that different visual search demands were imposed on ancient men and women.  

Other research on gender differences has revealed that females typically outperformed 

males at tasks requiring rapid identification and matching of items (Kimura, 1992).  

These skills can easily be related to gathering and distinguishing edible fruits from other 

plants (Joseph, 2000).  The visual search task utilized in present research requires spatial 

rotation skills.  Accordingly, it is likely that the emerging gender differences can be 

accounted for in part by the nature of the task.  

Current results indicated that male participants require less time to complete the 

task in both transition (Block 2) and non-homogenous trials (Block 3).  These differences 

in reaction time might be related to the type of search pattern performed by females and 

males.  Data shows that while reaction times of male participants were less affected by 

the strength of temporal correlations in eye movement data, stronger correlations tend to 
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benefit females.  This benefit means that the higher score of the Hurst exponent comes 

with a lower reaction time (Hypothesis 2). A Hurst exponent value within the range 0.5 < 

H < 1 signals long-term positive autocorrelation in the data.  This is what Aks (2005) 

referred to as the indicator of the existence of a special type of long term memory in the 

data.  It means that a high value in the series of data points will most likely be followed 

by another high value and it indicates that the values that will occur in the future will also 

be likely high. In terms of eye movement data a high value represents a greater Euclidian 

distance measured between consecutive gaze locations.  The stronger correlation between 

the measured distances predicts a decreased reaction time on a given trial.  This suggests 

that the increase of fractal fluctuations in gaze locations promotes a more efficient spatial 

exploration of the visual field.  The greater value of the scaling exponent predicts a 

shorter amount of time that it takes to find the target.  While males tended to be faster 

than females, their reaction times seemed to be less correlated with the value of H.  On 

the other hand, female reaction time series appeared to be sensitive to changes in the 

strength of long-term positive autocorrelation.  Gender differences in this case can be 

understood as a distinctive scanning pattern.  As such, the divergence in scanning 

behavior is manifested in relation to the given task.   

Limitations of Current Study 

A limitation of the present investigation is that it was conducted using participants 

that come from Western, Educated, Industrialized, Rich and Democratic societies 

(WEIRD, Henrich et al., 2010).  The results are usually generalized to all of the human 

population regardless of culture or environmental distinctiveness.  A growing number of 

articles propose that there are significant cultural and individual differences in the 
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instantiation of the same fundamental cognitive processes (Henrich et al., 2010; Ji, 

Zhang, & Guo, 2008).  It is important to note that our results may differ in cultures that 

use a different alphabet or different reading directions.  People who have participated in 

this study were quite familiar with a T shape thus possibly have advantages in finding it 

among distracters that are T shapes of different orientation.  On the other hand, people 

who do not encounter T shapes as frequently probably would process the task by using a 

different search strategy.  The everyday practice of reading may have a strong influence 

on scanning vertical or horizontal visual arrays.  As the direction of reading can be 

dependent on the given culture, it is possible that it also influences scanning behavior. 

This points toward a cross cultural assessment of visual search patterns.  Another 

limitation is related to the analysis method. The collected time series were subjected to 

the DFA method to reveal the extent of fractal fluctuations.  While the presented analysis 

applied the detrending method to reveal the fine tuned fractal structure of the collected 

data, there are other more complex measurements to explore the extent of fractal 

fluctuations.  For example, in addition to the DFA method Stephen and Anastas (2011) 

used ARFIMA modeling which is an elaboration of ARIMA (autoregressive moving 

average) modeling.  The discussion of the above mentioned methods is beyond the scope 

of the current project.  However, it is important to highlight that due to the complexity of 

these methods, by leaving them out from the analysis the interpretation of results is 

restricted by the boundaries of the DFA method. 
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Conclusion 

In the current research the conversation between the pattern drawn by the shifting 

of focal visual attention and the organization of the visual field has been discussed.  The 

presence of 1/f behavior indicates temporal dependency of data points, in this case the 

spatial allocation of visual attention over time.  Results showed that the increase in this 

temporal dependency among Euclidian distances of gaze locations facilitates perceptual 

efficiency by reducing scanning time to find a target.  Fractal fluctuations seem to 

promote a faster exploration of the visual environment by organizing spatial allocations 

of fixation coordinates.  Without the proper distribution of fixation locations scanning 

would become random and finding a target would be independent from successive gaze 

locations.  In addition, reaction times most likely would increase as a result of the chance 

level searching pattern.  While predicting the behavior of a complex system is difficult 

due to the strong mutual dependency of variables, the human visual system has a unique 

property that can serve as a reliable indicator of changes in the system.  This indicator is 

the emergence of changes in eye movement patterns in relation to the visual input. 

Analyzing eye gaze positions and the resultant visual experience in relation to the 

structural changes of the visual display could provide an insight into the interaction 

dynamics of visual information acquisition.  Such insight can lead to the possibility of 

presenting visual information at a future location to where the environment would 

automatically drive our focus of visual attention, as the designer of the environment 

originally intended.  

Current findings can open up a new avenue to understanding the relationship 

between the organization of the visual field and the pattern produced by the shifting of 
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focal visual attention.  The results could serve as a guide for engineering graphical 

interfaces that are capable of accommodating the most effective visual scanning patterns 

related to given areas.  The identification of an emergent pattern produced by an 

interaction dominated system in relation to controlled changes in the input could further 

contribute to the field of complex systems.  An innovative component of the presented 

approach is to use fractal measures such as the Hurst exponent (H) as a trial-by-trial 

predictor of changes in reaction times and locations of information acquisition.  Beyond 

applying new methods in visual display design it is also an intriguing possibility to use 

fractal dynamics of eye movements in biometrics.  Based on the revealed gender 

differences in scan patterns, the applied analysis can be used to distinguish male and 

female eye movement patterns.   

The way we interpret our visible environment shapes our concept of the world 

and essentially our description of reality.  The presented research intended to quantify the 

first step towards this description.  
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