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ABSTRACT 

MEASURING STUDENT GROWTH IN K – 12 SCHOOLS USING 

ITEM RESPONSE THEORY WITHIN STRUCTURAL EQUATION MODELING 

by Kenneth Lee Thompson 

August 2015 

 The use of test-based accountability has expanded beyond measurements of 

school effectiveness to include measurements of teacher effectiveness.  However, 

whereas the use of test-based accountability has expanded, the understanding of the 

statistical methodologies used in accountability systems has not kept pace.  Currently, 

Student Growth Percentiles and value-added modeling are the most prevalent 

methodologies for estimating annual student growth.  Each of these methodologies is 

regression-based and relies on scale scores from standardized assessments.  Given the 

prevalence of Item Response Theory in statewide assessment programs, these scale 

scores often result from Item Response Theory scaling practices.  Grounded in earlier 

work of Brockman (2011), Chiu and Camilli (2013), and Lu, Thomas, and Zumbo 

(2005), concerning error related to Item Response Theory-based scale scores, this study 

considers using Item Response Theory as the measurement model in a structural equation 

model by including simulated item response patterns as indicators of ability.  Data were 

simulated using parameters from the Mississippi Curriculum Test, Second Edition.  

Separate structural equation models for language arts and mathematics were considered.  

Upon examining the fit of each model, results indicated a good fit for the measurement  
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model in language arts and in mathematics.  Results also indicated a good fit for the  

overall structural equation model, but none of the structural relationships were 

statistically significant.  Additional results and implications of this study are discussed. 
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CHAPTER I 

INTRODUCTION 

Test-based accountability has been used by decision-makers in public education 

for decades (Linn, 2008) but became a centerpiece of education in 2002 when President 

George W. Bush signed into law the No Child Left Behind Act (NCLB, 2001) cementing 

requirements for a federally mandated test-based accountability system based on 

assessments in language arts and mathematics.  In addition to the accountability 

requirements of NCLB, some states have an additional accountability model to satisfy 

state-level legislation requirements unique to each state (Hebbler, 2011a). 

Broadly defined, test-based accountability systems in K-12 schools are “used to 

achieve specific educational goals by attaching to performance indicators certain 

consequences meant to effect change in specific areas of functioning” (Fast & Hebbler, 

2004, p. 4) with comprehensive standardized assessment programs serving as an inherent 

component (Brockmann, 2011).  More colloquially, accountability systems are a way to 

use student scores on standardized tests to measure school performance in an effort to 

foster change.  Carlson (2002) identifies two questions fundamental to any accountability 

system:  “How good is this school?” and “Is it getting better?” (p. 2).  Questions about 

the relative “goodness” of a school are addressed in accountability systems by using 

students’ most recent performance on standardized tests, whereas questions related to 

whether a school is improving are addressed via changes in students’ performance on 

standardized assessments between two or more years (Perie, Park, & Klau, 2007).  

Measures of current performance are commonly referred to as status, whereas change in 

performance between years is commonly referred to as growth (Linn, 2008). 
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A 1980 legislative report requested by then-governor William Winter (Nash & 

Taggart, 2006) underscored the lack of a mechanism to quantitatively measure school 

performance (Mullins, 1992) and led to the Education Reform Act of 1982 (ERA).  To 

identify schools not meeting performance standards, the ERA required Mississippi’s 

Department of Education to implement a performance-based accreditation model, 

including a test-based accountability model (ERA, 37-17-6.4.g, 1982).  With requisite 

statewide assessments in 1987 and the release of accountability results based on the 

state’s new accountability system in 1988, Mississippi’s reliance on test-based 

accountability was established (Hebbler, 2011a).  Over the ensuing decades, 

Mississippi’s state-required accountability system, based on both status and growth, was 

revised to reflect curricula, assessment, and methodological revisions (ERA, 37-17-6.4.g, 

1982). 

Although Mississippi’s state accountability model has always included measures 

of student growth (Hebbler, 2011b), NCLB did not address student growth (2001).  

Consequently, the U. S. Department of Education (ED) explicitly disallowed the 

inclusion of student growth measures in NCLB accountability models until ED’s growth 

model pilot program (U. S. Department of Education, 2005).  As proponents of modeling 

changes in performance over time, educators viewed growth models as an opportunity to 

shift the emphasis from unrealistic status expectations associated with the continually-

increasing emphasis on measuring student performance through standardized testing 

(Linn, 2008).  However, because of ED’s attaching the same proficiency expectations 

mandated by NCLB to the growth model pilot program (Spellings, 2005), the use of 

growth models only heightened the focus on accountability.   
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The heightened focus on accountability through measuring student growth was 

evident in The American Recovery and Reinvestment Act of 2009 (ARRA), which 

expanded the historical focus on the school as the locus of change (Perie et al., 2007) 

through the availability of $48.6 billion in funding to schools in states that formally 

agreed to implement specific strategies such as increasing teacher effectiveness, to 

stimulate education reform (U. S. Department of Education, 2009).  When measuring 

teacher effectiveness, ED encouraged “measures of student academic growth” (U. S. 

Department of Education, 2013, n.p.) that can lead to “dismissal of those who, despite 

receiving support, are ineffective” (U. S. Department of Education, 2013, n.p.).  With this 

unprecedented federal emphasis on evaluating teachers based on student test 

performance, ARRA ushered in a new era of accountability focused on test results-based 

teacher evaluation systems to hold teachers responsible for ensuring a quality education 

for students (Collins & Amrein-Beardsley, 2014). 

Whereas policymakers have approached teacher evaluation systems as an 

effective tool to shift responsibility for improving student performance from schools to 

teachers in an effort to ensure a quality education for all students (Callender, 2004), 

educators have taken a more cautious approach warning that care must be taken with 

performance-based teacher evaluation systems to ensure teachers trust the evaluation 

process (Andrejko, 2004).  Teachers’ trust in the evaluations is fundamental for a 

successful process, given prior research linking a teacher’s belief system with student 

performance (Goddard, Salloum, & Berebitsky, 2009).  To positively impact student 

learning, evidence from teacher evaluation systems must be related to teachers’ beliefs 

(Fenstermacher, 1978); that is, measures of teacher effectiveness resulting from a teacher 
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evaluation system must be within their belief system for teachers to consider the results 

trustworthy (Bandura, 1986).   

 With the expansion of test-based accountability to include measures of teacher 

effectiveness as well as measures of school effectiveness, the methodology used to 

statistically model student growth have become more important (McCaffrey et al., 2004). 

For example, teacher evaluation systems are intended to identify effective teachers, but 

Linn (2008) warned that evidence of effectiveness might be impacted by the 

methodology used in the identification as much or more than actual teacher quality.  

Similarly, Raudenbush (2004) argued that accountability systems are not based in 

scientific principle when they focus on status without considering growth.  Additionally, 

methodological issues arise as a result of choosing a particular approach to modeling 

student growth.  Although no approach is recognized as the standard for measuring 

growth (Franco & Seidel, 2014), the most prevalent growth models used by states, the 

Student Growth Percentile (SGP) model, and Value-Added Models (VAM) (Collins & 

Amrein-Beardsley, 2014), use different methodologies.  Consequently, because states are 

using different growth models, growth measures are not comparable across states (Franco 

& Seidel, 2014) and, due to unique state requirements (Hebbler, 2011a), methodological 

inconsistencies lead to accountability systems that yield inconsistent outcomes (Linn, 

2008).      

Whereas methodological inconsistencies related to modeling student growth result 

from differing implementations of accountability systems (Linn, 2008), methodological 

issues also arise as a result of states’ assessment practices.  Koretz declared 

Research has brought to light many serious concerns about the functioning and 

effects of test-based accountability systems.  Yet the science and practice of 
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measurement have been slow to respond, continuing in key respects much as they 

had before the shift to accountability-oriented testing.  The consequences of this 

inertia are serious, including biased measurement and distorted incentives for 

educators. (2008, p. 71) 

Among the concerns is random variability that results from sampling error variance and 

equating error variance (Brockman, 2011) as well as systematic error, which may be 

introduced when assessment practices include Item Response Theory (IRT).  Sampling 

error variance refers to treating a non-random sample used in field-testing test questions 

as a random sample, and equating error variance refers to equating adjustments between 

versions of a test (Brockman, 2011).    

IRT and Classical Test Theory (CTT) are two common approaches to educational 

measurement (Ryan & Brockman, 2009).  Although CTT is the oldest and most 

established approach to statistical measurement, IRT’s ability to offset some of the 

limitations of CTT has led to nearly all states including IRT in statewide assessment 

programs (Ryan & Brockman, 2009).  IRT is a collection of statistical models designed to 

determine the probability of a successful response to items on an assessment, but the 

models introduce their own methodological challenges.  Chiu and Camilli (2013) proffer 

that accounting for guessing in IRT introduces the potential for systematic error, and von 

Davier (2009) adds that the 3-parameter logistic (3PL) model is not necessarily the best 

choice for dealing with guessing, especially if parsimony is a goal of modeling. (See 

Appendix A for a detailed primer on IRT models.)  Instead, von Davier (2009) suggests 

other IRT models, including a hybrid 2-parameter logistic (2PL) model, to account for 

guesses.  Other research has shown that a 1-parameter logistic (1PL) model with 

examinees grouped into classes such that those using guessing as their predominant test-
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taking strategy are grouped separately from those examinees occasionally guessing can 

fit data equally as well as a 3PL model under certain circumstances (Kubinger & Draxler, 

2007). 

Another potential for systematic error is introduced when IRT–based scores are 

used in regression (Lu, Thomas, & Zumbo, 2005; Mislevy, 1987; Simonetto, 2011).  

When modeling student growth in either the student growth percentile model or the 

value-added model, scale scores generated through assessment programs that utilize IRT 

are often used to produce student growth measures (Collins & Amrein-Beardsley, 2014).  

Both SGP and VAM use statistical regression to produce student growth scores:  student 

growth percentiles use quantile regression (Betebenner, 2009), whereas VAMs use 

multivariate regression (Sanders & Horn, 1994).  Using these approaches of including 

IRT–based scores directly in regression, however, may present the potential for error 

noted by Lu and colleagues (2005) as well as Simonetto (2011). 

Statement of the Problem 

As an extension of Linn’s position that “the categorization of a school as 

successful or failing may have at least as much to do with the methodology employed by 

the accountability system as it has to do with the relative effectiveness of the schools,” 

(2008, p. 700), the labeling of a teacher as successful or ineffective may result from the 

methodology used in teacher evaluation systems.  Consequently, not understanding how 

methodology affects evidence produced by accountability or evaluation systems may lead 

to erroneous conclusions based on the systems.  McCaffrey et al. suggested that this level 

of understanding requires “more empirical studies” (2004, p. 140).   

Although questions about error related to IRT-based scores have been advanced 

(Brockman, 2011; Chiu & Camilli, 2013), IRT is clearly a widely accepted tool in 
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statewide assessment programs, with most states incorporating it in assessment practices 

(Ryan & Brockman, 2009).  Moreover, although studies have focused on systematic error 

when using IRT-based scores in regression broadly, little research is available about 

systematic error when using IRT-based scores in regression to determine school 

accountability.  The Lu et al. (2005) study focused on systematic error and relied on a 

Monte Carlo simulation, whereas Simonetto (2011) simulated data using Mplus
© 

(Muthén & Muthén, 2012), but no studies have focused specifically on error resulting 

from the use of IRT-based scores in student growth percentiles or value-added modeling.   

Purpose of the Study 

The purpose of this study is to examine the measurement error when using IRT-

based scores in existing student growth models, and whether structural equation modeling 

can reduce systematic error.  Response patterns were simulated to model student 

performance on a mathematics assessment and a language arts assessment for multiple 

grades.  Scores on the assessments were scaled using IRT, and student growth was 

estimated using SGPs as well as VAMs.  Additionally, student growth was estimated 

using structural equation modeling.  However, rather than including scale scores for each 

subject, responses to each indicator were included as indicators of reading ability and 

mathematical ability such that ability was estimated through an IRT measurement model.  

After examining the results of the varying methods, the implications for practice are 

discussed.  

Justification 

Given the widespread reliance on statistical regression to estimate student growth, 

understanding measurement error associated with including IRT-based scale scores in 

regression as well as exploring statistical alternatives for minimizing measurement error 
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addresses a gap in academic literature.  Additionally, a better understanding of the 

relationships between IRT and multiple regression along with IRT and SEM may lead to 

more accurate representations of school performance depicted in accountability models 

and teacher performance as represented by evaluation systems.  Consequently, policy-

makers and educational measurement professionals advising policy makers may be 

interested in analyses of measurement error.  And, if accountability models and 

evaluation systems are enhanced from a better understanding of measurement error, more 

accurate estimates of student growth may lead to more meaningful acceptance of 

accountability systems and evaluation systems by administrators and teachers.  

These stakeholders, although directly affected by estimates of student growth, are 

likely to be indirectly concerned with issues related to measurement error and its impact 

on the accuracy of school accountability models and teacher evaluation systems.  

Ultimately, students may experience the greatest impact of a better understanding of 

methods to minimize measurement error.  Although students may not be cognizant of 

measurement error associated with test-based accountability, policy makers’ justification 

of test-based accountability as a tool to ensure an adequate education for all students 

makes measurement error a student issue.  As a result, providing quantitative evidence 

for educational measurement professionals to consider, as they advise policy-makers in 

establishing or modifying school accountability models and teacher evaluation systems, 

forms the underlying rationale for considering measurement error when modeling student 

growth. 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

Standardized testing has been a part of the American educational landscape since 

the passage of the Elementary and Secondary Education Act of 1965 (ESEA), but the 

Improving America’s Schools Act of 1994 (IASA) introduced the idea of standards for 

all students, and NCLB (2002) refocused student assessment on monitoring student 

progress by requiring schools to meet progressively higher annual proficiency 

requirements on standardized assessments in language arts and mathematics.   

Although the notion of modeling student progress has been around for more than 

half a century (Lord, 1956), those early attempts to systematically measure changes in 

student performance via standardized assessments were psychometrically flawed 

(Stiggins, 1991), leading to recent comprehensive transformations of state assessment 

systems with “numerous important implications for measurement” (Koretz & Hamilton, 

2006, p. 531).  Among the changes has been the proliferation of IRT in standardized 

testing (Yen & Fitzpatrick, 2006), leading to the potential for error when IRT–based 

scores are used in regression (Lu et al., 2005; Mislevy, 1987; Simonetto, 2011), a practice 

that is commonplace in current student growth modeling practices (Franco & Seidel, 

2014). 

Measuring Student Growth 

 As the paradigm for measuring student performance has shifted from status 

measures to including growth measures, student growth models have flourished (Franco 

& Seidel, 2014).  As of 2014, at least 40 states used, or planned to use, some form of 

growth modeling (Collins & Amrein-Beardsley, 2014).  Conversely, Collins and Amrein-

Beardsley (2014) noted that only seven states expressed no intentions of considering 
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student growth (three states were not represented).  Student growth percentiles, varieties 

of VAM, and value tables are among the currently used growth models identified by 

Collins and Amrein-Beardsley (2014).   

Contributing to the proliferation of growth models are the abundant philosophical 

differences undergirding the choice of growth model.  Sanders and Horn (1994) reasoned 

that “(t)he academic gains our students make is the measure of our success as educators 

as well as theirs” (p. 310), but Linn (2006) countered that information gained from 

accountability systems can be just as useful when used only to identify areas for 

improvement.  However, statistically modeling student growth demonstrates an important 

advance in accountability regardless of philosophical predisposition (Barone, 2009) and 

is considered less biased than considering only current performance as required by NCLB 

(Kane & Steiger, 2002).  Growth estimations, notwithstanding the advance, can differ 

significantly depending on the statistical method used (Brockman & Auty, 2012; Linn, 

2000), and no particular growth model has been demonstrated to be most effective 

(Brockman & Auty, 2012).  Of the growth models identified by Collins and Amrein-

Beardsley (2014), the SGP model and VAMs are currently the most common approaches 

used by states.  

Value-Added Modeling   

Value-added modeling is a set of statistical methods for measuring academic 

growth that adjusts the growth measure based on the incoming demonstrated ability of 

the student (Ballou et al., 2004; Tekwe et al., 2004) to estimate school and teacher 

contributions to student learning (Raudenbush, 2004).  Accordingly, Raudenbush (2004) 

concluded that VAMs consider these contributions to be causal effects, but Rubin et al.  
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(2004) countered that instead of considering the contributions to be causal effects, they 

should be viewed as descriptive information only. 

Among the VAMs currently in use, the most common model is the SAS 

Education Value-Added Assessment System (SAS® EVAAS®) (Amrein-Beardsley & 

Collins, 2012), an extension of the Tennessee Value-Added Assessment System 

(TVAAS) (SAS® EVAAS® for K-12, n.d.).  Consequently, much of the literature is 

focused on TVAAS rather than SAS® EVAAS®.  Although Sanders and Horn (1994) 

describe TVAAS broadly as “a statistical process that provides measures of the influence 

that school systems, schools, and teachers have on indicators of student learning” (p. 

301), Barone (2009) identified the statistical process as multiple regression. 

TVAAS is a parsimonious model that relies solely on three factors:  multiple 

years of student assessment data, teachers associated with the tested subjects that are 

included in the model, and the school attended during the year in which the assessment 

occurred (Ballou et al., 2004).  Because students are not randomly assigned to teachers or 

schools, covariates, such as race and socio-economic status, are not included in the model 

to inhibit their becoming proxies for school or teacher effects (Ballou et al., 2004).  

Ballou et al. (2004) provide conceptual equations that illustrate a student who was first 

tested in third grade in 2012: 

 (1) 

 (2) 

 (3) 

where 

Y12

3 = b12

3 +u12

3 + e12

3 ,

Y13

4 = b13

4 +u12

3 +u13

4 + e13

4 ,

Y14

5 = b14

5 +u12

3 +u13

4 +u14

5 + e14

5 ,
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= the test score in year t, grade k, 

= the district mean test score in year t, grade k, 

= contribution of the grade k teacher to the year t test score, 

= student-level stochastic, or random, component in year t, grade k (p. 40). 

TVAAS utilizes a mixed-model approach with both fixed and random effects 

(Sanders & Horn, 1994) with teacher effects allowed to change over time (Ballou et al., 

2004).  Because the approach layers the modeling of later years onto the modeling of 

prior years, TVAAS is referred to as a layered mixed-effect model (LMEM) (Sanders, 

Saxton, & Horn, 1997).  McCaffrey and colleagues (2004) add that normal distribution of 

error terms is assumed, and the variance matrix for the error terms is unrestricted.  In the 

TVAAS model, variance is assumed to be constant across students, but because the 

variance matrix for the error terms is unrestricted, variance may differ across years 

(McCaffrey et al., 2004). 

Student Growth Percentiles 

 Betebenner (2009) contends that the current trend of inferring causality of teacher 

and school contributions based on measures of student growth has led to a biased 

understanding of student growth; that is, in the rush to differentiate “good” schools from 

“bad” schools based on students’ academic growth, the descriptive information available 

from growth modeling has been largely ignored.  To support this position, he refers to his 

own anecdotal observations while working with state departments of education and to 

research by Yen (2007) suggesting many stakeholders are more interested in 

understanding whether a student’s growth is “reasonable or appropriate” than in drawing 

inferences about the cause of the student’s growth (Yen, 2007, p. 281).    

Yt

k

bt

k
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k
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k
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 Using the hypothesis that growth models provide descriptive information (Linn, 

2006; Rubin et al., 2004), Betebenner worked with the Colorado Department of 

Education to develop the student growth percentile (SGP) in a model to “separate the 

description of student progress (the SGP) from the attribution of responsibility for that 

progress” in an effort to refocus student growth modeling on the student and on the 

amount of growth – or lack of growth – exhibited by a student (Betebenner et al., 2011, 

para. 2).  As a result of his work with Colorado, the SGP model associated with 

Betebenner is often referred to as “The Colorado Model,” whereas the value-added 

growth model associated with Sanders is often referred to as “The Tennessee Model.”   

Rather than attempting to infer responsibility for a student’s performance through 

assumptions of causality, SGPs are the basis of a growth model that is both norm- and 

criterion-referenced to address how much a student has grown, and whether that growth 

is adequate (Betebenner, 2011a).  More simply, SGPs compare where a student’s current 

score ranks when compared to scores of all students who have performed similarly in 

prior years (Betebenner, 2011b).  Although SGPs are designed to be easily interpretable 

through a simple representation of student growth (Betebenner, 2011b), the statistical 

concept of quantile regression underlying the model is complex. 

 In ordinary least squares (OLS) regression, a line is fitted to the conditional mean 

of an outcome variable regressed on predictor variables based on minimizing squared 

deviations.  OLS regression takes the form 

 (4) 

 where 

= the outcome for observation j, 

Yj = b0 + b1X j +ε j

Yj
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= a constant,  = when = 0, 

= regression coefficient of the predictor, 

= stochastic component observation j. 

Quantile regression, however, fits a line to the conditional quantiles of an outcome 

variable on predictor variables.  When considering SGPs, the outcome variable is a 

student’s score on a standardized assessment, and a student’s score on a standardized test 

falls at the τ-th quantile if the student performs better than the proportion τ of students 

and worse than the proportion (1-τ) (Koenker & Hallock, 2001).  Betebenner (2009) 

defines the τ-th quantile for the current year scores (or the SGP) based on prior year’s 

scores as .  Using B-spline functions to model non-linearity, 

heteroscedasticity, and skewness of the conditional distributions, Betebenner (2009) 

derives SGPs using the following equation: 

 
(5) 

where i = 1, 2, 3, and j = 1, . . ., t-1 denote the B-spline basis functions.  Although 

SGPs use three years of prior assessment data, SGPs can accommodate assessment data 

for as few as two years (Betebenner, 2009).  

Measurement Practices in Large Scale Assessment 

 Regardless of the method used for growth modeling, the foundation of the method 

is scale scores that represent student performance on standardized assessments 

(McCaffrey et al., 2004).  Based on Thorndike’s assertion that “(w)hatever exists at all 

exists in some amount” (1918, p. 16), statistically modeling student growth in 

mathematics and language arts relies on assessments that measure student knowledge 

b0 b0
Yj X0

b1

ε j

QYt
(τ |Yt−1,Yt−2,...,Y1))

QYt
(τ |Yt−1,...,Y1)) = φij

i=1

3

∑
j=1

t−1

∑ (Y j )βij (τ ),

φi, j,
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where measurement is defined as “ the assignment of numerals to objects or events 

according to rules” (Stevens, 1946, p. 677).  In psychometrics, associating numbers with 

performance on an assessment occurs through scaling (Furr & Bacharach, 2008; Kolen et 

al., 2011), a process that converts raw scores on an assessment to scale scores to facilitate 

the understanding and reporting of performance (Kolen et al., 2011).  Raw scores 

numerically represent the items answered correctly and, depending on educational and 

psychometric requirements (Chiu & Camilli, 2013), can be computed through simple 

techniques such as summing correct responses or much more sophisticated statistical 

techniques (Kolen & Brennan, 2004).  In an effort to “promote sound testing practices” 

(AERA, APA, NCME, 2014, p. 1), current psychometric practices for scoring and scaling 

assessment are guided by the Standards for Educational and Psychological Testing 

(Ryan & Brockman, 2009) with CTT and IRT used by most psychometricians (de Ayala, 

2009; Ryan & Brockman, 2009).  

Classical Test Theory 

CTT can be traced as far back as 1904 to Spearman (Traub, 1997), but modern 

CTT has its roots in the work of Novick (1966).  In CTT, the score received by a student 

includes a true measure of the student’s content knowledge, or the student’s ability in the 

content area, as well as some level of measurement error.  The observed score of the 

student is denoted by the equation  

. (6) 

The observed score is the raw score earned by the student or the total number of items 

answered correctly.  The raw score, however, can be influenced by any number of factors 

such as room temperature, time of day, lack of sleep, or hunger; thus, the raw score is a 

combination of the true score and these influencing factors, often referred to as error.  A 

O = T + e
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basic principle of CTT, however, is that repeatedly administering a test and averaging the 

raw scores yield the student’s true score because, on average, the random measurement 

error is canceled (Yen & Fitzpatrick, 2006).  It is for this reason CTT remains popular in 

assessment practices as a tool for measuring the reliability of assessments (Yen & 

Fitzpatrick, 2006).  The reliability of a test can be defined mathematically as 

 
(7) 

When there is no error associated with scores, the reliability of a test is the true score 

variance divided by the true score variance, or 1.  Hence, as the level of error increases, 

the error score variance increases and reliability decreases.   

 A shortcoming of CTT is the inability to separate the test from the test taker; that 

is, a test may perform differently for different students.  As observed by de Ayala (2009), 

the difficulty of a test depends on the ability level of the students taking the test.  Another 

disadvantage of CTT is the reporting of student performance and item characteristics on 

different scales; that is, whereas student performance is reported using raw scores, item 

characteristics are represented by the proportion of students responding correctly to an 

item (Yen & Fitzpatrick, 2006).  

Item Response Theory 

Though CTT remains popular in current psychometric practices due to its easily 

understood straightforward approach (Yen & Fitzpatrick, 2006), IRT is a more 

sophisticated method that produces more accurate results by separating the test and test 

taker (de Ayala, 2009).  IRT can be traced to Thurstone’s work to quantify mental age in 

1925 (Thissen & Orlando, 2001) when he introduced the concept of representing ability 

and the characteristics of test items on a single scale (Thurstone, 1925).  Over time, IRT 

reliability =
TrueScoreVariance

TrueScoreVariance+ErrorScoreVariance
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continued to evolve, primarily in education and psychology (Glöckner-Rist & Hoijtink, 

2003), as a psychometric tool to mathematically model constructs using items on 

instruments, such as measuring mathematics ability using a multiple-choice assessment 

(de Ayala, 2009).   

Hambleton and Jones formally define IRT as “a general statistical theory about 

examinee item and test performance, and how performance relates to the abilities that are 

measured by the items in the test” (1993, p. 255); colloquially, IRT is a tool to equate, 

scale, and score assessments that can be used for all facets of an assessment program, 

from assembly to scaling, or any combination of equating, scoring, or scaling (Chiu & 

Camilli, 2013; Kolen & Brennan, 2004).  For example, an assessment may be developed 

using IRT but scored using summed raw scores consistent with CTT (Kolen & Brennan, 

2004).   

The underlying premise of IRT is that every test taker has some level of 

knowledge, referred to as ability (de Ayala, 2009) or proficiency (Kolen et al., 2011), 

related to the test’s content.  Moreover in IRT, student ability, represented as θ, is related 

to individual test items rather than the overall test.  Students with lower ability possess a 

better chance of successfully responding to items identified as representing lower 

difficulty, students with moderate ability possess a better chance of responding to items 

representing lower and moderate difficulty, and students with greater ability possess a 

better chance of responding to items at all difficulty levels (de Ayala, 2009); that is, 

students of differing ability levels have unequal chances of responding correctly to an 

item.  Because correctly responding to an item is dependent upon the ability of the test-

taker, the difficulty of a test item and student ability related to that test item are 

represented by the same scale. 
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As a result of students with differing ability levels having unequal chances of 

responding correctly to an item, IRT has the potential to more readily distinguish between 

students of differing ability levels.  This potential to distinguish between ability levels, 

referred to as discrimination, is pivotal in IRT because of the inherent implications for 

standardized testing when test items can differentiate between students of varying 

abilities (de Ayala, 2009).  To elaborate, an item may be too challenging for any but the 

most able student to answer correctly.  Consequently, that item may not discriminate 

adequately between low and high ability students because low ability students are not 

expected to respond correctly to the item, and high ability students are not expected to 

respond incorrectly. In that scenario, a less challenging item may be more appropriate.  If, 

however, the purpose of an item is to differentiate among high performing students, such 

as students applying for entrance into a selective graduate program, the challenging item 

may provide more differentiation between test takers than a less challenging item.   

An item’s potential for discriminating between differing ability levels along with 

an item’s level of difficulty are referred to as parameters in IRT.  The discrimination 

parameter is referred to as the a parameter, and the difficulty of an item is referred to as 

the b parameter.  A third parameter, the potential for guessing on an item, is referred to as 

the c parameter.  The ability to create items with specific parameter values in IRT 

provides a method for offsetting some of the limitations of CTT noted by Ryan and 

Brockman (2009) and has resulted in the increased use of IRT in the majority of state 

assessment programs (Ferrara & DeMauro, 2006; Ryan & Brockman, 2009; Yen & 

Fitzpatrick, 2006).  

Tests with each item included, based on specific discrimination, difficulty, and 

guessing parameter values, allow for scoring tests without relying on the number of items 



 

 

19

answered correctly inherent in CTT (de Ayala, 2009).  Thissen and Wainer (2001a) 

defined test scoring as “combining the coded outcomes on individual test items into a 

numerical summary of the evidence the test provides about the examinee’s performance” 

(p. x).  In CTT, summed raw scoring is the total number of items answered correctly with 

all items equally weighted.  Whereas IRT also allows the use of summed scoring, it also 

allows for more (or less) consideration of items with different parameters (Kolen & 

Brennan, 2004).  Thus, a test may give more weight to items with greater difficulty and 

higher discrimination but less consideration to items with less discrimination and lower 

difficulty.  When item parameters are used to weight responses to items, the scoring 

method is referred to as pattern scoring because students who respond correctly to the 

same number of items may receive different raw scores based on the pattern of responses 

to items with different parameters.  

To provide more meaningful information and to facilitate interpretation, raw 

scores are generally transformed to scale scores.  Scale scores derived through IRT 

techniques are based on an estimate of test-taker’s proficiency, represented as ��, which 

can be estimated using either summed scoring or pattern scoring (Kolen et al., 2011).  

Although pattern scoring is typically used to estimate proficiency when using 3PL IRT, 

the resulting �� for high and low proficiency test-takers is more likely to result in greater 

levels of measurement error due to error variance than students with mid-level �� values  

(Kolen & Brennan, 2004).  Proficiency can, however, be estimated using summed raw 

scores, also referred to as summed scores (Kolen et al., 2011), and, although information 

is lost when using summed scoring (Thissen & Orlando, 2001), Yen (1984) concluded 

that summed scores can be used effectively in lieu of pattern scoring to create IRT scale 

scores.  Consequently, developing and equating tests using IRT techniques followed by 
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scoring using summed scoring is commonplace in standardized testing (Kolen & 

Brennan, 2004). 

Multiple methods have been developed for using summed scores to estimate 

proficiency and create scale scores.  Lord (1980) described a method for treating the 

summed score as a true score, whereas Lord and Wingersky (1984) discussed viewing the 

summed scores as observed scores.  Kolen and Brennan (2004) compared Lord’s method 

for treating summed scores as true scores with Lord’s and Wingersky’s method for 

treating them as observed scores and noted two advantages of treating the scores as true 

scores:  ease of computation and distribution-independent conversion.  Estimating 

proficiency by treating summed scores as true scores can be accomplished by using the 

Test Characteristic Function (TCF).  The true score of a test-taker with proficiency θ is 

represented by 

. 
(8) 

Substituting the summed score for and solving for θ results in the test-taker’s 

estimated proficiency, represented by .  Because the summed score has been 

converted to an estimated proficiency, the estimated proficiency can be treated as a raw 

score and can be linearly transformed to IRT scale scores, resulting in scores that are 

easier to interpret (Kolen et al., 2011). 

 Despite the increasing popularity of IRT in assessment programs, its inclusion has 

generated concern within the measurement community.  For example, a choice as 

fundamental as type of IRT may be philosophical rather than technical (Yen & 

Fitzpatrick, 2006), or the choice of model may be based solely on currently popular 

practices (von Davier, 2009).  Maris and Bechger (2009) argued that user preference for a 

τ (θ ) = τ i(θ )
i=1

n

∑

τ (θ )

θ̂TCF
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particular IRT model, rather than the suitability of a model, oftentimes influences the 

choice of a model.  Beyond reasons for selecting a model, the continually-increasing 

reliance on standardized assessments has raised the stakes of inferences based on 

standardized assessments and has heightened demands for accuracy in estimating student 

ability (Doorey, 2011).  Also, at issue is mathematically correcting for guessing within 

the 3PL model.  Although the effects of guessing have long been debated in literature, 

Chiu and Camilli, (2013) argue that a better understanding of the potential for error when 

mathematically correcting for the effects of guessing may lead more practitioners to 

question the practice.   

These concerns have led researchers to address potential threats related to using 

IRT (e. g., Brockman, 2011; Chiu & Camilli, 2013; Lu & Thomas, 2008; Lu et al., 2005; 

Mislevy, 1987; Simonetto, 2011; von Davier, 2009).  Von Davier (2009) stressed that 

when mathematically modeling guessing, an examinee may be modeled as guessing even 

if the correct answer is known, supporting the assertion by Thissen and Wainer (2001b) 

that the potential for guessing on items is always present.  Consequently, although IRT is 

a popular choice for mathematically addressing the potential for guessing, von Davier 

(2009) argued that the 3PL model is not necessarily the best choice for dealing with 

guessing, especially when a parsimonious model is the goal. Instead, von Davier (2009) 

suggested other IRT models, including a hybrid 2PL model that adequately account for 

the effects of guessing.  Kubinger and Draxler (2007), however, advanced the idea of a 

hybrid 1PL model, with examinees grouped into classes based on similar IRT difficulty 

parameters, which can fit data equally as well as a 3PL model (when all discriminations 

are constrained to zero).  Thus, literature suggests that measurement experts are divided 

on the appropriateness of using a 3PL model to mathematically correct for guessing. 
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Whereas Chiu and Camilli (2013) pointed to a lack of understanding about 

potential error when addressing the effects of guessing, Hoijtink and Boomsma (1996) 

pointed to a lack of understanding related to potential error when treating ability (or 

proficiency) estimates as true ability rather than estimated ability.  Specifically, Hoijtink 

and Boomsma (1996) illustrated that errors are introduced when IRT-based ability 

estimates are treated as true representations of ability, without acknowledging the 

estimations contain a level of error.  Equation 6 can be transformed into the following 

equivalent equation. 

 (9) 

This equivalence can be extended to IRT, if the observed score is considered a 

representation of estimated ability, and the true score is represented by estimated ability 

plus some level of error resulting from the estimation as represented in Equation 10.  

 (10) 

Conversely, �� can be expressed as 

. (11) 

Thus, the estimation of proficiency is consistent with substituting the summed score for 

 in Equation 8 and solving for θ as suggested by Kolen and colleagues (2011) if the 

error associated with estimating proficiency is acknowledged as including some level of 

error and is represented by .  Moreover, Mislevy and colleagues (1992), based on 

analysis of the National Assessment of Educational Progress (NAEP), found that treating 

estimates as true measures led to unacceptable levels of error, consistent with Hoijtink’s 

and Boomsma’s (1996) observation that estimates of ability consist of true ability along 

with some level error.   

T =O+ e

T = θ̂ + e

θ̂ =T − e

τ (θ )

θ̂TCF + e
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Although Hoijtink and Boomsma (1996) documented the error introduced by 

including IRT-based scores in regression analysis, current practices, all too often, rely on 

estimating ability and subsequently including the estimates in regression analysis (Lu et 

al., 2005).  For example, current practice in the Massachusetts Comprehensive 

Assessment System (MCAS) includes a variety of item types, such as multiple-choice, 

short-response, and open-response, calibrated using the graded-response model (GRM) 

for polytomous items and the 3PL model for dichotomous items (Massachusetts 

Department of Elementary and Secondary Educations [MDESE], 2013).  The MDESE 

uses summed raw scoring in IRT to estimate ability and described scale scores on the 

MCAS as “a simple translation of ability estimates (��)” (p. 61) calculated with the linear 

equation �� � ��� � � where m is the slope and b is the intercept.   

Louisiana is another state using multiple-choice and constructed-response items to 

measure student performance in language arts and mathematics (Louisiana Department of 

Education [LDE], 2013).  Assessments in the Louisiana Educational Assessment Program 

(LEAP) are calibrated with the 3PL model for dichotomous items and the generalized 

partial credit model (GPCM) for the constructed-response items; IRT summed raw 

scoring is used to generate ability estimates which are converted to scale scores (LDE, 

2013).  Mississippi’s assessments in language arts and mathematics include multiple-

choice items calibrated with the 3PL model, and IRT summed scoring is used to generate 

ability estimates that are linearly transformed to scale scores (Mississippi Department of 

Education [MDE], 2013).   

In the Transitional Colorado Assessment Program (TCAP), students are assessed 

in language arts and mathematics using multiple-choice items, calibrated with the 3PL 

model, and constructed-response items, calibrated with the two-parameter partial credit 



 

 

24

model (2PPC) (Colorado Department of Education [CDE], 2013).  Colorado, however, 

uses IRT pattern scoring to produce ability estimates that are converted to scale scores 

providing “better test information, less measurement error, and greater reliability than 

number-correct scoring” (p. 18).    

As the use of IRT in assessment programs continues to grow (McCaffrey et al., 

2004), concerns about IRT-based ability estimates as true representations of ability 

become more prominent (Hoijtink & Boomsma, 1996).  With the conclusion by Lu et al. 

(2005) that including IRT–based scores directly in regression presents the potential for 

error, and because the methodology used in accountability systems for classifying schools 

has the potential to influence school performance classifications (Linn, 2008), using IRT-

based ability estimates to create scale scores that are subsequently used for modeling 

student growth has created concern, given that popular growth models rely on either 

multivariate regression (Sanders & Horn, 1994) or quantile regression (Betebenner, 

2009).  Consequently, SEM provides an alternative to regression analysis that addresses 

error introduced through including IRT–based scores directly in regression (Glöckner-

Rist & Hoijtink, 2003). 

Structural Equation Modeling 

Although IRT and SEM represent the most popular methods for relating observed 

indicators and latent constructs (Raju et al., 2002), SEM was developed independently of 

IRT (Muthén, 2002).  Whereas IRT was developed in education and psychology 

(Glöckner-Rist & Hoijtink, 2003) as a psychometric tool for modeling latent traits using 

observed indicators on measurement instruments such as standardized tests (de Ayala, 

2009), SEM was developed in sociology as a statistical tool for modeling the relationship 

between observed indicators and latent constructs (Jöreskog, 1973).  SEM continues to 
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Specification.  Model specification is guided by existing theory or prior research 

that supports a hypothesized statistical model and typically begins with a pictorial 

representation of the specified model (Lei & Wu, 2007) referred to as a path diagram 

(Hoyle, 2012a), as illustrated by the structural equation model illustrated in Figure 3.  Lei 

and Wu (2007) provided a concise explanation of the conventional elements of a path 

diagram:  ellipses represent latent constructs, squares represent indicators (observed 

variables), and circles represent residual (or error).  Depending on the model, constructs 

and indicators may be endogenous or exogenous.  Exogenous variables, or variables that 

affect other variables, are similar to independent variables in multiple regression, whereas 

endogenous variables, or variables that are affected by other variables, are similar to 

dependent variables.  Unlike multiple regression, however, variables in SEM can exhibit 

characteristics of both independent and dependent variables and may be both endogenous 

and exogenous (Lei & Wu, 2007).  Directional arrows are used to indicate the direction 

of the hypothesized effect between variables, pointing towards endogenous variables and 

from exogenous variables. When the direction of the relationship is unknown, bi-

directional arrows are used to represent the relationship.  

In specifying a structural equation model, the measurement model reflects the 

influence of constructs on their indicators in an effort to estimate parameters that best fit 

the data (Hoyle, 2012a).   Brown and Moore (2012) identify three parameters pertinent to 

CFA models:  factor loadings, unique variances, and factor variances.  Factor loadings 

represent the path from the construct to the indicator and are, statistically, analogous to 

regression coefficients (Brown & Moore, 2012).  Unique variance is commonly referred 

to as error variance and represents measurement error; factor variance relates the 

similarity (or dissimilarity) of participants relative to the construct (Brown & Moore, 
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2012).  Within the CFA model, these parameters may be free, fixed, or constrained 

(Brown & Moore, 2012).  Free parameters represent values unknown to the researcher.  

In CFA, free parameters are estimated to minimize the differences between the variance-

covariance matrix of the hypothesized model and of the observed data (Hoyle, 2012a).  

The values of a fixed parameter, however, are not estimated from the data; instead, fixed 

parameters are established a priori, usually to 1.0 or 0.0 (Brown & Moore, 2012).  

Constrained parameters are similar to free parameters in that they are not established a 

priori, but differ in that constrained parameters are in some way restricted, typically 

constrained to the same value (Brown & Moore, 2012).  Generally, a structural equation 

model will contain a mixture of parameter types (Lei & Wu, 2007).   

As abstract concepts that cannot be directly measured, constructs have no inherent 

unit of measurement.  Consequently, a model in which parameters are to be freely 

estimated will contain at least one fixed parameter per construct to establish the scale of 

measurement (Brown & Moore, 2012).  Although fixing one factor loading to 1 or fixing 

the variance of the construct to 1 establishes the scale of measurement for a construct, the 

most popular approach is fixing a factor loading to 1 to establish the measurement scale 

of that factor as the unit of measurement for the construct (Brown & Moore, 2012), as 

depicted in Figure 3.  The factor loading from reading ability to vocabulary is fixed at 1, 

but the factor loadings between the remaining factors – reading ability to comprehension, 

reading ability to grammar, and reading ability to writing – are estimated through the 

CFA to minimize differences in the variance-covariance matrices of the factors.  

Consequently, in Figure 3, reading ability will assume the scale of the vocabulary 

variable.    
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Identification.  Model identification, “going from the known information to the 

unknown parameters” (Kenny & Milan, 2012, p. 145), is required before the model can 

be estimated (Brown & Moore, 2012).  In most structural equation models, known 

information can be determined mathematically by �	� � 1� 2⁄ , where k represents the 

number of measured variables, or by counting the number of elements in the variance-

covariance matrix (Kenny & Milan, 2012).  All variances, covariances, structural 

coefficients, and any free parameters to be estimated comprise the unknown parameters 

(Kenny & Milan, 2012).  

Whereas establishing the scale of the construct and statistical identification are 

fundamental to model identification, degrees of freedom (df) are fundamental to 

statistical identification (Brown & Moore, 2012; Lei & Wu, 2007).  Statistical 

identification is the process of ensuring that the unknown information does not exceed 

the known information so that parameters can be uniquely estimated (Brown & Moore, 

2012).  Degrees of freedom, representing the numerical relationship between knowns and 

unknowns, are determined by subtracting the number of unknowns from the number of 

knowns to determine whether degrees of freedom are negative, zero, or positive (Brown 

& Moore, 2012).   

Although the specification of multiple models can result from the flexibility of 

CFA, not all specified models can be identified and subsequently estimated.  Thus, a 

necessary, yet insufficient, requirement for model identification is having at least as many 

knowns as unknowns, or non-negative degrees of freedom (Kenny & Milan, 2012; Lei & 

Wu, 2007).  If the unknown parameters outnumber the known information, degrees of 

freedom is negative, and the model is considered underidentified; if the amount of known 

information equals the number of unknown parameters, degrees of freedom is 0, and the 
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model is referred to as just identified (Brown & Moore, 2012; Kenny & Milan, 2012; Lei 

& Wu, 2007).   

Whereas underidentified models cannot be estimated, the estimation of 

justidentified models always result in a perfect fit; that is, in a justidentified model, the 

model is statistically forced to fit (Brown & Moore, 2012).  However, because the 

rationale for accepting a hypothesized model rests in the ability to compare multiple 

models for relative goodness of fit (Kenny & Milan, 2012), justidentified models are 

explanatorily meaningless, considering that competing models may result in the same 

statistically perfect fit, though the model may include random error that was forced to fit  

(Lei & Wu, 2007).  In contrast, overidentified models have more known values than 

unknown parameters to be estimated, positive degrees of freedom, and the potential to 

specify an ill-fitting model providing meaningful evidence of fit (Brown & Moore, 2012; 

Kenny & Milan, 2012; Lei & Wu, 2007).  Thus, the ability to refine imperfectly fitting 

hypothesized models provides stronger evidence of the reasonableness of a hypothesized 

model’s fit as opposed to a hypothesized model with a statistically-forced perfect fit 

(Kenny & Milan, 2012).  

Estimation. In estimation, initial values for free parameters are chosen and, with 

the fixed parameters, are used to produce an estimated covariance matrix that is 

compared to the observed covariance matrix to produce a fitting function (Hoyle, 2012a).  

The parameter estimates are updated iteratively to minimize the value of the fitting 

function (Hoyle, 2012a).  The estimation process converges when changing parameter 

estimates no longer lessens the value of the fitting function; however, an unidentified 

model or poorly specified model generally will not converge (Hoyle, 2012a).  
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Although maximum likelihood (ML) is the iterative mathematical process most 

often used to estimate the fitting function (Brown & Moore, 2012; Lei & Wu 2007), ML 

requires large samples, interval scale data, and multivariate normal data (Brown & 

Moore, 2012).  Accordingly, other methods are available when ML assumptions are 

violated, such as ML with robust standard errors when continuous indicators are non-

normal or WLSMV, Weighted Least Squares Means and Variance Adjusted, when 

indicators are categorical (Brown & Moore, 2012).  A number of software programs are 

available for estimating structural equation models (Lei & Wu, 2012) such as Amos© 

(Arbuckle, 2009), LISREL© (Jöreskog & Sörbom, 2006), and Mplus
© (Muthén & 

Muthén, 2012).  In each program, the default estimator is ML when indicators are 

continuous, but only Mplus
© uses WLSMV for categorical indicators (Lei & Wu, 2012). 

Evaluation.  Following estimation, the model is evaluated to determine whether 

the model should be retained or rejected in favor of a better fitting model (Lei & Wu, 

2007).  The suitability of a model is evaluated using a number of measures, including 

overall goodness of fit, the fit of individual parameters, and whether individual parameter 

estimates make sense (Brown & Moore, 2012), and the decision to retain or reject a 

model is based on two considerations:  parsimony and model fit (Chou & Huh, 2012).  

Whereas a more parsimonious model is preferable and will have higher degrees of 

freedom and fewer free parameters, model fit is determined statistically using fit indices 

to evaluate whether model fit is sufficiently improved to justify the loss of parsimony 

(Chou & Huh, 2012).  

As a starting point for evaluation of the overall model, the Chi-square statistic, χ2, 

is computed to test the null hypothesis that the model perfectly fits the data (West et al., 

2012).  As a badness of fit measure, the observed Chi-square statistic is compared to a 
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critical value (West et al., 2012).  Given degrees of freedom and acceptable Type I error 

rate, if the Chi-square statistic exceeds the critical value, the model is rejected as not 

fitting the data adequately (West et al., 2012).  Because the Chi-square statistic is 

sensitive to sample size (Lei & Wu, 2007), the statistic is generally considered a poor 

indicator of model fit (Hoyle, 2012a).  

To overcome issues related to sample size, other more appropriate fit indices have 

been developed, such as the Root Mean Square Error of Approximation (RMSEA), the 

Comparative Fit Index (CFI), and the Tucker-Lewis Index (TLI) (West et al., 2012).  The 

RMSEA has a lower bound of 0 but has no maximum value and, as a badness of fit 

measure, lower values for RMSEA are preferable with values less than .05 representing a 

close fit, values less than .08 representing an adequate fit, and values above .10 

representing a poor fit (West et al., 2012).  The CFI and TLI are goodness of fit indices 

not affected by sample size with lower and upper bounds of 0 and 1, respectively (West 

et al., 2012).  Proposed cutoff values for model acceptability are the same for both the 

CFI and TLI, with values less than .90 representing a poor fit, values greater than .90 

representing an adequate fit, and values greater than .95 representing a good fit (West et 

al., 2012).   

Modification.  When a model represents an inadequate fit, model modification 

may be an option (Chou & Huh, 2012).  West et al. (2012) suggested that when 

comparing alternative models is supported by existing theory, or when the current 

analysis is exploratory in nature modification is appropriate.  Nested models, alternative 

models with free parameters that are a subset of the original model, provide a second 

model for comparison by freeing a single parameter to determine whether the parameter 
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change results in significantly improved model fit without unnecessarily sacrificing 

parsimony (Chou & Huh, 2012).   

Although the Chi-square statistic is generally considered a poor indicator of 

model fit (Hoyle, 2012a), the change in the Chi-square statistic between nested models, 

referred to as the Chi-square difference test, can be used effectively to determine if the 

models are significantly different (Chou & Huh, 2012).  In the Chi-square difference test, 

the Chi-square statistic for the more parsimonious model is subtracted from the Chi-

square statistic for the less parsimonious model (Chou & Huh, 2012).  Because the Chi-

square critical value for one degree of freedom is 3.84, the model is considered to be a 

significant improvement over the original model if the difference in Chi-square statistics 

is greater than 3.84 (Lei & Wu, 2007).   

Decisions about freeing parameters can be guided by the standardized residual 

matrix and modification indices, or an approximation of how the Chi-square statistic will 

be affected by freeing a specific parameter (Brown & Moore, 2012).  Thus, whereas the 

Chi-square difference test is a measure of overall model fit, modification indices and 

standardized residuals are used to evaluate individual parameters (Brown & Moore, 

2012).  Similar to the Chi-square difference test, the modification index is approximating 

a change in the Chi-square statistic if a specific parameter is freed, and changes greater 

than 3.84 indicate a significant model improvement (Lei & Wu, 2007).  Moreover, 

although SEM software programs estimate modification indices for all constrained 

parameters, decisions about freeing parameters should be grounded in sound theoretical 

or empirical reasoning and should be made realizing that modification indices are 

susceptible to sample size (Brown & Moore, 2012).   
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The standardized residual matrix provides another measure to evaluate individual 

parameters (Brown & Moore, 2012).  These standardized differences between the 

observed covariance and estimated covariance of two indicators can be treated similar to 

z-scores and, accordingly, standardized residuals with values of 1.96 or greater indicate a 

significant amount of covariance not captured in the current model (Brown & Moore, 

2012).      

IRT as Measurement Model 

As previously discussed, measurement models that rely on CFA result in 

estimates that are biased due to the error associated with treating observed items as error-

free (Lu et al., 2005; MacCallum & Austin, 2000).  As an alternative to deal with the bias 

introduced by CFA, IRT can be used as a measurement model for estimating latent 

variables within SEM. 

Although SEM and IRT are popular statistical methods in their own right, Muthén 

(2002) suggests that latent construct modeling has suffered as a result of the separate 

development of SEM and IRT, and that both can be stronger by considering the other.  Lu 

and colleagues (2005) expand on the opportunities of considering SEM and IRT together 

by noting that the separate development may have occurred because, although the 

connection between factor analysis and SEM is generally accepted, the understanding of 

the connection between IRT and SEM is limited.  Further, they point out that when the 

item parameters and regression parameters (or structural parameters) are simultaneously 

estimated, item bias can be avoided.  Consequently, SEM and IRT can be complementary 

(Muthén, 2002).  

Grounded in the mathematical relationship between IRT and factor analysis 

shown by Takane and de Leeuw (1987), a statistical framework exists that provides for 
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the inclusion of IRT within SEM as the measurement model (Glöckner-Rist & Hoijtink, 

2003).  Because the IRT-SEM framework remains mostly theoretical, Lu et al. (2005) 

described the relationship between IRT and SEM, illustrated how to include estimation of 

the latent variables within a structural equation model, and illustrated how to move 

beyond directly using IRT-based scores in analyses.  They discussed simultaneous IRT-

SEM and fixed IRT-SEM approaches that limit the bias introduced into the model while 

yielding less biased parameter estimates.     

Expanding on the relationship between IRT and SEM (Takane & de Leeuw, 

1987), Lu and colleagues (2005) noted that item parameters �� and �� are an expression 

of the measurement model and, because �� and �� can be expressed by factor analysis 

measurement model parameters, it follows that estimation of the SEM parameters 

represent simultaneous estimation of the IRT parameters and structural parameters (Lu et 

al., 2005).  In the case of the simultaneous IRT-SEM model, the IRT model is embedded 

in the structural equation model as the measurement model and simultaneously estimates 

item and structural parameters.  When the IRT parameters are known, the measurement 

model estimates the IRT item parameters, which can be fixed during the structural model 

estimation.  Embedding IRT as the measurement model within SEM requires large 

samples with either simultaneous IRT-SEM or fixed IRT-SEM consistently providing 

satisfactory analysis, but with smaller samples and fewer items, fixed IRT-SEM appears 

to produce less bias (Lu et al., 2005). 

SEM presents an opportunity to use structural relationships to address questions 

related to error when using IRT-based scores (Brockman, 2011; Chiu & Camilli, 2013) 

Recognizing the widely accepted use of IRT in statewide assessment programs (Ryan & 

Brockman, 2009), SEM also presents an opportunity to address the lack of research 
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related to error specific to the use of IRT-based scores in regression to determine school 

accountability.  With growing emphasis on measuring changes in student performance, 

rather than relying solely on measures of current student performance, the measurement 

and structural components of SEM present mechanisms to explore Linn’s (2006) 

assertion that information gained from accountability systems can be used to identify 

areas in need of improvement rather than to punish schools using statistical analyses that 

inherently include measurement error.   
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CHAPTER III 

METHODOLOGY 

Measuring student growth using student growth percentiles or value-added 

modeling requires scale scores from standardized assessments, often obtained through 

IRT (Ryan & Brockman, 2009).  The proposed method for measuring student growth 

through structural equation modeling, however, uses responses to individual items from 

assessments to address the potential for error when IRT–based scores are used in 

regression (Lu et al., 2005; Mislevy, 1987; Simonetto, 2011).  Because of privacy 

concerns regarding student information and the security encompassing high stakes 

testing, data with responses to individual items on assessments are not readily available; 

thus, item response data that simulated item response patterns for examinees had to be 

generated.   

The use of simulated data is common within psychometric studies and has 

advantages and disadvantages when compared to using actual data.  Advantages of using 

simulated data include the ability to establish person and item parameters, and the ability 

to establish theoretical results that can be compared to results obtained using real data 

(Davey et al., 1997).  A disadvantage of simulated item response data is the potential of 

data not representing actual item responses, but when parameters of real data are 

available, the relationship between actual data and simulated data is more defensible 

(Davey et al., 1997).  Consequently, “results generalize only to the extent that the 

simulation procedures produce data that are similar to the actual responses of actual 

examinees to actual test items” (Davey et al., 1997, p. 2).   

Adhering to the guiding principle that simulated data must reflect actual data, data 

simulation provided a mechanism for conducting this study that would have otherwise 
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been impossible (Davey et al., 1997).  Prior to modeling student growth using student 

growth percentiles, value-added modeling, and structural equation modeling, item 

response data were simulated.  

Student growth percentiles are calculated using the open-source SGP package in 

R (Betebenner, 2014).  The calculation of the SAS EVAAS model, however, is provided 

as a for-pay service and is consequently not publicly available (Sanders & Wright, 2009).  

The intention was to use an implementation of the SAS EVAAS model (Lockwood et al., 

2003) using R software (R Core Team, 2014) Sanders and Wright (2009) cited as similar 

to SAS EVAAS.  However, the Lockwood et al. (2003) implementation was coded using 

an earlier version of R that no longer functions on the latest computer operating systems; 

consequently, further consideration of value-added modeling was not pursued in the 

current study.  The simulation of data and analyses of growth modeling occurred in two 

parts following sequential steps.   

Part I:  Data Simulation 

Phase 1:  Response Data Simulation 

  Step 1:  Ability Parameter Estimates 

  Step 2:  Item Parameter Estimates 

  Step 3:  Simulation of Data 

Phase 2:  Dimensionality Analysis 

  Step 1:  Principal Component Analysis 

  Step 2:  Confirmatory Factor Analysis 

Phase 3:  Calibration and Scaling 

  Step 1:  Item Parameter Calibration 

  Step 2:  Scaling 



 

 

40

Part II:  Student Growth Modeling 

Phase 4:  Student Growth Percentiles  

Phase 5:  Structural Equation Modeling  

Phase 1:  Response Data Simulation 

Item response patterns for participant data were simulated using item-level 

information and test-level information for the Mississippi Curriculum Test, Second 

Edition (MCT2).  Exactly replicating response patterns for the MCT2 was not possible, 

given the limitations on publicly available information.  The purpose of this study, 

however, was not to examine the psychometric properties of the response patterns, or to 

make substantive inferences about the performance of students on the MCT2 based on 

the simulated responses.  Instead, the purpose of the study was to examine statistical 

models utilizing a simulated set of response patterns.  Consequently, simulation rather 

than replication was sufficient for the current study.   

Simulation of data was guided by information from MCT2 technical manuals 

(Mississippi Department of Education (MDE), 2008; MDE, 2011) and by procedures 

outlined by Han and Hambleton (2007) using the computer program WinGen (Han, 

2007), a computer program designed to generate realistic item response patterns (Han & 

Hambleton, 2007).  WinGen, requires information about examinees and about each item 

to simulate response patterns for examinees on a test.  Information about examinees 

required by WinGen includes number of examinees and characteristics of the distribution 

of examinees, such as type of distribution, mean theta of examinees, and standard 

deviation of theta for examinees.  Required information about individual items includes 

number of items on the test, number of response categories per item, type of IRT model, 
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and IRT item parameter values.  Using the information about examinees and about each 

item, WinGen simulated response patterns for each examinee for each test.   

Although the number of examinees for each grade and subject is publicly 

available in MCT2 technical manuals, this study relied on all students having test scores 

in each subject for all grades; consequently, the number of students included in the 

growth model was the same for all grades.  Examinee counts in the MCT2 technical 

manual indicate sixth grade examinee totals were lowest in both language arts 

(N=35,269) and mathematics (N=37,120) (MDE, 2011).  The sixth grades counts were 

averaged, rounded to the nearest thousand (N=36,000), and used as the baseline for 

estimating examinee counts in all grades.    

 The mean and standard deviation of thetas required by WinGen are not publicly 

available.  Instead, mean scale scores and their associated standard deviations are 

provided publicly along with the formula for transforming thetas to scale scores: 

, (12) 

where theta hat is the theta estimate and Pcut is the Proficient cut score on the theta 

metric (MDE, 2008, p. 66). The formula was algebraically transformed to derive theta 

given a scale score and the proficiency cut point: 

. 
(13) 

The value of Pcut was established after the first administration of the MCT2 (MDE, 

2008), and the mean scale scores and associated standard deviations are provided in 

annual updates to the technical manual (MDE, 2011). Each assessment was treated as 

unidimensional consistent with the MCT2 (MDE, 2008; MDE, 2011); that is, the 

language arts assessment was considered to measure only language arts ability, and the 

SS = (θ̂ −Pcut)×10+150

θ̂ = SS −150

10









+Pcut
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mathematics assessment was considered to measure only mathematics ability.  The 

distribution of ability levels of the examinees was considered to be normal, and Table 1 

contains parameters calculated using the information provided in the MCT2 technical 

manual. 

Table 1   
 
2011 MCT2 Mean and Standard Deviation of Thetas for Simulating Response Patterns 

 

  
 

Scale Score 

 
 
θ 

Proficient Cut Score 
(2007-2008) 

 
 
θ 

 

M 

 

SD 

 

M 
 

SD 

 

 
Language Arts 

     

 Grade 3 (2010 – 2011) 149.9 12.2  0.07 0.06 1.22 
 Grade 4 (2010 – 2011) 149.7 12.5  0.10 0.07 1.25 
 Grade 5 (2010 – 2011) 149.0 12.2  0.12 0.02 1.22 
 Grade 6 (2010 – 2011) 149.8 11.7  0.20 0.18 1.17 

 
Mathematics      
 Grade 3 (2010 – 2011) 153.3 12.8  0.08 0.41 1.28 
 Grade 4 (2010 – 2011) 151.7 11.3 -0.06 0.11 1.13 
 Grade 5 (2010 – 2011) 151.4 12.0 -0.01 0.13 1.20 
 Grade 6 (2010 – 2011) 150.6 11.8  0.05 0.11 1.18 

 

       
The IRT item parameters in the WinGen data simulation were the IRT item 

parameters from the 2011 administration of the MCT2 (MCT2, 2011).  The 2011 MCT2 

language arts IRT item parameters are located in Appendix C, and the 2011 MCT2 

mathematics IRT item parameters are located in Appendix D.  In addition to item 

parameters from the MCT2, the generation of simulated response patterns using WinGen 

requires the number of items on the test, the number of response categories for each item, 

and the type of IRT model simulated.  Table 2 contains the number of items on the MCT2 
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used in the simulation.  Each item is scored dichotomously – either right or wrong; 

consequently, there are two response categories per item.  Consistent with the MCT2, 

data are simulated using a 3PL IRT model (MCT2, 2011).  

Table 2  
 
Assessment Constructs and Number of Items 

 

 
Construct 
 

 
Grade 3 

 
Grade 4 

 
Grade 5 

 
Grade 6 

 
Language Arts 

 
50 

 
50 

 
60 

 
60 

Mathematics 45 45 50 50 

 

     
 In the final step of simulating response patterns for examinees, examinee data 

from the first step and item-level information from the second step were used to simulate 

item responses patterns for each examinee. Because each multiple-choice item is 

dichotomously scored as either right or wrong, each correct response is represented by a 

1, and each incorrect response is represented by a 0 in the item response data.  The 

simulation process was repeated for each subject in each grade.  WinGen produces the 

item response data in text files.  Thus, the simulated item response data for language arts 

were contained in four grade-level text files and simulated item response data for 

mathematics were contained in four grade-level text files.  The WinGen-generated 

response data text files were imported into corresponding SPSS datasets for use in 

subsequent phases. 
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Phase 2:  Dimensionality Analysis 

Principal Component Analysis 

 Because IRT analysis assumes unidimensionality of the test under consideration, 

principal component analyses (PCA) and CFA were conducted to test the 

unidimensionality assumption for each language arts and mathematics assessment in each 

grade.  As a variance-focused approach, components in a PCA reflect the variance, both 

common and unique, necessary to test the IRT assumption that the construct measured by 

the test explains all variance in test scores.  To that end, eigenvalues in a PCA are useful 

when considering the dimensionality of the test.  Eigenvalues can be represented 

graphically in scree plots, and the point at which a scree plot flattens indicates the point at 

which further dimensions, or constructs, are considered no longer relevant.  These scree 

plots, along with percentage of variance explained, can provide evidence about the 

dimensionality of a test.   

A principle components factor analysis of the items on each test was conducted 

using direct oblimin rotation.  Direct oblimin was chosen because correlation of 

underlying factors was expected.  Initially, the factorability of the items on each test was 

examined using recognized criteria, including the Kaiser-Meyer-Olkin measure of 

sampling adequacy and Bartlett’s test of sphericity.  

All items with primary loadings less than .3 were deleted individually, beginning 

with the first item loading less than .3 and continuing ordinally until all loadings were 

greater than .3.  Next, item loadings less than .35 were considered.  The item with the 

smallest loading was deleted, and the resulting structure matrix was analyzed to 

determine the newest item with the smallest loading, which was then deleted.  This  
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deletion and analysis continued until all remaining item loadings were at least .35 

resulting in item deletion for each test.   

Confirmatory Factor Analysis 

 Confirmatory factor analysis, used to evaluate the overall unidimensionality of a 

test and to detect the strands represented by the test, was conducted in Mplus to test the 

reasonableness of the pre-determined constructs of language arts and mathematics using 

the items remaining after Principle Components Analysis.  The absolute fit index Root 

Mean Square Error of Approximation (RMSEA) along with the incremental fit indices 

Comparative Fit Index (CFI), and Tucker-Lewis Index (TLI) were used to measure the 

goodness of fit on each test.  The “goodness” of the fit of items in each assessment was 

determined using criteria suggested in the literature.  Consistent with suggestions by 

West et al.  (2012), an RMSEA of .05 or less was considered an indicator of a good fit.  

Likewise, a CFI of .95 or greater and a TLI of .95 or greater were considered an indicator 

of a good fit (West, Taylor, & Wu, 2012). Additionally, Principle Components Analysis 

indicated multiple factors within some of the unidimensional tests.  Consequentially, a 

second confirmatory factor analysis was conducted on those tests for which PCA 

suggested multiple factors.  

Phase 3:  Calibration and Scaling 

Item Parameter Calibration 

 After identifying appropriately loading items, each simulated test was calibrated, 

a process of relating performance on the test to the ability measured by the assessment 

(de Ayala, 2009).  The 3PL IRT parameter estimates for each simulated test were 

calculated through maximum likelihood (ML) estimation using the IRT calibration 

computer program Bilog-MG 3.0 (Zimowski et al., 2003).  ML was the chosen estimation 
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technique because maximum likelihood estimates (MLEs) converge as sample size 

increases and the estimates are normally distributed (Thissen & Orlando, 2001).  

Scaling 

Because scale scores for each assessment were established using summed raw 

scoring rather than pattern scoring, an ability estimate was calculated for each examinee 

based on the number of items answered correctly.  Using the 3PL IRT parameter 

estimates and quadrature points obtained through calibration in Bilog-MG 3.0 (Zimowski 

et al., 2003), the computer program POLYEQUATE (Kolen, 2003) was used to generate 

Test Characteristic Curves to convert the summed score into theta estimates for each test 

consistent with Lord’s (1980) treatment of the summed score as a true score.  Then, using 

the raw score-to-theta conversion tables (see Appendix H), a theta for each student was 

estimated based on the student’s raw summed score.  The estimated theta was then 

linearly transformed to a scale score using the formula 

 (14) 

so that a student with ability equal to the mean has a scale score of 100.  To ensure scale 

scores within a reasonable ability range, the valid range of theta estimates was defined as 

-4.00 to 4.00.  Consistent with the MCT2 (MCT2, 2011) any theta estimates beyond this 

valid range were considered to be invalid and were converted to -4.00 or 4.00.   The final 

scale scores are provided in Appendix H. 

 After scale scores were generated, the 36,000 students in each grade and subject 

were sampled to create a primary sample (n = 4,500) and a second sample to serve as a 

holdout sample (n = 4,500).  The primary sample, referred to hereinafter as cohort 1, was 

created for use in the development of the structural equation model and in the initial 

calculation of SGPs and of the VAM.  The primary sample, referred to hereinafter as 

ScaleScore = (θ −θ )*10+100
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cohort 1, was used during model fitting, whereas the holdout sample hereinafter referred 

to as cohort 2, was used to evaluate the consistency of the model fit on another set of 

data. 

Phase 4:  Student Growth Percentiles 

Using the simulated scale scores in cohort 1 for each grade and subject, student 

growth percentiles were calculated using the R command “studentGrowthPercentiles” in 

the SGP package (Betebenner, 2014).  To calculate SGPs, data must be in a wide format 

file containing the data elements listed in Table 3.  

Table 3 
 
Variables Required for SGPs 

 

 
Variable 

 
Type 

 
Measure 
 

 
Unique student ID 

 
Numeric 

 
Ordinal 

First tested grade (Grade 3) Numeric Ordinal 
Second tested grade (Grade 4) Numeric Ordinal 
Third tested grade (Grade 5) Numeric Ordinal 
Fourth tested grade (Grade 6) Numeric Ordinal 
Grade 3 scale score Numeric Continuous 
Grade 4 scale score Numeric Continuous 
Grade 5 scale score Numeric Continuous 
Grade 6) scale score Numeric Continuous 

 

   
Phase 5:  Structural Equation Modeling 

As previously discussed, SGPs and VAM use scale scores, often resulting from 

IRT techniques, to measure growth for the current year.  Sanders and Horn (1994) noted 

the rationale for using scale scores is that, although test scores do not “reflect the totality 

of a student’s learning” (p. 303), they are an unbiased estimate of learning for purposes of 

growth modeling; others, however, have ascribed a level of error, or bias, when treating 
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observed items as error-free estimates of ability (Lu et al., 2005; MacCallum & Austin, 

2000).  Offered as an alternative to SGPs and VAM, the proposed structural equation 

models, provided in Appendix I (language arts) and Appendix J (mathematics), utilize 

IRT as a measurement model within structural equation modeling of student growth.   

Whereas SEM and IRT each have specific strengths and weaknesses, combining 

the techniques reduces the weaknesses of each while enhancing strengths (Glöckner-Rist 

& Hoijtink, 2003).  Moreover, Oishi (2007) suggests that IRT is the best option for 

measurement equivalence, while structural equation modeling is the best option for 

structural relationships and that the combination of item response theory, and structural 

equation modeling presents the best solution.  Accordingly, the proposed structural 

equation models include a grade-level construct of “proficiency” (or ability) rather than 

scale scores as a proxy for proficiency.   

Consistent with guidelines from the MCT2 technical manual, the proposed 

structural equation models were designed so that the measurement model reflects grade-

level learning within a specific subject area, and the level of learning is represented by a 

unidimensional construct – proficiency (MDE, 2008) – as confirmed through PCA and 

CFA in Phase 2.  Although each construct is assumed to be unidimensional, a single 

construct can have multiple sub dimensions that are highly correlated (MDE, 2008).  As 

an example, the MCT2 test of language arts ability includes sub dimensions, or 

competencies, identified as vocabulary ability, reading ability, writing ability, and 

grammar ability that influence overall language arts ability (MDE, 2008), and test items 

are designed to measure these competencies, related to the construct of language arts 

proficiency (MDE, 2008).  For purposes of this study, however, analysis was constrained 

to the overarching single construct established in Phase 2. 
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Measurement of proficiency in the language arts or mathematics construct by the 

items on the associated assessment in each grade is the measurement component of the 

relevant structural equation model.  Although results of the CFA suggested sub 

dimensions for some of the tests, the analysis was limited to the overarching 

unidimensional construct because data were simulated, and there was no underlying 

theoretical basis for considering the sub dimensions. The relationships between the 

proficiency level in each of the measured grades comprises the structural component of 

the structural equation model.  

Mplus
© was used to analyze the proposed structural equation models, relying on 

procedures suggested by Muthén and Muthén (2012).  Typically, CFA is used as the 

measurement model to estimate factor scores for constructs (Hoyle, 2012a); but, because 

the items used as indicators of latent variables on the assessments are categorical items 

(i.e., scored as “right” or “wrong”), the CFA was considered to be IRT (Kim & Baker, 

2004).  In IRT, response patterns are used to estimate parameters; that is, IRT is a full-

information approach that relies on the free estimation of all item parameters (Bovaird & 

Koziol, 2012).  Thus, by fixing the factor variance at 1 rather than fixing the variance of 

the first factor to 1 (Muthén & Muthén, 2012), all item parameters are estimated 

consistent with IRT (Bovaird & Koziol, 2012).   

Weighted Least Squares Means and Variance Adjusted (WLSMV) was chosen as 

the estimation procedure because the items are categorical (Brown & Moore, 2012), and 

although Mplus
© can accommodate the use of maximum likelihood (ML) for estimation 

when items are categorical, using ML precludes the use of traditional measures of model 

fit, such as RMSEA, CFI, and TLI.  Analyzing model fit using ML as the estimation 

procedure would have required treating bivariate standardized residuals as z-scores, and 
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ensuring the model did not contain “very many” standardized residuals beyond + 1.96 for 

the model to be considered a good fit (Muthén, 2004, n. p.).  Using WLSMV as the 

estimation method, the goodness of fit of each model was analyzed using the absolute fit 

index RMSEA along with the incremental fit indices CFI and TLI.  A close fit was 

determined by RMSEA with values less than .05, and both CFI and TLI with values 

greater than .95 (West et al., 2012). 
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CHAPTER IV 

ANALYSIS OF DATA 

Results for this study are organized according to the sequence outlined in Chapter 

III.  Within each phase, relevant statistics and plots are provided.  

Phase 2:  Dimensionality Analysis 

Principal Component Analysis 

To model student growth using scale scores and using response patterns in part 

two of the study, response data were simulated in Phase 1 using WinGen and 

psychometrically evaluated in Phase 2.  Consistent with the procedures used in analyzing 

the Mississippi Curriculum Test, second edition (MCT2, 2008; MCT2, 2011), principal 

components analysis and confirmatory factor analysis were conducted to consider the 

unidimensionality of each test and to identify any factors within each test.  Additionally, 

item parameter calibration and scaling were conducted to create scores for each test to be 

used in Student Growth Percentiles (SGPs) and Value-Added Modeling (VAM). 

The principle components factor analysis using direct oblimin rotation suggested 

that factor analysis was suitable for each test based on the Kaiser-Meyer-Olkin measure 

of sampling adequacy and Bartlett’s test of sphericity provided in Table 4.  As measures 

of the amount of variance explained by a particular factor, eigenvalues can provide 

insightful information for considering the unidimensionality of a model.  The first four 

initial eigenvalues for each test are presented in Table 5, and the amount of variance 

explained by each of the first four factors is presented in Table 6.   
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Table 4 
 
Criteria for Factorability of Original Test 
 

 
 
 
Subject 

 
 
 

Grade 

 
Kaiser-Meyer-Olkin 
Measure of Sampling 

Adequacy 

 
 
 

Bartlett’s Test of Sphericity 
 

 
Language Arts 

 
3 

 
0.96 

 
(χ2 (1225) = 107817.84*) 

Language Arts 4 0.96 (χ2 (1225) = 112379.23*) 
Language Arts  5 0.97 (χ2 (1770) = 130881.58*) 
Language Arts 6 0.97 (χ2 (1770) = 118831.69*) 
Mathematics  3 0.97 (χ2 (990)   = 123954.92*) 
Mathematics 4 0.97 (χ2 (990)   = 125318.21*) 
Mathematics 5 0.97 (χ2 (1225) = 151780.24*) 
Mathematics 6 0.97 (χ2 (1225) = 145483.20*) 

 

 
*p < .001 

   

 
Table 5 
 
Initial Eigenvalues for First Four Factors 
 

   
Eigenvalues 

 

 
Subject 

 
Grade 

 
1st Factor  

 
2nd Factor  

 
3rd Factor  

 
4th Factor  

 

 
Language Arts 

 
3 

 
5.40 

 
1.02 

 
1.00 

 
0.99 

Language Arts 4 5.50 1.02 1.01 0.99 
Language Arts  5 6.07 1.02 1.02 1.01 
Language Arts 6 5.75 1.04 1.02 1.01 
Mathematics  3 5.81 1.01 0.99 0.98 
Mathematics 4 5.83 1.02 1.00 0.99 
Mathematics 5 6.62 1.07 1.00 0.98 
Mathematics 6 6.48 1.02 0.99 0.98 
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Table 6 
 
Initial Percentage of Variance Explained by First Four Factors 

 

 
  Percentage of Variance Explained 

 

 
Subject 

 
Grade 

 
1st Factor  

 
2nd Factor  

 
3rd Factor  

 
4th Factor 

  

 
Language Arts 

 
3 

 
10.79 

 
2.03 

 
2.00 

 
1.98 

Language Arts 4 11.01 2.03 2.03 1.99 
Language Arts  5 10.11 1.70 1.70 1.68 
Language Arts 6   9.58 1.73 1.69 1.69 
Mathematics  3 12.90 2.24 2.21 2.18 
Mathematics 4 12.96 2.26 2.22 2.21 
Mathematics 5 13.24 2.15 1.99 1.97 
Mathematics 6 12.97 2.04 1.99 1.95 

 

      
The final factor loading matrix for the final solution for each test after sequentially 

deleting items on each test with loadings less than .35 is presented in Appendix F, and the 

number of items on each test in provided in Table 7. 

Table 7 
 
Number of Items per Test after Principle Components Analysis 

 

 
 
Subject 
 

 
 

Grade 

 
Original  

Number of Items 

 
Number of Items After 

Factor Analysis 

 
Language Arts 

 
3 

 
50 

 
28 

Language Arts 4 50 20 
Language Arts  5 60 24 
Language Arts 6 60 25 
Mathematics  3 45 24 
Mathematics 4 45 23 
Mathematics 5 50 31 
Mathematics 6 50 32 
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The scree plots, provided in Appendix E, graphically illustrate the 

unidimensionality of each test.  These graphs, along with initial eigenvalues that are 

distinctively larger than remaining eigenvalues and with the first factor explaining 

considerably more variance than the remaining factors, support the claim of 

unidimensionality on each test.   

As a comparison to the Principal Components Analysis, Velicer’s Minimum 

Average Partial (MAP) Test and Principal Analysis were also run.  The Original and 

Revised MAP Tests identified a single factor that was also clearly discernable in the scree 

plots presented in Appendix E.  Additionally, Parallel Analysis identified one factor for 

each of the tests by retaining factors for which the eigenvalue determined from the actual 

data was greater than the eigenvalue from randomly generated data. 

Confirmatory Factor Analysis 

 The Root Mean Square Error of Approximation (RMSEA) along with the 

Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI) for each grade and for each 

subject are provided in Table 8.  Although all tests are unidimensional, PCA suggested 

multiple factors within some of the tests.  The RMSEA, CFI, and TLI values for those 

tests with multiple factors are provided in Table 9. 
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Table 8 
 
Goodness-of-Fit Indices For Constructs Resulting from Confirmatory Factor Analysis 

 

 
Subject 

 
Grade 

 
RMSEA 

 
CFI 

 
TLI 

 

 
Language Arts 

 
3 

 
0.002 

 
1.000 

 
1.000 

Language Arts 4 0.003 1.000  0.999 
Language Arts 5 0.000 1.000 1.000 
Language Arts 6 0.003  0.999  0.999 
Mathematics 3 0.002 1.000 1.000 
Mathematics 4 0.004  0.999  0.999 
Mathematics 5 0.005  0.999  0.999 
Mathematics 6 0.003  0.999  0.999 

 
 

 
Table 9 
 
Goodness-of-Fit Indices Using Multiple Factors Suggested by PCA 

 

 
Subject 

 
Grade 

 
RMSEA 

 
CFI 

 
TLI 

 

 
Language Arts 

 
3 

 
0.002 

 
1.000 

 
1.000 

Language Arts 6 0.002 1.000  0.999 
Mathematics 5 0.005  0.999  0.999 
Mathematics 6 0.002 1.000  0.999 

 

     
Phase 3:  Calibration and Scaling 

Item Parameter Calibration 

Item parameter calibration was conducted in Bilog-MG 3.0 to produce the item 

parameters, and quadrature points required for creating scale scores (Zimowski et al., 

2003).  The 3PL item parameters determined through calibration are provided in 

Appendix G.  
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Phase 5:  Structural Equation Modeling 

 The Mplus
© code used to estimate the language arts model and the mathematics 

model is provided in Appendix K.  Model estimation terminated normally, and using the 

criteria of RMSEA with values less than .05 representing a close fit, and both CFI and 

TLI with values greater than .95 representing a good fit (West et al., 2012), each model 

demonstrated a good fit as noted in Table 10. 

Table 10 
 
Goodness-of-Fit Indices for Proposed Structural Equation Models 

 

 
Proposed Model 

 
RMSEA 

 
CFI 

 
TLI 

 

 
Language Arts – Grades 3 through 6 

 
0.002 

  
 0.998 

  
 0.998 

Mathematics    – Grades 3 through 6 0.002  0.999  0.999 
 

     
 In the measurement model, all loadings of items for each assessment were 

significant, but in the path model, only the directional path between grades 4 and 5 was 

significant.  Table 11 provides the estimates and two-tailed significance levels for the 

structural paths for the language arts model and for the mathematics model.  

Additionally, the latent variables for each model were minimally correlated.  The 

correlation matrices for language arts and for mathematics are provided in Table 12. 

Because the proposed structural equation models were not structurally significant, 

an alternate model for language arts and for mathematics was tested.  In the alternate 

model, proficiency in Grade 6 was regressed on proficiency in Grade 5, proficiency in 

Grade 5 was regressed on proficiency in Grade 4, and proficiency in Grade 4 was 

regressed on proficiency in Grade 3.  The results for the grade-on-grade models were 

similar to the results for the originally proposed models:  RMSEA, CFI, and TLI values 
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indicated very good model fit but the structural paths were not statistically significant.   

Table 11 
 
Structural Path Estimates and Statistical Significance Levels 

 

  
Language Arts 

 

 
Mathematics 

 
Path 

 

 
Estimate 

 
p-Value 

 
Estimate 

 
p-value 

 
Grade 3 with Grade 4 

 
 0.009 

 
0.666 

  
 0.009 

 
0.648 

Grade 3 with Grade 5 -0.014 0.448 -0.010 0.578 
Grade 4 with Grade 5 -0.041 0.034  0.017 0.358 
Grade 3 on Grade 6 -0.008 0.690  0.036 0.053 
Grade 4 on Grade 6  0.001 0.953  0.013 0.472 
Grade 5 on Grade 6  0.024 0.221 -0.027 0.131 

 

 
Table 12. 
 
Estimated Correlation Matrices for Latent Variables 

 

  
Grade 3 

 

 
Grade 4 

 
Grade 5 

 
Grade 6 

 
Language Arts 
 
 Grade 3  1.000    
 Grade 4  0.009  1.000   
 Grade 5 -0.014 -0.041  1.000  
 Grade 6 -0.008  0.000  0.024  1.000 

 
Mathematics 
 
 Grade 3  1.000    
 Grade 4  0.009  1.000   
 Grade 5 -0.010  0.017  1.000  
 Grade 6  0.037  0.013 -0.027  1.000 
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CHAPTER V 

DISCUSSION 

The primary purpose of this research study was to use simulated data to compare 

changes in student proficiency in a regression-based growth model that uses scale scores 

and in a structural equation model that uses examinee response patterns.  In 1996, 

Harwell and colleagues cautioned that simulated data must reflect the reality of actual 

data for simulation studies to be helpful.  They further noted that simulated data must 

reflect parameters of the actual data.  Accordingly, this research study sought to simulate 

meaningful assessment data based on real-world parameters, followed by valid modeling 

of the simulated data. 

To reflect reality to the greatest extent possible, data were simulated using 

parameters from live administrations of the Mississippi Curriculum Test, Second Edition 

(MCT2).  Fundamental assumptions of IRT are unidimensionality and local 

independence of items.  For the MCT2, Average Goodness of Fit (AGFI), and Root Mean 

Square Residual (RMSR) are reported to support the unidimensionality of the test 

(MCT2, 2011), whereas RMSEA, CFI, and TLI are reported to support the 

unidimensionality of the simulated data.  Although different statistics are reported, the 

statistics are members of the same family of statistics:  RMSEA and RMSR are absolute 

fit indices, whereas CFI, TLI, and AGFI are incremental fit indices.  As such, the fit 

indices provided in Table 8 for the simulated data are comparable to the fit indices for the 

MCT2 (MCT2, 2011).  For the simulated data, the lowest CFI and TLI is 0.999 and the 

lowest AGFI for the MCT2 is 0.972; likewise, the highest RMSEA for the simulated data 

is 0.005 and the highest RMSR for the MCT2 is 0.014 (MCT2, 2011).  Additionally, 

WinGen used the average �� of live administrations of the MCT2 along with item 
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parameters from the MCT2 to ensure simulated data mimicked actual parameters from 

the MCT2.    

A problem was encountered, however, because measuring changes in student 

performance over time requires data that represent student proficiency at multiple points 

in time; that is, the data must be repeated measures of the same student.  Specific to this 

research study, the time points represent measures of proficiency at the end of grade 3, at 

the end of grade 4, at the end of grade 5, and at the end of grade 6.  Although it was 

possible to simulate proficiency at single points in time – grade 3, grade 4, grade 5, and 

grade 6 – it was not possible to simulate connections between proficiency at the student 

level for multiple points in time.  Thus, the simulated data represent student proficiency 

at four points in time, but the data do not represent repeated measures of the same student 

or reflect changes in proficiency for the student.   

The lack of connection between data points across grades at the student level is 

supported by the correlations provided in Table 12.  None of the correlations are greater 

than 0.04, suggesting a lack of connectivity in performance between time points.  

Likewise, because the variance of the grade-level proficiency was constrained to 1 so that 

the measurement model could be considered IRT, covariance and correlation are equal; 

thus, in addition to a lack of correlation in proficiency between grades, covariance 

between proficiency in each grade indicates minimal relationships between any two 

subsequent grades.  Without true repeat measures and longitudinal connections at the 

student level, the simulated data failed to reflect the reality of connections in student 

proficiency at multiple time points. 

Having simulated data that lack connectivity across time is important considering 

that the usefulness of simulated data is dependent on the data’s reflection of reality 
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(Harwell et al., 1996).  Davey and colleagues (1997) note that even minor characteristics 

of the real data may be important in the simulation process with significant implications 

for simulating data that reflect reality; that is, having simulated data that do not reflect 

reality has ramifications for generalizing beyond the study.   

Although the lack of connectivity between time points is a characteristic that 

should have been identified in the literature review, discussion of examining changes in 

student performance through structural equation modeling using simulated data is lacking 

in the literature.  Student growth models currently used in state accountability models 

(Collins & Amrein-Beardsley, 2014) rely on using scale scores in some type of regression 

such as quantile regression (Betebenner, 2009) or multiple regression (Sanders & Horn, 

1994).  Consequently, these models do not consider structural relationships between any 

of the time points, and simulation studies that involve SGPs or VAM do not depend on 

structural relationships.  The successful calculation of student growth percentiles using 

the simulated data demonstrated that SGPS using simulated data could accommodate the 

lack of connectivity.   

Although the structural parameters were not statistically significant, the proposed 

structural equation model demonstrates that IRT can be used as a measurement model 

using response patterns on standardized assessments with the resulting significance level 

of all item parameter estimates less than 0.001.  Given that model estimation terminated 

normally, the simultaneous estimation of item parameters and structural parameters 

demonstrate that SEM and IRT can be complementary (Muthén, 2002), and that IRT can 

be used as a measurement model for estimating proficiency within SEM.     
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Limitations and Suggestions for Future Research 

Although this research study produced a model with good fit, the results should be 

interpreted cautiously.  The most obvious limitation is that the data do not represent 

repeated measures of the same student or reflect changes in proficiency over time for the 

student.  As Davey and colleagues (1997) state, “Even the best simulation models are 

only as good as the parameters that form their foundation” (p. 4).  Considering that the 

data were simulated without a parameter to simulate the correlation between performance 

by students over time on the MCT2, the lack of statistical significance may be an obvious 

reflection of this limitation. 

The lack of statistical significance in a model employing simulated data is a 

limitation, but may be useful, when considering a model utilizing real data.  The overall 

structural equation model was significant.  Using the criteria noted by West and 

colleagues (2012), the goodness-of-fit indices provided in Table 12 suggest models with 

a very close fit.  As a badness-of-fit index, RMSEA values near zero are considered to be 

a good fit with values closer to zero representing a better fit (West et al., 2012).  Given 

that RMSEA values less than .05 represent a close fit (West et al., 2012), RMSEA values 

for both language arts and mathematics show an appreciably better fitting model than the 

standard discussed by West and colleagues (2012).  Conversely, as measures of 

goodness-of-fit, possible values for the CFI and TLI range from 0 to 1 with values closer 

to one representing a better fit (West et al., 2012).  Given RMSEA values approaching 

zero along with CFI and TLI values approaching one, fit indices suggest the models for 

both language arts and mathematics are a near perfect fit with the simulated data. 

An overall good fit for the structural equation model along with simulated item 

response patterns with statistically significant loadings on the grade level constructs of 
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proficiency demonstrated that a structural model using IRT as a measurement model can 

converge and yield reasonable estimates.  Consistent with assertions by Davey et al. 

(1997), this allows comparison between the estimated parameters and the true values of 

the parameters.  In the present study, this means that the lack of statistical significance is 

expected; that is, a relationship between grade level proficiency was simulated and no 

statistically significant results were found.  Furthermore, the simulated study provides an 

opportunity to confirm the simulated results with results obtained using real data.   

While the purpose of this research study was to compare changes in student 

proficiency in a regression-based growth model that uses scale scores with changes in 

proficiency in a structural equation model that uses examinee response patterns, a 

different goal emerged.  Prior literature suggests that demonstrating the performance of a 

model in a controlled situation is valuable (Davey et al., 1997).   Essentially, this research 

study provided a controlled situation to propose a null hypothesis:  there is no structural 

relationship between academic performance at multiple time points.  If the study had 

been conducted using real data and no statistically significant relationships were found, 

the lack of statistical significance could have been the result of the sample or a true lack 

of relationship (Davey et al., 1997).  This study developed a model with no statistically 

significant relationships, using simulated data; however, the study provided an 

opportunity to consider convergent and discriminant validity.  Within the structural 

equation model, all loadings of items for each assessment were significant in the 

measurement model.  These loading were consistent with results of the Confirmatory 

Factor Analysis and suggest that the measurement model exhibits convergent validity.  

Likewise, no relationship at the participant level between time points was simulated.   
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Thus, no relationship exists between participants at different time points, and the path 

model reflects this lack of relationship suggesting that the path model exhibits divergent 

validity. 

The current study is not only limited by statistical concerns, the study is also 

limited by substantive concerns.  A substantive limitation is the non-random assignment 

of students to schools.  As noted by Ballou et al. (2004), schools are not populated with 

students who are randomly assigned nor are schools populated with teachers who are 

randomly assigned.  Consequently, demographics and socioeconomic status can mask 

structural relationships (Ballou et al., 2004).  Because even the slightest aspects of the 

real data may affect simulation of data (Davey et al., 1997), structural relationships in the 

current model may have been affected by not considering demographics and 

socioeconomic status, and any future studies using real data should consider whether 

demographics and socioeconomic status act as moderators of academic performance.  

Identifying differences in performance based on demographics is a critical step in 

developing tools to help mitigate the effects of these moderators which in turn may help 

close established achievement gaps (Linn, 2006).    

Results of this study suggest that latent growth modeling and multilevel structural 

equation modeling should be considered in future research.  Because the simulated data 

did not represent true repeated measure of academic proficiency, latent growth modeling 

was not used.  However, future research using real data that represent repeated measures 

of the same student should use a latent growth approach to the structural model.  

Additionally, because students are nested within schools, schools are nested within 

districts, and districts are nested with states, multilevel growth modeling should also be 

considered in future research.   
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Because no particular growth model has been demonstrated to be most effective 

(Brockman & Auty, 2012), the current study may address the need for information to 

identify areas for improvement (Linn, 2006) and should be considered further using 

actual student performance data.  Although Student Growth Percentiles provide 

descriptive information important to parents (Betebenner, 2009), and value-added models 

provide descriptive information relevant to teacher contributions to student learning 

(Rubin et al., 2004), neither approach provides information relevant to structural 

relationships in student learning.  Consequently, considering student performance across 

years may provide information for those stakeholders interested in inferences related to 

causes of student learning.  

 

 

 

 

 

 

 

 



ITEM RESPONSE THEORY MODELS

In IRT a student’s knowledge of the construct measured by the test is assumed to 

affect how the student performs on the test. Because a student’s knowledge of the 

construct is related to the student’s performance on an item, the relationship can be 

mathematically modeled using an 

item characteristic curve 

scored item, the probability of success 

monotonically increasing as depicted 

 

  Item Characteristic Curve.
 

To understand the IRF, it is easiest to begin with a simple model and develop the logistic 

function that yields the IRF.  If 0 represents responding to an item incorrectly and 1

represents responding to the item correctly, the scale for the item can be represented as 

[0, 1].  The linear relationship between a student’s ability and an item’s difficulty is 

represented mathematically as

where u represents the student’s resp

represents the student’s ability to respond correctly. On a dichotomously scored item, 

 

APPENDIX A 

ITEM RESPONSE THEORY MODELS 

student’s knowledge of the construct measured by the test is assumed to 

affect how the student performs on the test. Because a student’s knowledge of the 

construct is related to the student’s performance on an item, the relationship can be 

modeled using an item characteristic function (IRF) that produces an 

item characteristic curve (ICC) (de Ayala, 2009).  When the item is a dichotomously 

the probability of success yields an item characteristic function that is 

creasing as depicted the following figure.   

Item Characteristic Curve. 

To understand the IRF, it is easiest to begin with a simple model and develop the logistic 

function that yields the IRF.  If 0 represents responding to an item incorrectly and 1

represents responding to the item correctly, the scale for the item can be represented as 

[0, 1].  The linear relationship between a student’s ability and an item’s difficulty is 

represented mathematically as 

, 

represents the student’s response, b represents the item’s difficulty and 

represents the student’s ability to respond correctly. On a dichotomously scored item, 

P(u =1|θ ) =θ − b
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student’s knowledge of the construct measured by the test is assumed to 

affect how the student performs on the test. Because a student’s knowledge of the 

construct is related to the student’s performance on an item, the relationship can be 

(IRF) that produces an 

(ICC) (de Ayala, 2009).  When the item is a dichotomously 

yields an item characteristic function that is 

To understand the IRF, it is easiest to begin with a simple model and develop the logistic 

function that yields the IRF.  If 0 represents responding to an item incorrectly and 1 

represents responding to the item correctly, the scale for the item can be represented as 

[0, 1].  The linear relationship between a student’s ability and an item’s difficulty is 

(15) 

represents the item’s difficulty and θ 

represents the student’s ability to respond correctly. On a dichotomously scored item, 



 

 

66

however, the outcome is not continuous – it is dichotomous.  To change the scale from 

[0, 1] to [-∞,∞], the probability in Equation 8 is converted to odds.  After taking the 

natural logarithm of the odds, the resulting formula is referred to as log-odds or logit, and 

the scale is infinite.  The resulting equation is represented as 

. 
(16) 

   Solving the equation for P yields the basic function of the IRT model. 

IRT is not limited to considering only the relationship between an item’s 

difficulty and a student’s ability.  In addition to considering an item’s difficulty, IRT can 

accommodate how well an item discriminates between different ability levels and can be 

extended to account for guessing on multiple-choice items.  In IRT, item difficulty, item 

discrimination, and guessing are referred to as parameters.  Three IRT models are 

available for dichotomous items, depending on the number of parameters included in the 

model:  the 1PL (one-parameter logistic), the 2PL (two-parameter logistic), or the 3PL 

(three-parameter logistic) model.   

In a 1PL model, only the difficulty parameter is allowed to vary because all items 

on the test are assumed to discriminate equally between ability levels and guessing is not 

considered.  Equation 10 is the mathematical equation for the 1PL model.  Theoretically, 

as ability increases and difficulty decreases, the probability of success should increase (de 

Ayala, 2009).  To expand, on easier items, students need less ability for a higher 

probability of success on the item; that is, if theta is equal to b, the probability of success 

is 0.5, but if theta is greater than b the probability of answering the item correctly is 

ln(
P(u =1|θ )

1−P(u =1|θ )
)=θ − b

 
(17) 

P(u =1|θ ) =
e(θ−b)

1+ e
(θ−b)



greater than 0.5 and if the probability of answering correctly is less than 0.5 then 

less than b.  The figure below

where b = 1, respectively.  Because 

student with theta equal to

to 1 or theta equal to -1 are students with ab

respectively, the average student.  Generally, ability 

between -3 and 3.  In this figure

ability to answer correctly whereas items with larger 

answer correctly.  It can also be seen in Figure 

or difficulty, and theta values, or ability level.  

 1PL models where b = -1.0, b = 0.0, b = 1.0.

In a 2PL model, the discrimination factor is allowed to vary along with the 

difficulty factor.  The equation for the 2

where a represents the capacity of the item to discriminate between ability levels.

Comparing Equation 20 to Equation 19

the a parameter is restricted to one. 

 

greater than 0.5 and if the probability of answering correctly is less than 0.5 then 

.  The figure below illustrates 1PL models where b = -1, where 

= 1, respectively.  Because theta is a standardized representation of ability, a 

theta equal to 0 is a student of “average” ability.  Students with 

1 are students with ability one standard deviation above or below, 

respectively, the average student.  Generally, ability levels are represented by theta 

In this figure, it is evident that items with smaller b values require less 

ability to answer correctly whereas items with larger b values require more ability to 

It can also be seen in Figure 6 that the same scale represents

values, or ability level.   

 
1.0, b = 0.0, b = 1.0. 

 
PL model, the discrimination factor is allowed to vary along with the 

e equation for the 2PL model is  

. 

represents the capacity of the item to discriminate between ability levels.

Comparing Equation 20 to Equation 19, the equations are mathematically 

parameter is restricted to one.  Equation 19 includes the a parameter but the 

P(u =1 |θ ) =
ea(θ−b)

1+ e
a(θ−b)
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greater than 0.5 and if the probability of answering correctly is less than 0.5 then theta is 

1, where b = 0, and 

is a standardized representation of ability, a 

0 is a student of “average” ability.  Students with theta equal 

ility one standard deviation above or below, 

levels are represented by theta values 

values require less 

values require more ability to 

that the same scale represents b values, 

PL model, the discrimination factor is allowed to vary along with the 

(18) 

represents the capacity of the item to discriminate between ability levels. 

, the equations are mathematically equivalent if 

parameter but the 



parameter is held constant.  As long as the a parameter is held constant, the 

can assume any value for 

represents the slope of the line tangent to the inflection point of the ICC.  With the 

addition of varying a parameters, different slopes allow different items to reflect varying 

levels of discrimination.  Whereas larger values of the 

and more discrimination between ability levels, smaller values of the 

represent less slope and less discrimination. 

where a is equal to 0.5, a 

looking only at theta between 

ICC where a is equal to 0.5.  Likewise, the probability of success on the item represented 

by the ICC where a is equal to

item represented by the ICC where 

success on the item represented by the ICC

theta is equal to -1 than for the item represented by 

is, the probability of success changes more rapidly 

represented by the ICC where 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2PL models where a = 0.5, a = 1.0, a

 

is held constant.  As long as the a parameter is held constant, the 

can assume any value for a.  In the 2PL model, the a parameter is allowed to vary and 

represents the slope of the line tangent to the inflection point of the ICC.  With the 

parameters, different slopes allow different items to reflect varying 

levels of discrimination.  Whereas larger values of the a parameter indicate steeper slopes 

and more discrimination between ability levels, smaller values of the a param

nd less discrimination. The figure below illustrates 2PL

 is equal to 1.0, a is equal to 1.5, respectively.  For simplicity, 

theta between -1 and 1, the ICC where a is equal to 1.5 is steeper than the 

0.5.  Likewise, the probability of success on the item represented 

is equal to 1.5 is much greater when theta is equal to 

the ICC where a is equal to 0.5.  Conversely, the probability of 

success on the item represented by the ICC, where a is equal to 0.5, is much greater 

1 than for the item represented by the ICC where a is equal to

is, the probability of success changes more rapidly for theta between -1 and

represented by the ICC where a is equal to 1.5.   

PL models where a = 0.5, a = 1.0, a = 1.5. 
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is held constant.  As long as the a parameter is held constant, the 1PL model 

parameter is allowed to vary and 

represents the slope of the line tangent to the inflection point of the ICC.  With the 

parameters, different slopes allow different items to reflect varying 

parameter indicate steeper slopes 

parameter 

2PL models 

1.5, respectively.  For simplicity, 

is steeper than the 

0.5.  Likewise, the probability of success on the item represented 

 1 than for the 

the probability of 

is much greater when 

is equal to 1.5.  That 

and 1 for the item 



 On standardized assessments with multiple

students to guess correctly even when the student does not know the correct answer.  The 

3PL model adds a parameter to mathematically account for item performance of students 

with low ability.  In a 3PL

equation for the 3PL model is 

where c represents accounts for the potential for gu

mathematically equivalent to Equation 20

the 2PL model is a more restrictive version of the 

the c parameter is allowed to vary

parameter as a constant shifts the ICC upw

is also subtracted from one and the difference is multiplied by the 

Equation 21.   The figure below

parameter, where the a parameter is one and the 

 

 3PL models where c = 0.0, c = 0.2.
 
 

P(u

 

On standardized assessments with multiple-choice items, it is possible for 

students to guess correctly even when the student does not know the correct answer.  The 

model adds a parameter to mathematically account for item performance of students 

3PL model, the guessing parameter is represented by 

model is  

where c represents accounts for the potential for guessing on the item.  Equation 21

ically equivalent to Equation 20, if the c parameter is restricted to zero.  Thus, 

model is a more restrictive version of the 3PL model such that c 

parameter is allowed to vary, consistent with the 3PL model, the inclusion of the 

parameter as a constant shifts the ICC upward by the value of c.  The guessing parameter 

is also subtracted from one and the difference is multiplied by the 2PL comp

The figure below illustrates the effect on the ICC of including the 

parameter is one and the b parameter is zero in both IRFs.  

PL models where c = 0.0, c = 0.2. 

 u =1|θ ) = c+ (1− c)
e

a(θ−b)

1+ e
a(θ−b)
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choice items, it is possible for 

students to guess correctly even when the student does not know the correct answer.  The 

model adds a parameter to mathematically account for item performance of students 

model, the guessing parameter is represented by c.  The 

essing on the item.  Equation 21 is 

r is restricted to zero.  Thus, 

 is equal to 0.  If 

model, the inclusion of the c 

.  The guessing parameter 

component in 

illustrates the effect on the ICC of including the guessing 

r is zero in both IRFs.   

(19) 
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In one IRF c is equal to 0.0 but in the other IRF c is equal to 0.2.  The effect of including 

a non-zero c parameter shifts the ICC upward by 0.2, and moves the inflection point 

negatively by 0.2 units.  The graph suggests that with very little ability the probability of 

responding correctly is 0.2.  Additionally, with the inclusion of guessing, the point at 

which the probability of responding correctly remains at 0.5 but requires less ability. 

Regardless of the model, certain assumptions must be met for the model to 

provide useful information: unidimensionality, which results in local independence of the 

items; monotonicity of the ICCs; and parameter invariance (Sijtsma & Junker, 2006).  

Unidimensionality suggests that the test measures only one construct, such as math 

ability or language arts ability.  (Factor analysis is a common method of analyzing 

dimensionality of tests.)  The assumption in IRT is that the construct measured by the test 

explains all variance in test scores.  It follows that if items are locally independent, then 

item performance is only affected by the student’s ability leading to the local 

independence of items. Simply stated, if items on a test are independent and a student’s 

ability level is known, the way a student responds to the items depends only on the 

student’s ability level.  Local independence is fundamental to IRT and results in 

statistically independent probabilities for item responses.  For two item responses, 

. (20) 

Expanding Equation 22 to n items, 

 
(21) 

Monotonicity results from using a logistic function to model the probability of 

success.  Logistic functions result in an ogive, and in modeling the probability of success 

on dichotomously scored items, the probability of success results in an ogive bounded by 

P(u1,u2 |θ )= P(u1 |θ )P(u2 |θ )

P(u |θ ) = P(u j |θ )
j=1

n

∏



zero and one. As such, higher ability results in a higher probability of success.  Because 

the probability of success is bounded by zero and one, the logistic function results in an 

ogive that is monotonically increasing 

that fits the data, students have the same probability of success despite different 

frequencies at various ability levels.  

Summing each ICC across the ability continuum results in a 

curve (TCC).  Instead of reflecting the probability of success on an individual item, the 

vertical axis in a TCC reflects the expected score on t

number of items a students is expected to answer correctly at a given ability level.  The 

equation for the TCC is  

The following figure illustrates the ICCs for an assessment with four items whereas 

figure on the following page

TCC in Figure 10 indicates that a person with an ability level of approximately 

expected to respond to one item correctly, a

 
 
 
 
 
 
 
 
 
 
 
 
Item Characteristic Curves for Four Items.
 

 

zero and one. As such, higher ability results in a higher probability of success.  Because 

ty of success is bounded by zero and one, the logistic function results in an 

ogive that is monotonically increasing and bounded by zero and one.  In an IRT model 

that fits the data, students have the same probability of success despite different 

es at various ability levels.   

Summing each ICC across the ability continuum results in a test characteristic 

(TCC).  Instead of reflecting the probability of success on an individual item, the 

reflects the expected score on the test; that is, the TCC reflects the 

number of items a students is expected to answer correctly at a given ability level.  The 

 

. 

illustrates the ICCs for an assessment with four items whereas 

figure on the following page is the TCC resulting from items in the figure below

indicates that a person with an ability level of approximately 

expected to respond to one item correctly, a person with ability level of approx

TCC(θ )= P(u j =1|θ )
j=1

n

∑

tem Characteristic Curves for Four Items. 
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zero and one. As such, higher ability results in a higher probability of success.  Because 

ty of success is bounded by zero and one, the logistic function results in an 

bounded by zero and one.  In an IRT model 

that fits the data, students have the same probability of success despite different 

test characteristic 

(TCC).  Instead of reflecting the probability of success on an individual item, the 

he test; that is, the TCC reflects the 

number of items a students is expected to answer correctly at a given ability level.  The 

(22) 

illustrates the ICCs for an assessment with four items whereas the 

the figure below.  The 

indicates that a person with an ability level of approximately -1.51 is 

lity level of approximately 



0.43 is expected to respond to two items correctly, and a person with ability level of 

approximately 1.07 is expected to respond to three items correctly.  Additionally, 

whereas the TCC is the sum of the probabilities for all items, the lower bound of the TCC 

is the sum of the c parameters for all items
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is expected to respond to two items correctly, and a person with ability level of 

approximately 1.07 is expected to respond to three items correctly.  Additionally, 

whereas the TCC is the sum of the probabilities for all items, the lower bound of the TCC 

parameters for all items 

est Characteristic Curve. 
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is expected to respond to two items correctly, and a person with ability level of 

approximately 1.07 is expected to respond to three items correctly.  Additionally, 

whereas the TCC is the sum of the probabilities for all items, the lower bound of the TCC 
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APPENDIX B 

EQUIVALENCE OF ITEM RESPONSE THEORY AND FACTOR ANALYSIS 

FOR DICHOTOMOUS ITEMS 

Takane and de Leeuw (1987) illustrated the mathematical equivalence between 

the two-parameter normal ogive model in IRT and factor analysis of binary variables 

beginning with Bock’s and Aitkin’s (1981) equation for the two-parameter ogive model. 

Takane and de Leeuw (1987) provided a detailed discussion of the mathematical proof of 

the equivalence of the two-parameter normal ogive model in IRT and the factor analysis 

of binary variables. However, the logistic function is often used rather than the normal 

ogive model, but the mathematical equivalence is consistent if the logistic distribution 

closely resembles a normal distribution (Takane & de Leeuw, 1987).  Glöckner-Rist and 

Hoijtink (2003) emphasized that normal ogive and logistic models are essentially the 

same such that logistic IRT models are factor models.    

Through mathematical integration, Takane and de Leeuw (1987) illustrated the 

equivalence by noting that if U is the domain of all possible abilities for all subjects, then  

Pr	�� � �� �  � Pr 	x�
�

� x|u��	u��u, (23) 

where �� is a random vector of response patterns, u�  is a random vector of unobserved 

subject abilities, �	u� �u represents the density function, and Pr	x� � x|u� is the 

conditional probability of observing x given u� � u.  Although u�  is unobserved, it is 

assumed that u�  ~ N(0, I).  Pr	x� � x|u� is assumed to have local independence 

Pr	x� � x|u� � �	��	u�� !
"

�
	1 # ��	u��$% ! 

(24) 

and  
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��	u� � � &	'� �' � Φ	a*u � ��
+,-./

%0
 

(25) 

where & is the density function of the normal distribution and Φ is the normal ogive 

function. 

 Conversely, Takane and de Leeuw (1987) pointed to Christoffersson’s (1975) 

equation for the factor analysis of binary data (p. 395) 

Pr	�� � �� �  � 1	2��2
3

, (26) 

where R is the region of integration, and  

y� � 5u� � e�, (27) 

if C is the matrix of factor loadings, u� is the vector of factor scores (or subject abilities), 

and e� is the vector of random error.  In the factor analysis model, as in the two-parameter 

normal ogive model in IRT, it is assumed that u�  ~ N(0, I).  It is also assumed that e� ~ N(0, 

Q
2), where Q2 is assumed to be diagonal, and u�  and e� are independent of one another.  

Thus,  

y� ~ 8	0, 55* � :;�, (28) 

and 

y� | u ~ 8	5u, :;� (29) 

To show the equivalence, Takane and de Leeuw (1987, p. 396) proved 

Pr	x� � x� �  � 1	y� �y
3

 
(30) 

                                                                 � < 	< =	y|u��	u� �u��3  �y (31) 

                                                                 � < �	u�	< =	y�|u� �y� �u3�  (32) 

where =	y�|u� is the conditional density function of y given u� = u.  It follows that  
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                            < =	y|u� �y �3  ∏ < =�3!� 	2�|u� �2� (33) 

                                                  � ∏ 	< =�	2�|u� �2�
0

A!� � !	1 # < =�
0

A! 	2�|u� �2��$% ! (34) 

where 

� =�	2�|u�
0

A!
 �2� �  Φ	B�*u # C�

D�
� 

(35) 

Consequently, if �� � E!
F!

 and �� � A!
F!

, IRT and FA are mathematically equivalent and 

represent the same model.   
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APPENDIX C 

2011 MCT2 LANGUAGE ARTS IRT INFORMATION 

Grade 3 Language Arts Item Parameters  
 

 
Item 

 
Strand 

 
             a 

 
               b 

 
                c 

 

 
1 1 0.868 -7.510 0.189 
2 1 0.791 -0.844 0.164 
3 4 0.890 -0.049 0.204 
4 4 0.721 0.753 0.191 
5 4 0.523 -1.155 0.111 
6 3 0.569 -0.552 0.137 
7 3 1.295 -0.426 0.260 
8 4 0.687 -1.463 0.200 
9 3 0.929 -0.328 0.186 
10 3 0.595 -0.585 0.103 
11 4 0.712 -0.874 0.131 
12 4 0.578 -0.894 0.174 
13 2 0.772 -0.418 0.189 
14 2 0.475 -0.072 0.061 
15 2 0.372 2.505 0.215 
16 2 0.897 2.784 0.233 
17 2 0.526 -1.403 0.022 
18 1 0.750 0.314 0.132 
19 4 0.847 0.923 0.248 
20 4 0.778 0.786 0.322 
21 3 0.997 0.491 0.274 
22 3 0.717 -1.305 0.092 
23 2 0.652 -0.851 0.131 
24 2 0.386 -0.642 0.027 
25 2 0.878 1.245 0.224 
26 2 0.861 0.837 0.206 
27 3 0.430 0.460 0.088 
28 2 0.918 0.527 0.230 
29 4 0.672 1.661 0.200 
30 1 0.885 0.476 0.174 
31 3 0.732 -0.556 0.118 
32 1 0.510 0.567 0.173 
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(continued).    
 

 
Item 

 
Strand 

 
            a 

 
                b 

 
                c 

 

 
33 3 0.837 0.736 0.202 
34 4 0.484 0.080 0.173 
35 4 0.562 -0.142 0.178 
36 2 0.328 -0.195 0.021 
37 2 0.497 0.931 0.230 
38 1 0.727 -0.416 0.112 
39 1 1.209 -0.016 0.288 
40 4 0.890 0.922 0.183 
41 2 0.915 0.050 0.222 
42 2 0.559 1.564 0.220 
43 2 0.393 1.181 0.147 
44 2 0.836 1.696 0.189 
45 3 0.377 -0.337 0.020 
46 2 0.600 -0.967 0.173 
47 4 1.105 -1.408 0.195 
48 1 0.537 -0.391 0.112 
49 3 

 
0.787 

 
-0.515 

 
0.187 
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Grade 4 Language Arts Item Parameters  
 

 
Item 

 

 
Strand 

 
            a 

 
                b 

 
                c 

 
1 1 1.461 0.040 0.226 
2 3 0.784 -1.151 0.062 
3 3 0.845 -1.177 0.054 
4 3 0.424 -0.165 0.253 
5 4 1.328 0.946 0.272 
6 4 0.773 1.066 0.237 
7 4 0.641 1.040 0.196 
8 4 0.858 1.292 0.265 
9 2 1.063 0.510 0.250 
10 2 0.668 -0.908 0.034 
11 2 0.753 0.177 0.174 
12 3 0.838 -1.090 0.230 
13 2 0.531 0.074 0.153 
14 2 1.002 0.684 0.186 
15 4 1.219 1.133 0.245 
16 1 0.902 0.216 0.187 
17 2 0.846 -0.250 0.213 
18 2 0.603 0.016 0.056 
19 3 0.691 1.048 0.174 
20 4 0.779 0.831 0.235 
21 2 0.593 2.442 0.207 
22 1 0.323 1.569 0.080 
23 1 0.736 0.638 0.218 
24 1 0.491 -0.879 0.056 
25 3 0.731 -0.826 0.057 
26 3 0.701 0.456 0.248 
27 1 0.872 0.102 0.220 
28 3 0.684 1.830 0.197 
29 4 0.408 0.046 0.137 
30 4 0.708 1.353 0.324 
31 3 0.806 0.436 0.166 
32 2 0.618 0.400 0.231 
33 2 0.782 1.224 0.208 
34 3 1.098 0.788 0.206 
35 3 0.782 2.066 0.209 
36 2 0.710 0.629 0.239 
37 2 0.511 1.201 0.203 
38 2 0.420 0.709 0.080 
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(continued).  
 

 
Item 

 
Strand 

 
             a 

 
                 b 

 
                 c 

 

 
39 4 0.307 -0.293 0.073 
40 2 0.636 0.631 0.117 
41 2 0.574 0.608 0.124 
42 2 0.713 0.929 0.236 
43 3 0.886 0.997 0.235 
44 4 0.569 2.012 0.289 
45 4 1.109 2.522 0.256 
46 1 1.496 -0.326 0.205 
47 2 0.054 2.302 0.124 
48 4 0.680 1.043 0.286 
49 1 0.742 1.067 0.243 
50 3 

 
1.019 

 
0.172 

 
0.228 
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Grade 5 Language Arts Item Parameters  
 

 
Item 

 
Strand 

 
             a 

 
                b 

 
                 c 

  

1 4 0.520 -0.541 0.073 
2 3 0.662 0.373 0.179 
3 3 0.656 -0.176 0.156 
4 4 0.870 1.463 0.259 
5 3 0.781 0.001 0.227 
6 4 1.033 1.083 0.256 
7 4 0.871 1.012 0.154 
8 4 0.845 0.449 0.296 
9 3 0.342 -0.696 0.018 
10 3 0.378 2.632 0.119 
11 3 1.308 0.912 0.202 
12 3 1.123 0.354 0.293 
13 3 0.294 0.230 0.040 
14 3 0.123 1.798 0.031 
15 3 0.608 1.118 0.207 
16 3 0.708 0.015 0.379 
17 3 1.044 -0.041 0.349 
18 3 0.958 0.688 0.193 
19 1 0.731 1.001 0.221 
20 2 0.977 0.218 0.176 
21 2 0.579 -0.240 0.131 
22 1 0.660 0.030 0.383 
23 1 0.999 0.102 0.200 
24 2 0.900 -0.117 0.226 
25 2 0.945 -0.391 0.171 
26 2 0.890 -0.193 0.173 
27 2 0.796 1.337 0.202 
28 2 0.477 -0.549 0.012 
29 2 1.253 0.129 0.190 
30 2 0.912 0.006 0.247 
31 2 0.646 0.596 0.262 
32 2 0.684 1.733 0.170 
33 2 1.616 -0.104 0.159 
34 2 0.322 0.448 0.025 
35 2 1.089 -0.618 0.226 
36 2 0.355 -0.595 0.030 
37 2 0.511 1.201 0.203 
38 2 0.420 0.709 0.080 
39 4 0.307 -0.293 0.073 
40 2 0.636 0.631 0.117 
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(continued).   
 

 
Item 

 
Strand 

 
              a 

 
                 b 

 
                 c 

 

 
41 2 0.574 0.608 0.124 
42 2 0.713 0.929 0.236 
43 3 0.886 0.997 0.235 
44 4 0.569 2.012 0.289 
45 4 1.109 2.522 0.256 
46 1 1.496 -0.326 0.205 
47 2 0.054 2.302 0.124 
48 4 0.680 1.043 0.286 
49 1 0.742 1.067 0.243 
50 3 

 
1.019 

 
0.172 

 
0.228 
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Grade 6 Language Arts Item Parameters  
 

 
Item 

 

 
Strand 

 
             a 

 
                    b 

 
               c 

 
1 1 0.988 0.619 0.135 
2 1 0.774 0.733 0.255 
3 2 0.840 -0.476 0.149 
4 1 0.984 1.084 0.203 
5 1 1.043 0.600 0.153 
6 2 1.095 1.553 0.254 
7 2 0.829 0.689 0.198 
8 2 0.891 1.420 0.202 
9 2 0.323 1.290 0.126 
10 2 0.713 -0.951 0.019 
11 3 0.650 0.528 0.189 
12 3 0.870 1.552 0.256 
13 4 0.922 0.889 0.220 
14 3 1.123 0.687 0.183 
15 4 0.637 0.392 0.156 
16 3 1.066 1.788 0.236 
17 4 0.975 0.501 0.297 
18 4 0.837 0.081 0.167 
19 3 1.014 -0.078 0.214 
20 3 0.804 0.077 0.161 
21 4 0.706 1.556 0.210 
22 3 0.633 -0.673 0.013 
23 3 0.568 -0.488 0.168 
24 3 0.678 1.012 0.347 
25 2 0.394 2.552 0.069 
26 2 1.059 0.941 0.139 
27 4 0.787 0.459 0.328 
28 4 0.869 1.116 0.283 
29 2 0.295 2.065 0.030 
30 4 0.857 0.707 0.240 
31 3 0.543 0.071 0.021 
32 1 0.342 -0.629 0.032 
33 1 1.026 0.200 0.311 
34 3 0.373 1.164 0.197 
35 3 1.053 -0.555 0.169 
36 1 0.256 1.494 0.063 
37 2 0.722 1.605 0.183 
38 2 0.221 -0.085 0.044 
39 2 0.828 -0.241 0.145 
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(continued).   
 

 
Item 

 

 
Strand 

 
             a 

 
                    b 

 
                c 

     
40 2 0.772 1.029 0.118 
41 3 0.902 2.310 0.163 
42 3 0.747 -0.176 0.235 
43 2 1.457 2.160 0.111 
44 2 0.897 0.884 0.182 
45 2 0.929 1.297 0.202 
46 2 0.518 0.996 0.150 
47 2 0.267 2.987 0.078 
48 4 0.898 1.095 0.256 
49 3 0.389 -0.665 0.019 
50 4 0.517 1.535 0.205 
51 2 0.631 2.392 0.198 
52 3 0.747 -0.559 0.055 
53 4 0.871 0.809 0.247 
54 4 0.947 1.885 0.209 
55 4 0.852 1.586 0.215 
56 2 0.682 1.563 0.181 
57 2 0.243 0.562 0.042 
58 2 0.514 -1.583 0.030 
59 4 0.671 0.473 0.173 
60 1 

 
0.573 

 
-2.727 

 
0.048 
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APPENDIX D 

2011 MATHEMATICS IRT ITEM LEVEL INFORMATION 

Grade 3 Mathematics Item Parameters 
 

 
Item 

 
Strand 

 
   a 

 
       b 

 
     c 

 

 
1 1 0.702 -1.898 0.034 
2 1 0.731 -1.134 0.091 
3 1 0.430 -0.747 0.042 
4 1 0.387 0.833 0.148 
5 1 0.605 -2.356 0.031 
6 1 0.800 -0.737 0.133 
7 1 0.714 -1.977 0.047 
8 1 0.595 -0.074 0.086 
9 1 0.581 -0.869 0.197 
10 1 0.580 -2.494 0.036 
11 1 0.909 0.450 0.142 
12 1 1.358 0.112 0.168 
13 2 0.534 1.269 0.325 
14 2 0.525 1.579 0.234 
15 2 0.690 0.634 0.219 
16 3 0.568 0.408 0.170 
17 3 0.653 0.258 0.283 
18 4 0.561 -2.329 0.031 
19 5 0.610 -0.870 0.027 
20 5 1.340 0.357 0.164 
21 3 0.627 0.283 0.172 
22 3 0.527 0.045 0.242 
23 4 0.849 -0.118 0.085 
24 4 0.650 -1.517 0.033 
25 4 0.415 -0.322 0.628 
26 5 1.245 0.203 0.194 
27 1 1.116 1.172 0.254 
28 1 0.684 -1.560 0.051 
29 2 0.786 -1.671 0.043 
30 5 1.007 -0.324 0.205 
31 1 1.146 0.317 0.189 
32 1 0.852 0.409 0.245 
33 2 1.062 0.293 0.200 
34 4 0.820 -0.550 0.128 
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(continued).   
 

 
Item 

 

 
Strand 

 
               a 

 
                     b 

 
                c 

 
35 4 0.500 -2.471 0.031 
36 2 0.832 0.527 0.184 
37 3 0.643 -0.552 0.235 
38 4 0.479 -2.062 0.030 
39 5 0.895 0.410 0.282 
40 5 1.209 0.241 0.231 
41 1 0.850 -0.274 0.268 
42 2 0.696 1.051 0.244 
43 3 0.487 0.368 0.274 
44 5 1.093 -0.659 0.175 
45 3 

 
0.615 

 
-0.511 

 
0.196 
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Grade 4 Mathematics Item Parameters  
 

 
Item 

 

 
Strand 

 
               a 

 
                    b 

 
               c 

 
1 1 0.455 -0.164 0.253 
2 1 0.796 -1.075 0.065 
3 1 0.520 -1.622 0.040 
4 2 0.768 -1.607 0.033 
5 1 0.937 0.478 0.312 
6 1 0.593 0.417 0.320 
7 1 1.188 1.323 0.231 
8 2 1.002 -0.672 0.184 
9 3 0.883 -0.878 0.162 
10 4 0.715 0.830 0.229 
11 5 1.528 1.029 0.192 
12 4 0.341 -0.732 0.303 
13 4 0.629 -1.562 0.084 
14 5 1.011 0.776 0.255 
15 2 0.463 0.359 0.138 
16 1 1.118 0.077 0.350 
17 1 1.603 0.039 0.127 
18 2 1.490 0.709 0.218 
19 5 0.881 -1.368 0.194 
20 5 1.428 0.475 0.169 
21 1 1.147 0.642 0.080 
22 3 0.211 0.266 0.052 
23 4 0.792 0.593 0.138 
24 5 0.539 0.131 0.067 
25 1 1.016 0.957 0.268 
26 3 0.743 0.617 0.267 
27 2 0.696 -0.250 0.188 
28 4 1.561 0.742 0.161 
29 1 1.027 -0.498 0.192 
30 3 0.938 -0.778 0.315 
31 3 0.634 -1.802 0.096 
32 1 1.012 0.128 0.170 
33 1 0.808 0.315 0.198 
34 2 1.486 -0.369 0.221 
35 4 1.072 -0.217 0.135 
36 1 0.443 1.815 0.221 
37 5 1.109 -1.499 0.039 
38 5 0.693 -0.406 0.228 
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(continued).   
 

 
Item 

 

 
Strand 

 
               a 

 
                     b 

 
               c 

 
39 3 0.833 -0.059 0.266 
40 4 1.079 0.539 0.185 
41 4 0.833 0.479 0.408 
42 1 0.882 -1.295 0.052 
43 3 0.700 -0.046 0.244 
44 1 0.889 -0.105 0.125 
45 2 

 
0.975 

 
-0.268 

 
0.062 
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Grade 5 Mathematics Item Parameters  
 

 
Item 

 

 
Strand 

 
              a 

 
                     b 

 
               c 

 
1 3 0.274 1.833 0.020 
2 4 0.760 1.220 0.308 
3 1 1.248 0.080 0.167 
4 1 0.903 0.974 0.317 
5 2 0.480 0.584 0.184 
6 2 0.562 0.205 0.195 
7 1 1.098 0.570 0.244 
8 3 0.722 -0.476 0.094 
9 2 0.899 -0.082 0.113 
10 3 0.741 0.308 0.297 
11 3 0.866 -0.680 0.203 
12 5 0.819 0.121 0.232 
13 3 0.730 -1.335 0.022 
14 4 1.202 0.441 0.174 
15 5 1.135 0.867 0.185 
16 4 1.131 0.794 0.275 
17 1 0.781 0.349 0.199 
18 1 1.345 1.080 0.044 
19 5 0.674 -1.595 0.051 
20 1 1.482 0.771 0.118 
21 2 1.194 -0.730 0.236 
22 2 0.419 -0.430 0.169 
23 3 0.792 -1.308 0.104 
24 3 0.486 -0.147 0.206 
25 1 1.005 0.074 0.216 
26 4 0.576 -2.673 0.040 
27 1 0.806 1.154 0.179 
28 1 1.298 1.147 0.289 
29 2 0.983 -0.209 0.208 
30 4 0.588 -0.879 0.167 
31 5 1.032 0.955 0.156 
32 4 1.375 1.238 0.231 
33 4 1.282 1.025 0.245 
34 1 1.028 -0.456 0.247 
35 2 1.051 -0.100 0.168 
36 4 0.814 0.114 0.213 
37 1 1.261 0.219 0.222 
38 3 0.602 -0.936 0.143 
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(continued).   
 

 
Item 

 

 
Strand 

 
              a 

 
                    b 

 
             c 

 
39 2 1.124 1.848 0.213 
40 5 0.526 2.507 0.216 
41 5 1.465 2.348 0.197 
42 4 0.623 -0.300 0.248 
43 1 0.767 0.055 0.134 
44 3 0.900 1.688 0.078 
45 1 0.509 -0.784 0.165 
46 3 0.894 -0.612 0.237 
47 1 1.031 -0.242 0.217 
48 1 0.804 0.476 0.152 
49 5 0.928 -1.385 0.087 
50 5 

 
1.298 

 
0.311 

 
0.174 
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Grade 6 Mathematics Item Parameters  
 

 
Item 

 

 
Strand 

 
              a 

 
                    b 

 
               c 

 
1 4 1.302 0.533 0.201 
2 1 0.916 1.292 0.203 
3 1 0.714 0.232 0.354 
4 1 0.616 -0.236 0.111 
5 1 1.154 0.639 0.247 
6 1 0.859 0.638 0.291 
7 1 0.814 0.118 0.179 
8 3 0.889 0.922 0.166 
9 2 0.795 -0.961 0.082 
10 2 1.001 1.008 0.223 
11 2 0.778 1.470 0.344 
12 5 1.016 0.758 0.211 
13 5 0.691 0.385 0.128 
14 5 0.756 -0.354 0.122 
15 2 0.871 0.910 0.155 
16 2 0.643 0.918 0.200 
17 4 0.999 0.988 0.248 
18 5 0.511 -1.606 0.024 
19 2 0.854 0.869 0.201 
20 3 0.993 0.430 0.302 
21 3 0.789 -0.399 0.186 
22 5 0.958 -1.219 0.050 
23 1 1.256 1.022 0.384 
24 1 1.114 1.078 0.238 
25 1 0.548 0.716 0.147 
26 1 0.960 0.862 0.129 
27 2 1.302 -0.410 0.196 
28 3 0.486 -2.663 0.292 
29 4 1.172 0.868 0.135 
30 5 0.724 -0.463 0.105 
31 1 0.848 0.825 0.216 
32 1 0.667 -0.546 0.041 
33 2 0.895 -0.230 0.186 
34 3 0.787 0.181 0.104 
35 3 0.734 -1.187 0.364 
36 4 0.723 1.633 0.282 
37 1 0.830 0.656 0.176 
38 4 1.213 -0.026 0.291 
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(continued).   
 

 
Item 

 

 
Strand 

 
               a 

 
                     b 

 
               c 

 
39 1 0.941 0.297 0.199 
40 4 1.286 0.927 0.090 
41 5 0.332 -0.627 0.027 
42 5 0.742 -1.470 0.016 
43 2 1.224 0.323 0.171 
44 3 0.875 -0.135 0.373 
45 3 1.210 -0.799 0.244 
46 3 0.897 -0.101 0.245 
47 1 1.271 0.339 0.250 
48 4 0.499 -1.547 0.096 
49 2 1.254 0.224 0.223 
50 4 

 
0.807 

 
-0.517 

 
0.027 
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Grade 3 Language Arts Scree Plot. 

Grade 4 Language Arts Scree Plot. 
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ANALYSIS SCREE PLOTS 

 

 



Grade 5 Language Arts Scree Plot

 

Grade 6 Language Arts Scree Plot

 

 

Grade 5 Language Arts Scree Plot. 

Grade 6 Language Arts Scree Plot. 
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Grade 3 Mathematics Scree Plot

 

Grade 4 Mathematics Scree Plot

 

 

Grade 3 Mathematics Scree Plot. 

Mathematics Scree Plot. 
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Grade 5 Mathematics Scree Plot

 

Grade 6 Mathematics Scree Plot

 

 

Grade 5 Mathematics Scree Plot. 

Grade 6 Mathematics Scree Plot. 
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APPENDIX F 

FINAL FACTOR LOADINGS AND COMMUNALITIES 

Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Language Arts, Grade 3 (N = 36,000) 
 

  
Factor 

 

 

 
Item 
 

 
1 

 
2 

 
Communality 

 
Q1 

 
0.44 

  
0.20 

Q2 0.41  0.17 
Q3 0.40  0.17 
Q7 0.49  0.24 
Q8 0.37  0.17 
Q9 0.43  0.18 
Q10 0.36  0.13 
Q11 0.37  0.14 
Q13 0.40  0.16 
Q16  0.70 0.51 
Q18 0.37  0.15 
Q20  0.38 0.16 
Q21 0.38  0.16 
Q22 0.39  0.16 
Q26 0.36  0.14 
Q28 0.36  0.15 
Q29  0.40 0.17 
Q30 0.38  0.17 
Q31 0.39  0.15 
Q33 0.36  0.17 
Q38 0.40  0.14 
Q39 0.44  0.20 
Q41 0.41  0.17 
Q43  0.36 0.13 
Q44  0.37 0.15 
Q47 0.45  0.21 
Q49 0.41  0.17 
Q50 0.39  0.16 

 

 

. 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Language Arts, Grade 4 (N = 36,000) 
 

 
Item 
 

 
Factor 1 

 
Communality 

 
Q1 

 
0.53 

 
0.28 

Q2 0.42 0.18 
Q3 0.43 0.19 
Q5 0.41 0.17 
Q9 0.43 0.18 
Q10 0.40 0.16 
Q11 0.38 0.15 
Q12 0.39 0.15 
Q14 0.43 0.18 
Q15 0.40 0.16 
Q16 0.43 0.19 
Q17 0.40 0.16 
Q18 0.37 0.14 
Q25 0.42 0.17 
Q27 0.41 0.17 
Q31 0.41 0.17 
Q34 0.44 0.20 
Q43 0.37 0.14 
Q46 0.55 0.31 
Q50 0.45 0.20 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Language Arts, Grade 5 (N = 36,000) 
 

 
Item 
 

 
Factor 1 

 
Communality 

 
Q3 

 
0.35 

 
0.13 

Q5 0.36 0.13 
Q6 0.33 0.13 
Q7 0.38 0.14 
Q11 0.45 0.20 
Q12 0.41 0.17 
Q17 0.39 0.15 
Q18 0.40 0.16 
Q20 0.44 0.20 
Q23 0.43 0.19 
Q24 0.40 0.16 
Q25 0.44 0.19 
Q26 0.41 0.17 
Q29 0.50 0.25 
Q30 0.40 0.16 
Q33 0.56 0.32 
Q35 0.45 0.21 
Q37 0.42 0.18 
Q40 0.36 0.13 
Q42 0.36 0.13 
Q50 0.41 0.17 
Q55 0.38 0.14 
Q59 0.46 0.21 
Q60 0.42 0.17 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Language Arts, Grade 6 (N = 36,000) 
 

  
Factor 

 

 
Item 
 

1 2 Communality 

 
Q1 

 
0.41 

  
0.21 

Q3 0.41  0.17 
Q5 0.42  0.21 
Q6  0.42 0.18 
Q10 0.46  0.22 
Q13 0.35  0.15 
Q14 0.41  0.20 
Q16  0.42 0.18 
Q18 0.37  0.16 
Q19 0.44  0.19 
Q20 0.38  0.15 
Q22 0.41  0.17 
Q26 0.37  0.19 
Q27 0.37  0.15 
Q28  0.36 0.15 
Q33 0.42  0.18 
Q35 0.49  0.24 
Q39 0.43  0.18 
Q41  0.50 0.27 
Q42 0.37  0.14 
Q43  0.53 0.29 
Q48  0.36 0.15 
Q52 0.41  0.17 
Q55  0.40 0.16 
Q58 0.39  0.17 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Mathematics, Grade 3 (N = 36,000) 
 

 
Item 
 

 
Factor 1 

 
Communality 

 
Q1 

 
0.36 

 
0.13 

Q2 0.39 0.15 
Q6 0.41 0.17 
Q7 0.36 0.13 
Q11 0.43 0.19 
Q12 0.54 0.29 
Q19 0.37 0.14 
Q20 0.53 0.29 
Q23 0.46 0.21 
Q24 0.36 0.13 
Q26 0.51 0.26 
Q27 0.39 0.15 
Q28 0.38 0.14 
Q29 0.40 0.16 
Q30 0.45 0.20 
Q31 0.49 0.24 
Q32 0.38 0.15 
Q33 0.46 0.21 
Q34 0.42 0.18 
Q36 0.40 0.16 
Q39 0.37 0.14 
Q40 0.47 0.22 
Q41 0.39 0.15 
Q44 0.49 0.23 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Mathematics, Grade 4 (N = 36,000) 
 

 
Item 
 

 
Factor 1 

 
Communality 

 
Q2 

 
0.39 

 
0.15 

Q4 0.35 0.13 
Q8 0.43 0.18 
Q9 0.39 0.16 
Q11 0.44 0.19 
Q14 0.37 0.13 
Q17 0.56 0.32 
Q18 0.46 0.21 
Q20 0.49 0.24 
Q21 0.48 0.23 
Q23 0.36 0.13 
Q28 0.49 0.24 
Q29 0.43 0.19 
Q30 0.36 0.13 
Q32 0.44 0.19 
Q33 0.36 0.13 
Q34 0.51 0.26 
Q35 0.47 0.22 
Q37 0.44 0.19 
Q40 0.42 0.18 
Q42 0.40 0.16 
Q44 0.41 0.17 
Q45 0.45 0.21 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Mathematics, Grade 5 (N = 36,000) 
 

  
Factor 

 

 
Item 
 

 
1 

 
2 

 
Communality 

 
Q3 

 
0.47 

  
0.24 

Q7 0.36  0.17 
Q8 0.40  0.16 
Q9 0.42  0.19 
Q11 0.41  0.17 
Q13 0.40  0.16 
Q14 0.44  0.22 
Q15  0.39 0.20 
Q18  0.51 0.31 
Q19 0.37  0.14 
Q20  0.47 0.30 
Q21 0.50  0.25 
Q23 0.43  0.20 
Q25 0.42  0.18 
Q28  0.43 0.19 
Q29 0.44  0.20 
Q31  0.40 0.19 
Q32  0.44 0.21 
Q33  0.41 0.19 
Q34 0.45  0.21 
Q35 0.44  0.21 
Q36 0.35  0.13 
Q37 0.43  0.21 
Q39  0.47 0.23 
Q41  0.53 0.32 
Q43 0.39  0.16 
Q44  0.40 0.18 
Q46 0.41  0.16 
Q47 0.43  0.19 
Q49 0.47  0.23 
Q50 0.47  0.25 
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Final Factor loadings and communalities based on a principle components analysis 

with direct oblimin rotation - Mathematics, Grade 6 (N = 36,000) 
 

  
Factor 

 

 
Item 
 

1 2 Communality 

 
Q1 

 
0.45 

  
0.22 

Q2 0.43  0.20 
Q5 0.39  0.10 
Q8 0.40  0.17 
Q9 0.41  0.18 
Q10  -0.42 0.16 
Q12 0.41  0.16 
Q14  -0.35 0.14 
Q15 0.38  0.15 
Q17 0.36  0.14 
Q21  -0.39 0.16 
Q22  -0.48 0.23 
Q23 0.39  0.16 
Q24 0.42  0.18 
Q26 0.40  0.17 
Q27  -0.46 0.25 
Q29 0.45  0.22 
Q30  -0.39 0.16 
Q31 0.38  0.14 
Q32  -0.42 0.18 
Q35  -0.41 0.17 
Q36 0.37  0.19 
Q38  -0.40 0.19 
Q39 0.38  0.17 
Q40 0.51  0.26 
Q42  -0.44 0.20 
Q43 0.43  0.23 
Q45  -0.47 0.23 
Q47 0.41  0.19 
Q48  -0.41 0.19 
Q49 0.42  0.21 
Q50  -0.42 0.20 
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APPENDIX G 

IRT PARAMETERS FOR SIMULATED TESTS  

IRT Item Parameters Grade 3 Simulated Language Arts Test 
 

 
Item 

 

 
a 

 
        b 

 
c 

 
Item 01 0.594 -0.770 0.153 
Item 02 0.589 -0.637 0.198 
Item 03 0.685 0.041 0.245 
Item 04 0.976 -0.340 0.285 
Item 05 0.461 -1.494 0.136 
Item 06 0.665 -0.293 0.203 
Item 07 0.427 -0.483 0.118 
Item 08 0.518 -0.739 0.155 
Item 09 0.544 -0.443 0.171 
Item 10 0.658 2.228 0.232 
Item 11 0.503 0.097 0.102 
Item 12 0.572 0.644 0.335 
Item 13 0.686 0.313 0.256 
Item 14 0.518 -1.070 0.117 
Item 15 0.596 0.571 0.189 
Item 16 0.648 0.406 0.234 
Item 17 0.497 1.338 0.212 
Item 18 0.652 0.388 0.197 
Item 19 0.528 -0.476 0.138 
Item 20 0.615 0.541 0.208 
Item 21 0.514 -0.474 0.082 
Item 22 0.894 -0.024 0.303 
Item 23 0.668 -0.015 0.213 
Item 24 0.325 1.182 0.203 
Item 25 0.593 1.353 0.189 
Item 26 0.789 -1.168 0.223 
Item 27 0.559 -0.559 0.149 
Item 28 

 
0.547 

 
-0.498 

 
0.145 
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IRT Item Parameters Grade 4 Simulated Language Arts Test 
 

 
Item 

 

 
a 

 
        b 

 
c 

 
Item 01 1.138 0.000 0.249 
Item 02 0.577 -0.958 0.079 
Item 03 0.629 -0.929 0.107 
Item 04 0.930 0.715 0.271 
Item 05 0.775 0.346 0.247 
Item 06 0.529 -0.493 0.129 
Item 07 0.542 0.087 0.178 
Item 08 0.603 -1.058 0.194 
Item 09 0.712 0.484 0.181 
Item 10 0.828 0.811 0.233 
Item 11 0.676 0.118 0.196 
Item 12 0.588 -0.307 0.203 
Item 13 0.462 0.068 0.097 
Item 14 0.549 -0.638 0.087 
Item 15 0.675 0.092 0.247 
Item 16 0.601 0.281 0.166 
Item 17 0.792 0.535 0.192 
Item 18 0.653 0.692 0.227 
Item 19 1.156 -0.287 0.222 
Item 20 

 
0.709 

 
-0.046 

 
0.189 
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IRT Item Parameters Grade 5 Simulated Language Arts Test 
 

 
Item 

 

 
a 

 
       b 

 
c 

 
Item 01 0.524 0.029 0.212 
Item 02 0.562 0.025 0.242 
Item 03 0.728 0.875 0.244 
Item 04 0.605 0.838 0.149 
Item 05 0.945 0.727 0.197 
Item 06 0.812 0.281 0.292 
Item 07 0.690 -0.180 0.307 
Item 08 0.631 0.493 0.166 
Item 09 0.738 0.187 0.190 
Item 10 0.687 0.041 0.190 
Item 11 0.618 -0.147 0.214 
Item 12 0.643 -0.429 0.133 
Item 13 0.649 -0.057 0.211 
Item 14 0.911 0.074 0.188 
Item 15 0.617 -0.123 0.208 
Item 16 1.110 -0.090 0.160 
Item 17 0.754 -0.582 0.193 
Item 18 0.789 0.649 0.200 
Item 19 0.530 0.384 0.161 
Item 20 0.493 -0.452 0.159 
Item 21 0.702 0.467 0.207 
Item 22 0.539 -0.868 0.151 
Item 23 0.658 -0.432 0.100 
Item 24 

 
0.706 

 
0.375 

 
0.206 
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IRT Item Parameters Grade 6 Simulated Language Arts Test 
 

 
Item 

 

 
a 

 
            b 

 
c 

 
Item 01 0.673 0.327 0.120 
Item 02 0.553 -0.529 0.164 
Item 03 0.728 0.364 0.155 
Item 04 0.643 1.042 0.204 
Item 05 0.502 -0.836 0.064 
Item 06 0.629 0.549 0.212 
Item 07 0.737 0.393 0.172 
Item 08 0.704 1.437 0.240 
Item 09 0.618 0.041 0.212 
Item 10 0.671 -0.232 0.208 
Item 11 0.549 -0.043 0.172 
Item 12 0.473 -0.347 0.143 
Item 13 0.752 0.760 0.166 
Item 14 0.472 -0.011 0.262 
Item 15 0.632 0.798 0.289 
Item 16 0.724 0.064 0.324 
Item 17 0.696 -0.717 0.131 
Item 18 0.548 -0.460 0.112 
Item 19 0.598 1.858 0.156 
Item 20 0.510 -0.286 0.252 
Item 21 0.985 1.743 0.115 
Item 22 0.594 0.781 0.247 
Item 23 0.523 -0.553 0.083 
Item 24 0.542 1.275 0.215 
Item 25 

 
0.415 

 
-0.787 

 
0.218 
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IRT Item Parameters Grade 3 Simulated Mathematics Test 
 

 
Item 

 

 
a 

 
   b 

 
             c 

 
Item 01 0.547 -1.607 0.132 
Item 02 0.595 -0.935 0.199 
Item 03 0.600 -0.946 0.126 
Item 04 0.550 -1.702 0.122 
Item 05 0.675 0.064 0.159 
Item 06 1.005 -0.255 0.165 
Item 07 0.494 -0.728 0.129 
Item 08 0.929 -0.112 0.132 
Item 09 0.623 -0.441 0.061 
Item 10 0.490 -1.389 0.084 
Item 11 0.934 -0.140 0.199 
Item 12 0.810 0.598 0.254 
Item 13 0.561 -1.267 0.152 
Item 14 0.643 -1.391 0.141 
Item 15 0.711 -0.631 0.186 
Item 16 0.893 -0.056 0.203 
Item 17 0.638 0.018 0.258 
Item 18 0.768 -0.103 0.197 
Item 19 0.622 -0.720 0.152 
Item 20 0.565 -0.049 0.132 
Item 21 0.639 -0.017 0.281 
Item 22 0.873 -0.128 0.244 
Item 23 0.619 -0.559 0.260 
Item 24 

 
0.794 

 
-0.907 

 
0.154 

 

 

 

 

 

 

 

 

 



 

 

109

IRT Item Parameters Grade 4 Simulated Mathematics Test 
 

 
Item 

 

 
a 

 
         b 

 
    c 

 
Item 01 0.549 -0.924 0.123 
Item 02 0.511 -1.335 0.134 
Item 03 0.659 -0.786 0.159 
Item 04 0.601 -0.782 0.198 
Item 05 0.948 0.799 0.177 
Item 06 0.660 0.559 0.248 
Item 07 1.039 -0.064 0.130 
Item 08 0.975 0.515 0.217 
Item 09 0.969 0.366 0.187 
Item 10 0.803 0.521 0.104 
Item 11 0.494 0.334 0.117 
Item 12 1.008 0.561 0.160 
Item 13 0.637 -0.688 0.138 
Item 14 0.585 -0.912 0.272 
Item 15 0.642 -0.087 0.138 
Item 16 0.545 0.225 0.212 
Item 17 0.949 -0.498 0.197 
Item 18 0.700 -0.312 0.126 
Item 19 0.756 -1.329 0.105 
Item 20 0.692 0.379 0.181 
Item 21 0.581 -1.193 0.092 
Item 22 0.605 -0.089 0.159 
Item 23 

 
0.648 

 
-0.275 

 
0.103 
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IRT Item Parameters Grade 5 Simulated Mathematics Test 
 

 
Item 

 

 
a 

 
b 

 
   c 

 
Item 01 0.913 0.023 0.192 
Item 02 0.760 0.372 0.239 
Item 03 0.512 -0.459 0.101 
Item 04 0.651 -0.103 0.137 
Item 05 0.598 -0.745 0.187 
Item 06 0.572 -0.850 0.169 
Item 07 0.820 0.234 0.163 
Item 08 0.853 0.663 0.198 
Item 09 0.976 0.820 0.053 
Item 10 0.498 -1.176 0.152 
Item 11 1.015 0.529 0.106 
Item 12 0.857 -0.726 0.225 
Item 13 0.604 -0.916 0.210 
Item 14 0.672 -0.095 0.191 
Item 15 0.904 0.850 0.293 
Item 16 0.673 -0.356 0.186 
Item 17 0.762 0.734 0.171 
Item 18 0.934 0.935 0.228 
Item 19 0.893 0.756 0.246 
Item 20 0.704 -0.542 0.230 
Item 21 0.719 -0.190 0.161 
Item 22 0.581 0.042 0.223 
Item 23 0.857 0.100 0.225 
Item 24 0.862 1.456 0.225 
Item 25 1.136 1.859 0.200 
Item 26 0.521 -0.131 0.107 
Item 27 0.655 1.321 0.084 
Item 28 0.600 -0.741 0.202 
Item 29 0.707 -0.330 0.215 
Item 30 0.655 -1.202 0.119 
Item 31 

 
0.902 

 
0.149 

 
0.163 
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IRT Item Parameters Grade 6 Simulated Mathematics Test 
 

 
Item 

 

 
a 

 
       b 

 
c 

 
Item 01 0.925 0.397 0.216 
Item 02 0.657 1.031 0.208 
Item 03 0.784 0.425 0.238 
Item 04 0.619 0.655 0.161 
Item 05 0.579 -0.767 0.129 
Item 06 0.747 0.782 0.241 
Item 07 0.684 0.568 0.210 
Item 08 0.524 -0.228 0.184 
Item 09 0.627 0.716 0.163 
Item 10 0.667 0.726 0.238 
Item 11 0.542 -0.450 0.173 
Item 12 0.674 -1.029 0.102 
Item 13 0.889 0.814 0.390 
Item 14 0.769 0.818 0.234 
Item 15 0.675 0.662 0.142 
Item 16 0.897 -0.424 0.202 
Item 17 0.807 0.666 0.136 
Item 18 0.489 -0.504 0.097 
Item 19 0.585 0.680 0.230 
Item 20 0.462 -0.495 0.068 
Item 21 0.476 -1.262 0.325 
Item 22 0.455 1.346 0.272 
Item 23 0.838 -0.095 0.297 
Item 24 0.660 0.153 0.199 
Item 25 0.875 0.692 0.087 
Item 26 0.539 -1.082 0.134 
Item 27 0.830 0.189 0.168 
Item 28 0.795 -0.832 0.225 
Item 29 0.814 0.154 0.242 
Item 30 0.347 -1.251 0.148 
Item 31 0.859 0.118 0.224 
Item 32 

 
0.582 

 
-0.464 

 
0.055 
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APPENDIX H 

RAW-TO-THETA-TO-SCALE SCORE CONVERSION TABLES 

Grade 3 Simulated Language Arts Raw-to-Theta-to-Scale Score Conversions 
 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 109 
1 -4.000 109 
2 -4.000 109 
3 -4.000 109 
4 -4.000 109 
5 -4.000 109 
6 -4.000 109 
7 -2.947 120 
8 -2.345 126 
9 -1.922 130 
10 -1.588 133 
11 -1.304 136 
12 -1.054 139 
13 -0.825 141 
14 -0.610 143 
15 -0.405 145 
16 -0.205 147 
17 -0.006 149 
18 0.195 151 
19 0.402 153 
20 0.619 155 
21 0.850 158 
22 1.103 160 
23 1.386 163 
24 1.716 166 
25 2.119 170 
26 2.656 176 
27 3.522 185 
28 4.000 

 
189 

 

 

 

 



 

 

113

Grade 4 Simulated Language Arts Raw-to-Theta-to-Scale Score Conversions 
 

 
Raw Score 

 
Theta Estimate 

 
Scale Score 

 

 
0 -4.000 109 
1 -4.000 109 
2 -4.000 109 
3 -4.000 109 
4 -4.000 109 
5 -2.436 125 
6 -1.776 131 
7 -1.330 136 
8 -0.984 139 
9 -0.693 142 
10 -0.436 145 
11 -0.197 147 
12 0.032 149 
13 0.261 152 
14 0.497 154 
15 0.749 156 
16 1.030 159 
17 1.362 163 
18 1.796 167 
19 2.492 174 
20 4.000 

 
189 
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Grade 5 Simulated Language Arts Raw-to-Theta-to-Scale Score Conversions 
 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 109 
1 -4.000 109 
2 -4.000 109 
3 -4.000 109 
4 -4.000 109 
5 -3.816 111 
6 -2.363 125 
7 -1.760 131 
8 -1.359 135 
9 -1.048 138 
10 -0.788 141 
11 -0.559 143 
12 -0.350 145 
13 -0.153 147 
14  0.037 149 
15  0.225 151 
16  0.416 153 
17  0.613 155 
18  0.823 157 
19  1.052 159 
20  1.315 162 
21  1.632 165 
22  2.054 169 
23  2.740 176 
24  4.000 

 
189 
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Grade 6 Simulated Language Arts Raw-to-Theta-to-Scale Score Conversions 

 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 108 
1 -4.000 108 
2 -4.000 108 
3 -4.000 108 
4 -4.000 108 
5 -4.000 108 
6 -2.671 121 
7 -1.989 128 
8 -1.527 133 
9 -1.165 136 
10 -0.859 139 
11 -0.588 142 
12 -0.339 145 
13 -0.105 147 
14  0.120 149 
15   0.340 151 
16  0.561 154 
17  0.784 156 
18  1.016 158 
19  1.260 161 
20  1.524 163 
21  1.821 166 
22  2.172 170 
23  2.629 174 
24  3.365 182 
25  4.000 

 
188 
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Grade 3 Simulated Mathematics Raw-to-Theta-to-Scale Score Conversions 
 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 109 
1 -4.000 109 
2 -4.000 109 
3 -4.000 109 
4 -4.000 109 
5 -3.676 112 
6 -2.817 121 
7 -2.306 126 
8 -1.929 130 
9 -1.623 133 
10 -1.361 136 
11 -1.127 138 
12 -0.913 140 
13 -0.711 142 
14 -0.518 144 
15 -0.329 146 
16 -0.139 148 
17  0.056 150 
18  0.262 152 
19  0.486 154 
20  0.742 157 
21  1.051 160 
22  1.463 164 
23  2.134 171 
24  4.000 

 
189 
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Grade 4 Simulated Mathematics Raw-to-Theta-to-Scale Score Conversions 
 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 111 
1 -4.000 111 
2 -4.000 111 
3 -4.000 111 
4 -4.000 111 
5 -2.791 123 
6 -2.162 129 
7 -1.735 133 
8 -1.400 137 
9 -1.118 139 
10 -0.868 142 
11 -0.640 144 
12 -0.428 146 
13 -0.225 148 
14 -0.027 150 
15  0.170 152 
16  0.370 154 
17  0.579 156 
18  0.804 159 
19  1.056 161 
20  1.359 164 
21  1.760 168 
22  2.417 175 
23  4.000 

 
191 
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Grade 5 Simulated Mathematics Raw-to-Theta-to-Scale Score Conversions 
 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 110 
1 -4.000 110 
2 -4.000 110 
3 -4.000 110 
4 -4.000 110 
5 -4.000 110 
6 -4.000 110 
7 -2.705 123 
8 -2.120 129 
9 -1.724 133 
10 -1.416 136 
11 -1.160 139 
12 -0.936 141 
13 -0.735 143 
14 -0.550 145 
15 -0.378 146 
16 -0.214 148 
17 -0.056 150 
18  0.098 151 
19  0.249 153 
20  0.400 154 
21  0.553 156 
22  0.708 157 
23  0.870 159 
24  1.041 161 
25  1.225 162 
26  1.429 164 
27  1.661 167 
28  1.939 169 
29  2.304 173 
30  2.890 179 
31  4.000 

 
190 
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Grade 6 Simulated Mathematics Raw-to-Theta-to-Scale Score Conversions 

 

 
Raw Score 

 

 
Theta Estimate 

 
Scale Score 

 
0 -4.000 110 
1 -4.000 110 
2 -4.000 110 
3 -4.000 110 
4 -4.000 110 
5 -4.000 110 
6 -4.000 110 
7 -3.551 114 
8 -2.604 123 
9 -2.069 129 
10 -1.687 133 
11 -1.384 136 
12 -1.130 138 
13 -0.908 140 
14 -0.707 142 
15 -0.523 144 
16 -0.351 146 
17 -0.187 148 
18 -0.030 149 
19  0.125 151 
20  0.277 152 
21  0.430 154 
22  0.585 155 
23  0.744 157 
24  0.911 159 
25  1.089 160 
26  1.282 162 
27  1.500 165 
28  1.754 167 
29  2.068 170 
30  2.497 174 
31  3.216 182 
32  4.000 

 
190 
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APPENDIX I 

PROPOSED LANGUAGE ARTS STRUCTURAL EQUATION MODEL 
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Proficiency 
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Grade 6 RLA 
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APPENDIX J 

PROPOSED MATHEMATICS STRUCTURAL EQUATION MODEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grade 5 Math 
Proficiency 

Item 31 
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Item 30 

Item 29 

Item 3 

Item 2 

Item 1 

Item 23 

Item 21 
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Item 3 

Item 2 

Item 1 

Grade 4 Math 
Proficiency 

Item 24 

Item 22 
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. 

Item 3 

Item 2 

Item 1 

Grade 3 Math 
Proficiency 

Grade 6 Math 
Proficiency 

Item 32 

Item 31 

Item 30 

Item 3 

Item 2 

Item 1 

. 

. 
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APPENDIX K 

Mplus
© CODE FOR LANGUAGE ARTS AND MATHEMATICS 

STRUCTURAL EQUATION MODELS 

TITLE:   
 MPlus Code for Estimating Language Arts Structural Equation Model 
 
DATA: 
 FILE IS RLA1SEM.csv; 
 
VARIABLE: 
 NAMES ARE 
 G3Item1-G3Item28 

G4Item1-G4Item20 
G5Item1-G5Item24 
G6Item1-G6Item25 
G6SS; 

 
 USEVARIABLES ARE 
 G3Item1-G3Item28 

G4Item1-G4Item20 
G5Item1-G5Item24 
G6Item1-G6Item25; 
 
CATEGORICAL ARE 

 G3Item1-G3Item28 
G4Item1-G4Item20 
G5Item1-G5Item24 
G6Item1-G6Item25; 

 
MODEL: 
 Grade3 BY G3Item1-G3Item28*; Grade3@1; 
 Grade4 BY G4Item1-G4Item20*; Grade4@1; 
 Grade5 BY G5Item1-G5Item24*; Grade5@1; 
 Grade6 BY G6Item1-G6Item25*; Grade6@1; 
 
 Grade6 ON Grade3 Grade4 Grade5; 
 
OUTPUT: 
 TECH1 TECH4; 
 
PLOT: 
 TYPE=PLOT3; 
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TITLE:   
 MPlus Code for Estimating Mathematics Structural Equation Model 
 
DATA: 
 FILE IS Math1SEM.csv; 
 
VARIABLE: 
 NAMES ARE 
 G3Item1-G3Item24 

G4Item1-G4Item23 
G5Item1-G5Item31 
G6Item1-G6Item32 
G6SS; 

 
 USEVARIABLES ARE 
 G3Item1-G3Item24 

G4Item1-G4Item23 
G5Item1-G5Item31 
G6Item1-G6Item32; 
 
CATEGORICAL ARE 

 G3Item1-G3Item24 
G4Item1-G4Item23 
G5Item1-G5Item31 
G6Item1-G6Item32; 

 
MODEL: 
 Grade3 BY G3Item1-G3Item24*; Grade3@1; 
 Grade4 BY G4Item1-G4Item23*; Grade4@1; 
 Grade5 BY G5Item1-G5Item31*; Grade5@1; 
 Grade6 BY G6Item1-G6Item32*; Grade6@1; 
 
 Grade6 ON Grade3 Grade4 Grade5; 
 
OUTPUT: 
 TECH1 TECH4; 
 
PLOT: 
 TYPE=PLOT3; 
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