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ABSTRACT 

The Mississippi-Alabama barrier islands restrict exchange between the 

Mississippi Sound and Mississippi Bight in the northern Gulf of Mexico.  The islands 

also act as storm breaks for tropical cyclones, so their continued existence sustains 

marine ecosystems and protects coastal communities.  However, the chain has undergone 

extensive segmentation, erosion, and westward migration in the past two hundred years.  

The islands are now more susceptible to further erosion (Pendleton et al., 2013; Morton, 

2007).  Additional reduction in island subaerial land extent would alter circulation in the 

Mississippi Sound and Bight.   

Consequently, this study targeted the two most vulnerable barrier islands in the 

chain for removal in an ocean model to understand how circulation might change in an 

island loss scenario.  A multiplatform data analysis assessed patterns in existing 

circulation over a four year period.  Circulation varied both seasonally and on short time 

scales ranging from hours to days.  Additionally, storm-induced changes to circulation 

were examined for the hurricane seasons of the same four year period to gauge how non-

periodic events impacted the Mississippi Sound and Bight.  Circulation response to 

tropical cyclones that entered the Gulf of Mexico varied storm to storm.  Prior to 

initiating the island removal scenarios, validation of the oceanic and atmospheric models 

was completed to deduce model skill using the observational data.   

Finally, the response of Mississippi Sound and Bight circulation to island loss was 

examined under time-invariant and time-variant conditions.  Analysis of model output 

found island removal weakened currents in existing island passes but created new water 

exchange pathways where the islands had been removed.  The new pathways increased 
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salinity within the Mississippi Sound by as much as 2 near the removed islands.  

However, the island chosen for removal dictated the extent of circulation changes and 

which half of the Sound saw larger salinity increases.  Seasonality played a role in how 

the Mississippi Sound and Bight responded to island loss.  Results suggest permanent 

changes to circulation which would impact the resiliency of the remaining barrier islands 

and substantially shift distributions of hydrographic properties.  These changes would 

have ecological and economic consequences throughout the Mississippi Sound. 
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CHAPTER I - INTRODUCTION 

The northern Gulf of Mexico hosts a number of high-value industries.  As of 

August 2018, there were more than 1,400 active oil and gas leases in the Gulf of Mexico, 

and several hundred million cargo tons are transported through the ports at Plaquemines, 

Terrebonne, New Orleans, Gulfport, Biloxi, Pascagoula, and Mobile annually (BSEE 

2018; USACE, 2016).  Shrimping vessels in Louisiana, Mississippi, and Alabama caught 

more than 100 million pounds of shrimp in the last five years, and Mississippi reported a 

quarter-million sacks of oysters harvested in the same period (MDMR 2018; NOAA 

Fisheries, 2018).  Historic sites also draw tourists, and multiple military branches have 

bases in the area.  Economic growth in the region is tightly aligned with these industries, 

but the coastline, barrier islands, and coastal water bodies are highly dynamic.  Rising sea 

levels, subsidence, marsh disappearance, and barrier island evolution mean the northern 

Gulf of Mexico undergoes measurable changes in terms of sediment resources, island 

resiliency, and the region’s industries.  Additionally, the northern Gulf is susceptible to 

hurricanes, oil spills, hypoxic conditions, and harmful algal blooms.   

Understanding the physics that govern circulation in the northern Gulf of Mexico 

and potential sub-decadal and decadal changes to that circulation can be vital to keeping 

coastal communities safe and industries in operation.  To that end, this study endeavors to 

pair observations with a series of model simulations from a coastal model to constrain 

patterns of variability in circulation of the northern Gulf of Mexico, both for the region as 

it is now and under barrier island removal scenarios.    

This dissertation is organized as follows.  Chapter I gives specifics on the layout 

and history of the northern Gulf of Mexico and explores the physical forcing mechanisms 
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that mediate circulation in the region.  Results from previous studies are also considered, 

as are efforts by agencies to bolster the barrier islands.  Chapter II uses data from a 

collection of observing platforms to ascertain variability in circulation caused by cyclical 

forcing to gain an overview of circulation patterns across a 12-month cycle.  In contrast, 

Chapter III investigates isolated forcing events in the form of tropical storm and 

hurricane impacts on the study region since storms are punctuated events.  Chapter IV 

highlights a coastal model used to mimic dynamics in the study region and how well that 

model captures circulation variability measured by the observational data.  Chapter IV 

also examines changes in circulation brought about by island removal in model 

simulations.  Chapter V finishes the study with overall conclusions and a note on 

potential future work.  

1.1 Study Area 

Stretching from the bird foot delta of the Mississippi River to Cape San Blas, 

Florida, the Mississippi Bight encompasses the coastal ocean east of Louisiana and south 

of Mississippi, Alabama, and a portion of the Florida panhandle.  Figure 1.1 shows the 

layout of the region.  Two groups of barrier islands border the Bight along the northern 

Gulf of Mexico coastline.  To the west lie the Chandeleur Islands, Chandeleur Sound, and 

the present Mississippi River bird foot delta.  To the north, the Mississippi-Alabama 

barrier islands run mostly parallel to the coast.  The Bight extends south of these islands.  

Much of the northern Mississippi Bight has depths shallower than 100 m, but the De Soto 

Canyon cuts through the southern portion, and depths in that area exceed 1,000 m.   

Six islands comprise the Mississippi-Alabama barrier chain.  Lying northeast of 

the St. Bernard Delta, Cat Island is the westernmost island.  West and East Ship Island, 
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Horn Island, Petit Bois Island, and Dauphin Island lie east of Cat Island.  Smaller islands, 

such as Round Island and Deer Island, fall much closer to the coast, and Pelican Island, 

south of Dauphin, sees an intermittent connection with Dauphin.  Notably, a small 

dumping site for dredging spoils exists west of Petit Bois Island on the western side of 

the Pascagoula shipping channel; it surfaced above the water line in the 1980s.  Sand 

Island (Western Dauphin Island) exists within the chain, but it was an unintentional 

consequence of dredging that has since developed its own ecosystem.  Its sediment 

accretion and erosional patterns now make it part of the chain.   

 

Figure 1.1 Map of the Mississippi Bight and Mississippi Sound 

The Mississippi Bight extends from the Mississippi River bird foot delta, Louisiana, in the west to Cape San Blas, Florida.  Waterbody 

names are given in blue while red text indicates islands.  The insert in the lower right zooms in on the Mississippi Sound to highlight 

the shapes and locations of the Mississippi-Alabama barrier islands (Cat, West and East Ship, Horn, Petit Bois, and Dauphin Island).  

Additionally, major shipping channels are marked in green.  Coordinates for the channels were taken from the National Oceanic and 

Atmospheric Administration’s Raster Nautical Charts, available at nauticalcharts.noaa.gov. 
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Landward of the islands is the shallow coastal lagoon of the Mississippi Sound.  

Freshwater input to the Mississippi Sound comes from Lake Borgne to the northwest and 

Mobile Bay to the northeast as well as a collection of smaller rivers to the north.  Some of 

the Mississippi River outflow also turns northeast and enters both the Mississippi Bight 

and Sound.  

The Sound exchanges water with the Bight through gaps in the Mississippi-

Alabama chain called passes.  Several of these passes were artificially deepened to create 

shipping channels in the mid-nineteenth century, and regular dredging maintains depths 

to allow larger vessels access to the ports (Morton, 2007; Kjerfve, 1983).  These channels 

include the Gulfport, Pascagoula, and Mobile shipping channels.  Another shipping 

channel extends from Biloxi. 

1.2 Barrier Island Formation and Evolution 

The origin of the northern Gulf of Mexico barrier islands can be traced to the 

Holocene epoch around 8,000 years ago (Otvos, 1981; Gal, 2018; Hollis, 2018).  

Louisiana barrier islands like the Chandeleurs evolved through a progradation of a 

previous river lobe of the Mississippi River called the St. Bernard delta.  Due to 

subsequent reworking, the Chandeleur chain is considered deltaic transgressive.  The 

majority of sediment supply comes from riverine input in the form of fine-grained silt and 

clay (Coleman et al., 1998).  Diminishing sediment supply, anthropogenic activity, and 

storm impacts have all contributed to island thinning and landward retreat.  This study, 

though, is primarily concerned with the Mississippi-Alabama barrier islands.  Unlike the 

Chandeleur chain, the Mississippi-Alabama barrier islands resulted from aggradation of 

material upwards from the seafloor (Otvos, 1970).  Grain sizes for the chain are larger 
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than the Chandeleur Islands, and sediment follows an east to west transport pathway.  

While more robust than the Chandeleur Islands, the Mississippi-Alabama barrier islands 

have also suffered net land loss. The islands’ role in Mississippi Sound and Bight 

circulation should be explored since the chain is undergoing change. 

Surveys and sediment cores give indications of how the islands evolved over the 

last several centuries and millennia, and the history of ports and maritime traffic in the 

area also means detailed nautical charts of various degrees of accuracy exist back to the 

late eighteenth century (Rosati and Stone, 2009; Otvos, 1970).  The longer geologic 

record suggests the chain used to be more extensive.  The chain as a whole ran largely 

uninterrupted from Mobile Bay to the St. Bernard delta (Otvos, 1981).  However, net 

subaerial land loss and volume reduction have affected every island.  Even accounting for 

cartographer error, subsequent nautical charts in the last two centuries show evidence of 

land loss (Morton, 2007). 

East and West Ship Island once formed a larger single island which has seen 

repeated storm breaching.  Likewise, Petit Bois Island made up the western extent of 

Dauphin Island.  Like Ship Island, hurricane breaches eventually separated the island into 

two barrier islands.  Indeed, tropical cyclone impacts in the northern Gulf of Mexico have 

occurred with some regularity over the last 2,500 years (Bregy et al., 2018).   

Lateral migration reworks the barrier island chain (Morton, 2007; Gal, 2018; 

Hollis, 2018).  An alongshore current moves primarily east to west in the northern Gulf 

of Mexico, so the Mississippi-Alabama barrier islands migrate westward with the littoral 

drift (Morton, 2007).  Cat Island serves as an exception; the presence of the St. Bernard 

delta to the southwest shelters the island and restricts westward translation.  Cypress 
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stumps east of the “T” bar suggest the island extended further east previously, but the 

controlled tidal flow as a result of the delta has helped to rework the island into its 

present shape (Otvos and Carter, 2013).   

Westward translation occurs in spurts with sediment eroding from the eastern tips 

of the islands and resettling on the western edges.  Sediment also fills in the passes 

between the islands as areas to the west become the new passes (Morton, 2007).  

However, an imbalance exists in this sediment redistribution.  Erosion of the eastern ends 

of the islands exceeds the rate of accretion on the western sides, so the islands lose area 

as they drift. 

Morton (2007) linked some of the sediment starvation to dredging of the shipping 

channels.  Dredging allows larger vessels to bring products to and from ports like 

Gulfport, Pascagoula, Biloxi, and Mobile.  Deeper passes interrupt sediment transport 

across the gaps between the islands (Twichell et al, 2013).  Dredging also removes a 

portion of the deposited sediment to offshore locations, so less autochthonous material is 

available to either be re-suspended or provide the foundation for the new western tips of 

the islands (Sallenger, et al., 2007; Morton, 2007).  While sustainment of the shipping 

channels is vital to maritime commerce, the dredged channels partially starve islands to 

the west. 

Vegetation change provides another indication the Mississippi-Alabama barriers 

have undergone change.  Comparisons of aerial photography in conjunction with ground 

surveys show a reduction in woody areas on Horn Island over the past seven decades (Jeter 

and Carter, 2016).  Petit Bois Island and East Ship Island saw a die-off of all slash pines 

following Hurricane Katrina in 2005 while Horn Island lost more than three-quarters of its 
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slash pine population (Otvos and Carter, 2008).  Woody habitats never represented a 

sizeable percentage of total vegetation on the islands; however, diminishment of their 

percentage of vegetated land denotes a shift in flora species dominance (Lucas and Carter, 

2013).  Shrubs and trees are components of a mature ecosystem, and the islands are 

becoming more and more marked by their lack of established vegetation.  This change 

affects how sediment is moved, captured, and retained during daily wind and wave action 

as well as by punctuated events such as storms. 

1.3 Mississippi Sound and Bight Circulation Drivers 

Multiple environmental parameters drive circulation in the northern Gulf of 

Mexico.  From a physical forcing standpoint, winds, riverine discharge, and tides 

modulate circulation patterns in the Mississippi Sound and Bight.  However, mesoscale 

eddies can also impact the southern portion of the Mississippi Bight. 

1.3.1 Tides 

Tidal ranges of less than 1 m across the Mississippi Sound make the region micro-

tidal, yet tides still produce a clear diurnal response (Eleuterius and Beaugez, 1979). 

Courtier’s criterion uses four tidal harmonic constituents to determine which regions have 

diurnal, semi-diurnal, or mixed tides (Courtier, 1938).  The criterion, known as the form 

number, F, is given in (Eq. 1.1). 

The ratio of the sum of the principal lunar diurnal constituent, O1, and the luni-solar 

diurnal constituent, K1, to the sum of the principal lunar semi-diurnal constituent, M2, and 

the principal solar semi-diurnal constituent, S2, yields the form number.  Values of 

F≤0.25 indicate semi-diurnal tides while F≥3 corresponds to diurnal tides.  F values 

𝐹 =
𝑂1+𝐾1

𝑀2+𝑆2
     (Eq. 1.1) 
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between 0.25 and 3 denote a mixture of semi-diurnal and diurnal tides.  Using amplitudes 

of O1=0.169 m, K1=0.162 m, M2=0.039 m, and S2=0.033 m from tide gage 8744117 in 

Biloxi, Mississippi, the location clearly has diurnal tides with F=4.60.  Diurnal tides 

dominate throughout the northern Gulf of Mexico.   

The three primary harmonic constituents are K1 with a period of 23.93 hours, O1 

with a period of 25.82 hours, and the principal solar diurnal constituent, P1, with a period 

of 24.07 hours.  The close timing of these main constituents makes separating the effects 

of tides from the effects of other phenomena with similar periods difficult. 

These phenomena include inertial periods and the land-sea breeze.  The Coriolis 

parameter, shown in (Eq. 1.2), increases with latitude, φ, towards the poles, and the 

inertial period for a given area is equal to 2π/f.  The angular velocity of the Earth, Ω, can 

be found by dividing 2π by the length of the sidereal day.  Since the Mississippi Bight 

and Sound extend from approximately 28.5°N to 30.5°N, inertial periods for the regions 

vary between 25.08 hours and 23.58 hours.  Likewise, differential heating and cooling of 

the land and water creates a land and sea breeze dynamic that is especially prominent in 

warmer months.  Additionally, a diurnal rotation of the winds matching the timing of the 

solar cycle can be observed, most notably at the beginning of spring and end of fall (Dai 

and Deser, 1999).  These forcing cycles occur on a roughly 24-hour time scale, so the 

three main tidal constituents, inertial oscillations, and wind dynamics all have nearly 

identical periods.   

Gravitational circulation has been observed in the island passes; currents at the 

surface tend to flow into the Mississippi Bight while bottom currents point into the 

𝑓 = 2𝛺𝑠𝑖𝑛𝜑     (Eq. 1.2) 
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Mississippi Sound (Kjerfve, 1983).  However, shifts in transport direction at the surface 

and at depth through the passes also reflect diurnal forcing from tides (Kjerfve, 1983).   

1.3.2 Rivers 

The Mississippi Sound receives freshwater from Mobile Bay and a host of smaller 

rivers.  While the majority of the Mississippi River outflow turns southwest along the 

Louisiana coast, part of the discharge exits east into the Mississippi Bight.  Some fraction 

of the Mississippi River discharge enters the Mississippi Sound, but the quantity is 

uncertain.   From the eastern side of the barrier chain, brackish water flows out from 

Mobile Bay and turns southwest in an alongshore current (Cipriani and Stone, 2001).  

Though lacking the high volume discharge of the Mississippi River and Mobile Bay, 

rivers such as the Pearl, Pascagoula, Jordan, and Biloxi among others contribute to the 

low salinity waters in the Sound. 

1.3.3 Winds 

Winds also play an important forcing role for nearshore environments.  The 

Northeast Trade Winds act as the dominant wind source.  Fall and winter see northerly 

and northeasterly winds while southeasterly winds characterize summer (Johnson, 2008; 

Chang and Oey, 2013).  Easterly, southwesterly, and westerly winds also occur in parts of 

the northern Gulf of Mexico, and on temporal scales of days to weeks, considerable 

variability in wind strength and direction occurs throughout the study region.  

Between October and April, roughly 20 to 30 fronts pass through the northern 

Gulf of Mexico; these fronts are driven by one of three atmospheric phenomena: the Gulf 

of Mexico cyclone, the Artic surge, or the mid-latitude cyclone (Stone et al., 2004).  

Frontal passage occurs on 3-to-7 day time scales (Keen, 2002; Rogers and Rohli, 1991; 
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Roberts et al., 1989).  The fronts can move parallel or perpendicular to the northern Gulf 

of Mexico coast, but frontal passages at acute angles to the coast occur more often.  

While these brief events will be largely averaged out in findings presented in Chapter II, 

they contribute to month to month variability seen over the course of a year. 

A land and sea breeze dynamic emerges from April to September with the cycle 

becoming more pronounced as the summer season progresses.  Winds originate offshore 

during the day producing the sea breeze while weaker magnitude winds pointing offshore 

take over at night for the land breeze (Hill et al., 2010).  Since the Louisiana and 

Mississippi–Alabama coasts run nearly perpendicular to one another, an offset in 

direction and timing of the land to sea breeze occurs throughout the study area. 

1.4 Previous Studies 

Hurricane Katrina carried sand off the Chandeleur Islands and shifted Dauphin 

Island northward (Sallenger, et al., 2007).  Land and ship surveys by Fritz et al. (2007) 

established the surge height as well as the erosional extent of the islands after the storm.  

Figure 1.2 highlights a longer history by showing topological changes in the barrier 

islands from 1847 until 2006 (Morton, 2007).    

Cat Island, shown in Figure 1.2a, resembles a horizontal “T”.  In 1848, the 

crossbar had an almost equal extent to the north and south.  The southern portion of the 

crossbar suffered ongoing erosion over subsequent decades.  The entire barrier shows a 

consecutively smaller perimeter, and a series of inland cuts are present in the latest 

survey.  Aerial photographs and ship surveys noted a breach in the crossbar of the “T” 

after Katrina (Fritz, et al., 2007).   
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Ship Island underwent the most extreme change; on average, the island has lost 

approximately half a million cubic meters of sediment per year since 2004 (Eisemann et 

al., 2018).  Figure 1.2b shows the separation, reconnection, and re-separation of East and 

West Ship Islands.  In the post-Katrina survey, East Ship Island was all but wiped out.  

While Ship Island appears as East and West Ship Islands in the default island 

configuration model runs in this study; the breach between the islands was closed by 

engineering efforts in 2019 (Perez, 2019).  This study was completed in the midst of the 

restoration process, so the model domain does not account for bathymetric and 

topographic changes in the different stages of the restoration.      

As for Horn Island, seen in Figure 1.2c, the eastern edge experienced ongoing 

erosion over the 157-year period reducing the lateral extent of the barrier.  Westward 

migration in conjunction with antecedent geology has given the island a slight “elbow” 

shape (Gal, 2018).   

Documents from the US Army Corps of Engineers and the United States 

Geological Survey (USGS) illustrate the intermittent connection between Petit Bois and 

Dauphin Islands.  In Figure 1.2d, the 1848 record sees the islands connected while a 

substantial pass exists between them by 1917.  Later surveys show the eastern edge of 

Petit Bois being cut back and curling landward.  The southern coastline has also retreated 

landward.   

Dauphin Island, Figure 1.2e, experienced thinning of its northeast corner and a 

shifting and intermediate connection to Pelican and Sand Islands on its southeastern side.  

The width of the island has also thinned considerably, and hurricane Katrina breached the 
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center of the island.  The breach coincided with a paleochannel in the subsurface (Hollis, 

2018).  Fritz et al. (2007) found a landward migration of the whole island during Katrina. 

 

Figure 1.2 Map of the subaerial extent of the Mississippi-Alabama barrier islands from 

1847 through 2006 

Reproduced and consolidated from Morton (2007). 

 

1.5 Barrier Island Restoration Efforts 

Ongoing initiatives to bolster the Mississippi-Alabama barrier islands against 

future storms include the US Army Corps of Engineers-led Mississippi Coastal 

Improvements Program (MsCIP) restoration of Ship Island and the Round Island Marsh 
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Restoration project overseen jointly by the Mississippi Department of Environmental 

Quality and the Mississippi Department of Marine Resources (DOI&USGS, 2016; 

MDEQ, 2016).  As for Dauphin Island, the State of Alabama has been cooperating with 

the US Geological Survey and the US Army Corps of Engineers on the Alabama Barrier 

Island Restoration Assessment to collect data on the region south of Mobile Bay and 

direct any restoration efforts (Conzelmann et al., 2018).  Multiple US Geological Survey 

reports have indicated the vulnerability not only of the Mississippi-Alabama barrier 

island chain but the Mississippi and Alabama coasts as well (Pendleton et al., 2010; 

Twichell et al., 2013).  Incorporation of scientific data into policy decisions is crucial for 

successful restoration and management projects (Dolan and Wallace, 2012).  This study 

addresses the circulation changes brought about by island loss compared to 

climatological and tropical cyclone-influenced circulation.   

While the disappearance of a single island in isolation is unlikely, the removal 

scenario requires relatively few modifications to an existing model, so observed changes 

can be more reliably attributed to the island’s absence.  As such, results can serve as a 

baseline for future scenarios such as westward island chain translation, pass enlargement, 

or breaches to islands.  Three hypotheses played into the design of the island loss 

experiments.  First, larger shifts in circulation patterns were expected near the removed 

islands.  The two islands chosen had smaller subaerial extent and histories of erosion, so 

strong, study area-wide circulation changes were not anticipated.  Second, since the 

islands chosen for removal lie on opposite ends of the Mississippi-Alabama barrier island 

chain, circulation changes brought about by one island loss scenario should not resemble 

circulation changes caused by removal of the other island.  Third, removal of the larger 
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island should produce higher magnitude and wider spread modifications to circulation.  

As Chapter IV details, island removal results only partially support these hypotheses. 
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CHAPTER II – VARIABILITY OF MISSISSIPPI SOUND AND BIGHT 

CIRCULATION 

In order to evaluate circulation changes caused by the removal of a barrier island, 

observed variability in circulation must first be characterized.  To that end, data from a 

collection of observational platforms were examined to extract patterns, and their 

associated variances, in circulation in the Mississippi Bight and Sound on time scales 

ranging from days to seasons.  Chapter II examines variability in patterned circulation, 

i.e. seasonality, while Chapter III looks at tropical storms and hurricanes to isolate 

changes in circulation driven by non-cyclical forcing. 

2.1 Data 

2.1.1 High Frequency Radar 

High frequency radar (HFR) data provide near-real time surface current maps 

over a wide study region with only a limited number of stations.  In 1955, D. D. Crombie 

noted patterned interference in military radar and developed a system to retrieve surface 

current information from high frequency radar (Paduan and Graber, 1997).  In the 

following decades, commercially-available HFRs became regular components of 

observing networks.  The Central Gulf of Mexico Ocean Observing System (CenGOOS) 

uses 5 and 25 MHz direction-finding SeaSonde HF radars produced by Coastal Ocean 

Dynamics Radar (CODAR) Ocean Sensors (COS) (Howden, et al., 2011).  The systems 

pair a transmit antenna with a set of receive antennas consisting of a monopole and cross-

loop dipoles.  Radio waves emitted by the transmit antenna backscatter off surface 

gravity waves.  The strongest reflected signal occurs at one-half the transmitted 

wavelength, known as Bragg scattering.  Once retrieved, the deep-water dispersion 
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relation is used to subtract out the phase speed leaving the Doppler-shifted radial current 

speed towards and away from the site.  In order to generate a two-dimensional surface 

current map, radial currents must be combined from multiple sites. 

The CenGOOS HFR network has five sites.  The two 25 MHz sites are located at 

the Silver Slipper Casino (Waveland, Mississippi) and the Pass Christian Yacht Club 

(Pass Christian, Mississippi).  Installation of the stations followed the January 2016 

opening of the Bonnet Carré Spillway.  The higher frequency enables surface current 

estimates closer to shore with 1 km resolution, but the HFRs have limited range.  Figure 

2.1 shows the locations of the 25 MHz sites and grid points to which surface currents can 

be mapped.  The higher frequency also tends to result in coverage loss during pulses of 

freshwater since the SeaSonde antennas perform poorly in low salinity and calm sea state 

conditions.  Hence, the grid shown in Figure 2.1 represents an ideal grid; data does not 

exist for every grid point at all times.   

 

Figure 2.1  Map of 25 MHz HFR coverage domain  

The locations of the Silver Slipper Casino, Mississippi, (SISL) and Pass Christian Yacht Club, Mississippi, (PCYC) sites are marked 

by green triangles.  Grid points to which surface currents can be mapped are shown by red dots, and the locations of Cat Island, the 

Saint Bernard Delta, and Bay Saint Louis have been marked for reference within the study region. 
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The three 5 MHz sites are located on Singing River Island (Pascagoula, 

Mississippi), Gulf State Park (Orange Beach, Alabama), and Henderson Beach State Park 

(Destin, Florida).  The sites were put back into operation in May 2010 after the 

Deepwater Horizon Oil Spill.  These HF radars are long range meaning spatial resolution 

has a coarser 6 km grid (Figure 2.2), but the coverage region can extend several hundred 

kilometers offshore.  Additionally, since the 5 MHz sites cover the Mississippi Bight 

rather than the Mississippi Sound, freshwater input causes little change in coverage 

though other factors do cause time-varying coverage, i.e. radar performance, ionospheric 

interference, etc.  

 

Figure 2.2 Map of 5 MHz HFR coverage domain   

The locations of the Singing River Island, Mississippi, (SGRV), Gulf Shores (Orange Beach) State Park, Alabama, (OBSP), and 

Henderson Beach (Destin) State Park, Florida, (HBSP), sites are marked by green triangles.  Grid points to which surface currents can 

be mapped are shown by red dots.  Contours for the 20, 50, 200, 500, and 1000 m isobaths give indications on depth ranges 

throughout the study region. 
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Time-varying coverage and equipment takedown left sizeable gaps in the surface 

current record, so the length of record for the HFRs and the other datasets differ.  Surface 

current data from 8 years of HFR coverage were used for the 5 MHz network.  

Monitoring began in May 2010, and multiple month gaps in coverage left several years 

patchy.  Consequently, the longer record helped to provide fuller coverage for each 

month.  In contrast, the 25 MHz sites started in February 2016, so 4 years of data were 

not available at the time of this study. 

2.1.2 Buoy Measurements 

Moored buoys operated by the National Data Buoy Center (NDBC) and the 

University of Southern Mississippi as well as a coastal station operated by the NDBC 

offer point source measurements for a variety of atmospheric and oceanic parameters.  

Atmospheric parameters include air temperature, atmospheric pressure, and wind speed 

and direction.  Standard atmospheric data also includes wave height, average and 

dominant wave period, and water temperature.  This study used data recorded at three 

locations.  The first was NDBC buoy 42040 located in the southwest Mississippi Bight at 

29.18°N, 88.21°W.  The second was buoy 42067, operated by the University of Southern 

Mississippi, at 30.0423°N, 88.6473°W.  Located south of Horn Island on the 20 m 

isobath, the buoy was recovered and not redeployed in 2017, so data availability ceased 

in July 2017.  The third site was the NDBC Coastal-Marine Automated Network (C-

MAN) station FMOA located by Fort Morgan in Alabama, at 30.228°N, 88.024°W.  The 

pressure sensor on FMOA was not in operation for 2017.  Red stars indicate the positions 

of the three buoys in Figure 2.3. 
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Figure 2.3 Locations of observing platforms   

Red stars show the positions of buoy 42067 (top left), buoy 42040 (top right), and the FMOA C-MAN station (top right).  The twelve 

USGS-MDMR hydrological stations that collect bottom temperature and salinity data are depicted with blue diamonds while yellow 

squares mark the locations of USGS stream gages.  Magenta circles show the tide gages used in this study. 

 

2.1.3 Hydrological Stations 

The US Geological Survey and the Mississippi Department of Marine Resources 

jointly operate 14 hydrological stations in the western Mississippi Sound (MDMR, 2009).  

Twelve of the 14 stations record bottom water column temperature and conductivity data.  

Station numbers and names are given in (Table 2.1), and the location of the stations are 

marked by blue diamonds in Figure 2.3.  The Gibbs Seawater Toolbox was used to 

convert conductivity to salinity (McDougall and Barker, 2011). 

Gridded temperature and salinity fields were generated for the western Sound to 

examine temporally varying horizontal gradients for the years 2014 to 2017, a period 

chosen since all 12 sites had coincident data.  Data gridding was accomplished using a 
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cubic interpolation with Delaunay triangulation for spatial interpolation after monthly 

means were calculated (Watson, 1992). 

Table 2.1 USGS-MDMR Hydrological Stations 

Station Description Latitude Longitude 

1 Pascagoula River 30.3678°N 88.5631°W 

2 Round Island 30.3136°N 88.5833°W 

3 West Pascagoula River 30.3827°N 88.6084°W 

4 Graveline Bayou 30.3629°N 88.6947°W 

5 Biloxi Bay at Point Cadet Harbor 30.3883°N 88.8572°W 

6 East Ship Island 30.2575°N 88.8708°W 

7 Central Mississippi Sound 30.3200°N 88.9758°W 

8 Back Bay of Biloxi 30.4156°N 88.9758°W 

9 Shell Bank Lighthouse 30.2414°N 89.2489°W 

10 St. Joseph Lighthouse 30.1844°N 89.4261°W 

11 East Pearl River 30.1947°N 89.5342°W 

14 Mississippi Sound near Grand Pass 30.1228°N 89.2503°W 

 

2.1.4 Tide Gages 

The Center for Operational Oceanographic Products and Services (CO-OPS) 

hosts water level predictions and observations on the National Oceanic and Atmospheric 

Administration’s (NOAA’s) Tides and Currents website.  Tidal predictions result from 

the harmonic analysis of tidal constituents.   

Three tide gage locations were selected for each of the four states that bound the 

Mississippi Bight: Louisiana, Mississippi, Alabama, and the Florida panhandle.  This 

subset yielded water level variation across the northern Gulf coast within the study 
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region.  Station information is given in (Table 2.2), and locations of the gages are marked 

by magenta circles in Figure 2.3. 

Table 2.2 NOAA Tide Gages 

Station Description Latitude Longitude 

8729840 Pensacola, FL 30.4033°N 87.2100°W 

8729210 Panama City Beach, FL 30.2133°N 85.8783°W 

8729108 Panama City, FL 30.1517°N 85.6667°W 

8732828 Weeks Bay, AL 30.4167°N 87.8250°W 

8735180 Dauphin Island, AL 30.2500°N 88.0750°W 

8737048 Mobile State Docks, AL 30.7050°N 88.0400°W 

8741041 Dock E, Port of Pascagoula, MS 30.3483°N 88.5050°W 

8741533 Pascagoula NOAA Lab, MS 30.3683°N 88.5633°W 

8747437 Bay Waveland Yacht Club, MS 30.3250°N 89.3250°W 

8760721 Pilottown, LA 29.1783°N 89.2583°W 

8760922 Pilots Station East, SW Pass, LA 28.9317°N 89.4067°W 

8761305 Shell Beach, LA 29.8683°N 89.6733°W 

 

2.1.5 Stream Gages 

The US Geological Survey operates stream gages across the Unites States.  

Station locations for this study were chosen based on major riverine input to the 

Mississippi Sound, the distance of a gage from the Sound, and whether the station data 

record reported discharge.  Five USGS stations were used for stream estimates for the 

Pascagoula, Biloxi, Wolf, Pearl, and Alabama Rivers.  Additionally, stations on the Gulf 

Intracoastal Waterway and Tangipahoa River were selected to represent the Mississippi 

River and Lake Ponchartrain respectively.  Stream gage station information is provided in 

(Table 2.3).  Yellow squares indicate the locations of the stream gages in Figure 2.3. 
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Table 2.3 USGS Stream Gages 

Station Description Latitude Longitude 

02479000 Pascagoula River (Merrill, MS) 30.9781°N 88.7269°W 

02481000 Biloxi River (Wortham, MS) 30.5586°N 89.1219°W 

02481510 Wolf River (Landon, MS) 30.4836°N 89.2744°W 

02489500 Pearl River (Bogalusa, LA) 30.7931°N 89.8208°W 

07381331 Gulf Intracoastal Waterway (Houma, LA) 29.5981°N 90.7100°W 

07375500 Tangipahoa River (Robert, LA) 30.5064°N 90.3617°W 

02428400 Alabama River (Claiborne, AL) 30.6150°N 87.5506°W 

 

2.2 Methods 

2.2.1 Quality Control 

Generating a resultant velocity vector field from the HF radars can be 

challenging, and a number of uncertainties are introduced prior to the final measurement.  

Radial components from multiple HFRs rarely align orthogonally.  As such, several 

algorithms have been designed to approximate alignment based on the proximity of the 

measurements and the angle of alignment between the radial vectors.  The CODAR 

software suite has one option (Lipa and Barrick, 1983).  Another is an open source option 

from the radio operators working group (ROWG) (Kaplan, et al., 2007).  Radial products 

are temporally and spatially averaged to improve the signal-to-noise ratio.  Figure 2.4 

shows the average uncertainty in cm/s for each grid cell within the 5 MHz domain.  To be 

considered, grid points had to have data with uncertainties less than 5 cm/s at least 10% 

of the time.  In addition to averaging, consideration of the Geometric Dilution of 

Precision (GDOP) enables quantification of surface current uncertainty.  Figure 2.5 gives 

GDOP maps for the zonal (top plot) and meridional (bottom plot) components of velocity 
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at each grid point.  Considering both components, the central Mississippi Bight has the 

lowest GDOP values while grid points near the outer bounds of HFR coverage have the 

highest.  Surface current speeds exceeding 200 cm/s were removed as part of quality 

control.  For annual and seasonal averages, vectors with more than 5 cm/s uncertainty 

were excluded, and days with fewer than 22 hours of coverage were removed. 

 

Figure 2.4 Surface current uncertainty 

The colors of each square depict average uncertainty values for each 5 MHz grid cell that had coverage at least 10% of the length of 

the surface current time series. 

Uncertainty thresholds were raised to 20 cm/s, and days with fewer than 22 hours 

were included for the hurricane season analysis.  Tropical cyclone periods (storm 

generation to dissipation) rarely exceed two weeks, so the emphasis was placed on hourly 

surface current changes rather than climatological averages.  Currents speeds during such 

storm periods sometimes exceeded seasonally-averaged currents by an order of 

magnitude.  Increased velocity uncertainty does not consistently accompany higher 

current speeds.  However, larger velocity magnitudes are more forgiving of uncertainties, 

and the higher uncertainty thresholds provide more data for storm period analysis. 
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Figure 2.5 Geometric Dilution of Precision maps for 5 MHz high frequency radars 

Geometric Dilution of Precision (GDOP) values between 0 and 5 are shown for each grid point to which velocities are mapped.  U 

(zonal) GDOP values are displayed in the top plot; V (meridional) GDOP values are displayed in the bottom plot.  Locations of the 3 

high frequency radars are marked by green triangles. 

Unreliable measurements from the other data sources had been replaced with flag 

values, which are preset values well above or below expected ranges in the 

measurements.  Any values matching the flag values were replaced with NaN.  The 

Louisiana tide gages each had notations that data for those sites were preliminary, so 

value ranges across the time series were checked for outliers and gaps.  Several stations 

reported water levels more than 10 cm above predicted water levels persisting several 

weeks or months.  The cause for this is uncertain, but given this trend, analysis of these 
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stations will be reported but variability trends will not be based on Louisiana water 

levels. 

2.2.2 Time Averaging and Covariance Calculation 

For average HFR surface current vector maps, means of daily averages, for days 

with at least 22 hours of data, were taken at each grid point for every grid point 

containing at least 2 days of data.  Periods under consideration ranged from one day to 

seasonal, but averages presented in section 2.3 concentrate on monthly means to best 

capture the annual signal.  Covariance matrices were calculated for each grid point using 

zonal and meridional components of surface velocity, and eigenvalues and eigenvectors 

were found for each 2x2 covariance matrix.  The larger eigenvalue denoted the semi-

major axis, and eigenvectors were used to find the orientation of the semi-major and 

semi-minor axes.  Covariance ellipse plots were generated from these calculations. 

2.2.3 Power Spectra 

Many of the results presented in section 2.3 refer to monthly means and standard 

deviations from those means, but power spectral density analysis provided insights into 

shorter term dominant frequencies for each dataset used in this study.  Methodology for 

completing the fast Fourier transforms (FFTs) in MATLAB followed the process outlined 

by Frigo and Johnson (1998).  Exclusion of NaN values from the time series preceded 

power spectral density analysis as did removal of the mean, to pre-whiten data.  Possible 

linear trends were also removed before analysis.  The length of the fast Fourier transform 

was found by raising 2 to the logarithm base 2 of the temporal length of the time series 

plus 1.  The number of frequency bins were set to half the length of the FFT, and the 

frequency vector was obtained by dividing the product of the Nyquist frequency and the 
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number of frequencies by the number of frequency bins.  A discrete Fourier transform 

(DFT) of the pre-whitened, de-trended data transformed the data from the time domain to 

the frequency domain.  Power spectral densities resulted from multiplying the DFT by its 

complex conjugate and dividing that product by the length of the FFT.  Symmetric 

portions of the power spectral density were removed to avoid repetitive information.  The 

process highlighted key frequencies of variability. 

2.3 Results 

2.3.1 Mississippi Bight Circulation 

Results for Mississippi Bight circulation came primarily from HFR-derived 

surface currents.  From 2010 to 2017, 5 MHz HFR data produced surface velocity 

estimates at 1,361 coordinate pairs, and 1,126 of those pairs met the criteria for averaging 

with 2 to 1,239 days contributing to each average.  Without the 22 hours per day 

requirement, the number of data points available for averaging ranged from 2 to more 

than 3,000 depending on the grid point.  Grid points falling between 29.4°N to 30.1°N 

and 88.5°W to 86.5°W tended to have more than 500 days of available data while grid 

points closer to the boundaries of HFR coverage had less than 200 days.  Given the time-

varying coverage, having the most consistent coverage in the central study area where 

overlapping radial vectors occur more frequently makes sense.   

Average current speeds for every season fell short of 6 cm/s and monthly 

averages were less than 10 cm/s.  Average speeds at individual grid points tended to be 

under 15 cm/s with a few exceptions along the northern and southern bounds of the HFR 

domain.  Given the fewer days included in the averaging process for these areas, this 

result is not surprising.  
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Two sets of average currents speeds are presented in Figures 2.6: means and 

standard deviations from days with 22 hours or more of coverage and means and standard 

deviations found using all data.  Mean speeds were calculated from vector-averaged 

velocities, and the difference in average values results from the inclusion of different 

data.  The disagreement between the statistics of the two demonstrates how procedures 

can affect results.  The 22 hours of coverage threshold attempts to avoid biasing by 

removing data for days that do not adequately cover a full tidal cycle.  Monthly means 

using the 22 hour criteria favor winter (January and February) and fall (September, 

October, and November) months for higher current speeds.  However, July does have the 

largest mean current speeds in both sets of averages.  Looking at the entire dataset, the 

summer months (June, July, and August) have the highest current magnitudes followed 

by the spring months (March, April, and May).  The two averages agree on July having 

the highest current speeds.  Monthly averages disagree beyond that, but the differences 

are not statistically significant given the magnitudes of the standard deviations. 

The means taken using the 22 hours per day criterion will be used as 

representatives of monthly patterns since they include data from all portions of the tidal 

cycle.  It would, however, be remiss not to note that the lower spring and summer current 

speeds may result from inconsistent coverage during those months.  More years of data 

may present different statistics. 

Changes in flow direction indicate a shift in flow regimes throughout the calendar 

year.  Long-range HFR coverage begins south of the Mississippi-Alabama barrier islands, 

so surface current data is often sparse in that region.  From the coverage that does exist, a 

westward longshore current is present during the winter and early spring months, but the 
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current reverses direction and points east during summer months before transitioning 

back to westward in the fall.  Consistent outflow can be seen from Mobile Bay as well as 

bays in Florida between the OBSP and HBSP sites.  Finally, though a dominant flow 

direction is sometimes present in the monthly climatologies, mean surface current 

direction and speed vary throughout the Mississippi Bight. 

 

Figure 2.6 Mean monthly surface current speeds 

Cyan squares give the average monthly surface current magnitude across the Mississippi Bight with standard deviations given by blue 

lines.  Data used in these averages came from days with at least 22 hours of coverage.  Red diamonds give the average monthly 

current speed using all available data, and magenta lines show standard deviations from those means. 

Surface current monthly climatologies sometimes seem to contain eddies.  The 

climatologies only include 8 years of data, so monthly averages can show an eddy that 

was present in the region during one year but not during the others.  Likewise, flow in the 

same month from one year to the next can be quite different.  Averaging the different 

flow patterns can produce patches of randomly oriented surface currents in a 

climatological current field.  To give a few examples, an apparent cyclonic eddy appears 

in the northeast corner of the domain during February and March.  Likewise, an 

anticyclonic feature can be seen in the northwest domain in May.  Surface currents point 

in seemingly random directions in the easternmost portion of the HFR domain in the 
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same month.  Finally, a cyclonic feature appears in October in the south-central 

Mississippi Bight.  Mesoscale eddies do enter the Mississippi Bight on occasion.  Eddies 

would alter circulation in the Mississippi Bight, but a longer climatology would average 

out their effects.  The monthly climatologies give a reasonable picture of how circulation 

evolves throughout a year, but unusual features, like eddies, will not be discussed as they 

may not be present year to year. 

Mean January surface currents mostly stay under 15 cm/s.  In Figure 2.7, a 

channel of southwest flow can be seen south of the OBSP site; the flow moves south then 

turns eastward further south in the Bight.  Covariance ellipses shown in Figure 2.8 have a 

median semi-major axis of 110 cm/s and a median semi-minor axis of 39 cm/s.  Though 

some ellipses at the edge of HFR coverage have semi-major axes larger than 800 cm/s, 

the majority stay under 200 cm/s.  The ellipses become more circular in the central Bight. 

Mean current speeds in February stay largely below 10 cm/s.  Southward flow 

extends south of the OBSP site.  In Figure 2.9, regions of southeastward currents can be 

seen south of Dauphin Island as well as in the southeastern Mississippi Bight.  Figure 

2.10 depicts covariance ellipses for February.  Semi-major axes orient along bathymetric 

contours to about 30 m depths.  The median semi-major axis is 150 cm/s while the 

median semi-minor axis is 45 cm/s.  Ellipses are more rounded than in January. 

As in February, mean March surface currents stay under 10 cm/s across most of 

the domain, but westward flow occurs throughout the Mississippi Bight.  Figure 2.11 

shows currents point westward in the northern Bight, southwestward in the western 

Bight, and northwestward in the eastern Bight.  In Figure 2.12, the median semi-major 
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axis length is 124 cm/s, and the semi-minor axis length is 50 cm/s.  Covariance ellipses 

were more circular than the previous two months, especially in the western Bight. 

 

Figure 2.7 Mean surface currents for January 

Arrow direction indicates the direction of flow while arrow color indexes velocity magnitude in cm/s.  HF radar locations are marked 

in green.  Only one-quarter of the HFR grid points are plotted for visual clarity. 

 

Figure 2.8 Covariance ellipses for mean January currents 

Ellipses were calculated based on the covariance matrices for each grid point.  Units on the reference bar are cm2/s2 for area, but the 

semi-major and semi-minor axes have units of cm/s.  Angle depicts of tilt direction of the semi-major axis while eccentricity of ellipse 

shows the ratio of the semi-major axis to the semi-minor axis.  As with Figure 2.7, covariance ellipses are only shown for one-quarter 

of the grid. 
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Figure 2.9 Mean surface currents for February 

Same as Figure 2.7 but for February. 

 

Figure 2.10 Covariance ellipses for mean February currents 

Same setup as Figure 2.8. 
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Figure 2.11 Mean surface currents for March 

Same as Figure 2.7 but for March 

 

Figure 2.12 Covariance ellipses for mean March currents 

Same as Figure 2.8 but for March. 
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Surface currents in April stayed under 5 cm/s except along the northern and 

southern boundaries of the HFR coverage.  A channel of westward flow can be seen 

south of the Mississippi-Alabama barrier islands in Figure 2.13.  Currents point south 

from the OBSP site, and flow moves southwest over the De Soto Canyon.  The 

southeastern Bight is characterized by eastward and southward surface currents while the 

southwestern and south-central Bight see westward currents.  In Figure 2.14, covariance 

ellipse size and eccentricity resemble January covariance ellipses, but semi-major axes 

align with isobaths shallower than about 40 m.  Median lengths for the semi-major and 

semi-minor axes are 107 cm/s and 42 cm/s respectively. 

Mean current speeds in May ranged between 0 and 10 cm/s except for isolated 

grid points near the edge of HFR coverage.  Surface currents flow south from the 

entrance to Mobile Bay and west in the north-central and northeastern Bight in Figure 

2.15.  The southwest flow across De Soto Canyon that was present in April continues in 

May, but the southeastern Bight sees eastward currents.  In Figure 2.16, ellipse sizes 

decreased from April to May; the median semi-major and semi-minor axes fall to 96 cm/s 

and 41 cm/s respectively.  Some isobaths alignment can be seen near the coast, and 

covariance ellipses have high eccentricity there.  

Mean June currents depicted in Figure 2.17 stay under 10 cm/s.  Current 

directions range from southeastward to southward south of the Mississippi-Alabama 

barrier islands, northward in the southwestern Bight, and eastward in the eastern Bight.  

Semi-major axes on the covariance ellipses shown in Figure 2.18 run east-west, 

northwest-southeast, and north-south.  Median semi-major and semi-minor axes lengths 

decrease; they are 95 cm/s and 38 cm/s in June. 
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Figure 2.13 Mean surface currents for April 

Same as Figure 2.7 but for April. 

 

Figure 2.14 Covariance ellipses for mean April currents 

Same as Figure 2.8 but for April. 
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Figure 2.15 Mean surface currents for May 

Same as Figure 2.7 but for May. 

 

Figure 2.16 Covariance ellipses for mean May currents 

Same as Figure 2.8 but for May. 
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Figure 2.17 Mean surface currents for June 

Same as Figure 2.7 but for June 

 

Figure 2.18 Covariance ellipses for mean June currents 

Same as Figure 2.8 but for June. 
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Mean current speed increases in July with the majority of the domain falling 

between 0 and 15 cm/s, but isolated areas have speeds between 15 and 25 cm/s.  Figure 

2.19 shows a southeastward flow from the Mississippi-Alabama barrier islands, an 

eastward flow in the eastern Bight as well as in the southwestern Bight.  The median 

semi-major axis length increased to 113 cm/s from the June median value while the 

median semi-minor axis length decreased slightly to 36 cm/s.  Figure 2.20 shows 

covariance ellipses for July which oriented predominantly east-west and northwest-

southeast. 

August mean current speeds stay under 15 cm/s for most of the domain.  The 

southeastward surface flow south of the Mississippi-Alabama barrier islands that was 

present in both June and July remains during August (Figure 2.21).  Similar to July, 

currents in the southeast and southwest Mississippi Bight point eastward, but flow also 

moves to the east in the northeast Bight.  A channel of southward flow can be seen south 

of the OBSP site.  As in previous months, August covariance ellipse semi-major axes 

follow bathymetry contours in shallow water, but ellipses shown in Figure 2.22 align 

with some of the <100 m isobaths off the northern Florida shelf.  Median lengths for the 

semi-major and semi-minor axes are 102 cm/s and 32 cm/s.  Ellipse size increases 

dramatically in the south-central and southeastern Mississippi Bight.  

September mean surface current speeds stay mostly under 15 cm/s, and the 

majority of the HFR coverage area had westward currents in contrast to the eastward 

currents present during the summer months.  Figure 2.23 shows westward currents in the 

northwest Bight turning southward.  Semi-major axes of covariance ellipses in Figure 

2.24 orient east-west except for grid points over the Florida shelf where ellipses align 
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northwest-southeast and north-south.  Median semi-major and semi-minor axes are 121 

cm/s and 32 cm/s respectively.   

 

Figure 2.19 Mean surface currents for July 

Same as Figure 2.7 but for July. 

 

Figure 2.20 Covariance ellipses for mean July currents 

Same as Figure 2.8 but for July. 
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Figure 2.21 Mean surface currents for August 

Same as Figure 2.7 but for August. 

 

Figure 2.22 Covariance ellipses for mean August currents 

Same as Figure 2.8 but for August. 
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Figure 2.23 Mean surface currents for September 

Same as Figure 2.7 but for September. 

 

Figure 2.24 Covariance ellipses for mean September currents 

Same as Figure 2.8 but for September. 
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General westward flow occurs in October as well, and mean current speed range 

from 0 to 5 cm/s.  A channel of southwest flow appears in Figure 2.25 south of the OBSP 

site.  Flow moves west in the northern Bight and northwest in the eastern Bight.  Median 

semi-major and semi-minor axes for October are 161 cm/s and 36 cm/s, so October has 

the largest ellipses.  The ellipses also have high eccentricity.  Figure 2.26 shows the 

covariance ellipses which orient east-west across the study area. 

As in previous months, mean November surface current speeds stay under 15 

cm/s, and directionality largely points to the west.  Figure 2.27 shows southwest flow 

from Mobile Bay and south of the OBSP site.  Westward currents mark the central and 

southeastern Mississippi Bight, but southeastern currents appear in the western Bight.  

Flow moves south from bays in the Florida panhandle southwest of the HBSP site.  

November covariance ellipses mostly align west-east in Figure 2.28 with median semi-

major and semi-minor axis lengths of 118 cm/s and 26 cm/s. 

December mean surface current speeds fall between 0 and 15 cm/s, and a larger 

variety of current directions appears.  Figure 2.29 shows southward flowing currents from 

the OBSP site, eastward currents in the eastern Bight, westward currents in the northwest 

Bight, and southward currents from the Florida panhandle southwest of the HBSP site.  

Covariance ellipses in Figure 2.30 align east-west and have median semi-major and semi-

minor axes of length 116 cm/s and 33 cm/s respectively. Power spectra for different 

regions within the study domain all point to a 1 cycle per day (cpd) frequency for both 

zonal and meridional components of velocity; however, the power spectra are noisy.  

Small peaks at 2 cpd appear for the northwestern Bight, but the magnitudes of the peaks 

are an order of magnitude less than the 1 cpd peaks.  These results agree with the time 
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series analysis of surface current directions.  Velocity vectors rotate 360° over an 

approximately 24 hour period. 

 

Figure 2.25 Mean surface currents for October 

Same as Figure 2.7 but for October. 

 

Figure 2.26 Covariance ellipses for mean October currents 

Same as Figure 2.8 but for October. 
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Figure 2.27 Mean surface currents for November 

Same as Figure 2.7 but for November. 

 

Figure 2.28 Covariance ellipses for mean November currents 

Same as Figure 2.8 but for November. 
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Figure 2.29 Mean surface currents for December 

Same as Figure 2.7 but for December. 

 

Figure 2.30 Covariance ellipses for mean December currents 

Same as Figure 2.8 but for December. 
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Monthly mean values from the two buoys and the C-MAN station give insights 

into the near surface atmospheric conditions as well as more details for the surface ocean 

in the Mississippi Bight.  Results for monthly climatological averages are shown in 

Figures 2.31 through 2.42.  Wind direction frequency is presented in histogram form 

since monthly averages misrepresent dominant wind directions.  Shown in Figures 2.31, 

2.32, and 2.33, wind speeds peak October to February.  Higher magnitudes occur with 

tropical cyclones, but these events last less than 2 weeks.  Consequently, the average 

wind speeds from June to September fall below those seen in winter months.   

 

Figure 2.31 Mean monthly wind speeds at NDBC buoy 42040 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 

Gulf-wide wind patterns see a shift from northeasterly and northerly in fall and 

winter to southeasterly in spring and summer (Chang and Oey, 2013; Johnson, 2008).  

The patterns at the three sites in the Mississippi Bight differ somewhat from these results.  

Distributions shown in Figures 2.34, 2.35, and 2.36 reveal northeasterly winds for 
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September through January.  The USM buoy, Figure 2.36, has a secondary peak in 

January for northerly winds while a smaller easterly peak occurs in the November 

distribution for buoy 42040, Figure 2.34.  Smaller southeasterly peaks also are present in 

the December and January histograms for buoy 42040 and the December data for the 

USM buoy.  Southeasterly winds dominate at all three sites March through May, and 

southwesterly winds take over in July and August.  Dominant wind directions do not 

agree between the sites in February and June.  In February, buoy 42040 shows 

southeasterly winds.  FMOA has northeasterly and southerly wind peaks, and the USM 

buoy shows a preference for southerly and southwesterly winds.  As for June, buoy 

42040 and FMOA see increased occurrences of southeasterly to southerly to 

southwesterly winds, but southerly and southwesterly winds only occur with higher 

frequency at the USM buoy.   

 

Figure 2.32 Mean monthly wind speeds at C-MAN station FMOA 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 
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In Figures 2.37, 2.38, and 2.39, January had the lowest monthly temperatures at 

all three sites while July and August saw the highest temperatures at roughly 28°C.  The 

January minimum varied between 12°C and 16°C; as the shallowest station, FMOA had 

the lowest temperature while the most seaward location, buoy 42040, had the highest.  

Monthly average surface water temperatures at the USM buoy shown in Figure 2.40 

followed the temperature range and pattern of buoy 42040’s monthly air temperatures.  

Overall, measurements at the three locations aligned closely with one another. 

 

Figure 2.33 Mean monthly wind speeds at USM buoy 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means.  

Some parameters were only measured at one of the three locations; these include 

wave heights and sea surface salinity.  Buoy 42040 measures wave height; Figure 2.41 

presents monthly averaged wave heights.  Much like wind speed, wave heights peak 

October through March.  Wave heights are lowest in July, but June and August also 

exhibit lower magnitudes.  Sea surface salinity at the USM buoy, Figure 2.42, reached a 
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minimum in June and May, and November, October, and September saw the highest 

salinities.   

 

Figure 2.34 Monthly wind direction histograms at NDBC buoy 42040 

Frequencies represent 15° bins. 

 

Figure 2.35 Monthly wind direction histograms at C-MAN station FMOA 

Frequencies represent 15° bins. 
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Figure 2.36 Monthly wind direction histograms at USM buoy 

Frequencies represent 15° bins. 

 

Figure 2.37 Mean monthly air temperatures at NDBC buoy 42040 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means.   
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Figure 2.38 Mean monthly air temperatures at C-MAN station FMOA 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 

 

Figure 2.39 Mean monthly air temperatures at USM buoy 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 
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Figure 2.40 Mean monthly surface water temperatures at USM buoy 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 

 

Figure 2.41 Mean monthly wave heights at NDBC buoy 42040 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 
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Figure 2.42 Mean monthly sea surface salinity at USM buoy 

Monthly climatologies, shown with cyan diamonds, were calculated using 2014 through 2017 data; the blue lines show standard 

deviations from the means. 

 

2.3.2 Mississippi Sound Circulation 

Observational coverage of the Mississippi Sound is confined largely to the 

western Sound where the twelve hydrological stations and two 25 MHz HF radars are 

positioned.  Salinity increases with distance from the shore.  This horizontal gradient 

persists throughout the calendar year though the salinity differences vary month to 

month.  Temperature across the entire Sound follows a distinct annual trend with minimal 

horizontal variation across the western Mississippi Sound. 

During the month of January, shown in Figure 2.43, water temperatures 

everywhere in the Sound stay below14°C.  Stations nearshore are approximately 1°C 

cooler than stations near the barrier islands, but visually the temperature field looks 
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homogenous.  Salinity increases with distance offshore, and a channel of higher salinity 

water can be seen through Ship Island pass though this may be an artifact of the 

interpolation scheme.  Average surface currents, shown in Figure 2.44a, exhibit a 

southward flow from the PCYC HF radar and a southeastward flow south of the Bay of 

Saint Louis.  Looking southwest of the bay, flow is directed to the southwest.  Little 

covariance occurs closer to the shore, but the semi-major axes in Figure 2.44b increased 

by more than 50% in the southern extent of the HFR coverage range.  The ratio of the 

semi-major axes to the semi-minor axes also increased. 

Salinity distributions in February retain the trends seen in the January averages, 

but the temperature range increases to 13-15°C.  No consistent temperature patterns 

emerge during February as seen in Figure 2.45.  In Figure 2.46, a southeastern channel of 

flow extends from the SISL HFR that turns eastward south of the Bay of Saint Louis.  

Flow moves southward and southwestward from the PCYC HFR.  A channel of 

northeastern flow extends from the Saint Bernard Delta towards Cat Island.  The island 

seems to act as a diversion point with currents turning north northeastward north of the 

island and southwestward southwest of Cat Island.  Speeds tend to stay below 10 cm/s, 

but the size of the covariance ellipses are larger relative to January.  However, the 

increase in covariance ellipse size increases with distance from the HF radars. 

Temperatures increase to 17-20°C in March.  A cooler patch of water can be seen 

south of the Bay of Saint Louis in Figure 2.47 while temperatures are 1-2°C warmer 

closer to shore with the warmest temperatures occurring north of Horn Island.  The 

salinity range decreased from February to March.  The southern Sound freshened, and the 

channel of higher salinity water became harder to differentiate from the surrounding 
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waters.  In Figure 2.48a, average surface currents demonstrate a southeastern flow 

emanating outward from the SISL HFR that turned eastward south of the PCYC HFR.  

As in February, flow diverts at Cat Island.  Currents point northeast north of the island 

and southwest south of the island.  At the southern extent of the coverage area, a few 

vectors point northward.  Semi-major axes range from 50 to 100 cm/s in Figure 2.48b, 

and the ellipses orient southwest-northeast. 

By April, water temperatures warm to 21-24°C with most of the western Sound 

falling right at 22°C as seen in Figure 2.49.  The area south of Back Bay Biloxi exhibited 

the warmest temperatures while the region south of the Bay of Saint Louis had the 

coolest.  The horizontal salinity gradient decreased from March to April.  Stations further 

from the coast maintained higher salinities, but the overall range in salinity dropped.  In 

Figure 2.50, surface currents pointed southeast from both the SISL and PCYC sites, but 

flow turned southwest to the southwest of SISL and east to the southeast of the Bay of 

Saint Louis.  A distinct channel of east northeast surface currents dominated the month of 

April to the west of Cat Island.  Covariance ellipses were larger compared to the previous 

month, but the pattern of increasing semi-major axis length with distance from the HFRs 

remained.  The increasing semi-major axis lengths likely result from small sample size as 

grid points further from the HFRs have less temporal coverage than grid points closer to 

the HFRs.  Uncertainty and GDOP values are also higher at the edge of the HFR domain. 

Average water temperatures in May stayed around 25°C with the stations at 

Round Island and Graveline Bayou seeing slightly warmer measurements at 26°C and 

27°C respectively (Figure 2.51).  The channel of higher salinity water entering the Sound 

through Ship Island Pass disappeared; salinity increased from north to south rather than 
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aligning on and offshore.  May presents the most uniform surface current pattern with 

velocity vectors pointed northeast across the majority of the western Mississippi Sound in 

Figure 2.52a.  Small regions of east southeastward flow can be observed near the two 

HFRs, but the northeastern flow dominates everywhere else. 

As for June, average monthly temperatures range 28-30°C with temperatures 

increasing west to east as shown in Figure 2.53.  Similar to May, the salinity range in the 

western Sound is lower compared to late winter and early spring.  In terms of surface 

velocity, HFR coverage of the Sound was highly variable resulting in few vectors being 

available for the monthly average.  Where coverage exists in Figure 2.54a, flow to the 

northeast echoes the May climatology.  In Figure 2.54b, the semi-major axes align 

southwest to northeast in the southern portions of the HFR grid, and the covariance 

ellipses close to the HFRs appear nearly circular with semi-major axes less than 50 cm/s. 

July temperatures range from 29°C to 31°C with the nearshore hydrological 

stations being warmer than those further into the Sound.  In Figure 2.55, increased 

salinity with distance from the coast reemerged, but the channel of higher salinity through 

Ship Island Pass was not present.  From January to June, the eastern portion of the 

western Sound was 7-9 fresher than the western edge.  During July though, the difference 

decreases to 5-6.  Patchy HFR coverage makes surface current analysis difficult.  In 

Figure 2.56a, a small region in the eastern half the Western Sound showed east to 

northeast flow, but what vectors exist elsewhere contradict one another.  Covariance 

ellipses align southwest to northeast, and the semi-major axis lengths exceed those of the 

semi-minor axes (Figure 2.56b). 
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Figure 2.43 January distributions of temperature and salinity 

January monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.44 January mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of January as measured by 25 MHz HF radars.  Velocity magnitudes are indicated 

by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has 

units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other 

grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.45 February distributions of temperature and salinity 

February monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.46 February mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of February as measured by 25 MHz HF radars.  Velocity magnitudes are indicated 

by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has 

units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other 

grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.47 March distributions of temperature and salinity 

March monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.48 March mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of March as measured by 25 MHz HF radars.  Velocity magnitudes are indicated 

by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has 

units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other 

grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site). 
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Figure 2.49 April distributions of temperature and salinity  

April monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.50 April mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of April as measured by 25 MHz HF radars.  Velocity magnitudes are indicated by 

the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has units 

of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other grid 

point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.51 May distributions of temperature and salinity 

May monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.52 May mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of May as measured by 25 MHz HF radars.  Velocity magnitudes are indicated by 

the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has units 

of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other grid 

point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.53 June distributions of temperature and salinity 

June monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.54 June mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of June as measured by 25 MHz HF radars.  Velocity magnitudes are indicated by 

the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has units 

of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other grid 

point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.55 July distributions of temperature and salinity 

July monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.56 July mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of July as measured by 25 MHz HF radars.  Velocity magnitudes are indicated by 

the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has units 

of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other grid 

point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Average August temperatures make it the warmest month in the year with the 

whole study region falling between 30°C and 31°C.  Increased salinity also occurred at 

each hydrological station, and half of the western Mississippi Sound saw average salinity 

values above 20 (Figure 2.57).  The northeastward flow observed in the previous months 

gave way to southwest surface currents in August with a small patch of westward flow 

close to the SISL HFR.  South of the PCYC HFR in Figure 2.58a, currents point 

southward then turn eastward.  The covariance ellipses shown in Figure 2.58b continued 

to be large with high semi-major axes compared to the semi-minor axes. 

While temperatures peak during July and August, salinities peak during the fall 

months with different stations in the Sound exhibiting maximum salinity between 

September and December.  Figure 2.59 shows temperatures in September drop to 28-

29°C with the western stations staying 1°C cooler than the central and eastern stations 

throughout the month.  By contrast, salinity dropped at the western stations compared to 

August while the central and eastern stations saw increased salinity.  The southwestward 

currents of August shifted southward in September.  A small area south of PCYC saw 

currents turning eastward (Figure 2.60a).  As with the summer months, covariance 

ellipses in Figure 2.60b aligned southwest to northeast. 

October saw a further decrease in water temperatures to 24-25°C.  The 

hydrological stations further offshore were a little warmer, but the difference was less 

than 1°C.  In Figure 2.61, salinity values increased across the western Mississippi Sound, 

and the East Ship Island station, as well as the East Pearl River station,  experienced the 

highest salinity during October.  High variability in HFR coverage left few days available 

for monthly averages, but what velocity vectors do exist suggest a dominant southward 
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flow similar to September though isolated vectors also point westward in the western 

extent of the HFR grid (Figure 2.62a).  Figure 2.62b shows covariance ellipses followed 

the patterns described in September. 

As with October, the hydrological stations in the southern Sound had slightly 

warmer temperatures in November than the stations in marsh and back bay environments, 

but the difference was <1°C (Figure 2.63).  Temperatures fell to 18-19°C in November, 

but five of the twelve stations had the highest salinity of the year.  Five additional stations 

had monthly means comparable to September averages.  The western half of the western 

Mississippi Sound had flow pointing west to southeast while flow in the eastern half had 

a more cohesive southwestward direction (Figure 2.64a).  In a departure from earlier 

months, covariance ellipses in the western half of the region oriented north to south while 

covariance ellipses in the eastern half followed bathymetry contours (Figure 2.64b). 

Water temperatures cooled down further in December to 15-16°C with no visual 

horizontal gradient present across the western Mississippi Sound in Figure 2.65.  High 

salinity values also continued into December with the stations in the center Sound and at 

Saint Joseph Island experiencing the highest salinities during the year.  Current patterns 

shown in Figure 2.66a in November carry into December though current speeds increase 

overall by 1-2 cm/s.  Covariance ellipse patterns and semi-major axis sizes also show 

little change (2.66b). 
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Figure 2.57 August distributions of temperature and salinity 

August monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.58 August mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of August as measured by 25 MHz HF radars.  Velocity magnitudes are indicated 

by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has 

units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other 

grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.59 September distributions of temperature and salinity 

September monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.60 September mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of September as measured by 25 MHz HF radars.  Velocity magnitudes are 

indicated by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference 

bar has units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every 

other grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC 

(eastern site).   
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Figure 2.61 October distributions of temperature and salinity 

October monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.62 October mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of October as measured by 25 MHz HF radars.  Velocity magnitudes are indicated 

by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference bar has 

units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every other 

grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC (eastern 

site).   
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Figure 2.63 November distributions of temperature and salinity 

November monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.64 November mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of November as measured by 25 MHz HF radars.  Velocity magnitudes are 

indicated by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference 

bar has units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every 

other grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC 

(eastern site).   
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Figure 2.65 December distributions of temperature and salinity 

December monthly mean a) bottom temperature and b) bottom salinity fields for the western Mississippi Sound.  Locations of the 

hydrological stations are given by white diamonds, and interpolation between those points was accomplished using a cubic 

interpolation with Delaunay triangulation (Watson, 1992). 

 

Figure 2.66 December mean surface currents and covariance ellipses 

a) Average surface currents, in cm/s, for the month of December as measured by 25 MHz HF radars.  Velocity magnitudes are 

indicated by the color bar on the right.  b) Covariance ellipses based on the semi-major and semi-minor axes of covariance.  Reference 

bar has units of cm2/s2 for area, but semi-major and semi-minor axes have length cm/s.  The HFR grid has been subsampled to every 

other grid point to provide better visual acuity.  Green triangles give the locations of the HF radars at SISL (western site) and PCYC 

(eastern site).   
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Results from the time series of the USGS-MDMR hydrological stations indicate 

diurnal signals, and to a smaller extent semi-diurnal signals, comprise the majority of 

short term variability (less than 1 week) in the western Mississippi Sound.  Standard 

deviation values and examination of time series point to significant salinity changes in a 

24 hour period which is consistent with changes in surface current directions in the 

western Sound.  Temperature fluctuations are much smaller.  Figures 2.67 and 2.68 give 

the salinity and temperature power spectra for station 11, located at the Pearl River near 

the state line between Mississippi and Alabama.  This station exhibits the 1 cpd peak for 

both salinity and temperature, so it is being used as a representative station for the 

western Mississippi Sound.  Salinity and temperature variability in the western 

Mississippi Sound lean towards time scales at or less than 1 day.  Peaks appear at 1cpd 

for all the stations.  Station 4, in Graveline Bayou, Mississippi, also shows a 2 cpd peak 

in salinity while station 2, near Round Island, has a small 0.2 cpd peak.  As for 

temperature, station 4 has peaks at 2 cpd and 3 cpd too.  However, the commonality 

among the stations is the diurnal fluctuations. 

Chapter I noted that multiple diurnal tidal constituents occur near the 24 hour 

period as does the land-sea breeze cycle and inertial period for the study region.  Tides 

most likely dominant the observed diurnal variability.  Given the shallow depths of the 

Sound, sustained stratification is unlikely, so inertial oscillations would play an 

insignificant role.  Likewise, differential heating is more pronounced during warmer 

summer months, so fluctuations due to the land-sea breeze cycle would only play a 

controlling role for part of the year. 
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Figure 2.67 Salinity power spectra for the East Pearl River hydrological station 

Power spectral density for bottom salinity measured at USGS-MDMR station 11 (East Pear River at the CSX Railroad Crossing).  

Frequencies are given in cycles per day (cpd); salinity is a ratio without units. 

 

Figure 2.68 Temperature power spectra for the East Pearl River hydrological station 

Power spectral density for bottom temperature measured at USGS-MDMR station 11 (East Pear River at the CSX Railroad Crossing).  

Frequencies are given in cycles per day (cpd); temperature peaks have units (°C)2. 
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The Mississippi Sound is a river-dominated lagoon, so discussion of circulation 

should include analysis of riverine influence.  Riverine discharge falls into a unique 

category since some of the rivers in the region flow into the Mississippi Sound, others 

flow into the Sound but have mouths near island passes that allow water exchange 

between the Mississippi Sound and Bight, and the Mississippi River and Mobile Bay 

empty partially into the Sound and partially into the Bight.  However, since discharge 

occurs along the coast, riverine analysis has been included with Mississippi Sound 

circulation.   

Monthly discharge averages showed differing results for the different rivers.  

Monthly mean discharge estimates with associated standard deviations can be seen for 

each of the 7 stream gages in Figure 2.69 through Figure 2.70.  Some standard deviation 

ranges are actually lower since the lower bound suggests discharge can be negative; this 

is not true for any gage.  Discharge tends to peak in spring and reach its minimum in fall.   

Gage 02428400 (Alabama River) exhibits the highest discharge in January and 

April and lowest July through October.  Standard deviation values increase with 

increasing monthly mean.  Discharge for gage 02479000 (Pascagoula River) reached a 

maximum in March and April and a minimum in September and October.  As with gage 

02428400, standard deviation values were larger for months with higher discharge.  June 

provided an exception to this trend; while discharge was higher, the standard deviation 

discharge values for June was the largest of the year.  Standard deviation values for gages 

02481000, 0281510, and 02489500 increased and decreased in conjunction with monthly 

mean values.  May and June had the highest monthly mean discharge for gage 02481000 

(Biloxi River); September through November saw the lowest monthly mean discharge.  
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Discharge peaked March through June at gage 02481510 (Wolf River), and monthly 

discharge reached its lowest in September and October.  Gage 02489500 (Pearl River) 

recorded the lowest discharge in September and October and highest discharge in March 

and April.  April had the highest monthly mean; March saw the largest standard 

deviation.  Standard deviations remained low for most of the year at gage 07375500 

(Tangipahoa River); nearly identical monthly mean values accompanied these low 

standard deviation values.  Exceptions to the trend include March and August which had 

significantly higher mean discharges and standard deviations.  Standard deviations for 

gage 07381331 (the Gulf Intracoastal Waterway) were nearly equal for every month.  

This is unsurprising since the water levels at the gage are tidally affected (Louisiana 

Water Data Support Team, 2019).  January, February, and July had the highest mean 

discharges; September and October had the lowest.  The more consistent monthly mean 

discharge values are not unexpected at gages 07375500 and 07381331.  The first 

connects to Lake Ponchartrain; the second is a Mississippi River tributary.  Flow in both 

locations would be heavily influenced by engineering projects designed to keep the lake 

and the river from overflowing. 

Power spectra for the stream gages show a weak discharge peak at 1 cpd.  Some 

of the gages have smaller peaks at 2 cpd or less than 1 cpd, but the power spectra are 

noisy.  In looking at time series for the gages, diurnal variability is present, but the 

magnitude of fluctuation is not equal month to month.  Gage height and discharge can 

vary significantly within a 24 hour period.  In river locations where ocean tides do not 

play a role, these changes are due to evapotranspiration and snowmelt (Wicht, 1941; 

Reigner, 1996).  Rates of evaporation throughout the solar cycle cause water level 
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changes; transpiration by plants along the river banks add to this effect.  Additionally, as 

temperatures and radiative fluxes change throughout the day, snowmelt rates change 

(Lundquist and Cayan, 2002).  The distance of the stream gages used in this study from 

headwaters would suggest snowmelt rates have little bearing on daily discharge 

fluctuations.  Consequently, short term variability can be attributed to evapotranspiration. 

 

Figure 2.69 Monthly mean discharge for the Alabama River  

Cyan diamonds mark average monthly discharge (m3/s), and blue lines indicate standard deviations from the means. 

Unlike the other gages, tidal influence is present at a stream gage on the Gulf 

Intracoastal Waterway (07381331).  Figure 2.76 gives the power spectra for gage 

07381331.  This location was selected because it does not echo patterns seen at the other 

gages.  The power spectra are noisy, but the highest peak appears at 1 cpd.  Smaller peaks 

can be seen at 0.1 cpd, 0.2 cpd, and 0.6 cpd.  Different tidal constituents can partially 

explain these peaks as can evapotranspiration.  While other high frequency changes in 

discharge can be seen, the 24 hour period is the dominant short term signal in discharge.  
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Month to month variations in discharge are also present at gage 07381331 though the 

high standard deviation values make these differences insignificant. 

 

Figure 2.70 Monthly mean discharge for the Pascagoula River 

Same setup as Figure 2.69. 

 

Figure 2.71 Monthly mean discharge for the Biloxi River 

Same setup as Figure 2.69. 
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Figure 2.72 Monthly mean discharge for the Wolf River 

Same setup as Figure 2.69. 

 

Figure 2.73 Monthly mean discharge for the Pearl River 

Same setup as Figure 2.69. 

 

 

 



 

77 

 

Figure 2.74 Monthly mean discharge for the Tangipahoa River 

Same setup as Figure 2.69. 

 

Figure 2.75 Monthly mean discharge for the Gulf Intracoastal Waterway 

Same setup as Figure 2.69.  The USGS notes this location is tidally-influenced. 
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Figure 2.76 Discharge power spectra for the stream gage on the Gulf Intracoastal 

Waterway 

Power spectra for discharge have power in units (m3/s)2 and frequencies in cycles per day (cpd).  Unlike the other stream gages, this 

station has known tidal influence. 

Coastal water level measurements also grant insights into circulation.  The 

locations of the tide gages in Louisiana and all of the Florida tide gages place them 

outside the boundaries for the Mississippi Sound, but the coastal measurements make this 

dataset akin to the stream gages.  Water levels are given with respect to mean sea level.  

Water level analysis for the tide gage measurements are included with the Mississippi 

Sound circulation. 

Average water levels for the gages remain elevated compared to the mean sea 

level for most of the year.  Figure 2.77 gives mean water levels for the twelve gages 
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examined in this study.  The Florida means are given by blue circles, the Alabama means 

by green diamonds, the Mississippi by red squares, and the Louisiana means by orange 

triangles.  While the values, in general, stay above zero, the highest mean was <0.3 m at 

gage 8761305.  The lowest was just under -0.15 m at gage 8760721 (Pilottown), but the 

gage deviates from the monthly pattern seen for the rest of the gages.  Analysis of the 

0860721 gage time series shows increased disagreement between the predicted and 

observed water levels in the second half of the year.  As mentioned before, Louisiana 

water level data is preliminary.  Looking at all 12 stations, standard deviations value are 

almost as high as the mean water level values. 

 

Figure 2.77 Monthly mean water levels 

Average water level for three Florida (circles), three Alabama (diamonds), three Mississippi (squares), and three Louisiana (triangles) 

tide gages.   Gage numbers use the NOAA National Ocean Service numbering. 

Time series analysis of the tide gages confirm a microtidal range, and the power 

spectra indicate diurnal frequencies are principal frequencies for the region.  Figures 2.78 
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and 2.79 show the power spectra for harmonically predicted water levels and observed 

water levels for gage 8741533 (NOAA Pascagoula Laboratory).  Many of the other gages 

exhibit similar peaks, so this station was chosen for its central placement within the study 

area and for its representativeness of the other gages.  Predicted water levels have peaks 

at 1 cpd, 2 cpd, and 4 cpd.  A smaller 3 cpd peak is also present.  Since the predicted 

water levels come from tidal harmonics, all four peaks are expected.  The 1 cpd diurnal 

peak is the largest.  The observed power spectra are significantly noisier.  A 1 cpd peak is 

present, and smaller peaks, such as the 2 cpd semi-diurnal peak, can also be seen.  

However, fluctuations in water level on time scales less than 1 month tend to happen on a 

24 hour period.  The daily oscillations are common to all 12 gages. 

 

Figure 2.78 Power spectra for predicted water levels at the Pascagoula NOAA Laboratory 

Power spectra for water levels have power in units (m)2 and frequencies in cycles per day (cpd). 
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Figure 2.79 Power spectra for measured water levels at the Pascagoula NOAA 

Laboratory 

Power spectra for water levels have power in units (m)2 and frequencies in cycles per day (cpd). 

 

2.3.3 Exchange Between the Mississippi Sound and Bight 

Direct measurements inside the passes between the barrier islands are rare.  One 

of the USGS-MDMR hydrological stations captures bottom salinity and temperature by 

East Ship Island, and the 25 MHz HFRs have intermittent coverage of Ship Island Pass.  

The other passes lack coverage.  As such, observations are not readily available, and 

previous studies tend to be confined to one or two seasons of a single year.  To that end, 

predictions from the Northeast Gulf of Mexico Operational Forecast System (NEGOFS) 

provided qualitative information on water exchange between the Mississippi Sound and 

Bight.  Results from NEGOFS were compared to a 1980 observational study done by the 
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US Army Corps of Engineers, and where available, observations from the datasets 

described previously in this chapter were used to ground truth the NEGOFS results 

(Kjerfve, 1983). 

NOAA’s National Ocean Service (NOS) produces current, temperature, and 

salinity estimates using a nested three-dimensional finite volume community ocean 

model (FVCOM) that uses wind fields generated from National Weather Service Doppler 

sites (Wei et al, 2014).  The 3-hour product gives parameter estimates at 51 locations 

throughout the Mississippi Sound, but this study is concerned with 6 locations: Ship 

Island Pass, Dog Keys Pass, Horn Island Pass, Petit Bois Pass, and 2 sites in Main Pass.  

Mean surface and bottom currents are presented graphically in Figures 2.80 through 2.91.  

Arrows for currents have been enlarged for visibility; all locations are in-water locations.  

Mean monthly surface and bottom temperatures and salinities are given in Figures 2.92 

and 2.93 respectively. 

 

Figure 2.80 January mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 
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Figure 2.81 February mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 

 

Figure 2.82 March mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 
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Figure 2.83 April mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 

 

Figure 2.84 May mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 
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Figure 2.85 June mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 

 

 

Figure 2.86 July mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 
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Figure 2.87 August mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 

 

 

Figure 2.88 September mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 
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Figure 2.89 October mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 

 

Figure 2.90 November mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 



 

88 

 

Figure 2.91 December mean surface and bottom currents for NEGOFS 

Mean monthly velocity vectors for the surface and bottom of the 51 NEGOFS stations. 

Unlike currents observed in the northwest Mississippi Sound and most of the 

Mississippi Bight, monthly surface and bottom currents show relatively little variation 

month to month.  Mean current speeds and their associated standard deviations vary by 

less than 3 cm/s for Ship Island Pass, Dog Keys Pass, and Petit Bois Pass.  Mean values 

do fluctuate for Horn Island Pass and Main Pass, but accompanying changes in standard 

deviations make these differences insignificant.  Where multiple NEGOFS grid points 

exist in and near the passes, a 90°-180° spread in current direction persists through the 

year at the surface and at the bottom.  Surface current directions consistently point into 

the Mississippi Bight ranging southwest to southeast while bottom current directions 

point into the Mississippi Sound.  The only exception to this pattern is the west side of 

Main Pass where surface and bottom currents both flow to the southeast just east of 

Dauphin Island.  By contrast, the surface currents in the eastern side of Main Pass flow 

southwest while bottom currents flow north northeast.  Surface and bottom currents in 

Main Pass have the highest mean speeds throughout the year but also exhibit the largest 
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variability.  Dog Keys Pass has the lowest current magnitudes.  Petit Bois Pass has the 

second lowest speeds at the bottom while Ship Island Pass has the second lowest at the 

surface.  High direction and magnitude variability and similar mean currents from one 

month to the next suggest seasonality plays a minor role in water exchange between the 

Mississippi Sound and Bight in terms of NEGOFS output. 

 

Figure 2.92 Monthly mean NEGOFS temperatures in the barrier island passes 

Mean monthly temperatures and standard deviations for the surface (top) and bottom (bottom) of 6 stations located in the passes 

between barrier islands.   

In terms of estimated temperature and salinity in the passes, seasonality can be 

seen clearly in temperature and to a smaller degree in salinity.  When considering 

standard deviations, no discernible difference exists between surface and bottom 

temperature.  Temperatures in every pass reach their lowest in December and January and 

their highest in July and August, so these patterns agree with the observations of the 
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hydrological stations in the Mississippi Bight.  Horizontal temperature ranges in the 

Mississippi Sound vary by less than 1°C from one pass to another for most of the year, 

but temperatures November through February differ by 2-3°C.  Surface and bottom 

salinities do not align closely from pass to pass.  Ship Island Pass and the western side of 

Main Pass had the lowest salinities throughout the year.  Salinity values in the eastern 

half of Main Pass were lower and had higher standard deviations than bottom salinity 

means and standard deviations.  Across all passes though, February through April saw 

fresher waters while October through December had the highest salinity in every pass. 

 

Figure 2.93 Monthly mean NEGOFS salinities in the barrier island passes 

Mean monthly salinities and standard deviations for the surface (top) and bottom (bottom) of 6 stations located in the passes between 

barrier islands. 

The 182-day average surface and bottom currents presented in Kjerfve (1983) 

reflect a net surface outflow of water from the Mississippi Sound into the Mississippi 
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Bight, mostly to the southwest.  Surface current velocities are depicted by red arrows in 

Figure 2.94 while bottom velocities have blue arrows.  Two current meters were 

deployed in Dog Keys Pass.  The western site shows southeast flow into the Bight while 

the eastern site shows southwest flow into the Bight.  Directional shifts across the widths 

of passes can be seen in the NEGOFS monthly averages as well.  However, the surface 

northwest oriented velocities pointing into the Mississippi Sound in Ship Island Pass and 

the northeast velocities west of Cat Island disagree with the NEGOFS and 25 MHz HFR 

surface velocities.  While this may be the result of a 7-month average compared to the 1-

month averages for the 2014-2017 data, surface outflow is present at these locations from 

April through October.  Subaerial land loss and island migration could explain directional 

disagreement between the two time periods.   

 

Figure 2.94 Mean surface and bottom currents from the Kjerfve 1983 study 

Measurements represent a 182 average from April 1980 through October 1980; values retrieved from Kjerfve (1980). 

In terms of bottom salinity and temperature, USGS-MDMR hydrological stations 

2, 5, 9, and 10 had NEGOFS positions nearby, so these sites provided points of 



 

92 

comparison.  The locations of these sites are shown graphically in Figure 2.95, and 

(Table 2.4) and (Table 2.5) give the monthly root-mean-square errors (RMSEs) in bottom 

salinity and temperature between the two.  The magnitude of change increased east to 

west.  Salinity RMSE exceeded 8 in winter and summer for stations 9 and 10.  

Temperature differences never exceeded 2.5°C. 

 

Figure 2.95 Comparison locations between USGS-MDMR observations and NEGOFS 

For reference, the positions of the two 25 MHz HFRs are given by red triangles.  Magenta circles denote hydrological station positions 

while blue squares show NEGOFS locations.  Red circles mark the four comparison locations: station 2, station 5, station 9, and 

station 10 from the USGS-MDMR stations. 

Table 2.4 Root-Mean-Square Error between Observed and Predicted Bottom Salinity 

Month Station 2 Station 5 Station 9 Station 10 

January 3.0 1.2 7.9 9.2 

February 5.9 0.2 10.8 11.7 

March 3.3 0.4 7.4 6.2 

April 0.9 0.1 4.2 3.6 

May 1.5 3.1 2.9 4.5 
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Table 2.4 (continued) 

June 0.8 4.8 2.7 4.6 

July 4.9 0.1 9.4 11.0 

August 3.9 0.8 7.2 12.8 

September 3.1 1.1 5.0 11.7 

October 2.8 3.4 6.6 10.6 

November 2.0 2.2 8.5 10.9 

December 0.1 1.4 9.3 12.5 

 

Table 2.5 Root-Mean-Square Error between Observed and Predicted Bottom 

Temperature 

Month Station 2 Station 5 Station 9 Station 10 

January 2.2°C 0.4°C 1.8°C 1.7°C 

February 1.7°C 0.3°C 1.8°C 1.7°C 

March 0.8°C 0.3°C 2.4°C 1.8°C 

April 0.2°C 0.2°C 1.5°C 1.2°C 

May 0.2°C 0.1°C 0.6°C 0.6°C 

June 0.2°C 0.0°C 1.2°C 0.8°C 

July 0.7°C 0.3°C 1.9°C 1.2°C 

August 0.7°C 0.2°C 1.3°C 0.9°C 

September 0.7°C 0.3°C 1.0°C 0.9°C 

October 1.0°C 0.0°C 1.1°C 0.7°C 
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Table 2.5 (continued) 

November 1.4°C 0.1°C 1.3°C 0.8°C 

December 0.4°C 2.1°C 0.4°C 0.9°C 

 

2.4 Discussion 

The circulation variability found in this study agrees broadly with results 

presented in previous literature.  Hourly surface current speeds in the Mississippi Bight 

rarely exceed 1 m/s, and magnitudes usually stay below 0.5 m/s.  Current directions have 

high temporal and spatial variability.  Surface current directions in the Mississippi Sound 

and Bight show 360° rotation on diurnal timescales, and coastal water levels fluctuate 

primarily with the tides.  Several geographical features setup cohesive channels of flow.  

Riverine outflow points like the Mississippi River, Mobile Bay, Pensacola Bay west of 

the Destin HFR site, and Choctawhatchee Bay nearest the Destin site are among these 

coastal features.  Dominant outflow directions rotate about 45° throughout the year 

whereas velocities above the De Soto Canyon shift northeast to southwest.  Wind (origin) 

directions exhibit more directional variability in the Mississippi Bight than Gulf-wide 

studies; southwesterly winds peak in July and August in the Mississippi Bight.  

Where model output or observations exist, surface and bottom current directions 

change west to east across island passes, and the islands themselves appear to disorganize 

and split current patterns.  Most of the passes have surface and bottom currents separated 

by at least 90° with surface currents pointing into the Bight, and bottom currents directing 

water into the Sound.  Temperature distributions show horizontal homogeneity, so 

salinity works as a much better indicator of sustained horizontal gradients.  This study 
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highlights region-specific circulation, but the overall circulation patterns agree with 

annual patterns and dominant frequencies of variability observed by Ohlman and Niiler 

(2005), Johnson (2008), and Howden and Kern (2013). 

The uniqueness of the study area lies in coastline orientation and the resiliency of 

the barrier islands.  The Louisiana coast and Mississippi-Alabama-Florida panhandle 

coasts run nearly perpendicular to one another. This orthogonal alignment of a mostly 

east-west coast and mostly north-south coast could partially explain differences in wind 

directions between this study and other literature that examines a much larger domain.  

As mentioned previously, the Mississippi-Alabama barriers have undergone multiple 

rounds of segmentation and westward translation.  Consequently, larger passes allow 

more water exchange between the Mississippi Sound and Mississippi Bight.  Overall 

bottom salinity in the Mississippi Sound has increased since the 1980 study (Kjerfve, 

1983).  The different observational platforms reveal patterns in circulation are location-

specific suggesting bathymetry and subaerial land play controlling roles in influencing 

circulation along with winds and tides.
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CHAPTER III – PERTURBATION OF THE MISSISSIPPI SOUND AND BIGHT BY 

TROPICAL CYCLONES 

As punctuated events, tropical storms and hurricanes fall into a unique category.  

Most occur within the designated hurricane season, June 1 through November 30, but 

storms have developed well before and after these dates.  Several generalizations have 

been attached to tropical cyclones, but exceptions exist.  Sea surface temperatures above 

26.5°C tend to sustain and strengthen tropical cyclones, and strong vertical wind shear 

usually works to weaken the storms (Palmen, 1948).  Many Atlantic basin storms can be 

traced back to tropical waves coming off the western African coast, and atmospheric 

ridges (highs) and troughs (lows) serve to steer tropical cyclones.  Additionally, more 

intense storms tend to have smaller radii of tropical storm force winds since the center of 

rotation becomes better defined.  However, no two storms are identical, and the storms do 

not conform to seasonal patterns or have repeated, systematic behavior.  Each tropical 

cyclone claims a unique genesis, path, wind field, and neighboring atmospheric 

conditions.  Consequently, impacts on circulation in the Mississippi Sound and 

Mississippi Bight by tropical storms and hurricanes deserve a separate analysis. 

3.1 Atlantic Hurricane Record 

Storm data used in this analysis came from the Atlantic Hurricane Database.  The 

database synthesizes available records for all recorded Atlantic basin storms from 1851 

onwards into a best estimate re-analysis product (Landsea et al., 2004).  Storm data from 

the Northeast and North Central Pacific Hurricane Record were also retrieved since 

Pacific basin storms occasionally transit across Mexico into the Gulf of Mexico.  Four 

such storms have come within 10° of the Mississippi Bight, as bounded by 28.5°N, 
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30.5°N, 86°W, and 89°W, since the start of the Pacific record in 1949, but none of those 

storms came into the Gulf of Mexico as tropical storms or hurricanes.  The only storms to 

approach or enter the Mississippi Bight did so as remnants, so while this analysis 

included the Pacific record, no storms fit the criteria detailed below for Gulf of Mexico 

tropical cyclones. 

Storm eye coordinates for individual storms provided storm locations throughout 

each storm’s duration, and maximum sustained wind speed, converted from knots to m/s, 

at the eyewall were used as the metric for storm intensity.  Wind radial extent estimates 

for 34, 50, and 64 knot winds are available starting with the 2004 hurricane season, and 

these extents provided the cone of influence (radius of tropical storm force winds) related 

to each storm.  Unfortunately, the hurricane database does not track positions of nearby 

atmospheric troughs or ridges.  Trough and ridge information is detailed in individual 

storm reports, but only data pertaining directly to the storms were available in the 

hurricane database. 

The hurricane database gives 6 hour time steps between measurements.  As 

overlapping data records exist for high frequency radar, tide and stream gages, buoys, and 

hydrological stations from 2014 until 2017, those four years were considered for this 

analysis.  However, the preliminary analysis included storms from previous years to set a 

baseline against which to gage oceanic response to each storm. 

This study cannot provide statistics on the Mississippi Bight and Sound’s 

responses to tropical cyclones for three reasons.  First, a four year period does not 

provide a long enough time series to capture the variability in tropical cyclones which 

impact the northern Gulf Coast.  Second, data availability varies from one storm to the 
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next, so even if multiple storms have similar tracks and intensities, a one-to-one 

quantitative comparison is rarely possible.  Third, only one storm passed through the 

study domain during the four year period, so the study period lacks data for multiple 

direct strike storms.  This study can, however, supply qualitative analysis of individual 

storms and examine whether any general conclusions can be formed for hurricane 

seasons within the time frame considered.  Results will inevitably change if a longer 

temporal period is considered. 

In considering the 2004-2017 seasons for preliminary wind field analysis, nautical 

mile distance for the radial extents of storm winds had to be converted into geographic 

coordinates to determine which storms’ cones of influence impinged on the northern Gulf 

of Mexico.  First, radial distances were converted from nautical miles to kilometers.  

Assuming the earth to be an oblate spheroid, the World Geodetic System of 1984 datum 

was employed to convert kilometer distance into distance along parallels and meridians in 

order to find the latitudes and longitudes corresponding to wind radial extents at each 

time moment for each quadrant of a storm.  Storm eye coordinates served as the reference 

coordinates for the calculations.  Plots were then generated showing cones of influence. 

3.2 Isolating Gulf of Mexico Storms 

Establishing a threshold for storms which directly impacted the study area proved 

challenging as most data sets used in this project only overlapped with 5-20 storms, and 

each storm had a unique path, lifetime, intensity, and formation time within the calendar 

year.  The Gulf of Mexico is a semi-enclosed sea.  Tropical cyclones outside the Gulf are 

unlikely to cause direct or indirect changes to circulation in the Mississippi Sound and 

Bight.  Consequently, only storms that entered or formed within the Gulf of Mexico or 
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storms that had wind fields that entered the Gulf of Mexico were considered for this 

study.  Data from NDBC buoy 42040 were used to examine atmospheric conditions at 

buoy when tropical cyclones were in the Gulf of Mexico.  Measurements date back to 

1995, so data exist for more than 20 hurricane seasons. 

Unfiltered buoy wind speed and buoy wave height data were compared to tracks 

and times of Atlantic basin storms to see which storms coincided with peaks in the wind 

and wave time series.  Time series for wind speed and wave height at buoy 42040 are 

given in Figures 3.1 and 3.2 with the arithmetic means denoted by green and orange lines 

respectively, and blue and red vertical bars highlight each hurricane season.  Data peaks 

refer to values 1, 2, and 3 standard deviations above the mean.  Red lines show the 1st, 

2nd, and 3rd standard deviations above the mean in Figure 3.1 while yellow lines give 

these values in Figure 3.2.  While wind speed and wave height data do not have normal 

distributions, deviations about the mean provided a first pass isolation of wind events.  

The time series analysis gave cursory confirmation that several dozen Gulf storms 

occurred in tandem with anomalous measurements at the buoy.  As an example, the 

strongest peaks occurred during hurricanes Georges (1998), Ivan (2004), and Katrina 

(2005).  In terms of wind speed, higher magnitudes occurred during certain hurricane 

seasons, but higher wind speeds also happened annually during the October to April 

period when winter cold front passages occur (Roberts et al., 1989).  Extreme wave 

heights (>5 m), though, occurred almost exclusively during hurricane season months. 
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Figure 3.1 Time series of buoy 42040 wind speeds 

Blue circles show 10 m wind speeds recorded at the buoy from January 1996 through December 2017.  The light blue bars denote the 

hurricane season interval for each calendar year. The green line gives the mean wind speed for the whole time series with the 1st, 2nd, 

and 3rd standard deviations above the mean marked by red lines. 

Since peaks occurred in both the wind and wave height records during hurricane 

seasons, wind speeds were plotted against wave heights to establish whether a correlation 

existed between the two datasets when tropical cyclones were in the Gulf.  Easterly 

alongshore winds can elevate water levels through a geostrophic response; however, 

water levels were not measured at the buoy.  Increased wave height should also 

accompany increased wind speed, and buoy 42040 measures wave height.  Wind speed 

measurements were restricted to winds coming from the east northeast to east southeast 

during times when one or more tropical cyclones were in the Gulf of Mexico.  A 

quadratic fit best represents the relationship between wind speed and wave height for all 

wind speeds.  However, for easterly winds above 25 knots (12.86 m/s), linear regression 
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fit best describes the relationship between wind speed and wave height during storm 

periods.  The plot and regression line are displayed in Figure 3.3. 

 

Figure 3.2 Time series of buoy 42040 wave heights 

Dark red circles show wave heights recorded at the buoy from January 1996 through December 2017.  The pale red bars denote the 

hurricane season interval for each calendar year. The orange line gives the mean wave height for the whole time series with the 1st, 

2nd, and 3rd standard deviations above that mean marked by yellow lines. 

Following confirmation that buoy measurements could show storm-induced winds 

and waves, three-variable scatter plots were generated using a combination of hurricane 

database and buoy measurements.  From the database, maximum sustained wind speed at 

the storm’s eyewall, the distance of the storm’s eye from the buoy, and minimum 

pressure in the eye were considered.  Additionally, wind radial extents for the four 

quadrants of the storm, forward direction speed of the storms, and changes in storm 

intensity were also calculated.  Wave height, wind speed, wind direction, air temperature, 

and atmospheric pressure were utilized from the available buoy measurements.  Distance 



 

102 

from the storm’s eye to the buoy was used consistently as the x-axis variable, but the 

variables along the y and z (color) axes changed.  The Bay of Campeche is the furthest 

location within the Gulf of Mexico from buoy 42040 at approximately 12°, so 12° was 

set as the maximum distance.  This allowed the inclusion of all Gulf storms even though 

more distance storms are less likely to cause changes to Mississippi Bight circulation.  

Logical indexing was used to retrieve only those storms that entered the Gulf of Mexico.  

Substantial scatter marked every plot regardless of variable choice.     

 

Figure 3.3 Comparison of easterly wind speeds to wave heights 

Blue circles display wind speed comparisons to wave heights, both measured at NDBC buoy 42040 while the red line shows a linear 

regression.  Data have been limited to winds coming from the east northeast (56.25° clockwise from north) to east southeast (123.75° 

clockwise from north) that have speeds above 25 knots (12.86 m/s) during Gulf storm periods. 

Gulf of Mexico storms had a highly variable relationship with measurements 

taken at the buoy.  Plots demonstrate a linear decay trend for wind speeds at the buoy 

compared to buoy-to-storm distance with R2 values below 0.3.  R2 values near 1 do not 

automatically prove a correlation between variables; residuals should also be considered.  

Figure 3.4b gives the residuals plot for Figure 3.4a.  Patterns in residuals, i.e. linear, 
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sinusoidal, high or low bias, call linear regression results into question.  Residuals should 

have randomized distribution.  This occurs in Figure 3.4b.  Given the small sample size, 

the low R2 value is to be expected.  At best, meteorological and hydrographic parameters 

at the buoy have only a weak correlation to Gulf storms.  Future studies that include a 

collection of direct strike and further afield Gulf storms spanning multiple decades may 

yield different results, but the varied characteristics of individual tropical cyclones will 

likely frustrate any study. 

 

Figure 3.4 Scatter plot on buoy 42040 measurements for Gulf of Mexico storms 

(Top) Scatter plot with distance from the buoy to the storm eye on the x-axis, 10 m wind speed at the buoy measured on the y-axis, 

and atmospheric pressure at the buoy on the color axis.  The black line shows the linear regression fit to the data.  (Bottom) Residuals 

from the regression line for 10 m wind speeds. 

Ho et al. (1987) constructed a hurricane climatology based on tropical cyclone 

parameters for storms in the Gulf of Mexico and in the Atlantic; as with this study, the 

climatology found no concrete correlation between parameters due to small sample size.  

The climatology subdivided the U.S. Gulf and east coasts into sections where tropical 
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cyclones had made landfall.  The study considered storm central pressure, radius of 

maximum winds, storm forward speed, direction of the tropical cyclones, coastal 

sections, and storm locations.  Using non-parametric tests, no similarities were found for 

storms in the northern Gulf of Mexico east of Texas (Ho et al., 1987).  The authors 

suggested the irregularity of the Louisiana-Mississippi-Alabama coastlines could be a 

contributing factor to the variable response of the coast to tropical cyclones, and storm 

distance was the only parameter corresponding to damage.  In that vein, the present study 

also shows a weak relationship between storm distance and changes in the hydrographic 

parameters of the Mississippi Sound and Bight. 

The 3-variable plot process was repeated for the northwest, northeast, southeast, 

and southwest 34 knot wind radii.  Historically, most storms that approach the 

Mississippi Bight enter the Gulf of Mexico from the southeast (i.e. through the Yucatan 

Channel, across Cuba, the Straits of Florida, and the Florida peninsula), so winds 

northeast and northwest of the storm eye will influence the study region first.  Therefore, 

3-variable scatter plots with regression fits for the northeast and northwest quadrants are 

presented in Figures 3.5 and 3.6.  While still low, the R2 value for Figure 3.6 exceeds the 

value in Figure 3.4, and the residuals for both plots have a random distribution. 

Beyond tracking variable changes at buoy 42040 against Gulf storms, storm 

orientation with respect to the Mississippi Bight was divided into four categories: 

southeast, southwest, northeast, and northwest storms.  Rotation speed combined with the 

forward speed of storms generates higher winds to the right of the propagation direction 

of a tropical cyclone.  This effect creates an imbalance in the distribution of winds around 

the eyewall.  Consequently, the storm’s location relative to the Mississippi Bight can 
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control the magnitude of response the area feels.  Storms can have complex paths though, 

so any given storm might shift its position relative to the region.  As such, the initial 

position of a storm’s eye relative to the center of the Mississippi Bight when it first 

entered the Gulf of Mexico or its generation location within the Gulf was used as the 

approach direction. 

 

Figure 3.5 Scatter plot on buoy 42040 measurements for the northeast quadrant of Gulf of 

Mexico storms 

(Top) Scatter plot with distance from the buoy to a storm’s 34 knot northeast quadrant wind radius on the x-axis, 10 m wind speed at 

the buoy measured on the y-axis, and atmospheric pressure at the buoy on the color axis.  The black line shows the linear regression fit 

to the data.  (Bottom) Residuals from the regression line for 10 m wind speeds. 

According to tracks from the Atlantic and Pacific Hurricane Databases, 631 

named storms formed or entered the Gulf of Mexico from 1851 through 2017; of those 

storms, 125 passed through some portion of the Mississippi Bight.  Year by year Gulf of 

Mexico storm results are given in Figure 3.7.  Storms approaching the study area from 

the southeast made up 51% of Gulf storms while storms coming from the southwest 
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accounted for 47%.  Storms approaching or forming to the northeast and northwest of the 

Mississippi Bight represent less than 1% of the total.   

 

Figure 3.6 Scatter plot of buoy 42040 measurements for the northwest quadrant of Gulf 

of Mexico storms 

Same as Figure 3.4 but for the northwest quadrants of storms. 

As the rest of Chapter III will demonstrate, Gulf storms do not consistently 

produce anomalous results in the coastal ocean of the northern Gulf of Mexico.  Some 

storms further away match up to increased current speeds or wave heights while closer 

storms occur in tandem with calm sea state conditions.  Irregularity in the Mississippi 

Sound and Bight’s response coincides with the nature of tropical cyclones.  Factors 

ranging from wind radii to locations of nearby fronts to propagation speed all convolute 

categorization of storms.  Future storm data should be utilized to see if a more concrete 

pattern develops over time. 
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Figure 3.7 Statistics for Gulf of Mexico and direct strike tropical cyclones 

(Top) Year to year totals of tropical storms and hurricanes that entered or formed in the Gulf of Mexico.  Storms are split into initial 

approach direction to the center of the Bight.  (Bottom) The number of tropical storms and hurricanes to pass through the Mississippi 

Bight each year. 

 

3.3 Coincident Observations During Hurricane Seasons and Storm Periods 

Since buoy data indicated tropical cyclones inside the Gulf of Mexico can impact 

wind speeds and wave heights in the study area, observations from the other datasets 

were used to examine hurricane seasons in their entirety while also considering storm 

periods of Gulf tropical cyclones. 

Only 14 named storms entered the Gulf of Mexico from 2014 through 2017.  

Figure 3.8 shows the tracks of the storms relative to the Bight, outlined in red.  Using 

estimates from the Atlantic Hurricane Database, the sizes of the blue circles indicate the 

maximum radius from the storm’s eye where 34 knot winds were sustained.  However, 

the shape of the wind field is somewhat misleading.  The database gives wind radii for 

the northeast, northwest, southwest, and southeast quadrants.  The 34 knot wind radius of 
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the northeast quadrant usually extends further than the other quadrants, and the eastern 

half the storm almost always has higher wind speeds than the western half.  

Consequently, the shaded regions represent the maximum area of possible direct forcing 

by each storm; in actuality, the wind fields have more lobate distributions. 

 

Figure 3.8 Gulf of Mexico storms during 2014-2017 hurricane seasons 

The bolded black lines denote eye positions for each named storm for the duration it remained within the Gulf of Mexico.  The 

Mississippi Bight is outlined by the red rectangle.  The coastline of the Gulf of Mexico is given by the thin black line.  The sizes of the 

circles show the maximum radius of sustained 34 knots for each storm at each 6-hour track position.  Most storms have unequal wind 

extent, so the radius often reflects a northeastern lobe of higher magnitude wind.  As such, the circles show the maximum possible 

areas of direct influence by the storms. 

As a caveat on the results presented in this chapter, storms statistics and analysis 

reflect the period of study and data availability.  While the 2017 hurricane season fell in 

the 90th percentile of active hurricane seasons for the Gulf of Mexico, the other three 

years experienced relatively low cyclonic activity.  By contrast, the 2005 hurricane 
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season had the most number of named storms in the hurricane record, and 12 storms 

entered the Gulf of Mexico, shown in Figure 3.9, compared to the 14 for the four year 

period of this study. 

 

Figure 3.9 Gulf of Mexico named storms during 2005 hurricane season 

As with Figure 3.7, tracks are given by bolded black lines, and the extent of >34 knot wind fields at each recorded eye location are 

shown with blue circles.  Tropical storm Tammy is not included as it had been downgraded to a tropical depression prior to entry into 

the Gulf of Mexico, so the track is only a single point. 

Eddy kinetic energy (EKE) provides a scalar indicator of the energy of currents.  

The HF radar coverage area spans bathymetric depths ranging from 20 m to more than 

1,000 m. Within the coverage area, coastal regions have variable continental shelf width 

and different coastline orientations, so surface current speeds and directionality vary 

widely throughout the study area.  Figure 3.10 shows the division of the coverage area 

into 9 sections with each section being outlined in red, and cyan stars mark the center of 
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each section.  Calculations of the spatially-averaged EKE per unit mass for each section 

at each time moment used (Eq. 3.1).  The sum of squared zonal and meridional 

components of velocity, ui and vi, for each grid point minus the monthly averages of each 

section, uave and vave, divided by twice the number of velocity vectors, N, used in each 

calculation yielded the time-varying EKE for each section.  Since chapter II focused 

primarily on monthly means to describe surface circulation changes throughout the year, 

monthly u and v averages were retained as a reference by which to gauge EKE 

anomalies.  Hourly EKE estimates with fewer than 20 vectors were discarded as sample 

sizes below 20 misrepresented the EKE across the section.   

 

Figure 3.10 Subsections of 5 MHz HFR coverage 

Data were divided into 9 subsections as denoted by the red lines; cyan stars show the center of each section.  The 5 MHz HF radar 

sites are marked by green triangles. 

𝐸𝐾𝐸 =
1

2𝑁
∑ (𝑢𝑖 − 𝑢𝑎𝑣𝑒)

2 + (𝑣𝑖 − 𝑣𝑎𝑣𝑒)
2𝑁

𝑖=1     (Eq. 3.1) 
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Uncertainty values for surface current magnitudes and directions were 

consistently higher in sections 7 and 9, and roughly half the hurricane season lacked 

sufficient coverage in those sections.  By contrast, section 4, 5, and 6 had the most 

consistent coverage, so the EKE plots in Figures 3.11 through 3.14 show results for 

sections 4-6. 

3.4 Results 

The first two hurricane seasons of this study witnessed less intense and fewer 

tropical cyclones while the second two years saw a larger number of storms and overall 

more intense tropical cyclones.  From the hurricane database, the number of days where 

at least one tropical cyclone was extant in either the Pacific or Atlantic, in the Atlantic 

basin, and in the Gulf of Mexico were calculated.  The results are given in (Table 3.1) to 

give a relative measure of cyclonic activity per year.  Global refers to both Atlantic and 

Pacific Basin storm days.  The 2014 and 2015 hurricane seasons had less than 80 Atlantic 

basin hurricane days, and only 8% and 3% of those days saw tropical cyclones in the 

Gulf.  By contrast, 2016 and 2017 had more than 100 Atlantic hurricane days with Gulf 

of Mexico storms accounting for 12% and 25% of those days respectively.  Likewise, in 

terms of global storms days, Atlantic storms were present for a larger percentage of the 

hurricane seasons in 2016 and 2017 than in 2014 and 2015. 

Table 3.1 Tropical Cyclone Days During Study Period 

Year Global Atlantic Gulf of Mexico 

2014 147 75 6 

2015 169 79 2 
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Table 3.1 (continued) 

2016 161 105 13 

2017 146 104 26 

 

Out of 8 named storms, 2 entered the Gulf of Mexico in 2014.  Tropical storm 

Dolly (AL052014, 09/01/2014-09/03/2014) remained in the southwestern Gulf (Beven, 

2015).  Tropical storm Hanna (AL092014, 10/22/2014-10/28/2014) formed from the 

remnants of the Eastern Pacific tropical storm Trudy; it achieved tropical depression 

status in the Bay of Campeche but did not intensify into a tropical storm until it exited the 

Gulf of Mexico (Cangialosi, 2014).   

In 2015, 1 of the 11 Atlantic basin storms entered the Gulf of Mexico.  Tropical 

storm Bill (AL022015, 06/16/2015-06/18/2015) formed in the northwestern Gulf and 

dissipated hours after making landfall by Matagorda Island on the Texas coast on June 

16, 2015 (Berg, 2015).   

The number of Gulf tropical cyclones quadrupled in 2016.  As a whole, the season 

saw 15 named storms: 9 stayed in the Atlantic, 4 entered the Gulf, and 2 passed through 

the Caribbean.  Tropical storm Colin (AL032016, 06/05/2016-06/07/2016) made landfall 

near Big Bend, Florida, so it was the first 2016 Gulf storm (Pasch and Penny, 2017).  

Tropical storm Danielle (AL042016, 06/09/2016-06/21/2016) formed and stayed in the 

southwestern Gulf (Beven, 2016).  Hurricane Earl (AL052016, 08/02/2016-08/06/2016) 

intensified from a tropical storm to a category 1 hurricane in the Caribbean Sea; the 

hurricane made two landfalls in Belize, weakened to a tropical storm while crossing 

Guatemala, and passed briefly through the southwest Gulf of Mexico before making a 
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final landfall near Veracruz, Mexico (Stewart, 2017).  Like Colin, hurricane Hermine 

(AL092016, 08/28/2016-09/03/2016) also made landfall near Big Bend, Florida as a 

category 1 hurricane (Berg, 2017).   

The 2017 hurricane season saw 17 named storms with 7 entering the Gulf.  

Tropical storm Cindy (AL032017, 06/20/2017) evolved into a widespread, disorganized 

storm from an equally widespread low pressure area in the southern Gulf.  The storm 

moved northward and made landfall by Cameron, Louisiana (Berg, 2018).  Tropical 

storm Emily (AL062017, 07/30/2017-08/01/2017) formed in the northeastern Gulf and 

exited the Gulf across the Florida peninsula (Pasch et al., 2018).  Hurricane Franklin 

(AL072017, 08/07/2017-08/10/2017) became a tropical storm near Nicaragua and 

Honduras but did not intensify into a category 1 hurricane until it entered the southern 

Gulf of Mexico; the storm dissipated within a day of making landfall close to Vega de 

Alatorre, Mexico (Beven, 2018).  Hurricane Harvey (AL092017, 08/17/2017-09/01/2017) 

had devolved to remnants but strengthened again in the Bay of Campeche before 

ultimately becoming a category 4 hurricane (Blake and Zelinsky, 2018).  The storm made 

two landfalls along Texas, churned offshore of the Texas coast for nearly a week, and 

made a third landfall by Cameron, Louisiana.  As Harvey started to dissipate, hurricane 

Irma (AL112017, 08/30/2017-09/12/2017) spun up from a tropical depression to a major 

hurricane in less than two days (Cangialosi et al., 2018).  The category 5 hurricane made 

7 landfalls and eventually weakened as it slid northward along the Florida peninsula 

expanding horizontally as it weakened.  Hurricane Katia (AL132017, 09/05/2017-

09/09/2017) remained in the southwestern Gulf; the category 2 hurricane de-intensified to 

a category 1 before landfall by Tecolutla, Mexico (Avila, 2017).  Hurricane Nate 
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(AL162017, 10/04/2017-10/08/2017) started out as a rain-intensive tropical storm near 

Nicaragua, but the tropical cyclone strengthened and became more concentrated upon 

entry to the southern Gulf of Mexico (Beven and Berg, 2018).  The first U.S. landfall 

clipped the mouth of the Mississippi River, and the second occurred near Biloxi, 

Mississippi.  This made Nate the only direct strike storm of the four year study period. 

High frequency radar coverage for the 2014 hurricane season was patchy; section 

5 had the most consistent coverage.  The largest EKE peak in Figure 3.11, about 1600 

cm2/s2, occurred in mid-May, and the second half of June saw a 1400 cm2/s2 peak.  No 

HFR coverage exists for Dolly, and only a 400 cm2/s2 peak could be seen when Hanna 

was in the Gulf of Mexico.  Florida and Alabama water levels in Figures 3.15a and 3.16a 

stayed under 1 m amplitude with the highest water levels predating Hanna by 1 week.  

Water level variations increased in both states during the month of November, but water 

levels during and after both tropical cyclones did not show magnitude changes larger than 

0.5 m.  In Figure 3.17a, water levels did not exceed 1 m above or 1 m below mean sea 

level, and water levels during both storm periods did not depart from patterns observed in 

the rest of the hurricane season.  The Louisiana water levels in Figure 3.18a actually saw 

reduced ranges in water level variation during the storm periods than the weeks preceding 

and following Dolly’s and Hanna’s time in the Gulf.  Temperature at the East Ship Island 

hydrological station varied daily and seasonally throughout the hurricane season, Figure 

3.19a.  Salinity at the station increased before each storm entered the Gulf and decreased 

during the storm periods, but 1-2 day salinity variations during the remaining the 

hurricane season had larger magnitudes.  The highest salinities were observed from July 

through October.  In Figure 3.20a, daily and seasonal temperature changes at the Back 
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Bay Biloxi station echoed trends seen at the East Ship Island station.  As at the East Ship 

Island station, salinities reached a maximum July through October.  No high magnitude 

or prolonged salinity changes occurred during either storm period.  The East Pearl River 

station displayed similarities to the other two stations.  Small 1-3 increases in salinity 

happened in tandem with the two tropical cyclones in Figure 3.21a, but as with the other 

stations, variations did not change noticeably in terms of magnitude or direction from the 

rest of the hurricane season. 

 

Figure 3.11 Eddy kinetic energy during the 2014 hurricane season 

Eddy kinetic energy per unit mass for subsections 4-6 of the 5 MHz high frequency radar coverage region.  Gray bars indicate storm 

periods for tropical cyclones that came into the Gulf of Mexico. 

As with 2014, HFR coverage for the 2015 hurricane season had several gaps, so 

most of the EKE record comes from surface current measurements in sections 5 and 6.  

The HFRs were down during tropical storm Bill.  EKE, shown in Figure 3.12, peaked 

around 1200 cm2/s2 in the latter half of October, but smaller >1000 cm2/s2 peaks occurred 

in the second week of May, the last week in June, and the first week in July.  In Figure 

3.15b, a 1 m peak in water level happened at the Florida tide gages at the same time as 

the highest EKE peak.  Variations in water level increased during the month of 

November.  No deviations from daily and longer term variability were observed while 
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Bill was in the Gulf of Mexico.  The Alabama, Mississippi, and Louisiana tide gages in 

Figures 3.16b, 3.17b, and 3.18b show no indication of storm events during the 2015 

hurricane season.  The tide gages show the same increased water level in late October as 

the Florida tide gages.  Temperature measurements were not available for the majority of 

the 2015 hurricane season.  A decrease in salinity of almost 10 followed Bill’s time in the 

Gulf of Mexico at the East Ship Island station; this salinity change was the largest of the 

hurricane season, Figure 3.19b.  Temperatures at the Back Bay Biloxi station varied daily 

and seasonally with no abrupt increases or decreases.  Salinity at the station, shown in 

Figure 3.20b, stayed near 0 during Bill’s time in the Gulf, but the low salinity started in 

mid-May and continued through the beginning of July.  Salinity increased from May to 

November with a short 1-2 drop in mid-September.  In Figure 3.21b, temperatures at the 

East Pearl River station fluctuated daily and seasonally, but no high magnitude changes 

happened during Bill.  Salinity stayed near 0 for May and June except for a brief increase 

while Bill was in the Gulf, but the magnitude of change was not the largest of the 

hurricane season.  Larger variations and higher salinities occurred July through October. 

 

Figure 3.12 Eddy kinetic energy during the 2015 hurricane season 

Same design as Figure 3.11. 
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EKE coverage in sections 4-6 for the 2016 hurricane season improved drastically 

from the previous 2 years; the only gaps in coverage occurred in the last week of May 

and the first week of June.  EKE in Figure 3.13 peaked in mid-August 2016 at >1,400 

cm2/s2, but ~1,200 cm2/s2 peaks coincided with the storm periods for tropical storms 

Colin and Danielle.  A similar 1,200 cm2/s2 peak happened in the first half of July.  No 

EKE peak coincided with Earl, and Hermine aligned with a smaller 1,000 cm2/s2 peak.  

EKE values frequently exceeded 800 cm2/s2 from May until September then decreased 

for the remainder of the hurricane season.  At the Florida tide gages in Figure 3.15c, 1 m 

water levels above mean sea level accompanied Colin and Hermine, but no appreciable 

peaks happened during Danielle and Earl.  Water levels at the Alabama tide gages in 

Figure 3.16c mimicked the Florida water levels.  Mississippi water levels in Figure 3.17c 

also displayed similar behavior, but a <1 m dip in water level occurred when Danielle 

was in the Gulf.  No abrupt or prolonged changes in water level could be seen at the 

Louisiana tide gages in Figure 3.18c.  Gaps in the salinity time series for the East Ship 

Island station happened in May and parts of October and November.  No salinity data 

exist for Colin, but a 5 increase accompanied Danielle.  Salinity did not change during 

Earl or Hermine, but a >10 decrease could be seen in late August between the 2 storms.  

The temperature record in Figure 3.19c showed daily and seasonal variations but no clear 

indication of storm impacts.  In keeping with other years, temperatures at the Back Bay 

Biloxi station varied daily and seasonally; the only irregularity was a 5°C drop the week 

after Earl in the first half of August.  In figure 3.20c, salinity measured at the station 

dropped to nearly 0 at the same time as the temperature decrease.  Salinity increased 

around mid-September and remained elevated for the rest of the hurricane season.  
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Salinity started near 0 at the beginning of May, rose to approximately 15 before dropping 

back to 0 in mid-May.  A second salinity increase to about 15 preceded Colin’s time in 

the Gulf before decreasing again to near 0 after the storm.  No distinct temperature or 

salinity changes happened during Danielle, Earl, or Hermine, but temperature and salinity 

decreased dramatically in August between Earl and Hermine.  This drop could be seen at 

the East Ship Island station as well.  The East Pearl River station in Figure 3.21c 

evidenced daily and seasonal fluctuations and the same 1-2 decrease in temperature in 

August recorded at the other 2 stations.  Salinity was highest in July as wells as October 

through November, and 10-15 increases in salinity occurred while Colin, Danielle, and 

Hermine were in the Gulf of Mexico.  Danielle occurred at the beginning of the increased 

salinity in late June that continued until the second week of August.  Earl’s time in the 

Gulf happened partway through the elevated salinity period. 

 

Figure 3.13 Eddy kinetic energy during the 2016 hurricane season 

Same design as Figure 3.11. 

The 2017 hurricane season exhibited the highest overall EKE and the most 

complete surface current coverage of the four year period.  Two of the three 5 MHz 

HFRs were taken down before hurricane Nate, so no EKE estimates are available for that 

storm period.  In Figure 3.14, a 3,500 cm2/s2 peak occurred during tropical storm Cindy, 
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and the period after Hurricane Harvey made landfall along central Texas had EKE values 

above 2,500 cm2/s2.  Likewise, the end of hurricane Irma’s duration in the Gulf as it slid 

up the Florida peninsula registered >3,000 cm2/s2.  Hurricane Katia was also present in 

the southwestern Gulf of Mexico during this time, so the effects from one storm cannot 

be separated from the other.  Another 3,000 cm2/s2 peak can be seen in the last week of 

May, and EKE values topped 1,000 cm2/s2 throughout May and July.  EKE values stayed 

under 500 cm2/s2 during hurricane Franklin’s time in the Gulf of Mexico.  Water levels 

exceeded 1 m during Cindy and Nate, and water levels fell to near -1 m during Irma at 

the Florida tide gages shown in Figure 3.15d.  Higher magnitude water level changes did 

not accompany the other storms.  In Figure 3.16d, Alabama water levels rose above 1 m 

above mean sea level for Cindy, neared 1 m for Harvey, and nearly reached 2 m during 

Nate.  As with the Florida tide gages, water levels in Alabama fell to almost -1 m after 

Irma’s time in the Gulf.  The other storms period showed little change compared to the 

days before and after the storms.  Water levels in Mississippi as seen in Figure 3.17d 

echoed the patterns from the Alabama gages.  Louisiana water levels had similar 

responses to Cindy, Harvey, and Nate; however, the decrease in water level during Irma 

was not present, Figure 3.18d.  Unlike the other states, a >1 m increase in water level 

preceded Nate’s landfalls by almost a week.  Gages in all four states measured a 0.5-1 m 

increase in water level during the first week of May that did not correspond to any Gulf 

storm.  In Figure 3.19d, salinity measurements at the East Ship Island station were not 

available in June, the first half of July, and the second week of November.  Likewise, 

temperature data were missing for the last 3 weeks of November.  Data for the rest of the 

season showed daily and seasonally-varying temperature, but temperatures dropped by 1-
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3 °C during Cindy, Emily, Harvey, and after Irma.  Salinity increased during Emily and 

to a lesser extent during Franklin.  A multi-week increase in salinity encompassed the 

time Harvey was in the Gulf; likewise, salinity increased in the weeks leading up to 

Nate’s entrance into the Gulf but fell after the storm dissipated.  Figure 3.20d shows 

bottom temperature and salinity for the Back Bay Biloxi station.  Temperature decreased 

during Cindy while salinity dropped nearly to 0.  Emily formed in the Gulf as salinity 

rose, but salinity fell as the storm exited the Gulf.  Salinity stayed near 0 during Franklin 

but rose as Harvey transited north through the Gulf.  No salinity data were present for 

Irma or Katia, but temperature decreased after Harvey and Irma.  Nate’s time in the Gulf 

occurred in tandem with a 2 week period of cooler temperatures and increased salinity.  

Salinity dropped after Nate made landfall but rose again in November.  Temperature 

decreased by 2-4 °C for Cindy, Harvey, and Irma at the East Pearl River station, Figure 

3.21d.  Salinity stayed near 0 in May, Jun, and the first half of July, but large increases in 

salinity occurred in the first week of May, mid-May, and during Cindy.  Salinity peaks 

also happened at the same time Emily, Franklin, and Harvey were in the Gulf, and 

salinity decreases followed Franklin, Harvey, and Irma.  The weeks leading up to Nate’s 

formation and the period where the storm was in the Gulf had the highest salinity of the 

hurricane season.  Variations in salinity increased in October and November. 
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Figure 3.14 Eddy kinetic energy during the 2017 hurricane season 

Same design as Figure 3.11. 

The 2016 and 2017 hurricane seasons offered better years for tropical cyclone 

study even though 2/3 of the 5 MHz sites were taken down in advance of Nate.  No 

surface current data exists for the one direct strike storm of the 4 year period, but data 

does exist, not only for the storm periods of 10 tropical cyclones but also for the two 

weeks leading up to and following the storms’ time in the Gulf of Mexico.  Figures 3.22 

to 3.31 give surface current feather plots for vector-averaged velocities for 1 of the 9 

HFR subsections.  A commonality between the plots is a switch between northward 

flowing currents to southward flowing currents on a roughly 24-hour timescale.  Vertical 

red lines in each of the plots indicate the dates during which storms stayed within the 

Gulf of Mexico.  Each time series was examined for surface current magnitude increases 

or directional shifts during the storm periods compared to the two weeks before and after 

the storm period.   
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Figure 3.15 Florida water levels during the 2014-2017 hurricane seasons 

Water level time series, referenced to mean sea level, for the 2014-2017 hurricane seasons; gray bars denote storm periods of Gulf of 

Mexico tropical cyclones. 

In 2016, currents during the 4 Gulf storms exhibited some increase or directional 

shift, but changes to current speed and magnitude were not extreme compared to daily 

variations outside the storm periods.  In Figure 3.22, current speeds ranged from 30 cm/s 

to 50 cm/s during non-storm days.  During Colin’s time in the Gulf, current speeds 

peaked near 80 cm/s; however, the 24-hour alternation in current direction did not 

change.  A similar pattern emerged for Danielle in Figure 3.23; current speeds during the 

storm period went from 60 cm/s to 80 cm/s compared to the 30 cm/s to 60 cm/s before 

and after the storm.  Current speeds in Figure 3.24 range from 10 to 70 cm/s, but speeds 

during Earl stay below 40 cm/s.  The one peculiarity comes in that currents remain 

southward flowing during the storm and for several days after.  This period marks a 

multiday departure from the 24-hour rotation in current direction.  Finally, southward 

currents during Hermine’s time in the Gulf stayed under 30 cm/s, but when the switch to 

northward flow occurred, speeds increased to almost 80 cm/s.  This differed from 

currents outside the storm period in Figure 3.25.  Speeds varied between 20 and 100 
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cm/s, but northward and southward currents had equivalent magnitudes.  Currents during 

storm periods do not stand out visually from the surrounding weeks, but some fluctuation 

in speed or direction can be seen with each storm. 

 

Figure 3.16 Alabama water levels during the 2014-2017 hurricane seasons 

Same setup as Figure 3.15. 

 

Figure 3.17 Mississippi water levels during the 2014-2017 hurricane seasons 

Same setup as Figure 3.15. 
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Figure 3.18 Louisiana water levels during the 2014-2017 hurricane seasons 

Same setup as Figure 3.15. 

Feather plots for the 2017 Gulf tropical cyclones also contain changes to current 

speed and direction for storm versus non-storm periods.  Surface current data are not 

available for hurricane Nate since the HFRs were taken down prior to the storm’s closest 

approach, so the plots only show currents affected by storms further away.  In Figure 

3.26, current speeds range from 20 cm/s to 40 cm/s.  Speeds increase to over 80 cm/s 

during Cindy’s time in the Gulf, and the north to south rotation gives way to strictly 

northward flowing currents.  During Emily’s stay in the Gulf, current speeds stay on the 

low end of the 10 cm/s to 70 cm/s range seen in the feather plot, and no apparent 

interruption occurs to the cycling between northward and southward flow, Figure 3.27.  

In Figure 3.28, Franklin’s storm period also lacks any change to current speed and 

direction.  Hurricane’s Harvey and Irma happened in quick succession, and Katia was in 

the southwestern Gulf while Irma came through the Caribbean Sea and slid up the Florida 

peninsula.  Given the timing of these storms, impacts to currents from one storm can be 

seen in the feather plot of another, and as mentioned earlier, Katia’s influence on 
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Mississippi Bight currents cannot be differentiated from Irma’s.  Figures 3.29, 3.30, and 

3.31 show surface currents for the weeks before, during, and after Harvey’s, Irma’s, and 

Katia’s time in the Gulf.  Speeds ranged from 20 cm/s to 60 cm/s, and the north to south 

reversal in direction marked most of the time series.  The daily directional shift did not 

cease during Harvey, but as the storm approached Louisiana, northward currents reached 

nearly 100 cm/s.  Katia’s time in the Gulf happened during a multiday period of 

northward facing currents with magnitudes less than 40 cm/s that gave way to southward 

currents up to 80 cm/s during Irma.  As with 2016, none of the storm periods produced 

extreme current speed (more than 150 cm/s), but several of the 2017 tropical cyclone 

periods occurred in tandem with elevated current speeds and a preferential current direct 

either to the north or south. 
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Figure 3.19 Hurricane season bottom temperature and salinity near East Ship Island 

Bottom temperature (blue) and salinity (red) measured at USGS-MDMR station 6 (Mississippi Sound near East Ship Island) for the 

hurricane seasons in a) 2014, b) 2015, c) 2016, d) 2017.  Gray bars denote storm periods of tropical cyclones while in the Gulf of 

Mexico, and the letters are the first letter of the cyclone’s name. 
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Figure 3.20 Hurricane season bottom temperature and salinity at Back Bay of Biloxi 

Bottom temperature (blue) and salinity (red) measured at USGS-MDMR station 8 (Back Bay of Biloxi) for the hurricane seasons in a) 

2014, b) 2015, c) 2016, d) 2017.  Gray bars denote storm periods of tropical cyclones while in the Gulf of Mexico, and the letters are 

the first letter of the cyclone’s name. 
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Figure 3.21 Hurricane season bottom temperature and salinity at East Pearl River 

Bottom temperature (blue) and salinity (red) measured at USGS-MDMR station 11 (East Pearl River at the CSX Railroad Crossing) 

for the hurricane seasons in a) 2014, b) 2015, c) 2016, d) 2017.  Gray bars denote storm periods of tropical cyclones while in the Gulf 

of Mexico, and the letters are the first letter of the cyclone’s name. 
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Figure 3.22 Surface currents for tropical storm Colin in HFR section 5 

Vector-averaged currents for the 2 weeks leading up to Colin’s entrance into the Gulf of Mexico, the period the storm stayed in the 

Gulf as denoted by red lines, and the 2 weeks following the period the storm was in the Gulf. 

 

Figure 3.23 Surface currents for tropical storm Danielle in HFR section 4 

Same design as Figure 3.22. 
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Figure 3.24 Surface currents for hurricane Earl in HFR section 5 

Same design as Figure 3.22. 

 

Figure 3.25 Surface currents for hurricane Hermine in HFR section 5 

Same design as Figure 3.22. 
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Figure 3.26 Surface currents for tropical storm Cindy in HFR section 5 

Same design as Figure 3.22. 

 

Figure 3.27 Surface currents for tropical storm Emily in HFR section 2 

Same design as Figure 3.22. 
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Figure 3.28 Surface currents for hurricane Franklin in HFR section 5 

Same design as Figure 3.22. 

 

Figure 3.29 Surface currents for hurricane Harvey in HFR section 5 

Same design as Figure 3.22. 
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Figure 3.30 Surface currents for hurricane Irma in HFR section 6 

Same design as Figure 3.22. 

 

Figure 3.31 Surface currents for hurricane Katia in HFR section 6 

Same design as Figure 3.22. 

 

3.5 Discussion 

Of the 1,848 Atlantic basin storms, 631 (34%) came into or formed in the Gulf of 

Mexico, and 125 tropical cyclones (7%) passed through the Mississippi Bight.  This 

study covers only 14 of the 631 Gulf of Mexico storms and 1 of the 125 direct strike 

storms.  While statistics cannot be generated from this small sample size, an examination 



 

134 

of these storms within the context of their hurricane seasons grants insight into the degree 

to which storms can perturb the Mississippi Bight and the temporal scales on which those 

perturbations happen.  Three of the four hurricane seasons showed the conflicting and 

minimal response of circulation within the Mississippi Sound and Bight to Gulf of 

Mexico storms.  The 2017 hurricane season offered more storms for study and included 

the only storm to transit through the study area.  Data suggest Gulf storms raise water 

levels along the coasts for a few hours to a few days.  Salinity increases as a storm 

approaches from the south and decreases after the storm either dissipates or exits the 

Gulf, and EKE sharply increases if a storm moves close enough to the study area.  

However, many of these results rely on data from 2017 only, so additional years are 

needed for a more complete study. 

In general, eddy kinetic energy (EKE) per unit area peaked either in the days 

leading up to a cyclone’s approach or at the time of closest approach.  There were, 

however, EKE peaks in each year unassociated with nearfield storm periods.  This speaks 

to the importance of studying the whole hurricane season.  Tropical cyclones do not form 

in isolation of other atmospheric phenomena, and while storm periods may produce 

anomalous responses in the Mississippi Sound and Bight, the magnitude of the response 

can pale in relation to non-storm periods. 

While each storm had a unique evolution, qualitative comparisons can be made.  

Bottom temperatures sometimes dropped during a storm’s closest approach.  Salinity 

dropped after a storm dissipated or left the Gulf, and water levels across the northern Gulf 

coast rose following the storm passage through the Gulf.  Hurricane Irma offered a 

notable exception to this behavior since water levels dropped as Irma got closer to the 
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Mississippi Sound and Bight.  Finally, changes in hydrographic properties associated 

with tropical cyclone approach tended to last less than 1 week after the storm’s approach.  

However, these results were not equally true for all Gulf storms, and the study lacked 

HFR data for the one direct strike storm.  The four year period of this study suggests 

storms cause relatively minor impacts to circulation, but a different study focusing on 

multiple direct strike tropical cyclones would likely produce different results. 
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CHAPTER IV – BARRIER ISLAND REMOVAL SCENARIOS 

4.1 CONCORDE Synthesis Model Development 

4.1.1 COAWST Model Basis 

The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model 

was designed to provide a high resolution estimation of coastal marine environments, and 

the Regional Ocean Modeling System (ROMS)-based COAWST model for the 

Mississippi Sound and Bight (ROMSmsb) utilizes the COAWST framework for a 400-m 

horizontal resolution coastal ocean model for the northern Gulf of Mexico (Warner, et al., 

2008; Warner, et al., 2010; Pan, et al., 2017).  The ROMSmsb effort began as the 

COnsortium for oil exposure pathways in COastal River-Dominated Ecosystems 

(CONCORDE) Synthesis Model (Greer et al., 2018). 

The primitive equations of motion drive ROMS which employs terrain-following 

vertical coordinates and orthogonal curvilinear horizontal coordinates.  ROMSmsb 

retains ROMS as the oceanic component with 24 σ vertical levels.  The default 

atmospheric forcing for COAWST comes from the 3-hour temporal resolution North 

American Regional Reanalysis (NARR) (Mesinger et al., 2006).  ROMSmsb can utilize 

NARR, but the 1-hour temporal resolution CONCORDE Meteorological Analysis 

(CMA) was designed for use in the model domain, so runs evaluated in this study used 

CMA forcing or CMA-derived forcing (Fitzpatrick and Lau, 2018).  ROMSmsb is not a 

two-way coupled model; CMA supplies atmospheric forcing to ROMSmsb. 

Also included in COAWST are the Simulating Waves Nearshore (SWAN) model 

for waves and the Community Sediment Transport Model System (CSTMS) for sediment 
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dynamics; while both are undergoing development for ROMSmsb, this study was 

concerned with the atmospheric and oceanic portions of the model. 

4.1.2 Regional Ocean Modeling System 

The Regional Ocean Modeling System (ROMS) utilizes the primitive equations 

under Boussinesq and hydrostatic approximations to model physical oceanographic 

conditions.  This means calculation of seven state variables using seven equations: three 

momentum balance equations, advection-diffusion equations for salinity and temperature 

derived from the conservation equations for mass of salt and heat, the nonlinear equation 

of seawater state, and the continuity equation.  The state variables include the three 

components of velocity (u, v, and w), potential temperature (T), salinity (S), pressure (P), 

and density (ρ).   

While these equations make up the primitive equations, handling of the turbulent 

flux terms in the equations introduces additional unknowns which require some turbulent 

closure scheme.  Typically, this is accomplished with a two-equation turbulent model 

(Warner et al., 2005).  The Mellor-Yamada and Mellor-Yamada 2.5 schemes have been 

used in other ocean circulation models as well as in ROMS.  However, as the original 

COAWST model couples a sediment transport model with ROMS, ROMSmsb utilizes 

the generic length scale methodology from COAWST detailed by Umlauf and Burchard 

(2003) and implemented by Warner et al. (2005) into ROMS since Mellor-Yamada 2.5 

results in poor sediment transport simulations.    

The formulation of the primitive equations and their use in numerical modeling of 

geophysical fluids, specifically the atmosphere, is often credited to Lewis Richardson and 

Vilhelm Bjerknes (Richardson, 1922; Bjerknes, 1914).  However, the derivation of the 
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equations followed from centuries of work.  Charney et al. (1950) heralded in weather 

forecasts by computerized, numerically-integrated barotropic models, but the inclusion of 

the primitive equations did not follow until the latter half of the twentieth century when 

computing power improved.  Bryan and Cox (1967) developed the first circulation model 

for the ocean during the 1960s.  Use of the primitive equations has since become the 

norm in hydrodynamic models. 

The version of ROMS employed in this study resulted from iterative 

development; details can be found in a number of publications.  Shchepetkin and 

McWilliams (2003; 2005) describe the handling of the horizontal component of the 

pressure gradient in terrain-following models and the numerical methods used in ROMS.  

Marchesiello et al. (2001) discussed options and difficulties in using open boundary 

conditions.  Moore et al. (2004) enumerated on the creation of the tangent linear and 

adjoint modules of ROMS while Moore et al. (2011) detailed procedures for data 

assimilation into ROMS.  Warner et al. (2005) evaluated the formulation of multiple two 

equation turbulent closure schemes via generic length scale equations for use in ROMS.  

Finally, the development of COAWST is detailed in Warner et al. (2005) and Warner et 

al. (2010).  ROMSmsb was adapted from the COAWST model. 

4.1.3 CONCORDE Meteorological Analysis 

The CONCORDE Meteorological Analysis (CMA) provides atmospheric forcing 

for ROMSmsb at 0.01° spatial grid spacing and hourly temporal intervals.  CMA 

combines variable fields from the Real-Time Mesoscale Analysis (RTMA), the North 

American Mesoscale (NAM) Forecast System, the Next Generation Weather Radar 

(NEXRAD) Level-III, and the Advanced Very High Resolution Radiometer (AVHRR) 
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(Fitzpatrick and Lau, 2018).  The CMA product was developed for the CONCORDE 

project.  However, the scripts and retrieval procedures have been made publicly 

available, so new CMA files can be generated beyond the duration of the CONCORDE 

project. 

Fitpatrick and Lau (2018) detail the procedures to retrieve and calculate fields for 

CMA and outline creation of daily atmospheric forcing files.  The 10-m meridional and 

zonal wind components, sea level pressure, and 2-m air temperature from RTMA are 

mapped to the CMA horizontal grid using bilinear interpolation, and RTMA air 

temperature, sea level pressure, and dew point enabled calculation of relative humidity.  

The NAM Forecast System analysis and short-term forecast fields of long-wave 

radiation, short-wave radiation, and cloud cover percentage are likewise bilinearly 

interpolated to the CMA grid.  Of the National Doppler Radar Sites included in 

NEXRAD Level-III, the KMOB (Mobile, Alabama) and KLIX (New Orleans, Louisiana) 

fall closest to the CMA grid, so nearest neighbor interpolation-mapped precipitation rates 

to the horizontal model grid are performed from the closest radar site.  Ten-day averaged 

sea surface temperatures (SSTs) centered on day 6 were calculated from daily AVHRR 

SST output and then interpolated to the CMA grid using a distance weighting algorithm.  

Daily SST values were repeated for each hour of the day.  Finally, sensible heat flux and 

surface momentum stresses are computed from the Coupled Ocean-Atmosphere 

Response Experiment (COARE) algorithm using the interpolated fields from RTMA, 

NAM Forecast System, and AVHRR.  CMA files were generated daily, but the collection 

of CMA files were mapped to the ROMSmsb horizontal grid using bicubic interpolation 

to yield a single CMA file for use in ROMSmsb runs. 
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4.1.4 Gridding and Bathymetry 

The land mask and bathymetry of ROMSmsb were developed for the 

CONCORDE project.  Bathymetry generation involved the synthesis of output from a 

digital elevation model and field surveys.  Bathymetric depths, dated 2001, taken from 

the National Centers for Environmental Information (NCEI) 3 arc-second coastal relief 

model provided initial input for the Bathymetric Dynamic Digital Elevation Model 

(BDDEM); depths were updated year by year with National Ocean Service hydrographic 

surveys performed in the region from 2001 through 2011 and interpolated to a 90-m 

resolution grid (NOAA, 2001; O’Brien et al., 2014).  The 400-m raw and smoothed 

model bathymetry grids were created from the BDDEM output grid using a Fortran-based 

software called gridpak developed by Wilkin and Hedström (1998).  Two algorithms 

smoothed the bathymetry 6 times using a modified Shapiro filter.  The gridpak software 

also generated an initial land mask, and the mask was then edited in post-processing 

using a MATLAB script called editmask developed by Shcherbina (2014). 

4.1.5 Nesting and Forcing Files 

Three forcing files are fed to the ROMSmsb input file: atmospheric, boundary, 

and riverine input.  The atmospheric model is described above while boundary and 

riverine input are discussed below.   

ROMSmsb uses one-way nesting; forcing along lateral boundaries is taken from 

the Navy Coastal Ocean Model (NCOM).  Output from the 3 hourly 1-km horizontal 

resolution Gulf of Mexico regional application of NCOM was sub-gridded through linear 

interpolation to match the spatial resolution of ROMSmsb, so results supplied values 

along the ROMSmsb boundaries.  The Coupled Ocean Atmosphere Mesoscale Prediction 
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System (COAMPS) provided atmospheric inputs for NCOM while the regional model, in 

turn, took its boundary inputs from the global Hybrid Coordinate Ocean Model 

(HYCOM) (Kara et al., 2006; Martin et al., 2008; Martin et al., 2009).  Like ROMSmsb, 

NCOM uses curvilinear horizontal coordinates, σ vertical levels, and the primitive 

equations with Boussinesq and hydrostatic approximations. 

The riverine input file contains input for 17 rivers, but outflow for the larger 

rivers was split into multiple mouth locations, each with their own coordinates and time-

varying flow.  Salinity was set to zero for each river, and discharge estimates came from 

US Geological Survey daily discharge time series available from 

https://waterdata.usgs.gov/nwis/dv/.  The model does not account for all riverine sources; 

as an example, no freshwater discharge comes from Lake Ponchartrain.  Figure 4.1 shows 

the locations of each riverine source within the model domain. 

 

Figure 4.1 Riverine input locations in the ROMSmsb domain 

Green circles give the locations of 17 rivers included in the ROMSmsb input files.  The model domain is outlined in black with land 

areas colored gray.  Bathymetry is colored according to depth in meters. 
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4.2 Data-Model Agreement 

4.2.1 CMA Validation 

Multiple rounds of CONCORDE Meteorological Analysis (CMA) validation have 

been completed by Fitzpatrick and Lau (2018) as well as by members of the 

CONCORDE modeling group.  Consequently, the validation covered here investigates 

CMA’s ability to capture repeated events, specifically the land-sea breeze cycle.  As 

discussed in Chapter I, the land-sea breeze dynamic becomes dominant from June 

through August.  This atmospheric phenomenon plays a key role in summer atmospheric 

forcing, so the atmospheric model should be able to represent the cycle.   

Winter front identification through temperature gradient, sea level pressure, and 

relative humidity was also investigated, but no comparative observational results existed 

for the model domain.  As such, confirmation of successful winter front identification 

would be subjective at best.  The CMA domain is limited to the northern Gulf of Mexico 

which has been a historically more difficult area in which to automate front detection.  

Front identification typically uses two or more parameters to classify fronts; these can 

include temperature gradients, pressure isobars, etc. (Cox, 1916).  Fronts travel southeast 

across the continental United States, and from the perspective of the study area, winter 

fronts can approach from the northwest, the west, or the southwest (Rogers and Rohli, 

1991; Roberts et al., 1989).  Atmospheric conditions preceding frontal passage include 

falling pressure, warmer temperature, and higher humidity; by contrast, post-front 

passage sees higher pressure, cooler temperatures, and lower relative humidity (Cox, 

1916).  Shifts in wind direction can also indicate frontal passage, but as Chapter II noted, 

the shape of the coastline complicates studies based on wind direction.   
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Local maxima in sea level pressure were correlated to local minima in air 

temperature.  Calculation of temperature gradients across the CMA domain whenever 

1025 hPa occurred between October and April was used to assess potential front 

positions, and when available, decreases in relative humidity were also monitored.  

However, the analysis only identified 12-16 fronts in the 2015-2017 CMA period.  

Results are not presented here; instead, CMA validation focused on the sea breeze cycle 

and land breeze cycle. 

Isolation of the land-sea breeze dynamic follows the methodology outlined in Hill 

et al. (2010).  CMA output was limited to June, July, and August.  Hill et al. (2010) 

focused on buoys 42040 and 42007 as wells as the NOAA stations KGPT (Gulfport 

Airport, Mississippi) and KBVE (Boothville, Louisiana).  Consequently, the indices of 

the nearest model grid points to those locations were identified.  Hill et al. (2010) used 

radar data to remove days with precipitation events as these days would be 

uncharacteristic of land-sea breeze days (Hill et al., 2010).  In CMA, hours exceeding a 

rainfall rate of 5x10-5 kg/m2s (4 mm/day) were excluded to accomplish a similar goal.  

Likewise, hours with wind speeds exceeding 14.4 m/s were removed since the Beaufort 

wind scale qualifies speeds from 0 to 14.4 m/s as light, gentle, moderate, fresh, and 

strong breezes.  Hourly averaging of the remaining data generated typical June, July, and 

August sea breeze cycle days over a 24 hour period.  Conversion of the dataset to Central 

Daylight Time then allowed comparison to Figure 3 in Hill et al. (2010). 

In Figure 4.2, wind speed magnitudes at the Gulfport Airport location have nearly 

identical magnitudes to those given in Figure 3 of Hill et al. (2010).  However, peak 

magnitudes start around local noon in CMA whereas Hill et al found magnitudes peaking 
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around 8:00 CDT.  Also, CMA has lower wind speeds from 0:00 CDT to 10:00 CDT and 

from 20:00 CDT to 23:00 PM CDT.  Overall though, wind directions agreed for all three 

months.  CMA exhibited larger wind speed ranges at both buoy locations while Hill et al. 

(2010) found magnitudes only varying between 2 m/s and 4 m/s.  Directionality in June 

did not agree well, but July and August directionality mimicked the Hill et al. (2010) 

study.  As for buoy 42040, CMA wind directions agreed in August, but magnitudes did 

not.  July wind directions did not match, and the minimum in July happened at 14:00 

CDT rather than at 18:00 CDT as given in Hill et al. (2010).  CMA performed well in that 

rotation of the wind velocities occurred with the same timing exhibited in Hill et al. 

(2010). 

Hill et al. (2010) additionally analyzed the time-evolving temperature gradient 

between KGPT (Gulfport Airport) and buoy 42007 which lie 47 km apart.  The distance 

between the stations matches in the CMA grid.  Results in Figure 4.3 for CMA and 

Figure 8 in Hill et al. give the temperature gradient in K/km.  In this instance, the gradient 

is equal to the air temperature at KGPT minus the air temperature at buoy 42007 divided 

by the diagonal distance between the two.  Hill et al. (2010) split the 24 hours of each 

month into two regimes: negative (warmer ocean) and positive (warmer land).  The 

negative temperature gradient occurs from 0:00 CDT to 9:00 CDT and from 19:00 CDT 

to 23:00 CDT, and the positive gradient remains from 9:00 CDT to 19:00.  The CMA 

results not only preserve this trend but more clearly demonstrate it.  The Gulfport land 

site is warmer than the sea site during the majority of daylight hours, but the sea site 

becomes warmer at night.  Hill et al. (2010) found a -3.5 K to 3.0 K range in temperature 
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differences between the two sites; CMA displayed a -4.8 K to 2.4 K range in temperature 

differences. 

 

Figure 4.2 Composite CMA sea breeze wind fields for June, July, and August 

Magnitudes of average wind velocities for KGPT (top left), buoy 42007 (middle left), and buoy 42040 (bottom left) and their 

associated directions (right panel) for the months June, July, and August.  Directions are north (up), east (left), south (down), and west 

(right). 

Though the CMA results did not perfectly replicate trends in the Hill et al. (2010) 

study, CMA did exhibit the correct pattern in temperature gradient anomaly.  Wind speed 

changes and directional shifts also loosely followed results from Hill et al. (2010).  Given 

the difference in study years and products used, the CONCORDE Meteorological 

Analysis does represent the land breeze and sea breeze cycles satisfactorily in terms of 

temperature gradients and wind speed and direction evolution during a 24-hour period. 
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Figure 4.3 Temperate gradient for June, July, and August between Gulfport and buoy 

42007 

Temperature differences across the 47 km separation distance of the Gulfport Airport station minus the buoy 42007 station for June 

(top), July (middle), and August (bottom). 

 

4.2.2 ROMSmsb Validation 

Since CMA forcing was not available until 04/15/2015, a 14 month ROMSmsb 

run was executed from 01/01/2014 using North American Regional Reanalysis for 

atmospheric forcing.  Subsequent runs used in this study used output from the NARR-

forced run as initial conditions for hot start runs.  Atmospheric forcing for the output 
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detailed in this chapter utilized CMA forcing.  The first month of output after April 2015 

was excluded to avoid any contamination related to the change in atmospheric forcing. 

ROMSmsb validation focused on two datasets: 5MHz HF radar-derived surface 

currents and near-bottom temperature and salinity measured by the 12 USGS-MDMR 

hydrological stations in the western Mississippi Sound.  Earlier model validation efforts 

compared model output against data collected during the field campaigns of 

CONCORDE.   

In keeping with previous validation efforts, some results are presented in Taylor 

diagram form.  Taylor diagrams provide a way to evaluate model-data agreement based 

on three criteria within a single plot (Taylor, 2001).  On a polar coordinate system, the 

magnitudes of the data and model standard deviations function as radii.  The data 

standard deviation is at 0° while the model standard deviation is at 90°.  The correlation 

coefficient given by (Eq. 4.1) runs the curved axis from 0 at 90° clockwise to 1 at 0°.  In 

(Eq. 4.1), D represents observational data, M represents model output, overbars denote 

means, σ gives standard deviations, and N is the number of discrete points used for 

comparison; (Eq. 4.1) and (Eq. 4.2) follow from equations (1) and (2) in Taylor (2001).  

Within the Taylor plot, a series of concentric circles centered on the data standard 

deviation display the centered root mean square errors.  (Eq. 4.2) gives the formula for 

calculating centered root mean square errors.  Given this setup, model-data agreement 

occurs as the model standard deviation draws equal to the data standard deviation, the 

centered root-mean-square error goes to zero, and the correlation coefficient goes to one.  
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More simply put, the data standard deviation acts as the reference point, and model 

results should fall close to that point. 

A technique was developed to compare HFR velocities against model velocities. 

CenGOOS HF radar surface velocities represent hourly products averaged over 6x6 km2 

regions for the 5 MHz sites and 1x1 km2 regions for the 25 MHz sites.  By contrast, 

ROMSmsb has 400x400 m2 resolution and a user-defined file generation of 12 hours.  

The northwest HFR domain overlaps the southeast ROMSmsb domain, but the 

discrepancy in resolution requires some averaging to enable comparison of data and 

model results over the effective depth of the HFR-derived surface currents.   

Consequently, logical indexing found model grid points that fell within a 

bounding box 3 kilometers north, south, east, and west of an HFR velocity grid point.  

The procedure for converting the 3 km distance into longitude and latitude bounds is 

detailed in section 3.1.  Velocities of the model grid points falling within the HFR grid 

cell went into the spatial average. 

Since ROMSmsb utilizes σ layers for its vertical grid, model velocities had to be 

averaged over the effective depth range of the HFRs.  Wavelengths, λ, of the transmitted 

HFR radio signals can be found by dividing the speed of light, c=3x108 m/s, by the center 

frequency, f, of the HFR in Hz (1/s), seen in (Eq. 4.3).  Wavelengths of surface gravity 

waves that Bragg scatter the signal have one-half the wavelength of the transmitted 

signal, and the depth of influence of those surface gravity waves determines effective 

𝑅 =
1

𝑁
∑ (𝐷𝑖−�̅�)(𝑀𝑖−�̅�)𝑁
𝑖=1

𝜎𝐷𝜎𝑀
    (Eq. 4.1) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [(𝐷𝑖 − �̅�) − (𝑀𝑖 − �̅�)]2𝑁
𝑖=1    (Eq. 4.2) 



 

149 

depths of radial currents measured by the direction-finding Seasonde HF radars.  Stewart 

and Joy (1974) found the commonly accepted equation that estimates effective depth, d, 

by comparison of HFR-derived currents to in situ measurements.  (Eq. 4.4) depends on 

the assumption that current speeds decrease linearly with depth. 

The 5 MHz sites center frequencies range from 4.54 MHz to 4.75 MHz meaning 

effective depth ranges from 2.63 m to 2.51 m, so an average value of 2.57 m was used for 

effective depth.  The 25 MHz sites operate at 25.4 MHz and 25.6 MHz center frequencies 

meaning effective depth is approximately 0.47 m.  However, insufficient 25 MHz 

velocity measurements existed for the duration of the model runs to provide adequate 

points for comparison since the HFRs were installed in February 2016.   

ROMSmsb σ layers at each grid point for each time step were transformed to 

depth estimates using σ transform and stretching functions in conjunction with the free 

surface and critical depth variables outputted by the model (Shchepetkin and 

McWilliams, 2005; Song and Haidvogel, 1994).  Horizontal velocities were retrieved for 

all layers falling within the HFR effective depths.  Depth-averaged velocities were then 

taken at each time step for each grid point prior to the averaging of model velocities for 

grid points occurring within each HFR spatial cell.  The depth-range-averaged and 

spatially-averaged model velocities, converted to cm/s, were then compared to 12-hour-

averaged HFR-derived surface velocities. 

𝜆𝐻𝐹𝑅 =
𝑐

𝑓
    (Eq. 4.3) 

𝑑 =
𝜆𝐻𝐹𝑅

8𝜋
    (Eq. 4.4) 
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Looking over the shared domain and throughout the year long model run, mean 

velocities and standard deviations are close for HFR and ROMSmsb velocities.  The 

mean zonal velocity was -2 cm/s with a standard deviation of 9 cm/s, and the meridional 

component mean was -1 cm/s with a standard deviation of 10 cm/s.  The observational 

means were 1 cm/s and -3 cm/s with standard deviations of 13 cm/s and 9 cm/s 

respectively.  However, agreement varied widely across the shared domain.  Figures 4.4 

and 4.5 split the model-observations pairs up by location.  In order to keep all the results 

on one plot, model and observational standard deviations were divided by the 

observational standard deviation for each grid cell.  This means all observational points 

were set equal to 1 and marked by “Ref”, and the normalized model standard deviation at 

1 shows the line of best agreement.  The highest correlation coefficient for zonal 

velocities reached 0.8, but certain locations had negative correlations as low as -0.5.  

Over the entire shared domain, zonal velocities had higher correlation coefficients and 

lower centered root mean square errors (RMSE) than meridional velocities. 

Model meridional velocities tended to either have much higher or much lower 

standard deviations than observations.  The worst negative correlation coefficient equaled 

-0.7 while the best equaled 0.9.  However, the meridional velocities for HFR coordinates 

south of Mobile Bay had correlations coefficients larger than 0.6 and root mean square 

errors near zero, so that region had the best agreement in terms of north-south currents.  

Points of the Taylor diagrams are displayed in the model domain across the HFR 6x6 km2 

grid cells; values are broken up between correlation coefficients in Figures 4.6 and 4.9, 

centered RMSE in Figures 4.7 and 4.10, and normalized model standard deviations in 

Figures 4.8 and 4.11.   
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Figure 4.4 Taylor diagram for observation to model zonal velocities 

Relationship of ROMSmsb zonal (U) velocities to HFR observational zonal velocities (Ref) with respect to standard deviation (dotted 

black lines), center root mean square error (dashed green lines), and correlation coefficient (dot-dashed blue lines).  To collocate 

comparison pairs, observational and model standard deviations have been normalized using the observational standard deviations.     

 

Figure 4.5 Taylor diagram for observation to model meridional velocities 

Relationship of ROMSmsb meridional (V) velocities to HFR observational meridional velocities (Ref) with respect to standard 

deviation (dotted black lines), center root mean square error (dashed green lines), and correlation coefficient (dot-dashed blue lines).  

To collocate comparison pairs, observational and model standard deviations have been normalized using the observational standard 

deviations. 
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Model standard deviations for zonal velocities have much smaller values for most 

of the shared domain than HFR standard deviations.  However, correlation coefficients 

nearing 1 occur near the eastern model boundary and south of Petit Bois Island.  Low 

root mean square errors lie along a diagonal extending southwest from the Fort Morgan 

peninsula to the southern model boundary south of Dauphin Island.  Across the three 

parameters, good agreement occurs south of Petit Bois Island east to the Fort Morgan 

peninsula.  This means correlation coefficients exceed 0.6, and the same area has root 

mean square errors near 0.  Some of the 6x6 km2 cells also have a model to observation 

standard deviation ratio ranging from 0.8 to 1.2.  However, the worst agreement happens 

at the western edge of the HFR coverage near the Chandeleur Islands, along the southern 

model boundary, and in the southeast corner of the model domain.  Correlation becomes 

negative, and model standard deviations are more than twice the magnitude of the 

observational standard deviation.  The area of poor agreement occurs where HFR 

velocities have the highest uncertainty and highest GDOP.  Overall, HFR and ROMSmsb 

velocities match most closely in the eastern part of the shared domain but disagree near 

the edges of HFR coverage and the model’s open boundaries. 

As for temperature and salinity validation in the western Mississippi Sound, 

different considerations made observation to model comparisons difficult.  

Communications with the Mississippi Department of Marine Resources and the US 

Geological Survey specified the hydrological stations were mounted as close to the 

seafloor as possible, but technical difficulties and environmental interference required 

some degree of shoaling.  As such, the stations are only specified as bottom stations in 

reports, and email correspondence with the Hydrologic Data Section of the US 
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Geological Survey revealed station depths were recorded in depths below sea surface that 

varied about 1 m depending on water levels.  Given the depth range, uncertainty in depths 

at those locations, and possible inaccuracies in model depths, depth-averaged bottom 

temperatures and salinities were found over the deepest 1.5 m with the same technique 

described above for depth-averaged surface currents. 

 

Figure 4.6 Zonal correlation coefficients for 5 MHz HFR velocity grid 

ROMSmsb domain overlaid with HFR velocity grid where colors indicate correlation coefficient between observational and model 

surface velocities for each grid cell. 

Unlike HFR surface currents, the hydrological stations yield point source 

measurements, so temperature and salinity for multiple model grid points were used for 

comparisons.  The closest 10 grid points outlined a region around the location of each 

hydrological station.  Taylor diagrams in Figures 4.12 and 4.13 show the spread of results 

across those points for the stations collectively as the distance and orientation of the 

model grid points had little influence on the model-data agreement within that radius set 

by the 10 nearest neighbor points. 
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Figure 4.7 Zonal centered root mean square errors for 5 MHz HFR velocity grid 

ROMSmsb domain overlaid with HFR velocity grid where colors indicate root mean square error between observational and model 

surface velocities for each grid cell. 

 

Figure 4.8 Zonal σ ratio for 5 MHz HFR velocity grid 

ROMSmsb domain overlaid with HFR velocity grid where colors show the model standard deviation divided by the observational 

standard deviation for each grid cell. 
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Figure 4.9 Meridional correlation coefficients for 5 MHz HFR velocity grid 

ROMSmsb domain overlaid with HFR velocity grid where colors indicate correlation coefficient between observational and model 

surface velocities for each grid cell. 

 

Figure 4.10 Meridional centered root mean square errors for 5 MHz HFR velocity grid 

ROMSmsb domain overlaid with HFR velocity grid where colors indicate root mean square error between observational and model 

surface velocities for each grid cell. 



 

156 

 

Figure 4.11 Meridional σ ratio for 5 MHz HFR velocity grid 

ROMSmsb domain overlaid with HFR velocity grid where colors show the model standard deviation divided by the observational 

standard deviation for each grid cell. 

Bottom temperatures had much better agreement than bottom salinities.  

Correlation coefficients in Figure 4.12 range from 0.4 to 0.7.  Centered RMSE ranged 

from 4.5ºC to 6.5ºC.  Model temperatures varied more than observational temperatures, 

but depth disagreement between the model and observations might be responsible for the 

difference.  Correlation coefficients for bottom salinities ranged from <0.3 to >0.5 in 

Figure 4.13.  Unlike with temperature, model salinities varied less than observational 

salinities.  The mean observational bottom temperature was 24°C±6°C for the western 

Mississippi Sound while model bottom temperatures hovered around 25°C±6°C.  While 

means for individual stations varied, the standard deviations remained fairly consistent 
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station to station and for each of the 10 nearest neighbors to each location.  The model 

was slightly warmer than observations.  Mean observational salinity was 16±9 while 

model salinities ranged 20±5 to 24±7; the model frequency overestimated salinity. 

 

Figure 4.12 Taylor diagram for observation to model bottom temperatures 

Relationship of ROMSmsb bottom temperatures to USGS-MDMR observational bottom temperatures (Ref) with respect to standard 

deviation (dotted black lines), center root mean square error (dashed green lines), and correlation coefficient (dot-dashed blue lines).  

In order to collocate comparison pairs, observational and model standard deviations have been normalized using the observational 

standard deviations. 

 

Figure 4.13 Taylor diagram for observation to model bottom salinities 

Same design as Figure 4.12. 
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Model-data agreement analysis was completed for a 1 year period for surface 

currents, bottom temperature, and bottom salinity.  Correlation coefficients neared 0.9 for 

portions of the shared HFR-ROMSmsb domain with lower RMSE values corresponding 

to the same points.  Given the length of record used for comparison, the agreement was 

fairly good, especially since model grid points had to be spatially averaged, both 

horizontally and vertically, prior to comparisons being made.  Surface current data are 

not without error.  Section 2.2.1 discusses uncertainty in high frequency radar-derived 

surface currents as well as the geometric dilution of precision (GDOP).  Additionally, 

(Eq. 4.4) makes assumptions about velocity decreasing linearly with depth.  The 2-

dimensional HFR currents are in many ways a dissimilar product to the 3-dimensional 

currents calculated by the model, but the best agreement between ROMSmsb and the 

observed surface currents occurs in the center and eastern portion of the shared domain 

where the HFR currents have the lowest uncertainties and GDOP values.  Likewise, 

depth ranges had to be estimated for the hydrological stations since deployment depths 

could not be absolutely established.  As detailed above, the overestimation in salinity was 

anticipated since freshwater outflow by Lake Ponchartrain is not properly accounted for 

in NCOM.  Temperature comparisons have high correlation coefficients, low RMSE, and 

comparable standard deviations.  Gaps in data coverage are numerous in the Mississippi 

Sound and Bight, so a true calibration of the ROMSmsb model cannot be done at this 

time.  However, results of the ROMSmsb validation suggest the model captures 

circulation dynamics reasonably well over the course of a full year. 
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4.3 Island Removal 

4.3.1 Selecting Islands for Removal 

Model-simulated topographic and bathymetric change scenarios identify how 

extreme geologic shifts impact circulation in the Mississippi Sound and Bight.  As such, a 

number of simulations became candidates during the initial planning of this project.  The 

Mississippi Coastal Improvement Plan recently finished a half decade project to infill the 

hurricane breach between East and West Ship Island, so modeling the restored barrier 

island could be an option (DOI, 2016).  Likewise, westward migration and segmentation 

have marked the island chain’s history.  Another modeling option could be a future island 

chain configuration based on linear regression of past shorelines.  Simulated subaerial 

land changes and island breaches could also be modeled.  Ultimately though, island 

removal was selected as the focus of this study. 

The simplicity of the model runs drove this choice.  Ocean models in general and 

coastal models, in particular, require tuning for the region and timescales of interest.  

Regional models require boundary forcing from global or larger regional ocean models, 

and finer grids for variables such as bathymetry and hydrographic properties can better 

resolve mesoscale processes in a region than a coarser grid used for global circulation.  

As section 4.5.2 details, wind speeds and directions in CMA change in the vicinity of the 

islands, so any land mask change in ROMSmsb requires a localized modification of the 

CMA forcing file at each time step.  In terms of island chain segmentation and westward 

movement, this would involve substantial changes to the CMA file, and each additional 

change could lengthen model run time, cause model blow up and drive up model error 

with the inclusion of new equations and parameters.  Additionally, any model simulation 
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that represented a possible future island chain configuration would likewise require 

coastline modification for Louisiana, Mississippi, and Alabama to mimic sea level rise 

and salt marsh loss.  Louisiana barrier island loss and/or reduction would also have to be 

simulated.  Consequently, while the simulation has value, a simpler change scenario 

would better serve initial modeling efforts.   

In a similar vein, the MsCIP restoration of Ship Island involves a multi-stage 

process.  Evolving sediment dynamics rather than circulation changes would be the focus 

of such a model run, and to best serve the project, ROMSmsb should model predictive 

scenarios for each stage of the restoration.   

Finally, storm-induced changes to the barriers would be an uncertain undertaking.  

As Chapter III detailed, storm paths and impacts do not follow concrete patterns, and 

atmospheric models, including CMA, do not incorporate reconnaissance data collected 

during storms.  Substantial data assimilation and modification to CMA would be 

necessary for storm-impact simulations.  Ultimately, island removal became the preferred 

option since it required one set of localized modifications to the bathymetry, land mask, 

and atmospheric parameters, and observed circulation changes could be more reliably 

ascribed to island loss as opposed to model artifacts. 

Numerous surveys throughout the previous decades indicate net land loss across 

the barrier island chain.  However, islands within the chain have not eroded equally.  

Eastern Dauphin Island has a Pleistocene core and a sandy shoal offshore that keeps the 

island stable in terms of sediment retention (Otvos and Carter, 2013).  In a similar vein, 

woodland areas on Horn Island and the island’s sheer size mean it has weathered the past 

two centuries with a smaller percentage of subaerial land loss than either of its neighbors 
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(Jeter and Carter, 2016).  The St. Bernard delta restricts Cat Island’s westward migration 

and has a controlling influence on wind and tidally-driven currents.  By comparison, Ship 

Island and Petit Bois Island have exhibited less resiliency. 

Since Ship Island has been repeatedly breached by tropical cyclones in the last 

century and since East Ship suffered the most extreme land loss following Hurricane 

Katrina in 2005, the two components of Ship Island were removed for one set of 

experimental runs.  Removing Ship Island offers an interesting choice since MsCIP just 

finished filling the breach between the two island halves (Perez, 2019).  Subaerial land 

removal can provide support for the project by illustrating the island’s role in circulation. 

By contrast, anthropogenic modification trends largely drove the choice to 

remove Petit Bois Island in the second island loss scenario.  Shipping channels enable 

large vessel access to ports along the northern Gulf coast.  These channels are dredged on 

an as needed basis, and the deepening from the dredging interrupts sediment supply 

(Morton, 2007).  The shipping channel through Horn Island Pass between Horn Island 

and Petit Bois lies next to the western tip of Petit Bois Island.  Accretion on the island’s 

western end is largely halted by the maintenance of the channel.  Given the eastern 

erosion and stunted westward accretion, Petit Bois was removed in the second set of 

experimental runs.   

Dauphin Island’s western extent used to connect to Petit Bois, and cartographic 

records show the intermittent reconnection and separation of the islands over the past two 

centuries.  Consequently, the western portion of Dauphin Island was included in the Petit 

Bois Island removal runs.  Present imagery shows Dauphin Island’s width narrows to 80 

m near 88.2°W, and this section also matches the location of the Hurricane Katrina 
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breach, so removal of Dauphin Island started west of the breach point.  Sand Island (West 

Petit Bois Island), west of Petit Bois, does not belong to Petit Bois and lies on the western 

side of the Pascagoula shipping channel.  Sand Island was therefore not included in the 

Petit Bois removal runs. 

4.3.2 Bathymetry and Land Mask Changes 

The removal of the islands in preparation for the model runs included three steps.  

First, the bathymetry variable was read into MATLAB from the netCDF grid file 

containing input data to ROMSmsb.  Coastal land adjacent to wet grid cells has a depth 

value of 1 m in the model.  The seafloor and barrier islands have non-integer values 

greater than 1 m with the subaqueous land of the islands ranging in depth from 2 to 4 m.   

A MATLAB switch case script was written to generate a graphical user interface 

(GUI) containing a bathymetric map of the model domain with a specified color map 

corresponding to 0 to 20 m depths.  Lines delineating the present location of the barrier 

islands overlaid the map as a reference.  Two toggle buttons enabled shallowing and 

deepening of bathymetric depths via changes to the color map.  Once toggling was 

activated, depths were changed by mouse click.  Saved changes to the color corresponded 

to alterations to depth in the bathymetry variable.  Bathymetry to the north of the island 

towards the mainland was shoaled by 1 m to represent landward retreat of the removed 

subaerial sediment. 

Second, coordinates set to 0, for land, in the land mask were converted to 1, for 

water, for the coordinates of the removed islands.  The GUI code written for bathymetric 

change was based on the land mask script, developed by Shcherbina (2014).  Since the 

ROMS component of ROMSmsb employs a staggered Arakawa-C grid, the grid file 
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contains four land masks: density, stream function, and the two components of velocity.  

The script functioned to match changes in the other land masks with changes made to the 

density land mask.   

Third, once the bathymetry variable underwent change, the variable was 

smoothed using a linear programming smoothing algorithm coded by Sikirić et al (2009).  

Smoothing prevents model blowup since sharp depth changes in wet grid cells result in 

unrealistically large pressure gradients calculated by the model.  Bathymetry had already 

been smoothed for previous model runs by the CONCORDE modeling group, so only 8 

and 16 grid points required smoothing in the Ship Island and Petit Bois Island removal 

scenarios respectively.  However, the introduction of additional water grid points from 

land removal did necessitate smoothing.  

Five smoothing algorithms were compared before selection of the linear 

programming algorithm.  Input for the algorithms included the bathymetry variable, 

density land mask variable, and a roughness factor that describes depth changes between 

adjacent cells. The roughness factor, rx0, is given in (Eq. 4.5) where h(e) and h(e’) are the 

bathymetric depths on the horizontal grid linear indices e and e’ (Sikirić et al., 2009).  In 

the equation, e’ pertains to the indices adjacent to e.  The maximum permissible 

roughness factor was set to 0.2, and the equation for roughness was taken from Beckman 

and Haidvogel (1993) and scripted by Sikirić et al. (2009).  Bathymetry values in 

adjacent grid cells were deepened or shoaled iteratively until the rx0 criteria was met 

across the model domain.  The linear programming option was chosen as it modified the 

fewest grid points to achieve a roughness factor less than 0.2, and run time for the 

algorithm was <1 s.  Additionally, as section 4.1.4 detailed, the domain had already been 
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smoothed six times at generation, so the linear programming algorithm was intended to 

smooth any abrupt bathymetry changes in the wet cells created during island removal.  

4.4 Forcing File Generation 

4.4.1 Steady State Forcing 

In the context of this study, steady state forcing refers to constant forcing where 

input variables remain unchanged at each boundary grid cell within the model for the 

length of a model run.  Input files generated with constant values included the boundary 

forcing file, the atmospheric forcing file, and riverine input.  The ocean is not in steady 

state, so time-invariant forcing does not present a realistic scenario.  Also, this forcing, 

especially given the use of open boundary conditions does not offer a well-posed problem 

as steady state within the model domain may not be fully achieved.  However, given the 

complexity of the model and the variability from each forcing file, a run using the 

simplest possible forcing helps to establish which changes can be attributed to island loss.  

 Qualitatively, the steady state runs were compared to time-varying forcing runs.  

Therefore, six steady state scenarios were run.  For the control runs, the first two 

simulations used the existing model bathymetry and land mask.  One had mean January 

forcing; the other utilized mean July forcing.  Two runs removed West and East Ship 

Island under mean January and mean July forcing respectively.  The final two runs 

removed Petit Bois Island and the western half of Dauphin Island under the two steady 

state scenarios. 

Values from the CMA forcing file were used to calculate mean January and July 

conditions.  Likewise, values from the interpolated NCOM file and riverine input file 

𝑟𝑥0(ℎ, 𝑒, 𝑒
′) = |

ℎ(𝑒)−ℎ(𝑒′)

ℎ(𝑒)+ℎ(𝑒′)
|   (Eq. 4.5) 
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provided the data to generate average conditions.  The time variable within these files 

counts in days from a reference start date, January 1, 2014.  Consequently, the serial date 

equivalent of the reference date was added to each value, and the variable was converted 

to a date vector.  Logical indexing retained only January values by choosing 1 as the 

desired month respectively; averaging of values for each grid cell produced mean January 

conditions.  These values were duplicated along the time axis to produce variables with 

the same dimensions as the existing forcing files.  The time-invariant variables were 

written to new NetCDF files.  The same methodology was employed to produce a mean 

July file.  January and July were selected as the steady state conditions in order to have 

mid-winter and mid-summer represented.  The NCOM boundary and riverine input files 

underwent the same procedure. 

4.4.2 Forcing Files for Island Removal Scenarios 

Examination of the CONCORDE Meteorological Analysis (CMA) time series 

revealed meteorological conditions differed for over-island grid points compared to over-

water grid points.  This effect was indistinguishable during wind events or times of heavy 

precipitation, but the fields displayed significant change during quiescent periods.  The 

magnitude of wind stress change was on the order of 10-4 Nm-2.  As such, polygons were 

drawn around the removed island sections to capture the indices of island and near island 

grid cells that needed modification in conjunction with island removal (Figure 4.14).  

Values within these polygons were mapped to the CMA grid and changed to NaN.  

Linear interpolation of non-NaN grid points outside the polygons to grid points inside the 

polygons allowed estimation of CMA variables within the polygon for each time step.  

Linear interpolation was chosen empirically since other interpolation schemes left some 
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grid points with NaN values.  The interpolation simulated over-water atmospheric 

conditions.  Modified variable fields were then written to new CMA forcing files for the 

Ship Island and Petit Bois Island removal runs. 

 

Figure 4.14 Regions modified for island removal scenarios 

The red polygons indicate the regions of the ROMSmsb file modified for the Ship Island removal (left polygon) and the Petit Bois-

western Dauphin Island removal.  Modifications include land mask changes, bathymetric changes and smoothing, and atmospheric 

forcing file adjustments. 

 

4.5 Output Analysis 

One year model runs with time-invariant and time-variant forcing were completed 

for each island loss scenario to match the time length of the unmodified control files of 

the time varying and steady state runs.  Output exists for the full year, but results 

presented in this chapter highlight January and July averages for time-variant and steady 

state forcing conditions.  This choice helps highlight differences between mid-winter and 

mid-summer and also allows comparisons between the steady state and time varying 

runs.  
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Differences in the free surface, ζ, full water column volume transport, and 

vertically-integrated, depth-averaged momentum are used to showcase the response of 

the model domain to abrupt changes in the Mississippi-Alabama barrier island chain as 

well as to indicate differences between the two island removal scenarios.  The terms free 

surface and sea surface height are used interchangeably in section 4.6.  Free surface, ζ, 

refers specifically to time varying elevation above the geopotential surface. 

After specifying the indices of the model grid corresponding to each pass in the 

Mississippi-Alabama barrier island chain, velocities at those indices were vertically and 

then spatially integrated to obtain volume transports.  Average values for the u and v 

directions were calculated for January and July in the time varying runs.  Cross sections 

for each island pass were also indexed, and Hovmöller plots were generated using a 

longitudinal transect across each existing island pass as well as a longitudinal transect 

over the removed islands in conjunction with the passes to the west and east of the 

removed islands.  The cross sections served to elucidate shifts in flow throughout the 

water column as well as vertical salinity profile changes.  Numerical integration was 

accomplished using the trapezoidal rule, and the stretching and transform functions 

described in section 4.2 were employed to retrieve depth changes between σ layers at 

each time step. 

Flushing times for the Mississippi Sound were also calculated for each model run.  

A polygon-based index retrieved wet cell locations within the Mississippi Sound across 

all σ layers.  The σ layers were then stretched and transformed to find depth intervals, and 

calculation of the Mississippi Sound volume was obtained for the control, Ship Island 

removal, and Petit Bois Island removal runs.  Flushing time can be computed as a basin’s 
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volume divided by its transports.   For this study, the sum of the time-averaged transport 

at the 17 riverine locations that flowed into the Sound and the time-averaged transport 

through the 6 passes connecting the Sound to the Mississippi Bight provided the total 

transport. 

(Eq. 4.6) and (Eq. 4.7) give the x and y components of the momentum balance 

equations under the Boussinesq approximation.  Since steady state results and monthly 

averages are presented, the first term on the left hand side goes to zero.  Section 4.7 

examines changes in momentum as a balance to changes in the horizontal pressure 

gradient, so the relative importance of the advective momentum terms, the middle three 

terms on the left hand side, will be evaluated against the Coriolis term, final term on left 

hand side.  Comparisons of the control and removal runs confirmed the remaining terms 

changes very little when islands are removed; differences are 1-3 orders of magnitude 

smaller than momentum changes.  

4.6 Results 

Before considering the results of the nine model runs, the three hypotheses that 

drove this study should be reviewed.  First, magnitude changes to circulation were 

expected to be the largest in the vicinity of the removed islands.  Second, observed 

changes were anticipated to be scenario specific.  In other words, removing Petit Bois 

Island and western Dauphin Island should alter circulation differently than removing 

West and East Ship Island.  Third, the Petit Bois Island removal was expected to produce 
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larger magnitude and wider spread circulation changes than the removal of Ship Island.  

The three hypotheses resulted from intuitive reasoning.  Petit Bois Island and Ship Island 

lie on opposite ends of the Mississippi Sound.  As such, depths around the islands as well 

as current speeds and directions near the islands differ.  Petit Bois Island has more 

subaerial land and sits close to Mobile Bay, which supplies a significant volume of 

freshwater to both the Mississippi Sound and Mississippi Bight.  Ship Island is closer to 

Lake Borgne and the Saint Bernard Delta; the island exists in a shallower and lower 

energy environment.  Given all these considerations, the two removal scenarios should 

produce distinctly different modifications to circulation in the Mississippi Sound and 

Bight. 

Additionally, since the removal scenarios simulated island loss, the overall 

salinity of the Mississippi Sound was expected to increase.  The barrier islands restrict 

exchange between the Mississippi Sound and Mississippi Bight.  Island loss would open 

up 10-30 km of water exchange pathways.  Freshwater could exit the Sound where the 

islands once were, and higher salinity water could likewise enter the Sound.  Increased 

exchange would likely lead to increased salinity within the Mississippi Sound. 

Initial conditions for the removal runs were set so island loss occurred on the first 

time step.  From a visualization standpoint, the islands transformed instantly from 

subaerial land to subaqueous shoals, something that could eventually occur in other 

locations in the Gulf of Mexico in the future (Odezulu et al., 2018).  This provided an 

abrupt geologic change to the model domain.  Looking at momentum and transport time 

series, the Mississippi Sound and Bight took about one month to reach a new equilibrium.  

Any abrupt changes to the model require a period of adjustment.  For the steady state 
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runs, this meant at least part of the model domain reached steady state across all σ layers 

within 1-2 weeks.  For the time varying runs, momentum and transport time series started 

exhibiting quasiperiodic behavior within a month of initialization.  During the early time 

steps, time series mimicked a damped oscillation with amplitude decreasing with each 

period.  Nevertheless, output from the first two months was not used in the analysis to 

avoid contaminating results with the model’s early adjustments to island loss. 

Two- and three-dimensional momentum, free surface, temperature, and salinity 

use a combination of clamped, closed, Chapman, and Flather boundary conditions 

(Flather, 1976; Chapman, 1985).  To minimize modifications to ROMSmsb, the island 

removal runs used the same boundary conditions as the control runs.  Velocity and free 

surface changes discussed later in this chapter reveal areas of unusually high magnitude 

changes in the southeast corner of the model, the southwest corner of the model, the 

eastern boundary, and near riverine source locations.  While it is possible that island loss 

produces isolated changes to circulation in areas distant from the removed islands, the 

results are questionable.  Chapman (1985) found clamped and closed conditions can 

result in free surface and momentum oddities near boundaries.  The exact cause of the 

circulation changes near the boundaries is not known, but the copied boundary conditions 

from the control runs maybe a contributing factor. 

(Table 4.1) and (Table 4.2) respectively give vertically-integrated transport 

differences of the removal runs minus the control runs.  In the tables, transport is split 

between zonal, Tu, and meridional, Tv, components, and each set of values has a 

designator.  SSPBIR indicates steady state Petit Bois Island removal differences; SSSIR 

denotes steady state Ship Island removal differences.  TVPBIR and TVSIR represent the 
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time varying differences for Petit Bois Island and Ship Island removals.  (Table 4.1) gives 

January differences while (Table 4.2) gives July differences. 

Results from the time-invariant and time-variant removal scenarios only partially 

confirmed the three hypotheses.  Changes to current speed and direction, temperature, 

salinity, and transport did occur near the removed islands.  However, removing Petit Bois 

Island and Ship Island yielded some qualitatively similar circulation changes.  Also, 

circulation in portions of the Mississippi Bight responded more strongly to island loss 

than expected, and seasonality appeared to play a critical role in how circulation evolved 

with island loss.  Specifically, well-stratified versus well-mixed waters made a difference 

as did the direction of the longshore current.  Details are given in sections 4.6.1 and 4.6.2. 

Table 4.1 January Transport Removal Minus Control Differences through Island Passes 

 
Main Petit Bois 

Island 

Horn 

Island 

Dog 

Keys 

Ship 

Island 

Cat 

Island  

Tu (SSPBIR) 14 m3/s -472 m3/s -80 m3/s -5 m3/s -72 m3/s 12 m3/s 

Tv (SSPBIR) 25 m3/s 248 m3/s -162 m3/s 9 m3/s -5 m3/s 2 m3/s 

Tu (SSSIR) 0 m3/s 8 m3/s -1 m3/s -73 m3/s 206 m3/s -1 m3/s 

Tv (SSSIR) 0 m3/s -5 m3/s 4 m3/s -42 m3/s -89 m3/s 4 m3/s 

Tu (TVPBIR) -38 m3/s -145 m3/s 105 m3/s 43 m3/s 56 m3/s 7 m3/s 

Tv (TVPBIR) 41 m3/s 345 m3/s -148 m3/s 14 m3/s 27 m3/s -5 m3/s 
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Table 4.1 (continued) 

Tu (TVSIR) 0 m3/s -8 m3/s -1 m3/s -279 m3/s 570 m3/s -3 m3/s 

Tv (TVSIR) -1 m3/s 10 m3/s 10 m3/s 64 m3/s 237 m3/s -11 m3/s 

 

Table 4.2 July Transport Removal Minus Control Differences through Island Passes 

 
Main Petit Bois 

Island 

Horn 

Island 

Dog 

Keys 

Ship 

Island 

Cat 

Island 

Tu (SSPBIR) 28 m3/s -142 m3/s -1 m3/s 23 m3/s 16 m3/s -2 m3/s 

Tv (SSPBIR) 57 m3/s 701 m3/s -60 m3/s 16 m3/s 20 m3/s 4 m3/s 

Tu (SSSIR) 0 m3/s -14 m3/s 2 m3/s 480 m3/s 33 m3/s 45 m3/s 

Tv (SSSIR) 1 m3/s 16 m3/s -27 m3/s -173 m3/s -441 m3/s -20 m3/s 

Tu (TVPBIR) -12 m3/s -98 m3/s 118 m3/s 61 m3/s 31 m3/s -2 m3/s 

Tv (TVPBIR) 113 m3/s 796 m3/s 136 m3/s 53 m3/s 22 m3/s 2 m3/s 

Tu (TVSIR) -2 m3/s 7 m3/s 7 m3/s 53 m3/s 491 m3/s 46 m3/s 

Tv (TVSIR) 4 m3/s 12 m3/s 10 m3/s -104 m3/s -154 m3/s -24 m3/s 

 

4.6.1 January Run Results 

Changes in circulation can best be measured with velocity and salinity.  In terms 

of velocity, this includes surface and bottom monthly root-mean-square differences over 

the effective depths described in section 4.2.2.  Changes in current fields give a direct 
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look into how island loss modifies flow.  Likewise, vertically-integrated transport in the 

island passes indicates whether water volume exchange between the Mississippi Sound 

and Bight underwent non-negligible change.  Chapter II found temperatures to be fairly 

homogenous across the Mississippi Sound, so salinity gives a better representation on 

whether island loss permits more inflow of Mississippi Bight water into the Mississippi 

Sound. 

In the Petit Bois Island removal under January steady state forcing conditions, 

bottom velocities over the removed western Dauphin Island rotated southward with 

magnitude changes of 2-3 cm/s.  Figure 4.15 shows differences for the January steady 

state Petit Bois Island removal bottom velocities minus bottom velocities in the January 

steady state control run.  Bottom velocities over the removed Petit Bois Island turned 

northeastward with speed changes of about 1 cm/s.  Additional shifts in bottom velocity 

occurred in the southeast and south-central Mississippi Bight as well as in the Chandeleur 

Sound.  In Figure 4.16, surface velocities differences pointed northward over the 

removed Petit Bois Island, northeastward in Petit Bois Island Pass, southeastward over 

the removed western Dauphin Island, and westward south of the two removed islands.  

Unlike with bottom velocities, regions throughout the Mississippi Bight experienced 1-5 

cm/s surface current speed changes.  These modifications to circulations were 

concentrated in the southern Bight but appeared to extend southward from Petit Bois 

Island Pass and the removed islands.  Shifts in the direction of vertically-integrated 

transport, with magnitude changes exceeding 102 m3/s, was limited to Horn Island Pass 

and Petit Bois Island Pass.  Transport shifted southwestward in Horn Island Pass and 
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northwestward in Petit Bois Island Pass.  Transport changes in the remaining passes had 

much smaller magnitudes. 

Cross sections of salinity and currents in the passes as well as difference plots for 

the regions over the removed islands present small scale, 1-2 salinity change and <3 cm/s 

velocity change, alterations to exchange between the Mississippi Sound and Bight.  

While small, these alterations are still significant.  Salinity increased in the eastern 

Mississippi Sound with the removal of Petit Bois Island and western Dauphin Island 

under January steady state forcing.  In Figure 4.17, salinity increased by >1 from the 

surface to 3 m depths in Horn Island Pass.  Salinity likewise increased at the westernmost 

edge of Petit Bois Island Pass in the 2-3 m depth range, but salinity in the eastern half of 

the pass decreased by >1.  Flow into and out from the Mississippi Sound decreased by 1-

3 cm/s in the existing passes, but island loss allowed flow over the removed islands down 

to 4 m depth.  This meant that although current speeds in the passes decreased relative to 

the control run, the number of exchange pathways increased.  Overall salinity increased 

by 0.3 across the entire Mississippi Sound, but salinity across all σ layers immediately 

northward of the removed islands increased by 1-3.  Surrounding areas in the eastern 

Sound also saw increased salinity, but magnitudes of increase decreased with distance 

from the removed islands. 

Removing West and East Ship Island under January steady state forcing 

conditions produced smaller magnitude and more localized changes to circulation than 

the Petit Bois Island removal run.  Bottom velocities rotated northeastward and speeds 

changed by about 4 cm/s over the removed West Ship Island as shown in Figure 4.18.  

Velocity changes also occurred by the Mississippi River bird foot delta and across the 
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southern Mississippi Bight, but magnitude changes were less than 1 cm/s.  As with the 

Petit Bois Island removal, higher magnitude surface velocity changes occurred in the 

vicinity of the removed islands, throughout the Chandeleur Sound, and across the 

southern Mississippi Bight, Figure 4.19.  Surface velocities rotated southeast, with speed 

changes around 3 cm/s.  Changes in the Chandeleur Sound and southern Bight ranged 

from 1-4 cm/s but lacked coherent directional change.  As mentioned earlier, these near-

boundary changes might be an artifact from using the boundary conditions of the control 

run.  Similar to the Petit Bois Island removal, the Ship Island removal mostly affected 

transport in the passes on either side of the removed islands. Transport rotated east 

northeastward through Ship Island Pass and southwestward in Dog Keys Pass. 

 

Figure 4.15 Bottom velocity differences of the January steady state Petit Bois Island 

removal run minus the control run 

Velocities represent vector averages of the bottom 1.5 m across the model domain, and the velocity grid has been subsampled at 1/16 

resolution to provide better visualization. 
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Figure 4.16 Surface velocity differences of the January steady state Petit Bois Island 

removal run minus the control run 

Velocities represent vector averages of the surface 2.57 m across the model domain.  As with Figure 4.15, velocities at every 16th grid 

have been selectively plotted to better visualize flow patterns. 

Island pass cross sections echo velocity and transport results; the January steady 

state Ship Island removal perturbed circulation less the Petit Bois Island removal.  

Salinity decreased in the 2-3 m depth range by <0.5 but increased in the 4-6 m depth 

range in the eastern edge of the pass by <0.5 (Figure 4.20).  Along the western edge of 

Dog Keys Pass, salinity increased up to 0.5 in the 2-3 m depth range and decreased by 

<0.2 at 4 m.  The remaining passes remained relatively unchanged.  As with the Petit 

Bois Island removal, velocity magnitudes saw an overall decrease in the existing passes, 

but island removal meant exchange occurred in the top 4 m of the water column where 

East and West Ship Island used to be.  This had the effect of increasing exchange 
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between the Mississippi Sound and Bight, and salinity in the back-barrier region 

immediately north of the removed islands increased.  Mississippi Sound salinity 

increased by 0.02, but the western Sound had locally higher salinity increases. 

 

Figure 4.17 Salinity differences in the island passes for the January steady state Petit Bois 

Island removal run minus the control run 

Across-pass grid points were indexed to extract salinity across all depths.  Removal minus control salinity differences were calculated 

at each time step; the monthly mean of those differences is plotted. Red colors mean the removal run has higher salinity; blue means 

the control run salinity was higher. 

In the January portion of the time varying forcing conditions for the Petit Bois 

Island removal, velocity changes ranging 1-4 cm/s were confined to the region around the 

removed islands.  In Figure 4.21, bottom velocities shifted northwest over the removed 

Petit Bois Island and northeast to north over the removed western Dauphin Island.  

Velocities north of the removed islands shifted westward.  At the surface in Figure 4.22, 

velocities rotated towards the west and southwest over the removed Petit Bois Island and 

southwest over the removed western Dauphin Island.  Velocities changes pointed 

northward into Petit Bois Island Pass and mostly to the west north of the removed islands 

though flow immediately north of Petit Bois Island Pass turned to the east and northeast.  
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Transport changes greater than 102 m3/s can be seen in Horn Island Pass where transport 

shifted to the southeast and in Petit Bois Island Pass where vertically-integrated transport 

differences pointed northwest. 

 

Figure 4.18 Bottom velocity differences of the January steady state Ship Island removal 

run minus the control run 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 

Island pass cross sections and surface Hovmöller plots showed increased inflow 

pathways into the Mississippi Sound, but notable sections of the island chain still allowed 

periods of outflow during January.  In Figure 4.23, the western half of Horn Island Pass 

saw freshening up to 0.5 in the top 2 m of water while the eastern edge of the pass 

increased in salinity by 0.8 down to 4 m.  The top 2 m of Petit Bois Island Pass increased 

in salinity by >1 while the 2-3 m depth range increased by 0.5.  The top 2 m of Main Pass 
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decreased in salinity by as much as 0.5.  Current speeds through existing island passes on 

either side of the removed island decreased in magnitude by a few cm/s, but island loss 

enabled flow over the subaqueous shoals.  Figures 4.24 and 4.25 give two weeks of 

surface currents and surface salinity, from the Petit Bois Island removal run, for the 

stretch between Sand Island (West Petit Bois Island) and the eastern half of Dauphin 

Island.  This covers the region where Petit Bois Island and the western half of Dauphin 

Island had been removed.  Though currents alternated between inflow into the Sound and 

outflow from the Sound, surface water in the widened pass tended more frequently 

towards outflow while the eastern pass experienced diurnal reversals in current direction.  

With the widened pass, salinities increased. 

During the January portion of the time varying Ship Island removal, bottom 

velocity differences turned southwest north of the removed West Ship Island, and 

velocity magnitudes changed by up to 4 cm/s, Figure 4.26.  At the surface in Figure 4.27, 

velocity differences pointed southwest, with magnitude changes of 5 cm/s, over the 

removed West Ship Island and southeast to northeast south of the removed islands.  

Velocity changes elsewhere in the domain had magnitudes less than 1 cm/s.  Vertically-

integrated transport changes over 102 m3/s included an east northeast shift in Ship Island 

Pass and a west northwest turn in Dog Keys Pass. 
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Figure 4.19 Surface velocity differences of the January steady state Ship Island removal 

run minus the control run 

Velocities represent vector averages of the surface 2.57 m across the model domain. 

 

Figure 4.20 Salinity differences in the island passes for the January steady state Ship 

Island removal run minus the control run 

Same design as Figure 4.17. 
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Mississippi Sound salinity increased by 0.1, but the eastern Sound north of the 

removed islands increased by 1-3.  The remainder of the eastern Sound also saw a net 

increase in salinity, but magnitudes of change dropped sharply away from the removed 

islands.  Saltwater intrusion occurred largely below the surface in the top few meters. 

 

Figure 4.21 Bottom velocity differences of the time varying Petit Bois Island removal run 

minus the control run in January 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 

Salinity decreased at the surface in Ship Island Pass but increased in Dog Keys 

Pass.  In Figure 4.28, salinity changes in these two passes approached -1 and 1 

respectively in January, but the other passes saw overall increases in salinity of <0.2.  

Looking across all depths, salinity decreased by about 0.3 in Ship Island Pass but 

increased by the same amount along the western edge of Dog Keys Pass.  The other 

passes saw minimal changes of <0.1.  Flow through the passes changed by <3 cm/s with 
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velocity becoming more positive along the eastern edge of Ship Island Pass and more 

negative on the western edge of Dog Keys Pass.  Disruption of the gravitational current 

corresponded to island loss since a new and wider pass was opened by transforming the 

island into a subaqueous shoal.  Island removal also had the effect of allowing inflow 

pathways for higher salinity water where the islands once were.  Figures 4.29 and 4.30 

show Hovmöller plots for the first 2 weeks of January for surface currents and surface 

salinity from Cat Island to Horn Island; this includes the area where East and West Ship 

Island were removed.  Currents alternate between northward into the Sound and 

southward out of the Sound, but the dominant direction at the surface is to the south.  

Velocities are lower than in the control run, but exchange happens across where the 

islands used to be.  Salinity increased overall. 

 

Figure 4.22 Surface velocity differences of the time varying Petit Bois Island removal run 

minus the control run in January 

Velocities represent vector averages of the surface 2.57 m across the model domain. 
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Figure 4.23 Salinity differences in the island passes for the January portion of the time 

varying Petit Bois Island removal run minus the control run 

Same design as Figure 4.17. 

 

Figure 4.24 Surface meridional velocity Hovmöller diagram across the removed Petit 

Bois Island-western Dauphin Island complex for the January portion of the Petit Bois 

Island removal run 

Horn Island Pass and Petit Bois Island Pass are included in the transect.  Red denotes onshore flow; blue is offshore flow.  For visual 

clarity, only the first two weeks of January are shown.  Eastern Petit Bois Island remains as part of the land mask. 
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Figure 4.25 Surface salinity Hovmöller diagram across the removed Petit Bois Island-

western Dauphin Island complex for the January portion of the Petit Bois Island removal 

run 

Design follows Figure 4.24. 

 

Figure 4.26 Bottom velocity differences of the time varying Ship Island removal run 

minus the control run in January 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 



 

185 

 

 

Figure 4.27 Surface velocity differences of the time varying Ship Island removal run 

minus the control run in January 

Velocities represent vector averages of the surface 2.57 m across the model domain. 

As with the other January runs, Mississippi Sound salinity increased when West 

and East Ship Island were removed, but higher salinity waters were mostly confined to 

the western Sound near the removed islands.  The total salinity increase was 0.05, but 

near island salinity changes exceeded 2 with a sharp drop off with distance from the 

islands. 
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Figure 4.28 Salinity differences in the island passes for the January portion of the time 

varying Ship Island removal run minus the control run 

Same design as Figure 4.17. 

 

Figure 4.29 Surface meridional velocity Hovmöller diagram across the removed West 

Ship Island-East Ship Island complex for the January portion of the Ship Island removal 

run 

Ship Island Pass, the gap between West and East Ship Island, and Dog Keys Pass are included in the transect.  Red denotes onshore 

flow; blue is offshore flow.  For visual clarity, only the first two weeks of January are shown. 
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Figure 4.30 Surface salinity Hovmöller diagram across the removed West Ship Island-

East Ship Island complex for the January portion of the Ship Island removal run 

Same design as Figure 4.29. 

Surface velocity changes were more confined to the region near the removed 

barrier islands in the time varying runs.  The northeast trade winds dominate the winter 

months, so the January average steady state atmospheric file had strong and unchanging 

northeasterly winds.  Some of the high magnitude surface velocity changes observed in 

the steady state removal runs in the southern Mississippi Bight may have been driven by 

persistent winds.  With constant forcing, wind speed and direction never change, so time-

averaged results will not show the smaller magnitude changes present when sub-daily, 

daily, and weekly shifts in wind velocities are present. 

4.6.2 July Run Results 

In the Petit Bois Island removal run using July steady state forcing, bottom 

current differences point northeast, with magnitude changes of 1 cm/s, and southeast, 

with magnitude changes of 2 cm/s, north of the removed western Dauphin Island.  

Velocity magnitudes change by 2 cm/s and point west northwest through Pass Aux 

Herons, Figure 4.31.  In Figure 4.32, surface current speeds change about 1 cm/s and 
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point southwest over the removed Petit Bois Island.  Speeds change by 1 cm/s through 

Petit Bois Island Pass, and directions shift to the northeast.  Velocity directional changes 

point southwest through the removed western Dauphin Island with speed changes falling 

between 3 cm/s and 4 cm/s.  The longshore current south of western Dauphin Island 

shifted westward, with a magnitude adjustment of 5 cm/s.   Additionally, current speeds 

in a cyclonic feature in the southeast Mississippi Bight changed by 1-5 cm/s.  As with 

some of the January runs, circulation changes near the boundaries may not be attributable 

to island loss.  In terms of vertically-integrated transport, transport shifted north 

northwest through Petit Bois Island Pass.  Other pass transport changes had smaller 

magnitudes. 

 

Figure 4.31 Bottom velocity differences of the July steady state Petit Bois Island removal 

run minus the control run 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 
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Figure 4.32 Surface velocity differences of the July steady state Petit Bois Island removal 

run minus the control run 

Velocities represent vector averages of the surface 2.57 m across the model domain. 

Salinity increased by more than 0.5 at all depths in Petit Bois Island Pass and 

increased by >1 in the bottom meter at 88.36°W and 88.4°W.  The easternmost edge of 

Horn Island Pass also saw up to a 0.5 increase in salinity in the 2-5 m depth range (Figure 

4.33).  A slight, <0.3, increase in salinity could be seen in the 2-3 m depth range of Main 

Pass.  Inflow through Horn Island Pass weakened by 4 cm/s at 4-6 m depths while 

average outflow weakened in Petit Bois Island Pass by several cm/s.  Akin to the January 

steady state results, flow in the passes on either side of the removed islands weakened, 

but new flow enabled by the absence of the island’s subaerial land caused a net inflow of 
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Mississippi Bight water into the Sound.  Salinity in the Sound increased by 0.2, but 

higher increases were concentrated in the eastern Sound north of the removed islands. 

 

Figure 4.33 Salinity differences in the island passes for the July steady state Petit Bois 

Island removal run minus the control run 

Same design as Figure 4.17. 

The July steady state Ship Island removal mostly altered bottom currents in the 

vicinity of the removed islands.  In Figure 4.34, bottom velocity changes pointed 

northeast, with speed changes of 5 cm/s, over the removed West Ship Island and 

northeast over the removed East Ship Island with velocity magnitudes changing by 2 

cm/s.  Likewise, most of the larger magnitude surface velocity changes occurred near the 

removed islands.  With magnitude changes of 9 cm/s, a westward shift in surface velocity 

appeared over both components of the removed Ship Island, Figure 4.35.  Current 

differences south of the Horn Island and the removed Ship Island have a fan pattern 

pointing south to southwest to west to northwest; speeds change by 1-2 cm/s.  Transport 

changes through the island passes exceeding 102 m3/s included a south southeast shift in 

Ship Island Pass and east southeast shift in Dog Keys Pass. 
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Figure 4.34 Bottom velocity differences of the July steady state Ship Island removal run 

minus the control run 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 

Salinity on the eastern edge of Ship Island Pass increased by up to 1 in the 1-3 m 

depth range but decreased by the same amount at 4-6 m depths.  In Figure 4.36, Dog 

Keys Pass freshened by 0.8 in the 2-4 m depth range.  Salinity in the other passes 

remained mostly unchanged.  Inflow through Ship Island Pass weakened by 5 cm/s in the 

mid-water column while outflow strengthened at 3 m depths by 1-2 cm/s.  In keeping 

with the other removal runs, salinity increased across the Mississippi Sound by 0.07.  

Salinity increases disproportionately affected the western Sound north of the removed 

islands.  The key change lay in the introduction of new wet cells where West and East 
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Ship Island were once located; this allowed higher salinity water to build up in the 

western Sound. 

 

Figure 4.35 Surface velocity differences of the July steady state Ship Island removal run 

minus the control run 

Velocities represent vector averages of the surface 2.57 m across the model domain. 

Only minor speed and directional changes can be seen in the July portion of the 

Petit Bois Island removal time varying run.  Shown in Figure 4.37, magnitude changes of 

1 cm/s or less marked a northwest shift in current direction over the removed Petit Bois 

Island and southeast over the removed western Dauphin Island. At the surface, current 

differences include a speed change of 4 cm/s and a directional shift to the southeast and 

southwest over the removed western Dauphin Island, a 3-5 cm/s magnitude change and a 
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rotation to the northwest and northeast in Petit Bois Island Pass, and a 2 cm/s speed 

change with a shift to the southwest and southeast over the removed Petit Bois Island, 

Figure 4.38.  Additionally, current differences pointed to the east northeast toward the 

western edge of the removed Petit Bois Island.  Speed changes elsewhere had magnitudes 

less than 1 cm/s.  Vertically-integrated transport changes included a northeast shift in 

Horn Island Pass, a northwest rotation in Petit Bois Island Pass, and a northwest shift in 

Main Pass. 

 

Figure 4.36 Salinity differences in the island passes for the July steady state Ship Island 

removal run minus the control run 

Same design as Figure 4.17. 
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Figure 4.37 Bottom velocity differences of the time varying Petit Bois Island removal run 

minus the control run in July 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 

Salinity increased by about 0.7 in the top 2 meters of the western side of Horn 

Island Pass and throughout the water column up to the top meter on the eastern side of 

the pass.  By contrast, salinity decreased by up to 0.8 on the eastern side of Petit Bois 

Island Pass as seen in Figure 4.39.  In the top half meter on the western side of the pass, 

salinity increased by as much as 0.5.  Near bottom inflow in Horn Island Pass increased 

by 4 cm/s while outflow in Petit Bois Island Pass weakened by more than 5 cm/s.  

Salinity across the Sound increased by 0.1, but salinity increased in the eastern Sound 

near the removed islands by more than 2.  Removing Petit Bois Island and western 
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Dauphin Island allowed tidal exchange across the remnant shoals of the islands.  Diurnal 

cycling of surface inflow and outflow was present in the Hovmöller diagram in Figure 

4.40, but island loss ultimately led to a net inflow of Mississippi Bight water at the 

surface.  Subsurface inflow increased as well over the widened pass.  Increases in salinity 

in the Sound accompanied the new dynamic (Figure 4.41).  

 

Figure 4.38 Surface velocity differences of the time varying Petit Bois Island removal run 

minus the control run in July 

Velocities represent vector averages of the surface 2.57 m across the model domain. 
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Figure 4.39 Salinity differences in the island passes for the July portion of the time 

varying Petit Bois Island removal run minus the control run 

Same design as Figure 4.17. 

 

Figure 4.40 Surface meridional velocity Hovmöller diagram across the removed Petit 

Bois Island-western Dauphin Island complex for the July portion of the Petit Bois Island 

removal run 

Horn Island Pass and Petit Bois Island Pass are included in the transect.  Red denotes onshore flow; blue is offshore flow.  For visual 

clarity, only the first two weeks of July are shown. 
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Figure 4.41 Surface salinity Hovmöller diagram across the removed Petit Bois Island-

western Dauphin Island complex for the July portion of the Petit Bois Island removal run 

Same design as Figure 4.40. 

Bottom current changes in the July portion of the Ship Island removal look 

similar to those seen in the steady state run.  Bottom velocity differences, shown in 

Figure 4.42, pointed to the northeast over the removed West Ship Island, with speed 

changes of 3 cm/s, and east northeast directional changes and accompanying 2 cm/s 

magnitude changes over the removed East Ship Island.  Surface current differences 

include a shift to the east northeast over the removed West Ship Island, with magnitudes 

changing as much as 6 cm/s, and a 2 cm/s speed change in conjunction with a southwest 

directional shift over the removed East Ship Island, Figure 4.43.  Transport changes 

exceeding 102 m3/s saw an east southeast rotation in Ship Island Pass and south southeast 

turn in Dog Keys Pass. 

Salinity in the eastern edge of Ship Island Pass increased by up to 0.5 from the 

seafloor to the top meter of water.  By contrast, average salinity decreased in Dog Keys 

Pass; the largest decrease, about 0.5, was concentrated in the 1-2 m depth range (Figure 

4.44).  Inflow at depth in Ship Island Pass deepened by 2 m and shifted eastward.  The 
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magnitude of the northward velocity decreased in the Ship Island removal run relative to 

the control run.  The weak inflow along the western side of Dogs Key Pass in the July 

control run gave way to nearly 0 cm/s average flow in the Ship Island removal.  Looking 

at the surface Hovmöller diagram across the area where the islands had been removed, 

the net outflow seen during the July portion of the time varying run gave way to a net 

inflow of Mississippi Bight water (Figure 4.45).  Figure 4.46 gives the same two week 

period in surface salinity, and increased salinity aligns with northward flowing currents.  

Mississippi Sound salinity increased by 0.04; the western Sound saw the largest salinity 

increase near the removed islands. 

 

Figure 4.42 Bottom velocity differences of the time varying Ship Island removal run 

minus the control run in July 

Velocities represent vector averages of the bottom 1.5 m across the model domain. 
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Figure 4.43 Surface velocity differences of the time varying Ship Island removal run 

minus the control run in July 

Velocities represent vector averages of the surface 2.57 m across the model domain. 

 

Figure 4.44 Salinity differences in the island passes for the July portion of the time 

varying Ship Island removal run minus the control run 

Same design as Figure 4.17. 
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Figure 4.45 Surface meridional velocity Hovmöller diagram across the removed West 

Ship Island-East Ship Island complex for the July portion of the Ship Island removal run 

Ship Island Pass, the gap between West and East Ship Island, and Dog Keys Pass are included in the transect.  Red denotes onshore 

flow; blue is offshore flow.  For visual clarity, only the first two weeks of July are shown. 

 

Figure 4.46 Surface salinity Hovmöller diagram across the removed West Ship Island-

East Ship Island complex for the July portion of the Ship Island removal run 

Same design as Figure 4.45. 

 

4.6.3 Balancing Sea Surface Height 

The horizontal momentum balance equations are given in (Eq. 4.6) and (Eq. 4.7) 

make up a portion of the primitive equations that drive the ROMS component of 
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ROMSmsb; momentum terms balance the horizontal pressure gradient term as well as the 

turbulent and viscous stress terms.  Sea surface height differences are shown in Figures 

4.47 through 4.50.  Pressure gradient changes in general, and sea surface height changes 

in particular, match up to observed changes in velocity and salinity.   

Sea surface height relative to a geopotential surface (free surface or ζ) in the 

island removal runs changed by less than 0.5 cm compared to the control runs.  Under 

January steady state conditions, removing Petit Bois Island and western Dauphin Island 

increased sea surface height by almost 5 mm over the removed islands and by 1-3 mm 

south of the removed islands, as can be seen in the top plot of Figure 4.47.  Sea surface 

decreased north of the removed barrier islands.  This makes sense when compared to 

surface salinity which decreased south of the removed islands and increased north of the 

islands.  Additionally, free surface decreased in the Mississippi Bight east of the 

Mississippi River bird foot delta, but regions to the north and south of the lowered sea 

surface saw increased sea surface height.  In the middle plot of Figure 4.47, the Ship 

Island January steady state removal run lowered sea surface height over the removed 

islands, but free surface increased elsewhere in the western Mississippi Sound and 

northwestern Mississippi Bight.   As in the Petit Bois Island removal, a portion of the 

Bight saw lowered sea surface extending east from the Mississippi River bird foot delta, 

but increased free surface occurred north and south of this section.  Again, lowered 

surface height corresponded to increases in surface salinity.  Removal minus control 

surface height differences were less than 2 mm in the Ship Island removal.  Looking at 

the bottom plot in Figure 4.47, the main differences between the two removal runs were 

in the vicinity of the removed islands.  Surface height changes in the Mississippi Bight 
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looked qualitatively similar, but the Petit Bois Island removal displayed larger magnitude 

changes as wells as positional differences in the location of the lower and higher free 

surface areas. 

Sea surface height differences in the time varying runs for January had 

magnitudes less than 2 mm.  As with the January steady state run, the removal of West 

and East Ship Island produced both smaller magnitude changes and less widespread 

changes than the removal of Petit Bois Island and western Dauphin Island.  The changes 

can be seen in the top plot of Figure 4.48.  Surface heights decreased in the eastern 

Mississippi Sound, in Mobile Bay, and in part of the north-central Mississippi Bight.  

Removing Petit Bois Island increased surface height south of the removed islands as well 

as south of the barrier islands in the western half of the chain.  In the middle plot of 

Figure 4.48, removing Ship Island raised the free surface to the southwest of the removed 

islands but lowered the free surface in the immediate vicinity of the removed islands.  

Reduced surface salinity matched up to increased surface height in the removal runs.  The 

two removal runs differed in the western and eastern halves of the Sound (bottom plot of 

Figure 4.48). 

The Petit Bois Island and Ship Island removal runs yielded qualitatively similar 

results under July steady state conditions.  The area south and east of the removed islands 

showed an increase in sea surface height while the region north of the removed islands 

saw a decrease in surface height (Figure 4.49).  As with the other removal runs, the Petit 

Bois Island removal scenario caused larger magnitude and wider spread changes in 

surface height.  However, changes in both removal runs were less than 0.5 cm.  The Petit 
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Bois Island removal run also had a decrease in the free surface in the southeastern 

Mississippi Bight that was not present in the Ship Island removal run. 

 

Figure 4.47 Sea surface height differences for January steady state runs 

Red areas mean surface height in the removal run is higher; blue indicates surface height in the control run is higher.  Top) Petit Bois 

Island removal (PBIR) run minus control run.  Middle) Ship Island removal (SIR) run minus control run.  Bottom) Petit Bois Island 

removal run minus Ship Island removal run. 

Time varying results for July mimic those seen in the July steady state run.  In 

both removal scenarios, sea surface height increased south and east of the removed 

islands while surface height decreased north and west of the removed islands (Figure 

4.50).  Changes in the free surface for the Ship Island removal were less than 1 mm.  By 

contrast, increases and decreases in surface height had larger magnitudes in the time 
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varying Petit Bois Island removal than the July steady state run.  Additionally, in both 

removal runs, a small, <1 mm, increase could be seen east of the Mississippi River bird 

foot delta.  Removing Ship Island produced little change in surface height while 

removing Petit Bois Island and western Dauphin Island modified surface height across 

the entire eastern Mississippi Sound, Mobile Bay, and the southeastern Mississippi Bight. 

 

Figure 4.48 Sea surface height differences for the January portion of the time varying 

runs 

Red areas mean surface height in the removal run is higher; blue indicates surface height in the control run is higher.  Top) Petit Bois 

Island removal run minus control run.  Middle) Ship Island removal run minus control run.  Bottom) Petit Bois Island removal run 

minus Ship Island removal run. 
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Figure 4.49 Sea surface height differences for the July steady state runs 

Red areas mean surface height in the removal run is higher; blue indicates surface height in the control run is higher.  Top) Petit Bois 

Island removal run minus control run.  Middle) Ship Island removal run minus control run.  Bottom) Petit Bois Island removal run 

minus Ship Island removal run. 

For the most part, observed changes to sea surface can be tied to inverse changes 

in salinity.  Salinity changes, in turn, can be linked to alterations in current patterns.  

Looking at the surface as well as throughout the water column, changes to the momentum 

components almost completely balance changes in the horizontal pressure gradient.  

Differences in the turbulent and viscous terms of the momentum balance equation tend to 

be 1-3 orders of magnitude smaller than the changes in momentum and horizontal 

pressure gradient terms.  Changes in the turbulent and viscous terms only begin to have 
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the same magnitudes as the other terms where the barrier islands were removed, near the 

Louisiana coast, and in isolated portions of the Mississippi Bight.  These areas coincide 

with unexpectedly larger magnitude changes in velocity, salinity, and surface height.  In 

future runs, island removal may need to be paired with alterations to model boundary 

conditions as some of the observed changes might result from model artifacts.  However, 

this study aimed to minimize changes to ROMSmsb between the removal and control 

runs, so no changes to boundary conditions were made. 

 

Figure 4.50 Sea surface height differences for the July portion of the time varying runs 

Red areas mean surface height in the removal run is higher; blue indicates surface height in the control run is higher.  Top) Petit Bois 

Island removal run minus control run.  Middle) Ship Island removal run minus control run.  Bottom) Petit Bois Island removal run 

minus Ship Island removal run. 
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4.7 Implications of Long Term Change 

Key changes to circulation brought about by island loss include increased salinity 

in the Mississippi Sound and altered water exchange pathways between the Mississippi 

Bight and Mississippi Sound.  Even considering the ongoing segmentation and westward 

migration of the barrier island chain, the Mississippi-Alabama barrier islands still serve to 

restrict flow into and out from the Mississippi Sound.  Island passes share many 

circulation traits with inlets.  Less dense, lower salinity flows out of the Sound at the 

surface, and a compensating higher density, higher salinity water flows into the Sound at 

depth.   Additionally, water volume exchange between the Mississippi Sound and Bight 

is limited to the passes, and this keeps salinity lower in the Sound which in turn supports 

a number of species with salinity range preferences. 

In both island removal scenarios, two islands were removed.  Horn Island Pass 

lies to the west of Petit Bois Island and Sand Island while Petit Bois Island Pass separates 

Petit Bois Island and Dauphin Island.  The two passes have lengths of 7 km and 6 km 

respectably, but the removal of Petit Bois Island and western Dauphin Island creates a 35 

km break in the island chain.  Ship Island Pass separates Cat Island and West Ship Island, 

and Dog Keys Pass separated East Ship Island and Horn Island.  In ROMSmsb, a pass 

also existed between West and East Ship Island.  These passes have lengths between 4 

km and 9 km, so the Ship Island removal scenario transformed two islands in between 

three passes into a 28 km gap in the Mississippi-Alabama barrier island chain. 

At first glance, modifications to salinity distributions and flow between the 

Mississippi Sound and Bight seem both localized and minimal.  Salinity increases of 

more than 1 remain mostly confined to the island passes and areas immediately north of 
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the removed islands.  However, depending on the location of the removed island, half the 

Sound saw sustained increases in salinity.  Also, since island loss more than tripled the 

length of the gap between the remaining barrier islands, flow looked more like open 

water exchange than narrow inlet-like exchange since flow was no longer constrained to 

narrow passes.   

Changes in velocity, transport, and salinity were discussed in section 4.6, but 

changes in flushing time also bear examination.  Results for calculated flushing time for 

each model run are given in (Table. 4.3).  All times were rounded up to the nearest day.  

Flushing (or residence) time was shorter in the time varying control runs versus the 

steady state runs.  The flushing time in the July steady state control run was almost 100 

days longer than the January steady state control run flushing time while the July portion 

of the time varying run had a flushing time nearly 10 days shorter than its January 

counterpart.  Removing Petit Bois Island and the western half of Dauphin Island reduced 

flushing time by 0.5 to 2 days while removing the two components of Ship Island 

increased flushing time by 2-10 days.  This pattern held true except for the July portion of 

the time varying runs where removing Petit Bois Island increased flushing time by 22 

days while removing Ship Island only increased flushing time by 2 days.  Removing 

barrier islands increased the volume of the Mississippi Sound.  Despite the increased 

volume, the Petit Bois Island removal runs tended to replenish water faster than the 

control runs while the Ship Island runs tended to take longer to flush the larger 

Mississippi Sound. 

Within the model, the slight salinity increase would become the new norm with 

no additional increases, but under real world conditions, salinity would certainly continue 
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to increase with time.  The lack of subaerial land would diminish the barrier island 

chain’s ability to reduce storm impacts.  Additionally, island loss would cause a 

substantial reduction in sediment supply down drift in the barrier island chain.  

Collectively, the changes brought about by island loss would be detrimental to the 

maintenance of flow and salinity in the Mississippi Sound, and flooding and storm 

damage would likely worsen during future tropical cyclones. 

Table 4.3 Mississippi Sound Flushing Time 

Run Flushing Time (Days) 

Steady State January Control 166 

Steady State January Petit Bois Island Removal 166 

Steady State January Ship Island Removal 168 

Time Varying January Control 155 

Time Varying January Petit Bois Island Removal 153 

Time Varying January Ship Island Removal 165 

Steady State July Control 254 

Steady State July Petit Bois Island Removal 254 

Steady State July Ship Island Removal 258 

Time Varying July Control 146 

Time Varying July Petit Bois Island Removal 168 

Time Varying Ship Island Removal 148 
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CHAPTER V – SUMMARY AND CONCLUSIONS 

This project aimed to study the effect of barrier island loss on circulation within 

the Mississippi Bight and Mississippi Sound.  To that end, analysis of multiple years of 

observational data provided a climatology for circulation across the calendar year and 

identified dominant periods of variability.  Since the study region has a history of tropical 

cyclone strikes, hurricane seasons within the observational record were also studied to 

see how pulsed, non-periodic forcing events impacted the region.  Finally, the ROMSmsb 

coastal ocean model enabled island removal scenarios. 

5.1 General Summary of Observational Analysis 

Circulation within the Mississippi Sound and Bight undergoes seasonal evolution 

that experiences temporary interruption by tropical cyclones that enter the Gulf of 

Mexico.  The tropical cyclones can cause storm run up and occasional set down along the 

coast.  The longshore current near the Mississippi-Alabama barrier islands reverses from 

a westward direction during cooler months to an eastward flow in summer months in 

conjunction with shifts in dominant wind direction.  In agreement with previous studies, 

dominant forcing mechanisms include winds, tides, and riverine input.  Mesoscale 

features, such as eddies, can also have prolonged impacts on circulation.  Though 

changes in surface currents, bottom temperature, and bottom salinity can be seen in the 

monthly climatologies, higher frequency variations occur on time scales from a few hours 

to a few days.   

The observational analysis shows the importance of dividing the Mississippi 

Bight and Sound into sub-regions for analysis since circulation characteristics change not 

only from the western Mississippi Sound to the eastern Sound but also throughout the 
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Mississippi Bight.  Spatial variability can be attributed in part to the presence of the 

nearly perpendicular Louisiana and Mississippi-Alabama coasts, local rivers, Mobile 

Bay, the Mississippi River, and depth changes from the continental shelf to the De Soto 

Canyon (Hill et al., 2010; Ho et al., 1987). 

Tropical cyclone analysis of storms that formed in or entered the Gulf of Mexico 

found only weak correlations between storm distance and approach direction to water 

level changes, current speeds and directions, and abrupt shifts in salinity and temperature.  

However, fluctuations in eddy kinetic energy suggest non-storm periods during hurricane 

seasons can alter circulation to the same degree as Gulf of Mexico storms.  The 2014-

2017 period used for this analysis did not contain any major hurricanes that made landfall 

within the study region.  The absence of direct strike tropical cyclone data during the 

study period leaves uncertainty as to the relative magnitude of impacts from direct strike 

storms compared to that of storms located further away in the Gulf and non-storm 

periods.  A longer record containing multiple direct strike hurricanes would likely 

disagree with the results presented for this four year study. 

Finally, the barrier islands play a crucial role in limiting water exchange between 

the Mississippi Sound and Mississippi Bight, so their presence also plays a controlling 

role in circulation.  This can be seen in bottom salinity distribution and surface velocity 

maps in both the western Mississippi Sound and Mississippi Bight. 

5.2 Observed Versus Modeled Circulation 

The CONCORDE Meteorological Analysis captured the land and sea breeze 

cycles reasonably well.  The temperature gradient sign changed from negative (warmer 

ocean) to positive (warmer land) around mid-morning local time and back to negative 
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around dusk.  Wind directional shifts showed transitions from onshore to offshore and 

back again.  While specifics did not always align with previous analysis by Hill et al. 

(2010), the differential heating and wind velocity rotation simulated a cycling land and 

sea breeze.   

Since previous ROMSmsb validation efforts focused on the model-data 

agreement for towed and deployed equipment during the CONCORDE field campaigns 

as well as at buoys, this study examined model-data agreement for surface currents and 

bottom temperature and salinity used in the observational analysis.   

Results of comparisons between HFR-derived surface currents and model currents 

were varied.  The region south of the eastern Mississippi Sound had the best overall 

agreement for both zonal and meridional velocities.  However, portions of the domain 

had negative correlations and high root mean square errors.  This occurred east of the 

Chandeleur Islands near the western limit of the HFR coverage and along the open 

boundaries of the model domain. The best and worst areas for model-data agreement 

aligned with the most and least reliable HFR grid points respectively. 

ROMSmsb salinities in the western Mississippi Sound tended to be 4-8 higher 

than observations.  This result was not unexpected as a known salinity bias exists in 

NCOM which supplies boundary inputs to ROMSmsb.  Lack of riverine input in 

ROMSmsb from Lake Ponchartrain may be a contributing factor as well.  Temperature 

model-data agreement had high correlation coefficients, similar standard deviations, and 

low root mean square error. 
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5.3 Study Region Response to Island Removal 

Ultimately island loss led to two major changes.  To illustrate these changes, 

Figure 5.1 shows a conceptualized cross section of the barrier island chain before (top 

panel) and after (bottom panel) island removal.  First, transforming the subaerial islands 

to subaqueous shoals allow water exchange between the Mississippi Sound and 

Mississippi Bight.  This meant that while current speeds within existing island passes 

decreased throughout the water column, water could flow over the length of the removed 

islands as well as in the passes.  Mean transport changes within the passes stayed under 

103 m3/s, but mean velocity magnitudes and directions rotated near the removed islands, 

and speeds changed by as much as 10 cm/s.  Second, island loss under some of the 

removal scenarios led to decreased salinity in parts of the Mississippi Sound, but the net 

effect of island loss was to permit a larger amount of higher salinity into the Mississippi 

Sound.  The half of the Sound that contained the removed islands saw larger salinity 

increases than the remainder of the Sound. 

In a real world scenario, the larger gap in the island chain combined with new 

localized velocity changes would lead to ongoing increases in salinity and would likely 

make the northern Gulf of Mexico susceptible to worse damage in the event of future 

tropical cyclones.  The missing islands would not provide much storm resistance, and 

their absence would increase sediment starvation along the chain.  The barrier islands 

would be less resilient after future hurricanes, and storm surge could more readily affect 

the coast. 
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Figure 5.1 Conceptual drawing of island removal changes 

Using the Petit Bois Island-western Dauphin Island removal scenario as an example, the top plot shows the vertical profile of the 

eastern half of the barrier island chain in its current configuration.  Outflow occurs near the surface while inflow happens at depth.  

When one island and half of another island are transformed into subaqueous shoals, water can flow over the top of the shoals.  

Gravitational circulation in the passes weakens. 

5.4 Future Work 

The model results presented in this study represent one instance of each scenario, 

and the observational data provide a sub-decadal view of circulation in the Mississippi 
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Sound and Mississippi Bight.  The 2014-2017 period has only one direct strike tropical 

cyclone, and only some of the observations captured the storm period.  The climatology 

and variability analysis would benefit from a longer record.  Model results would be 

improved if ensembles could be run for each scenario to allow the calculation of 

statistics.  Sensitivity analysis should also be done.  Additional model runs that remove 

only parts of islands or multiple islands within the chain would strengthen or contradict 

the results from this study. 

The natural evolution of this project would model a future configuration of the 

Mississippi-Alabama barrier islands and Louisiana-Mississippi-Alabama coast with a 

more fully-developed version of ROMSmsb.  This study occurred in time with the 

development of the sediment transport module of ROMSmsb, during comparison of 

different atmospheric forcing products, and development of the oceanic component of 

ROMSmsb.  Future runs would benefit from the inclusion of the waves and sediment 

modules as part of a barrier island modification experiment. 

A predictive island chain scenario would necessarily have to balance land loss 

with planned restoration efforts and maintenance of shipping channels.  The coastline 

would have to be moved landward, and North and South Chandeleur Island modification 

would have to accompany the Mississippi-Alabama barrier island chain modification.  

Potential iterative adjustments could include: 1) widening the passes, 2) adding westward 

drift, and 3) creating a landward curvature of the islands.  Simulated storm breaches 

could also be included.  As this study proves, however, any of those changes in isolation 

can cause unexpected shifts in circulation in the Mississippi Bight. 
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Island removal simulations in this study do provide a useful step in simulating 

coastal change in the northern Gulf of Mexico using a coastal ocean model.  The study 

sought to identify the role barrier islands played in circulation within the Mississippi 

Sound and Bight.  Though island loss in isolation is improbable, the island removal 

scenarios provided a valuable first step in modeling coastal and barrier island change in 

the northern Gulf of Mexico. 
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