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ABSTRACT 

SCREENING STRAWBERRY CLONES FOR ANTHRACNOSE DISEASE 

RESISTANCE USING TRADITIONAL TECHNIQUES 

AND MOLECULAR MARKERS 

by Melinda Ann Miller-Butler 

May 2016 

Cultivated strawberry, Fragaria x ananassa Duchesne, is host for many 

pathogens.  One of the most destructive diseases of strawberry is anthracnose, whose 

symptoms include fruit rot, leaf and petiole lesions, crown rot, wilt, and death.  Three 

species of Colletotrichum are considered causative agents of anthracnose diseases of 

strawberry.  Colletotrichum acutatum causes anthracnose fruit rot, has a broad host range, 

and occurs in most areas of the world where strawberries are grown.  Colletotrichum 

fragariae, the primary causal fungus of anthracnose crown rot, may infect all above 

ground parts of the strawberry plant, and has restricted host and geographic ranges.  

Colletotrichum gloeosporioides causes symptoms indistinguishable from those caused by 

C. fragariae but has much broader host and geographic ranges. 

Plant breeding programs generally require many years to produce commercially 

acceptable disease resistant cultivars; however, molecular tools may be used to identify 

genes that convey disease resistance and decrease the overall time required to develop 

new disease resistant cultivars.  Two disease resistance genes have been identified in 

strawberry through controlled crosses: Rpf1 for resistance to Phytophthora fragariae and 

Rca2, a dominant gene that has been suggested to provide resistance to pathogenicity 

group 2 (q.v.) of C. acutatum (Van de Weg et al., 1997; Denoyes-Rothan et al., 2005).  
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Two sequence characterized amplified region (SCAR) markers for the Rca2 resistance 

allele were found in several European and U.S. cultivars and, although there was not a 

perfect association with anthracnose resistance, these SCAR markers provide a unique set 

of tools to use in screening for anthracnose-resistant genotypes in strawberry breeding 

programs. 

The primary goal of this research was to establish the resistance or susceptibility 

of 81 strawberry germplasm lines to all three anthracnose-causing Colletotrichum species 

and to determine the degree to which an association exists between the resistance or 

susceptibility of these plants to the presence or absence of the Rca2 resistant allele SCAR 

markers.  A secondary goal of this research was to determine if a detached leaf assay 

could be used to define the resistance or susceptibility of strawberry plants to 

anthracnose, thus providing an efficient, non-destructive method to screen strawberry 

germplasm for anthracnose resistance. 
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CHAPTER I - INTRODUCTION 

The Nature of Anthracnose 

Fungal Component of the Disease — Infection Process 

Anthracnose is a term applied to fungal diseases that are characterized by dark 

spots or sunken lesions with slightly raised edges that appear on the leaves or stems of a 

host plant.  Typically these lesions are described as a layer of host tissue that overlies 

disintegrating host cells.  The center of the lesion usually contains conidia produced 

within a black, cushion-shaped hyphal structure called an acervulus, which develops in 

the host’s epidermal and subepidermal tissue and is erumpent through the epidermis.  

Conidia develop in a moist, hydrophilic, mucilaginous matrix composed mostly of 

polysaccharides and glycoproteins.  This matrix may prevent conidial germination while 

the conidia are still within the acervulus and also aid in maintaining the conidia when 

surroundings are dry (Louis and Cooke, 1985; Nicholson and Moraes, 1980; Louis et al., 

1988).  Conidia are released from mature acervuli in matrix droplets that are pigmented 

depending on the color of the conidia, which may be white, cream, pink, orange, black, or 

other colors (Alexopoulos and Mims, 1979).  Conidia from young acervuli are generally 

dispersed by water droplets; but if environmental conditions are dry, the matrix can form 

a crusty deposit that will bind several conidia together, and these conidia may be wind 

dispersed (Bailey et al., 1992). 

The first step to successful pathogenesis is the attachment of a conidium to the 

surface of a plant.  The conidium germinates producing a germ tube, the tip of which 

differentiates into an appressorium.  Appressorial formation is often accompanied by the 

development of a mucilaginous material that surrounds the appressorium and appears to 
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be involved in adhesion of the appressorium to the plant surface.  A penetration hypha 

(infection peg) develops from the appressorium and penetrates the plant tissue through 

natural openings, wounds, or direct penetration of the cuticle.  Two mechanisms of 

penetration have been proposed which are not necessarily mutually exclusive: secretion 

of cutinases (enzymes that degrade cutin) (Manandhar et al., 1985; O’Connell et al., 

1985) and mechanical force (Mercer et al., 1975; O’Connell et al., 1985).  Melanin, a 

brown pigment in the appressorial wall, may provide protection from solar radiation and 

also plays a role by strengthening the appressorial wall to support the internal hydrostatic 

pressure necessary for penetration.  Hyphae developing from the penetration peg begin to 

grow inside host cells, within host cell walls, and in the intercellular spaces, infecting and 

colonizing the plant tissues (Bailey et al., 1992). 

The success of Colletotrichum species as pathogens may depend on their initial 

infection and colonization strategies.  Bailey et al. (1992) noted Colletotrichum species 

primarily have two infection strategies:  intracellular hemibiotrophic and subcuticular 

intramural.  Both strategies begin with a symptomless phase followed by a destructive, 

necrotrophic phase in which host cells are killed before the fungus enters them.  Species 

that exhibit the intracellular hemibiotrophic infection strategy begin with a biotrophic 

infection which is symptomless as the fungus establishes itself by penetrating cell walls 

and growing within the cell lumina without killing host cells.  Histopathology studies by 

Curry et al. (2002) determined that two Colletotrichum species, C. acutatum and C. 

fragariae, have a very brief biotrophic phase of less than 12 hours on strawberry host 

plants.  Arroyo et al. (2005) also found a brief biotrophic phase between 12 and 24 hours 

following inoculation of strawberry petioles with C. acutatum.  Colletotrichum species 
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displaying a subcuticular intramural infection strategy grow beneath the cuticle and 

within the periclinal walls of the epidermal cells, but do not enter the cell lumina; 

therefore, the cuticle is not destroyed.  The necrotrophic phase begins after the plant 

tissues are colonized and the pathogen begins to produce enzymes to break down 

structural components of the host cell walls.  Two frequently occurring types of enzymes 

are produced by the pathogen: polygalacturonases that degrade pectin dissolving cell 

walls and cutinases that hydrolyze the plant cuticle.  Some Colletotrichum species also 

produce low molecular weight phytotoxins which may kill cells in advance of the hyphal 

invasion (Bailey et al., 1992).  The necrotrophic phase is visibly destructive to the plant 

and is manifested as anthracnose and blight symptoms. 

Plant Component of the Disease — Defense Responses 

Plants are continually exposed to pathogens in their environment, and their 

structure offers pathogens a wide diversity of habitats, e.g., aerial region (phyllosphere), 

root zone (rhizosphere), and internal transport or vascular system (endosphere).  

Fortunately, most pathogens are capable of causing disease only on a limited range of 

plants.  Plants in which the pathogen is unable to induce disease are considered to be 

nonhost plants.  Plants do not have an animal-like immune system, but do have a number 

of efficient defense mechanisms. Nonhost and host plant defenses are triggered by 

different mechanisms and have specific defense responses when attacked. 

Nonhost resistance is the most common form of disease resistance in plants.  

Mysore and Ryu (2004) proposed that nonhost resistance consists of two types of 

reactions which depend on the plant/pathogen interaction.  Type I nonhost resistance has 

no visible disease symptoms.  The pathogen cannot overcome the mechanical and 
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chemical barriers of the plant that provide nonspecific protection against a wide range of 

organisms, e.g., waxy cuticles, cell wall components, enzyme inactivators, and 

antimicrobial and toxic compounds.  The pathogen is also unable to overcome inducible 

resistance.  Type II nonhost resistance is characterized by limited necrosis and appears to 

be associated with the penetration process of the pathogen and detection of nonspecific 

pathogen-elicited molecular signals.  Type II is always associated with the hypersensitive 

response (HR), a highly specific cell suicide at the penetration point.  A pathogen may 

overcome the preformed mechanical and chemical barriers of defense and directly 

penetrate cells.  The plant recognizes pathogen-derived molecules within the cells and 

produces the HR.  The HR is a spatially confined rapid reaction killing the plant cells at 

the spot of infection and confining the pathogen to the necrotic tissue.  A nonhost plant 

may display type I resistance against one pathogen and type II against another.  Either of 

these two types of response will stop the pathogen from invading additional plant tissues. 

Host resistance consists of constitutive and inducible defense mechanisms.  

Constitutive defenses are constantly available and considered passive defenses.  The 

waxy surface of the cuticle can repel water and without water many conidia are unable to 

germinate.  Thick cuticles or thick epidermal cell walls may increase resistance against 

direct penetration of some pathogens.  Many pathogenic fungi enter through open 

stomata, and some plants have the ability to open their stomata only when the chance of 

infection is low, such as in the case of stem rust of wheat (Puccinia graminis) and some 

wheat varieties, which open their stomata late in the day.  The stem rust spores germinate 

in the night dew, but the germ tubes desiccate due to evaporation before the stomata 

begin to open (Hart, 1929).  Some constitutive defenses that inhibit fungal growth are 
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preexisting chemicals on the surface (fungitoxic exudates) or within the cells of the plant, 

such as phytoanticipins which are constitutive phytoalexins synthesized at a constant rate 

within the cell.  Constitutive defenses in plants are basically the same for pathogens and 

nonpathogens (Agrios, 2005).  Inducible defense mechanisms become active upon 

pathogen recognition and are also considered active defenses.  A plant is capable of 

recognizing and responding to stimuli produced by an invading pathogen in the early 

stages of the invasion.  Pathogen recognition by the plant gives the idea of a surveillance 

system to detect pathogen-generated stimuli (Hutcheson, 1998). 

Qualitative and quantitative terms are used to distinguish types of disease 

resistance or to characterize trait expressions.  Qualitative resistance does not occur in 

degrees.  The plant is either resistant or susceptible based on one or a few tightly linked 

genes which form the basis of Mendelian ratios.  Phenotypic plasticity may influence the 

trait but not enough to mistake resistance for susceptibility.  Quantitative resistance 

occurs in degrees and there are no distinct categories of phenotypes.  Phenotypic 

variation is obvious across populations and blurs the distinction between resistance and 

susceptibility (Pataky and Carson, 2008). 

Resistance is a phenotypic expression of the genotype.  Genotypic systems may 

be either monogenic, oligogenic, or polygenic, depending on the number of nuclear genes 

involved in the inheritance of a single characteristic.  A monogenic system is where a 

single character is tied to a single gene.  Such a system can be placed in discrete 

categories because the phenotype occurs in genetically segregated populations and is 

considered to have qualitative resistance at the phenotypic level.  Oligogenic systems are 

characterized by multiple genes that code for a single phenotypic trait.  If the trait can be 
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placed into a discrete category, it is considered qualitative, just as a monogenetic system.  

If the trait cannot be placed in a discrete category, it is considered quantitative.  

Polygenic systems are characterized by multiple genes that code for multiple, closely 

related phenotypic traits that cannot be placed in discrete categories.  They are considered 

a quantitative system just as with an oligogenic quantitative system. 

The monogenic gene-for-gene theory was introduced by Flor (1955) specifying 

that host plant resistant (R) genes mediate the recognition of the products of the plant 

pathogens’ avirulence (avr) genes.  Avirulence gene proteins (elicitors) are recognized by 

R gene proteins (receptors) present in resistant host plants.  Plants with the 

complementary R gene (receptor) use the avr gene (elicitor) as a recognition device.  The 

plant mounts a defense when a pathogen has an elicitor and the plant has a receptor for 

the elicitor.  The avr gene products are needed by the pathogen for unknown functions 

associated with virulence and are highly conserved in the genome of the pathogen 

(Ferreira et al., 2008).  Virulence is the pathogen’s ability to cause a compatible reaction 

on a host cultivar with genetic resistance.  Resistance genes in plants evolved in response 

to avr genes or their products.  Detection of specific molecular signals is required to resist 

pathogens that are capable of overcoming constitutive barriers.  The gene-for-gene theory 

refers to avr genes in the pathogen that correspond to genes for specific resistance in the 

host.  Specific resistance is effective against some races of a pathogen (avirulence), but 

ineffective against virulent races.  Therefore, if the host has more than one gene 

conveying specific resistance, there will be a number of potential races of the pathogen.  

The number of races increases exponentially, 2N, where N equals the number of host 

resistance genes.  Host-pathogen interactions may be compatible or incompatible as 
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conveniently shown by the quadratic check (Table 1).  A compatible reaction is when 

disease occurs because the host lacks the R gene, or when the host has the R gene, but the 

pathogen lacks the corresponding avr gene.  An incompatible reaction occurs when the 

host is resistant owing to a specific R gene and the pathogen carries the corresponding 

avr gene. 

Many pathogenic fungi release substances that act as nonspecific or general 

elicitors recognized by the host plant.  General elicitors can be any molecule (proteins, 

glycoproteins, peptides, carbohydrates, and lipids) capable of triggering a plant defense 

reaction and are often grouped collectively as pathogen-associated molecular patterns 

(PAMPs).  The initial elicitor(s) starts signal transduction pathways and the end products 

of the pathways induce defenses of the plant leading to disease resistance (Agrios, 2005). 

Receptors in the host plant may be extracellular, in the cell membrane, or intracellular.  

Recognition by the plant of signals from a plant pathogen activates host cell proteins and 

nuclear genes.  When activated, they elicit the production of pathogen inhibitory 

substances and mobilize defensive chemical reactions and structural changes at the 

location of the pathogen attack (Figure 1).  The extremely rapid response which causes 

localized host cell death is known as the hypersensitive response (HR).  The HR kills the 

invaded host cells, the surrounding host cells, and the invading pathogen cells.  The HR 

reaction often triggers a transduction pathway which signals nonspecific resistance 

throughout the plant.  The plant may synthesize phytoalexins (antimicrobial products 

produced in response to a stimulus) and reactive oxygen species.  The alarm is often 

transmitted to cells adjacent to the one being attacked and is also transmitted systemically 
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to the rest of the plant.  The systemic transmission of pathogen resistance is known as 

systemic acquired resistance. 

General elicitors may be endogenous host components released or modified by 

the pathogen (Figure 1, blue arrows).  Some plant pathogens produce cell wall degrading 

enzymes that break down molecules in the plant’s surface cells, e.g., cutinases may be 

released by the pathogen to break down polysaccharides in plant cell walls and 

glucanases may be released to break down oligosaccharides.  The breakdown of 

polysaccharides and oligosaccharides creates carbon and energy sources for the fungus 

and elicitors for the host plant defenses.  Some host plants release pathogen cell wall 

degrading enzymes, glucanases and chitinases that fragment fungal cell walls, creating 

oligosaccharides which act as elicitors, inducing defense responses.  The elicitors are 

detected by receptors in the host and predictably inform the plant’s surveillance system of 

the invader. 

General elicitors may also be exogenous of pathogen origin (Figure 1, red 

arrows).  Plant pathogen elicitors are often constitutive, essential for the pathogen, highly 

conserved in the genome, and not found in plant hosts.  Fungal plant pathogens may 

produce endopolygalacturonases (EPGs) that cleave pectin in plant cell walls, producing 

oligogalacturonides (OGAs), which are elicitors of plant defenses.  The EPGs quickly 

convert OGAs to smaller inactive fragments, but not before some can elicit the 

production of polygalacturonase inhibiting proteins (PGIPs) within the plant.  The PGIPs 

form reversible complexes with fungal EPGs, increasing the elicitor active OGAs.  

Fungal pathogens release glucanase-inhibiting proteins (GIPs) to inhibit cell wall 

degrading enzymes from the plant and limit the plants’ awareness (Ferreira et al., 2008). 
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Specific elicitors are also released by some pathogens, triggering cultivar-specific 

responses (Figure 1, yellow arrow).  The specific elicitors are produced by the avirulence 

(avr) genes of the pathogen and are recognized by the complimentary resistance (R) gene 

(gene-for-gene).  The avr gene products elicit plant defenses by way of the R gene 

products.  This event can be likened to radar, the R gene products looking for a ping from 

the avr gene products.  When a signal (ping or elicitor) is received by the R gene 

products, defense responses are triggered. 

Distribution of Anthracnose Diseases 

Anthracnose diseases are incited by fungi within the genus Colletotrichum that 

are favored by high temperatures and humidity and are found in tropical zones where 

they are frequently isolated from both healthy and diseased tissues.  Diseases caused by 

Colletotrichum species may affect the shoots, leaves, flowers, and fruit.  Sometimes fruit 

infections will remain latent until after the fruit has reached the consumer.  Tropical crops 

can be decimated by anthracnose diseases, causing significant problems for farmers as 

well as consumers in areas lacking refrigeration.  A few Colletotrichum species cause 

anthracnose diseases on almost all tropical and subtropical crops, including avocado, 

yam, cassava, banana, papaya, citrus, and mango.  Several species of Colletotrichum 

infect ripening coffee berries, but Colletotrichum coffeanum causes twig blight, infection 

of the leaves and berries, as well as fruit drop and defoliation.  Temperate zones, such as 

the Gulf Coast area of the United States, often experience warm, humid conditions, and 

anthracnose can be severe on annual crops in these areas.  Legumes and cucurbits (e.g., 

watermelon, cantaloupe, and cucumber) are subject to anthracnose at all stages of growth.  

Ripe rot of tomato, eggplant, and pepper incited by Colletotrichum species can cause 



 

10 

severe crop loss.  Onions are also susceptible to an anthracnose disease, called smudge, 

which is caused by Colletotrichum circinans.  Anthracnose is an important disease of 

strawberries, caused by a complex of three Colletotrichum species, which may infect the 

leaves, stolons, fruit, and crown, causing plant death.  Many of the world’s most 

important cereal crops (corn, wheat, barley, and rice), ornamental plants, and turf grasses 

may host anthracnose disease organisms.  By contrast, anthracnose is insignificant as a 

plant disease in arid and semi-arid areas (Waller, 1992). 

Colletotrichum Nomenclature and Identification 

Fungi are unique in their dual nomenclature with a name for the teleomorph 

(sexual state) and a distinctly different name for the anamorph (asexual state).  The term 

holomorph refers to both states, sexual and asexual, collectively.  Many pathogenic fungi 

were discovered on plant hosts in their asexual state and given documented names before 

the connection between sexual and asexual states was unequivocally determined. 

Sexual states.  Fungi that incite anthracnose diseases normally are found in nature 

as the anamorph, but some do occur as the teleomorph, including the ascomycetous fungi 

in the genera Diplocarpon, Discula, Elsinoe, Gnomonia, and Glomerella.  These fungi 

may attack and destroy the foliage, stem, flower, or fruit of the host plant.  Diplocarpon 

rosae is destructive to roses and, although it is an anthracnose disease, it is better known 

as black spot of rose whose symptoms are black lesions on the leaves that prematurely 

drop and purple-red lesions on immature canes.  Discula destructiva is the causal agent of 

anthracnose of dogwood, a relatively new disease first reported in the 1970s.  The genus 

Elsinoe is associated with anthracnose of grape and raspberry, and Gnomonia is 

associated with anthracnose of walnut, forest trees, and shade trees (Agrios, 2005). 
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Glomerella is another teleomorph of Colletotrichum, but it is rarely associated 

with anthracnose.  The anamorph Colletotrichum has been identified causing anthracnose 

diseases on many different host plants, but the teleomorph Glomerella has not been 

identified for all of these hosts.  Colletotrichum species produce conidia in an acervulus, 

and Glomerella species produce ascospores in asci that develop within a perithecium.  

Past and current literature can be confusing when authors report the sexual name when 

only the asexual state has been found in nature.  Some of these fungi can be manipulated 

in the laboratory or greenhouse to produce the sexual state.  Kendrick and Di Cosmo 

(1979) suggested many of these anamorphs were identified by association with the 

teleomorph and should be considered with a degree of skepticism.  Referring to a 

pathogen by its teleomorph name may not be prudent for a fungus that is well known by 

its anamorph, except in rare cases where the teleomorph is recovered from an infected 

plant. 

The teleomorph of C. acutatum was first reported in the U.S. from apple (Guerber 

and Correll, 1997) and then characterized as Glomerella acutata in 2001 (Guerber and 

Correll, 2001).  The teleomorph of C. fragariae has not been described as of this writing.  

The teleomorph of C. gloeosporioides was first identified as Glomerella cingulata by 

Von Schrenk and Spaulding (1903).  Glomerella cingulata has been isolated from 

blueberry, grape, strawberry, banana, coffee, apple, buckwheat, mango, Taxus mairei 

(yew), Hevea brasiliensis (rubber tree), Catostemma fragrans (Central American timber 

tree), Mora excelsa (Central American timber tree), and Chlorocardium rodiei (South 

American timber tree) (Maas and Howard, 1985; Cannon et al., 2008).  Bitter rot of apple 

fruit and bitter rot cankers on the trunk and branches of apple trees are caused by the 



 

12 

teleomorph, G. cingulata.  Ripe rot of grape, pears, and peaches are also caused by 

Glomerella species, but more often the fungus is found as the anamorph producing 

acervuli in which conidia are formed (Agrios, 2005).  Colletotrichum gloeosporioides 

isolated from avocado will produce the teleomorph, G. cingulata, in culture, but has thus 

far not been found in nature (Freeman, 2000). 

Asexual states (Colletotrichum species).  Anthracnose diseases of many plants are 

caused by the anamorph Colletotrichum species.  Sutton (1992) reported about 900 

species that had been referred to as Colletotrichum species. 

Traditional methods for identification of Colletotrichum plant pathogens have 

relied on the morphological features of colony color, size and shape of conidia, optimal 

growth temperature, growth rate on specific agars, presence or absence of setae, and the 

existence of a teleomorph.  Identification can be difficult due to frequent subculture of 

the pathogen, type of storage, and environmental influences.  New molecular tools have 

been introduced to allow more reliable identification of the many plant pathogens based 

on deoxyribonucleic acid (DNA) analysis.  Nuclear DNA polymorphisms, arbitrarily 

primed PCR (apPCR), ribosomal DNA (rDNA), mitochondrial DNA (mtDNA), and 

DNA sequence analysis are some of the techniques being utilized to discriminate among 

populations of Colletotrichum species (Freeman, 2000). 

Colletotrichum gloeosporioides was described by Penzig and Saccardo (1884).  It 

is a cosmopolitan plant pathogen with a broad host range, having been associated with 

approximately 470 different host genera (Sutton, 1992).  Colletotrichum gloeosporioides 

is considered a species complex with a wide variation in morphology on different host 

plant species.  The anthracnose disease symptoms caused by C. gloeosporioides on 
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strawberry are not distinguishable from those caused by C. fragariae.  Isolates are gray to 

olive gray with dark olive to dark gray in reverse.  Conidia are cylindrical with both ends 

rounded and shorter than the conidia of C. acutatum and C. fragariae (Smith and Black, 

1990; Sutton, 1980; Baxter et al., 1983; Gunnell and Gubler, 1992).  Formation of setae 

on strawberry leaf agar was reported by Gunnell and Gubler (1992).  Conidia of C. 

gloeosporioides do not survive very long in the natural environment.  Ureña-Padilla et al. 

(2001) determined that the inoculum of C. gloeosporioides does not survive between 

strawberry growing seasons in Florida.  They buried strawberry crown tissue infected 

with C. gloeosporioides and found the fungus was stable for 2–3 weeks, but could not 

detect the fungus after 56 and 98 days in 1998 and 1999, respectively. 

Colletotrichum fragariae, identified as the causal organism of anthracnose on 

strawberry in Florida by Brooks (1931), can cause anthracnose disease on all aerial parts 

of the strawberry plant.  Von Arx (1957) and Lenné (1977) considered C. fragariae to be 

synonymous with C. gloeosporioides.  The fungal organism causing anthracnose on 

strawberry in Florida was identified by morphological features as the C. fragariae type of 

C. gloeosporioides and was continually isolated for fifteen years before December, 1982, 

at which time G. cingulata (=C. gloeosporioides) was isolated from strawberry in Florida 

for the first time (Howard and Albregts, 1983).  The authors noted that the morphological 

features of C. fragariae remained the same over 15 years of isolations, differing from C. 

gloeosporioides in the color of conidia and abundance of aerial conidia.  Several 

researchers (Howard and Albregts, 1983, 1984; Maas and Howard, 1985) either alluded 

to, or suggested that, C. fragariae was possibly a separate species from C. 

gloeosporioides.  Smith and Black (1987) suggested the name anthracnose crown rot to 
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distinguish disease caused by C. fragariae from disease caused by other Colletotrichum 

species.  Colletotrichum fragariae isolates exhibit beige to olive to dark gray color in 

culture with dark olive to dark gray in reverse.  Conidia are cylindrical with one end 

pointed and setae are produced in culture (Smith and Black, 1990).  Gunnell and Gubler 

(1992) found the conidia to be narrowly obovate and setae formation was observed.  

Horn and Carver (1968) reported that C. fragariae did not survive in the soil in Louisiana 

between plantings (over summer), but was found living in an inactive state in the crowns 

of apparently healthy plants through the winter months and served as a primary inoculum 

the following spring.  Howard et al. (1992) found pathogenic Colletotrichum species do 

not survive from year to year in the soil in Florida or Louisiana.  Colletotrichum 

fragariae had been considered host specific to strawberry, but more recent research 

confirms it is a pathogen on other hosts.  Isolates repeatedly found on silver date palm 

(Phoenix sylvestris) and cyclamen (Cyclamen persicum) plants in Florida were 

morphologically identified as C. fragariae and used to inoculate strawberry plants 

(MacKenzie et al., 2008).  The isolates from the silver date palm were not pathogenic on 

strawberry. The isolates from cyclamen were pathogenic on strawberry and, after DNA 

testing, appeared to be from the same C. fragariae group that infects strawberry.  

Survival of C. fragariae on Senna obtusifolia (coffee weed) was determined by Howard 

and Albregts (1983).  The ability of C. fragariae to survive on hosts other than 

strawberry possibly creates a reservoir for inoculum. 

Colletotrichum acutatum was treated as a morphological variant of C. 

gloeosporioides until Simmonds (1965) described it as a distinct species in Queensland, 

Australia, in a pathogen survey of fruit rot. Smith and Black (1986) first reported C. 
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acutatum on strawberry in the U.S.  They identified isolates from strawberry originating 

from California, Florida, Mississippi, and Missouri.  Colletotrichum acutatum may cause 

anthracnose disease on the runners, petioles, leaflets, and fruit of strawberry (Howard et 

al., 1992).  Colonies of C. acutatum grown in the laboratory are generally white to light 

gray, becoming covered with pink to orange conidial masses, and are salmon color in 

reverse.  The conidia are primarily produced in acervuli and are ellipsoid and fusiform 

(Gunnell and Gubler, 1992; Smith and Black, 1990).  Setae were not observed in the 

isolates grown on potato-dextrose agar (PDA) or oatmeal:potato dextrose agar 

(OMA:PDA; 1:1, v/v) (Smith and Black, 1990), but were observed on isolates grown on 

strawberry leaf agar (SLA) (Gunnell and Gubler, 1992).  Leandro et al. (2001) found the 

production of secondary conidia by C. acutatum increased the overall total conidia 

threefold on asymptomatic strawberry plants.  Secondary conidia can remain latent for an 

undetermined amount of time and may become pathogenic under specific environmental 

conditions.  Eastburn and Gubler (1990) found C. acutatum survived for at least nine 

months in the soil within plant debris in California.  Colletotrichum acutatum had a 100% 

recovery rate from infested mummified fruit which overwintered both on the soil surface 

and 5–8 cm below in a two-year field study in Ohio (Wilson et al., 1992).  Freeman et al. 

(2001) found C. acutatum exhibited epiphytic and endophytic lifestyles on various plant 

species without causing visible disease symptoms. 

Plant Breeding Programs (History) 

Classical plant breeding is the discipline where sexual crosses of individuals are 

made to introduce traits from one variety or line into another variety or line.  Plant 

breeders often use local plants to cross sexually with wild species or plants from different 
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localities to introduce new genes into the germplasm.  Strawberry plant breeders perform 

sexual crosses between pairs of strawberry plants, and the resulting seeds are collected 

and germinated.  The seedlings are tested for desirable traits, such as disease resistance, 

better plant and fruit quality, and increased yield.  Gene pool diversity may become a 

concern when many cultivars have been produced from the same parent gene pool over 

the years.  This has happened with strawberries where the intense selection for specific 

traits has decreased the germplasm variation and (parent) base.  The inbreeding of 

cultivated strawberries may result in loss of vigor, yield, and fruit size.  Breeders are 

working to increase the genetic diversity of the cultivated strawberry by using wild 

strawberries in their programs (Degani et al., 2001; Hancock and Luby, 1993). 

Strawberry plants may be diploid, tetraploid, hexaploid (mainly in Europe and 

Asia), or octoploid (North and South America).  The woodland strawberry, Fragaria 

vesca, is the only diploid native to North America.  The octoploid nature of the cultivated 

strawberry has hindered breeding programs to some extent due to various traits of 

discontinuous and continuous inheritance patterns within the same plant (Galletta and 

Maas, 1990; Hancock, 1999).  Some studies show the octoploid strawberry exhibits 

diploid inheritance patterns for some traits. Two disease resistance genes have been 

identified in strawberry through controlled crosses: Rpf1 for resistance to Phytophthora 

fragariae and Rca2, a dominant gene that has been suggested to provide resistance to 

pathogenicity group 2 (q.v.) of C. acutatum (Van de Weg et al., 1997; Denoyes-Rothan et 

al., 2005).  Valuable traits used in breeding strawberries are disease and insect resistance, 

yield, plant vigor, flowering date, runner density, fruit set, and fruit appearance and 

flavor.  Many lower ploidy species exhibit traits (cold tolerance, heat and drought 
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resistance, high aroma, and disease resistance) that could be valuable in the cultivated 

species.  Most commercial strawberries have been selected to be self-pollinating. 

Strawberries have been cultivated in Europe since the 14th century, maybe even 

earlier.  Today the most popular cultivated strawberry is Fragaria x ananassa, an 

accidental hybrid of F. chiloensis from Chile and F. virginiana from the eastern U.S.  

Fragaria virginiana was introduced to Europe in approximately 1629 and the 

hybridization occurred sometime after F. chiloensis was introduced to France in 1714 by 

French Army Lieutenant Colonel Frezier (Darrow, 1966).  The name ‘ananassa’ is for the 

perfume of the strawberry fruit, which smells like Ananas or pineapple (Hancock et al., 

2008). 

Many strawberry plants exhibit some resistance to anthracnose disease based on 

controlled inoculations and field trial studies (Brooks, 1931; Delp and Milholland, 1980, 

1981; Smith and Black, 1987; Gupton and Smith, 1991).  Commercial strawberry 

growers, state and federal breeders, and plant pathologists have worked to develop 

anthracnose resistant strawberry plants for many years.  The USDA, Agricultural 

Research Service, established a strawberry breeding program in the 1980s at the Small 

Fruit Research Station, Poplarville, MS, to develop strawberry germplasm resistant to C. 

fragariae (anthracnose crown rot) and adapted to the southeastern U.S. (Smith, 2006).  A 

total of 1515 anthracnose-resistant selections were identified following greenhouse 

screening for anthracnose resistance and field testing for horticultural traits.  These clones 

were designated as MSUS to denote that they were from the USDA breeding program in 

Mississippi.  One of the MSUS clones was released as the anthracnose resistant cultivar 

Pelican (Smith et al., 1998), and four others were released as breeding lines, i.e., US70, 
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US159, US292, and US438 (Galletta et al., 1993).  These strawberry clones have been 

used as parent lines in other breeding programs and continue to be clonally propagated at 

the USDA, ARS, Poplarville, MS research station along with approximately 66 

unreleased MSUS selections. 

Strawberries are commercially propagated by cloning, a type of asexual 

propagation.  The daughter plants (runners) are allowed to establish a root system, 

removed from the “mother” plants, and established in the greenhouse or field.  Cloning is 

also used for the rapid multiplication of a promising cross for further study or testing 

without affecting the plant’s genome. 

Tissue culture, another form of asexual propagation, is valuable for producing 

disease-free plants.  A meristem-tip, shoot-tip, or bud can be established in vitro on 

artificial medium.  These in vitro plants are used for asexual multiplication or 

micropropagation on medium containing specific growth hormones.  After the plants are 

clonally increased in number on multiplication medium, they are separated, and each 

plant may be placed on various media such as holding medium for maintaining the plant 

or rooting medium to stimulate the growth of roots.  Once roots are established, the plant 

can be established in a potting medium to prepare the plant to be moved to the 

greenhouse.  In vitro asexual multiplication is a quick method for increasing selections 

for field evaluations.  Tissue culture can also be used to preserve the germplasm of plants 

such as strawberry which have a short regeneration time for whole plants (Zimmerman, 

1983). 
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Anthracnose Disease Control Methods 

Commercial strawberry growers rely on various types of disease control measures 

including disease-free plants, sanitation practices, pesticides, cultural controls, and 

disease resistant cultivars.  Disease-free plants may be initiated from tissue culture and 

can be multiplied quickly.  They are then propagated clonally in field plots following 

strict sanitation protocols before being transplanted into production fields.  Establishing 

fields with disease-free plants decreases the possibility of introducing plant pathogens 

from other locales into the grower’s field.  Sanitation practices are used to destroy fungal 

pathogens on equipment and in the soil but do not stop latent infections in plants that 

appear healthy. 

Fungal pathogens are often controlled by the use of fungicides; however, 

fungicides rarely eradicate the pathogens.  Frequent use of fungicides by strawberry 

growers has resulted in fungicide resistant pathogen populations and the failure of 

fungicides to control anthracnose epidemics (Smith and Black, 1993).  The use of 

ineffective fungicides adds unnecessary expense when applied to several hectares of 

strawberries or other crops.  Although Colletotrichum species are not considered soil 

pathogens, it is important to note that C. acutatum and C. fragariae have both been found 

to overwinter in soil and crowns in some areas.  Many soil pathogens and weeds are 

controlled by fumigating the soil with methyl bromide plus chloropicrin before planting, 

but the use of methyl bromide is being phased out because it has been found to cause 

damage to the ozone layer of the stratosphere.  There is ongoing research of other 

methods of sterilization of the soil, including placing plastic sheets over the soil on hot 

sunny days (solarization) to cause the soil temperature to increase sufficiently to kill 
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many soil-borne pathogens and weed seeds near the surface thus reducing pathogen 

inoculum and weed populations.  Soil may be heat sterilized with steam or hot water in 

greenhouses (Agrios, 2005).  Samtani et al. (2012) tested the efficacy of pre-plant soil 

steam and solarization treatments for control of soil pests and weeds in commercial 

strawberry fields in California.  Solarization alone was an inexpensive treatment, but the 

fruit yield was 16% less than with the methyl bromide plus chloropicrin treatment.  

Steam applied with spikes effectively controlled pests, was comparable to methyl 

bromide plus chloropicrin in cost of weed control, and increased the gross harvest 

revenue by $10,500 per hectare, but due to high application costs ($25,212/ha) , the net 

revenue was decreased by $11,500 per hectare. 

Mulch is an important cultural control used to protect the strawberry fruit from 

soil pathogens, decrease weeds, and maintain soil moisture.  The concept of mulch 

encompasses a wide variety of materials, including black plastic, wheat straw, and 

chopped corn stalks.  The use of straw mulch reduces within-field spread of anthracnose 

by reducing conidial dispersal by splashing water.  The use of drip irrigation in place of 

overhead irrigation also decreases the spread of conidia due to water splash and the 

amount of water required. 

Delp and Milholland (1980, 1981) found that strawberry cultivars resistant to C. 

fragariae can decrease the rate of disease spread in a field.  The best disease control is 

planting disease resistant strawberry cultivars (Agrios, 2005). 

Screening for Anthracnose Resistance 

Strawberry plants found to be disease resistant in the greenhouse are usually 

transplanted to the field to evaluate the plants for horticultural characteristics and disease 
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response based on natural infections.  The efficacy of field testing for disease resistance 

presents problems due to the inconsistency of disease pressure and variable 

environmental conditions, and it is time consuming. 

Plants are often screened for disease resistance in greenhouses where the 

inoculum and environment can be better controlled.  A set of standard cultivars with 

known disease reactions is often included to help compare results.  Thousands of 

strawberry seedlings can also be screened for anthracnose disease resistance efficiently in 

the greenhouse.  Whole plants of standard cultivars and seedlings are inoculated with a 

conidial suspension of a pathogenic Colletotrichum species and evaluated for resistance 

or susceptibility.  High humidity in greenhouses offers an ideal environment for the 

development of fungal diseases.  The use of more aggressive pathogen isolates in 

inoculation studies separates germplasm reactions more effectively than less aggressive 

isolates.  Resistant gene expression depends on the interaction of the plant with the 

pathogen in a suitable environment for disease development.  Screening for disease 

resistance using detached strawberry leaves is a possible alternative to greenhouse 

screening using whole plants.  Inoculating detached leaves with Colletotrichum species 

may provide an accurate, rapid, non-destructive method of identifying anthracnose 

resistant germplasm.  Howard and Albregts (1983) determined that the black leaf spot 

phase of anthracnose is very often the first symptom of anthracnose in the strawberry 

nursery and can serve as an early warning that anthracnose is present. 

Molecular markers also can be used to identify resistance in plants.  Many 

organisms are diploid with pairs of alleles with slight differences (polymorphisms) in 

their DNA sequences.  These differences may cause one allele to be dominant over the 
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other, thus determining the phenotypic expression.  Polymorphisms can be tracked as 

molecular markers which are short fragments of DNA associated with a specific location 

within the genome.  The markers can be used to identify desirable genes as long as they 

are inherited together (linkage disequilibrium). 

Most commercially grown strawberry cultivars are octoploid, and this causes 

difficulty in studying their genetics.  Some traits demonstrate disomic inheritance which 

opens the possibility that some traits of interest can be found with dominant and recessive 

traits (Lerceteau-Köhler et al., 2003; Folta and Davis, 2006).  Denoyes and Baudry 

(1995) recognized two pathogenicity groups for C. acutatum isolates during a 

pathogenicity study of Colletotrichum isolates from strawberry.  The grouping was based 

on pathogenicity of the isolates on five strawberry cultivars with known susceptibility to 

these isolates.  Another study (Denoyes-Rothan et al., 2003) using cluster analysis 

performed on random amplified polymorphic DNA (RAPD) and ITS sequence data from 

95 representative isolates of C. acutatum and C. gloeosporioides provided evidence of at 

least two genetic groups of C. acutatum.  The two genetic groups were termed CA-clonal 

with 54 isolates exclusively from strawberry and CA-variable with 24 isolates from hosts 

other than strawberry.  Colletotrichum gloeosporioides clustered separately from C. 

acutatum in the cluster analysis.  The genetic subgroups did not correlate with the 

pathogenicity groups.  Denoyes-Rothan et al. (2005) reported the inheritance of a 

dominant gene (Rca2) controlling strawberry resistance to pathogenicity group 2 of C. 

acutatum.  Four amplified fragment length polymorphism (AFLP) markers were found 

linked to the Rca2 gene.  Two were converted to sequence characterized amplified region 
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(SCAR) markers and used to screen European and U.S. strawberry genotypes for the 

Rca2 gene (Lerceteau-Köhler et al., 2005). 

Dissertation Research 

The goal of this research was to screen strawberry germplasm lines (consisting of 

50 MSUS clones and 31 named cultivars) for the two Rca2 gene SCAR markers and to 

establish the degree of host resistance/susceptibility to anthracnose incited by three 

Colletotrichum species known to be pathogenic on strawberry.  The 

resistance/susceptibility of the germplasm lines was determined by using a disease 

severity rating (DSR) assigned to individual plants inoculated with Colletotrichum 

isolates.  The same germplasm lines were also screened for the two SCAR markers using 

polymerase chain reaction (PCR) with specific primers.  This information was used to 

establish the degree of association between the resistance/susceptibility of the strawberry 

germplasm to anthracnose and the presence/absence of the SCAR markers. 

A secondary goal was to determine if a detached leaf assay could be used in 

future studies to establish a plant’s anthracnose resistance/susceptibility without 

sacrificing the whole plant.  Detached strawberry leaves were inoculated with the same 

Colletotrichum isolates used in the whole plant inoculation study in order to establish the 

degree of association and agreement between the two rating methods. 
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Table 1  

Quadratic check. 

Pathogen Host Gene 

Gene R S 

avr I C 

no avr C C 
 

Note: Four possible combinations of host-pathogen interactions may occur among pathogens with or without an avirulent gene (avr) 

and hosts with a resistance gene (R) or without a resistance gene (S).  A single incompatible (I) reaction occurs when the host has the 

R gene and the pathogen has the corresponding avr gene.  Compatible (C) reactions occur when the host has the R gene and the 

pathogen lacks the corresponding avr gene or when the host does not have the R gene and the pathogen has or does not have the avr 

gene. 
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Figure 1. Host cell/pathogen interaction. 

The sequence of events between a plant host cell and a fungal plant pathogen begins with perception of the initial signal by the host 

cell, then the signal transduction pathways, leading to defense responses by the plant.  Red arrows indicate general elicitors of 

exogenous origin, blue arrows indicate general elicitors of endogenous origin, and yellow are specific elicitors. (EPGs-

endopoligalacturonases,  OGAs-oligogalacturonides, PGIPs-polygalacturonase inhibiting proteins, PAMPs-pathogen associated 

molecular patterns, GIPs-glucanase inhibiting proteins, AVR-avirulent gene.). 
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CHAPTER II - SCREENING WHOLE STRAWBERRY PLANTS FOR 

ANTHRACNOSE RESISTANCE AND FOR TWO SCAR MARKERS 

Introduction 

Anthracnose is a destructive disease of commercial strawberries grown in the 

warm and humid climate of the southeastern United States.  Three Colletotrichum 

species, C. acutatum, C. fragariae, and C. gloeosporioides, are the primary causal agents 

of anthracnose disease on strawberries.  Colletotrichum acutatum incites anthracnose 

disease on the runners, petioles, leaves, roots, and fruit of strawberry (Howard et al., 

1992; Freeman and Katan, 1997) and causes disease on many other crops (Freeman et al., 

1998).  It can remain latent on symptomless strawberry plants and has been found to 

overwinter in plant debris in the soil in some areas of the U.S. (Eastburn and Gubler, 

1990; Wilson et al., 1992).  Colletotrichum acutatum may live on a number of other plant 

species without causing visible disease symptoms (Freeman et al., 2001).  Both C. 

fragariae and C. gloeosporioides may cause anthracnose disease on all aerial parts of the 

strawberry plant, including a devastating crown rot.  Colletotrichum fragariae was 

thought to only occur on strawberry, but Howard and Albregts (1983) found that C. 

fragariae survived on Senna obtusifolia (coffee weed), a common weed often found 

surrounding strawberry fields.  Colletotrichum gloeosporioides is a cosmopolitan plant 

pathogen with a broad host range. 

Fungicides are regularly used to control anthracnose disease on strawberries, but 

fungicides seldom eradicate the pathogen.  Frequent use of the same fungicides has 

resulted in failure of the fungicides to control anthracnose epidemics due to pathogen 

resistance to the fungicides (Smith and Black, 1993).   The development of resistance to 
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fungicides in pathogen populations requires researchers to create stronger, more effective 

fungicides.  Disease resistant cultivars would eliminate the need for fungicides. 

Commercial strawberry growers, breeders, and plant pathologists are working to 

develop anthracnose resistant strawberry germplasm.  A strawberry breeding program 

was established in the 1980s by the Agricultural Research Service (ARS), an agency of 

the United States Department of Agriculture (USDA) at Poplarville, Mississippi (Smith, 

2006) with the goal of developing strawberry germplasm adapted to the southeastern U.S. 

resistant to anthracnose crown rot caused by C. fragariae.  A total of 1515 anthracnose-

resistant selections were identified through greenhouse screening for anthracnose 

resistance and field tests for agronomic traits.  These selections were given the prefix 

MSUS and numbered to denote they were from the USDA-ARS breeding program in 

Mississippi.  One of the MSUS clones was released as the anthracnose resistant cultivar 

Pelican (Smith et al., 1998), and four others were released as breeding lines, US70, 

US159, US292, and US438 (Galletta et al., 1993).  Many of the clones and the strawberry 

releases continue to be clonally propagated at the Poplarville research location. 

Screening for disease resistance in strawberry germplasm commonly requires 

inoculating whole plants of each seedling.  A breeder may produce thousands of 

seedlings and choose to screen all the seedlings first to determine the most resistant 

germplasm, thus limiting the quantity of seedlings that require further evaluation for 

other desirable traits.  Whole plants of seedlings are inoculated with a conidial suspension 

of a pathogen, grown in a greenhouse for at least 30 days, and then evaluated for 

resistance or susceptibility.  The high humidity in a greenhouse offers an ideal 
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environment for the development of fungal diseases.  Cultivars with known disease 

reactions are typically included in the screening process for comparison. 

Field studies are also used to determine disease resistance by subjecting the plants 

to natural infection.  Strawberry plants found to be resistant in the greenhouse are 

transplanted to the field to expose them to natural infection under field conditions.  Field 

testing for disease resistance presents problems due to the inconsistency of inoculum and 

environmental conditions, and is labor intensive and time consuming. 

The expression of disease resistance in a plant depends on the interaction of the 

plant with the pathogen in an environment conducive for disease development.  The use 

of an aggressive pathogen in inoculation studies increases disease incidence and separates 

germplasm reactions more effectively.  Greenhouse screening is preferable to field 

screening because the researcher can control the environment within the greenhouse and 

can choose the isolates to use as inoculum, whereas the researcher is at the mercy of the 

weather and the population of natural occurring pathogens in the field, which may differ 

from year to year. 

Diploid organisms contain two complete sets of homologous chromosomes, and 

each gene or allele on a chromosome may have slight differences from their homolog in 

their DNA sequences, called polymorphisms, which can be tracked as molecular markers.  

These markers can be used to identify desirable genes if the marker and gene are linked.  

Many disease resistance genes in plants have been identified and molecular markers are 

being used in many plant breeding programs to search for these genes.  The breeder’s 

ability to select for anthracnose-resistant strawberry germplasm would be greatly 

enhanced with the identification of the genetic control of resistance. 
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Denoyes-Rothan et al. (2003) investigated genetic polymorphism and 

pathogenicity of C. acutatum isolates from European bred strawberry cultivars using 

random amplified polymorphic DNA (RAPD) analysis and internal transcribed spacer 

(ITS) sequencing.  Cluster analysis of the RAPD data and the ITS sequence data provided 

genetic evidence of at least two genetic groups of C. acutatum isolates, termed CA-clonal 

or CA-variable.  The CA-clonal group only contained isolates from strawberry with a low 

level of genetic polymorphism and includes one of the isolates used in this research, 

Goff.  The CA-variable group contained isolates from strawberry and other hosts.  The 

researchers then conducted pathogenicity tests using a subset of 81 European C. acutatum 

isolates plus the American C. acutatum isolate, Goff, to assign each isolate to 

pathogenicity group 1 or 2.  These pathogenicity groups had been established previously 

in an inoculation study in which C. acutatum isolates were grouped based on their 

pathogenicity on five named cultivars: Elsanta, Valeta, Addie, Sequoia, and Dover 

(Denoyes and Baudry, 1995).  The pathogenicity tests were conducted on two named 

strawberry: Belrubi (resistant to group 2 and susceptible to group 1) and Elsanta 

(susceptible to both groups) (Denoyes-Rothan et al., 2003).  Subsequently, the C. 

acutatum isolates were grouped based on these tests.  Both group 1 and group 2 isolates 

were found in the CA-clonal genetic group and one group 1 isolate was found in the CA-

variable genetic group. 

Most commercial strawberries are octoploid, which presents difficulties in 

determining their genetics in classical breeding programs (Hancock et al., 2008).  

Disomic inheritance in strawberry was demonstrated by some researchers (Lerceteau-

Köhler et al., 2003; Folta and Davis, 2006) and allows breeders to determine dominant 
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and recessive traits.  Researchers examining the inheritance of high and intermediate 

level plant resistance to C. acutatum isolates of the pathogenicity group 2 found the 

inheritance of a dominant gene (Rca2) controlling strawberry resistance to that group 

(Denoyes-Rothan et al., 2005).  Two sequence characterized amplified region (SCAR) 

markers were identified and used to screen European and U.S. strawberry genotypes for 

the Rca2 gene (Lerceteau-Köhler et al., 2005).  Lerceteau-Köhler et al. (2005) considered 

these results indicative of monogenic control of resistance to C. acutatum pathogenicity 

group 2. 

The purpose of this research was to screen strawberry germplasm, represented by 

31 named cultivars and 50 USDA breeding lines (MSUS clones) from Mississippi, to 

establish the degree of host resistance/susceptibility to anthracnose caused by the three 

Colletotrichum species and to screen the same germplasm for the two SCAR markers 

linked to the Rca2 gene to determine whether or not the allele associated with resistance 

is present at the Rca2 gene.  The knowledge of the presence or absence of the Rca2 gene 

and the germplasm lines’ resistance should improve breeding decisions on strawberry 

germplasm to be incorporated into breeding programs. 

Materials and Methods 

Production of Plant Material 

 Strawberry plants were either purchased, obtained from the National Clonal 

Germplasm Repository in Corvallis, Oregon, or grown in-house (MSUS clones).  Plants 

were established in 10-cm plastic pots in a 1:1 mixture of Jiffy-Mix (JPA, West Chicago, 

IL, U.S.) and sand and propagated by rooting young runner plants in the Jiffy-Mix:sand 

potting mixture.  The plants were maintained in a greenhouse at 28 ºC ±10 ºC with a 16-
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hour photoperiod.  The 31 named cultivars and MSUS clones (Table 2) used in this 

research will be collectively referred to as germplasm lines. 

Nine of the 31 named cultivars, received as in vitro plantlets from the National 

Clonal Germplasm Repository, were rooted in vitro before transplanting to Jiffy®-7 (Jiffy 

International AS, Kristiansand, Norway) peat pellets and grown for 7–10 days in the 

laboratory in a seedling tray with a clear plastic cover at 100% relative humidity and 

natural light.  The relative humidity was gradually reduced until the plantlets were 

established.  The plantlets were then transferred to 10-cm plastic pots and grown in the 

Jiffy-Mix:sand mixture in a controlled environment room before being moved to the 

greenhouse. 

Growth of Fungal Isolates and Preparation of Inoculum 

Six Colletotrichum isolates were used in these studies: two isolates of C. 

acutatum [Goff (Smith and Black, 1990) and Ca-1 (Chang and Smith, 2007)], two 

isolates of C. fragariae [Cf-63 and Cf-75 (Smith and Black, 1990; Chang and Smith, 

2007)], and two isolates of C. gloeosporioides [Ark-P1 and Cg-162 (Smith and Black, 

1990)].  Each isolate was initiated from silica gel cultures maintained at the USDA-ARS 

in Poplarville, MS, and grown on 1:1 oatmeal potato dextrose agar (OMA:PDA) at 20–28 

⁰C under fluorescent lights with a 12-hour photoperiod.  Inoculum was prepared as a 

conidial suspension from 7- to 14-day-old cultures by flooding each culture plate with 

sterile deionized water and gently scraping the agar surface with a glass rod to remove 

conidia.  The resulting conidial suspension was filtered through one layer of bandage 

gauze (Johnson and Johnson, New Brunswick, NJ, U.S.) and adjusted to a concentration 

of 1.5 × 106 conidia/mL by diluting with sterile deionized water with Tween-20 (Sigma 
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Chemical Co., St. Louis, MO, U.S.) added as a surfactant at the rate of one drop per 1 L 

of water. 

Whole Plant Inoculations: Resistance to Colletotrichum Species 

Whole plant inoculations were conducted three times over two years (summer 

2010, winter 2010, and summer 2011), which will hereafter be referred to as three 

“seasons”.  Not all clones were inoculated with all isolates for all three seasons partly 

because of the small starting population of many of the MSUS clones and because some 

named cultivars and MSUS clones died after the first inoculation.  Older leaves, runners, 

and flowers were removed from plants 3–4 days before inoculation, leaving 4–5 young 

leaves on the plant at inoculation.  Whole strawberry plants were initially inoculated with 

two isolates of C. acutatum (Goff and Ca-1), two isolates of C. fragariae (Cf-63 and Cf-

75), and two isolates of C. gloeosporioides (Ark-P1 and Cg-162); however, isolate Ark-

P1 exhibited no disease symptoms on any plants and was removed from the study.  Plant 

inoculation was accomplished by uniformly misting each plant with a conidial suspension 

to the point of runoff.  A set of standard named cultivars with known disease reactions 

was included for comparison: Elsanta for susceptibility to C. acutatum, Chandler for 

susceptibility to C. fragariae and C. gloeosporioides, and Pelican for resistance to C. 

fragariae and C. gloeosporioides.  Plants used for non-inoculated controls were misted 

with deionized water instead of the conidial suspension.  Inoculated and non-inoculated 

plants were immediately placed in a dew chamber at 100% relative humidity (RH), 30 ºC, 

incubated in the dark for 48 hours, and then transferred to a greenhouse for the remainder 

of the study.  Disease development was assessed on the plants at 10 and 30 days after 

inoculation (DAI) using a disease severity rating (DSR) scale, which utilizes lesions on 
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petioles as part of the rating scale, adapted from Smith and Black (1987).  This rating 

scale has been used for almost 30 years to determine resistant strawberry germplasm.  

The 10 DAI rating was included to allow observation of any early disease symptoms that 

may no longer be visible at the 30 DAI.  The highest disease rating at either the 10 DAI 

or 30 DAI was used for data analysis.  The whole plant DSR rating scale was: 0 = healthy 

plant with no visible lesions, 1 = < 3 mm long petiole lesion, 2 = 3–10 mm long petiole 

lesion, 3 = > 10–20 mm long petiole lesion, 4 = > 20 mm long petiole lesion, 5 = 

youngest leaf wilted, and 6 = dead plant.  Plants with a DSR < 2.0 were classified as 

resistant, plants with a DSR of > 2.0 or < 4.0 were classified as intermediate, and plants 

with a DSR > 4.0 were classified as susceptible.  Disease development was also assessed 

by rating three leaflets (collectively) from a single leaf (without the petiole) with the 

greatest disease symptoms at the same time that the whole plants were rated.  The 0–5 

DSR scale used for rating the leaflets was 0 = no visible disease symptom on any leaflet, 

1 through 4 increasing disease symptom severity, and 5 = total area of leaflets necrotic.  

Each plant was visually assessed and assigned a DSR for the whole plant and a DSR for 

the leaflets by two independent raters.  DSR means for the whole plant and DSR means 

for the leaflets were calculated for each combination of rater, germplasm line, and 

Colletotrichum isolate. 

DNA Extractions and Allele Identification (2009–2013) 

Fresh strawberry leaves were collected, frozen with liquid nitrogen, and ground to 

a fine powder with a mortar and pestle.  DNA was extracted from 50–90 mg of the 

ground tissue using a DNeasy Plant Mini Kit from Qiagen (Valencia, CA, U.S.) and 

quantified with a Nanodrop7 ND-1000 spectrophotometer (Thermo Fisher Scientific, 
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Inc., Wilmington, DE, U.S.). The extracted DNA was used in a polymerase chain 

reaction (PCR) to amplify the SCAR markers STS-Rca2_240 and STS-Rca2_417 

(Lerceteau-Köhler et al., 2005). 

The amplification procedure, adapted from Lerceteau-Köhler et al. (2005), for the 

STS-Rca2_240 SCAR marker was carried out in a total volume of 25 µL with 1× reaction 

buffer, diluted from 10× PCR buffer (P2192, Sigma-Aldrich, Inc., St. Louis, Mo, U.S.), 

0.8 units JumpStart Taq DNA Polymerase (D9307, Sigma-Aldrich, Inc.), 0.2 mM 

deoxynucleotide (dNTP) Mix (D7295, Sigma-Aldrich, Inc.), 0.2 µM of each primer, 

CAC_240_2F and CAC_240_2Rb, 0.08 µM of each control primer, EMFv020_F and 

EMFv020_R (Sigma-Aldrich, Inc.), and 20–40 ng DNA template.  PCR conditions 

consisted of a 3-min denaturation at 95 ºC, 35 cycles of 50 s at 95 ºC, 50 s at 64 ºC, and 

1-min at 72 ºC, with a final extension step of 5-min at 72 ºC.  The amplification product 

was separated on a 1% agarose gel.  Electrophoresis gels were photographed with a 

Kodak EDAS 290 (Carestream Health, Rochester, NY, U.S.) on a Spectroline UV 

Transilluminator (Spectroline, Westbury, NY, U.S.) and visualized with Kodak 1D 

Software (Scientific Imaging Systems, New Haven, CT, U.S.).  Individual strawberry 

germplasm lines were classified according to the presence or absence of the marker 

associated with the resistance allele. 

The amplification procedure for the STS-Rca2_417 marker, adapted from 

Lerceteau-Köhler et al. (2005), was carried out in a total volume of 25 µL with 1× 

reaction buffer, diluted from 10× PCR buffer (P2192, Sigma-Aldrich, Inc.), 0.8 units 

JumpStart Taq DNA Polymerase (D9307, Sigma-Aldrich, Inc.), 0.2 mM dNTP Mix 

(D7295, Sigma-Aldrich, Inc.), 0.2 µM of the M13 tailed  CAC_417_3F primer (Boutin-
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Ganache et al., 2001), 0.2 µM of the CAC_417_3R primer (Sigma-Aldrich), 0.1 µM of 

the M13 labeled primer (LI-COR, Lincoln, NE, U.S.), and 20–40 ng of template DNA.  

PCR conditions were the same as for the STS-Rca2_240 marker with the exception of the 

annealing temperature of 62 ºC.  The amplification product was visualized using a LI-

COR 4300 DNA sequencer with a 50–700bp size standard (LI-COR) and scored using 

Gene Image IR v. 3.55 (LI-COR Biosciences, Lincoln, NE, U.S.). 

Statistical Analysis 

Plants were chosen at random from the population of that particular germplasm 

line for each of the three seasons, and the DSR for each of the individual plants within a 

germplasm line from each of the three inoculations were used to calculate the whole plant 

DSR mean for the germplasm line.  Leaflets’ DSR for each plant in each of the 

germplasm lines from each of the three inoculations were used to calculate the leaflets 

DSR mean for each germplasm line.  Whole plant DSR means and leaflets DSR means 

were analyzed for association and agreement between the two independent raters using 

Pearson’s product-moment correlation coefficient (rp) and weighted Kappa coefficient 

(kw), respectively, using the FREQ procedure of SAS (version 9.4; SAS Institute Inc., 

Cary, NC).  Pearson’s correlation coefficient statistically measures the degree of linear 

association between two sets of variables.  The whole plant DSR mean data and leaflets 

DSR mean data were analyzed with analysis of variance (ANOVA) using the GLM 

procedure of SAS with germplasm line, season, and germplasm line × season for each 

isolate as independent variables and whole plant DSR mean as the dependent variable.  

Initial analysis found the interaction for germplasm line × season for all inoculation 

isolates to be significant; therefore, subsequent analyses were conducted after removing 
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the data of any isolates not used in all three seasons, and again the germplasm line × 

season interaction was significant.  The whole plant DSR data were analyzed for 

association (Pearson’s product-moment correlation coefficient) and agreement (weighted 

Kappa coefficient) between pairs of seasons for the isolates Cf-75 and Cg-162 using the 

FREQ procedure of SAS.  The data were then separated by origin of the germplasm 

(named cultivar and MSUS clones) and analyzed with ANOVA with named cultivar, 

season, and named cultivars × season as independent variables and the whole plant DSR 

means as the dependent variable, and then the analysis was repeated with MSUS clone, 

season, and MSUS clone × season as independent variables and the whole plant DSR 

means as the dependent variable. 

The whole plant DSR means were calculated for each inoculation isolate and 

season and analyzed with ANOVA with season, isolate, and season × isolate for the 

origin as independent variables and whole plant DSR mean as the dependent variable.  

The leaflets DSR means were calculated for each inoculation isolate and season and 

analyzed with ANOVA with season, isolate, and season × isolate for the origin as 

independent variables and leaflets DSR mean as the dependent variable.  The Cochran-

Mantel-Haenszel statistic in the FREQ procedure of SAS was used to evaluate the degree 

of an association between the resistance category (resistant, intermediate, or susceptible) 

and whole plant DSRs.  Generalized linear models (binary distribution and logit link 

function) were run using the GLIMMIX procedure of SAS to model the probability of the 

germplasm line’s resistance with the presence/absence of the STS-Rca2_240 marker, the 

presence/absence of STS-Rca2_417 marker, and their interaction for each Colletotrichum 
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species as the independent variables and the resistance category (resistant or not resistant) 

as the dependent variable, with separate analysis. 

Results 

Whole Plant Inoculations: Resistance to Colletotrichum Species 

Whole plants of 31 named cultivars and 50 MSUS clones were inoculated with C. 

fragariae isolate Cf-75 and C. gloeosporioides isolate Cg-162 in all three seasons, but C. 

acutatum isolates Ca-1 and Goff and C. fragariae isolate Cf-63 were used in only two of 

the three seasons.  There were 3754 total observations including 3230 inoculated whole 

plants and 524 non-inoculated whole plant controls.  The control plants in the three 

seasons had a whole plant DSR mean of 0.31 and a leaflets DSR mean of 0.35.  This 

indicates the plants used did not have disease symptoms prior to inoculation with 

Colletotrichum isolates, and the conditions of the experiment alone did not cause 

anthracnose-like symptoms; therefore, the control plant data were excluded from further 

statistical analyses. 

There was a strong, positive correlation and substantial agreement association 

between the raters’ whole plant DSRs (n =3230, rp =0.89, kw =0.89) and between the 

raters’ leaflets DSRs (n =3230, rp =0.87, kw =0.87) (Gwet, 2012), and the inter-rater 

agreement was “almost perfect” based on the Kappa statistic interpretation by Viera and 

Garrett (2005); therefore, the two visual raters’ DSRs for each plant were averaged for 

the remainder of the statistical analyses and will be referred to as the whole plant DSR 

(WP-DSRs) means and the leaflets DSR (L-DSRs) means. 

Analysis found significant clone × season interactions for the WP-DSRs for all 

inoculation isolates (ranging from p =<0.0001 to p =0.04).  The differences in WP-DSRs 
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disease development between pairs of seasons was considered to be due to some 

germplasm lines not being inoculated with all Colletotrichum isolates in all three seasons, 

as mentioned previously.  Therefore, the data from each of the three seasons that included 

all germplasm lines inoculated with the same Colletotrichum isolates (Cf-75 and Cg-162) 

were analyzed with ANOVA using the GLM procedure of SAS with germplasm line, 

season, and germplasm line × season for each isolate as independent variables and WP-

DSRs as the dependent variable, with separate analyses for each isolate.  The germplasm 

line × season interaction was significant for isolate Cf-75 (n =654, p =<0.0001) and 

isolate Cg-162 (n =620, p =<0.0001); therefore, the WP-DSRs were tested between 

seasons for association (Pearson) and agreement (weighted Kappa) for all germplasm 

lines for each of the two isolates.  There was a positive correlation between pairs of 

seasons for both isolates, ranging from rp =0.59 to 0.75.  Not all rating values of the WP-

DSR scale were obtained in all seasons for all isolates; thus, without a balanced table 

(columns equal rows), the agreement statistic, weighted Kappa, could not be determined 

for all isolates and seasons.  Isolate Cf-75 had the strongest positive association and 

moderate agreement between summer 2010 and summer 2011 (rp =0.71, kw = 0.54) and 

isolate Cg-162 had the strongest positive association and substantial agreement between 

winter 2010 and summer 2011 (rp =0.75; kw =0.71). 

The significant germplasm line × season interaction was then considered to be due 

to the MSUS clones originally being selected for resistance to C. fragariae (Galletta et 

al., 1993; Smith et al., 1998) and the named cultivars, although selected for many positive 

agronomic attributes, were not selected for resistance to C. fragariae; therefore, the data 

were analyzed with ANOVA for the null hypothesis of no difference in the WP-DSRs 
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response of named cultivars and MSUS clones to inoculation with isolates, Cf-75 and Cg-

162.  A p value of <0.0001 indicated a difference in the WP-DSRs response of named 

cultivars and MSUS clones, therefore, the null hypothesis was rejected.  The data were 

then analyzed by origin with ANOVA with named cultivar, season, and named cultivar × 

season and MSUS clone, season, and MSUS clone × season for each isolate as 

independent variables and the WP-DSRs as the dependent variable (Table 3).  The named 

cultivar × season interaction was significant (p <0.0001) for named cultivars inoculated 

with isolate Cf-75 and not significant (p =0.398) for named cultivars inoculated with 

isolate Cg-162.  The MSUS clone × season interaction was found marginally significant 

(p =0.089) for MSUS clones inoculated with isolate Cf-75 and significant (p =0.03) for 

MSUS clones inoculated with isolate Cg-162. 

The WP-DSRs for each inoculation isolate and inoculation season collectively, 

(Figure 2) were analyzed with ANOVA with season, isolate, and season × isolate as 

independent variables and WP-DSR as the dependent variable with separate analyses for 

each origin.  The season × isolate interaction was not significant for named cultivars or 

MSUS clones.  Generally, named cultivars had higher WP-DSRs than MSUS clones for 

each isolate.  Both named cultivars and MSUS clones inoculated with C. fragariae isolate 

Cf-75 and C. gloeosporioides isolate Cg-162 received higher WP-DSRs the first summer 

season than the second summer season. 

L-DSRs data were analyzed the same as the WP-DSRs data.  The L-DSRs data 

from each of the three seasons, which included all germplasm lines inoculated with the 

same Colletotrichum isolates (Cf-75 and Cg-162), were analyzed by origin with ANOVA 

with named cultivar, season, and named cultivar × season and MSUS clone, season, and 
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MSUS clone × season for each isolate as independent variables and L-DSRs as the 

dependent variable.  The named cultivar × season interaction was moderately significant 

for named cultivars (p =0.06) and MSUS clones (p =0.06) inoculated with C. fragariae 

isolate Cf-75, and was not significant for named cultivars (p =0.48) and MSUS clones (p 

=0.24) inoculated with C. gloeosporioides isolate Cg-162. 

The L-DSRs for each inoculation isolate and inoculation season, collectively 

(Figure 3) were analyzed with ANOVA with season, isolate, and season × isolate as the 

origin as independent variables and L-DSRs as the dependent variable.  The season × 

isolate interaction was not significant for named cultivars or MSUS clones.  The same 

pattern of resistance by season was found with the L-DSRs as the WP-DSRs.  Generally, 

named cultivars had higher L-DSRs than MSUS clones for all isolates.  Both named 

cultivars and MSUS clones inoculated with C. fragariae isolate Cf-75 and C. 

gloeosporioides isolate Cg-162 received higher L-DSRs the first summer season than the 

second summer season. 

The WP-DSRs for each germplasm line inoculated with C. fragariae isolate Cf-75 

and C. gloeosporioides isolate Cg-162 among all three seasons were used to classify the 

germplasm lines into resistance categories:  WP-DSR < 2.0 = resistant, WP-DSR > 2.0 or 

< 4.0 = intermediate, and WP-DSR > 4.0 = susceptible.  Among named cultivars (17) 

inoculated with C. fragariae isolate Cf-75, 94%, 24%, and 59% were susceptible in all 

three seasons: summer 2010, winter 2010, and summer 2011, respectively.  Among the 

MSUS clones (39) inoculated with Cf-75, 23%, 79%, and 62% were resistant in all three 

seasons: summer 2010, winter 2010, summer 2011, respectively.  Among the named 

cultivars (23) inoculated with C. gloeosporioides isolate Cg-162, 96%, 70%, and 65% 
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were susceptible in all three seasons: summer 2010, winter 2010, summer 2011, 

respectively.  Among the MSUS clones (30) inoculated with Cg-162, 0%, 70%, and 57% 

were resistant in all three seasons: summer 2010, winter 2010, summer 2011, 

respectively.  The Cochran-Mantel-Haenszel statistic in the FREQ procedure of SAS was 

used to test the null hypothesis of no association between the category (resistant, 

intermediate, or susceptible) and WP-DSRs.  The probability of no association was 

significant (p <0.0001). 

Of the standard named cultivars used for comparison, Elsanta was susceptible to 

all isolates.  Chandler varied in response to the C. acutatum isolate Goff, being 

susceptible in summer 2010, intermediate in summer 2011, and resistant in winter 2010.  

Chandler was susceptible to the C. acutatum isolate Ca-1 in summers 2010 and 2011.  

Chandler was susceptible to isolate Cf-63 in summer 2010 and resistant in winter 2010.  

Chandler was susceptible to the C. fragariae isolate Cf-75 in summers 2010 and 2011 

and intermediate in winter 2010.   Chandler was susceptible to the C. gloeosporioides 

isolate Cg-162 in all three seasons: summers 2010 and 2011, and winter 2010.  Pelican 

was resistant to the C. acutatum isolate Ca-1 in both summer seasons, 2010 and 2011, 

and resistant to the C. acutatum isolate Goff in summer 2010 and winter 2010.  Pelican 

was resistant to the C. fragariae isolate Cf-63 in summer 2010 and winter 2010, but was 

intermediate to the C. fragariae isolate Cf-75 both summer seasons, 2010 and 2011, and 

winter 2010.  Pelican was intermediate to the C. gloeosporioides isolate in both summer 

seasons, 2010 and 2011, and resistant in winter 2010. 
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Allele Identification 

DNA was extracted from the same 81 strawberry germplasm lines used in the 

whole plant inoculations.  Of the 31 named cultivars tested for the STS-Rca2_240 

marker, 19 were positive for the marker.  Twenty-one named cultivars were also tested 

for the STS-Rca2_417 marker.  Both the STS-Rca2_240 and STS-Rca2_417 markers 

were present in ten named cultivars, and the STS-Rca2_417 marker was present without 

the STS-Rca2_240 marker in five named cultivars.  Six named cultivars tested negative 

for the STS-Rca2_417 marker.  Fifty MSUS clones were tested for the two markers, 

including US70, US159, US292, and US438, released breeding lines.  Results were not 

obtained from MSUS1352 for the STS-Rca2_417 marker.  The STS-Rca2_240 marker 

was found in 42 MSUS clones, both the STS-Rca2_240 and STS-Rca2_417 markers 

were present in 26 MSUS clones, and two MSUS clones had the STS-Rca2_417 marker 

without the STS-Rca2_240. 

During identification of the STS-Rca2_417 marker, other alleles measuring 421, 

415, and 397 base pairs were noted.  The 421bp allele was found in 20 named cultivars 

and 45 MSUS clones.  The 415bp allele was not found in any named cultivar germplasm 

line tested, but was found in 6 MSUS clones, and the 397bp allele was found in 15 named 

cultivars and 40 MSUS clones.  Table 5 lists the named cultivars used in both my 

research and the Lerceteau-Köhler et al. (2005) study that were tested for resistance and 

the presence of the STS-Rca2_240 and STS-Rca2_417 SCAR markers. 

Association of SCAR Markers and Plant Resistance 

The WP-DSRs were calculated for the Colletotrichum isolates combined as 

species (C. acutatum species = isolates Ca-1 and Goff WP-DSRs combined, C. fragariae 
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species = isolates Cf-63 and Cf-75 WP-DSRs combined, and C. gloeosporioides = isolate 

Cg-162 WP-DSRs) and used to classify a germplasm line’s disease response category 

(resistant, intermediate, or susceptible) for the Colletotrichum species.  The SCAR 

marker data were separated by presence or absence of the STS-Rca2_240 and STS-

Rca2_417 SCAR markers.  Then the WP-DSRs for each Colletotrichum species, 

categorized as resistant or not resistant (intermediate and susceptible categories 

combined), were analyzed for comparison with the SCAR marker data using the binary 

distribution and logit link function in the GLIMMIX procedure of SAS to model the 

probability of the germplasm line’s resistance to each Colletotrichum species with the 

presence/absence of the STS-Rca2_240 marker, the presence/absence of STS-Rca2_417 

marker, and their interaction as the independent variables and the resistance category 

(resistant or not resistant) as the dependent variable (Table 4).  The effect of the 

interaction between the two SCAR markers on resistance was not significant for any of 

the three Colletotrichum species.  The effect of the STS-Rca2_240 marker was 

significant (p =0.01) for resistance to C. fragariae, marginally significant (p =0.09) for 

resistance to C. acutatum, and not significant (p =0.33) for resistance to C. 

gloeosporioides.  The effect of the STS-Rca2_417 marker was marginally significant (p 

=0.06) for resistance to C. acutatum and not significant for resistance to C. fragariae (p 

=0.44) and C. gloeosporioides (p =0.30). 

Discussion 

Whole Plant Resistance to Colletotrichum Species 

Strawberry is a high value crop grown in most countries, but it is often host to 

pathogens that ruin the fruit and/or destroy the plant.  Strawberry plant breeders’ and 
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plant pathologists’ ‘holy grail’ is development of a disease resistant cultivar that will 

produce abundant, tasty, quality fruit.  The goal of this research was to determine the 

degree of resistance or susceptibility of strawberry germplasm to anthracnose disease 

caused by three Colletotrichum species and to establish the degree of association between 

the host’s reaction and the presence or absence of the two Rca2 gene SCAR markers 

found in the European study by Lerceteau-Köhler et al. (2005). 

Generally, the MSUS clones exhibited greater anthracnose resistance to each of 

the three Colletotrichum species than the named cultivars.  This was expected because the 

MSUS clones were initially selected for resistance to C. fragariae.  The WP-DSRs of the 

germplasm lines varied by season.  Many of the MSUS clones exhibited an increased 

resistance in the winter compared to summer.  Explanations could be sought along two 

lines of reasoning.  Either the plant or the pathogen reacts differently between seasons.  

The phenomenon of plants showing greater resistance during cooler months than warmer 

months was reported by Mangandi et al. (2015) for strawberry in two different years 

during a field trial in Florida where the strawberry plants had been artificially inoculated 

with C. gloeosporioides.  They found a significant genotype × season interaction where 

some genotypes had higher resistance as measured by decreased anthracnose symptoms 

in the second year with cooler temperatures than the first warmer year.  Lewers et al. 

(2007) conducted an inoculation study of native strawberry germplasm for resistance to 

anthracnose crown rot disease using the same protocol and isolates as the current 

research.  The named cultivars Pelican and Chandler were included in two of their three 

years of inoculations.  Their study showed a significant genotype × year effect, but closer 

observation of their article indicates a possible seasonal effect.  Following inoculation of 
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Pelican and Chandler with two C. fragariae and one C. gloeosporioides isolates, higher 

WP-DSRs were reported for the late summer 2003 inoculation than in the early spring 

2005 inoculation, with the exception that Chandler inoculated with Cf-75 had a higher 

WP-DSR in 2005 than in 2003.  The research conducted by Mangandi et al. (2015) and 

Lewers et al. (2007) agrees with the results of my observations of what appears to be a 

seasonal phenomenon in degree of plant resistance or fungal pathogenicity.  The second 

line of reasoning is that the pathogen is less aggressive during the cool, dry months than 

during warm, humid months.  The environment in greenhouses is controlled, but still 

tends to be warm and humid in the summer and relatively cool and dry in the winter.  

Leandro et al. (2001) conducted a C. acutatum conidial germination and sporulation 

study on inoculated strawberry at 26 °C, under continual wetness (100% relative 

humidity).  This was the first report of secondary conidial production by C. acutatum on 

symptomless strawberry leaves.  Secondary conidiation is also known as microcyclic 

conidiation, which occurs directly after conidial germination with little or no mycelial 

growth.  Leandro et al. (2001) demonstrated that secondary conidiation was responsible 

for a threefold increase in conidia on the inoculated strawberry leaves, suggesting C. 

acutatum can survive and multiply on symptomless strawberry leaves.  Generally, C. 

acutatum conidia germinate and form appressoria or germ tubes, but it has been shown 

that primary conidia can also germinate by forming specialized structures (conidial 

phialides) that produce secondary conidia without forming a mycelium (Parberry et al., 

1978).  Leandro et al. (2003a) found temperature and moisture influenced conidial 

germination, secondary conidiation, and appressorial development of C. acutatum.  They 

included temperatures ranging from 10 to 35 °C, with continual wetness plus six 
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intermittent wetness parameters at 25 °C.  Samples of the inoculated leaf tissue were 

obtained from 6 to 132 hours after inoculation.  The optimum temperature and moisture 

for conidial germination was 23–27.7 °C and >8 hours of wetness per day.  The optimum 

temperature for secondary conidiation and appressorial development was 21.3–32.7 °C 

and 17.6–26.5 °C, respectively.  Both secondary conidiation and appressorial 

development were augmented with increasing wetness duration, but greater than four 

hours wetness was required for secondary conidiation.  Wilson et al. (1990) found a 

positive correlation between increased wetness duration and increased disease incidence 

of C. acutatum on strawberry fruit at the optimum temperature of 25 to 30 °C.  King et al. 

(1997) conducted a sporulation study with the same three Colletotrichum species used in 

this study and found the latent period (time from infection to first sporulation) was 

dependent on temperatures ranging from 2–3 days at 25 °C up to 6–17 days at 5 °C.  

Colletotrichum acutatum had the shortest latent period of the three species at 5 and 10 °C 

and also produced more conidia at the lower temperatures than C. fragariae or C. 

gloeosporioides.  The latent periods were similar for all species at higher temperatures.  

Another interesting observation that involves both the plant and the pathogen concerns 

the phenomenon of flowering that occurs during the warm temperatures and high 

humidity of summer.  Leandro et al. (2003b) found that leaves inoculated with C. 

acutatum showed increased secondary (microcyclic) conidial formation when the leaves 

were treated with flower extracts than when treated with leaf extracts, suggesting 

inoculum levels may increase during flowering. 

The plants in my study inoculated with the C. fragariae isolates received higher 

WP-DSRs in the summer than in the winter, and the Cf-75 isolate was more aggressive 
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than the Cf-63 isolate.  The C. gloeosporioides-inoculated plants received higher WP-

DSRs in the summer seasons, also.  The WP-DSRs for the plants inoculated with C. 

fragariae and C. gloeosporioides decreased between the first and second summer 

seasons.  MacKenzie et al. (2006) found pathogen populations vary in aggressiveness, 

and disease incidence may increase in a particular season.  Both C. fragariae isolates and 

the C. gloeosporioides isolate in my study were more aggressive than the C. acutatum 

isolates.  Curry et al. (2002) found C. acutatum and C. fragariae have similar infection 

processes, but C. fragariae invaded the strawberry tissue more rapidly than did C. 

acutatum. 

The seasonal effect of Colletotrichum isolates on strawberry plants, and the 

aggressiveness of an isolate should be considered when planning an inoculation study.  

The Colletotrichum species causing anthracnose on strawberry have been shown to vary 

in aggressiveness from season to season, and performing repetitive inoculations in 

different seasons will help in the identification of resistant germplasm.  The isolates used 

in this study may not be representative of all the genetic variability among 

Colletotrichum species, but they have been used successfully for almost 30 years to 

identify anthracnose resistance in strawberry (Smith and Black, 1987, 1990; Lewers et 

al., 2007). 

Association of SCAR Markers and Plant Resistance 

The categories of resistant, intermediate, and susceptible were assigned to the 

germplasm based on the whole plant disease severity ratings.  The majority of named 

cultivars were classified as either intermediate or susceptible to all the Colletotrichum 

species used in this study.  The MSUS clones were classified as mainly resistant to C. 
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acutatum and C. fragariae and resistant or intermediate to C. gloeosporioides.  

Germplasm lines with both the STS-Rca2_240 and STS-Rca2_417 markers, or the STS-

Rca2_417 marker alone were predicted to be resistant at best to C. acutatum based on 

findings by Lerceteau-Köhler et al. (2005) that the two alleles were linked to a dominant 

gene, Rca2, for resistance to anthracnose disease caused by C. acutatum group 2 isolates.  

Their study included 43 named cultivars of which 28 were resistant to C. acutatum group 

2.  These 28 resistant named cultivars carried either both the STS-Rca2_240 and STS-

Rca2_417 markers or the STS-Rca2_417 marker alone.  They reported that 13 of 28 

resistant named cultivars contained both the STS-Rca2_240 and STS-Rca2_417 markers 

and eight carried the STS-Rca2_417 markers only; this would correctly predict 75% 

(21/28) of the named cultivars as resistant.  The results of my research with C. acutatum-

inoculated named cultivars showed 15 of 21 (71%) named cultivars were predicted to be 

resistant with 10 having both the STS-Rca2_240 and STS-Rca2_417 markers and five 

with the STS-Rca2_417 marker only; however, only four named cultivars (19%) were 

resistant and one of these had neither marker.  Lerceteau-Köhler et al. (2005) reported 14 

of the 22 named cultivars predicted to be susceptible by the absence of both markers were 

actually susceptible.  Only three germplasm lines in my study were without either marker 

which predicts them to be susceptible, but of these three germplasm lines, two were 

classified as intermediate (Redchief and Treasure) and one was classified as resistant 

(Tioga).  This research positively confirmed the presence or absence of the markers in 10 

of the 18 named cultivars used in the European study by Lerceteau-Köhler et al. (2005) 

(Table 5).  Denoyes-Rothan et al. (2003) assigned C. acutatum isolates to two 

pathogenicity groups 1 or 2 based on their pathogenicity on the named cultivars Belrubi 



 

57 

(resistant to group 2 and sensitive to group 1) and Elsanta (susceptible to both groups 1 

and 2).  Belrubi was not included in the present study because it was unavailable.  Elsanta 

was included in the present study and was rated susceptible (WP-DSR =4) to both C. 

acutatum isolates, Goff and Ca-1, and Elsanta was susceptible to Goff in the European 

study by Lerceteau-Köhler et al. (2005).  Isolate Goff was placed in group 1 in the 

previous research by Lerceteau-Köhler et al. (2005), which may explain some differences 

in resistance between this and the European study for C. acutatum, because the Rca2 

resistance gene was identified for resistance to anthracnose disease caused by C. 

acutatum group 2, not group 1.  Isolate Ca-1 has not been assigned as group 1 or group 2. 

This research found the SCAR markers STS-Rca2_240 and STS-Rca2_417, had 

marginally significant effects (p =0.0893 and p =0.0556, respectively) on disease 

resistance on germplasm lines when inoculated with C. acutatum.  While C. acutatum 

isolate Goff was previously classified as a group 1 isolate and the group for Ca-1 is not 

known, the findings of my research supported the European study that an association 

exists between the presence or absence of the Rca2 resistant allele SCAR markers and a 

positive effect on a strawberry plant’s resistance to anthracnose disease, lending credence 

to the presence of the Rca2 gene.  This knowledge will ultimately help strawberry 

breeders identify plants in their breeding program that will possibly pass resistance genes 

to their progeny.  The effect of the STS-Rca2_240 maker on anthracnose resistance was 

significant (p =0.0086) for plants inoculated with C. fragariae, while the STS-Rca2_417 

marker did not have a significant effect.  This finding suggests a possible association in 

the plant’s genetic resistance to anthracnose for multiple Colletotrichum species. 
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Genetic markers create tools that can be used by breeders for selecting favorable 

germplasm.  Active research into genetic marker-assisted detection of resistance genes is 

ongoing in many plant/pathogen systems from root-knot nematode resistance in sweet 

potato (Nakayama et al., 2012) to Phytophthora cactorum resistance in Fragaria vesca 

(Davik et al., 2015).  Davik et al. utilized genetic markers to assist in locating the 

proposed Rpc1 resistant gene in Fragaria vesca.  This gene provides resistance to a 

crown rot disease caused by P. cactorum.  The first resistance gene in strawberry to be 

identified was Rpf1, which provides resistance to Phytophthora fragariae, the causal 

agent of red stele root rot (Van de Weg et al., 1997). 

Although host pathogen relationships are complex and this complexity may 

impede a simple solution to finding resistance genes in hosts, as the European study 

suggested with the SCAR markers (Lerceteau-Köhler et al., 2005), my research has 

increased our understanding of the host-pathogen relationship.
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Table 2  

Named cultivars and MSUS clones used in the whole plant inoculations. 

Named cultivars 

Aiko Dover Jewel Salinas Surecrop 

Albion Earliglow Kent Scott Sweet Charlie 

Allstar Elsanta Ovation Seascape Tangi 

Aromas Festival Pelicana Selva Tillamook 

Camino Real Gaviota Portola Senga Tioga 

Chandler Honeoye Redchief Sequoia Treasure 

Diamante     

MSUS clones 

US70b 912 1066 1217 1343 

US159b 922 1078 1229 1352 

US292b 927 1093 1230 1356 

US438b 933 1094 1240 1359 

478 944 1105 1265 1362 

518 1010 1142 1269 1365 

572 1039 1154 1270 1426 

574 1049 1180 1271 1432 

868 1055 1196 1311 1494 

890 1061 1197 1331 1511 

aMSUS clone released as a named cultivar. 

bMSUS clones released as breeding lines. 
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Table 3  

Analysis of variance for strawberry plants inoculated with Colletotrichum. 

Origin Isolate n Source of variation df 

Whole Plant DSR Mean Leaflet DSR Mean 

F P > F F P > F 
Named 

Cultivar Cf-75 201 Named cultivar 16 5.08 <0.0001 2.79 0.0006 

   season 2 122.85 <0.0001 45.49 <0.0001 

   Named cultivar × season 32 2.82 <0.0001 1.5 0.0559 
MSUS 

Clone Cf-75 453 MSUS clone 38 1.94 0.0012 3.32 <0.0001 

   season 2 41.92 <0.0001 63.76 <0.0001 

   MSUS clone × season 76 1.26 0.0885 1.3 0.064 
Named 

Cultivar Cg-162 273 Named cultivar 22 4.84 <0.0001 6.06 <0.0001 

   season 2 25.66 <0.0001 15.13 <0.0001 

   Named cultivar × season 44 1.05 0.3982 1 0.4768 
MSUS 

Clone Cg-162 347 MSUS clone 29 2.92 <0.0001 2.81 <0.0001 

   season 2 124.48 <0.0001 117.02 <0.0001 

      MSUS clone × season 58 1.46 0.0261 1.15 0.2354 
 

Analysis of variance (ANOVA) for three seasons in which named culivars and MSUS clones of strawberry were inoculated with two Colletotrichum isolates (C. fragrance Cf-75 and C. 

gloeosporioides Cg-162) for the dependent variables of whole plant DSR mean and leaflet DSR mean 
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Table 4  

SCAR markers effect on resistance to anthracnose. 

Fixed effects 

Num 

df 

Den 

df 

C. acutatum C. fragariae C. gloeosporioides 

F P > F F P > F F P > F 

   STS-Rca2_240 1 66 2.97 0.0893 7.34 0.0086 0.97 0.3278 

   STS-Rca2_417 1 66 3.80 0.0556 0.59 0.4447 1.08 0.3028 

   STS-Rca2_240 × STS-Rca2_417 1 66 1.45 0.2322 0.59 0.4447 0.27 0.6034 
 

F-tests for the effects of the presence/absence of the two SCAR markers STS-Rca2_240 and STS-Rca2_417, and their interaction on the resistance to anthracnose disease on whole 

strawberry plants inoculated with three Colletotrichum species  
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Table 5  

Strawberry origin and comparison of SCAR markers. 

Genotype/Cultivar names Origin 

SCAR Markers 2010 and 2011 

Whole Plant 

Inoculationsd Europeana U.S.b Allelesc 

240e 417 240 417 421 415 397 Ca Cf Cg 

Aiko USA + + + + + - + susf sus sus 

Chandler USA + + + + + - + int sus sus 

Dover USA + + + + + - + res sus sus 

Earliglow USA - - + + + - + int sus sus 

Elsanta Netherlands - - + - - - - sus sus sus 

Redchief USA - - + - - - + int sus sus 

Salinas USA + - - + + - + int sus sus 

Scott USA + + + + + - + int sus sus 

Seascape USA + + + + + - - res sus sus 

Selva USA + + + + + - + sus sus sus 

Senga Sengana Germany - - - - - - - int int sus 

Sequoia USA - + + + + - + int sus sus 

Surecrop USA - - + - + - + int sus sus 

Tioga USA + + - - + - - res sus sus 

US159 USA + + - - + + + res int sus 

US292 USA - - - - + + + res sus sus 

US438 USA - - - - + - + res res res 

US70 USA - + - + + - + res res res 
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Table 5 (continued). 

a SCAR marker identification in European study (Lerceteau-Köhler et al., 2005). 

b SCAR marker identification in present study. 

c Other alleles identified using primers for 417 SCAR marker. 

d Colletotrichum species used in present whole plant inoculation study: Ca = Colletotrichum acutatum, Cf = C. fragariae, Cg = C. gloeosporioides. 

e +=marker or allele present, -=absent. 

f sus=susceptible, res=resistant, int=intermediate. 

 

Strawberry genotype or cultivar name, origin, comparison of SCAR markers found in a previous European study (Lerceteau-Köhler et al., 2005) and in this study, including 

the resistance phenotype found in this inoculation study for three Colletotrichum species. 
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Figure 2. Whole Plant disease severity rating (WP-DSR). 

Whole plant disease severity rating (WP-DSR) means for named cultivars and MSUS clones by inoculation isolate (C. acutatum = Ca-

1 and Goff, C. fragariae = Cf-63 and Cf-75, C. gloeosporioides = Cg-162) and season and year (S1 and S2 = summer 2010 and 

summer 2011, respectively, and W = winter 2010). 
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Figure 3. Leaflet disease severity rating (L-DSR). 

Leaflet disease severity rating (L-DSR) means for named cultivars and MSUS clones by inoculation isolate (C. acutatum = Ca-1 and 

Goff, C. fragariae = Cf-63 and Cf-75, C. gloeosporioides = Cg-162) and inoculation season and year (S1 and S2 = summer 2010 and 

summer 2011, respectively, and W = winter 2010).
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CHAPTER III  - COMPARISON OF VISUAL AND ELECTRONIC EVALUATIONS 

OF DETACHED STRAWBERRY LEAVES INOCULATED WITH 

COLLETOTRICHUM SPECIES 

Introduction 

Strawberry consumption has continued to increase in the United States since the 

1980s, and 7.9 pounds of fresh strawberries were consumed per capita in 2013, setting a 

new record (Perez and Plattner, 2014).  The increased consumption has been attributed to 

the public becoming more aware of the importance of a healthy diet and the availability 

of fruit year round.  More than 21,800 hectares were planted in strawberries in the U.S. in 

2014, and the top two production states, California and Florida, planted 16,800 and 4,400 

hectares, respectively (Perez and Plattner, 2014).  Unfortunately, diseases cause major 

losses of strawberries wherever they are grown. 

Anthracnose is one of the more destructive plant diseases of strawberry and may 

be caused by three Colletotrichum species (Smith, 1998): C. acutatum, C. fragariae, and 

C. gloeosporioides.  Colletotrichum acutatum causes anthracnose fruit rot and irregular 

leaf spot.  Both C. fragariae and C. gloeosporioides may infect all above-ground parts of 

the plant, inciting anthracnose crown rot, anthracnose fruit rot, and anthracnose leaf spot 

(also called black leaf spot).  Both C. acutatum and C. gloeosporioides have broad host 

ranges, whereas C. fragariae has a narrow host range of strawberry and a few non-crop 

plants, as well as a limited geographic range of primarily the southeastern U.S.  Warm 

temperatures and high humidity conditions allow these fungal pathogens to produce 

spores (conidia) rapidly.  These spores are easily dispersed throughout a production field 
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by rain splash, people, animals, insects, and equipment.  Anthracnose is an important 

disease of strawberry in the southeastern U.S. in both production fields and nurseries.  

California’s dry climate helps keep anthracnose at more manageable levels there.  

Howard and Albregts (1983) described the black leaf spot phase of anthracnose as the 

first symptom of anthracnose in strawberry nurseries serving as an early warning that the 

disease is present. 

Commercial strawberry growers continually strive to improve their disease 

control strategies.  Planting disease-free plants, good sanitation, cultural controls, and 

fungicides are all general disease control concepts.  Planting disease-free plants decreases 

the likelihood of introducing pathogens into a field.  Sanitation practices help destroy 

pathogens on equipment or in soil but will not control latent infections.  A critical change 

in cultural controls for strawberry production was the switch from overhead irrigation 

(which wets plant foliage, helping to spread fungal spores in the field) to use of drip 

irrigation tubing within the planting bed (which wets the soil, but not the plant).  

Fungicides help to control pathogens, but rarely eradicate them.  The overuse of 

fungicides has resulted in pathogen resistance and the failure of the fungicides to control 

anthracnose epidemics (Smith and Black, 1993a, 1993b; LaMondia, 1995).  Although 

disease control practices are important for growers, the ultimate solution for disease 

control is the development and planting of disease resistant cultivars. 

It often takes years for classical breeding programs to develop acceptable 

strawberry germplasm with the desired plant growth habit, fruit taste and production, and 

disease and insect resistance.  During this developmental stage, thousands of seedlings 
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are produced.  In order to identify disease resistance, whole plants are usually inoculated 

with the pathogen and rated for disease resistance once symptoms are evident.  The 

disease response of each plant must be assessed with accurate and reproducible 

techniques because inoculation trials are time consuming, and plants may be destroyed by 

the disease.  This presents a problem to the breeder since the plant may have possessed 

many other desired horticultural traits which could be utilized in the breeding program as 

parent material. 

Screening strawberry germplasm for disease resistance using detached strawberry 

leaves is an alternative to inoculating whole plants.  Inoculating detached strawberry 

leaves with a pathogen allows the plant’s disease response to be established without 

destroying the whole plant.  This should decrease the time between inoculation and 

disease assessment, thus reducing the overall time for breeders to identify acceptable 

germplasm for breeding programs.  Another positive outcome of screening using 

detached leaves is that the pathogen is confined to the laboratory, allowing the breeder to 

test for pathogens or races of pathogens from other areas.  Inoculating detached leaves 

with Colletotrichum species may provide an accurate, rapid, non-destructive method of 

identifying anthracnose resistant germplasm (Miller-Butler et al., 2013). 

Disease severity refers to the amount of plant tissue that is diseased (necrotic) and 

may be expressed as the percentage of plant area destroyed by a pathogen.  Disease 

assessment scales, such as visual rating scales, are often used for quick assessments of 

disease severity.  These scales may be percentage or numerical.  Most percentage scales 

are adapted from the Horsfall-Barratt (HB) scale (Horsfall and Barratt, 1945) which 
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contains 12 grades with the percent disease varying disproportionately from 1 to 100 

percent.  Visual bias can influence accuracy and percentage scales may be difficult to use 

when relating to plants that exhibit noticeably different amounts of infections such as 

rusts, powdery mildews, and leaf spots.  When there is little disease, the rater’s visual 

focus is drawn to the small amount of necrotic or dark tissue in comparison to the healthy 

or green tissue.  When there is only a small amount of healthy tissue in a very diseased 

sample, the rater’s visual focus can discern the amount of healthy (green) tissue better.  

Small areas of disease or no disease can be seen and a percentage can be estimated fairly 

accurately, but when the disease ranges from 10% to 90%, it is much more difficult to 

give an accurate percentage.  More categories in a rating scale may increase rater 

accuracy, but the increased time required for the ratings eliminates the positive effect of 

rating a large number of plants quickly.  Slopek (1989) compared five variations of a 1–5 

visual rating scale for estimating the percent diseased leaf area of barley plants.  He 

determined that two of the five visual rating scales worked well for estimating leaf 

disease, were as precise as the HB scale, and decreased the time required for disease 

assessment.  Nita et al. (2003) suggested the use of an equal interval scale over the HB 

scale for assessing disease severity. 

Disease symptoms on whole plants or leaves are often evaluated using numbered 

grade scales which are sometimes referred to as arbitrary, nominal, or ordinal scales.  

Ordinal scales have some degree of subjective interpretation of the disease by the rater.  

An ordinal scale of 0 to 5 (0 = no disease, 1 = very slight, 2 = slight, 3 = moderate, 4 = 

severe, 5 = dead plant) is only interpretable in the arrangement of the order and can only 
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provide qualitative data.  Many disease assessment keys are ordinal and cannot 

quantitatively measure a difference between the values.  Russell (1978) found these 

scales to be satisfactory when used by experienced observers for rating plants or plots in 

an order of increasing symptom severity. 

When there is more than one visual rater, good agreement and association 

between the raters is desirable.  Understanding the interpretation of results from ordinal 

data can be explained by the concepts of accuracy (agreement) and precision 

(association).  Accuracy is the raters’ ability to rate disease closest to a true value (such 

as the electronic percent disease measurements) and precision is the repeatability of the 

scoring.  It is unfortunate that accuracy and precision may or may not coincide.  

Statistical analysis helps determine if the raters are interpreting the disease the same or 

very close to the same.  The Kappa coefficient (k) was developed by Cohen (1960) to 

describe a proportion of agreement (accuracy), correcting for chance agreement, and is 

scaled to vary from –1 to +1.  Viera and Garrett (2005) explain the Kappa coefficient as a 

“quantitative measure of the magnitude of agreement between observers”.  Kappa 

measures the difference between the raters agreement and expected agreement.  A 

negative Kappa coefficient indicates less than chance agreement, zero indicates exactly 

chance agreement, and a positive value indicates better than chance agreement (+1 would 

be perfect agreement).  The Kappa coefficient can be interpreted as < 0 = less than 

chance agreement, 0.01–0.20 = slight agreement, 0.21–0.40 = fair agreement, 0.41–0.60 

= moderate agreement, 0.61–0.80 = substantial agreement, and 0.81–0.99 = almost 

perfect agreement (Viera and Garrett, 2005).  Agreement and disagreement are not 
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mutually exclusive in an ordinal rating scale.  If two raters see the disease on a plant as 

slight disease and moderate disease, they are not in complete agreement, but they are not 

necessarily in complete disagreement either.  Both raters have established that there is 

disease on the plant.  This problem was addressed with the weighted Kappa coefficient 

by assigning weights to different degrees of disagreement and less weight to agreement 

as categories are further apart (Cohen 1960, 1968; Fleiss and Cohen, 1973).  Pearson’s 

product moment correlation coefficient (rp) statistically measures the degree of linear 

association (precision) between two sets of data, such as the two visual raters’ disease 

severity rating.  A positive Pearson correlation coefficient designates both sets of data 

change in the same direction, and a negative Pearson correlation coefficient designates 

both sets of data change in opposite directions. 

Precise quantitative analysis can be performed on images of diseased plant tissues 

using computer software.  Electronic images can be stored indefinitely allowing the 

researcher to process the images as time permits.  Digital imaging and analytical software 

were used by Wang et al. (2008) to develop a miniaturized strawberry leaf disk bioassay.  

Their goal was to find the percent disease caused by an isolate used for inoculation of a 

leaf disk and percent phytotoxicity that may be caused by the antifungal compounds 

being used on 15-mm excised strawberry leaf disks from the cultivar Chandler in a 

miniaturized antifungal bioassay (Wang et al., 2008).  The leaf disks were dipped in 

antifungal compounds and then inoculated with the same Colletotrichum species being 

utilized in this research.  The analyzing software transformed the images to show healthy 

parts of the leaf as green, diseased parts as black, and parts exhibiting phytotoxicity as 
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gray.  Photographs of detached strawberry leaves were used by Abril et al. (2009) for 

visual assessment of disease severity in a study testing the efficacy of natural product-

based fungicides.  The percent diseased leaf area was assessed with an arbitrary scale of 

0–3 (0 = no disease and 3 = most severe disease).  Kwack et al. (2005) used digital image 

analysis to assess the severity of cucumber anthracnose caused by Colletotrichum 

orbiculare.  The leaves were also visually assessed for percentage of diseased area.  

Comparison of visual assessments with image analysis indicated that the visual ratings 

were significantly higher than the electronic ratings.  They noted that processing the 

images took approximately three minutes each, which would not be challenging for a 

small number of samples. 

The objective of this study was to compare visual assessments with image 

analysis of anthracnose disease on inoculated detached strawberry leaves to find the 

degree of agreement and association between the two methods.  This research expands 

upon the Miller-Butler et al. (2013) research by increasing the number of named cultivars 

and MSUS clones inoculated for assessment. 

Materials and Methods 

Growth of Fungal Isolates and Preparation of Inoculum 

Three Colletotrichum isolates were used: two isolates of C. fragariae, Cf-63 and 

Cf-75 (Smith and Black, 1990), and one isolate of C. gloeosporioides, Cg-162 (Smith and 

Black, 1990).  Each isolate was initiated from silica gel cultures maintained at the USDA-

ARS Thad Cochran Southern Horticultural Laboratory, Poplarville, MS, and grown on 

1:1 oatmeal potato dextrose agar (OMA:PDA) at 20 to 28 ⁰C under fluorescent lights 
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with a 12-hour photoperiod.  Inoculum was prepared as a conidial suspension from 7- to 

14-day-old cultures by flooding each culture plate with sterile deionized water, and 

gently scraping the agar surface with a glass rod to remove conidia.  The resulting 

conidial suspension was filtered through one layer of bandage gauze (Johnson & 

Johnson, New Brunswick, NJ) and adjusted to a concentration of 1.5 × 106 conidia/mL by 

diluting with sterile deionized water to which Tween-20 (Sigma Chemical Co., St. Louis, 

MO) had been added as a surfactant at the rate of one drop from an eyedropper per 1 liter 

of water. 

Detached Leaf Inoculations (2009, 2010, 2011) 

Young, fully developed, blemish-free leaves, composed of the petiole and three 

leaflets, were removed from plants no more than four hours before inoculation, rinsed in 

tap water, and the petiole was inserted into a 10 × 150 mm test tube filled with sterile 

deionized water.  Detached leaves from each of 98 strawberry clones (32 named cultivars 

and 66 unreleased MSUS clones) were inoculated with each of three isolates:  C. 

fragariae (Cf-63 and Cf-75) and C. gloeosporioides (Cg-162).  Colletotrichum acutatum 

isolates Goff and Ca-1 (Chang and Smith, 2007) were initially used in the detached leaf 

study, but no disease symptoms developed on the leaflets, so they were removed from the 

detached leaf inoculations.  Each leaf was inoculated with the conidial suspension by 

misting the adaxial surface of the three leaflets with a hand pump sprayer to the point of 

runoff.  Detached leaves used for non-inoculated controls were misted with deionized 

water.  The inoculated leaves (still in the test tubes) were immediately placed in a dew 

chamber at 100% RH, 30 ºC, and incubated in the dark for 48 hours.  They were then 
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transferred to sealed, clear plastic containers at 100% RH and 23–25 ºC with continuous 

fluorescent light for an additional three days before assessing disease symptoms.  The 

leaflets of each detached leaf were visually assessed for disease severity using a 0 to 5 

scale:  0 = no visible disease symptom on any leaflet, 1 through 4 increasing disease 

symptom severity, and 5 = total area of leaflets necrotic.  Hereafter, the visual disease 

ratings obtained in the detached leaf study will be termed the DL-DSR. 

After the visual assessment, the petiole was removed and each leaf was separated 

into individual leaflets, placed on a light box, and photographed either with a 

DXCB151A color video camera (Hitachi Instruments, Inc., Houston, TX, U.S.) and 

captured with Bioquant® 98 image analysis software (R&M Biometrics, Inc., Nashville, 

TN, U.S.) at the University of Southern Mississippi (USM), Hattiesburg, MS, or with a 

Nikon COOLPIX 5000 digital camera (Nikon Corp., Tokyo, Japan), then uploaded as 

JPG files at the USDA, ARS Thad Cochran Southern Horticultural Laboratory (TCSHL), 

Poplarville, MS.  Initially the photographs of the leaflets were taken at USM, but due to 

time constraints after the first inoculation study, leaflets from the detached leaves were 

photographed at TCSHL.  Photographs were enlarged electronically 200% and 

individually marked and colorized for image analysis with healthy leaf tissue as green 

and tissue with lesions as black using Corel® Photo-Paint X4 or X5 (Corel Corp., 

Ottawa, Ontario, Canada).  Originally, lesions were counted electronically, but due to the 

nature of anthracnose symptoms on strawberry leaflets (small lesions coalesce into a 

larger lesion), these data were not used in separate analyses, but were used to find the 

total percent lesion area.  Total leaf area was calculated as the green (healthy) area plus 
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the black (lesion) area using Image Pro Plus 7.0 (Media Cybernetics, Bethesda, MD).  

Percent lesion area was calculated as lesion area divided by total leaf area multiplied by 

100.  The electronic percent lesion area was paired with the visual raters’ DL-DSR and 

then both the electronic and each rater’s DL-DSR were averaged for each clone across all 

repetitions for each isolate.  Hereafter the electronic disease ratings will be termed 

percent disease. 

Experimental Design and Statistical Analysis 

Detached strawberry leaves from each of 98 clones were inoculated with each of 

three Colletotrichum isolates each year for three years.  The availability of leaves at each 

collection date determined the number of leaves inoculated. Clones with less than eight 

leaves inoculated across the three studies were removed.  Twelve was the average 

number of leaves inoculated of the remaining clones.  The experimental design was a 

completely randomized design.  Inter-rater association and agreement between the two 

independent raters were established using Pearson’s product-moment correlation 

coefficient (rp) and weighted Kappa coefficient (kw), respectively.  Both raters’ visual 

DL-DSRs were then averaged together (rater average) and tested for association and 

agreement with the percent disease.  The rater average for each number on the 0 to 5 

rating scale was adjusted to whole numbers. 

Results 

The total observations (N =4028) were made with an overall average of 4 leaves 

per clone per isolate per year.  Controls inoculated with deionized water were used at 

each inoculation date and had an overall average DL-DSR for both raters of 0.09 and a 
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percent disease of 0.40%.  This indicates the detached leaves used at the inoculation date 

did not have disease symptoms prior to inoculation with Colletotrichum, therefore, the 

data from the controls (615 observations) were removed from further statistical 

evaluations. 

The two visual raters’ average DL-DSRs (n =3413) were in substantial agreement 

with a weighted Kappa of 0.80 (95% CI =0.79–0.82).  Frequencies of the visual raters’ 

DL-DSR agreement is tabulated in Table 6 and summarized graphically in Figure 4.  The 

visual raters had perfect agreement for 52% of the DL-DSRs.  The visual raters had 

perfect agreement 30% of the time for the DL-DSR of 0; 16% perfect agreement for the 

DL-DSR of 1; 1% agreement for the DL-DSRs of 2, 3, and 4; and 3% perfect agreement 

for the DL-DSR of 5.  The DL-DSRs of 2, 3, and 4 had the least amount of perfect 

agreement, but the raters were not in total disagreement for these DL-DSRs.  Rater 1 

rated 365 inoculated leaves a 2, 269 a 3, and 222 a 4; whereas within these same rater 1 

DL-DSRs, rater 2 rated 320 a 1, 135 a 2, and 111 a 3.  The DL-DSRs that were more than 

one disease rating from each other (e.g., one rater rated 2 and the other rated 0) only 

totaled 203, or 6% of the total 3413 DL-DSRs, with most of this variation occurring for 

DL-DSRs of 3 (113) and 4 (74).  The association of the two raters’ average DL-DSRs 

was good with a Pearson’s product moment correlation coefficient of rp =0.84, and their 

agreement was substantial with a weighted Kappa of kw =0.80.  The substantial 

agreement and good association between the two raters’ DL-DSRs showed consistency 

between the visual raters.  Therefore, the DL-DSRs of the two raters were averaged and 

considered the rater average DL-DSR for comparison with the electronic ratings. 
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Descriptive statistics for the rater average DL-DSR using the percent disease from 

the electronic ratings as the analysis variable can be seen in Table 7 and means are 

plotted in Figure 5.  The association of the rater average DL-DSR and the percent disease 

was good with a Pearson’s product moment correlation coefficient of rp =0.79.  The 

weighted Kappa statistic, which expresses the agreement between two sets of variables, 

requires both sets to contain the same number of scoring values.  Due to the precision of 

the percent disease producing hundreds of different percentage measurement values and 

the visual rating scale containing six measurement values, a weighted Kappa could not be 

calculated using the rater average DL-DSR and percent disease. 

The rater DL-DSR of 0 was equivalent to 0.3% disease and the DL-DSR of 5 was 

equivalent to 93.7% disease.  The percent disease separates well with the visual rater 0 to 

5 DL-DSR scale (Table 10). 

The average percent disease and the rater average DL-DSR were calculated for 

each of the fungal isolates used for the inoculations.  These ratings were also separated by 

the source of the leaves, either named cultivar or MSUS clone, because the MSUS clones 

were bred to be resistant to C. fragariae (Table 8).  Colletotrichum fragariae isolate Cf-

75 was the most aggressive of the isolates with an overall average percent disease of 10% 

and rater average DL-DSR of 1.4.  Colletotrichum gloeosporioides isolate Cg-162 was 

the next most aggressive with ratings of 7.1% disease and average DL-DSR of 1.1; and 

C. fragariae isolate Cf-63 was the least aggressive with an overall 3.4% disease and 0.8 

average DL-DSR.  When the DL-DSRs and percent disease were compared by source, 

the isolates remained in the same order of aggressiveness, but the difference between the 
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ratings of the cultivars and the ratings of the MSUS clones indicates the MSUS clones are 

more resistant to all of the isolates.  The percent disease for two cultivars used for 

comparison were Chandler for susceptible (Cf-63 =2.2%, Cf-75 =38.8%, and Cg-162 

=16.7%) and Pelican for resistant (Cf-63 =0.7%, Cf-75 =0.5%, and Cg-162 =2.4%). 

Discussion 

There are diverse options when it comes to disease rating methods, e.g. 

percentage or ordinal rating scales, with or without reference photographs of diseased 

plant organs with associated ratings to help the visual rater in determining the correct 

rating.  When choosing a disease rating method to use, the researcher must take into 

consideration the purpose of the research, as well as the time, practicality, cost, and 

accuracy of the ratings.  Visual ratings can be used to quickly assess disease severity and 

are often utilized for rapid decisions on pesticide use in production fields.  Electronic 

percent disease ratings made from image analysis are more accurate than visual ratings 

and are often utilized when the research requires more detailed observations for detecting 

and quantifying plant disease. 

Regardless of the rating method, low (<10%) and high (>90%) levels of disease 

on plant tissue are less difficult to distinguish visually than disease affects 10 to 90% of 

the plant tissue.  The association between the two raters’ DL-DSRs in this study was very 

good (rp =0.87) with exact agreement on 52% of the DL-DSRs and varying amounts of 

agreement on the remaining 48% of the DL-DSRs.  The mid-range ratings had the least 

amount of agreement.  This variation may be explained by visual bias, which is supported 
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by previous research on the subject (Horsfall and Barratt, 1945; Sherwood et al., 1983; 

Slopek, 1989). 

A rating scale with few categories (as the 0 to 5 scale in this study) often presents 

the possibility of rater agreement by pure chance.  The weighted Kappa is a quantitative 

measure of the magnitude of the inter-rater agreement between the two raters’ DL-DSRs 

and the value of kw =0.80 obtained in this study indicates a much better than chance 

agreement.  The raters were in exact agreement on 52% of the total DL-DSRs with 30% 

agreement at the lowest DL-DSR of 0, 16% agreement at the DL-DSR of 1, and 3% 

agreement at the DL-DSR of 5.  The use of a 0 to 5 ordinal scale is sufficient to 

distinguish between susceptible and resistant strawberry leaves.  An element of training, 

such as providing the visual raters with photographs representing each category on the 

rating scale, would improve the rating process, thus leading to a higher level of 

agreement between raters. 

Image analysis is expected to give a very precise disease rating and is appealing 

as a means of assessing percent lesion area.  A disadvantage of image analysis is the 

considerable time required to prepare and photograph each set of leaflets and to mark 

electronically each lesion.  It can be difficult to make a decision between healthy and 

diseased tissue when visually rating leaves under laboratory lights without any type of 

enhancement, especially if the lesions are very small. When the leaves are backlit and 

photographed, the visibility of the lesions is improved (Miller-Butler et al., 2013).  

Visually assessing disease severity of a set of leaflets using a photograph on a computer 

monitor often takes less time and is easier than assessing the actual leaflets in the 
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laboratory.  Initial screening of large seedling populations for anthracnose resistance 

could be accomplished with preliminary screening completed by visual raters.  Before 

releasing a new named cultivar, final decisions of anthracnose resistance or susceptibility 

could then be based on electronic imaging.  The choice of a disease rating method is 

dependent upon the researcher’s requirement for precision. 

Colletotrichum fragariae isolate Cf-75 was the most aggressive of the three 

isolates used in this study with an overall average percent disease of 10% and rater 

average DL-DSR of 1.4.  Colletotrichum gloeosporioides isolate Cg-162 was the next 

most aggressive isolate, and C. fragariae isolate Cf-63 was the least aggressive of the 

three isolates.  The use of a more aggressive isolate in an inoculation study helps to 

separate efficiently the more susceptible germplasm from the more resistant germplasm.  

Since the MSUS clones were bred to be resistant to C. fragariae, the data were separated 

by source to confirm that the isolates were of the same order of aggressiveness on the 

MSUS clones as on the cultivars.  When the ratings were separated by source, the isolates 

remained in the same order of aggressiveness.  The difference in the ratings of the 

cultivars and MSUS clones indicates the MSUS clones are more resistant than the 

cultivars to each of these isolates. 

Detached leaf inoculations can be used as a rapid preliminary screen to separate 

anthracnose susceptible from anthracnose resistant germplasm in large populations within 

breeding programs.  The rating of the germplasm (whether visual or electronic) can be 

fine-tuned higher or lower to separate susceptible from resistant germplasm by adjusting 

the scale to a more or less severe rating.  Image analysis is more accurate and precise than 
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visual ratings and was used as a “yardstick” in this study to compare percent lesion area 

obtained from the image analysis to the visual disease ratings.  Comparison of visual 

assessments with image analysis of anthracnose disease on inoculated detached 

strawberry leaves was the main objective of this study.  The 0 to 5 disease rating scale 

was more than sufficient to separate susceptible from resistant strawberry leaves.  The 

degree of agreement between the two methods was positively related (rp =0.79) and 

supports a preliminary study (Miller-Butler et al., 2013) that also found a strong 

correlation between image analysis and visual disease ratings.  The results of this 

research confirm that a detached leaf assay can reliably be used to distinguish between 

anthracnose-resistant and susceptible germplasm.  The detached leaf assay was compared 

to a whole plant assay using the same isolates and disease severity rating scale that has 

been used for almost 30 years to identify anthracnose resistant strawberry germplasm 

(Chapter IV, this dissertation).
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Table 6  

Frequency of two visual raters’ DL-DSR. 

Rater 1 

DL-DSR 

Rater 2 DL-DSR 

0 1 2 3 4 5 

0 1015 792 2 0 0 0 

1 43 550 10 0 0 0 

2 3 320 42 0 0 0 

3 0 113 135 19 2 0 

4 0 9 65 111 37 3 

5 0 0 0 11 32 99 
 

Frequency of the two visual raters’ detached leaf disease severity rating (DL-DSR) based on a 0 to 5 visual 

rating scale for 3413 detached strawberry leaves inoculated with three isolates of Colletotrichum species. 

Table 7  

Summary statistics for detached leaves inoculated with Colletotrichuma species. 

Rater 

DL-DSRb 

Percent Disease 

Average Std Dev Median Minimum Maximum N 

0 0.3 0.4 0.1 0.0 3.5 1309 

1 1.2 1.5 0.7 0.0 15.3 1166 

2 5.1 4.0 4.0 0.1 29.4 488 

3 16.9 8.7 15.8 2.2 48.6 204 

4 45.5 20.8 45.5 8.6 91.9 137 

5 93.7 10.6 98.9 44.6 100.0 109 
aTwo isolates of Colletotrichum fragaria and one isolate of C. gloeosporioides were used to inoculate the detached strawberry 

leaves.  Isolates were not all applied on the same leaf. 
bThe DL-DSRs are based on the average of two visual raters. 

 

Summary statistics for the percent disease of 3413 detached strawberry leaves following inoculation with three isolates of 

Colletotrichumz species, corresponding to the rater average disease severity rating (DL-DSR) on the same leaves.  Percent disease was 

calculated from computer image analysis of photographed leaves.Average percent disease and average DL-DSR for Colletotrichum 

isolates. 
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Table 8  

Disease Severity Ratings and Percent Disease for Detached Strawberry Leaves. 

  

Colletotrichum Isolate 

Overall Cultivar MSUS 

Disease 

(%) 

DL-

DSR 

Disease 

(%) 

DL-

DSR 

Disease 

(%) 

DL-

DSR 

C. fragariae Cf-63 3.4 0.8 6.9 1.3 1.7 0.6 

C. fragariae Cf-75 10.0 1.4 19.1 2.3 5.7 0.9 

C. gloeosporioides Cg-162 7.1 1.1 13.3 1.8 4.2 0.8 
 

Average percent disease and average DL-DSR of 3413 detached strawberry leaves following inoculation with three isolates of 

Colletotrichum species.  Ratings are separated by Colletotrichum isolates, average percent disease and average DL-DSRs, and leaf 

source (named cultivar or MSUS clone).
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Figure 4. Agreement of visual raters. 

Agreement between the two visual raters’ DL-DSRs (kw =0.80, 95% CI 0.79–0.82), was better at the lower end (0 and 1) and the 

higher end (5) of the scale.  The ratings of 2, 3, and 4 had minimal perfect agreement.
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Figure 5. Percent disease vs. visual rater average DL-DSR. 

Percent disease vs. the visual rater average DL-DSR of 3413 detached strawberry leaves following inoculation with three 

isolates of Colletotrichum species.  Percent disease was calculated from computer image analysis of photographed leaves. 

Rater average DL-DSR are based on the average of two visual raters.
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CHAPTER IV – COMPARISON OF SCREENING TECHNIQUES (WHOLE PLANT 

AND DETACHED LEAF) FOR IDENTIFYING ANTHRACNOSE RESISTANCE IN 

STRAWBERRY PLANTS 

Introduction 

The dessert strawberry (Fragaria × ananassa) is a popular fruit grown in most 

arable regions of the world.  In the United States, California and Florida are the top 

strawberry producing states.  California produces approximately 85% of the strawberries 

grown in the U.S. (USDA-NASS, 2014) and, as their production tapers off in the fall, the 

Florida growing season begins and runs through the winter months.  Strawberry is host to 

many pathogens that cause major losses in strawberry production, wherever they are 

grown.  Anthracnose is a destructive disease of strawberry caused by three 

Colletotrichum species: C. acutatum, C. fragariae, and C. gloeosporioides (Smith 1998).  

Colletotrichum acutatum was first reported on strawberry in the U.S. by Smith and Black 

(1986) and may cause anthracnose disease on the runners, petioles, leaves, and fruit 

(Howard et al., 1992).  Both C. fragariae and C. gloeosporioides can infect all 

aboveground parts of the plant and may cause anthracnose crown rot and anthracnose leaf 

spot (also called black leaf spot). 

Commercial strawberry growers continually strive to improve their disease 

control measures.  Integrated Pest Management (IPM) programs help growers combine 

strategies that focus on long-term prevention of disease and pests utilizing such 

management practices as planting disease-free plants, good sanitation practices, cultural 

controls, and the use of pesticides if necessary.   Disease-free plants are critical to a 

successful crop and also decrease the chances of introducing pathogens from other 
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locales.  Good sanitation practices help destroy pathogens on equipment or in the soil, but 

cannot control latent infections.  Cultural controls, such as drip irrigation instead of 

overhead irrigation, decrease the movement of fungal conidia through water splash.  

Pesticides, applied correctly, help control many pests but rarely eradicate them.  The 

overuse of some pesticides, such as fungicides, has resulted in pathogen resistance and 

failure of the fungicides to control anthracnose epidemics (Smith and Black, 1993a, 

1993b; LaMondia, 1995).  These disease control practices are important tools for 

growers, but the ultimate solution for controlling plant disease is developing and planting 

disease resistant cultivars. 

Strawberry breeding programs attempt to produce disease resistant germplasm, 

while maintaining desirable fruit and horticultural traits.  Commercial strawberry 

growers, breeders, and plant pathologists work together in teams to develop anthracnose 

resistant strawberry plants.  The release of a new strawberry cultivar entails classical 

plant breeding (cross pollination), germinating the seed (progeny), testing for disease 

resistance, increasing the selected population by clonal propagation (daughter plants on 

stolons or through in vitro tissue culture), and field testing under natural conditions for 

plant quality, quality and quantity of the fruit, and desirable horticultural characteristics.  

This process generally requires many years.  The Agricultural Research Service (ARS), a 

branch of the United States Department of Agriculture (USDA), established a strawberry 

breeding program in Poplarville, MS in the 1980s (Smith, 2006) with the goal of 

developing strawberry germplasm resistant to anthracnose crown rot caused by C. 

fragariae and adapted to the southeastern U.S.  Anthracnose-resistant selections were 

identified following greenhouse screening for anthracnose resistance and field testing for 
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horticultural traits.  These selections were numbered and given the prefix MSUS to 

denote they were from the USDA breeding program in Mississippi.  One of the MSUS 

clones was released as the anthracnose resistant cultivar ‘Pelican’ (Smith et al., 1998), 

and four others were released as breeding lines, i.e., US70, US159, US292, and US438 

(Galletta et al., 1993).  Approximately 100 of the clones and the strawberry releases 

continue to be clonally propagated at the Poplarville research location. 

Screening for disease resistance in strawberry germplasm commonly requires 

inoculating whole plants with isolates of the pathogens to determine their degree of 

resistance.  Resistance depends on the plant-pathogen interaction in an environment 

suitable for disease development.  Greenhouse screening is preferable to field screening 

because the researcher can control the environment within the greenhouse and choose the 

isolates to use as inoculum, whereas field research is at the mercy of the weather and 

pathogen populations which may differ from year to year. 

The use of an aggressive isolate of the pathogen in a disease screening program 

increases disease incidence and separates germplasm reactions more effectively.  The 

disease response must be assessed with accurate and reproducible techniques.  

Inoculation trials are time-consuming, and plants may be destroyed by the disease which 

can present a problem for the breeder because the germplasm may have possessed other 

desired horticultural traits.  Screening for disease resistance using detached strawberry 

leaves is an alternative to inoculating whole plants and can possibly eliminate the 

destruction of desirable germplasm. 

Disease severity refers to the amount of plant tissue that is diseased and is usually 

expressed as the percentage of plant area visibly affected by a pathogen.  Disease 
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assessment scales, such as visual rating scales which may be percentage or numerical, 

have been in use for many years and are generally employed for a quick assessment of 

disease severity (Horsfall and Barratt, 1945; Slopek, 1989).  Visual disease ratings rely 

on some degree of subjective interpretation by the rater.  In previous research with 

inoculated detached strawberry leaves, image analysis was shown to be more precise than 

visual disease ratings (Miller-Butler et al., 2013, Chapter III, this dissertation).  Image 

analysis was used as a “yardstick” to compare the percent lesion area of the detached 

leaves to visual disease assessment and showed a high positive correlation between the 

image analysis and visual disease assessment, lending support to using a visual rating 

scale for evaluating disease severity on detached strawberry leaves. 

Development of a whole strawberry plant inoculation protocol for resistance to C. 

fragariae began at the USDA-ARS Poplarville location in the 1970s (Smith and Spears, 

1982).  Smith and Black (1987) investigated the environmental conditions necessary for 

disease development when assessing strawberry germplasm for resistance to C. fragariae.  

Their efforts produced the inoculation assay still in use today.  Plants to be assessed for 

resistance are inoculated by misting the foliage with a conidia suspension of a fungal 

isolate and held at 35 °C and 100% relative humidity (RH) for 48 hours in a humidity 

chamber.  The plants are then moved to a 32 °C greenhouse and assessed for disease at 30 

days after inoculation (DAI) using a 0 to 6 disease severity rating (DSR) scale.  The 

resistance or susceptibility of the germplasm is then categorized using the DSR where 

plants with a rating < 2.0 are classified as resistant, those with a rating > 2.0 to < 4.0 are 

classified as intermediate, and those with a rating > 4.0 are classified as susceptible. 
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Research for the development of a detached strawberry leaf inoculation protocol 

has been ongoing at the USDA-ARS in Poplarville, MS.  The detached leaf protocol is 

similar to the whole plant protocol, with the exception being after 48 hours in a dew 

chamber the detached leaves are placed in a sealed clear plastic container and held at 

room temperature and 100% RH.  The leaves are assessed for disease severity five DAI 

using a 0 to 5 disease severity rating scale.  A reliable anthracnose screening protocol 

based on a detached leaf assay would cut the time between inoculation and disease 

assessment, thus reducing the overall time for breeders to identify anthracnose resistant 

germplasm for their breeding programs.  It would also preserve valuable germplasm since 

plants of susceptible breeding lines would not be killed, and would allow for evaluation 

using isolates of the pathogen from other areas without the risk of those isolates infecting 

local plants. 

I reasoned that the resistance or susceptibility of strawberry plants could be 

reliably established by inoculating detached leaves with isolates of the anthracnose 

pathogens.  This alternative to an assay using whole plants should be faster and just as 

accurate. This plan could be tested by inoculating whole strawberry plants and detached 

strawberry leaves from the same plant population with isolates of the Colletotrichum 

species known to cause anthracnose disease on whole strawberry plants.  The anthracnose 

symptoms would be visually rated on both whole plants and detached leaves and the 

ratings compared between the two inoculation techniques. 



 

100 

Materials and Methods 

Production of Plant Material 

Strawberry plants were established in 10-cm plastic pots in a 1:1 mixture of Jiffy-

Mix (JPA, West Chicago, IL, U.S.) and sand.  Named cultivars and MSUS clones (Table 

9) were propagated by rooting young runner plants in the Jiffy-Mix:sand potting mixture.  

Plants were maintained in a greenhouse at 28 ºC ±10 ºC with a 16-hour photoperiod.  

Named cultivars and MSUS clones of strawberries used in this research will be 

collectively referred to as germplasm lines. 

Growth of Fungal Isolates and Preparation of Inoculum 

Three Colletotrichum isolates were used: two isolates of C. fragariae:  Cf-63 and 

Cf-75 (Smith and Black, 1990; Chang and Smith, 2007), and one isolate of C. 

gloeosporioides:  Cg-162 (Smith and Black, 1990).  Each isolate was initiated from silica 

gel cultures and grown on 1:1 oatmeal potato dextrose agar (OMA:PDA) at 20–28 °C 

under fluorescent lights with a 12-hour photoperiod.  Inoculum was prepared as a 

conidial suspension from 7- to 14-day-old cultures by flooding each culture plate with 

sterile deionized water and gently scraping the agar surface with a glass rod to remove 

conidia.  The resulting conidial suspension was filtered through one layer of bandage 

gauze (Johnson and Johnson, New Brunswick, NJ) and adjusted to a concentration of 1.5 

× 106 conidia/mL by diluting with sterile deionized water with Tween-20 (Sigma 

Chemical Co., St. Louis, MO) added as a surfactant at the rate of one drop per 1 liter of 

water. 
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Whole Plant Inoculations 

Older leaves, runners, and flowers were removed from plants 3 to 4 days before 

inoculation leaving 4 to 5 young leaves on each plant at inoculation.  Plants were 

inoculated with a conidial suspension by misting with a hand pump sprayer to the point 

of runoff.  Plants used for non-inoculated controls were misted with deionized water.  

Inoculated plants were immediately placed in a dew chamber at 100% relative humidity 

(RH), 30 ºC, and incubated in the dark for 48 hours.  They were then transferred to a 

greenhouse (28 ºC ±10 ºC) for the remainder of the study.  Disease development was 

assessed on the whole plants (n = 2194, minus the non-inoculated controls) at 10 and 30 

DAI using a disease severity rating (DSR) scale adapted from Smith and Black (1987).  

Whole plant rating categories were 0 = healthy plant with no visible lesions, 1 = < 3 mm 

long petiole lesion, 2 = 3 to 10 mm long petiole lesion, 3 = > 10–20 mm long petiole 

lesion, 4 = > 20 mm long petiole lesion, 5 = youngest leaf wilted, and 6 = plant dead.  

The highest DSR from the either the 10-day or 30-day evaluations was used for data 

analysis.  Plants with a DSR < 2.0 were considered resistant, those with a DSR > 2.0 to < 

4.0 were considered intermediate, and those with a DSR > 4.0 were considered 

susceptible.  This rating scale has been used successfully for almost 30 years to identify 

anthracnose resistant strawberry germplasm. 

The decision was made also to rate the leaf blade (composed of three leaflets 

without the petiole) on each plant with the greatest disease symptoms at the same time as 

rating the whole plant.  This rating would be used to classify the anthracnose response of 

leaflets from the whole plant and correlate it with both the whole plant DSR and the 

detached leaf disease severity rating.  The disease severity rating scale used to evaluate 
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the leaflets was:  0 = no visible disease symptom on any leaflet, 1 through 4 = increasing 

disease symptom severity, and 5 = total area of leaflets necrotic.  Plants inoculated in the 

whole plant assay were not returned to the original greenhouse after inoculation but were 

kept in a separate greenhouse. 

Detached Leaf Inoculations 

Young, fully developed, blemish-free leaves, composed of the petiole and three 

leaflets, were removed from plants no more than four hours before inoculation, rinsed in 

tap water, and the petiole was inserted into a 10 × 150 mm test tubes filled with sterile 

deionized water.  Each detached leaf was inoculated with the conidial suspension by 

misting the adaxial surface of the three leaflets with a hand pump sprayer to the point of 

runoff.  Detached leaves used for non-inoculated controls were misted with deionized 

water.  The inoculated leaves (still in the test tubes) were immediately placed in a dew 

chamber at 100% RH, 30 ºC, and incubated in the dark for 48 hours.  They were then 

transferred to sealed, clear plastic containers at 100% RH and 23–25 ºC with continuous 

fluorescent light for an additional three days before assessing disease symptoms.  The 

leaflets of each detached leaf were visually assessed for disease severity using the same 

scale described for leaflets in the whole plant inoculations:  0 = no visible disease 

symptom on any leaflet, 1 through 4 increasing disease symptom severity, and 5 = total 

area of leaflets necrotic.  Hereafter, the whole plant DSR will be known as the WP-DSR, 

leaflet DSR from the whole plant inoculations will be known as the L-DSR, and the 

detached leaf DSR will be known as the DL-DSR. 
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Experimental Design and Statistical Analysis 

The experimental design for both the whole plant and the detached leaf studies 

was a completely randomized design within each germplasm line, meaning the plants and 

leaves were chosen at random from the population of that particular germplasm line.  The 

whole strawberry plant inoculations were conducted three times over two years (2010 and 

2011) and the WP-DSR for each of the individual plants within a germplasm line from 

each of the three inoculation studies were used to calculate the mean WP-DSR for the 

germplasm line.  The L-DSR for each of the germplasm lines from each of the three 

whole plant inoculation studies were used to calculate the mean L-DSR for each 

germplasm line.  The detached leaf inoculations were conducted three times over three 

years (2009, 2010, and 2011) and the DL-DSR for each of the individual leaves within a 

germplasm line from each of the three inoculation studies were used to calculate the 

mean DL-DSR for the germplasm line.  The non-inoculated controls in the whole plant 

experiments had an overall WP-DSR mean of 0.31 and an overall L-DSR mean of 0.35.  

The non-inoculated controls from the detached leaf experiments had an overall DL-DSR 

mean of 0.09.  This indicates the whole plants and detached leaves used for the 

inoculation studies were not infected with Colletotrichum species prior to the studies; 

therefore, the data from the non-inoculated controls were removed from further statistical 

evaluations.  The mean WP-DSR, L-DSR, and DL-DSR data from the two inoculation 

assays were analyzed for association using Pearson’s correlation coefficient.  The mean 

DSR data for the whole plant (WP-DSR and L-DSR) inoculations and the mean DSR 

data for the detached leaf (DL-DSR) inoculations, based on the categories (resistant, 

intermediate, or susceptible) were analyzed with analysis of variance (ANOVA).  If 
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significant differences were found with ANOVA, a post hoc Tukey’s test was performed.  

All data were analyzed using SAS (version 9.4; SAS Institute Inc., Cary, NC). 

Results 

Due to the difference in rating scales (whole plant: 0 to 6 and leaf: 0 to 5), the 

twelve germplasm lines with a WP-DSR mean rating greater than 5.5 (rounded up to a 

rating of 6 = plant dead) were amended to equal 5 (youngest leaf wilted) for statistical 

analysis between the whole plant ratings and the leaf ratings.  This allowed all of the data 

from the two DSR scales to be analyzed using the same scale.  A WP-DSR of 5 or 6 is 

comparable to a category of susceptible when determining the resistance of the 

germplasm. 

The data were analyzed for association (precision) using the CORR procedure of 

SAS and the WP-DSR and L-DSR were found to have a very high degree of association 

(rp =0.96).  The association between the L-DSR and DL-DSR (rp =0.70) was positive.  

The association between the WP-DSR and DL-DSR was also positive (rp =0.66), slightly 

less than the association between the L-DSR and DL-DSR, but moderately less than the 

association between the WP-DSR and L-DSR from the whole plant inoculations. This is 

not unexpected since the detached leaves were rated for disease five DAI compared to the 

30-day whole plant disease rating that allowed the attached leaves a longer time to 

develop disease. 

The WP-DSR for all the plants in each germplasm line was averaged across all 

inoculation isolates, and this average was used to assign the resistance categories (R = 

resistant, I = intermediate, S = susceptible) to each germplasm line.  The WP-DSR means 

for each of the categories were analyzed with ANOVA and found to be significantly 



 

105 

different (F =809.3, p <0.0001).  A post hoc Tukey’s test showed that the WP-DSR 

means of each category differed significantly from each other at p <0.05.  The categories 

for the WP-DSR means were used to establish the corresponding leaflet (from the same 

plant) L-DSR means and detached leaf (from the same plant population) DL-DSR means.  

The L-DSR means for each of the categories were analyzed with ANOVA and found to 

be significantly different (F =565.0, p <0.0001).  A post hoc Tukey’s test showed that the 

L-DSR means differed significantly from each other at the p <0.05.  The DL- DSR means 

for each of the categories were also analyzed with ANOVA and found to be significantly 

different (F =87.4, p <0.0001).  A post hoc Tukey’s test showed that the DL-DSR means 

differed significantly from each other at the p <0.05 (Table 10). 

Descriptive statistics for each of the mean DSRs within each germplasm line 

based on the resistance category can be found in Table 10.  The mean WP-DSR (R =1.3, I 

=2.9, S =4.8) and mean L-DSR (R =1.2, I =2.9, S =4.5) corresponding to the same 

categories were equal for the intermediate category and within 0.1 and 0.3 for the 

resistant and susceptible categories, respectively.  The WP-DSR means for each category 

(R =1.3, I =2.9, S =4.8) were compared to the DL-DSR mean for each category (R =0.7, I 

=1.1, S =1.9) and found not to be as closely related as the L-DSR means with the WP-

DSR means, both from the same plant.  Based on these results, the DL-DSR means can 

be used to establish categories to be used in future detached leaf studies. 

Discussion 

Developing and releasing a new strawberry cultivar generally takes many years, 

so any part of the process that can be shortened is a plus for the breeder, grower, and the 

public who benefit from the availability of strawberry fruit.  The germplasm must be 
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clonally propagated to move forward with screening research, whether for disease 

resistance or agronomic traits.  Clonally replicating the germplasm adds a considerable 

amount of time to the overall process of cultivar development.  Destroying possible 

breeding germplasm with preliminary disease screening using whole plant inoculations 

further slows a program since screening the germplasm for disease resistance may require 

years of greenhouse and field testing.  Inoculating detached strawberry leaves with the 

anthracnose pathogen allows assessment for disease resistance without destroying whole 

plants and also lessens the time between inoculation and disease assessment (Miller-

Butler et al., 2013 and Chapter III this dissertation).  Utilizing the detached leaf assay 

may provide a rapid, non-destructive method of reliably identifying anthracnose resistant 

germplasm, thus moving the screening process forward with enhanced efficiency.  My 

research also suggests that there can be a seasonal effect on disease development on 

strawberry plants held in a greenhouse after inoculation (Chapter II).  Inoculation studies 

performed in a laboratory permit the environment (temperature, humidity, and light) to be 

controlled more completely than in a greenhouse, requires less space, and confines the 

pathogen to the laboratory. 

My research supports previous research using disease severity ratings obtained 

from whole plant inoculations to separate strawberry germplasm into three resistance 

categories: resistant, intermediate, and susceptible (Smith and Black, 1987, 1990; Lewers 

et al., 2007).  The category means for the WP-DSR and L-DSR were almost equivalent as 

would have been expected, but were unknown prior to this research.  This demonstrates 

that the whole plant disease severity rating corresponds well to the leaflet tissue disease 

severity rating obtained from the same plant.  The overall means for each category based 
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on the WP-DSR, L-DSR, and DL-DSR were found to be significantly different based on 

Tukey’s test.  The category mean WP-DSR and DL-DSR were not as closely related 

mathematically as the WP-DSR and L-DSR; however, the detached leaves did not have 

as much time to develop disease as the whole plants, so this was not unexpected.  The 

mean DL-DSRs for each category were found to be significantly different from each 

other, based on Tukey’s test, describing the disease in increments that can be separated.  

The significant difference between the categories for the DL-DSR means adds credibility 

to using a detached leaf assay for initially separating resistant germplasm from 

susceptible germplasm. 

Previous research indicated that anthracnose resistant germplasm could be 

distinguished from susceptible germplasm using inoculated detached strawberry leaves 

and that a 0 to 5 ordinal scale was sufficient for rating the disease severity (Miller-Butler 

et al., 2013; Chapter III).  My research compared the whole plant (benchmark), leaflets, 

and detached leaf disease severity ratings, and all three were able to distinguish 

significant differences among the resistance categories (Table 10).  My research indicates 

that a strawberry detached leaf assay can be used reliably and quickly to determine the 

resistance or susceptibility of strawberry germplasm to anthracnose. 
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Table 9  

Disease severity ratings for whole plants and detached leaf inoculations. 

 C. fragariae Cf-63 C. fragariae Cf-75 C. gloeosporioides Cg-162 

 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Germplasm  N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) a N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) N 

DL-

DSR N 

WP-

DSR 

L-

DSR  

Category 

(R,I,S) 

US 70       16 0.3 6 2.6 2.0 I 12 0.3 4 1.4 1.5 R 

US 159 14 0.6 8 1.9 1.7 R 17 0.9 11 3.0 3.0 I 19 1.1 12 2.8 3.0 I 

US 292 9 1.1 8 2.8 2.1 I 13 1.1 11 2.7 2.3 I 20 0.7 12 2.9 2.7 I 

US 438 13 0.7 3 1.3 0.3 R 17 1.2 6 2.0 1.7 R       

MSUS 478 15 0.5 8 0.6 0.5 R 13 1.6 11 2.4 3.5 I 16 1.4 10 2.6 3.1 I 

MSUS 518 13 0.5 8 1.1 0.5 R 14 0.9 12 2.1 2.1 I 15 0.4 12 2.0 2.2 I 

MSUS 572 10 0.8 8 0.6 0.6 R 12 1.7 12 2.1 2.7 I 9 1.7 11 3.0 3.4 I 

MSUS 574 10 0.1 8 1.4 1.0 R 16 1.5 12 2.0 2.5 R 15 1.1 11 2.9 2.7 I 

MSUS 868 12 0.4 8 0.4 0.6 R 16 0.7 12 1.7 1.5 R 14 0.5 12 1.3 1.4 R 

MSUS 890 11 0.7 4 1.1 1.0 R 15 2.4 3 2.5 1.8 I       

MSUS 912 8 0.4 4 0.5 0.5 R 12 0.9 7 1.1 1.9 R 13 0.8 7 1.5 1.6 R 

MSUS 922 12 0.8 8 1.1 1.1 R 15 1.0 13 1.3 1.8 R 14 1.6 12 1.5 1.8 R 

MSUS 927 9 0.8 8 0.8 1.1 R 12 1.4 12 2.3 2.4 I 11 0.3 12 3.9 3.7 I 

MSUS 933 12 0.7 8 0.6 0.6 R 16 1.7 12 2.4 2.5 I 15 1.3 11 3.7 4.0 I 

MSUS 944 10 0.4 8 1.0 0.7 R 15 0.7 12 2.6 2.2 I 13 0.7 12 2.2 2.7 I 

MSUS 

1010 9 0.6 8 1.1 0.7 R 11 0.7 12 1.7 1.7 R 10 0.8 12 3.1 3.4 I 

MSUS 

1039 12 0.7 5 1.3 0.2 R 14 0.9 10 2.3 2.9 I 15 0.5 8 2.5 2.4 I 

MSUS 

1049 9 0.5 8 0.7 0.6 R 12 1.5 12 1.9 2.3 R 11 1.6 12 1.8 1.8 R 
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 C. fragariae Cf-63 C. fragariae Cf-75 C. gloeosporioides Cg-162 

 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Germplasm  N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) a N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) N 

DL-

DSR N 

WP-

DSR 

L-

DSR  

Category 

(R,I,S) 

MSUS 

1055 9 0.7 8 1.3 1.1 R 12 0.7 12 2.2 2.6 I 11 0.8 15 1.6 2.0 R 

MSUS 

1061 19 0.4 6 1.7 1.4 R 22 1.0 11 1.8 2.0 R 18 0.8 9 1.2 1.8 R 

MSUS 

1066 9 0.5 8 0.6 0.5 R 15 1.0 12 1.7 0.8 R 16 0.7 11 2.2 2.1 I 

MSUS 

1078 13 1.0 8 0.5 0.2 R 16 0.9 12 1.6 1.0 R 15 1.5 11 3.0 2.3 I 

MSUS 

1093 11 0.4 8 1.6 0.9 R 14 0.6 12 1.8 1.2 R 15 0.4 11 3.1 2.7 I 

MSUS 

1094 10 0.6 5 1.1 0.2 R 15 1.3 9 1.8 2.1 R 12 0.8 8 1.6 1.7 R 

MSUS 

1105 14 1.2 7 2.0 2.0 R       16 1.6 11 3.8 3.8 I 

MSUS 

1142 10 0.8 8 1.1 0.6 R 15 1.2 12 2.8 3.3 I 17 1.3 11 2.4 2.5 I 

MSUS 

1145             14 0.7 4 3.8 3.5 I 

MSUS 

1154 11 0.7 8 1.5 0.3 R 13 0.6 12 1.9 2.4 R 9 0.1 10 2.0 1.5 R 

MSUS 

1180 13 0.3 8 1.4 0.9 R 17 0.5 12 2.3 1.4 I 17 0.3 12 2.7 2.4 I 

MSUS 

1196 14 1.0 8 1.1 1.0 R 17 1.0 12 3.3 3.6 I 14 1.4 11 3.5 3.6 I 

MSUS 

1197 17 0.4 6 0.6 0.9 R 20 1.8 10 2.3 3.3 I 14 0.7 9 2.4 2.7 I 

MSUS 

1217 6 0.9 8 1.1 0.7 R 12 2.0 12 2.4 2.7 I 11 0.7 12 2.6 2.6 I 

MSUS 

1229 13 0.9 6 1.2 0.6 R 18 0.9 12 2.8 2.7 I 15 0.7 10 3.7 3.5 I 
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 C. fragariae Cf-63 C. fragariae Cf-75 C. gloeosporioides Cg-162 

 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Germplasm  N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) a N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) N 

DL-

DSR N 

WP-

DSR 

L-

DSR  

Category 

(R,I,S) 

MSUS 

1230 16 1.2 7 2.7 2.2 I 21 1.5 12 2.3 2.6 I 15 1.3 11 2.3 2.4 I 

MSUS 

1240 10 0.5 8 0.8 0.7 R 14 2.5 12 1.8 3.1 R 14 1.1 12 2.9 3.1 I 

MSUS 

1265 9 0.7 4 1.6 0.7 R 16 1.1 9 1.7 1.7 R 10 0.5 4 1.4 0.6 R 

MSUS 

1269 7 0.3 8 1.1 0.8 R 14 0.8 12 2.2 2.7 I 11 0.9 12 2.8 2.6 I 

MSUS 

1270 17 0.7 8 1.4 0.7 R 19 1.3 12 2.1 2.4 I 17 0.6 12 2.5 2.8 I 

MSUS 

1271 10 0.2 8 0.8 0.8 R 13 1.2 12 2.5 3.1 I 12 0.4 12 2.5 2.5 I 

MSUS 

1311 9 0.8 7 0.5 0.5 R 15 0.8 8 1.8 2.0 R 13 1.1 8 1.2 1.1 R 

MSUS 

1331       11 0.5 6 2.4 2.7 I 10 0.3 3 1.3 1.1 R 

MSUS 

1343 6 0.1 7 0.6 0.4 R 11 0.4 12 1.3 2.1 R 10 0.7 12 2.5 2.5 I 

MSUS 

1352 15 0.3 8 1.0 0.6 R 17 1.0 12 2.6 2.5 I 15 0.2 12 2.6 2.5 I 

MSUS 

1356 10 0.5 8 0.5 0.4 R 13 1.5 10 2.7 2.6 I 10 0.6 11 1.0 1.0 R 

MSUS 

1359 10 0.4 6 0.8 0.5 R 12 1.3 10 1.9 1.9 R 12 0.5 11 1.9 1.9 R 

MSUS 

1362 14 0.5 8 0.5 0.4 R 17 0.5 13 1.9 2.0 R 16 0.5 12 2.0 1.5 R 

MSUS 

1365 13 1.3 8 1.3 1.3 R 16 1.9 10 2.2 2.0 I 14 0.9 11 2.0 1.9 R 

MSUS 

1367       12 1.1 3 1.3 2.3 R       
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 C. fragariae Cf-63 C. fragariae Cf-75 C. gloeosporioides Cg-162 

 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Germplasm  N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) a N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) N 

DL-

DSR N 

WP-

DSR 

L-

DSR  

Category 

(R,I,S) 

MSUS 

1426       15 1.0 12 2.1 2.1 I 14 0.7 13 1.5 0.9 R 

MSUS 

1432       14 1.0 4 1.0 0.9 R 7 0.5 4 1.8 2.3 R 

MSUS 

1494       5 0.3 4 2.6 2.5 I       

MSUS 

1511 21 0.2 8 1.1 0.4 R 16 1.3 8 2.8 2.9 I 16 1.5 10 2.2 2.3 I 

Named Cultivar 

Aiko 5 0.5 8 3.5 3.0 I 5 2.6 8 4.7 4.6 S 12 2.5 7 5.0 4.9 S 

Albion 9 0.9 8 3.7 3.2 I 9 2.4 12 4.7 4.4 S 12 2.1 12 5.0 5.0 S 

Allstar 16 1.2 8 3.4 2.9 I 16 1.9 12 3.9 4.0 I 18 1.1 14 4.4 3.9 S 

Aromas 9 1.5 8 3.9 3.8 I 10 2.4 12 5.0 4.7 S 12 2.1 12 5.0 4.8 S 

Camino 

Real 9 1.6 8 4.1 3.5 S 10 3.3 8 4.4 4.3 S 12 2.1 10 5.0 4.7 S 

Chandler 20 1.1 12 4.2 4.1 S 24 3.0 19 4.2 4.0 S 27 1.7 20 4.2 4.3 S 

Diamante 8 1.3 8 3.2 3.2 I 10 2.2 11 4.0 4.2 S 12 1.4 12 5.0 4.7 S 

Dover 5 0.3 8 1.4 1.0 R 5 1.5 8 2.2 2.2 I 12 1.8 9 3.9 4.0 I 

Earliglow 16 0.9 7 3.9 3.4 I 18 1.6 12 4.5 4.2 S 17 1.1 10 5.2 4.8 S 

Elsanta 9 0.5 8 3.9 3.0 I 8 2.0 12 4.7 4.5 S 12 2.3 12 5.2 4.8 S 

Festival 9 0.7 8 4.3 3.5 S 10 2.1 12 4.0 4.1 I 12 1.7 12 5.3 4.7 S 

Gaviota 9 1.6 8 5.3 4.7 S 10 3.2 10 5.4 5.0 S 12 1.6 11 5.0 4.9 S 

Honeoye 15 1.8 6 2.7 2.6 I 18 2.7 12 4.5 4.6 S 17 2.3 12 5.4 4.8 S 

Jewel 14 2.0 4 5.0 5.0 S 17 2.0 8 4.9 4.7 S 15 2.0 8 4.9 4.9 S 

Kent 13 1.8 7 4.1 4.0 S 15 2.6 11 3.9 4.2 I 15 1.3 12 4.2 4.3 S 
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 C. fragariae Cf-63 C. fragariae Cf-75 C. gloeosporioides Cg-162 

 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Detached 

Leaf Whole Plant 

Germplasm  N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) a N 

DL-

DSR N 

WP-

DSR  

L-

DSR  

Category 

(R,I,S) N 

DL-

DSR N 

WP-

DSR 

L-

DSR  

Category 

(R,I,S) 

Ovation 13 1.5 7 3.1 2.4 I 17 1.5 12 5.1 4.8 S 14 1.7 12 5.0 4.8 S 

Pelican 17 0.4 8 0.8 0.3 R 15 0.4 12 2.9 3.2 I 20 0.5 12 1.9 1.6 R 

Portola 5 0.6 8 3.7 3.3 I 6 2.6 6 4.8 4.7 S 8 1.6 7 5.0 5.0 S 

Redchief 8 0.7 4 5.0 5.0 S 12 1.7 6 4.6 4.0 S 10 0.8 4 5.0 5.0 S 

Salinas 9 0.8 8 3.6 3.0 I 8 2.0 10 4.3 4.5 S 12 2.6 11 5.2 4.6 S 

Scott 9 2.2 8 4.3 3.7 S 9 2.3 8 4.3 4.4 S 12 2.0 12 5.0 4.8 S 

Seascape 14 1.5 8 3.5 3.8 I 15 1.8 10 5.0 4.8 S 18 1.5 11 4.2 4.1 S 

Selva 8 1.5 6 4.4 4.3 S 12 2.7 7 4.5 4.4 S 11 1.3 8 4.9 4.5 S 

Senga 8 1.6 8 1.9 2.3 R 8 1.3 8 2.5 2.6 I 11 2.0 11 4.1 4.1 S 

Sequoia 10 2.0 8 3.3 3.0 I 8 2.5 8 3.5 3.7 I 12 1.5 12 5.1 4.7 S 

Surecrop       15 1.8 4 4.9 4.8 S 11 1.5 8 5.0 5.0 S 

Sweet 

Charlie 8 0.4 8 3.3 2.9 I 10 2.2 10 3.6 3.7 I 12 1.7 12 4.7 4.4 S 

Tangi 9 1.1 8 3.7 3.4 I 8 2.3 8 5.4 4.9 S 12 1.4 9 3.8 3.9 I 

Tillamook       8 2.0 6 5.1 4.6 S 12 0.9 7 5.4 4.5 S 

Tioga 9 1.0 8 1.8 1.8 R 9 2.2 11 3.4 3.3 I 12 2.3 9 4.6 4.4 S 

Treasure 9 0.4 8 3.6 2.8 I 10 1.9 12 3.3 4.0 I 13 1.8 13 3.8 4.0 I 
a Category:  R = resistant, I = intermediate, S = susceptible.  Based on WP-DSR scale: 0 = healthy plant with no visible lesions, 1 = < 3 mm long petiole lesion, 2 = 3–10 mm long petiole 
lesion, 3 = > 10–20 mm long petiole lesion, 4 = > 20 mm long petiole lesion, 5 = youngest leaf wilted, and 6 = plant dead.  Plants with a WP-DSR < 2.0 were considered resistant, those 

with a WP-DSR > 2.0 and < 4.0 were considered intermediate, and those with a WP-DSR > 4.0 were considered susceptible. 

 
 

Germplasm lines inoculated with three Colletotrichum isolates, number (N) inoculated, average disease severity rating (DSR) for detached leaf (DL-DSR) and whole plant (WP-DSR) and 

leaf (L-DSR) for each germplasm line, and resistance category based on WP-DSR. 
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Table 10  

Descriptive statistics for anthracnose disease severity ratings on strawberry. 

Tissue Category N Mean
 a

 Std Dev Median Minimum Maximum 

Whole 

Plant 

(WP-DSR) 

Resistant 87 1.3 c 0.5 1.3 0.4 2.0 

Intermediate 90 2.9 b 0.6 2.8 2.0 4.0 

Susceptible 57 4.8 a 0.4 4.9 4.0 5.4 

Whole 

Plant Leaf 

(L-DSR) 

Resistant 87 1.2 c 0.7 1.0 0.2 3.1 

Intermediate 90 2.9 b 0.6 2.8 1.4 4.2 

Susceptible 57 4.5 a 0.4 4.6 3.5 5.0 

Detached 

Leaf 

(DL-DSR) 

Resistant 87 0.7 c 0.4 0.7 0.1 2.5 

Intermediate 90 1.1 b 0.6 1.1 0.2 2.6 

Susceptible 57 1.9 a 0.6 2.0 0.7 3.3 
a Means for each category within a tissue type followed by the same letter are not significantly different from each other according to Tukey’s 
test (p <0.05). 

 
 

Descriptive statistics of the anthracnose disease severity ratings for whole strawberry plants inoculated with three Colletotrichum isolates and 

assessed for disease using a 0 to 6 disease severity rating (WP-DSR) scale.  The strawberry germplasm was then categorized using the 

WP-DSR < 2.0 were considered resistant, those with a WP-DSR > 2.0 and < 4.0 were considered intermediate, and those with a WP-DSR > 4.0 

were considered susceptible.  The categories assigned from the WP-DSRs were used for the descriptive statistics for the corresponding whole 

plant leaf and detached leaf disease severity ratings.  Below are the descriptive statistics for the DSRs for all strawberry tissues that were inoculated 
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CHAPTER V – CONCLUSIONS 

The development and release of a commercially acceptable disease resistant 

strawberry cultivar can take many years because of the time required to grow the 

germplasm, increase the number of germplasm plants, and then test it for good agronomic 

traits and disease resistance.  Decreasing the time component of any part of this process is 

advantageous for the breeder and grower.  Molecular tools are increasingly being used to 

identify genes that may be associated with disease resistance and can decrease the overall 

time required for selective breeding for anthracnose resistance in strawberry.  Two 

sequence characterized amplified region (SCAR) markers STS-Rca2_240 or STS-

Rca2_417 for the Colletotrichum acutatum resistant gene, Rca2, were developed in 

previous research.  Establishment of the presence or absence of these SCAR markers in 

selected strawberry germplasm lines and the anthracnose resistance of the same 

germplasm lines would help breeders in choosing parent breeding lines more quickly.  

The selection time for anthracnose disease resistant germplasm can also be decreased 

substantially by inoculating detached strawberry leaves versus whole plants.  These 

studies were conducted to increase our knowledge on the strawberry-Colletotrichum host-

pathogen system and discover possible key areas in testing for disease resistant 

germplasm where the time component can be decreased. 

The primary goal of this research was to establish the degree to which a 

relationship exists between the two SCAR markers for the Colletotrichum acutatum 

resistant gene, Rca2, and the resistance or susceptibility to anthracnose caused by three 

Colletotrichum species (C. acutatum, C. fragariae, and C. gloeosporioides) in 81 
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strawberry germplasm lines.  The germplasm lines comprised named commercial 

cultivars and unreleased clones (MSUS) from USDA-ARS, Mississippi bred for C. 

fragariae resistance.  Identification of anthracnose resistant germplasm containing the 

Rca2 gene will aid strawberry breeders in choosing parent lines with a better likelihood 

of passing the resistant gene to their progeny. 

In my first study, whole strawberry plants were inoculated with isolates of 

Colletotrichum acutatum, C. fragariae, and C. gloeosporioides used in previous studies 

to separate anthracnose resistant germplasm from susceptible germplasm.  The plants 

were assessed for disease severity based on symptom development on whole plants and 

on leaflets.  Each germplasm line was then categorized as resistant, intermediate, or 

susceptible based on the mean whole plant disease severity rating.  Many of the 

germplasm lines exhibited increased resistance in the winter months compared to the 

summer months, which may be explained by a seasonal effect by either the isolates 

and/or the strawberry plants.  The finding of a significant seasonal component in the 

strawberry-Colletotrichum system warrant consideration of its effect in future inoculation 

studies. 

The germplasm lines used in the inoculation study also were screened for the two 

SCAR markers.  The presence of the 240 and 417 SCAR marker alleles together or the 

417 marker alone predicted that those lines would be resistant to C. acutatum.  I found 

that the presence of both SCAR markers together did not have a significant effect on 

disease caused by any of the three Colletotrichum species.  The presence of either of the 

two SCAR markers had a moderately significant effect (240 allele p =0.09, 417 allele p 
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=0.06) on disease caused by the two C. acutatum isolates, the presence of the 240 marker 

alone had a significant effect (p =0.01) on disease caused by C. fragariae, and no 

significant effect was found on disease caused by C. gloeosporioides.  These findings 

suggest there is a connection between the SCAR markers and that a gene, RCa2, indicates 

resistance to anthracnose caused by more than one Colletotrichum species. 

A secondary goal of this research was to establish the degree of association and 

agreement between disease severity ratings of detached strawberry leaves and whole 

plants inoculated with the same Colletotrichum isolates (Chapter II).  The detached leaf 

disease severity ratings were made five DAI, whereas, the whole plant and leaflet ratings 

were made 10 to 30 DAI. The ‘benchmark’ whole plant disease severity ratings were 

used to place the strawberry germplasm into three categories (resistant, intermediate, or 

susceptible).  The mean leaflet disease severity ratings and the mean detached leaf 

disease severity ratings were calculated for each germplasm line and separated using the 

whole plant resistance categories.  The whole plant and leaflet disease severity ratings 

had a high degree of association (rp =0.96), and the whole plant and detached leaf disease 

severity ratings had a good association (rp =0.66).  The leaves in the detached leaf assay 

did not have thirty days to develop disease symptoms as those in the whole plant assay.   

Therefore, the decreased association between the whole plant and detached leaf disease 

severity ratings was not unexpected.  There was a significantly different numerical 

separation between the mean disease severity ratings for each tissue type in the categories 

(resistant, intermediate, and susceptible).  The significant difference among categories 
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indicates a detached leaf assay can be used reliably and quickly to separate anthracnose 

resistant strawberry germplasm from susceptible germplasm. 

Science moves forward in small steps by making tentative discoveries that have to 

be verified by repeated experimentation and through different methodologies.  Variability 

is found within all biological systems, whether between species, among individuals 

within a species, or among different tissues on the same individual.  The chances of 

obtaining every possible outcome when performing research with biological systems are 

rather low but, with many observations, the chances of arriving closer to the correct 

answer are greater.  This research has increased our knowledge of strawberry-

Colletotrichum host-pathogen interactions and will help in future research to find genetic 

markers that can be used for rapid evaluation of potentially promising germplasm. 
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