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ABSTRACT

ON THE SELECTION OF A GOOD SHAPE PARAMETER FOR RBF

APPROXIMATION AND ITS APPLICATIONS FOR SOLVING PDES

by LEI-HSIN KUO

August 2015

Meshless methods utilizing Radial Basis Functions (RBFs) are a numerical method that

require no mesh connections within the computational domain. They are useful for solving

numerous real-world engineering problems. Over the past decades, after the 1970s, several

RBFs have been developed and successfully applied to recover unknown functions and to

solve Partial Differential Equations (PDEs).

However, some RBFs, such as Multiquadratic (MQ), Gaussian (GA), and Matérn func-

tions, contain a free variable, the shape parameter, c. Because c exerts a strong influence on

the accuracy of numerical solutions, much effort has been devoted to developing methods for

determining shape parameters which provide accurate results. Most past strategies, which

have utilized a trail-and-error approach or focused on mathematically proven values for c,

remain cumbersome and impractical for real-world implementations.

This dissertation presents a new method, Residue-Error Cross Validation (RECV), which

can be used to select good shape parameters for RBFs in both interpolation and PDE

problems. The RECV method maps the original optimization problem of defining a shape

parameter into a root-finding problem, thus avoiding the local optimum issue associated

with RBF interpolation matrices, which are inherently ill-conditioned.

With minimal computational time, the RECV method provides shape parameter values

which yield highly accurate interpolations. Additionally, when considering smaller data sets,

accuracy and stability can be further increased by using the shape parameter provided by the

RECV method as the upper bound of the c interval considered by the LOOCV method. The

RECV method can also be combined with an adaptive method, knot insertion, to achieve

accuracy up to two orders of magnitude higher than that achieved using Halton points.
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1

Chapter 1

INTRODUCTION

1.1 Introduction

A Partial differential equation (PDE) is a differential equation that involves an unknown
multivariable function and at least one corresponding partial derivative of that function.
PDEs can be used to model multidimensional dynamical systems and therefore to describe
a wide variety of physical phenomena including: simple motion, waves, vibrations, fluid
flow, sound, heat distribution and dissipation, and elasticity, as well as phenomena in
electrodynamics, and quantum mechanics.

Many mesh-based numerical methods had been proposed for solving PDEs; for instance,
the Finite Element Method (FEM) [3, 4, 37, 40, 56], the Finite Difference Method (FDM),
the Boundary Element Method (BEM), and the Finite Volume Method (FVM), among
others.

The FEM method, in particular, has achieved great success in industry and academia.
Many examples of FEM-based commercial software, such as ANSYS and ProCast, have
been developed and used in the fields of Scientific Computing and Engineering to approxi-
mate solutions for coupled physics problems with large computational domains.

However, because phenomena at the mesoscopic scale can differ significantly from
macroscopic phenomena, developments in the fields of Nanotechnology and Micro-Electro-
Mechanical Systems (MEMS) have created a demand for numerical PDE solution methods
which do not rely on mesh schemes. Numerical mesh-based methods are simply unable to
estimate effects accurately for nanotechnology projects. Fortunately, since the early 1990s
several meshless methods have been proposed in the fields of Mathematics, Science, and
Engineering, which may yet prove useful in addressing this problem.

In general, meshless methods can be classified into domain-type and boundary-type
methods. Boundary-type meshless methods, such as the Method of Fundamental So-
lution (MFS) [20, 31], the Hyper-singular Meshless Method (HMM) [71], the Trefftz
method [12, 15, 13], and the Boundary Knot Method (BKM) [14], can be utilized to obtain
solutions for homogeneous PDEs. Domain-type meshless numerical methods, such as
the Smoothed Particle Hydrodynamics (SPH) method [42] and the Kernel-Based Collo-
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cation (KBC) method [43, 44], can be utilized to obtain solutions for non-homogeneous
PDEs.

For the MFS, a boundary-type KBC method was first proposed to approximate the
solutions of homogeneous elliptic-type partial differential equations [47, 55]. Coupled
with the use of the Method of the Particular Solutions (MPS), the MFS has been extended
to solving inhomogeneous partial differential equations [30, 31]. With the derivation of
the particular solution of Helmholtz-type equations using RBFs [11], the MFS has further
extended to solving various types of time-dependent problems [10]. In addition, the Eulerian-
Lagrangian method (ELM) was combined with MFS to deal with the multi-dimensional
Burgers and wave equation (called Eulerian-Lagrangian method of fundamental solutions,
ELMFS) [34, 73]; the time-marching method of fundamental solution (TMMFS) has been
successfully applied in the wave equations and the result is competitive with the finite
element method (FEM) [33, 72].

Recently, the method of approximate particular solutions (MAPS) [8, 9] has been
developed by simply applying the particular solution of the given differential operator as the
kernel basis without using the MFS. The MAPS is inspired by the work of Sarra [59] which
showed that the integrated RBFs are more stable and accurate than the regular RBFs.

However, the challenge of choosing the location of source points of the MFS and the
trade-off principle of determining the shape parameter of Radial Basis Functions (RBFs)
have posed difficulties for the TMMFS and MAPS.

In the early 1990s, Madych and Nelson [53] showed the convergence rate of kernels MQ,
Inverse Multiquadric (IMQ), and Gaussian (GA) are exponential converge on reproducing
kernel Hilbert space by taking either shape parameter, c, or fill distance, h. In particular, the
errors of approximation tend to zero when h→ 0. In addition, the same results also proved
by Wu and Schaback [68] use a different approach. After that, Yoon [70] showed the MQ
RBF can also converges exponentially in a Sobolov space for PDEs.

However, in the numerical implementation using RBFs with large values of shape param-
eter or small values of fill distance, the interpolation matrix can be very ill-conditioned and
this can seriously influence the numerical result as what it promised. For this phenomenon
is named trade-off principle [61], and has been deeply discussed in many publications.

For the trade-off principle, Carlson and Foley [6] showed that the influence of location of
collocation data points is less than shape parameter on the accuracy of the optimal solution.
In other words, the choice of the shape parameter is playing central roles of finding the
optimal solution for MQ RBF interpolation, and to select an optimal shape parameter, c,
become an open issue to compromise the accuracy and stability of MQ RBF approximation
before the interpolation matrix becomes overly ill-conditioned.



3

Meshless methods offer several advantages over mesh-based methods; they are simpler,
they can be more accurate, and since they require no mesh scheme, they can be more efficient.
This dissertation focuses on meshless methods utilizing Multiquadric Radial Basis Functions
(MQ RBFs) to create mesh-free algorithms that are significantly simpler to employ than the
FDM, FVM, FEM, and BEM approaches, and which may eliminate the need for meshes,
thus eliminating the need to calculate connections and optimize mesh triangles.

For the shape parameter, c, Hardy proposes c = 0.815d, where d = 1
N ∑

N
j=1 d j, and d j is

distance of the given data point x j ∈ X to its nearest neighbor for MQ [35]. Franke suggests
c = D/(0.8

√
N), where D indicates the diameter of the smallest circle which including

all interpolation points of the set X [28]. In the early 1990s researchers began to utilize
Leave-One-Out Cross Validation (LOOCV) [58, 65] to successfully select an optimal shape
parameter, c, within an appropriate interval for RBF interpolation.

For the shape parameter for MQ RBF interpolation, Fornberg and his co-workers [17,
26, 27, 48, 49] proposed several algorithms and demonstrated that the trade-off principle
can be overcome but it takes a lot of computational time. For Gaussian RBF interpolation,
Fasshauer and McCourt also proposed a new approach which can stably evaluate the RBF
interpolants [22].

This dissertation presents a new approach: Residue-Error Cross Validation (RECV)
to select a optimal shape parameters for RBFs, both in interpolation and PDEs. By itself,
the RECV method provides similar accuracy to the LOOCV method, but with improved
stability and reduced computational time. The RECV method can also be utilized with the
LOOCV method for higher accuracy, and can combined with an adaptive method, Modified
Knot Insertion (MKI), to achieve accuracy up to two orders of magnitude higher than that
promised using Halton uniformly distributed points.

1.2 Outline

For interpolation or PDE problems using Radial Basis Functions (RBFs), numerical solutions
often yield significantly different results, in terms of accuracy, depending on three factors: 1)
value of the shape parameter (usually contained in RBFs), 2) number of collocation points,
and 3) distribution method of the collocation points.

Chapter 1 of this dissertation contains an overview of the relevant literature regarding
meshless methods utilizing RBFs for interpolation and PDE problems.

Chapter 2 (p. 5) begins with a study of global RBF interpolation problems [35, 36], in-
cluding the collocation technique, the effect of the trade-off principle when using RBFs [61],
as well as previous strategies to select optimal shape parameters for RBF interpolation.
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In Chapter 3 (p. 22), the Residue-Error Cross Validation (RECV) method is proposed.
The RECV method is a new approach to select an optimal shape parameter, c, for MQ RBF
interpolation, based on examining error behavior. Chapter 3 also introduces the Modified
Knot Insertion (MKI) adaptive method, an adaptive point method based on Franke’s knot
insertion [29] associated with optimal shape parameter which selected by RECV method.

In Chapter 4 (p. 42), eight test functions, including Franke’s six classic benchmark ana-
lytical functions [28], are utilized to examine the properties and demonstrate the efficiency
of the RECV method and the MKI adaptive method for RBF interpolation.

Chapter 5 (p. 70) explores the suitability and effectiveness of the RECV method and the
MKI method for use with PDE problems. Chapter 5 begins by introducing two domain-type
Kernel-Based Collocation Meshless Methods (KBCMM), Kansa’s collocation method [43,
44], and the Method of Approximate Particular Solution (MAPS) [8, 9] as solvers for
time independent PDEs. Chapter 5 then continues with numerical experiments in which
the RECV method and the MKI adaptive method are adopted for use with three PDE
problems, including Poisson’s equation and convection-diffusion-reaction equations with
mixed boundary conditions.

Chapter 6 (p. 93), extends the PDEs to time dependent problems. This chapter begins
by introducing the Halbolt time discretisation scheme [39, 62, 66, 72], and continues with
a demonstration of how to combine both Kansa’s method and the MAPS with the Halbolt
method to solve wave equations. Numerical experiments are performed to demonstrate the
stability and accuracy achievable by combining the Houbolt method with KBC methods.

In Chapter 7 (p. 104), conclusions regarding the suitability and performance of the RECV
method and the MKI method are discussed, particularly in regards to MQ RBF interpolation
problems and PDE problems (using either Kansa’s method or MAPS). Directions for future
research are outlined and explained.
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Chapter 2

LITERATURE REVIEW - A BACKGROUND OF RBF
INTERPOLATION

Since the early 1970s, Radial Basis Functions (RBFs) began to receive attention in the fields
of Scientific Computation and Engineering. Because RBFs can be utilized to approximate
scattered data in high-dimensional interpolation problems, RBF quickly emerged as part of
the cornerstone of the modern approximation theory.

This chapter briefly introduces RBF interpolation, including key concepts such as
collocation technique, interpolation matrix invertibility, and the trade-off principle. The
chapter continues with a discussion of several strategies commonly used in the selection of
optimal shape parameters, as well as their respective advantages and disadvantages.

2.1 Defining Radial Basis Functions (RBFs)

RBFs were introduced by Rolland Hardy in the early 1970s, during his development of
Multiquadratic (MQ) interpolation [35, 36]. Hardy’s MQ RBF method focuses on the
recovery of unknown functions from known data without triangulation, re-meshing, or other
geometric programming efforts.

While Hardy introduced the first RBF, known as Hardy’s MQ, following his work several
other RBFs, such as Gaussian (GA), Inverse Multiquadric (IMQ), Thin Plate Spline (TPS),
and Matérn, have been found and used with Hardy’s collocation method to solve interpolation
problems, to generate machine learning algorithms, and to find numerical solutions for
differential equations.

Definition 2.1.1. ([64, 21]) Let Rd be d-dimensional Euclidean space. A function Φ :
Rd → R is called a Radial Basis Function (RBF) if

Φ(x) = Φ(y), whenever ‖x‖= ‖y‖, x,y ∈ Rd (2.1)

where ‖ · ‖ is the Euclidean norm (i.e., the l2 norm) on Rd .

It is important to note that the RBF, Φ, will be radially symmetric about its center, and
the value of Φ is constant, representing the distance between known data points.
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2.2 RBF interpolation

Interpolation involves taking given known data points and creating a virtual surface, an
interpolant, which must pass through all the known data points. Therefore, in order to
recover an unknown function, u, from a given dataset, X, containing N distinct scattered
data points in the domain, Ω⊆ Rd , a necessary assumption for RBF interpolation is that the
unknown function, u, can be expressed as linear combinations,

u(x)≈ ũ(x) :=
N

∑
j=1

α j Φ
(
‖x−x j‖2

)
, x ∈Ω, (2.2)

where ‖ · ‖2 is the Euclidean norm, and Φ is a kernel which can contain any radial basis
function, such as a Multiquadric (MQ) RBF,

Φ(r,c) =
√

r2 + c2, (2.3)

or a Gaussian (GA) RBF,
Φ(r,c) = exp(−r2/c2), (2.4)

where
r = ‖x‖2 =

√
x2

1 + · · ·+ x2
d, x ∈ Rd.

If the given dataset, X, contains no noise, then the coefficients, {α j}N
j=1, are chosen by

forcing the exact interpolation condition,

ũ(x j) = u(x j), j = 1, · · · ,N. (2.5)

Combining (2.2) and (2.5) leads to a system of linear equations,

Aααα = uX, (2.6)

where ααα = [α1, . . . ,αN ]
T , and uX = [u(x1), . . . ,u(xN)]

T , and the interpolation matrix, A =

Ai j = Φ(ri j) ∈ RN×N . A distance matrix, ri j, contained within A can be is expressed as
follows:

ri j =


‖x1−x1‖2 ‖x1−x2‖2 . . . ‖x1−xN‖2

‖x2−x1‖2 ‖x2−x2‖2 . . . ‖x2−xN‖2
...

...
...

...

‖xN−x1‖2 ‖xn−x2‖2 . . . ‖xN−xN‖2

 . (2.7)
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Listing 2.1: DMatrix.m
1 function [DM] = DMatrix(data, ctrs)
2 [M,~] = size(data); [N,d] = size(ctrs);
3 DM = zeros(M,N);
4 for i=1:d
5 DM = DM+(repmat(data(:,i),1,N)−repmat(ctrs(:,i)',M,1)).^2;
6 end
7 DM = sqrt(DM);
8 end

Listing 2.2: RBFInterpolation2D.m
1 function [] = RBFInterpolation2D()
2 % Define the Hardy's MQ
3 rbf = @(c,r) sqrt(r.^2+c^2); c=2.6;
4 % Define unknwon function which will be recovered
5 %by MQ interpolation.
6 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
7 % Generate center and test points
8 N=100; Nt=2500;
9 [X,Y] = meshgrid(linspace(−1,1,sqrt(N)));

10 ctrs=[X(:) Y(:)]; clear X Y;
11 [X,Y] = meshgrid(linspace(−1,1,sqrt(Nt)));
12 test=[X(:)Y(:)];
13 % Generate sample data in center and test points
14 z = testfunction(ctrs(:,1),ctrs(:,2)); % samples
15 zt = testfunction(test(:,1),test(:,2));
16 % Distance matrix
17 DM = DMatrix(ctrs,ctrs);
18 DMt = DMatrix(test, ctrs);
19 % Interpolation mareix
20 A = rbf(c,DM);
21 % solve for coefficients Alpha
22 Alpha = A\z;
23 % Evaluation
24 At = rbf(c,DMt);
25 Error = At*Alpha−zt;
26 % Recreate surface by MQ interpolant
27 figure(1)
28 mesh(X,Y,reshape(At*Alpha,sqrt(Nt),sqrt(Nt))); hold on
29 plot3(test(:,1),test(:,2),zt,'.');
30 % Plot error
31 figure(2)
32 mesh(X,Y,reshape(Error,sqrt(Nt),sqrt(Nt)));
33 end
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Example 2.2.1. Consider a surface defined by the cardinal sine function (sinc function):

u(x,y) = sinc(2x) · sinc(2y). (2.8)

MQ RBF can be employed with shape parameter, c = 2.6, to interpolate (2.8), yielding 100
equally spaced points in the domain, [−1,1]2 (see Figure 2.1 (a), p. 9). The profile of (2.8)
is shown in Figure 2.1 (b).

Figure 2.1 (c) shows the MQ RBF approximation for (2.8) generated with the script,
Listing 2.2, which calls the DMatrix.m1 subroutine, Listing 2.1. For comparison, Figure 2.1
(d) shows the interpolant surface for (2.8) generated by Matlab’s standard interpolation
command, griddata, utilizing the v4 method (see Listing 2.3, line 15).

Both appear to be good approximations, with the generated interpolants intercepting
all of the data points. However, considering absolute error, the accuracy of approximation
generated by the MQ RBF method (see Figure 2.1 (e) ) is one order of magnitude higher
than that achieved via Matlab’s built-in algorithm (see Figure 2.1 (f)).

Listing 2.3: MatlabInterpolation2D.m
1 function [] = MatlabInterpolation2D()
2 % Define unknwon function which will be recover by
3 %built−in Matlab algorithm
4 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
5 % Generate center and test points
6 N=100; Nt=2500;
7 [X,Y] = meshgrid(linspace(−1,1,sqrt(N)));
8 ctrs(:,1)=X(:); ctrs(:,2)=Y(:); clear X Y;
9 [X,Y] = meshgrid(linspace(−1,1,sqrt(Nt)));

10 test(:,1)=X(:); test(:,2)=Y(:);
11 % Generate sample data in center and test points
12 z = testfunction(ctrs(:,1),ctrs(:,2)); % samples
13 zt = testfunction(test(:,1),test(:,2));
14 % Solve the interpolation problem
15 Z = griddata(ctrs(:,1),ctrs(:,2),z,X,Y,'v4')
16 % Evaluation
17 Error = Z(:)−zt;
18 % Recreate surface by MQ interpolant
19 figure(1)
20 mesh(X,Y,Z); hold on
21 plot3(test(:,1),test(:,2),Z(:),'.');
22 % Plot error
23 figure(2)
24 mesh(X,Y,reshape(Error,sqrt(Nt),sqrt(Nt)));
25 end

1Subroutine Listing 2.1 is a Matlab script designs to compute a distance matrix as described in (2.7) using
two sets of data points within the domain, Ω; the script is modified by DistanceMatrix.m which introduced
by G. Fasshauer [21], in order to cut down the among of memory usage while generating a distance matrix.



9

−1
0

1

−1

0

1
−0.5

0

0.5

1

xy

z

(a) Scattered data in R3

−1
0

1

−1

0

1
−0.5

0

0.5

1

xy

z

(b) Profile of test function (2.8)

−1
0

1

−1

0

1
−0.5

0

0.5

1

xy

z

(c) MQ RBF interpolant, c = 2.6

−1
0

1

−1

0

1
−0.5

0

0.5

1

(d) Matlab interpolant, v4

−1
0

1

−1

0

1
−1

0

1
x 10

−3

xy

ε

(e) MQ interpolant absolute error

−1
0

1

−1

0

1
−0.02

−0.01

0

0.01

xy

ε

(f) Matlab interpolant absolute error

Figure 2.1: Comparison of the accuracy of MQ RBF approximation and Matlab’s built-in
v4 method. (see Example 2.2.1). Figure (a) shows the given sample points in the domain
[−1,1]2, while Figure (b) shows the profile of test function (2.8). Figures (c) and (d) show
the interpolants via MQ RBF and Matlab built-in v4, respectively, while Figures (e) and
(f) show the error distribution for MQ RBF interpolant and Matlab built-in interpolant,
respectively.
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2.3 RBF Interpolation Matrix Invertibility

In Section 2.2, Example 2.2.1 demonstrated how a highly accurate approximation utilizing
MQ RBF can be achieved for any smooth function. However, solving the linear system,
such as (2.6), imply there exists a unique matrix, A−1. Therefore, the coefficient ααα can be
obtained by,

ααα = A−1uX, (2.9)

and the invertibility is used to guarantee the matrix, such as A, is invertible and nonsingular.
This section, introduces the central properties of RBF interpolation. Usually the invert-

ibility of the RBF interpolation matrix, A, in (2.6), could cause serious problems. In order
to assure the matrix is always invertible, this section introduces the central properties of
RBF interpolation as follows,

Definition 2.3.1. (positive definite) A real symmetric N×N matrix A is called positive
semidefinite, if and only if its associated quadratic form

N

∑
i=1

N

∑
j=1

αi α j Ai j ≥ 0 (2.10)

for ααα = [α1, . . . ,αN ]
T . The matrix A is called positive definite if the quadratic form (2.10)

is zero only for ααα = 0.

Definition 2.3.2. A radial basis function Φ : Rd → R on [0,∞) is strictly positive definite
on Rd , if for every set of distinct data points {x1, . . . ,xN} ⊂ Rd , the matrix A in (2.6) is
positive definite.

The definition of strictly positive definite (Definition 2.3.2) guarantee that the system
of equations in (2.6) using RBF, Φ(r), listed in Table 2.1 is invertible. But there are some
powerful RBFs (see Table 2.2, p. 12) that fail to be strictly positive definite but satisfied the
definition as follows:

Definition 2.3.3. A radial basis function Φ : Rd→R on [0,∞) is conditional strictly positive
definite of order m on Rd , if for every set of distinct data points {x1, . . . ,xN} ⊂ Rd

N

∑
i=1

N

∑
j=1

αiα jΦ(‖xi−x j‖)> 0, (2.11)

for all the non-zero {α1, . . . ,αN} satisfied,

N

∑
i=1

αi p(xi) = 0 (2.12)

for all polynomials p degree less than m.
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In such case, in order to guarantee the interpolation matrix, A is positive definite when
utilizing the Conditional Strictly Positive Definite Radial Basis Functions (CSPDRBFs)
listed in Table 2.2, the trial function (2.2) should be rewritten as,

u(x)≈ ũ(x) :=
N

∑
j=1

α j Φ
(
‖x−x j‖2

)
+ p(x), (2.13)

with some polynomials, where the p ∈∏
d
m−1 denotes the space spanned by all d-variate

polynomials of degree up to m− 1 in Rd , and pick a basis {p1, . . . , pm−1} of this space.
Solving (2.13) leads to the matrix form, A P

PT 0

 ααα

βββ

=

 u

0

 , (2.14)

where Ai j =Φ(ri j), Pi j = p j (xi) is polynomials of degree up to m−1, ααα and βββ are unknown
coefficients.

However, in Franke’s conjecture [28], the interpolation matrix constructed by Hardy’s
MQ is non-singular and invertible without added polynomials within (2.2). Franke’s conjec-
ture also will be extended to domain type kernel based collocation meshless methods (see
chapter 5) for PDE problems.

Tables 2.1 and 2.2 list some commonly used RBFs utilized within (2.2) and (2.13),
respectively. The symbol r in the tables denotes the Euclidean distance, and Kν is the
modified Bessel function of order ν .

Figure 2.2 shows some of commonly used RBFs, which contain a shape parameter, c,
such as MQ, IMQ, GA, and Matérn, can force the solution of RBF interpolation problems
exponentially approach to the function attempted to recover.

Figure 2.3 shows the graphs of GA with c = 1 and c = 5. Apparently, a larger value of
shape parameter, c, causes Gaussian basis function become flatter, and a smaller value of c

resulted in a more peaked basis function.
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Table 2.1: Strictly positive definite radial basis functions (SPD-RBFs).

Type RBF Φ(r)

Gaussian exp(−r2/c2)

Inverse Multiquadric 1/
√

r2 + c2

Matérn (Sobolev) rνKν(r)

Matérn Spline e−crKν(cr)

Table 2.2: Conditional strictly positive definite radial basis functions (CSPD-RBFs).

Type RBF Φ(r) CSPD

Hardy’s multiquadric
√

r2 + c2 1

Polyharmonic (−1)β/2rβ , β > 0, β 6∈ 2N β/2

Thin-Plate Spline r2 log(r) 2
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2.4 The Trade-Off Principle

This section briefly introduces the Trade-Off Principle (or the Uncertainty) named by R.
Schaback [60, 61]. The Principle describes any interpolation utilizing RBFs which contain
a shape parameter, c, (e.g., MQ, IMQ, GA, or Matérn RBFs). Essentially, when deciding
on a shape parameter to optimize numerical results, a compromise must be made between
achieving accuracy and achieving stability.

As shown in Example 2.2.1, RBF interpolation can be performed in Matlab with minimal
coding to achieve highly accurate numerical results. The literature [5, 21, 64] indicates
that, for a given scattered points set, X, in the domain, Ω, errors occurring during MQ RBF
interpolation can be decreased by modifying two variables: either shape parameter, c, or fill
distance, h.

The fill distance, h, represents the maximum distance between any two data points in X,
and is defined as follows:

h := h(X,Ω) := sup
y∈Ω

min
x∈X
‖ y−x ‖2 . (2.15)

In the early 1990s, Madych [52, 53] provided theoretical proof that the absolute error of
interpolation utilizing RBFs tends to machine precision when fill distance tends to zero.

However, the interpolation matrix, A in (2.6), generated with RBFs, such as MQ, IMQ,
or GA, is well known as a highly ill-conditioned matrix [35, 60, 61]. In this dissertation, the
condition number of the interpolation matrix is denoted by κ(A), which is defined:

κ (A) = ‖A‖‖A−1‖= σmax

σmin
, (2.16)

where σmax and σmin are the largest and smallest singular values of A. The condition
number can be used to estimate the degree to which a numerical solution will be affected
by rounding errors [63]. Hardy [35] and others have demonstrated that, as h decreases or
as c increases, κ(A) increases, leading to greater instability and error. In other words, the
numerical solution of RBF interpolations utilizing an inappropriate shape parameter value,
c, or a small fill distance value, h, can be extremely unstable and inaccurate.

The desire to increase accuracy and stability in RBF interpolation has led to two different
approaches: stationary interpolation, and non-stationary interpolation.

Stationary interpolation considers the total number of interpolation points, N, to be fixed;
changing values of the shape parameter, c, modifies accuracy. In the second approach, non-
stationary interpolation, the shape parameter, c, is fixed, while the number of interpolation
points, N, is variable.
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Figure 2.5: Non-stationary MQ interpolation. Shape parameter are fixed at c = 1 (solid
line) and c = 5 (dash line).

In order to illustrate the Trade-off Principle and the instability issue that occurs when a
matrix is ill-conditioned, Figure 2.4 (stationary interpolation) shows condition number, κ(A),
and maximum error, Em, plotted with changing shape parameter, c; while Figure 2.5 (non-
stationary interpolation) shows condition number, κ(A), and maximum error, Em, plotted
with number of interpolation points, N, as a variable. In both cases, test function (2.8) is
utilized (see Example 2.2.1, p.8).
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Figure 2.4 (a) shows the condition number, κ(A), for stationary MQ RBF interpolations
constructed for N = 100, and N = 400 equally spaced interpolation points in the domain,
[−0.5,0.5]2. For both data sets, κ(A), shows exponential growth as c increases.

Figure 2.4 (b) shows maximum approximation error, Em, versus shape parameter, c.
For both data sets (N = 100, and N = 400) the accuracy of MQ approximation improves
smoothly as shape parameter increases, until c = 1.9, and c = 1.4, respectively. Beyond
these ideal points, as the shape parameter, c, becomes less appropriate, the condition number,
κ(A), grows extremely high and the matrix becomes increasingly ill-conditioned.

A similar error behavior can be seen in Figure 2.5, which shows results for non-stationary
MQ RBF interpolations constructed with two different shape parameters, c= 1 and c= 5, for
N = 9 (32) to N = 400 (202) equally spaced interpolation points in the domain, [−0.5,0.5]2.

Figure 2.5 (a) shows that, as interpolation points, N, increase, condition number, κ ,
grows rapidly. Figure 2.5 (b) shows that maximum approximation error increases rapidly, as
well, as N increases.

Together, Figures 2.4 and 2.5 illustrate the Trade-Off Principle. The phenomenon is
summarized: Increasing accuracy, by increasing c (shape parameter) or N (interpolation
points), increases instability. The Trade-Off Principle applies to both stationary and non-
stationary RBF interpolation, so long as the RBF includes a shape parameter.

Essentially, increasing either c (shape parameter) or N (interpolation points) can improve
accuracy. However, when using either variable to improve accuracy, some method must
be utilized to pick an optimal value for that variable in order to increase accuracy without
increasing instability beyond an acceptable level. Most research in this area has focused on
methods to determine ideal shape parameters. This is because c is a free variable, which
can be changed easily. Changing values for N, interpolation points, however, can have
a real-world cost, depending on the type of data being considered, as well as increasing
computational costs, especially as data-sets become very large.

When discussing stationary MQ RBF interpolation, mathematically shape parameter,
c, could be increased indefinitely to improve accuracy without limit. Madych [52, 53], for
example, demonstrated that an accurate MQ RBF approximation could be made by a large c

value and small fill distance, h.
Computationally, however, due the Trade-Off Principle, as c increases, so does κ .

Therefore, efforts to determine an optimal shape parameter, c, for stationary MQ RBF
interpolation need to strike a balance between accuracy and stability.
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2.5 Leave-One-Out Cross Validation (LOOCV)

Leave-One-Out cross-validation (LOOCV) is a validation technique to evaluate the results
in statistics analysis. In the past years, it has been successfully applied to select an optimal
shape parameter for RBF but the technique is time consuming.

For a given interpolation points set X= {x j}N
j=1, the LOOCV takes out a single point to

estimate the error of MQ approximation which is constructed by the rest N−1 data points.
Therefore, the test points for searching for an optimal shape parameter can be omitted by
repeating N times this procedure for whole interpolation points set.

To actually operate the LOOCV to select an optimal shape parameter, the given inter-
polation points set {x1, . . . ,xN} needs to take out a single data point xk with corresponding
remaining N−1 data set:

{x[k]j }
N
j=1
j 6=k

= [x1, . . . ,xk−1,xk+1, . . . ,xN ]
T ,

can be used to construct the approximation ũ[k] (x):

ũ[k] (x) :=
N−1
∑
j=1

α
[k]
j Φ

(
‖x−x[k]j ‖2

)
, (2.17)

and the error E [k] at the points xk can be written:

E [k] = |ũ[k] (xk)−u(xk)|. (2.18)

The accuracy of MQ approximation is determined by E = [E [1], . . . ,E [N]]T which is
corresponding to the entire interpolation points set X.

The cost of CPU time in the procedure above is expensive and tedious. Rippa’s paper[58],
however, simplified this procedure by a single formula:

E [k] =
αk

A−1
kk

, (2.19)

where the αk is the kth coefficient of full data interpolation as (2.7), and A−1
kk is the kth

diagonal element of the inverse matrix of corresponding interpolation. Hence, the errors of
MQ interpolation can be completed in a single time by use (2.19). Then the Matlab built-in
function fminbnd can be applied to find the minimum of cost function as Listing 2.4 [23]
for optimal shape parameter, c.
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2.6 LOOCV Versus Previous Methods: A Numerical Comparison

In 1971 Hardy [35] demonstrated that an optimal shape parameter for MQ RBF interpolation
could be selected in R2 utilizing c = 0.815d, where d = 1

N ∑
N
j=1 d j, and d j is the distance of

a given data point, x j ∈ X, to its nearest neighbor.
Later, in 1982, Franke [28] proposed another method to define optimal shape parameters

for MQ RBF interpolation, utilizing c=D/(0.8
√

N), where D is the diameter of the smallest
circle which includes all interpolation points, {x j}N

j=1.
Both of these methods provided relatively good shape parameters, especially when

calculations are done on single precision (32 bits) arithmetic. In addition, Franke’s shape
parameter can be slightly modified and made more suitable for double precision (64 bits), as
follows:

c = D/(0.8 4
√

N), (2.20)

The LOOCV method (see (2.19), p. 17) can be even more precise, and, unlike previous
methods, offers additional precision when utilized with double precision arithmetic.

To illustrate the relative strengths and weaknesses of each approach, test function (2.8)
in Example 2.2.1 was sampled for N = 100, N = 400, N = 900, and N = 1600 regular grid
interpolation points in the computational domain [−0.5,0.5]2. Matlab scripts were then
utilized to determine the shape parameter, c, values recommended by Hardy’s Method (List-
ing B.1), Franke’s Method (Listing B.2), the modified Franke method 2, and the LOOCV
method (Listing 2.5, calling Listing 2.4).

Figure 2.6 shows maximum approximation error, Em, for the range of possible shape
parameter values, c, for N = 100, N = 400, N = 900, and N = 1600, when interpolated
on single and double precision arithmetic (see Example 2.2.1, p. 8). Figures 2.6 (a)–(d)
show that maximum approximation error, Em, is the same for single and double precision
arithmetic when c is small; however, double precision are able to utilize significantly larger
shape parameters and achieve lower maximum error. This example demonstrates that the
values for optimal shape parameters are dependent on the precision of the utilized arithmetic.

Table 2.3 shows maximum approximation error, Em, of interpolants generated by the
c values suggested by the Hardy method, the Franke method, and the Modified Franke
method.

Comparing the numerical results in Table 2.3 with the different optimal shape parameter,
c, values suggested by Figures 2.6 (a)-(d) reveals the relative strengths and weaknesses of
each method. The shape parameter, c, values suggested by the Hardy and Franke methods

2To interpolate using the Modified Franke’s shape parameter, the command in line 25 of the Matlab script
(Listing B.2) should be replaced with the command, “c = sqrt(2/0.64/sqrt(N(i)));”.
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Figure 2.6: Maximum approximation error, Em, versus shape parameter, c, for different
numbers of points, N, for the MQ approximation described in Example 2.2.1. Comparing
the c values predicted by the Hardy, Franke, and Modified Franke methods (see Table 2.3)
to these results illustrates the relative strengths and weaknesses of the approaches.

are more suitable for use on single precision arithmetic. On the other hand, the shape
parameters suggested by the Modified Franke method are more suitable for use on double
precision arithmetic, but might suggest overly high c values when used on a single precision.

To compare the relative accuracy of the LOOCV method, Table 2.4 shows maximum
approximation error, Em, of interpolants generated using the shape parameters suggested by
the LOOCV method (from the ranges c ∈ [0,1.5], and c ∈ [0,20]), for N = 100, N = 400,
N = 900, and N = 1600, when interpolated on single and double precision arithmetic.

Examining the results in Table 2.4 shows that, for small ranges of c, i.e., c ∈ [0,1.5], the
LOOCV method suggests optimal c values when run on a double precision arithmetic, but
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Table 2.3: Maximum approximation error, Em, of interpolants generated with the Hardy,
Franke, and Modified Franke shape parameter, c, values (for various numbers of points, N,
sampled from (2.8), from Example 2.2.1).

Hardy Franke Modified Franke

Precision N c Em c Em c Em

Double

100 0.09 8.23E-03 0.18 4.53E-03 0.56 2.64E-04
400 0.04 3.85E-03 0.09 1.81E-03 0.40 5.46E-06
900 0.03 1.77E-03 0.06 7.77E-04 0.32 3.12E-07

1600 0.02 5.79E-04 0.04 2.43E-04 0.28 3.59E-08

Single

100 0.09 8.23E-03 0.18 4.53E-03 0.56 5.91E-04
400 0.04 3.85E-03 0.09 1.81E-03 0.40 3.67E-03
900 0.03 1.77E-03 0.06 7.82E-04 0.32 5.09E-04

1600 0.02 5.79E-04 0.04 2.40E-04 0.28 6.14E-03

suggests overly high c values when utilized on a single precision arithmetic. Additionally, the
LOOCV method suggests overly high c values when considering a larger c range (c∈ [0,20])
on both single and double precision arithmetic. This pattern of overly high recommended c

values can be explained as a local optimum issue [58]. Overcoming this issue has been a
goal within the field for several years.

Table 2.4: Maximum approximation error, Em, of interpolants generated with LOOCV
method shape parameter, c, values, for different ranges of c (for various numbers of points,
N, sampled from (2.8), from Example 2.2.1).

c ∈ [0,20] c ∈ [0,1.5]

Precision N c Em c Em

Double

100 10.92 4.84E+01 1.01 2.90E-05
400 5.65 8.69E-01 0.58 1.00E-06
900 7.64 4.38E-01 0.30 5.79E-07

1600 9.44 1.30E+00 0.29 2.97E-08

Single

100 7.64 3.62E-01 0.45 3.84E-04
400 8.33 6.11E+00 0.32 7.46E-04
900 12.52 4.57E+00 0.36 3.22E-03

1600 15.28 9.14E+00 0.92 8.25E-02
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Listing 2.4: CostLoocv.m
1 function [ceps] = CostLoocv(c,DM,rbf,rhs)
2 A = rbf(c,DM);
3 invA = inv(A);
4 EF = (invA*rhs)./diag(invA);
5 ceps = norm(EF,inf);
6 end

Listing 2.5: RBFInterpolation2DLOOCV.m
1 function []=RBFInterpolation2DLOOCV()
2 tic
3 % Define Hardy's MQ.
4 rbf = @(c,r) sqrt(r.^2+c^2);
5 % Define unknown function which will be recovered.
6 %by MQ interpolation.
7 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
8 % Define number of center points.
9 N = [100 400 900 1600];

10 % Define upper and lower bounded of shape parameter for optimization.
11 minc =0; maxc = 2;
12 % Generate test points.
13 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(2500)));
14 test=[X(:) Y(:)]; clear X Y;
15 % Sample data in test poins.
16 zt = testfunction(test(:,1),test(:,2));
17 for i=1:length(N)
18 % Generate center points.
19 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(N(i))));
20 ctrs=[X(:) Y(:)]; clear X Y;
21 % Create right hand side vector.
22 z = testfunction(ctrs(:,1),ctrs(:,2));
23 % Compute distance matrix.
24 DM = DMatrix(ctrs,ctrs);
25 DMt = DMatrix(test,ctrs);
26 % LOOCV for optimal c.
27 [c(i),~] = fminbnd(@(c) CostLoocv(c,DM,rbf,z),minc,maxc,...
28 optimset('TolX',1e−3));
29 % Solved the system of equations.
30 A = rbf(c(i),DM);
31 Alpha = A\z;
32 % Evaluate the error at given test points.
33 At = rbf(c(i),DMt);
34 Error = At*Alpha−zt;
35 Maxerr(i) = norm(Error, inf);
36 fprintf('Number of interpolant: %i\n', N(i))
37 fprintf('Maximum error: %e\n', Maxerr(i))
38 fprintf('c = %f\n', c(i))
39 fprintf('CPU time = %f\n', toc)
40 end
41 end
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Chapter 3

DEVELOPING THE RECV METHOD FOR SHAPE PARAMETER
IN RBF INTERPOLATION

To date, the problem of minimizing costs when selecting a shape parameter has been a
classic problem within the fields of computational science, mathematics, and engineer-
ing. Numerous studies examine the issue of determining an ideal shape parameter when
interpolating with Multiquadric (MQ), Gaussian (GA), and Matérn RBFs.

So far, efforts which have focused on mathematically proven shape parameter values
have remained difficult to apply in real-world implementations. Other methods, which
tend to utilize a trail-and-error approach, yield results which are not optimally accurate or
which ignore the effect of the precision of the solver. Further efforts have utilized global
optimization methods such as genetic algorithms [1, 19] or simulated annealing [2] with the
LOOCV method. While these approaches tend to yield good shape parameter values, they
can be computationally expensive and time consuming.

This dissertation presents a new method, Residue-Error Cross Validation (RECV), which
can be used to select an optimal shape parameters for RBFs in both interpolation and PDE
problems. The RECV method maps the original optimization problem of defining a shape
parameter into a root-finding problem, thus avoiding the local optimum issue associated
with RBF interpolation matrices, which are inherently ill-conditioned.

With minimal computational time, the RECV method provides shape parameter values
which yield highly accurate interpolations. Additionally, when considering smaller data sets,
accuracy and stability can be further increased by using the shape parameter provided by
the RECV method as the upper bound of the c interval considered by the LOOCV method.

The RECV method can also be combined with an adaptive method, knot insertion, to
achieve accuracy up to two orders of magnitude higher than that achieved using Halton
uniformly distributed points.
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3.1 Residue Error vs. Optimal Shape Parameter

Residue Error

Consider a given dataset, X= {x j}N
j=1, containing N distinct interpolation points, and

an unknown function, u, sampled at the given points in domain, Ω. As has been am-
ply demonstrated [5, 21, 64], any RBF interpolants, ũ, containing a shape parameter, c,
guarantee:

ũ(x j,c) = u(x j), for each j = 1, . . . ,N. (3.1)

Then, there exists a natural lower bound which limits the maximum error of each given RBF
interpolation, as described:

max
x∈Ω

{|ũ(x,c)−u(x)|} ≥ max
x j∈X

{
|ũ(x j,c)−u(x j)|

}
. (3.2)

In other words, the accuracy of a given RBF interpolant is always best at the sample points.
This is a point which is well known, but often ignored as trivial.

Considering that shape parameter, c, can be adjusted to improve the accuracy of numeri-
cal solutions (Section 2.4, p. 14), if an optimal solution RBF interpolation exists, in terms of
shape parameter, c, then the ideal c value should be located where:

max
x∈Ω

{|ũ(x,c)−u(x)|} ≈ max
x j∈X

{
|ũ(x j,c)−u(x j)|

}
. (3.3)

Mathematically, when approximating a given surface, there will be no error at the given
data points. However, due to the limited-precision of real implementation, there is always
a residue error, r, when performing an interpolation. The sensitivity of the residue error
vector can be visualized via a simple approach. Let r = u−A · α̃αα (where ũ = Aα̃αα , and α̃αα is
the coefficient vector at machine precision). The vector, e = ααα− α̃αα , then describes errors of
the coefficient, yielding:

Ae = A(ααα− α̃αα) = Aααα−Aα̃αα = u−Aα̃αα = r. (3.4)

Computing the magnitude of r in any norm, we find that the residue, r, of the RBF interpo-
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lation is bounded by:

‖r‖ = ‖Ae‖ (3.5)

≤ ‖A‖‖e‖ (3.6)

≤ ‖A‖‖e‖‖α
αα‖
‖ααα‖

(3.7)

≤ ‖A‖‖e‖‖A
−1u‖
‖ααα‖

(3.8)

≤ ‖A‖‖A−1‖ ‖e‖
‖ααα‖
‖u‖. (3.9)

The magnitude of the residual errors in ‖r‖ can then be expressed as follows,

‖r‖ ≤ κ (A)‖u‖ ‖e‖
‖ααα‖

, (3.10)

where κ(A) is the condition number of the original interpolation matrix, A. Because ‖u‖,
and ‖e‖/‖ααα‖ are fixed values, (3.10) demonstrates that r is is directly influenced by the
condition number, κ(A).

In order to illustrate the interaction between shape parameter, c, condition number, κ(A),
and maximum residue error, rm, in numerical implementations of MQ RBF interpolation, a
10 by 10 regular grid of interpolation points was sampled for test function:

u(x,y) = exp(−2x+3y), (3.11)

in the domain, Ω ∈ [0,1]2.
Figure 3.1 (a) shows condition number, κ(A), versus shape parameter, c; while Figure 3.1

(b) shows maximum approximation error, Em, versus the condition number, κ(A). As can
be seen in 3.1 (a), during MQ RBF interpolation, a larger shape parameter may result in a
significantly ill-conditioned interpolation matrix. In addition, 3.1 (b) shows that maximum
residue error grows exponentially as condition number, κ(A), increases, as described in
(3.10).

As (3.1) indicated, an RBF interpolant should perfectly intersect the given points, X, in
the domain Ω. Therefore, in numerical implementation we expect that the accuracy of an
RBF interpolant with an optimal shape parameter should tend to machine precision. On
the other hand, as we enlarge the shape parameter to achieve machine precision, the rapid
growth of condition number, κ(A), and consequently the rapid growth of residue error, ‖r‖,
make this promised machine precision impossible to actually achieve.
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Figure 3.1: Error behavior for MQ RBF interpolation. See test function (3.11). Figure 3.1 (a
)shows that condition number, κ(A), grows exponentially as shape parameter, c increases;
while Figure 3.1 (b) shows that maximum residue error grows exponentially as condition
number, κ(A), increases, as described in (3.10).

Best MQ approximation with respect to c

In 1992, Madych [53], proposed a method to estimate and describe error behavior for MQ
interpolation:

E = O(eac
λ
(c/h)); 0 < λ < 1, a > 0. (3.12)

As shown in (3.12), during MQ interpolation, error approaches zero, E→ 0, as the shape
parameter approaches infinity. On the other hand, as shown by (3.2), the accuracy of MQ
approximation is limited by increasing residue error as described in (3.10). Combining these
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Figure 3.2: Maximum residue error, rm, and maximum approximation error, Em, solved by
double- and multi-precision solvers. See test function (3.11). For either precision of solver,
as c increases, maximum approximation error goes down while maximum residue error
goes up. The optimal value for c is therefore found where rm and Em approach, before the
interpolation matrix becomes overly ill-conditioned.

concepts, optimal c values for MQ RBF interpolation should occur where the maximum
approximation error, Em, approaches the maximum residue error, rm as described in (3.3).

In order to visualize this hypothesized error behavior, MQ RBF test function (3.11) in
the domain [0,1]2 was sampled on a 10 by 10 regular grid; maximum residue error, rm,
was calculated using the interpolation points, while maximum approximation error, Em,
was calculated using 40 by 40 evenly distributed points. Figure 3.2 shows both maximum
residue error, rm, and maximum approximation error, Em, plotted versus shape parameter, c,
when solved by double- and multiple-precision arithmetic.

Two observations can be derived from the results shown in Figure 3.2:

1. Error behavior and optimal c values: Initially, maximum approximation error,
Em, of stationary MQ interpolations solved by different precision solvers decreases
smoothly and exponentially as shape parameter, c, increases, just as Madych proposed;
see (3.12). At the same time, the residue error, rm, of MQ interpolations gets consis-
tently worse as c increases, as predicted by (3.10). The two measures of error, Em

and rm, as can be seen in the figure, stop significantly converging and optimal shape
parameters occur at c = 1.7 and c = 5, respectively, for double- and multiple-precision
solvers.
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2. Effect of limited-precision arithmetic: Figure 3.2 shows that the maximum residue
error, rm, of MQ interpolations solved by double- and multiple-precision both increase
with nearly parallel curves (also shown in Figure 2.6, p.19). In other words, higher-
precision solvers won’t improve the rate of convergence of MQ approximations but
will allow for larger shape parameters and more accurate numerical solutions.

3.2 RECV vs. LOOCV

Defining an Indicator, I(c), for Optimal Shape Parameters

Figure 3.2 shows that for different precision solvers, as c increases, maximum approximation
error goes down while maximum residue error, rm , goes up. The optimal value for c

is therefore found where Em and rm approach. In order to determine an optimal shape
parameter, c, for RBF interpolation based on these observations, a shape parameter indicator,
(I)(c), is proposed to measure the approach of maximum approximation error, Em, and
maximum residue error, rm:

I(c) = log10 (Em)− log10 (rm) , where (3.13)

Em = max
x∈Ω

{|ũ(x,c)−u(x)|} ,

rm = max
x j∈X

{
|ũ(x j,c)−u(x j), j = 1, . . . ,N|

}
.

This indicator, I(c), allows the curves for Em, and rm to be plotted into a single nearly
horizontally asymptotic curve. In this manner, the original optimization problem of defining
an ideal shape parameter, c, is mapped to become a root-finding problem.

Figure 3.3 shows the error behavior of MQ interpolants for test function (3.11), con-
structed using regular grid interpolation points

{
x j
}100

j=1,
{

x j
}400

j=1 in a unit square domain

[0,1]2, solved by a double precision solver.
Figure 3.3 (a) shows that for both N = 100 and N = 400, as c increases, Em goes down

while rm goes up. Thus, an optimal c value is found where rm and Em approach, before
the interpolation matrix becomes overly ill-conditioned. Figure 3.3 (b) shows the shape
parameter indicator, I(c), for the same example. The optimal c value is located where
the error behavior represented by I = 1∼ 2 becomes horizontally asymptotic, at ∼ 0.5 for
N = 400 and ∼ 1.5 for N = 100.

Strategies to Select a Shape Parameter for MQ Interpolation

Thus far, as demonstrated in Figure 3.3, by using the shape parameter indicator, I(c), defined
in (3.13), the problem of finding an ideal shape parameter for MQ interpolation can be
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Figure 3.3: Error behavior for an MQ RBF interpolation using N = 100, and N = 400
uniformly distributed points. Figure 3.3 (a) shows maximum residue error, rm, and maximum
approximation error, Em, for MQ interpolations of (3.11) in double precision. For both
N = 100 and N = 400, as c increases, Em goes down while rm goes up. Thus, an optimal c
value is found where rm and Em approach, before the interpolation matrix becomes overly
ill-conditioned. Figure 3.3 (b) shows the shape parameter indicator, I(c), for the same
example. The optimal c value is located where the error behavior represented by I = 1∼ 2
becomes horizontally asymptotic, at ∼ 0.5 for N = 400 and ∼ 1.5 for N = 100.

mapped from an optimization problem to a root-finding problem. In practice, therefore, the
cost function, Listing 3.1, can be solved using the built-in Matlab function fzero, to find an
ideal shape parameter, c.

Equation (3.13) describes an ideal method for calculating Em, taking into account an
infinite number of data points. In the real world, this is impossible, and we must work with
given functions and data sets of finite size. In this case, just as with (3.13), the given data set
must be split into two sub sets. One set, X ∈Ω, is used to construct an MQ approximation,
while the other set, V ∈ Ω\X, is used to determine the accuracy of the approximation.
Therefore, (3.13) should be re-written as follows:

I(c) = log10 (Em)− log10 (rm) , where (3.14)

Em = max
x j∈V

{
|ũ(x j)−u(x j)|

}
,

rm = max
x j∈X

{
|ũ(x j,c)−u(x j)|

}
.

In this study, two different strategies to determine optimal shape parameter, c, values for
MQ RBF interpolation are proposed, both based on (3.14).
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Strategy 1: Using the RECV Method to Determine Shape Parameter (RECV c)

To utilize (3.14) to determine an optimal shape parameter, c, value, let the left-hand

side of the equation, I(c), be a positive constant. Within the near horizontally asymptotic
curves, as shown in Figure 3.3b, there then exists a solution, respectively, for I(c) = 1, 2, or
any other positive value. The remainder of this work will examine the c values obtained by
setting I(c) = 1 or 2. Thus, the solution (or root) of the I(c) curves indicates a good shape
parameter, c, for MQ interpolation, meaning c can be solved for using any root-finding

method.
Algorithm 1 demonstrates a way in which to solve the root finding problem, (3.14), via

the bisection method (i.e., the binary search method). The bisection method is both simple
and robust; however, it is also well known for being relatively slow.

This study, instead of using the bisection method shown in Algorithm 1, (3.14) is solved
using the built-in Matlab function, fzero. For implementation, the cost function, Listing 3.1,
can be called by fzero as follows,

c=fzero(@(c) CostSPI(c,rbf,DM,DMt,Z,Zt,sp),[minc,maxc],...

optimset('TolX',1e-3));

where DM and DMt are distance matrices, with respect to interpolation points and training
points, respectively, where minc and maxc define the range of interval for c, and where Z

and Zt are the sample data and the given data sets, X and V, respectively.

Algorithm 1 - Bisection method to find RECV c, see Equation (3.14)

Require: cL, cU , I(c∗) % define upper and lower bound of c, and value of I.

while |cU − cL| ≥ 1E−3 do
c∗ = (cL + cU)/2;
Compute the errors of εm and r
if log10(Em)− log10(rm)< I(c∗) then

cU = c∗;
else

cL = c∗;
end if

end while
c∗ = cL + cU ;



30

Strategy 2: Combining RECV and LOOCV to Find Shape Parameter (Combined c)

In general, the shape parameter selected via Strategy 1 (RECV c) can overcome the local
optimum issue and generate an accurate approximation for an MQ problem. However, this
accurate MQ approximation is guaranteed only if the interpolation point dataset, X, is large
or dense enough to allow convergence between the maximum approximation error, Em,
and the maximum residue error, rm, as c increases. Essentially, if data sets are sparse, or
low-density, Strategy 1 may yield slightly over-determined c values.

When using the LOOCV method, as shown in Table 2.4 (p. 20), choosing an interval
within which to search for a shape parameter, c, is critical to find an optimal shape parameter.
Therefore, Strategy 2 takes advantage of both the RECV and LOOCV methods to identify a
good shape parameter, Combined c, using two steps:

1. Utilize RECV c (selected by Strategy 1) to be the upper bound of the c interval
considered by the LOOCV method.

2. Select a shape parameter via the LOOCV method (see Section 2.5 in p.17) within this
re-scaled interval, [0, RECV c].

Numerical results using RECV c and Combined c

In order to demonstrate the accuracy of MQ RBF interpolation using RECV c and
Combined c (Matlab programs Listing 3.2 and 3.3), the MQ RBF interpolation problem
described in Example 2.2.1 in p. 20 is reexamined in the interval [0,100]. As shown in
Table 3.1, the results, in terms of maximum approximation error, Em, indicate that both
RECV c and Combined c serve as optimal shape parameter values for MQ RBF interpolation.
In addition, two features can be derived from the results shown in Table 3.1.

1. For Strategy 1, the RECV method, for both I(c) = 1 and I(c) = 2, generates adequately
accurate MQ approximations. However, RECV c values when I(c) = 1 are slightly
larger than RECV c values when I(c) = 2.

2. For Strategy 2, comparing the numerical results in Tables 3.1 and 2.4, it is clear that the
shape parameter yielded by combining the RECV and LOOCV methods successfully
overcomes the local optimum issue (mentioned in [58]) for a wide interval range of c

without the need to apply a global optimization method.
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Table 3.1: Maximum Approximation Error, Em, of MQ RBF Interpolation using shape
parameter RECV c (I = 1), RECV c (I = 2), or Combined c, selected from the interval
[0,100].

Strategy 1 Strategy 1 Strategy 2
RECV c, I = 1 RECV c, I = 2 Combined c

Precision N c Em c Em c Em

Double

100 1.82 5.28E-06 1.31 1.64E-05 1.39 1.17E-05
400 0.58 7.56E-07 0.50 1.89E-06 0.39 5.74E-06
900 0.34 2.30E-07 0.27 1.54E-06 0.27 1.66E-06

1600 0.21 4.27E-07 0.19 6.72E-07 0.19 6.53E-07

Single

100 0.49 3.18E-04 0.33 1.16E-03 0.40 6.04E-04
400 0.13 7.98E-04 0.11 1.15E-03 0.13 8.16E-04
900 0.06 8.36E-04 0.04 1.22E-03 0.06 8.44E-04

1600 0.04 2.42E-04 0.03 4.89E-04 0.04 2.48E-04

Listing 3.1: CostSPI.m
1 function [ceps] = CostSPI(c,rbf,DM,DMt,Z,Zt,sp)
2 A=rbf(c,DM);
3 Alpha = A\Z;
4 maxerr = norm(A*Alpha − Z, inf);
5 res = norm(rbf(c,DMt)*Alpha − Zt, inf);
6 ceps = log10(res) − log10(maxerr)−sp;
7 end
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Listing 3.2: RBFInterpolation2DSpi.m
1 function []=RBFInterpolation2DSpi()
2 warning off all;
3 tic
4 % Define the Hardy's MQ.
5 rbf=@(c,r) sqrt(r.^2+c^2);
6 % Define unknown function which will be recovered.
7 %by MQ interpolation.
8 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
9 % Define number of center points.

10 N = [100 400 900 1600];
11 % Define upper and lower bounded of shape parameter for optimization.
12 minc =0; sp=1;
13 % Generate test points.
14 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(2500)));
15 test=[X(:) Y(:)]; clear X Y;
16 % Sample data in test poins.
17 zt = testfunction(test(:,1),test(:,2));
18 training = haltonseq(10,2); training=training−0.5;
19 ztrn = testfunction(training(:,1),training(:,2));
20 for i=1:length(N)
21 % Generate center points.
22 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(N(i))));
23 ctrs=[X(:) Y(:)]; clear X Y;
24 % Create right hand side vector.
25 z = testfunction(ctrs(:,1),ctrs(:,2));
26 % Compute distance matrix.
27 DM = DMatrix(ctrs,ctrs);
28 DMtrn = DMatrix(training, ctrs);
29 DMt = DMatrix(test,ctrs);
30 % SPI selected an upper bound of range of c.
31 c=fzero(@(c) CostSPI(c,rbf,DM,DMtrn,z,ztrn,sp),[0,100],...
32 optimset('TolX',1e−3));
33 % Solved the system of equations.
34 A = rbf(c,DM);
35 Alpha = A\z;
36 % Evaluate the error at given test points.
37 At = rbf(c,DMt);
38 Error = At*Alpha−zt;
39 Maxerr(i) = norm(Error, inf);
40 fprintf('========================================\n');
41 fprintf('Number of interpolant: %i\n', N(i))
42 fprintf('Maximum error: %e\n', Maxerr(i))
43 fprintf('c = %f\n', c(i))
44 fprintf('CPU time = %f\n', toc)
45 fprintf('========================================\n');
46 end
47 end



33

Listing 3.3: RBFInterpolation2DLoocvSpi.m
1 function []=RBFInterpolation2DLoocvSpi()
2 warning off all;
3 tic
4 % Define the Hardy's MQ.
5 rbf=@(c,r) sqrt(r.^2+c^2);
6 % Define unknown function which will be recovered.
7 %by MQ interpolation.
8 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
9 % Define number of center points.

10 N = [100 400 900 1600];
11 % Define upper and lower bounded of shape parameter for optimization.
12 minc =0; sp=1;
13 % Generate test points.
14 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(2500)));
15 test=[X(:) Y(:)]; clear X Y;
16 % Sample data in test poins.
17 zt = testfunction(test(:,1),test(:,2));
18 training = haltonseq(10,2); training=training−0.5;
19 ztrn = testfunction(training(:,1),training(:,2));
20 for i=1:length(N)
21 % Generate center points.
22 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(N(i))));
23 ctrs=[X(:) Y(:)]; clear X Y;
24 % Create right hand side vector.
25 z = testfunction(ctrs(:,1),ctrs(:,2));
26 % Compute distance matrix.
27 DM = DMatrix(ctrs,ctrs);
28 DMtrn = DMatrix(training, ctrs);
29 DMt = DMatrix(test,ctrs);
30 % SPI selected an upper bound of range of c.
31 maxc=fzero(@(c) CostSPI(c,rbf,DM,DMtrn,z,ztrn,sp),...
32 [0,100],optimset('TolX',1e−3));
33 % LOOCV for optimal c.
34 [c(i),~] = fminbnd(@(c) CostLoocv(c,DM,rbf,z),minc,maxc,...
35 optimset('TolX',1e−3));
36 % Solved the system of equations.
37 A = rbf(c(i),DM);
38 Alpha = A\z;
39 % Evaluate the error at given test points.
40 At = rbf(c(i),DMt);
41 Error = At*Alpha−zt;
42 Maxerr(i) = norm(Error, inf);
43 fprintf('========================================\n');
44 fprintf('Number of interpolant: %i\n', N(i))
45 fprintf('Maximum error: %e\n', Maxerr(i))
46 fprintf('c = %f\n', c(i))
47 fprintf('CPU time = %f\n', toc)
48 fprintf('========================================\n');
49 end
50 end
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3.3 Modified Knot Insertion (MKI)

Knot insertion is a classic technique employed to enhance the accuracy of approximation
in interpolation problems by adaptively increasing the number of data points. Since every
RBF interpolant has a corresponding set of interpolation points (or knots), the accuracy
of approximation should be increased by adding new centers to the existing dataset over
multiple iterations.

The idea to use knot insertion for MQ RBF interpolation in R2 was first proposed by
Franke, Nielson and Hagen [29]. Franke proposed a method, see algorithm 2 for use with a
given data set, {xi,ui}M

i=1, with a large number of data points, M. Using Franke’s method,
the accuracy of MQ approximation conducted with a small shape parameter, c, is improved
by adaptively adding knots in each iteration, at whichever data location last yielded highest
error. In other words, an over-determined interpolation matrix is solved by applying a linear
least squares fitting each iteration, over multiple iterations.

Algorithm 2 - Franke’s Knot Insertion

(1) Let dataset {xi,ui}M
i=1, chosen initial knots X =

{
ξ j
}N

j=1, small value of c, and a
maximum number of knot maxk to stop the iteration.
while N ≤ maxk do
(2) Solve the system of equations with least squares fitting

N

∑
j=1

α jΦ(‖xi−ξ j‖,c) = u(xi), i = 1, . . . ,M.

(3) Find the data point xτ ∈ X\Ξ associated with the maximum residue

‖r‖∞ = max
1≤i≤M

{
|u(xi)−

N

∑
j=1

α jΦ(‖xi−ξ j‖,c)|

}
.

(4) Insert the data points xτ as knot in X and then N = N +1.
end while

However, as shown in Figure 2.1 (e) (Example 2.2.1), an MQ approximation conducted
with an optimal shape parameter, c, may, as Fornberg says, “behave badly at the end of an
interval” [25].

In this thesis a new adaptive method, Modified Knot Insertion (MKI), is proposed (see
Algorithm 3) in order to improve the boundary error behavior of MQ RBF interpolations.
As opposed to the original Franke knot insertion method, rather than using a small fixed
shape parameter value, the MKI method uses RECV c (Strategy 1) during each iteration.
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Algorithm 3 - Modified Knot Insertion (MKI)

(1) Let dataset {xi,ui}M
i=1, chosen initial knots X=

{
ξ j
}N

j=1, and a maximum number of
knot maxk to stop the iteration.
while N ≤ maxk do
(2) Compute a RECV c (Strategy 1) for MQ interpolant

u(x) =
N

∑
j=1

α jΦ(‖x−ξ j‖,c)

(3) Solve the system of equations

N

∑
j=1

α jΦ(‖ξi−ξ j‖,c) = u(ξi), i = 1, . . . ,N.

(4) Find the data point xτ ∈ X\Ξ associated with the maximum residue

‖r‖∞ = max
1≤i≤M

{
|u(xi)−

N

∑
j=1

α jΦ(‖xi−ξ j‖,c)|

}
.

(5) Insert the data points xτ as knot in X and then N = N +1.
end if end while

To illustrate the differences in the adaptive points generated by Franke’s knot inser-
tion (Listing 3.4) and MKI (Listing 3.5), and the accuracy of results obtained by the two
different methods in numerical implementations of MQ RBF interpolation, two test functions
are examined within the domain [0,1]2:

K1(x,y) = sin(x) · cos(y), (3.15)

K2(x,y) = exp(−2x+3y). (3.16)

Figure 3.4 shows 4,225 Halton points serve as given dataset in the domain [0,1]2, which
are used to test the efficacy of Franke’s knot insertion and the MKI method with test functions
K1 and K2 (see Figures 3.5 (a) and (b)). In Figures 3.5 (c) and (d) show the adaptive points
for test functions K1 and K2, chosen using Franke’s knot insertion with a shape parameter
value (c = 0.2), while Figures 3.5 (e) and (f) show the adaptive points selected using the
MKI method with RECV c, which is recalculated for each iteration.

A visual comparison of the two adaptive point sets shows that, while the adaptive points
selected using Franke’s knot insertion are clustered where the functions rapidly change value,
and sparsely distributed in the rest of the domain, the MKI adaptive points are uniformly
distributed throughout the domain and more densely distributed near the boundary.
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Figure 3.4: 4225 Halton points serve as given dataset in the unit square domain, [0,1]2.
Both knot insertion and MKI can be used to select a subset of data points from this given
dataset, see Figures 3.5(c)-(f).

Figure 3.6 shows the approximation error of MQ RBF interpolation at X for test functions
K1 (3.15) and K2 (3.16), using RECV c with 400 Halton points, 400 regular grid points,
and 400 MKI adaptive points. For both test functions, the MKI adaptive points yield results
more accurate by at least one order of magnitude, compared to the other considered methods
(see Figure 3.7), while also improve the boundary errors associated with regular grid points
and Halton points.

Figure 3.8 shows the maximum approximation error, Em of MQ RBF interpolation,
as the number of adaptive points, N, increases, using either Franke’s knot insertion with
c = 0.2, or the MKI method with RECV c. For both test functions K1 and K2, the accuracy
of MQ RBF interpolation using MKI adaptive points (dashed line) improves more rapidly
than when using Franke’s knot insertion (solid line).
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(a) K1(x,y) = sin(x) · cos(y)
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(b) K2(x,y) = exp(−2x+3y)
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(c) N = 400, knot insertion.
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(d) N = 400, knot insertion.
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(e) N = 400, modified knot insertion.
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(f) N = 400, modified knot insertion.

Figure 3.5: Comparison of the adaptive points generated by Franke’s knot insertion and
Modified Knot Insertion (MKI). Figures (a) and (b) show the functions, K1 (3.15) and K2
(3.16). Figures (c) and (e) show the knot insertion and MKI data points for (3.15), while
Figures (d) and (f) show the knot insertion and MKI data points for (3.16). The data points
generated by the MKI method are uniformly distributed in the center of the domain, and
more densely distributed towards to the boundary of the domain. This allows the MKI
method to ameliorate the bad behave near boundary issues, see Figure 3.6.
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Figure 3.6: Comparison of boundary error behavior when using adaptive points generated
by different methods. For test functions K1 (3.15) and K2 (3.16), Figures (a), (c), and (e)
and Figures (b), (d), and (f) depict approximation error generated using 400 Halton points,
regular grid points, and MKI adaptive points, respectively. For both test functions, the MKI
adaptive points yield results more accurate by at least one order of magnitude, compared
to the other considered methods (see Figure 3.7), while also improve the boundary errors
associated with regular grid points and Halton points.
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Figure 3.7: Maximum approximation error, Em, versus number of data points, N, when using
Halton points, Regular Grid points, and MKI adaptive points. For both test functions, K1
(3.15) and K2 (3.16), the MKI adaptive points yield results more accurate by at least one
order of magnitude, compared to the other considered methods.

0 50 100 150 200 250 300
10−8

10−6

10−4

10−2

100

 

 
Knot Insertion

MKI

(a) K1

0 50 100 150 200 250 300
10−6

10−4

10−2

100

102

 

 

Knot Insertion

MKI

(b) K2

Figure 3.8: Maximum approximation error, Em, versus number of data points, N, for Franke’s
Knot Insertion and the MKI methods. For both test functions, K1 (3.15) and K2 (3.16), when
using Franke’s Knot Insertion, increasing N causes accuracy to slowly improve; however,
when using MKI to generate adaptive points, accuracy rapidly increases as N increases.
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Listing 3.4: KnotInsertion.m
1 function []=KnotInsertion()
2 warning off all;
3 maxnode =400; % criteria to stop iteration.
4 func = 1;
5 c=0.2; % shape parameter.
6 N=1; % inital points.
7 M=4225; % total number of points.
8 % MQ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 rbf = @(c,r) sqrt(c^2+r.^2); % Hardy's MQ.

10 node = haltonseq(M,2); % create 4225 Halton points.
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 switch func
13 case{1}
14 testfunction = @(x,y) sin(x).*cos(y);
15 case{2}
16 testfunction = @(x,y) exp(−2*x+3*y);
17 otherwise
18 return
19 end
20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 z = testfunction(node,node);% right hand side.
22 J = false(M,1);
23 J(1:N) = true;
24 k=N; figure(2)
25 while (k<maxnode )
26 k=k+1;
27 DM = DMatrix(node,node(J,:));% distance matrix.
28 A = rbf(c,DM); clear DM; % interpolation matrix(MxN)
29 Alpha = A\z;
30 absr = abs(A*Alpha−z); % residue.
31 absr(J) = −Inf;
32 [~,idx] = sort(absr,'descend');
33 new = idx(1); J(new) = true;
34 clf,
35 plot(node(J,1),node(J,2),'b.',node(new,1),node(new,2),'ro')
36 title(sprintf('adaptive points #%i',k)); pause(1e−5)
37 end
38 end
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Listing 3.5: ModifiedKnotInsertion.m
1 function []=ModifiedKnotInsertion()
2 warning off all;
3 maxnode =400; % criteria to stop iteration
4 func = 1;
5 M = 4225; N=10; % total number of points and initial points.
6 % MQ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 rbf = @(c,r) sqrt(c^2+(r).^2); % Hardy's MQ
8 % Nodes and samples
9 node = haltonseq(M,2);

10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 switch func
12 case{1}
13 testfunction = @(x,y) sin(x).*cos(y);
14 case{2}
15 testfunction = @(x,y) exp(−2*x+3*y);
16 otherwise
17 return
18 end
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 J = false(M,1); Q = true(M,1);
21 index = 1:N;
22 J(index) = true; Q(index) = false;
23 k=N; figure(10)
24 while (k < maxnode )
25 k=k+1;
26 DM = DMatrix(node(J,:),node(J,:));
27 DMt = DMatrix(node(Q,:),node(J,:));
28 z = testfunction(node(J,1), node(J,2)); %right hand side.
29 zt = testfunction(node(Q,1), node(Q,2));
30 c=fzero(@(c) CostSPI(c,rbf,DM,DMt,z,zt,1),[0,200],...
31 optimset('TolX',1e−3)); % chooing a RECV c for MQ
32 A = rbf(c,DM);
33 Alpha = A\z;
34 DM = DMatrix(node,node(J,:));
35 A = rbf(c,DM);
36 absr = abs(testfunction(node(:,1), node(:,2))−A*Alpha);
37 absr(J) = −Inf;
38 [~,idx] = sort(absr,'descend');
39 new = idx(1);
40 J(new) = true; Q(new)=false;
41 clf,
42 plot(node(J,1),node(J,2),'b.',node(new,1),node(new,2),'ro')
43 title(sprintf('adaptive points #%i',k)); pause(1e−5)
44 end
45 end
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Chapter 4

NUMERICAL EXPERIMENTS UTILIZING THE RECV METHOD
IN RBF INTERPOLATION PROBLEMS

MQ RBF approximation often yields significantly different numerical results depending on
three factors: 1) value of the shape parameter, c; 2) number of interpolation points, N; and
3) distribution method of the interpolation points.

In addition, MQ RBF interpolation problems suffer from boundary issues. The well-
known knot insertion adaptive point method (see Algorithm 2, p. 34) can be used to improve
overall accuracy during MQ RBF interpolation. However, this work proposes a new adaptive
point method, Modified Knot Insertion (MKI, see Algorithm 3, p. 35), which can be used to
significantly improve the convergence rate of MQ RBF interpolation and reduce inaccuracy
due to boundary issues.

In this chapter, eight test functions are utilized to demonstrate the efficacy of both the
RECV method and the MKI method for MQ RBF interpolation.

Test functions F1–F6 are Franke’s classic benchmark analytical functions [28, 58] in
the computational domain, [0,1]2:

F1(x,y) =
3
4

e(−1/4)((9x−2)2+(9y−2)2) +
3
4

e−(1/49)(9x+1)2−(1/10)(9y+1)2

+
1
2

e−(1/4)((9x−7)2+(9y−3)2)− 1
5

e−(9x−4)2−(9y−7)2
; (4.1)

F2(x,y) =
1
9
[tanh(9y−9x)+1] , (4.2)

F3(x,y) =
1
9

[
64−81

((
x− 1

2

)2

+

(
y− 1

2

)2
)]
− 1

2
, (4.3)

F4(x,y) =
1.25+ cos(5.4y)
6 [1+(3x−1)2]

, (4.4)

F5(x,y) =
1
3

exp

[
−81

16

((
x− 1

2

)2

+

(
y− 1

2

)2
)]

, (4.5)

F6(x,y) =
1
3

exp

[
−81

4

((
x− 1

2

)2

+

(
y− 1

2

)2
)]

. (4.6)
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Figure 4.1: Uniform interpolation Points distributed in [0,1]2.

The seventh test function (4.7) is a smooth periodic function in the computational domain,
[−2,2]2. The eighth test function (4.8), is the built-in peaks function from the commercial
software Matlab, solved in the computational domain, [−3,3]2:

F7(x,y) = sin(3x) · cos(3y), (4.7)

F8(x,y) = 3(1− x)2 exp
[
−x2− (y+1)2

]
−10

(x
5
− x3− y5

)
exp
[
−x2− y2]

− 1
3

exp
[
−(x+1)2− y2

]
. (4.8)

The following notations are used in this chapter:
– M : total available dataset points, Ξ = {ξi}Mi=1 ⊆ X;
– N : the number of interpolation points, X=

{
x j
}N

j=1;
– Nt : the number of test points;
– c : the shape parameter of MQ;
– ũ(x,y) : MQ RBF approximation solution of RBF interpolation ;
– u(x,y) : the analytical solution of RBF interpolation;
– rm : maximum residue error: the maximum error at the given points X := {x j}N

j=1:

rm = max
x∈X
{|ũ(x)−u(x)|} .

– Em : maximum approximation error: the maximum error at the chosen test points:

Em = max
1≤ j≤Nt

{
|ũ(x j)−u(x j)|

}
.

Computation were performed using MATLAB on a system with the following parameters:
Windows 7 operating system (32 bits), Intel Core i7-2640M processor, 2.8 GHz CPU, and
3.49 GB memory.
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Figure 4.2: Profiles of test functions F1–F6.
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Figure 4.3: Profiles of test functions F7–F8.

4.1 Numerical Comparison of RECV c and Combined c

In this section, tests are performed to examine the accuracy of interpolation with the different
shape parameters introduced in this work, RECV c (I = 1), RECV c (I = 2), and Combined c.
The recovery surfaces of test functions F1–F8 were generated using 100, 400, 900, and
1,600 regular grid points, as shown in Figure 4.1 (a). Finding RECV c (Strategy 1, p.29),
requires another point set (the validation set), which consists of Halton random (quasi-
random) points1 as shown in Figure 4.1 (b). Maximum approximation error, Em, for MQ
RBF interpolation was calculated using 2,500 regular grid test points in domain Ω.

Figures 4.4 through 4.7 show maximum approximation error, Em, versus shape parameter,
c, for test functions F1–F8, with increasingly large test point sets. As can be seen in
Figure 4.4, optimal shape parameters are quite different for the eight test functions when
using lower numbers of collocation points, i.e., N = 100. Noticeably, when N = 100,
functions F1, F2, F4, F6 and F8 do not really follow the RECV method ((3.3)), which
states that the optimal shape parameter should be located where Em ≈ rm. However, in
greater density cases (N = 400, N = 900, and N = 1,600), the RECV method holds true,
and an optimal shape parameter is found.

In other words, for MQ RBF interpolation, in lower density cases the shape parameter
found by the RECV method, RECV c (Strategy 1), may be slightly larger than where the
optimal shape parameter located; however, this issue can be eliminated by increasing the
density of interpolation points.

1Halton points were generated using the program haltonseq.m created by Daniel Dougherty; the program
can be downloaded from the website Matlab Central File Exchange.
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Figure 4.4: Figures (a)–(d) show maximum approximation error, Em, and maximum residue
error, rm, versus shape parameter, c, for test functions F1–F4, using either 100 or 400
regular grid points, N, in the domain Ω.

Table 4.1 shows absolute maximum approximation error, Em, for MQ approximations
with RECV c (I = 1), RECV c (I = 2), and Combined c, for test functions F1–F8, with
increasingly large test point sets.

Three key points can be derived from the results shown in Table 4.1:

1. In higher density cases (e.g., N = 900, and N = 1600), the accuracy provided using
RECV c (I = 1) was generally greater than that obtained using Combined c;

2. In lower density cases (e.g., N = 100, and N = 400), Combined c can generally
provide higher accuracy than RECV c for wide intervals of c = [0,100].

3. In general, accuracy using RECV c (I = 2) is better than accuracy using Combined c

or RECV c (I = 1) in higher density cases and lower density cases, respectively.
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Figure 4.5: Figures (a)–(d) show maximum approximation error, Em, and maximum residue
error, rm, versus shape parameter, c, for test functions F5–F8, using either 100 or 400
regular grid points, N, in the domain Ω.

Ultimately, the accuracy of MQ interpolation demonstrated in Table 4.1 shows that either
RECV c or Combined c can generally provide an accurate numerical solution. However, as
shown in Table 4.2, for higher density datasets, the Combined c method may take more CPU
time. Therefore, RECV c may be more suitable for higher density problems, in order to
minimize computational costs, while Combined c may be better for lower density problems,
to maximize accuracy.
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Figure 4.6: Figures (a)–(d) show maximum approximation error, Em, and maximum residue
error, rm, versus shape parameter, c, for test functions F1–F4, using either 900 or 1,600
regular grid points, N, in the domain Ω.
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Figure 4.7: Figures (a)–(d) show maximum approximation error, Em, and maximum residue
error, rm, versus shape parameter, c, for test functions F5–F8, using either 900 or 1,600
regular grid points, N, in the domain Ω.
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Table 4.1: Accuracy of MQ RBF Interpolation with Different Shape Parameters, RECV c
(I = 1), RECV c (I = 2), and Combined c. Results were calculated in interval c ∈ [0,100],
for test functions F1–F8, using various numbers of interpolation Points, N. Accuracy for
RECV c (I = 1) and RECV c (I = 2) is usually better than for Combined c, but maximum
approximation error, Em, is color-coded to indicate when results are similar, or worse
than those obtained with Combined c. Ultimately, either of the three methods obtain highly
accurate numerical results, though each may eventually prove to be more suitable for specific
situations.

RECV c (I = 1) RECV c (I = 2) Combined c

u(x) N c Em c Em c Em

F1

100 1.229 2.99E-01 1.045 2.02E-01 0.355 1.69E-02
400 0.555 3.02E-04 0.483 2.48E-04 0.424 2.17E-04
900 0.370 8.08E-07 0.327 1.04E-06 0.259 3.72E-06
1600 0.270 3.10E-07 0.229 6.38E-07 0.196 1.91E-06

F2

100 1.282 1.91E+00 1.117 2.74E-01 0.321 4.07E-03
400 0.478 6.80E-03 0.378 3.47E-04 0.212 1.78E-04
900 0.254 1.72E-05 0.235 1.87E-05 0.227 1.93E-05
1600 0.197 3.59E-06 0.190 2.91E-06 0.191 2.91E-06

F3

100 1.552 5.73E-06 1.309 1.73E-05 1.151 3.67E-05
400 0.563 9.34E-06 0.473 1.56E-05 0.425 3.48E-05
900 0.329 6.49E-06 0.274 2.33E-05 0.269 2.35E-05
1600 0.253 2.77E-06 0.207 1.40E-05 0.192 2.37E-05

F4

100 1.822 4.09E-03 1.536 3.47E-03 1.013 2.11E-03
400 0.567 1.25E-06 0.515 1.07E-06 0.448 2.48E-06
900 0.385 1.41E-07 0.328 4.03E-07 0.302 6.72E-07
1600 0.272 1.35E-07 0.232 3.12E-07 0.216 5.13E-07

F5

100 1.809 4.64E-06 1.470 6.18E-07 1.006 1.48E-06
400 0.624 3.25E-09 0.491 1.50E-07 0.554 2.65E-08
900 0.283 4.19E-07 0.297 1.91E-07 0.266 3.81E-07
1600 0.237 6.00E-08 0.216 1.50E-07 0.211 1.78E-07

F6

100 1.472 3.56E-03 1.242 3.16E-03 0.522 8.42E-05
400 0.572 4.18E-09 0.485 6.36E-09 0.448 1.61E-08
900 0.352 4.36E-09 0.286 2.07E-08 0.286 2.10E-08
1600 0.273 2.01E-09 0.208 2.56E-08 0.201 3.54E-08

F7

100 5.282 2.33E-02 4.673 1.29E-02 3.272 1.23E-02
400 2.244 1.04E-04 2.030 1.28E-04 1.834 2.53E-04
900 1.450 3.05E-05 1.188 7.50E-05 0.736 5.55E-04
1600 1.053 1.22E-05 0.852 3.57E-05 0.975 1.72E-05

F8

100 8.458 5.88E+00 6.737 3.72E+00 2.612 9.57E-01
400 3.123 2.87E-05 2.780 1.14E-05 2.217 1.33E-05
900 2.197 2.17E-07 1.901 6.79E-07 1.702 1.23E-06
1600 1.567 7.02E-08 1.318 3.03E-07 1.228 6.10E-07
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Table 4.2: Computational time in seconds for interpolation with different shape parameters,
RECV c (I = 1), RECV c (I = 2), and Combined c. Results were calculated in interval
c ∈ [0,100], for test functions F1–F8, using various numbers of interpolation points, N.
Results in this table correspond to the computations described in Table 4.1. In low density
problems, Combined c is nearly as fast as RECV c (I = 1) and RECV c (I = 2), and is more
stable (see Table 4.1); however, in high density problems, Combined c becomes less accurate
than RECV c (I = 1) and RECV c (I = 2), and requires considerably more computational
time.

u(x) N RECV c (I = 1) RECV c (I = 2) Combined c

F1

100 0.14 0.12 0.19
400 0.20 0.20 0.75
900 1.25 1.49 4.15

1600 3.58 3.70 19.38

F2

100 0.11 0.11 0.16
400 0.21 0.24 0.52
900 1.21 0.97 4.03

1600 5.00 4.52 20.01

F3

100 0.14 0.11 0.16
400 0.21 0.20 0.69
900 1.51 1.29 4.54

1600 4.95 4.41 19.25

F4

100 0.14 0.33 0.16
400 0.18 0.16 0.70
900 1.17 1.18 4.02

1600 3.63 3.95 21.24

F5

100 0.12 0.10 0.16
400 0.26 0.21 0.66
900 1.00 1.31 4.46

1600 4.92 4.30 17.68

F6

100 0.11 0.11 0.17
400 0.19 0.20 0.66
900 1.41 1.31 4.34

1600 3.75 5.02 17.96

F7

100 0.11 0.11 0.16
400 0.19 0.18 0.88
900 1.23 1.28 4.40

1600 4.38 4.38 26.54

F8

100 0.18 0.11 1.02
400 0.22 0.18 0.67
900 0.81 1.09 4.77

1600 3.79 3.92 21.66
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4.2 Generalizability of RECV Shape Parameters

Previously, within the field, Carlson and Foley [7] concluded that “the optimal shape
parameter, c, for MQ RBF interpolation in R2 is most strongly influenced by the values of
the function”. While this may be somewhat true in low density cases (e.g., N = 100 and
N = 400), the numerical results in Table 4.1 demonstrate that, in higher density cases (e.g.,
N = 900 and N = 1600), the different characteristics of individual functions become less
and less significant. This in turn suggests that, so long as the interpolation points are shared
and the fill distance, h, is sufficiently small, the RECV c values for individual functions may
be functionally interchangeable. If this is true, then we should be able to select an RECV
c value using any known function within the same computational domain, Ω, and using
the same interpolation points, X := {x j}N

j=1, to solve a given problem with acceptably high
accuracy.

To test this idea, Figure 4.8 shows test functions F1–F8, as shown in Figures 4.4 through
4.7, re-plotted in terms of I(c), as described in (3.14), for N = 100, 400, 900, and 1,600
regular grid interpolation points. In this way we are able to compare the shape parameter
indicator curves for each test function, and see that, while they can be a little different
in lower density cases, for test functions F1–F6, which all share the same interpolation
points, the curves become increasingly close as N increases. This supports the idea that
function values have minimal influence when choosing RECV c via Strategy 1 for MQ RBF
interpolation.

To test this theory, in the following numerical experiment, test functions F1–F8 are
reexamined using RECV c values generated by two arbitrary known functions:

K1(x,y) = sin(x)+ cos(y), (4.9)

K2(x,y) = (1− tanh(10∗ sin(1.8∗ x)−10∗ y−2.6))/2. (4.10)

The function K1 is a smooth trigonometry function which moves slowly up and down within
the domain, while the K2 function, which is usually used to examine singular perturbation
in boundary layer problem, is considerably more difficult to accurately approximate.

The RECV c values shown in Table 4.3 were chosen using Strategy 1 (I = 1) with
functions K1 and K2, (4.9) and (4.10), for the square domain matching that used with each
of the eight test functions F1–F8. The K1 and K2 RECV c values were then utilized to
approximate the test functions F1–F8. The results achieved using the K1 and K2 RECV
c values (see Table 4.4) show that the accuracy of MQ RBF approximation using generic
RECV c values from any function within the same domain, using the same interpolation
points, can produce a very accurate solution in higher density cases. The results using the
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Figure 4.8: Comparison of MQ RBF interpolation error behavior using various N uniformly
distributed points. In this figure, the error behaviors shown in Figures 4.4 and 4.7 are re-
plotted comparing the values of Shape Parameter Indicator (SPI), I(c) (3.14), versus shape
parameter, c. Note that for functions within the same domain, using the same interpolation
points (F1–F6), the curves describing error behavior are increasingly similar as N becomes
larger.

K1 and K2 Combined c values show that using LOOCV method with the RECV method
(i.e., re-scaling the LOOCV c interval to be [0,RECV c]) can successfully avoid the local
optimum issue and choose an optimal shape parameter, even when using the Combined c

from generic functions.
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Table 4.3: RECV c values generated from known functions, K1 (4.9) and K2 (4.10), in
various square domains. These generic RECV c values are used to test the generalizability
of known function RECV c for application with unknown functions sharing the same domain
and interpolation points (see Table 4.4).

RECV c

Ω N K1 K2

[0,1]2

100 1.636 1.248
400 0.649 0.475
900 0.394 0.280

1600 0.244 0.198

[−2,2]2

100 6.640 5.206
400 2.502 2.034
900 1.509 1.172

1600 0.934 0.761

[−3,3]2

100 9.325 7.030
400 3.658 3.223
900 2.207 1.675

1600 1.489 1.116
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Table 4.4: Generalizability of Shape Parameter, c, values created with known functions.
This table illustrates the maximum approximation error, Em, of MQ RBF interpolation with
generic Shape Parameter, c, values selected using known functions, K1 (4.9) and K2 (4.10),
with various N values, in the same domain, sharing the same interpolation points (see
Table 4.3). Note that for all cases, the MQ RBF approximation is accurate using generic c
values generated with either known function.

RECV c (K1) Combined c (K1) RECV c (K2) Combined c (K2)

u(x) N Em c Em Em c Em

F1

100 1.98E+00 0.380 1.88E-02 3.42E-01 0.325 1.45E-02
400 1.37E-03 0.429 2.24E-04 2.49E-04 0.422 2.14E-04
900 1.16E-06 0.259 3.73E-06 2.94E-06 0.268 3.19E-06

1600 3.18E-07 0.205 1.43E-06 1.64E-06 0.199 1.76E-06

F2

100 6.14E-01 0.380 4.08E-03 4.37E-01 0.325 4.08E-03
400 8.71E-02 0.212 1.78E-04 1.83E-02 0.212 1.78E-04
900 1.31E-03 0.228 1.93E-05 2.06E-05 0.226 1.94E-05

1600 9.09E-06 0.193 2.86E-06 2.63E-06 0.191 2.90E-06

F3

100 7.87E-06 1.270 2.03E-05 2.52E-05 1.180 3.15E-05
400 3.24E-06 0.512 9.67E-06 2.07E-05 0.420 3.67E-05
900 9.55E-06 0.274 2.07E-05 2.25E-05 0.266 2.71E-05

1600 2.72E-06 0.209 1.41E-05 1.79E-05 0.195 2.17E-05

F4

100 5.39E-03 1.095 2.38E-03 2.76E-03 1.006 2.09E-03
400 9.64E-07 0.433 2.96E-06 2.10E-06 0.442 2.67E-06
900 2.41E-07 0.309 5.72E-07 1.34E-06 0.261 1.75E-06

1600 1.53E-07 0.207 6.86E-07 8.28E-07 0.192 1.08E-06

F5

100 2.49E-07 1.319 1.33E-06 1.09E-06 0.656 5.97E-06
400 6.17E-09 0.512 7.29E-08 2.37E-07 0.429 5.25E-07
900 9.77E-08 0.275 3.90E-07 3.52E-07 0.257 5.35E-07

1600 3.86E-08 0.205 2.27E-07 2.56E-07 0.191 3.45E-07

F6

100 2.21E-02 0.843 9.47E-04 2.81E-03 0.843 9.47E-04
400 1.29E-09 0.512 3.10E-09 1.24E-08 0.436 2.26E-08
900 8.17E-09 0.287 2.12E-08 3.28E-08 0.261 4.71E-08

1600 3.84E-09 0.205 3.26E-08 3.81E-08 0.193 5.05E-08

F7

100 1.25E-01 3.273 1.23E-02 1.27E-02 3.273 1.23E-02
400 1.02E-04 1.961 1.68E-04 3.88E-04 0.905 2.77E-03
900 3.84E-05 0.736 5.55E-04 1.57E-04 0.736 5.55E-04

1600 1.18E-05 0.784 2.10E-04 5.72E-05 0.650 1.44E-04

F8

100 5.59E+00 2.612 9.57E-01 3.52E+00 2.612 9.57E-01
400 3.52E-04 2.224 1.44E-05 4.62E-05 2.214 1.28E-05
900 2.17E-07 1.865 8.76E-07 8.52E-07 1.500 8.53E-07

1600 6.21E-08 1.387 1.28E-07 9.11E-07 1.118 9.11E-07
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4.3 Modified Knot Insertion

MQ approximation can be optimized in two ways: 1) by adjusting the value of the shape
parameter [35, 28]; and 2) by utilizing adaptive points [18, 45].

Previously, Franke’s knot insertion method was discussed (Algorithm 2, p. 34), and a
new method, Modified Knot Insertion (MKI) was introduced (Algorithm 3, p. 35).

The following numerical experiments will explore the degree to which MKI adaptive
points, when utilized with RECV c (Strategy 1, p. 29), can improve the accuracy of MQ
RBF interpolants.
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(b) 10,000 Halton points

Figure 4.9: Left: 10 initial randomly selected points. Right: 10,000 Halton points distributed
in the unit square domain [0,1]2.

Density

An adaptive algorithm for interpolation usually provides a set of data points based on
the characteristics of both the numerical method being utilized and the unknown function
being recovered. For this reason, the adaptive points generated for different unknown
functions differ from each other, with each set matching the specific type of problem
being addressed (see Figures 3.5 (c) and (d), p. 37). However, when the MKI adaptive
point method was introduced, it seemed that the MKI points generated for different test
functions were quite similar in appearance, with uniform distribution in the center of the
domain and greater density near the boundary (see Figures 3.5 (e) and (f), p. 37). In the
following numerical experiment, we examine the density of MKI adaptive point distribution
to determine if this observation is functionally accurate. Shape parameter values associated
with Strategy 1 (p. 29), RECV c (I(c) = 1), are utilized with test functions F1–F8 (p. 42),
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Figure 4.10: 1,600 adaptive points generated using the MKI method for test functions
F1–F4. For each function, the MKI adaptive points are uniformly distributed in the center,
but more densely distributed near the boundary of the domain.

with MKI adaptive points generated using 10 randomly chosen initial points from 10,000
Halton points, as depicted in Figure 4.9.

Figures 4.10 and 4.11 show 1600 MKI adaptive points for test functions F1–F8 in
different square domains. As predicted, the MKI point sets for the different functions all
look functionally identical, uniformly distributed in the center of the domain, and with
greater density near the boundary.

To test the density distribution consistency of MKI adaptive points as N changes, Fig-
ures 4.12 and 4.13 show various N MKI points generated for test function F1 in the unit
square domain [0,1]2. For each value of N, the MKI adaptive points are uniformly dis-
tributed, with a higher density concentration of points near the boundary.
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Figure 4.11: 1,600 adaptive points generated using the MKI method for test functions
F5–F8. For each function, the MKI adaptive points are uniformly distributed in the center,
but more densely distributed near the boundary of the domain.

Convergence rate

The RECV method determines optimal shape parameter, c, values utilizing the conver-
gence of maximum residue error, rm, and maximum approximation error, EM. While it
was demonstrated previously that MKI adaptive points could achieve more accurate results
than Halton uniformly distributed points (see Figures 3.6 and 3.7), the following numerical
experiments examine the ways in which MKI adaptive points affect convergence for different
test functions, when N is constant (see Figures 4.14 and 4.15) and when using increasingly
large collocation point sets (see Figures 4.16 and 4.17).

Figures 4.14 and 4.15 show the error convergence behavior of MQ RBF interpolations
constructed using either 600 MKI points or 600 Halton points for test functions F1–F8.
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(d) N = 1,400

Figure 4.12: Various numbers of adaptive points, N, generated using the MKI method for
test function F1. For each case of N, the MKI adaptive points are uniformly distributed in
the center, but more densely distributed near the boundary of the domain.

Two details of significance can be derived from the results:

1. Convergence rates of Em are faster using MKI adaptive points than when using Halton
points, meaning MKI adaptive points can provide smaller RECV c values but more
accurate MQ RBF approximations.

2. For both MKI adaptive points and Halton uniformly distributed points, the residue
error, rm, curves are nearly overlapping. This indicates that using MKI adaptive points
has little influence on the condition number, κ(A), for the generated interpolation
matrices. Thus, while MKI points are able to yield more accurate results than Halton
points, they are unable to eliminate or reduce the condition number, κ(A).
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Figure 4.13: Density of adaptive points generated using the MKI method. Figures (a)–(d)
depict the density of the adaptive points generated using the MKI method for test function
F1 with various numbers of points, N. For each value of N, the MKI adaptive points
are uniformly distributed in the center, but more densely distributed near the edges of the
domain.

For test functions F1–F8, Figures 4.16 and 4.17 show maximum approximation error,
Em, of MQ RBF interpolation with RECV c and increasingly large sets of either MKI
adaptive points or Halton points. Initially, with small numbers of interpolation points,
the accuracy achieved using Halton points is similar to the accuracy achieved using MKI
points. However, as N increases, the accuracy of interpolation using MKI points increases
dramatically, quickly achieving far more accurate results. Table 4.5 shows the optimal
solution of MQ RBF interpolation in term of N MKI adaptive points, and Halton points
for eight test functions. To reach the best solution, the MQ approximation constructed by
adaptive points only need coupled hundreds points which are much fewer than the Halton.
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Figure 4.14: Figures (a)–(d) show maximum approximation error, Em, and maximum residue
error, rm, versus shape parameter, c, for test functions F1–F4, using 600 Halton uniformly
distributed points or MKI adaptive points. Because it is controlled by condition number,
κ(A), rm is similar for both point distribution methods; however, Em is less when using
MKI adaptive points, allowing faster and closer Error-Residue convergence, and revealing
optimal c values.

Generalizability of MKI Adaptive Points

As demonstrated in Figures 4.10–4.11 (p. 57 and 58), the adaptive points generated by
the MKI method show very similar patterns of distribution for different test functions. In
Figures 4.16–4.17, error behavior is plotted for test functions F1–F8, using increasingly
large sets of either MKI adaptive points or Halton uniformly distributed points; results
show that MKI adaptive points allow for far more accurate approximations, with quicker
convergence (see Table 4.5). Finally, to test the generalizability of MKI adaptive points,
test functions F1–F8 were approximated using both their own set of MKI adaptive points
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Figure 4.15: Figures (a)–(d) show maximum approximation error, Em, and maximum residue
error, rm, versus shape parameter, c, for test functions F5–F8, using 600 Halton uniformly
distributed points or MKI adaptive points. Because it is controlled by condition number,
κ(A), rm is similar for both point distribution methods; however, Em is less when using
MKI adaptive points, allowing faster and closer Error-Residue convergence, and revealing
optimal c values.

and the MKI point sets generated for each of the other test functions (see Figures 4.18
and 4.19); results show that the accuracy and convergence rates of MQ RBF interpolation
are similar, for test functions F1–F8, when using any of the MKI point sets generated for
test functions F1–F8. This means that, when performing MQ RBF interpolation, the MKI
adaptive point set utilized can be generated by any known smooth function, rather than the
unknown function, and still result in highly accurate numerical solutions.

In addition, the MKI adaptive points generated for MQ interpolation might also be
suitable for approximating both MQ derivatives and MQ integrations. Figures 4.20–4.21
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show the maximum approximation error, Em, of interpolations utilizing Hardy’s MQ (see
Table 2.2, p.12), the Laplacian of MQ, φ(r) = ∆Φ(r), (see Table 5.1, p. 73):

φ(r) =
(
r2 +2c2)/(√r2 + c2

)3
, (4.11)

and an integrated MQ, Φ(r) = ∆Ψ(r), (see Table 5.1):

Ψ(r) =
1
9
(
r2 +4c2)(√r2 + c2

)
− c3

3
ln
(

c+
√

r2 + c2
)
, (4.12)

for test functions F1–F8. Results show the adaptive points generated by MKI are just as
effective in providing highly accurate results and quick convergence rates when interpolating
MQ derivatives and MQ integrations, as they are when interpolating MQs.

Table 4.5: MKI adaptive points versus Halton uniformly distributed points: optimal solutions
for test functions F1–F8, using RECV c, in terms of maximum approximation error, EM,
and interpolation points, N. This table summarizes the results plotted in Figures 4.16 and
4.17, showing that, in general, far fewer MKI points are needed to increase the rate of
convergence between Em and N, to achieve more accurate optimal MQ RBF approximations.

MKI points Halton points

u(x) N Em N Em

F1 600 7.87E-08 1400 4.84E-06
F2 1600 7.18E-07 1600 7.65E-05
F3 100 6.78E-07 1000 8.71E-06
F4 600 1.39E-08 1600 4.81E-07
F5 300 2.25E-10 900 3.24E-08
F6 300 3.69E-10 700 1.11E-08

F7 400 5.91E-06 1400 5.66E-04
F8 500 7.31E-08 1500 2.85E-07



64

0 200 400 600 800 1000 1200 1400 1600
10

−8

10
−6

10
−4

10
−2

10
0

 

 
Halton
F1

(a) F1

0 200 400 600 800 1000 1200 1400 1600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 
Halton
F2

(b) F2

0 200 400 600 800 1000 1200 1400 1600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 
Halton
F3

(c) F3

0 200 400 600 800 1000 1200 1400 1600
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 
Halton
F4

(d) F4

Figure 4.16: Figures (a)–(d) show maximum approximation error, Em, versus number of
interpolation points, N, for test functions F1–F4, using RECV c and either Halton uniformly
distributed points or MKI adaptive points. As is demonstrated, when using RECV c and
MKI adaptive points, increasing N quickly leads to very accurate MQ RBF approximations.
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Figure 4.17: Figures (a)–(d) show maximum approximation error, Em, versus number of
interpolation points, N, for test functions F5–F8, using RECV c and either Halton points
or MKI adaptive points. As is demonstrated, when using RECVc and MKI adaptive points,
increasing N quickly leads to very accurate MQ RBF approximations.
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Figure 4.18: Generalizability of unknown function MKI Adaptive Point Sets for other
unknown fuctions within the same domain. Figures (a)–(d) plot the convergence rate of MQ
RBF interpolation for Test Functions F1–F4, solved with their own MKI adaptive points
and the point sets of each other Test Function. As shown, convergence rate is similar enough
to consider the different MKI adaptive point sets to be functionally interchangeable.
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Figure 4.19: Generalizability of unknown function MKI Adaptive Point Sets for other
unknown fuctions within the same domain. Figures (a)–(d) plot the convergence rate of MQ
RBF interpolation for Test Functions F5–F8, solved with their own MKI adaptive points
and the point sets of each other Test Function. As shown, convergence rate is similar enough
to consider the different MKI adaptive point sets to be functionally interchangeable.
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Figure 4.20: MKI adaptive points versus Halton Points: Convergence rates when inter-
polating MQs, MQ derivatives, and MQ integrations. Figures (a)–(d) depict the differing
convergence rates when interpolating an MQ (2.3), an MQ derivative (4.11), and an MQ
integration (4.12) using either MKI adaptive points or Halton points generated for the
MQ for test functions F1–F4. Using the MKI method, the adaptive points are acceptably
effective for derivatives or integrations, while Halton points generated for an MQ yield
highly unstable results when used with derivatives or integrations of the MQ.
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Figure 4.21: MKI adaptive points versus Halton Points: Convergence rates when inter-
polating MQs, MQ derivatives, and MQ integrations. Figures (a)–(d) depict the differing
convergence rates when interpolating an MQ (2.3), an MQ derivative (4.11), and an MQ
integration (4.12) using either MKI adaptive points or Halton points generated for the
MQ for test functions F5–F8. Using the MKI method, the adaptive points are acceptably
effective for derivatives or integrations, while Halton points generated for an MQ yield
highly unstable results when used with derivatives or integrations of the MQ.
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Chapter 5

UTILIZING THE RECV METHOD WITH KBC MESHLESS
METHODS TO SOLVE TIME-INDEPENDENT PDE PROBLEMS

This chapter briefly introduces two major domain-type kernel-based meshless collocation
methods using MQ RBFs: the RBF collocation method (Kansa’s method), and the Method
of Approximate Particular Solutions (MAPS). For meshless methods utilizing MQ RBFs,
shape parameter, c, still plays an important role in determining the accuracy of the method.
However, in PDE problems, inside of the domain and the boundary are described by the
different functions of data. The examples in this chapter are designed to demonstrate that
interpolation and PDE problems which share the same RBFs and data points also share the
same optimal shape parameter values. In other words, the shape parameter values selected
by the RECV method for RBF interpolation problems are also suitable for use in PDE
problems, and can provide very accurate numerical results.

While examples in the previous chapter demonstrated that the adaptive points selected
by the MKI method are generally suitable for use with MQ RBFs, the examples in this
chapter will show that utilizing the MKI method to select adaptive points can also improve
the numerical results when solving PDE problems.

5.1 Kernal-Based Collocation Methods

In the early 1990s, E. Kansa [43, 44], while working on a numerical solution to the Navier-
Stokes fluid dynamics equations, proposed a meshless method using Hardy’s MQ RBF.
Kansa’s method later became known as the RBF Collocation Scheme (Section 2.2). While
no one has yet been able to provide mathematical explanation for the efficacy of Kansa’s
method, it provides a powerful method to solve PDE problems.

Because numerical evidence [59] has shown that RBF integrations can be more stable
and accurate than regular RBF derivatives, Chen and his coworkers [8, 9] developed a
new meshless method called the Method of Approximate Particular Solution (MAPS)
which utilized RBF integrations to approximate the particular solution for PDEs while
simultaneously satisfying the boundary conditions. Thus far, Kansa’s method and MAPS,
which are both considered to be meshless Kernal-Based Collocation (KBC) methods, have
been applied successfully to solve numerous linear and nonlinear PDEs [46, 50, 51, 57, 69].



71

Both Kansa’s method and MAPS are domain-type KBC methods, which need both domain
data and boundary data. Consider an elliptic PDE on a bounded domain, Ω⊂ R2, with a
smooth boundary, Γ. Then, the given function in the domain, f (x,y), and the function on
the boundary, g(x,y), are described as follows,

k∆u+o(x,y)
∂u
∂x

+ p(x,y)
∂u
∂y

+q(x,y)u = f (x,y), (x,y) ∈Ω, (5.1)

Bu = g(x,y), (x,y) ∈ Γ, (5.2)

where o(x,y), p(x,y), and q(x,y) are given functions, k is a constant, B is a boundary
differential operator, and ∆ is the Laplacian, which is defined as follows in 2-D space,

∆ =
∂ 2

∂x2 +
∂ 2

∂y2 .

Just as with RBF interpolation (Section 2.1), KBC meshless methods assume that the
function, u, is the PDE solution in the domain, Ω := Ω∪Γ, which can be approximated,

ũ(x,y) :=
N

∑
j=1

α j Φ
(
r j
)
, (x,y) ∈Ω, (5.3)

where r j = ‖(x,y)−(x j,y j)‖ represents the distance between any two given points,
{
(x j,y j)

}N
j=1,

which are labeled ‘centers’ or ‘trial points’.
In addition, in KBC methods, the Laplacian, ∆u, as well as ∂u/∂x, and ∂u/∂y, are

approximated by corresponding kernels with shared coefficients, expressed as follows,

∆ũ(x,y) :=
N

∑
j=1

α j ∆Φ
(
r j
)
=

N

∑
j=1

α j φ
(
r j
)
, (5.4)

∂ ũ
∂x

(x,y) :=
N

∑
j=1

α j
∂Φ

∂x

(
r j
)
, (5.5)

∂ ũ
∂y

(x,y) :=
N

∑
j=1

α j
∂Φ

∂y

(
r j
)
, (5.6)

We can then finish the substitution of an MQ RBF into the original elliptic PDE problem by
plugging (5.3)–(5.6) back into (5.1) and (5.2), which then yields,

f (x,y) ≈
N

∑
j=1

α j

(
φ(r j)+o(x,y)

∂Φ

∂x
(r j)+ p(x,y)

∂Φ

∂y
(r j)+q(x,y)Φ(r j)

)
, (5.7)

g(x,y) ≈
N

∑
j=1

α jBΦ(r j). (5.8)
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In real implementation, utilizing the collocation technique allows us to discretize the PDEs
by imposing finite conditions [5, 21, 64], described,

h(x j,y j) = f (x j,y j), (x j,y j) ∈Ω, j = 1,2, . . . ,Ni, (5.9)

Bu(x j,y j) = g(x j,y j), (x j,y j) ∈ Γ, j = 1,2, . . . ,Nb, (5.10)

where

h(x j,y j) = ∆u(x j,y j)+o(x j,y j)
∂u(x j,y j)

∂x
+ p(x j,y j)

∂u(x j,y j)

∂y
+q(x j,y j)u(x j,y j),

Ni denotes the number of points inside the domain and Nb is number of points on the
boundary. Furthermore, N denotes the total number of points; i.e., N = Ni+Nb. By
collocation technique in (5.9) and (5.10) implied (5.7) and (5.8) yields

N

∑
j=1

α jΨ(r jk) = f (xk,yk), k = 1, . . . ,Ni, (5.11)

N

∑
j=1

α jBΦ(r jk) = g(xk,yk), k =Ni +1, . . . ,N, (5.12)

where

Ψ(r jk) = φ(r jk)+o(xk,yk)
∂Φ(r jk)

∂x
+ p(xk,yk)

∂Φ(r jk)

∂y
+q(xk,yk)Φ(r jk), (5.13)

and r jk = ‖(xk,yk)− (x j,y j)‖. Then (5.11) and (5.12) can be written in matrix notation

Mααα = b, (5.14)

where b= [ f (x1,y1), . . . , f (xNi,yNi),g(xNi+1,yNi+1), . . . ,g(xN ,yN)]
T , ααα = [α1, . . . ,αN ]

T are
undetermined coefficients, and

M =



Ψ(‖(x1,y1)− (x1,y1)‖) . . . Ψ(‖(x1,y1)− (xN ,yN)‖)
... . . . ...

Ψ(‖(xNi,yNi)− (x1,y1)‖) . . . Ψ(‖(xNi,yNi)− (xN ,yN)‖)
BΦ(‖(xNi+1,yNi+1)− (x1,y1)‖) . . . BΦ(‖(xNi+1,yNi+1)− (xN ,yN)‖)

... . . . ...
BΦ(‖(xN ,yN)− (x1,y1)‖) . . . BΦ(‖(xN ,yN)− (xN ,yN)‖)


is a N by N unsymmetric matrix. If the matrix M is invertible, the coefficients ααα can be

easily obtained by solving (5.14) associated with standard matrix solver.
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In the early 2000s, Hon and Schaback [38] demonstrated that, unlike symmetric matrices,
such as A (see p. 6), for unsymmetric matrices, such as matrix M, proof of invertibility can
not be established because there can be no guarantee that they are nonsingular. However,
thus far, unsymmetric collocation techniques have been used and shown to approximate
many different applications with acceptable accuracy. Building on this, Wu [67] developed
a symmetric collocation technique which has been proven to have no singularity inside the
interpolation matrix [41]. Comparing symmetric and unsymmetric collocation techniques,
unsymmetric techniques require a weaker assumption of regularity and can be applied
to more problems. Additionally, Fasshauer [24] demonstrated that the numerical results
obtained from unsymmetric collocation are usually superior to those obtained via symmetric
collocation. For this reason, this work focuses on meshless methods utilizing unsymmetric
collocation techniques.

Table 5.1: Corresponding MQ kernels for Kansa’s method and the MAPS in R2.

Kansa’s
method

Φ :
√

r2 + c2

∂Φ

∂x
:

x√
r2 + c2

∂Φ

∂x
:

y√
r2 + c2

φ :

(
r2 +2c2)(√

r2 + c2
)3

MAPS

Φ :
1
9
(
r2 +4c2)(√r2 + c2

)
− c3

3
ln
(

c+
√

r2 + c2
)

∂Φ

∂x
: x ·

 3r2 +6c2

9
√

r2 + c2
− c3

3
√

r2 + c2
(√

r2 + c2 + c
)


∂Φ

∂y
: y ·

 3r2 +6c2

9
√

r2 + c2
− c3

3
√

r2 + c2
(√

r2 + c2 + c
)


φ :
√

r2 + c2
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5.2 Suitability of the KBC Method Utilizing RECV c and MKI Adaptive Points

In the RBF literature, Kanas’s method and MAPS have been shown to be capable for solving
PDEs [32, 43, 44]. However, due to the trade-off principle (Section 2.4, p. 14), the numerical
solutions can be significantly improved depending on: 1) the number of collocation points;
2) the distribution method of collocation points; 3) the choice of the shape parameter, c.

As the numerical results demonstrated in Section 4.2 (see p. 52), the RECV c is in-
terchangeable as long as the MQ approximations constructed within the same collocation
points, and the fill distance, h, of the collocation points is sufficiently small. Moreover,
Section 4.3 (see p. 56) shows MKI adaptive points allow for far more excellent convergence
and more accurate numerical results for individual functions for MQ approximation.

The primary purpose of this section lies in proving the effectiveness of the RECV c

for Kansa’s method and MAPS in PDEs. Additionally, to demonstrated the suitability of
using MKI adaptive points in PDEs, Kansa’s method and the MAPS will be constructed by
either regular grid collocation points or MKI adaptive collocation points in the following
examples.

In this section, the ratio of regular grid interior points with equally spaced boundary
points are test manually in order to obtained better numerical result, and the ratio of adaptive
collocation points (interior and boundary points) are generated depending on the MKI
method.

Three benchmark PDEs (Poisson equation and convection-diffusion-reaction equations)
are examined in two irregular domains. Respectively, the RECV c and MKI adaptive points
are selected and generated by a smooth periodic function,

K(x,y) = sin(x)+ cos(y). (5.15)

To evaluate the accuracy of the MQ approximation, the error measurement, such as the
maximum approximation error (Em), and relative approximation error (EL2), are employed
and are defined as follows:

Em = max
1≤ j≤Nt

{
|u(x j)− ũ(x j)|

}
, (5.16)

EL2 =


Nt
∑
j=1

(
u(x j)− ũ(x j)

)2

Nt
∑
j=1

u2(x j)


1/2

, (5.17)

where Nt is the number of testing points, u is analytical solution and ũ is approximate
solution.
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Computation were performed using MATLAB on a system with the following parameters:
Windows 7 operating system (32 bits), Intel Core i7-2640M processor, 2.8 GHz CPU, and
3.49 GB memory.

Example 5.2.1. Consider the following boundary value problem with the Dirichlet boundary
condition,

∆u(x,y) = f (x,y), (x,y) ∈Ω, (5.18)

u(x,y) = g(x,y), (x,y) ∈ Γ, (5.19)

where f (x,y) and g(x,y) are given functions according to the following analytical solution:

u(x,y) = exp(−2x+3y). (5.20)

The exact solution is depicted in Figure 5.1.

(a) R3 (b) R2

Figure 5.1: The analytical solution, u (see (5.20)), to the boundary value problem described
in Example 5.2.1.

Figure 5.2 shows example regular grid interior points with equally spaced boundary
points, and MKI adaptive collocation points in the computational domain Ω∪Γ which is
defined by the following parametric equation:

Ω = {r(θ)cos(θ),r(θ)sin(θ) : θ ∈ [0,2π)}, (5.21)

where
r(θ) =

(
cos(3θ)+

(
2− sin2 (3θ)

)1/2
)1/3

. (5.22)
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(a) Regular grid interior, and uniform dis-
tributed boundary points in Ω.
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(b) MKI adaptive collocation points in Ω.

Figure 5.2: Regular grid points with equally spaced boundary points, and MKI adaptive
points in the computational domain, Ω = Ω∪Γ, for Example 5.2.1. Figures 5.2 (a) and (b)
depict example regular grid interior points with equally spaced boundary points and MKI
adaptive collocation points, respectively.

Chapter 4 demonstrated that the RECV c and MKI adaptive collocation points can
significantly improve the accuracy of RBF approximation in interpolation problem. For
PDEs, the KBC methods which adopted the RBF collocation approach, such as Kansa’s
method, and the MAPS have been successfully applied to solve linear and nonlinear problems
in physics; the property trade-off principle is also inherited from RBF interpolation (see
Sec. 2.4, p. 14).

This example is designed to demonstrated the effectiveness of utilizing RECV c, and
MKI adaptive collocation points suitability for Kansa’s method and the MAPS employ MQ
as a basis function within PDE problem. To compare the suitability of KBC methods with
MKI adaptive points in PDEs, Kansa’s method and the MAPS in this example is solved
using N regular grid points, or N MKI adaptive points1 (i.e., N = 100, 400, and 900) (see
Figures 5.2 (a)–(b)) for both Kansa’s Method and the MAPS.

Figures 5.3–5.4 show the approximation error of Kansa’s method and the MAPS using
RECV c with 400 regular grid collocation points, and 400 MKI adaptive points. For both
methods, MKI adaptive points yield results more accurate by eliminate the boundary error
issue which inherited from RBF interpolation (see Sec. 4.3, p. 38).

Figures 5.5–5.6 show the relative approximation error, EL2 , convergence behavior for

1In this example, MKI adaptive points are generated from a given initial dataset which included 10,138
regular grid interior points and 1,000 equally spaced boundary points.
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RBF interpolation and Kansa’s method, and for RBF interpolation and the MAPS, respec-
tively, as N increases with either regular grid points or MKI adaptive points plotted versus
shape parameter, c. In these figures, the solid lines indicate the error of RBF interpolation’s
solution to the analytical solution, (5.20), using kernel Φ (corresponding to Table 5.1) within
the same set of collocation points as dash lines (i.e., Kansa’s methods and the MAPS) did.
As the figures show the dash lines are almost parallel to the solid lines (RBF interpolation),
and the optimal shape parameters are located in the similar places as RBF interpolation
did. In other words, the RECV c value selected by RBF interpolation within the same
computational domain, and using the same set of collocation points in this example for
Kansa’s method, and the MAPS can obtain an acceptably high accuracy.

Figures 5.3–5.4 show the approximation errors of Kansa’s method and the MAPS, respec-
tively. The approximation in these figures are either constructed by 310 regular grid interior
points with 90 equally spaced boundary points or 400 MKI adaptive points. In this boundary
value problem, the large boundary error which in the case of regular grid points (subfigure (a),
[25]) are significantly improved by utilizing MKI adaptive points (subfigure (b)).

Comparing Table 5.2, Table 5.3, Figure 5.5 and Figure 5.6 show the RECV c chosen
from the interval c ∈ [0,100] are successfully avoiding the local optimum issue and selecting
an acceptab approximation when using either Kansa’s method or the MAPS.
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(a) Regular grid points; N = 400.
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(b) MKI adaptive points; N = 400.

Figure 5.3: Comparison of boundary error behavior for Kansa’s method using either regular
grid interior points with equally spaced boundary points, or MKI adaptive collocation
points for the boundary value problem described in Example 5.2.1.
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(a) Regular grid points; N = 400.
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(b) MKI adaptive points; N = 400.

Figure 5.4: Comparison of boundary error behavior for the MAPS using either regular grid
interior points with equally spaced boundary points, or MKI adaptive collocation points.

Kansa’s method (regular grid points) Kansa’s method (MKI adaptive points)

N Nb RECV c Em EL2 Nb RECV c Em EL2

100 40 2.54 5.58E-002 4.14E-004 28 2.52 6.99E-001 3.23E-003
400 90 1.00 4.82E-002 2.81E-004 65 0.84 5.98E-004 4.00E-006
900 108 0.54 1.65e-003 9.91E-006 103 0.47 1.76E-004 2.39E-006

Table 5.2: Testing RECV c with Kansa’s method using either MKI adaptive collocation
points or regular grid collocation points. For the PDE problem (see Example 5.2.1), this
table depicts maximum approximation error, Em, and relative approximation error, EL2 ,
with either N regular grid collocation points or N MKI adaptive collocation points in
the irregular domain when using Kansa’s method with RECV c chosen from the interval
c ∈ [0,100].

MAPS (regular grid points) MAPS (MKI adaptive points)

N Nb RECV c Em EL2 Nb RECV c Em EL2

100 40 2.43 1.20E-001 1.05E-003 28 1.90 5.70E-001 3.21E-003
400 90 0.75 7.24E-003 4.20E-005 65 0.61 1.18E-003 7.34E-006
900 108 0.41 2.55E-003 1.20E-005 103 0.33 2.44E-004 2.14E-006

Table 5.3: Testing RECV c with MAPS using either MKI adaptive collocation points or
regular grid collocation points. For the PDE problem (see Example 5.2.1), this table depicts
maximum approximation error, Em, and relative approximation error, EL2 , with either N
regular grid collocation points or N MKI adaptive collocation points in the irregular domain
when using the MAPS with RECV c chosen from the interval c ∈ [0,100].
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(a) Regular grid points; N = 100.
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(b) MKI adaptive points; N = 100.
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(c) Regular grid points; N = 400.
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(d) MKI adaptive points; N = 400.
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(e) Regular grid points; N = 900.
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(f) MKI adaptive points; N = 900.

Figure 5.5: Suitability of RECV c and MKI adaptive points with Kansa’s method for
boundary value problem described in Example 5.2.1. Figures (a)–(f) show the relative
approximation error, EL2 , convergence behavior for RBF interpolation and Kansa’s method
as N increases with either regular grid points or MKI adaptive points plotted versus shape
parameter, c.
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(a) Regular grid points; N = 100.
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(b) MKI adaptive points; N = 100.
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(c) Regular grid points; N = 400.
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(d) MKI adaptive points; N = 400.
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(e) Regular grid points; N = 900.
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(f) MKI adaptive points; N = 900.

Figure 5.6: Suitability of RECV c and MKI adaptive points with the MAPS for boundary
value problem described in Example 5.2.1. Figures (a)–(f) show the relative approximation
error, EL2 , convergence behavior for RBF interpolation and the MAPS as N increases with
either regular grid points or MKI adaptive points plotted versus shape parameter, c.
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Example 5.2.2. Consider the convection-diffusion-reaction equation is a combination of
the diffusion and convection equations with the Dirichlet boundary condition:

∆u+
(
x2 + y2) u+ y cos(y)

∂u
∂x

+ sinh(x)
∂u
∂y

= f (x,y), (x,y) ∈Ω, (5.23)

u = g(x,y), (x,y) ∈ Γ, (5.24)

where f (x,y) and g(x,y) are given functions depends on the following analytical solution:

u(x,y) = sin(πx) cosh(y)− cos(πx) sinh(y) . (5.25)

The exact solution is depicted in Figure 5.7.

(a) R3

(b) R2

Figure 5.7: The analytical solution, u (see (5.25)), to the convection-diffusion-reaction
equation described in Example 5.2.2.

Figure 5.8 shows example regular grid interior points with equally spaced boundary
points and MKI adaptive collocation points in the computational domain Ω∪Γ which is
defined by the following parametric equation:

Ω = {(x,y) | x = r(θ) cos(θ),y = r(θ) sin(θ) : θ ∈ [0,2π)}, (5.26)

where
r(θ) = 1+ cos2 (4θ) . (5.27)

To compare the difference of convergence behavior in RBF interpolation and solved PDE
utilized the KBC methods, Example 5.2.1 examined the simplest elliptic PDE – Poisson’s
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(a) Regular grid interior, and uniform distributed
boundary points in Ω.
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(b) MKI adaptive collocation points in Ω.

Figure 5.8: For the convection-diffusion-reaction equation described in Example 5.2.2 in
the computational domain Ω = Ω∪Γ, Figures 5.8 (a) and (b) depict example regular grid
interior points with equally spaced boundary points and MKI adaptive collocation points,
respectively. Various numbers of regular grid or adaptive points (N = 100, 400, and 900)
were tested with Kansa’s Method (see Table 5.4) and MAPS (see Table 5.5).

equation with Dirichlet boundary condition. Figures 5.5–5.6 showed the optimal value shape
parameter for the KBC methods is highly correlated to the RBF interpolation when utilizing
the same kernel, Φ. Additionally, comparing the numerical results in Tables 5.2–5.3 with
Figures 5.5–5.6 showed the shape parameter, c, found by RECV method are close to the
optimal value can be obtained.

Figures 5.9 and 5.10 show maximum approximation error, Em, of the KBC methods as
N increase with either regular grid collocation points or MKI adaptive collocation points
plotted versus shape parameter, c. In lower density cases (i.e., N = 100, see subfigure (a)–
(b)) show the numerical solution instability of the KBC methods occurs when the value of
shape parameter, c, is small. In other words, the numerical solution stability of the KBC
methods also can be influenced by the computational complexity of PDE problem that
involved complication of PDE, boundary condition, and computational domain. Fortunately,
this instability issue because of computational complexity can be eliminated as N increases
with either regular grid points or MKI adaptive points for both Kansa’s method and the
MAPS in this PDE problem.

Usually the instability issue can be a serious problem for selecting an optimal shape
parameter for the KBC methods. However, combined the numerical results in Table 5.4,
Table 5.5, Figure 5.9 and Figure 5.10 show the shape parameter found by the RECV
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method can generally avoid the local optimum issues which caused by ill-conditioned
and computational complexity of PDE problem with acceptable accuracy. In addition,
Figures 5.11–5.12 show the approximation errors of Kansa’s method and the MAPS with
either 400 regular grid interior points or 400 MKI adaptive points. These figures demonstrate
that MKI adaptive points (see subfigure (b)) can effectively diminish the large boundary
errors when using regular grid points (see subfigure (a).

For the suitability of MKI adaptive points for KBC methods, Figures 5.11–5.12 show
the convergence rates of Em is faster when using MKI adaptive collocation points than when
using regular grid collocation points, meaning the accuracy of KBC methods can provide a
far more accurate numerical solution.

Kansa’s method (regular grid points) Kansa’s method (MKI adaptive points)

N Nb c Em EL2 Nb c Em EL2

100 36 4.24 7.43E-002 9.77E-003 47 4.14 1.01E-002 1.28E-003
400 139 1.44 4.11E-004 2.47E-005 111 1.37 5.65E-005 1.08E-005
900 295 0.93 1.36E-004 6.10E-006 188 0.77 3.75E-005 3.65E-006

Table 5.4: Testing RECV c with Kansa’s method using either MKI adaptive collocation
points or regular grid collocation points. For convection-diffusion-reaction equation (see
Example 5.2.2), this table shows maximum approximation error, Em, and relative approxima-
tion error, EL2 , with either N regular grid collocation points or N MKI adaptive collocation
points in the irregular domain Ω when using Kansa’s method with RECV c chosen from the
interval c ∈ [0,100].

MAPS (regular grid points) MAPS (MKI adaptive points)

N Nb c Em EL2 Nb c Em EL2

100 36 3.45 2.73E-002 3.78E-003 47 3.73 9.74E-003 1.56E-003
400 139 1.07 7.60E-004 4.05E-005 111 1.01 8.72E-005 1.88E-005
900 295 0.59 2.19E-004 1.29E-005 188 0.55 5.77E-005 4.04E-006

Table 5.5: Testing RECV c with the MAPS using either MKI adaptive collocation points
or regular grid collocation points. For convection-diffusion-reaction equation (see Exam-
ple 5.2.2), this table shows maximum approximation error, Em, and relative approximation
error, EL2 , with either N regular grid collocation points or N MKI adaptive collocation
points in the irregular domain Ω when using the MAPS with RECV c chosen from the
interval c ∈ [0,100].
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(a) Regular grid points; N = 100.
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(b) MKI adaptive points; N = 100.
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(c) Regular grid points; N = 400.
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Figure 5.9: Suitability of RECV c and MKI Adaptive Points with Kansa’s Method for
convection-diffusion-reaction equation. For the analytical solution (5.25) to the convection-
diffusion-reaction equation problem described in Example 5.2.2 in domain Ω, Figures (a)-(f)
show maximum approximation error, Em, convergence behavior for MQ RBF interpola-
tion (solid line) and Kansa’s method (dash line) as N increases with either regular grid
points or MKI adaptive points plotted versus shape parameter, c.
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Figure 5.10: Suitability of RECV c and MKI adaptive points with MAPS for convection-
diffusion-reaction equation. For the analytical solution (5.25) to the convection-diffusion-
reaction equation problem described in Example 5.2.2 in domain Ω, Figures (a)-(f) show
maximum approximation error, Em, convergence behavior for MQ RBF interpolation (solid
line) and MAPS (dash line) as N increases with either regular grid points or MKI adaptive
points plotted versus shape parameter, c.
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(a) Regular grid points; N = 400.

−2
−1

0
1

2

−2
−1

0
1

2
0

2

4

6

x 10−4

 

 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−5

(b) MKI adaptive points; N = 400.

Figure 5.11: Comparison of boundary error behavior for Kansa’s method using either regu-
lar grid interior points with equally spaced boundary points, or MKI adaptive collocation
points to the convection-diffusion-reaction equation problem described in Example 5.2.2 in
domain Ω.
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(a) Regular grid points; N = 400.
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(b) MKI adaptive points; N = 400.

Figure 5.12: Comparison of boundary error behavior for the MAPS using either regular grid
interior points with equally spaced boundary points, or MKI adaptive collocation points to
the convection-diffusion-reaction equation problem described in Example 5.2.2 in domain
Ω.
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Example 5.2.3. Consider the following convection-diffusion equation,

∆u+
(
x2 y
)

u+
(
y2 + cos (x)

) ∂u
∂x
− y sin (x)

∂u
∂y

= f (x,y), (x,y) ∈Ω, (5.28)

u = g(x,y), (x,y) ∈ Γ
D, (5.29)

∂u
∂n

= ∇g(x,y) ·−→n , (x,y) ∈ Γ
N , (5.30)

where f (x,y) and g(x,y) are given functions depends on the following analytical solution:

u(x,y) = sin
(
y2 + x

)
− cos

(
y− x2) (5.31)

is examined in the bounded domain Ω is the same as that shown in Example 5.2.2 with
boundary Γ = ΓD∪ΓN and ΓD∩ΓN = /0 as Figure 5.13 depicted.

(a) R3

(b) R2

Figure 5.13: The analytical solution (5.31) to the convection-diffusion-reaction equation
described in Example 5.2.3.

Figure 5.14 depicts example of regular grid interior points with equally spaced boundary
points and MKI adaptive points. In the figure, the points “·” indicated interior points, “◦”
are Dirichlet boundary data points, and “∗” are Neumann boundary data points.

Examples 5.2.1 and 5.2.2 demonstrate that the RECV method can effectively select an
optimal value of shape parameter, RECV c, for KBC methods with fairly high accuracy. For
MKI adaptive points, it can significantly improve the large boundary error issue for KBC
methods that using regular grid points.

This example considers a slightly challenge PDE problem than Example 5.2.2 in compu-
tational complexity, i.e., a similar type of PDE with Dirichlet boundary condition (5.29) and
Neumann boundary condition (5.30) in the same computational domain (5.26).
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(a) Regular grid interior, and uniform distributed
boundary points in Ω.
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(b) MKI adaptive collocation points in Ω.

Figure 5.14: For the convection-diffusion-reaction equation described in Example 5.2.3
in the computational domain Ω = Ω∪Γ, Figures 5.14 (a) and (b) depict example regular
grid interior points with uniformly distributed boundary points and adaptive collocation
points generated via the MKI method, respectively. Various numbers of regular grid or
adaptive points (N = 100, 400, and 900) were tested with Kansa’s Method (see Table 5.6)
and MAPS (see Table 5.7). Note, in the figures, the points “·” indicated interior points, “◦”
are Dirichlet boundary data points, and “∗” are Neumann boundary data points.

Figures 5.15–5.16 show maximum approximation error, Em, versus shape parameter,
c, as N increases with either regular grid points or MKI adaptive points for KBC methods.
Subfigures (b), (d), and (f) show the instability because of the computational complexity are
significantly improved as N increases with MKI adaptive points. However, subfigures (a),
(c), and (e) depict that the instability issue is getting worse as N increases with regular grid
points 2.

For the suitability of using RECV c for KBC method, the numerical results show in
Figure 5.15, Figure 5.16, Table 5.6, and Table 5.7 demonstrate that the RECV c avoid the
local optimum issue that caused by ill-conditioning and computational complexity of PDE
problem with acceptable accuracy for both regular grid collocation points and MKI adaptive
collocation points.

For Kansa’s method and the MAPS using MKI adaptive points, three details of signifi-
cance can be derived from the results shown in Examples 5.2.1 through 5.2.3:

1. Figures 5.5–5.6 (see Example 5.2.1), Figures 5.9–5.10 (see Example 5.2.2), and
Figures 5.15–5.16 (see Example 5.2.3) demonstrate that MKI adaptive points can

2The numerical results plotted in subfigures (a), (c), and (e) are the optimal result that is selected from the
several different ratios of points inside the domain (interior points) and on the boundary (boundary points).
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provide more accurate numerical results upto two order of magnitude than regular
grid points.

2. Figures 5.3–5.4 (see Example 5.2.1), Figures 5.11–5.12 (see Example 5.2.2), and
Figures 5.17–5.18 (see Example 5.2.3) show MKI adaptive points can significantly
improve the large boundary error issue that occurs when using regular grid points.

3. Figures 5.15–5.16 (see Example 5.2.3) show MKI adaptive can effectively improve
the instability caused by computational complexity of PDE problem on determining
the ratio of interior points and boundary points.

Kansa’s method (regular grid points) Kansa’s method (MKI adaptive points)

N Nb c Em EL2 Nb c Em EL2

100 36 4.24 2.37E-002 3.70E-003 47 4.16 5.04E-002 1.49E-002
400 139 1.44 7.67E-003 1.16E-003 111 1.36 4.25E-004 8.63E-005
900 295 0.93 2.41E-003 2.60E-004 188 0.79 6.37E-005 1.35E-005

Table 5.6: Testing RECV c with Kansa’s method using either MKI adaptive collocation
points or regular grid collocation points. For PDE problem (see Example 5.2.3), this table
depicts maximum approximation error, Em, and relative approximation error, EL2 , with
either N regular grid collocation points or N MKI adaptive collocation points for Kansa’s
method with RECV c chosen from the interval c ∈ [0,100].

MAPS (regular grid points) MAPS (MKI adaptive points)

N Nb c Em EL2 Nb c Em EL2

100 36 3.45 7.88E-002 1.22E-002 47 3.62 4.89E-002 1.43E-002
400 139 1.07 2.82E-002 3.77E-003 111 1.05 4.25E-004 1.16E-004
900 295 0.59 6.00E-003 7.57E-004 188 0.57 5.05E-005 1.24E-005

Table 5.7: Testing RECV c with the MAPS using either MKI adaptive collocation points or
regular grid collocation points. For PDE problem (see Example 5.2.3), this table depicts
maximum approximation error, Em, and relative approximation error, EL2 , with either N
regular grid collocation points or N MKI adaptive collocation points for the MAPS with
RECV c chosen from the interval c ∈ [0,100].
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Figure 5.15: Suitability of RECV c and MKI Adaptive Points with Kansa’s Method for
convection-diffusion-reaction equation. For the analytical solution (5.31) to the convection-
diffusion-reaction equation problem described in Example 5.2.3 in domain Ω, Figures
(a)-(f) show the Relative Approximation Error, EL2 , Convergence Behavior for MQ RBF
interpolation (solid line) and Kansa’s approximation method (dash line) as N increases with
either regular grid points or MKI adaptive points plotted versus shape parameter, c.
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Figure 5.16: Suitability of RECV c and MKI Adaptive Points with MAPS for convection-
diffusion-reaction equation. For the analytical solution (5.31) to the convection-diffusion-
reaction equation problem described in Example 5.2.3 in domain Ω, Figures (a)-(f) show the
Relative Approximation Error, EL2 , Convergence Behavior for MQ RBF interpolation (solid
line) and approximation using MAPS (dash line) as N increases with either regular grid
points or MKI adaptive points plotted versus shape parameter, c.
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(a) Regular grid points; N = 400.
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(b) MKI adaptive points; N = 400.

Figure 5.17: Comparison of boundary error behavior for Kansa’s method using either regu-
lar grid interior points with equally spaced boundary points, or MKI adaptive collocation
points to the convection-diffusion-reaction equation problem described in Example 5.2.3 in
domain Ω.
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(a) Regular grid points; N = 400.
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(b) MKI adaptive points; N = 400.

Figure 5.18: Comparison of boundary error behavior for the MAPS using either regular grid
interior points with equally spaced boundary points, or MKI adaptive collocation points to
the convection-diffusion-reaction equation problem described in Example 5.2.3 in domain
Ω.
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Chapter 6

UTILIZING THE RECV METHOD WITH THE HOUBOLT
METHOD IN TIME-DEPENDENT WAVE EQUATIONS

There were many numerical methods proposed for solving hyperbolic-type partial differential
equations, such as wave equations, which govern many different physical problems. For
instance, water wave propagation in water bodies, the stress wave in an elastic solid and
sound wave propagation in a medium. But, the development of accurate and efficient
numerical methods remains an important and challenging work in the field of scientific
computing.

This chapter briefly introduces the Houbolt method which is a third order finite difference
scheme for time-dependent problems [39, 62, 66, 72], and then demonstrates how to couple
the Kansa’s method and MAPS with the Houbolt method to reduce the given wave equation
to Poisson-type equation. At each time step, the MAPS, and the Kansa’s method have been
applied to solve the Poisson-type equation. Several tests are performed to demonstrate the
stability and accuracy of utilizing the KBC method coupled with the Houbolt method.

6.1 The Wave Equation

The wave equation (6.1) is a second-order linear PDE which describes physical phenomena,
and is important for solving problems in physics, electromagnetics, acoustics, and fluid
dynamics.

Let Ω be a bounded domain in Rd with boundary Γ = ΓD∪ΓN and ΓD∩ΓN = /0. Then,
the wave equation is as follows:

utt (x, t) = k2
∆u(x, t)− f (x, t) ,x ∈Ω, t > 0, (6.1)

with boundary conditions:

u(x, t) = hD (x, t) , x ∈ ΓD, t > 0,
∂u
∂n

(x, t) = hN (x, t) , x ∈ ΓN , t > 0,
(6.2)

and initial conditions:

u(x,0) = I1 (x) , x ∈Ω, (6.3)

ut (x,0) = I2 (x) , x ∈Ω, (6.4)
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where ∆ is the Laplacian, k is a constant, t is the time variable, n is the outward unit vector
normal to Γ and hD(x, t), hN(x, t), I1(x), I2(x), and f (x, t) are known functions.

Many numerical methods have been developed for solving wave equations. In general,
various numerical schemes are utilized to first remove the time dependent variable.

6.2 The Houbolt Method

The Houbolt method is a third order time marching scheme to transform a given wave
equation into a series of Poisson-type equations. To remove the time variable, the wave
equation (6.1) and its boundary conditions (6.2) are reformulated as follows:

∆u(x, t) =
1
k2 utt (x, t)+

1
k2 f (x, t) , x ∈Ω, t > 0, (6.5)

Bu(x, t) = h(x, t) , x ∈ Γ, t > 0, (6.6)

where B is the boundary operator. The time domain of the wave equation is discretized by
the Houbolt finite difference method [39, 62, 72] which is required to solve the Taylor series
expansions as follows:

un ≈ un+1− (δ t)un+1
t +

(δ t)2

2
un+1

tt −
(δ t)3

6
un+1

ttt (6.7)

un−1 ≈ un+1− (2δ t)un+1
t +

(2δ t)2

2
un+1

tt −
(2δ t)3

6
un+1

ttt (6.8)

un−2 ≈ un+1− (3δ t)un+1
t +

(3δ t)2

2
un+1

tt −
(3δ t)3

6
un+1

ttt (6.9)

where un = u(x, tn), δ t = tn+1− tn, un+1
t = ∂un+1/∂ t, un+1

tt = ∂ 2un+1/∂ t2, and un+1
ttt =

∂ 3un+1/∂ t3. After solving (6.7), (6.8), and (6.9), the Houbolt method yields:

un+1
t ≈ 1

6δ t
(11un+1−18un +9un−1−2un−2), (6.10)

un+1
tt ≈ 1

δ t2 (2un+1−5un +4un−1−un−2). (6.11)

Then, substituting (6.11) into (6.5) and (6.6) gives us:

∆un+1− 2
k2 δ t2 un+1 =

1
c2 δ t2 (−5un +4un−1−un−2)+

1
k2 f (x, tn+1), x ∈Ω, (6.12)

Bu
(
x, tn+1)= h

(
x, tn+1) , x ∈ Γ. (6.13)

In order to fully implement the Houbolt method, we need to know the initial values of the
first three time steps. To accomplish this, the Euler method will be implemented (6.22) with
very tiny steps to obtain the initial values of these three time steps. After that, the right hand
sides of (6.12) and (6.13) are known and the Houbolt method can be started. Meanwhile,
the left hand side of equations can be discretized by a Kernel-based collocation method.
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6.3 Combining the KBC Methods and the Halbolt Method

In order to solve time discretized wave equations, (6.12) and (6.13), using the KBC method,
let dataset X= {x j}N

j=1 be N distinct collocation points in Ω of which {x j}Ni
j=1 are in Ω and

{x j}N
j=Ni+1 are in Γ. The main idea of the KBC method is to approximate the exact solution

u(x, tn+1) at each time step by kernel, Φ, as follows:

∆ũ(x, tn+1) =
N

∑
j=1

α
n+1
j ∆Φ(r j) =

N

∑
j=1

α
n+1
j φ(r j), (6.14)

ũ(x, tn+1) =
N

∑
j=1

α
n+1
j Φ(r j), (6.15)

∂ ũ
∂n

(x, tn+1) =
N

∑
j=1

α
n+1
j

∂Φ

∂n
(r j), (6.16)

where r j = ‖x−x j‖, j = 1,2, ...,N. Therefore, at each time step (6.12) and (6.13) can be
approximated as follows:

φ
n+1
i − 2

k2 δ t2 Φ
n+1
i =

1
k2 δ t2 (−5Φ

n +4Φ
n−1−Φ

n−2)+
1
k2 f (xi)

n+1, i = 1, ...,Ni (6.17)

BΦ
n+1
i = h

(
xi, tn+1) , i = Ni+1, ...,N (6.18)

where

Φ
n+1
i =

m

∑
j=1

α
n+1
j Φ(ri j), ri j = ‖xi−x j‖, (6.19)

φ
n+1
i =

m

∑
j=1

α
n+1
j φ(ri j), ri j = ‖xi−x j‖. (6.20)

The above linear system can be written as the following matrix form:[
φ − 2

k2 δ t2 Φ

BΦ

]
N×N

[
αn+1 ]

N×1 =

[ 1
k2 δ t2

[
−5Φn +4Φn−1−Φn−2]+ 1

k2 f n+1

h
(
x, tn+1)

]
N×1

(6.21)

Note that the N×N matrix in (6.21) remains unchange for each time step. Hence, we
need only one matrix inversion for all the time steps. As a result, the solution process is very
efficient.

The Houbolt method is a third order multi-steps scheme to deal with the time dependent
problem. For solving the first two steps Φ1 and Φ2, we need the numerical data Φ0, Φ−1,
and Φ−2. Notice that Φ0 is the given initial condition in (6.3), and the Φ−1, and Φ−2 can
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be obtained using the Euler method associated with initial conditions in (6.3) and (6.4) as
follows: {

Φ−1 = I1(x)−δ t · I2(x)
Φ−2 = I1(x)−2δ t · I2(x)

(6.22)

Note: here the symbols Φ and φ please referred to Table 5.1[43, 44, 8, 9].

6.4 Numerical Results

In order to demonstrate the efficacy and consistency of the KBC methods, four numerical
examples are considered in this section. To validate the numerical accuracy of the solution u

fairly to different test functions, the error measurement, relative approximation error (EL2),
is employed and is defined as follows:

EL2 =


Nt
∑
j=1

(
u(x j)− ũ(x j)

)2

Nt
∑
j=1

u2(x j)


1/2

(6.23)

where the Nt is the number of testing points, u and ũ are exact and approximate solution
respectively, are employed. The test points are randomly selected. For the notation in all the
numerical examples, we denote N as the total number of interpolation points which include
the interior and boundary points, Ni the number of interior points, c the shape parameter of
MQ. In wave equation, the shape parameter, c, can be determined through the given initial
condition which is solving the MQ interpolation as previous chapter.

Computation were performed using MATLAB on a system with the following parameters:
Windows 7 operating system (32 bits), Intel Core i7-2640M processor, 2.8 GHz CPU, and
3.49 GB memory.

Example 6.4.1. In the first example, we consider the wave equation in a unit square as
follows:

utt(x,y, t) = ∆u(x,y, t)+ f (x,y, t), (x,y) ∈Ω, t > 0. (6.24)

where
f (x,y, t) = (2x(1− x)+2y(1− y)− x(1− x)y(1− y))cos(t). (6.25)

The initial and boundary condition are given as follows:

u(x,y,0) = 1+ x(1− x)y(1− y), (x,y) ∈Ω, (6.26)

ut(x,y,0) = 0, (x,y) ∈Ω, (6.27)

u(x,y, t) = x(1− x)y(1− y)cos(t), (x,y) ∈ Γ. (6.28)
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The analytical solution is given as follows:

u(x,y, t) = 1+ x(1− x)y(1− y)cos(t). (6.29)

For the numerical implementation utilized 400 evenly distributed interior and boundary
interpolation points in Ω and set the time step δ t = 0.02. In the Figure 6.1, we show the
relative errors EL2 of both methods. No significant difference in term of accuracy has been
observed. In Table 6.1, the maximum relative errors of the MAPS is similar to the Kansa’s
method when we extended the simulation to a much larger time domain t ∈ [0,100].

For the results showed in Figure 6.1 and Table 6.1, we observe that the accumulated
error which is commonly happen over a long simulation period is apparently not occurred
for an extended period of time. This is significant for solving time-dependent problems,
in particular for the wave equations. This is an indication that both methods are not only
accurate but also stable. In the time-dependent problems, the stability of the computational
algorithm is as important as the accuracy and efficiency.

0 1 2 3 4 5
10−6

10−5

10−4

Time

E
L2

 

 

Kansa’s method
MAPS

Figure 6.1: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
400 collocation points for the wave equation described in Example 6.4.1.
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MAPS Kansa

N Ni c EL2 c EL2

196 144 0.5 4.4×10−5 0.64 5.5×10−5

289 225 0.37 2.6×10−5 0.47 3.4×10−5

400 324 0.30 1.7×10−5 0.39 2.6×10−5

529 441 0.25 1.4×10−5 0.32 2.5×10−5

Table 6.1: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
various number of interpolation points for wave equation described in Example 6.4.1. Note
that for the time step, δ t = 0.02 within the time interval t ∈ [0,100].

Example 6.4.2. In this example, we investigate the homogeneous wave equation in irregular
domain which is considered in [33]. The wave problem can be written as follows:

utt(x,y, t) = ∆u(x,y, t), (x,y) ∈Ω, t > 0. (6.30)

u(x,y,0) = 3, (x,y) ∈Ω, (6.31)

ut(x,y,0) =

√
2π

10
cos
(

πx
10

)
cos
(

πy
10

)
, (x,y) ∈Ω, (6.32)

u(x,y, t) = 3+ cos
(

πx
10

)
cos
(

πy
10

)
sin

(√
2πt
10

)
, (x,y) ∈ Γ. (6.33)

The analytical solution is given by

u(x,y, t) = 3+ cos
(

πx
10

)
cos
(

πy
10

)
sin

(√
2πt
10

)
(6.34)

The irregular domain (see Figure 6.2) is defined as follows:

∂Ω = {(r(θ)cos(θ),r(θ)sin(θ)) : θ ∈ [0,2π)}

where

r(θ) = 10

[
cos(4θ)+

(
18
5
− sin2 (4θ)

)1/2
]1/3

In the numerical implementation, we choose 400 evenly distributed interior and boundary
points in Ω with the time step δ t = 0.02 for both methods. Figure 6.3 (top) shows that the
EL2 error over a long period of time (t ∈ [0,120]). We observe that the errors are stably
oscillating between 10−5 and 10−4 without accumulating the error. In Figure 6.3 (top) we
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Figure 6.2: Profile of the computational domain (Cassini) described in Example 6.4.2.

observe that the error of the MAPS method is half order more accurate than the Kansa’s
method. In Table 6.2, we observe that the MAPS requires only Nt = 200 to reach a very
high accuracy in a large domain and a long period of time t ∈ [0,120]. The MAPS converges
rapidly and hence very efficient. Furthermore, when comparing the results with the MFS-
MPS and FEM as shown in Figure 6.3 (bottom) [33], the MAPS is apparently much superior
in term of accuracy and stability. From Table 6.2, the MAPS is slightly better than the
Kansa’s method.

MAPS Kansa

N Ni c EL2 c EL2

200 136 6.8 4.5×10−5 9.0 1.4×10−4

300 205 5.3 4.4×10−5 7.6 7.0×10−5

400 268 2.8 4.8×10−5 3.9 9.9×10−5

500 328 2.3 6.9×10−5 3.8 9.8×10−5

1400 976 1.3 5.5×10−5 2.1 1.2×10−4

Table 6.2: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
various number of interpolation points for wave equation described in Example 6.4.2. Note
that for the time step, δ t = 0.02 within the time domain t ∈ [0,120].
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Figure 6.3: Top: Relative approximation error of the MAPS and the Kansa’s method,
EL2 , using 400 collocation points . Bottom: Relative approximation error of TMMFS and
FEM [33].

Example 6.4.3. In this example we consider the same wave equation as in the last example
but with more complicate domain and without symmetry. The profile of the domain is shown
in Figure 6.4. The parametric equation of the boundary of the domain is as follows:

∂Ω = {(r(θ)cos(θ),r(θ)sin(θ)) : θ ∈ [0,2π)}

where
r(θ) = esin(θ) sin2 (2θ)+ ecos(θ) cos2 (2θ).

In the numerical implementation, we choose δ t = 0.02 for the Houbolt method. In general,
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Figure 6.4: The profile of computational domain (Amoeba) in Example 6.4.3.

the error will oscillate when time goes by for wave equation. But in the case, Figure 6.5
shows that the error is coincidentally stable in the time domain t ∈ [0,120]. In Table 6.3, we
observe that the MAPS is slightly more accurate than the Kansa’s method. Both methods
converge rapidly to its potential. Therefore, the numerical error for the the MAPS is more
stable and a half order more accurate than the Kansa’s method in this example of irregular
domain.
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Figure 6.5: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
400 collocation points for the wave equation described in Example 6.4.3.
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MAPS Kansa

N Ni c EL2 c EL2

100 64 0.05 4.6×10−4 0.21 1.6×10−3

200 145 0.1 1.5×10−4 0.19 4.8×10−4

300 237 0.12 1.0×10−4 0.25 3.3×10−4

400 317 0.22 1.4×10−5 0.35 4.9×10−5

Table 6.3: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
various number of interpolation points for wave equation described in Example 6.4.3. Note
that for the time step, δ t = 0.02 within the time domain t ∈ [0,120].

Example 6.4.4. In this example, we consider the following wave equation

utt(x,y, t) = ∆u(x,y, t), (x,y) ∈Ω, t > 0 (6.35)

u(x,y,0) = 2+ sin(
πx
4
)sin(

πy
4
), (x,y) ∈Ω, (6.36)

ut(x,y,0) = 0, (x,y) ∈Ω, (6.37)

u(x,y, t) = 2, (x,y) ∈ ∂Ω, (6.38)

where Ω is a L shape domain (see Figure 6.6). The analytical solution is given as follows:

u(x,y, t) = 2+ sin(
πx
4
)sin(

πy
4
)cos(

√
2πt
4

) (6.39)

This example intend to test the effectiveness of both methods for the non-smooth and
irregular domain. For the numerical implementation, the time step δ t = 0.02 is chosen for
the Houbolt method for t ∈ [0,120]. In Figure 6.7, we choose Nt = 408 for both the Kansa’s
method and the MAPS which has the clear advantage with respect to the FEM. The Figure
6.7 and the Table 6.4 are the results of the Kansa’s, MAPS, and FEM methods. In Table 6.4,
we observe that the MAPS requires only Nt = 225 to reach the accuracy of 10−4 while the
Kansa’s method requires Nt = 408 to have such accuracy. For the FEM, the convergent rate
is much slower. The MAPS has the clear advantages in term of accuracy, convergent rate,
and stability.
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Figure 6.6: The profile of the non-smooth Domain (L shape) in Example 6.4.4.
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Figure 6.7: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
408 collocation points for the wave equation described in Example 6.4.4.

MAPS Kansa FEM

N Ni c EL2 c EL2 N EL2

96 56 3.3 1.5×10−2 4.2 2.9×10−2 1027 2.2×10−2

225 161 2.1 4.1×10−4 2.95 1.9×10−3 5004 2.6×10−3

408 320 1.28 3.3×10−4 2.1 4.6×10−4 10088 1.8×10−4

736 616 0.68 2.9×10−4 1.35 3.0×10−4 15001 3.5×10−4

Table 6.4: Relative approximation error of the MAPS and the Kansa’s method, EL2 , using
various number of interpolation points for wave equation described in Example 6.4.4. Note
that for the time step, δ t = 0.02 within the time interval t ∈ [0,120].
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation introduces two significant contributions, the Residue–Error Cross Valida-
tion (RECV) method, and the Modified Knot Insertion (MKI) method. The RECV method
is a new strategy to select an optimal shape parameter, c, for MQ RBF approximation. The
MKI method, on the other hand, is a new strategy for choosing adaptive collocation points
for MQ RBF approximation.

Numerical experimentation demonstrated that, by using the RECV method, c values
which yield highly accurate numerical results can be obtained with minimal computational
costs. The specific approximation error of MQ RBF interpolation utilizing RECV c values
was explored exhaustively, demonstrating the pros and cons of using the RECV method for
different situations such as low-density or high-density problems, with variously large or
small data sets, and with simple or complex functions.

The accuracy of interpolation utilizing RECV c was found to rely on the fill distance, h.
In general, RECV c was found to provide highly accurate approximations in higher den-
sity point sets. However, RECV c could be over-determined in lower density point sets,
particularly for singular functions.

In order to overcome this issue, the accuracy of approximation utilizing the RECV
method was further improved for small data sets by combining the RECV method with
the Leave–One–Out Cross Validation (LOOCV) method. In this ’combined’ method, the
RECV c for a function was utilized as the upper bound of the search interval considered
by the LOOCV method. Combining RECV with LOOCV was found to further increase
stability and accuracy for low-density problems.

A particular advantage of the RECV method is that it can quickly find an optimal c value
in situations where the local optimum issue must otherwise be overcome by computationally
expensive means, such as by using the Moore-Penrose pseudoinverse algorithm1[23]. By
avoiding more expensive strategies and instead combining the RECV method and the
LOOCV method, computational costs can be reduced by almost 100 times.

1a built-in Matlab algorithm, pinv; computation is based on Singular Value Decomposition

(SVD); any singular values less than tol are truncated.
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The second significant contribution of this dissertation was the introduction of the
MKI method, an adaptive strategy developed by modifying Franke’s knot insertion method
[cite Franke]. Numerical experimentation demonstrated that MKI adaptive points yield
far more accurate results than either regular grid points or Halton quasi-random uniformly
distributed points. Specifically, MKI adaptive points significantly increase the convergence
rate of interpolations and overcome the boundary error issues associated with MQ RBF
approximation. Additionally, numerical experimentation demonstrated that the MKI method
can be used with MQ integrations and MQ derivatives, as well as with MQs.

An important feature of both the RECV method and the MKI method relates to the
generalizability of both RECV c and MKI adaptive points:

1. Regarding the generalizability of RECV c, numerical experimentation demonstrated
that optimal shape parameter, c, values depend, not on specific functions, as was
previously believed [7], but on the domain size, the number of interpolation points,
and the method by which the points are selected. It was demonstrated that the c value
selected by the RECV method, using any known smooth function, could be utilized for
any unknown function within the same domain, using the same interpolation points,
to achieve highly accurate approximations.

2. Regarding the generalizability of MKI adaptive points, numerical experimentation
demonstrated that MKI adaptive points generated for any known smooth function
within the same domain could be utilized to interpolate an unknown function, resulting
in highly accurate approximations.

In addition to improving interpolation accuracy and efficiency for MQ RBF interpola-
tion, the RECV method and the MKI method can both be applied to PDE problems with
both Kansa’s method and MAPS (the Method of Approximate Particular Solution), two
well-known domain-type meshless Kernal–Based Colocation (KBC) methods. Numerical
experiments demonstrated that RECV c and MKI adaptive points improve the convergence
rate of approximations using both Kansa’s method and MAPS, and smooth the oscillation of
accuracy caused by complex boundary conditions.
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7.2 Future Work

The primary goal of the work in this dissertation, the development and testing of the RECV
method and the MKI adaptive point method, was to enable practitioners to more easily
perform MQ RBF interpolations and utilize KBC meshless methods with PDE problems,
without facing difficulty in choosing an optimal shape parameter values or in selecting ideal
collocation points.

While both the RECV method and the MKI method are powerful and effective, several
areas still remain where further research could refine or find new applications for the
techniques, or utilize the underlying principles to develop useful methods for other situations
where convergence might point to ideal constant values.

One potential problem with the MKI method is CPU usage, which can increase expo-
nentially as more points are called for. For example, MKI, when run on the system utilized
in this research [footnote], takes 30 seconds to generate 100 adaptive points, but takes 30
minutes to generate 200 adaptive points. Therefore, more research should be done to try to
streamline or refine the MKI method for use with larger data sets.

In addition, several other topics seem to merit additional investigation:

• Currently the MKI method adds one point to the set of adaptive points being generated
with each iteration. A more efficient algorithm, perhaps adding multiple points with
each iteration, could significantly reduce required CPU usage.

• It may be possible to combine the MKI method with other adaptive algorithms to
generate more useful point sets for singular functions.

• While the RECV method and the MKI method have proven to be effective at improving
accuracy and reducing computational costs with both Kansa’s method and MAPS,
both the RECV method and the MKI method should be tested for suitability with
other domain-type KBC methods for use with PDEs.

• In the past two decades, more than a hundred publications, e.g. [16, 19, 23] have
explored the trade-off principle in global KBC methods. However, shape parameters
needed in global domains are not the same as those needed in local domains. In de-
signing the RECV method, an indicator was proposed to select ideal shape parameters.
Further research should be done exploreing ways to use the RECV method to redefine
the local domain and choose an optimal shape parameter for local KBC methods.

• Both the RECV method and the MKI method should be tested for suitability with the
Method of Fundamental Solutions (MFS), for use with PDEs.
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• Madych and Nelson [53, 54] proposed that the convergence rate of KBC methods
should yield a given bound. However, numerical implementation showed the proposed
bound may never be reached due to the ill-conditioned nature of interpolation matrices;
i.e., the accuracy of approximation becomes increasingly unstable as the condition
number increases. It may be possible to utilize the RECV method, along with an
appropriate conditioning method, to aleviate this problem.
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Appendix A

Derivatives and Particular Solutions of MQ

We provide detailed derivation of all formulas as commonly used differential operators listed
in Table 5.1 for MQ in R2.

A.1 Derivatives for Kansa’s Method

For Kansa’s method, the derivatives of MQ, Φ(r,c) =
√

r2 + c2, following the chain rule
implies:

∂Φ(r)
∂x

=
∂ r
∂x
· dΦ(r)

dr

=
x
r
· dΦ(r)

dr
=

x√
r2 + c2

,

(A.1)

Similarly,
∂Φ(r)

∂y
=

∂ r
∂y
· dΦ(r)

dr

=
y
r
· dΦ(r)

dr
=

y√
r2 + c2

.

(A.2)

The second order derivatives are given by:

∂ 2Φ(r)
∂x2 =

∂

∂x

(
x
r
· dΦ(r)

dr

)
=

∂

∂x

(x
r

)
· dΦ(r)

dr
+
(x

r

)
· ∂

∂x

(
dΦ(r)

dr

)
=

r2− x2

r3
dΦ(r)

dr
+

x2

r2
d2Φ(r)

dr2

=
y2 + c2

(r2 + c2)
3/2 ,

(A.3)

as well as
∂ 2Φ(r)

∂y2 =
y2 + c2

(r2 + c2)
3/2 , (A.4)

and the Laplace differential operator or Laplacian

φ(r) =
∂ 2Φ(r)

∂x2 +
∂ 2Φ(r)

∂y2 =
r2 +2c2

(r2 + c2)
3/2 . (A.5)
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A.2 Particular Solution for MAPS

In R2, let MQ RBF φ(r) =
√

r2 + c2. Then for MAPS, the Laplacian in radial coordinates
can be expressed as:

φ(r) = ∆Φ =
1
r

d
dr

(
r

dΦ(r)
dr

)
. (A.6)

Then,
1
r

d
dr

(
r

dΦ(r)
dr

)
=
√

r2 + c2. (A.7)

This implied the Φ(r) can be calculated as follows:

Φ(r) =
∫ 1

r
·
(∫

r ·
√

r2 + c2 ·dr
)
·dr, (A.8)

=
(4c2 + r2) ·

√
r2 + c2

9
− c3

3
ln

(
2c+2

√
r2 + c2

c4r

)
+C1 lnr+C2, (A.9)

=
(4c2 + r2) ·

√
r2 + c2

9
− c3

3
ln
(

c+
√

r2 + c2
)
+

c3

3
ln(

c4

2
)

+
c3

3
ln(r)+C1 lnr+C2, (A.10)

where C1, C2 are constants. In order to eliminate the singularity of Φ(r) at r = 0. we choose

C1 =−
c3

3
, C2 =−

c3

3
ln(

c4

2
).

Then, the particular solution of φ(r) can be expressed by:

Φ(r) =
(4c2 + r2) ·

√
r2 + c2

9
− c3

3
ln
(

c+
√

r2 + c2
)
. (A.11)

Furthermore,

∂Φ

∂x
=

∂ r
∂x

dΦ

dr
= x ·

 3r2 +6c2

9
√

r2 + c2
− c3

3
√

r2 + c2
(√

r2 + c2 + c
)


∂Φ

∂y
=

∂ r
∂y

dΦ

dr
= y ·

 3r2 +6c2

9
√

r2 + c2
− c3

3
√

r2 + c2
(√

r2 + c2 + c
)
 (A.12)
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Appendix B

Additional Computer Program

B.1 Hardy’s shape parameter

Listing B.1: MQHardyShapeParameter.m
1 function []=MQHardyShapeParameter()
2 tic
3 % Define Hardy's MQ.
4 rbf = @(c,r) sqrt(r.^2 + c^2);
5 % Define unknown function which will be recovered.
6 %by MQ interpolation.
7 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
8 % Define number of center points.
9 N = [100 400 900 1600];

10 % Generate test points.
11 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(2500)));
12 test=[X(:) Y(:)]; clear X Y;
13 % Sample data in test poins.
14 zt = testfunction(test(:,1),test(:,2));
15 for i=1:length(N)
16 % Generate center points.
17 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(N(i))));
18 ctrs=[X(:) Y(:)]; clear X Y;
19 % Create right hand side vector.
20 z = testfunction(ctrs(:,1),ctrs(:,2));
21 % Compute distance matrix.
22 DM = DMatrix(ctrs,ctrs);
23 DMt = DMatrix(test,ctrs);
24 % Hardy's optimal c.
25 c = 0.815/(N(i)−1);
26 % Solved the system of equations.
27 A = rbf(c,DM);
28 Alpha = A\z;
29 % Evaluate the error at given test points.
30 At = rbf(c,DMt);
31 Error = At*Alpha−zt;
32 Maxerr(i) = norm(Error, inf);
33 fprintf('=======================================\n');
34 fprintf('Number of interpolant: %i\n', N(i))
35 fprintf('Maximum error: %e\n', Maxerr(i))
36 fprintf('c = %f\n', c)
37 fprintf('CPU time = %f\n', toc)
38 fprintf('=======================================\n');
39 end
40 end
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B.2 Franke’s shape parameter

Listing B.2: MQFrankeShapeParameter.m
1 function []=MQFrankeShapeParameter()
2 tic
3 % Define Hardy's MQ.
4 rbf = @(c,r) sqrt(r.^2 + c^2);
5 % Define unknown function which will be recovered.
6 %by MQ interpolation.
7 testfunction = @(x,y) sinc(2*x).*sinc(2*y);
8 % Define number of center points.
9 N = [100 400 900 1600];

10 % Generate test points.
11 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(2500)));
12 test=[X(:) Y(:)]; clear X Y;
13 % Sample data in test poins.
14 zt = testfunction(test(:,1),test(:,2));
15 for i=1:length(N)
16 % Generate center points.
17 [X,Y] = meshgrid(linspace(−0.5,0.5,sqrt(N(i))));
18 ctrs=[X(:) Y(:)]; clear X Y;
19 % Create right hand side vector.
20 z = testfunction(ctrs(:,1),ctrs(:,2));
21 % Compute distance matrix.
22 DM = DMatrix(ctrs,ctrs);
23 DMt = DMatrix(test,ctrs);
24 % Hardy's optimal c.
25 c = sqrt(2/0.64/N(i));
26 % Solved the system of equations.
27 A = rbf(c,DM);
28 Alpha = A\z;
29 % Evaluate the error at given test points.
30 At = rbf(c,DMt);
31 Error = At*Alpha−zt;
32 Maxerr(i) = norm(Error, inf);
33 fprintf('=======================================\n');
34 fprintf('Number of interpolant: %i\n', N(i))
35 fprintf('Maximum error: %e\n', Maxerr(i))
36 fprintf('c = %f\n', c)
37 fprintf('CPU time = %f\n', toc)
38 fprintf('=======================================\n');
39 end
40 end
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