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ABSTRACT

SOLUTION OF PDES FOR FIRST-ORDER PHOTOBLEACHING KINETICS USING

KRYLOV SUBSPACE SPECTRAL METHODS
by Somayyeh Sheikholeslami

August 2017

We solve the first order reaction-diffusion equations which describe binding-diffusion
kinetics using a photobleaching scanning profile of a confocal laser scanning microscope
approximated by a Gaussian laser profile. We show how to solve these equations with
prebleach steady-state initial conditions using a time-domain method known as a Krylov
Subspace Spectral (KSS) method. KSS methods are explicit methods for solving time-
dependent variable-coefficient partial differential equations (PDEs). KSS methods are
advantageous compared to other methods because of their stability and their superior
scalability. These advantages are obtained by applying Gaussian quadrature rules in the
spectral domain developed by Golub and Meurant. We present a simple approximate
analytical solution to the reaction-diffusion equations, as well as a computational solution
that is first-order accurate in time. We then use this solution to examine short- and long-time

behaviors.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and QQ for the rationals. The capital
letters, A, B, --- are used to denote matrices, including capital greek letters, e.g., A for a
diagnonal matrix. Functions which are denoted in boldface type typically represent vector
valued functions, and real valued functions usually are set in lower case roman or greek
letters. Caligraphic letters, e.g., V, are used to denote spaces such as V denoting a vector
space, J{ denoting a Hilbert space, or J denoting a general function space. Lower case
letters such as i, j, k,l,m,n and sometimes p and d are used to denote indices.

Vectors are typset in square brackets, e.g., [-], and matrices are typeset in parenthesese,
e.g., (+). In general the norms are typeset using double pairs of lines, e.g., || - ||, and the
abolute value of numbers is denoted using a single pairs of lines, e.g., | -|. Single pairs of

lines around matrices indicates the determinant of the matrix.
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Chapter 1

Background

1.1 Fluorescence Recovery After Photobleaching (FRAP) Method

Consider a membrane of molecules with the same molecular species unbound to the mem-
brane (surrounding the membrane). Suppose there are continuous exchanges between the
bound and the unbound molecules. The membrane size is not changing and the system
is in a steady state. We bleach only the membrane using a high laser intensity for a short
period to reduce fluorescence of the membrane to the background levels. Immediately after
bleaching, all molecules in the bleach zone (in the membrane) lose fluorescence. Since
there is a continuous exchange of the molecules with the exchange rates of k., and k, s, the
membrane regains fluorescence over time, which changes the fluorescence level. This is
a description of the Fluorescence Recovery After Photobleaching (FRAP) method, which
is a tool to investigate the dynamics of molecules within membrane domains. The FRAP
method was established by Jacobson et al. in 1976 [15]. The chemical equation of the

binding-diffusion process is

u+a :iz;fb (1.1)

where u is unbound molecules, a is specific binding sites and b is bound complexes (ua).
The rate of the forward binding reaction is called k,,,, where a molecule binds to a binding
site to form a bound complex, and k, ¢ refers to the rate of the reverse unbinding reaction
where a molecule is released from its binding site.

During the bleaching, there is a fraction of the immobilized molecules in the bleached
spot, and a mobile fraction of molecules that contributes to fluorescence recovery. FRAP
provides us information about the recovery kinetics and also the fraction of diffuse molecules.
The assumption in the photobleaching method is that the molecules could be mobile or
immobile [10]. So, after bleaching, the fraction of immobile fluorescence can be calculated
by

l—eh

Fim(t) = xCiy P

0<y<l (1.2)

where « is a parameter that depends on properties of the laser and of the detection system,

kj, 1s the bleach constant which is a measure of the intensity of the bleaching laser and the



properties of the fluorophore, C; is the initial concentration of the fluorescent molecules
inside the bleached zone, and 7 is the percentage of immobile molecules. The fraction of
mobile fluorescence is

Fm(t):KCi(l—y)];(_k'b)n {1+n(1+3)}_1. (1.3)

n! D

The diffusion coefficient of mobile molecules is
= i (1.4)

2Tp
where r, 1s the Gaussian beam radius, and 7p is the characteristic time of diffusion. The
total observed fluorescence inside the bleached zone is the sum of the mobile and immobile
fluorescence, which could be monitored over time to produce FRAP recovery curves. FRAP
recovery curves from laboratory work will be fit to mathematical models to get estimates of
mobile and immobile fractions. D is calculated by fitting a function /(¢) to the fluorescence

recovery curve. The total normalized fluorescence is

1—eho = (—kp)" 20\17!
I(t) = 1— — |1 14+ — . 1.5
() =r——+( Y)n;) sl LR E (1.5)
The first order reaction-diffusion equations which describe binding-diffusion kinetics are
du
o = Kol (x,)utD1Viu—Kontt+kog b
db 2
5 = —kplin(X,)b +D2Vob + koput — ko b
0> 9?
2 _
Ve = 92 + ayz, Dy > D, (1.6)

where D and D; are diffusion coefficients of u and b, k,, and k, 7 are on and off binding-
rate constants, and k&, is a bleach constant which is the intensity of the bleaching laser and
the properties of the fluorophore. Also, D and D5, k., and k, sy are positive constants. The

initial conditions from a prebleach steady state are

koyy
3,00 =—221__¢;, 1.7
u(x,y,0) Ko+ kor7 (1.7)
b(x,y,0) = Lc,- (1.8)
e k0n+k0ff )

and the photobleaching scanning profile of a confocal microscope can be approximated by a

Gaussian laser profile [3, 4, 11]

ol 72(()(—)66)2 ;‘ (y_)’c)z)
Irn('x7y) = 0 e rn

1.9
= (1.9)

where r, is the nominal radius of the laser beam and (x,y,) is the center.



1.2 Gaussian Beam Propagation

The Gaussian intensity distribution of a laser is

I(x,y) = NEE* = NEoEje "00 =Iye Tw0 (1.10)

where r is the distance from the center of the beam, and rg is the Gaussian beam radius
which has the intensity of 1/¢?(0.135) of its peak value [21]. The electric field variation is
given by

7‘2

2
E =Ege "0 (1.11)

where 7 is the radius at which the amplitude is 1/e of its value. The Gaussian beam radius

ro(z) and wavefront radius of curvature R(z) as a function of depth are calculated by
A\ 2
I+ ( = ) ]
Tr 0

w2\
- </1—(§) (1.12)

where A is the wavelength. The Rayleigh range is

2 2
ro(2) = reo

R(z) = z

2
_mmo

R= (1.13)

and R(z) has its minimum value at z = zg. The confocal parameter b is defined by

b=2zp = Zﬂf"o. (1.14)
The total power p(eo) is related to 1(0) by
10) = 25 p(=)
ple) = mTi’OI(O) (1.15)
where
2r2

p(r)=p(eo) [1—e "0 |. (1.16)



The Gaussian intensity distribution of a laser for beam radius at given depth (z) is

2 —22}’2 I o) —221’2
Iry.2) = 22 (@) — orao iy (2) (1.17)
”rw(z) I’w(Z)
where
2z \?
reo(2) = e 1+(ﬂ ) ) ] (1.18)
Fo0

1.3 Problem and Objectives

First-order photobleaching kinetics which are mathematically modeled in equation (1.6)
were solved numerically by Kang et al. [11, 12]. These equations were also solved
numerically using an inversion method (backward Euler in time, central differencing in
space) in [14]. In this dissertation we apply an explicit time-stepping method known as
a Krylov subspace spectral (KSS) method to solve the first-order photobleaching kinetics
PDEs. KSS methods, developed by Lambers [16], use Gaussian quadrature rules in the
spectral domain, as described in [8], to approximate each Fourier coefficient of the solution.
This component-wise approach yields high-order accuracy in time, stability characteristic of
implicit methods even though KSS methods are themselves explicit [16, 17], and superior
scalability compared to other time-stepping approaches [5]. We will use a KSS method to
solve the first-order photobleaching kinetics equations (1.6) with initial conditions (1.7),
(1.8). By applying KSS symbolically to compute each Fourier coefficient, we can also
obtain an approximate analytical solution valid for a sufficiently small time step, to facilitate

qualitative analysis of the solution.



Chapter 2
Methodology

2.1 Kirylov Subspace Spectral (KSS) Methods

In order to solve photobleaching kinetics equations (1.6), we will apply a Krylov Subspace
Spectral (KSS) Method on [0,27)? and ¢ > 0 with periodic boundary conditions. To explain
KSS methods, we illustrate with a parabolic PDE in 1-D:

d
i LxDu = 0, u(x,0)=up(x), t>0, 0<x<2nm

ot
u(0,t) = u(2m,1) (2.1)
d

where D = 5 is a differentiation operator and L(x,D) is a differential operator which
includes both differentiation operators and coefficients that are functions of x. The inner
product (.,.) is the standard inner product of functions on [0,27x]. The Fourier coefficients

of the exact solution as inner products are calculated as follows:

) = [ T@sd

(0,ty11) = <\/L2_neiwx,5(x,D;At)u(x,tn)>, 0| <N/2 (2.2)

where S(x, D;At) is the exact solution operator, N is the number of grid points and #(®,#,+1)
is a Fourier coefficient of the solution after a time step. An approximate Fourier coefficient

of the solution in discretized space is
1"y = eSy(Au(ty), Sy =e NN (2.3)
w

where Ly is a matrix that represents the spatial discretization of the operator L(x, D). Vector
components on a N-point grid with uniform grid spacing 4 are defined as follows:
U |
0] i= E

O fule)]; = (). h= 4

2.2 Gaussian Quadrature Rule

The bilinear form in equation (2.3) that we want to approximate is an example of the generic

bilinear form

ul f(A)v, (2.5)



where u and v are N-vectors, f is a smooth function and A = Ly is an N X N symmetric

positive definite matrix with positive and real eigenvalues

O<a=AN<--- <A <A =b (2.6)
and also orthogonal eigenvectors qq, qo, ..., qy such that

Equation(2.5) can be written as Riemann-Stieltjes integral
T T - T
u f(A)v = u' f Z/"tjqjqj v
Jj=1

N
= Y f(A)u"qqlv
s

 f(A)da(h) 28

I
S~

where the measure a(A) is defined as
0, A<a

N
Z'Otjﬁj, Ai<A <A
J=i

a(A) = (2.9)

N
Y aifj, b<A
=1

with o; = u’q; and B; = ] v.

This integral can be approximated with a Gaussian quadrature rule, which can be written in

terms of nodes 7; and weights w;, where j = 1,2,...,K, as follows
b K
WA = [ FR)da(d) =11f] = Y wif(t) + RIS (2.10)
a j:]
The weights w; are defined by
b
w,:/ Li(A)da(A), .11
where the Lagrange polynomial L;(A) is defined by
K A— Iy
LA) = ] , j=1,....K,
k=1k#j Aj— Mk
Lj(l‘k) = 6jk- (2.12)

The error can be calculated by

K K 2
R[f]:f;z[g") /b [H(A—zj)] da(L), a<n<b. (2.13)
. a j:l



2.2.1 The Caseu=1v

In order to obtain Gaussian quadrature nodes, we define a sequence of polynomials

qo(A),q1(A),... that are orthonormal. Orthonormality is defined by the conditions

b
(a0 = [ a(2)a(2)da(2) =, (2.14)
where g; has degree j. Here we use the inner product
b
(f.8)= /a fA)g(A)da(r) =u' f(A)g(A)u (2.15)
where
11l = (F1)12 = (T F(A) w)2. (2.16)

The three-term recurrence relation for j = 1,2,... can be written

Biaj(X) = (A —aj)gj-1(A) = Bj-19;-2(4),

b —1/2 1
a0 =0. b= ([ dan) =g @17
where, for j =1,2,...,K, we have
o = <Clj717XCIj71>:XJTAXja

Bi = i) =lIrjll
Xj = qj-1(A)u,
rj = pjAu=(A-a)gj-1(A)u—Pj-1gj2A)u=
(A— o)X — Bj_1X1. (2.18)

The recurrence relation can be written in matrix form as follows

Aq(A) = Jkq(A)+ Brqx (A )ek, (2.19)

where the vector (A ) and tridiagonal Jacobi matrix Jx are given by

o B
Z?Ei; Bi o B
qd) = ) , Jk= . (2.20)
' Bk—> ox—1 PBr-1
ax-1(4) Bk-1 ok i

The eigenvalues of Jx are the nodes for a K-point Gaussian quadrature rule [8]. The
squares of the first elements of the normalized eigenvectors of Jk yield the weights w; =

(Bogo(t;)/lla(t;)|l2)?. We then have the Gaussian quadrature approximation
u” f(A)u = ||u|Ze] f(Ux)er (2.:21)

which can easily be evaluated in terms of the quadrature nodes and weights.



2.2.2 The Lanczos Algorithm for Case u =v

Based on the above vectors and coefficients in (2.18) we can derive the following algorithm:

ro=u

X0 =0

for j=1,2,...,K
Bj—1=lrj-1ll2
X;=rj_1/Bj-1
o :XJTAXJ-
rj=(A—o;l)x;—Bj-1Xj-1

end

2.2.3 The Block Case u # v

The block-tridiagonal Jacobi matrix Jx of order 2K for the block case u # v can be written

My BT i

By M, BT

Tx = (2.22)

Bxk_» Myg_; BY |
Bx-1 Mg

and for j =1,2,...,K we have

Ri_1=X;Bj_1, Mj=X[AX;, R;j=AX;—X;M;—X; B} |, Xo=0 (2.23)

where X; is a N x 2 matrix, XJ-TX]- =1, Bj is 2 x 2 upper triangular and M; is 2 x 2 and
symmetric [18]. The matrices X; and B;_; are obtained by performing a QR factorization of
R;_1. The initial block is Ry = [ uv ] Once Jx is obtained, a block Gaussian quadrature
approximation of (2.5) is given by

uf(A)v=e[BYE{ f(Jx)ExBoez, Enn=1]e e ]. (2.24)

2.2.4 The Lanczos Algorithm Block for Case u # v

Based on the above blocks we can derive the following algorithm:
Ry = [u V]
Xo=0
for j=1,2,...,K
Rj—1=XjBj-i



Vj = AX;

M;=X]AX;

Rj=AX;—X;M;—X; 1B},
end

2.2.5 The Arnoldi Block Case u # v

The spatial differential operator for the system that we are solving is not self-adjoint,
therefore that would be discretized by an unsymmetric matrix. In the case of unsymmetric
A, since the orthogonal tridiagonalization does not exist, instead we could obtain a block
Hessenberg matrix. The block Hessenberg matrix Hg of order 2K for the block case u # v

can be written

Hyy Hpp His Hi g
Hyy Hp Hy;3 :
Hg = Lo : (2.25)
0 0 Hxk1xk2 Hxk-1xk-1 Hx-1xk
. 0 0 0 Hgx k-1 Hkik

and for j=1,2,....Kandi=1,2,...,j we have
Ri.1=X;H; ;.\, Hjj=X'AX;, Rj=R;—XH; (2.26)

where Xl.HXi =1 [5]. The main reason for using Arnoldi for the block case is the loss of
orthogonality of the Lanczos vectors in iterations which makes the unsymmetric Lanczos
method unstable. Another problem with the unsymmetric Lanczos method is lack of
convergence of the eigenvalues of M; to the eigenvalues of A and also unsymmetric Lanczos
can experience serious breakdown [7]. In other words, the iterations terminates while there

is no invariant subspace information for A. For each time step and each frequency @, the

block KSS method proceeds by defining Ry = [u v] = {\/%ei“’x u(x,tn)} as the initial
T

block for the block Arnoldi algorithm [7] described below. We compute the QR factorization
R;j_1 =X;H; ;1. Then, block Arnoldi [20, 6] is applied to produce the Hessenberg matrix
Hg, which in turn yields the nodes and weights for the Gaussian quadrature rule needed to
approximate each Fourier coefficient of the solution at time #,,1 1. The details of these steps

are discussed in the next two chapters.

2.2.6 The Arnoldi Algorithm Block for Case u # v

Based on the above blocks we can derive the following algorithm:



Ry = [u V]
for j=1,2,...,K
Rj—1=XjHjj-
R; = AX;
fori=1,2,...,]
H;; = XH"R,;
Rj :Rj—XiHij
end

end

10
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Chapter 3

First Order Photobleaching Kinetics Analytic Solution

3.1 First Order Photobleaching Kinetics Analytic Solution
3.1.1 Construction of Basis Functions

For convenience, we use the spatial domain E = [0,27]2, and impose periodic boundary
conditions. Homogeneous Dirichlet or Neumann boundary conditions can be handled in a
similar manner [5]. With this domain and boundary conditions, we use as our basis functions
the eigenfunctions of a constant-coefficient problem obtained by averaging the variable
coefficient k1, as described in [18].

Let ® = (@, ;) € Z*. We denote points in E by x = (x,y). For convenience, we

introduce
Lij(x,y,D) =Y, Oy (x,y)DH, D:ai. (3.1)
V=0 X

If we set

Q00(xy) = —kplr, (x,y) = kon

0x(xy) = Di

Op(x,y) = D

Quo(x,y) = kogy

Q00(xy) = kon

Q0o(x,y) = —koly,(x,y) —koss

Q55(x,y) = D

0F(x,y) = Da. 3.2)
and then define
[— kpl,, (X,yl)con kon + D1 A _kb[rn(x7y])€()jfk0ff—|—D2A } . ov() = [ Zgi:;’:;; }(3_3)

then (1.6) takes the form v; = Lv. We now seek to solve a constant-coefficient approximation
of this system of PDEs.
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To that end, the average of I, (x,y) over a rectangular domain E is given by

- 1 1 Iy Iy
I, = ——— Irdd:—// —dxdy = ——. 34
"~ A(E) / E/ XY =TEY ] oy, 72 Y T AE G4
We then compute the 2 X 2 matrix

("X Ly (x,y,D)e'®*) (/X Lis(x,y,D)e'®X)

L(w)= { (9% Ty (x.9.D)e@X) (6% Ly (x.y. D)el®X) (3.5)

where, for i, j = 1,2, L;j(x,y, D) is obtained from L;;(x,y, D) by replacing I,, by I,,. Then,

the eigenvalues of L(®) are

klp 1, 5 1
M = ———=||o||*(D1+D2) — = (kon +k
L= agE 3OO D)~ Sk ko) +

1
3 [ll@*(D1 = D2)* + | @[> (2(D1 +D2) (kon +korr)

1/2
4(Dkogs + Dakon)) + (kon + koy)?] "
kplp 1 2 1
M = ——— — —||lol||*(D Dy) — —(k,, + k —
) T~ 31011 +D2) = 5 ho + ko)

1
5 [lol* (D1 = D2)* + [|]*(2(D1 + D2) (kon + ko) -

1/2
4(Dikogy + Dakon) + (kon +kop)?] 2. (3.6)
If we write
k
Ui of f
= 3.7
[le ] /%JrDleHzﬂLkonﬂLll G7)
then one eigenvector of L(®) is
{ i ] _ { Kors ] (3.8)
uz1 c1
where
1 1
ct = Sllof*(Dr—D2)+ 5 (kon —koss) +
1
5 [0l*(D1 = D2)* + || @]*(2(D1 + D2) (kon + ko) -
1/2
4(Drkog s+ Dakon)) + (kon +korr)?] . (3.9)

Similarly, the other eigenvector of L(®) is

{ 12 ] —~ { Kot ] (3.10)

Uz %)
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where
1 1
= EH(DH (Dl—Dz)+§(kon—koff)—
1
5 [[|o|*(D1 — D2)* + || @[*(2(D1 + D) (kon +kos ) —

1/2

4(Dikost + Dakon)) + (kon +korf)?] (3.11)

Let U be the 2 x 2 matrix with entries u;;, j = 1,2. By computing V =U ~T we obtain the
left eigenvectors of L(®):

B 1 c —c
U o)=vT(w) = —{ g ! ]
(@) (@) kopr(ca—c1) | —korf kofy
_1 k”22 ;u21
_ off  orr | (3.12)
(D1 — D2)(@0? + @3) + (kon —kosr) | —1 1
If we write
U) =] u(o) w(o)] (3.13)

and similar for V (@), then the right and left eigenfunctions, respectively, of the frozen-

coefficient operator L are, for j = 1,2,

i(0w-x up;e
ujvw(X) - u](w)®e = |: u;‘ei(wx :| )
) Hi(0-X)
Vj’w(X) = Vj(a))®el(w-x) = ::ZZ:(Q)X) ] . (3.14)

We then seek a solution of (1.6) of the form
2
u(x,y,t) :| Z Z < Lt |: u(x,y,O) :|>
= U o(X)(Vjwe (3.15)
{ b(x,y,1) oo o b(x,,0)
We can then approximate each inner product in the above linear combination by treating it
as a Riemann-Stieltjes integral, as described in chapter 2.
In this section and the next, we use the continuous inner product of functions on [0, 27]?

and its induced L2-norm; in implementation the formulas are adjusted accordingly to use

discrete inner products.

3.2 OR Factorization

By computing the QR factorization of R

(3.16)

R() = [a b}: [xll xlz}{b(l)l ZZ}
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we can obtain X, where

X1=[x11 xlz}- (3.17)
Therefore we have

a = xbn

b = x11bi2+x12b2 (3.13)
where

b = lal,

x11 = a/bn

b1, = x11-b

w = b—xi1bpp
by = |wl,
X = w/bn. (3.19)

3.2.1 Block Arnoldi, ® # 0

Now that our basis functions have been chosen, we will approximate each coefficient of the

. Lt M<x7y )1 n)

<V]7(D7e |: b(X,y7tn) :| > (320)
using a two-node Gaussian quadrature rule. This entails performing a single iteration of
block Arnoldi, with initial blocks

form

R~ | (@) u(xy,0)
0 = V21((D)elw‘x b(x,y,O)
7 - VIZ(m)eiw‘x M(X7y,0)
Ro = { V(@)% b(x,3,0) } 62D

Then, as the first step in block Arnoldi, we perform a QR factorization of Ry and Ry, which
yields

Ro=XiBy, Ro=XBy. (3.22)

All inner products are defined with scaling factor W = (1, 1) in continuous and discrete

Spaces:

wo— {(2%)2, Continuous inner product, (3.23)

N2, Discreteinner product.



We then have

b1y

X11

byo

=

ba

lall, =/ Wllvi(@)|]?
{ v“(w)eiwx }
V1 (@ X
a/b11 = ( ) >
Wilvi(o)]
_ vll(a))ﬁ+vzl(a))b

w/by = ——2+g2
uW || vy (@)]|* — (v
bW ||vi ()]
Vi (@) +v3 (@
all, =/ W(v2(@)]?
o~ Vo (@ eiw-x
a/b11 = ( ) >
W(lva2 (o)l
%1 B vlz(a))ﬁ—l—\/n(a))b
VWva(o)[?
h
. . 2
besub= | VIv(@]
W([v2 ()]
I —\/ Wk
2 (Wlva(o)]?)?
B
- k
Wby = ——=

15
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ho= uW|v2(0)|* = (Vi (@)d+ v (@)vi(®)b)e™
ko= bW[v2(0)[* — (vi(@)b+va(@)viz(@)d)e ™
Iv2(@)[> = vix(@) +v5 (@) (3.24)
which yields
[t (1]
X, = [xn xi2]=] Lva(@e®* ] [g
L VWvi(@)] 2+ g2
[t
X, =[x fn )= Lve(@)e*] [k (3.25)
VW[va(o)| V2442

where u and b are shorthand for u(x,y,#") and b(x,y,"), respectively. Then, M; and M,

which correspond to Hy; from the block Arnoldi algorithm, can be calculated by

M, = XPLXx, =
- v“(w)eiwx f H

le(CO)eiw'X g X
VW[vi(@)[| /2 + ¢

—kply, (x,y) —kon +D1A koff %
L kon _kblrn (x,y) - k()ff +D2A
B v“(w)eiwx f

VZI(w)eia)-x g

VWvi(e)ll v f+g

[ My My
3.26
| My Mzz] (3:26)
M, = XPLX =
[ [ via(@)e'@X h H
VZQ((!))eiw'X k X
VW(va(o)l| 2+ 12
—kpl,, (x,y) —kon +D1A kogr y
| kon _kblrn (x,y) — koff +DsrA
vio(@)el®X h
VZQ((!))eiw'X k =
VW(va(o)l| 2+ 12
[ My My
- ~ 3.27
| M> Mzz] (3-27)
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ni |2

“h (@)
ny
d;
n3
dy
ny4 |
d n
d 2

b+ ()]
ne
dy
ny
: .
n_8 )vll(a))b
B )ﬁ+V21(a) (w)ﬁ

2 o
VI1<w)B+V21(w)V] B

1
v%1(w)7+V21(a))V1 o
: 1
v%l(w)Z—kvn(a))vl o )
2 f

v%l(w)ﬁ—}—vzz(w)\/l ()i | w))HwHZ_kof
v%z(w A v (@)vi2 )Z B
2 (0)b+ . )

(o ®)vio 0 ;
Voo )ﬁ—l—vzz( (w)u (w)_(D
v%z(w)ZJrvn(co)Wzk e

2 ((D )+ 0
V22 l(w

a))vz

kogfvii(

(@)] - .
vy -
o + Dyvyp
kply, [Tivii (@ o
bVZI(w))jr bHCOH ?[(Dy 11+
I uvi (@ )+I’"Dz 1 (@)h) + e
2(L,uv i+ Dyv Ll )
o e +w21(@ va1 (o )T4) +
’_kT’%in( o)|* (?(1 lffb konu)TZ] I [T3v11 (o) +(CT;‘);3+D2V21(0)
|w o 0 i ) +kpl, 2[(Dyvi
HVl(( ))VZ1(w))[k0n( )+Irnbvzl(f(;w)f9)+Awkofﬂ;))%—
(vii )HZ( UV i+ Dyva .
_kb||mi,(l(w)” ((l():l;(f*’konﬁ)+]v2](w
’ ) (kon 0
2<w)2(vni§j(a))koff)[T3
)kon_
(vll(a)
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Ivi(@)[J* >

\/(W\Ivl(w)llz(lluz\HHsz)—Real(QHVl( ®)|2[aT; +5T)) + [(T2)2 + (T1)?)
WI[vi(e)[(|[e]| + [16[1) — Real (2]|v1(e)|*[@T; +bT3]) + [(T2)2 (T )]
[—kof£(T2)* = kon(T0)) + konTi Ta + ko I3 T2 — Wk ||V (@) || * (r,l,u"f‘lr )+
kol[vi(@)|P [T uTs + I, bTa) — W |[vi (@) ||*(D1 | Vul|* + D2 || Vb ||?) -
V1 (@)|PTi [~konb + Di| @2+ konl] + V1 () |PTo[ ko i+ Ds | @25+ ko 1] -
kolr, [(T2) + (T1)?] + (ko b — konth) [ V1 (@) [>Ty —
|0 ]*[D1(T3)? + Da(Ta)?] + (konth — kog D) [|V1 (@) > T3 +
W (1v1(@)[|*[—konul|* + Whoy sith + W konbu — off||b|| ] -
1 (@)|P[D1aTs + DabT] + ky|[vi ()P, 5T + I, uT

ko pv12(@)v22(®) +konv22 (@) vi2(®) — (D1vis (@) + D2viy(0)) | 01> — kog pv3p (@) —
konv%z(w)
—kp [V2(@) |* (I, uv12(0) + I, bvar () + kI, [Tsvi2 (@) + Tovn ()] -
[@]*[v2(@)[[*(D1vi2(®)i + Davaa(0)b) + || @|*[(D1vi2(0) Ts + Davas (@) Ts] +
1V2(@) > (v12(@) (ko b — konth) + v22(@) (Konth — kos b)) +
(V12(®) —va2 (®)) konTs — kosf T6)
—kp||v2(@)]| Irnuvlz(a))+lrnbvzz( )+ kI, [Trvi2(@) + Tgvaa (@)] —
0] [[v2(@)|P(D1v12(0)7 + Davaa(0)b) + | @ |*[(D1vi2(©) T + Davar (@) Ty] +
1v2(0) |2 (v12() (konb — kont) +v22 (@) (ko — ko b)) +
(vi2(@)kon — Va2 (@)koyr) [T7 — T3]

[v2(@)]|* x

\/(WIIVz(w)II2(||u2II +1221) —Real(2IIVz(w)||2[5T5_+ZT6]) +[(T6)* + (T5)]
W[ va()|* ([l 4 16°]]) — Real (2]|va(@)||*[aTs + bTg)) + [(T6)2 +(T: )2]
[_kOff(T6)2 - kon(TS)z] + konT5T3 + ko T7T6 _WzkaVZ( )” ( Tt +Ir

l’[?

leol|*[v

)+

kol[v2 (@)L, uTy + I, bTs) — W |[va (@) || (D | Vul|? + D2 || Vb ||?) -
1v2(0)[1PT5[~kond + D1 | 0|27+ konll) + | V2(00) | *T | ko1 + Da| @B+ Koy ) —
ol [(T6)? + (T5)] + (Ko £b — kontd) [[v2() 2Ty —

00D (72)? + Da(Ts)?] + (kontt — ko) |v2() [T +

W (V2 (@) [|*[—kon || -+ Whkog b + W konbu — ko £ || b *] -

0| (|v2(@)|*[D1aT; + D2bT;) +kaV2((D)HZ[ﬁT6 + 1, uT5). (3.28)



Here, we have used the inner products

<Z’ Irn>
(@.1,,)
<E’I’"nb>

@, 1, )
(u,1,b)

<B, Irnu>
(B.¢)
<ﬁ, ela)-x>
<eiw-x’1rnb>
<eia)-x’lrnu>
<ﬁ7lrneia)~x>
<E,Irneiw'x>
<eia).x?lrn>
.<Ir,, ’ el.a)~X>
<el(0-X’ela)~X>
(b,Ab)

(u, Au)
<A_u, eiw-x>
<E, eia)-x>
(@, u)

(b,5)

{@,1)

{&,1)
(u,5)

@, u)

(b.5)
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(b,b) = ||b||*. (3.29)

After computing the eigenvalues A ¢, A2 o of M|, the coefficient of u 4, in the solution at

time ¢ can be approximated by

[BH M By, = <vl(w)®e"“"", P1.o(L) { Zgi :8; ]> (3.30)
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where p; ¢ is a polynomial of degree 1 which interpolates eM at A o and A, ¢ and is given
by
PLo(L) = A[L—lz ol] + e
' ll,a) - l2,(» ’ ;Lz,w - l1.,a)
The coefficient of uy ¢ can be approximated in a similar manner, using the eigenvalues
1170),12’@ OfMl.

The value of ¢ can be chosen sufficiently small to ensure desired accuracy, and then this

IL—Aol]. (3.31)

process can be repeated in subsequent time steps. By using the integrand g(1) = A¢*" in
place of f(4) = eM one can easily use the above M and M; to compute an approximate
time derivative, which can then be used to obtain a residual v; — Lv. This residual can serve

as an estimate of local truncation error, for the purpose of adaptive time-stepping.

3.2.2 Block Arnoldi, ; = @, =0

We now use block Arnoldi for the case @; = @, = 0, for which we use the initial block

—M22 uxayao
Ry = Off ()n Off) ( ) (332)
b 0
Fon— Koy (x,,0)
where variables obtained by substituting uy, = —k,, ff are
by = |all,=
Off
{ “"f} i
1 1
xi1 = a/by = Lo
\/2W
\/W Kops +Kops)
B \/W(uo-i—bo)
b, = xj1b=——-—-
V2
_%3%
2
W (brug)?
b = |w||2—w|u||2+||b||2 W)
uo—l—b() T
Wb
Wu\|2+ubu2 Wbt
X12 = W/bzzz u0+b0 . (3.33)

g+ o - X0



Then, after computing the QR factorization Ry = X By, we have

Then, M, is given by

) + by
1 2
V2w Wb o)’
a2 + o2 - V0"
uo—l—bo
b—
2

7 e+ g - o)

M, = XPLx, =
u()—l-b() 1H
1
V2w Wbl
[l +[16]]> = ———
M0—|—b0 X
1
V2w Wbl
>+ 11> = ——— |
—kply, (x,y) — kon + D1A kogy
kon _kblr,, (X,y) — koff + Do A
B uo + by T
1 2
2w W (b1uo)?
o -
uog+ bo -
b_
2

Vi .
e+ o — L s20”

VW (ko — kon) (1o — bo) — ki (uly, + bl + T, (o + b)) )

V2d5

M11 My,
My, My
where
My = Ik
My, =
My =
nia
My = —

dis

21

(3.34)

(3.35)
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na = —kyW ( vt + 1 b — (0 + bo) I, u — (uo + bo) I, b+ 1, (%% + %% —l—uob())) —
on (Hu\|2—Wu0(u0+bo)+W(bOTW) —korr (Hsz—Wbo(uo+bo) +W(bOT+u0)2) +
Wik +ho) (o~ L8200 ) a4 o)
dis = |lul*+ llbllz—W(b%”O)z. (3.36)

We then proceed as in the previous discussion to obtain the coefficient of u; () in the
solution.

Similarly, for the coefficient of u; (g ¢y, our initial block is

U1 0
R() _ koff (kon 1_ koff) u(x’ > ) ) (3.37)
Fon—kor7 b(x,y,0)

Computing the QR factorization, variables by plugging u; = k,, are

Z) . ~ W(kgn+kgff)
n o= llall,= 2 2
koff(kon _kaff)

|: kon :|
- —k
X alby = off

X1 =
- . W (k. —korb
bjn = %1-b= VW (kontto —korrbo)
k2, +k off
u(k2, +k2 — k2,40 + konko r£bo
kzn —|— k()ff k()ffbo + k()nkOffuo
kz2)n+k0ff
E . — 2l WulkZ, Wb kgff 2Wuobokonkoff
2 = (Wl = |l ol ="~ K2, + k2
\ ont of f on T off n T off
(kfz)n + koff) konuo + kO”koffbo
3 o \d
P 21
12 b b(kgn +Korr) = kor b0 + Konkos it
i Vdai
Wudk:,  WB3kZ . 2Wugbokenk
4 = ||u||2+||b||2 ug, 0%off UDOKonKoff (3.38)

k%n+k2 k(23n+koff k(%n+kgff

of f



where Ry = X, By yields

kOi’l
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u(ko, + ko ) = kotto + konkos o |

k2

_ \/W(kgn+ 2

)

vV d21

(K2, + K5 s

on

\/ —Moff
W

Vday

Wuzk2

WD

k2

day

|+ 161> —

0™on

of f

2Wu0b0k0nk0 ff

K ko

Then, we compute

Rtk

k2, +

k2

of f

M,

XHLX, =

kOi’l

k2

VW, )

—Moff

b(kgn'i'kgff)

Vdai

— kb0 + konkog fitg

W)

_kblrn ('x? y)
kon

kon

—kon+D1A

kol (x,

Vo
k
y)

—korr+D2A

(3.39)

(k2 +k2ff) k(m uo + Konko £ 1bo ]

k2

VW, 4K )

—Roff

New

b(k0n+koff) k b0+k0nkoffu0

W)
[ Mll MIZ }

| My My

which yields

_]Tnkb

—kyy —
~ ka(_konm + kOffm + E(uokon

\/_

(3.40)

of f
—bokosr))

~ nig

\/W(k%n +kZpp)dig

\/W(kZ +k2,,)d1s
9
die
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mg = koW (—konlntt+ ko sl b+ I, (uokon — bokosy)) +

konk3ff konk3ff
W uo —szf+—° +bo | K2, — —2L
< ( ° kgn+kgff 0 kgn+k§ff

B Wb(%kgf r 2Wuobokonko s ¢
k%n+kgff kc2)n+kgff kgn—i_k(z)ff

dig = |lul®+bl|* -

2
2u0k2 2b0k0ffk0n —2u0k0nkoff 2b0k0ff
nog = —kW Irn,u +Irn,b +Irnu ( 0271 _ 3 —|—[rnb 5 + 3 +
kontkopp  Kon+koss konthopp  Kontkops
21,2
T (_ ugkon  bokoyy + ugby Konkors )
n 2 2 2
kon tkopp  Kontkops kon +Kogy

W ((ub)o(kon + koff) + u%kon + b%koff — boug (kon + koff)) —
(kon|el]* + ko £ [|611%) — (D1]|Vul|* + Da||VB|?).

Here, we have used the inner products

(u,ln,u) = ernj
(0. 1;,b) = Wm
(uo, Ir,u) = Wuolyu
(bo,I;,u) = Whol, u
(o, I,,up) = Wil
(ug,I,bo) = (bo,I,uo) = Wugbol,,
(u, 1) = (1,u) =Wuyg
(u,b) = (byu) =W(bu)o =W (ub)y
(uug) = Wud
(u,bg) = Whoug
(up,bg) = Whoug
(ug,up) = Wuj
() = ull?
(w,Auy = —|Vul*. (3.42)

3.3 Approximate Analytical Solution

In this section, we specialize to initial data (1.7), (1.8) from pre-bleach steady states to
obtain an approximate analytical solution for sufficiently small 7. The terms in the entries of

v11 and vy, that are of lower order in ||®|| are neglected.

(3.41)
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3.3.1 The w; = @, =0 Case

When o) = @, =0, our initial block for the component in the direction of uy (o ¢) is

- 1753 kofrci
Ry — koff(kon —Korr)  Korf =+ kon (3.43)
1 konCi

kon_koff kofj'+kon

where the OR factorization variables are

2
b = llall,=\\W——
2 (kon - ko ff )2
U
kOff(koln —kosy)

kon — ko ff
2

2221

Koy

(kon - koff)2
VWhkoprei(—uan +kon)

Ci
kon +k0ff

2
Ci
b = |w||,=/W|——] X
2 ” ”2 \/ (kon+koff)

2
korrr | koyrkontiza
kofr— 2 7 T 2 2 +
off TU  Kopptup
korpy  korrkontta
korr — kzofj >t kosz s
of f T2 o£f+u22
korrn — koprkon

x11 = a/by =

w

by = x11-b=

kof U3, n kot rkont2n
) 2
0£f+”22 k0£f+u22
ko U2 ko 7 fkon
2 2 2
koprtuzy  kypptunn

w = b—x1bip=

Pl

0n+ )

2
k§ FrU22 k§ f fkan
k(zyff‘F“%z koffJF”%z

X1p = W/b22 = o * kgff +M%2 kgff + M%Z ' (3.44)
\/W<(k0ff - kon)2 + (kon - Off)z)
Substituting 2> = —k, 7y in x11 and x12, X; becomes
1 =1
xo= | Vv v (345)
V2W V2w
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which yields

[ —kply, (x,y) — kon kors "
kon _kblrn<x7y) _koff

~kply, 0
n _ ) 3.46
L kon — of f _kblrn - (kon +k0ff) :| ( :

The eigenvalues of M are

b

Aoy = —koly,

)Q,(O7O) = _kbm_(kon +k0ff) (3.47)

For the component of the solution in the direction of u, (g o), we use the initial block

Uy kogrci
Ro = | korstkon=kopr)  Kofr+kon (3.48)
—1 konci

kon_koff koff+kon

where the QR factorization variables obtained by substituting uy| = k,, are

2
u
221 + 1

k
= ff
b = lal,=\\W-——"—
2 (kan_koff)2

Uz
Kosy (k(T 1—koff) { ko }
o= a/bn= kon_lgoff = oty
%H W(k%n+k§ff)
o
W (kon jf off)’
VWkeprei(ur — kon)

biy = fi1-b= —
Kon Ko s/ Uzy + kg r

=0
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2
=~ ~ Ci
22 || ||2 \/ kon+koff> ( on Off)

X2 = W/byn =

3 W (k2,+k2 W (k2,+k2
o= [fn fn = VW@ ) W) | (3.49)

Then

i \/W on+koff \/W 0n+koff)
[ —kply, (x,) = kon kors
kon _kblr (x y) _koff

[ kon kogr
\/ "<2m+ orf) \/ W( on+ orf)
—koy

\/W k%n+ off \/W 0n+ off

_kblr,, - (kon + koff) 0_ }
kan - koff _kblr,Z .

X

(3.50)

It follows that the eigenvalues of M, are

i1,(0,0) = —kply, — (kon +kosr)
Lo = —koly,. (3.51)

3.3.2 The w # 0 Case

To facilitate analysis of high-frequency components, here we neglect lower-order terms in

||@||2. For the component of the solution in the directions of u; ¢ and u, ¢ with ||@|| >0,



the initial blocks are

[ i iox 1 [  kogrei
_ . une™ N\ Tory hon
Ry = 2 korr .
(D1 —D2)||a)|| + (kon — koff) _pl0X onCi
L = L koff+kon
[ I iox 7 korrci
o B e |
= | DD+ k) | ¥
- - 1)-X ___von*>1_____
_ on of f I e | koff iy
where the QR factorization variables for R are
2
u
222 +1
kory
b lall, = | W 2 3
(D1 = Do)[|@|” + (kon — ko))
[~ _uzzeiw-x
Kogy
ela)'X
X1 a/by = —
2
W <—”222 + 1)
\ o\,
b1 x11-b=0
g ors
w b—xibpp=| """ cioff L
kon +k0ff on

ba

X12

2
Ci
= /W ——— (kZ,+K2

2]
w/by = ko

W (k3, k2 )
lall, = Cory

W
(D1 = D2)|@|* + (kon — koss))?

28

(3.52)

(3.53)
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and the QR factorization variables for Ry are

uZleiwx
koff
B _pl0X
11 = d/by =
2
w %H
Kors
b, = %1:b=0
- . —k of f
w = b—X11b12 For +—k0ff kon
kon"‘koff
. 2
by = |W|,=/W (| —F-— ] k2, +k
n = il =W () k)
o
o = Ww/bn= (3.54)
W (K2, k2 )
Orthogonalization of these initial blocks yield
- { _uzze‘l’w_x } - koff = —
Xl = kffelwhx L kon J
i \/W uy +k off \/W(kgn+kgff) |
~ |: MZ]elw.X :| koff . -
X = —kosre'®™ | kon_| . (3.55)
I \/W<u%1+kgff) \/W(ktz)n+kgff) |
We then compute
M, = XPLXx| =
[ [ —upe'®X kogr "
koffelw'X Kon «
W, k) W R, R
[ _kblrn(x,y) _k()n +D]A kOff
I kon —kply, (x,y) —koss +D2A
[ —Mzzeiw'x koff
I \/ u22—|— off \/W Un_|_k2
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i kkos 17, (@1, 02) (@23 — kon) |

Uz +Kogs W8+ B+
kbkoffITn(wla ) (120 — kon)
W Judy + K2 [+
ny = —kol, 5y + Ky pp) — |0 (D113, + ko ppD2) —

_ kaTn

(konu%z + u_22k(2;ff + koffkanMZZ + kgff)
M, = XPLX =

uzlei(ox koff H
_koffeiwX kon

\/W(”%l +K ) \/W(k%n +k3 )

|: —kblrn(x,y) —kon+D1A koff :| y
kon —kblr” (x,y) —koff—i-DzA

[ ][]
—kofpei®* kon _

W R ) WG, R

[ ny kokog £y, (@1, @) (—021 + kon)
1+ Kogs Wi+ R+

kpkos 1y, (@1, 0) (—u21 + kon)

_ W\/u§1+k§ff\/kgn+kgff

nyp = —kbm(“%ﬁrkgff)—Hw|\2(D1”%1+k(2) D7) —
(kont3) + 21Ky 7 + ko prontiar + Kz ). (3.56)

_ kbm

, , (M) — /w2 (My) — ddet(M))
One of the eigenvalues is calculated using > and the other

2det(M1) .
tr(My) — \/t2(My) — 4det(M))

calculated by
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The eigenvalues of M are

1 (konM%Q +u_22kgff+koffkonu22 +kgff)
(ll@|*(D1uzs + ko £D2)) — -
o 2(u3, + Ky pr)

Mo = ——5—>5—~
2(uzy + K35 p)

1 1

koly, — > | 55— 01" (D12, + k5 £D2)*+
T, 2 (M%2+kgff)2 of f
1
(u%2+kgff)2
2

> 2
() + k5 p)?
1/2

4k2k0ff T'n (a)la a)Z)(EZZ - kon)(u22 - kon)
W2 (K3, + kg ) (Ko +13))

(kontt3 +22k3 1+ Ko phontinn + kg p) >+

||ao||2(z>1u’3‘2 + k3 1D2) (kontt3y +Wazk p + ko g phontin +k3ff)+

na3
l2,(0 = 5
d3

—1
dy =~ [0 (D1dy + Ky D) + (konttdy + T3KE g hontins + K )] —

Wy + ks

_ 1
2L, — | ——5— ol (D13, + k3 Do) >+
" [( +k§ff) o

1
(”%2+k§ff)
2

(u3, + kgff)

4k2k0ff T (wlawz)(ﬁzz —kon) (U220 — kon)
W2 (K2, + kG ) (Ko +13y)

(konuzz +u_22kgff + koffkonMZZ + k?;ff)z“’_

Al 0> (D1u3y + ki 1D2) (Konttz + sk + ko phonttas + kgff)"‘

1/2

2 —
e O R LY kol | 0| (D13 + K D2) 3T, (s Koy +
(u5y k5 1)

kar,, (k(mbtzz + u_zzkgff + koffkonu22 + k?,ff)] -

QUG 41,2 (001, @) (W22 — kon) (22 —Kon). (3.57)
W2 (K3, +Kopp) (kg +1435)
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The eigenvalues of M, are

1 2 2 ) (kanu%1 +u_z1k§ff +kofrkont1 +k2ff)
—~ >~ ol*(Diugy + k5 D2)) — 0 -
2(u3, +kypp) 2(uz +kypr)

1 1
2 | (u3) +kZpp)?
1
(3, + k)
2
(3, + k)
1/2

4k2k§fflrn (0)1, wZ)(_EZI +k0n)(_”21 +k0n)

W2 (2, ke o) (K 13

Mo
kply, — lo||* (D113, +k§ffD2)2+

(k,,,ﬂ%l +u_2]k¢%ff + koffk()nLtZl + kgff)2+

5|l 0> (D143, + ki ¢ ¢D2) (kontt3) + Uaiky s+ Kof phontiar + ko )+

3 na4
’ daa4
d——l 2(Dyu3, + k%, D ko3 +a1k> 5 + ko k B -
# = a2 |@[|"(D1uzy + kg r¢D2) + (kontta) +Uatky s p+ KoffRontiar + off)
Uyt K¢

_ 1
2L, — | ——5— ol (D113, + kD) >+
" [( +k§ff) o

1
(konuzl +u_21kgff + koffkonMZI + kgff)2+

(3, + kgff)
2
(13 + ko pp)?

Ak ¢ 17, 2 (@1,02) (=721 + kon) (— 21 + kon)
W2 (K3, + kg ) (Ko u3))

||w||2(z>1u§1 + kG 7 D2) (kont3) +Tatk f+ ko frhontinn +k3ff)+

1/2

2
(u3; + K5 pp)
kblrn (konu21 +M_21kgff +k()ffk0nu21 +kgff)] -

n4 koI, || o||* (D113, + kofsz) + kI, 23 + koff)+

2k2k§ff1,n (@1, @) (—T21 +kon) (—t21 +kon)

(3.58)
Wz(k()n + koff) (kgff + u%l)

tr(01y) — \/te2(411) — 4 det(41))

where I;nz (o1, @) decays rapidly to zero at higher frequencies. Formulas

- 2det(~Ml) — are then applied to calculate the eigenvalues of M.
tr(B11) — \ /(811 — 4det(41,)

and
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Finally, the component of the solution in the direction of uy ¢ is

[(0-X ) 70
B M)y = <vl,w®elw ,pl,w<L>{Z§§’;0H> (3:59)

where p; ¢ 18 a polynomial of degree 1 which interpolates eM at Al,w and A3 ¢ given by

Mol Mol

L —F—F |L— I+ —
Pl,w( ) Al,oo - )Lz,a)[ lz,w ] * A2,a) - l1,60

IL— 1.0l (3.60)

We conclude that the solution is

{ b ] = L wolo) <v1,w,p1,w<m {
L

o)
)
)

g
Y wolxy) <vz,w,Pz,w< ) { oo D

WweZ? 0
- 1 ull(m)eiw-x
(D1 —Dy)||®]]2+ (kon — korr) [ g1 (@)e' ™ } i
- kogrei
[ Iédo%e—zw.x 00X ]Pl,w(L) kofj;j;f{on +
koff+k0n
1 U2 ()el®x
(D1~ D2) [+ (kon — Kug) e ]
korei
%e—iw-x e 10X }Pz,w(L) kOf]é):‘cfon ) (3.61)
koff + kon

We used exact basis functions which are valid for all frequencies, while in previous work
[5] basis functions were approximated for the constant coefficient problem, which was valid
only at high frequencies.

3.4 Analytics in Frequency Space
Computation of M| and M, in frequency space yield

M, = XxPLx, =
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_uzze.iarx koff H
kosre™™ kon x
\/W(ugz S AT \/W(kgn AT
—kblrn (x,y) —kon+D1A koff y
kon _kblrn (x,y) — koff—l-DzA
[ [ —upe™®™ kogr
koffelwAX Kon _
i \/W(”%z +krp) \/W(kgn +korp)
- oo -
—r2|® o
kpkofrloexp (#) (22 — kon)
ny
Y
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Similarly, the eigenvalues of M are
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Asymptotic analysis of the above eigenvalues as || @|| — oo yields

_Hw||2(D1”%2+kgffD2)

Mo = (U3, +k21f)
Mo ~ —kply,
hw ~ — o[> (D113, + k5 4 ¢D2)
| (3 + ko7 p)
o ~ ki, (3.65)

and when ||@|| — 0 we have
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3.5 Efficient Implementation

In this section we show how the KSS method for the first order photobleaching kinetics
can be implemented efficiently through vectorized polynomial interpolation. This approach
produces the approximate analytical solution that can provide insight into qualitative be-
havior. We use FFTs that produces frequencies in the range —% +1<w< %V The Fourier

coefficients of the solution at time ¢, are computed as follows:

o ] = [ ] ot 10 )+
oy | Qmope [530])
B Z;Egg [€0,0(V11(@)i(0) +v21(@)b()) + ] o (vi1(0) H(@) + V21
200 | o Gr@ln) +va@ibe) + ¢ oa(@is(e) + o)
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where p; , is a polynomial of degree 1 which interpolates M at 7Llj » and ﬂ.zj o for j=1,2.
We have
u ~ u ~ p
Pjo(L) [ } = ¢} [ } + ] [ } (3.68)
b n L b n @ 4q n
where
P } = L { " ] (3.69)
{ 91, bl
The coefficients of p; (L) are given by
flgw _ el,iwAr
j o fzj,co_fljm 19
o — j i J=h
)"2,60 - Al,a)
cé,w = fg,w_c{,wlzj;w (3.70)

For /i and b, the appropriate matrices of 2-D Fourier coefficients are multiplied component-
wise. An inverse FFT yields the solution at time #,, ;. The resulting algorithm requires

O(N?1ogN) floating-point operations, where N is the number of grid points per dimension.

3.6 Numerical Results

We now use numerical experiments to validate the formulas of the previous sections. Errors
for the solution of first-order photobleaching kinetics by applying a first-order (K = 1) KSS
method are shown is this section. We present the absolute and relative errors versus number
of grid points per dimension (N) and number of time steps (nsteps). Errors are computed
by comparing the solution at the final time (denoted by /) to that obtained by computing
the matrix exponential of L *; times the initial data. Parameters are k;, = 1 and C; = 1 in all

cases.

Table 3.1: Execution time, absolute error and relative error for different grid point for
nsteps = 10,000 with parameters ko, = 107> 571, k. = 1071 571, Dy =30 um?/s,
D> =10"* um? /s and @,, = 0.5 um.
N=8 N=16 N=32 N=64
Execution time 4.4901 7.9654 19.7626 75.9164
Absolute error  0.0026 1.3708e-04 6.2202e-05 3.3702e-06

Relative error 0.0012 1.8657e-05 3.6038e-06 6.9968e-08
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Figure 3.1: a and b: Absolute and relative errors versus grid points (N). ¢ and d: Absolute

and relative errors versus time steps. Parameters are k,, = 10793 g1, kofr = 1071 1,

Dy =30 um?/s, Dy = 10~* um? /s and w,, = 0.5 pm.

Table 3.2: Execution time, absolute error and relative error for different grid point for N = 64
with parameters ko, = 10703 571 kyrp = 1071 571, Dy =30 um? /s, Dy = 10~* um? /s and

o, = 0.5 pm.

time steps=100 time steps=1000 time steps=10000
Execution time 0.79309 6.8334 75.9164
Absolute error 3.3739e-04 3.3705e-05 3.3702e-06
Relative error 7.0045e-06 6.9974e-07 6.9968e-08

For our first test case, reaction-dominant parameters that are defined in Chapter 1 are set
tobe kpy = 1079 571 kyrp =107 571, Dy =30 um? /s, D = 10~* um? /s and @, = 0.5
um for Figure 1. These values are taken from [11, 13, 22].

Figures 3.1a and 3.1b show absolute and relative errors versus grid points (N) for

nsteps = 10,000 (number of time steps) and final time 7 = 1. It shows a rapidly decreasing
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trend for both absolute and relative errors by increasing N. This is due to each solution being
compared to an approximate solution computing using the matrix exponential on a finer grid.
Figures 3.1c and 3.1d show absolute and relative errors versus time steps for N = 64 and
final time ¢y = 1, corresponding to a time step Ar = 1/nsteps. It shows first-order accuracy
in time, as expected. Table 3.1 shows the execution time, absolute error and relative error
for different grid sizes for nsteps = 10,000 with parameters k,, = 10795 571 &, ff= 107!
s~!, Dy =30 um?/s, Dy = 10~* um? /s and @,, = 0.5 wm. Table 3.2 shows the execution
time, absolute error and relative error for different time step sizes, with N = 64, for the same

parameters.
» nsteps=10000,tf=1 2 nsteps=10000,tf=1
10" ‘ 10° w
103
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2 10 2
w w
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Figure 3.2: a and b: Absolute and relative errors versus grid points (N). ¢ and d: Absolute
and relative errors versus time steps. Parameters are k,, = 1033 571k, =1 s1. Dy =30
um?/s, Dy = 10~* um? /s and ®,, = 0.5 wm.

For the second case, effective diffusion parameter values are set to be k,,, = 1035 571,
ko =151, Dy =30 um?/s, D = 10~* um? /s and ®,, = 0.5 um for Figure 3.2. Figures
3.2a and 3.2b show absolute and relative errors versus grid points per dimension (N) for

nsteps = 10,000 and ¢y = 1. It shows a rapidly decreasing trend for both absolute and
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Table 3.3: Execution time, absolute error and relative error for different grid point for
nsteps = 10,000 with parameters ko, = 10°> 57!, ko= 1571, Dy =30 um? /s, D, = 10*
um?/s and @,, = 0.5 pm.

N=8 N=16 N=32 N=64
Execution time 4.5759 7.9816 19.9623 71.1799
Absolute error  0.0090 0.0042 0.0016 4.1146e-06

Relative error  0.0043 9.8314e-04 1.9172e-04 1.1792e-07

Table 3.4: Execution time, absolute error and relative error for different grid point for
N = 64 with parameters k,, = 103> s~ 1, korr =1 s 1. D; =30 umz/s, D, =104 /.Lmz/s
and @,, = 0.5 um.

time steps=100 time steps=1000 time steps=10000

Execution time 0.77525 6.8763 71.1799
Absolute error 4.1187e-04 4.1145e-05 4.1146e-06
Relative error 1.1729¢-05 1.1748e-06 1.1792e-07

relative errors by increasing N. Figures 3.2¢ and 3.2d show absolute and relative errors
versus number of time steps for N = 64 and 7y = 1. As before, first-order accuracy in time is
obtained. Table 3.3 shows the execution time, absolute error and relative error for different
grid point for nsteps = 10,000 with parameters k,, = 103 s~ 1, korr =1 s~!, Dy =30
um?/s, Dy = 10~* um? /s and @,, = 0.5 wm. Table 3.4 shows the execution time, absolute
error and relative error for different time steps, with N = 64, for the same parameters.

For the third case, pure diffusion parameter values are set to be k,,, = 1072571, korr =10

Table 3.5: Execution time, absolute error and relative error for different grid point for
nsteps = 10,000 with parameters ko, = 1072 571, ko = 10 571, Dy = 30 um?/s, D, =
10~* um? /s and @,, = 0.5 um.
N=8 N=16 N=32 N=64
Execution time 4.6127 7.9169 19.9402 70.3547
Absolute error  0.0088 1.4902e-04 3.8141e-05 2.3867e-09

Relative error  0.0021 1.8470e-05 2.4014e-06 7.8543e-11

s~1, Dy =30 um?/s, Dy = 10~* um? /s and @,, = 0.5 wm for Figure 3.3. Figures 3.3a and
3.3b show absolute and relative errors versus grid points per dimension (N) for nsteps =
10,000 and ¢y = 1. It shows a rapidly decreasing trend for both absolute and relative errors

by increasing N. Figures 3.3c and 3.3d show absolute and relative errors versus number
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Figure 3.3: a and b: Absolute and relative errors versus grid points (N). ¢ and d: Absolute
and relative errors versus time steps. Parameters are k,,, = 107251, korr =10 s~1.D; =30
um?/s, Dy = 10~* um? /s and ,, = 0.5 wm.

Table 3.6: Execution time, absolute error and relative error for different grid point for N = 64
with parameters ko, = 1072 571, korp = 10 571, Dy = 30 um?/s, Dy = 10~* um?/s and
o, = 0.5 pm.

time steps=100 time steps=1000 time steps=10000

Execution time 0.81812 6.9748 70.3547
Absolute error 3.1191e-07 2.6479¢-08 2.3867e-09
Relative error 1.0130e-08 8.6496e-10 7.8543e-11

of time steps (timesteps) for N = 64 and t; = 1. As before, first-order accuracy in time is
obtained. Table 3.5 shows the execution time, absolute error and relative error for different
grid point for nsteps = 10,000 with parameters ko, = 1072 s, k,rr = 10 571, D; = 30
wm? /s, Dy = 1074 um? /s, @, = 0.5 um. Table 3.6 shows the execution time, absolute
error and relative error for different time steps, with N = 64, for the same parameters.
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For the forth case, diffusion-dominant parameter values are set to be k,,, = 255 s~

o nsteps=10000,tf=1 2 nsteps=10000,tf=1
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Figure 3.4: a and b: Absolute and relative errors versus grid points (N). ¢ and d: Absolute
and relative errors versus time steps. Parameters are k,, = 255 s~Lk, =31 s~L. Dy =45
um?/s, Dy = 2.5 um?/s and @,, = 0.6 um.

Table 3.7: Execution time, absolute error and relative error for different grid point for
nsteps = 10,000 with parameters ko, = 255 s, kopp =31 5!, Dy =45 um? /s, D, = 2.5
um?/s and @,, = 0.6 wm.

N=8 N=16 N=32 N=64
Execution time 4.6111 8.1284 19.9517 70.7699
Absolute error  0.0110 8.8722e-04 3.2260e-04 5.0216e-08
Relative error  0.0027 9.7375e-05 1.7675e-05 1.5728e-09

kors=31s"1,D; =45 um?/s, D, = 2.5 um?/s and @,, = 0.6 wm for Figure 3.4. Here we
consider a diffusion-dominated case. Figures 3.4a and 3.4b show absolute and relative errors
versus grid points per dimension (N) for nsteps = 10,000 and ¢ = 1. Like other previous

cases, it shows a decreasing trend for both absolute and relative errors by increasing N.
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Table 3.8: Execution time, absolute error and relative error for different grid point for
N = 64 with parameters ko, = 255 571, kopy =31 57!, Dy =45 um? /s, D = 2.5 um?*/s
and @,, = 0.6 um.

time steps=100 time steps=1000 time steps=10000

Execution time 0.78513 6.8135 70.7699
Absolute error 5.2135e-06 5.0417e-07 5.0216e-08
Relative error 1.6329¢-07 1.5791e-08 1.5728e-09

Figures 3.4c and 3.4d show absolute and relative errors versus time steps for N = 64 and
ty = 1. First-order accuracy in time is again observed, with the error smaller than in the other
cases. Table 3.7 shows the execution time, absolute error and relative error for different grid
sizes with nsteps = 10,000 and parameters ko, = 255 s~ 1, kopr =31 571, Dy =45 um?/s,
Dy =2.5 um? /s and ®,, = 0.6 um. Table 3.8 shows the execution time, absolute error and

relative error for different time step sizes with N = 64 for the same parameters.

Table 3.9: Execution time, absolute error and relative error for different grid point for
nsteps = 10,000 with parameters ko, = 10? s~1, ko = 1071 571, Dy =30 um?/s, D, =
10~" um? /s and @,, = 0.5 um.

N=8 N=16 N=32 N=64
Execution time 4.5256 8.0008 20.7176 76.6904
Absolute error  0.0444 0.0113 0.0044 1.2740e-06

Relative error  0.0100 9.6420e-04 1.7973e-04 3.0811e-08

Table 3.10: Execution time, absolute error and relative error for different grid point for
N = 64 with parameters k,, = 10? s, korr= 10~ s, Dy =30 um? /s, Dy = 10~ um? /s
and w,, = 0.5 um.

time steps=100 time steps=1000 time steps=10000

Execution time 0.78111 7.6507 76.6904
Absolute error 1.2783e-04 1.2744e-05 1.2740e-06
Relative error 3.0821e-06 3.0810e-07 3.0811e-08

For the fifth case, full model parameter values are set to be k,,, = 102571, k, = 101
s~1, Dy =30 um?/s, Dy = 10~! um?/s and ®,, = 0.5 wm for Figure 3.5. Here we consider

a diffusion-dominated case. Figures 3.5a and 3.5b show absolute and relative errors versus



45

nsteps=10000,tf=1 nsteps=10000,tf=1

-3
10 E
.2
10
107
107
s 5
= = 10°
w w
1074
10°®
-5
10
107
10 108 .
10° 10" 102 10° 10! 102
N N
(@) (b)
N=64,tf=1 N=64,tf=1
107 : 10° .

Error

L 10-8 L
102 10° 10° 102 10° 10%
nsteps nsteps

10

(©) (d)

Figure 3.5: a and b: Absolute and relative errors versus grid points (N). ¢ and d: Absolute
and relative errors versus time steps. Parameters are k,,, = 102 571, korr =10 s Dy =30
um?/s, Dy = 10~! um?/s and ,, = 0.5 wm.

grid points per dimension (N) for nsteps = 10,000 and ¢ = 1. Like previous cases, it shows
a decreasing trend for both absolute and relative errors by increasing N.

Figures 3.5c and 3.5d show absolute and relative errors versus time steps for N = 64 and
ty = 1. First-order accuracy in time is again observed. Table 3.9 shows the execution time,
absolute error and relative error for different grid sizes with nsteps = 10,000 and parameters
kon = 10? 571, korp = 1071 571, Dy =30 um?/s, D, = 107! um?/s and w,, = 0.5 um.
Table 3.10 shows the execution time, absolute error and relative error for different time step
sizes with N = 64 for the same parameters.

It is particularly interesting to note that in test cases 3 and 4, the Courant-Friedrichs-
Lewy (CFL) condition for forward Euler would require more than 9,000 time steps to ensure
stability, but this KSS method, an explicit method, is able to not only ensure stability but

also high accuracy even when greatly exceeding this CFL limit.
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Chapter 4

Analysis Results

4.1 Solutions Analysis Without Time-stepping

The solutions u and b in physical spaces as well as positive frequency spaces without time-
stepping for reaction dominant case, diffusion dominant case, effective diffusion case and
pure diffusion dominant case, and full model case are shown. By tracking the dependency
of solutions u and b in frequency and physical space, we can get a reasonable estimate of

the fraction of both mobile and immobile species.

tf=0.001 tf=0.001

() (b)

tf=0.001 tf=0.001

(© (d)

Figure 4.1: a) solution u (unbound) versus (x,y), b) solution b (bound) versus (x,y) with
parameters k,, = 1070 s, korr = 10~ 571, Dy =30 um?/s, D, = 10~ um?/s and
@, = 0.5 um for reaction-dominant case. c) solution u (unbound) versus frequencies
(w1, @), d) solution b (bound) versus frequencies. Final time is 7 f = 0.001.
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Figure 4.2: a) solution u (unbound) versus (x,y), b) solution b (bound) versus (x,y) with
parameters ko, = 255 s~ 1, korp =31 571, Dy =45 um? /s, Dy = 2.5 um? /s and @,, = 0.6
pm for diffusion-dominant case. ¢) solution # (unbound) versus frequencies (®;,®;), d)
solution b (bound) versus frequencies. Final time is z f = 0.001.

Figures 4.1a and 4.1b show the solution in physical space, u (unbound) and b (bound)
versus (x,y). Figures 4.1c and 4.1d show the solution in frequency space, u and b versus
frequencies (@;, @, ) for the reaction-dominant case. As shown, the center is located at (7, )
in physical space and the Gaussian solution with its height and width are trackable in physical
space. Figures 4.2a and 4.2b show the solution in physical space, u (unbound) and » (bound)
versus (x,y). Figures 4.2¢ and 4.2d show the solution in frequency space, u and b versus
frequencies (®;, w,) for the diffusion-dominant case. Unlike the reaction dominant case,
solutions are smoother in frequency space and the rate of decay is faster. Figures 4.3a and
4.3b show the solution in physical space, u (unbound) and b (bound) versus (x,y). Figures
4.3c and 4.3d show the solution in frequency space, u and b versus frequencies (@;, ®,) for
the effective diffusion case. Solutions show almost constant behavior in frequency space.
Figures 4.4a and 4.4b show the solution in physical space, # (unbound) and b (bound)

versus (x,y). Figures 4.4c and 4.4d show the solution in frequency space, u and b versus
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Figure 4.3: a) solution u (unbound) versus (x,y), b) solution b (bound) versus (x,y) with
parameters ko, = 10° s k,rr = 1571, Dy =30 um? /s, Dy = 10~* um? /s and @, = 0.5
pm for effective diffusion case. c¢) solution u (unbound) versus frequencies (@;, @), d)
solution b (bound) versus frequencies. Final time is z f = 0.001.

frequencies (o, @,) for the pure diffusion case. We see similar behaviors with different
values for solutions in both physical and frequency space. Figures 4.5a and 4.5b show the
solution in physical space, u (unbound) and b (bound) versus (x,y). Figures 4.5c and 4.5d
show the solution in frequency space, u and b versus frequencies (@;, @) for the full model
case. Like other cases we can track the heigh and width corresponding to both bound and

unbound solutions.

4.2 Component Analysis

We plotted different variables in positive frequency space for different cases such as the
reaction dominant, diffusion dominant, effective diffusion, pure diffusion dominant and
full model case. Solutions u (unbound) and b (bound) are plotted in both frequencies and

physical space for different time steps. The same figures are shown for the total solution
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Figure 4.4: a) solution u (unbound) versus (x,y), b) solution b (bound) versus (x,y) with
parameters ko, = 1072571 k,rp = 10571, Dy =30 um? /s, D, =10~* um? /s and @,, = 0.5
pm for pure diffusion case. ¢) solution u (unbound) versus frequencies (®;, @), d) solution
b (bound) versus frequencies. Final time is ¢ f = 0.001.

u+ b. In this chapter variables started with R refers to the first Arnoldi block which was
described in chapter 3. Variables without R refer to the second Arnoldi block which was

shown with ~ notation.

4.2.1 Reaction Dominant Case

Figure 4.6 shows eigenvalues of M; and M, versus frequencies (w1, ;) for parameters
kon = 10795 571 korr = 1071 571, Dy =30 um?/s, D, = 107* um?/s and @, = 0.5
um with nsteps = 10,000 and 7 f = 1. Figure 4.6a indicates the non-frequency-dependent
eigenvalue since it is constant in frequency space. Figure 4.6b indicates the strongly
frequency-dependent eigenvalue since its value varies in frequency space. Also, Figure
4.6¢ shows the non-frequency-dependent eigenvalue since it is constant in frequency space.
Finally, Figure 4.6d shows the frequency-dependent eigenvalue since its value varies in

frequency space.
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Figure 4.5: a) solution u (unbound) versus (x,y), b) solution b (bound) versus (x,y) with
parameters k,, = 10% s~ !, kofr = 107! 571, Dy =30 um?/s, Dy = 10~ um?/s and ®,, =
0.5 pm for full model case. c) solution u (unbound) versus frequencies (®;, @), d) solution
b (bound) versus frequencies. Final time is ¢ f = 0.001.

Figure 4.7 shows the components of the M| versus frequencies (@, @,) for parameters
kon =107 571k, rr = 1071 571, Dy =30 um? /s, D = 107 um? /s and @,, = 0.5 um
with nsteps = 10,000 and 7 f = 1. Figures 4.7a and 4.7d show components of M; which
correspond to the eigenvalues of M| in Figures 4.6a and 4.6b. Figures 4.7b and 4.7c¢ indicate
that off-diagonal components of M; can be ignored for high frequencies.

Figure 4.8 shows the components of M; versus frequencies (@, @,) for parameters
kon = 10703 571k, rp = 1071 571, Dy =30 um? /s, Dy = 10~* um? /s and @,, = 0.5 um
with nsteps = 10,000 and ¢ f = 1. Figures 4.8a and 4.8d show components of M; which
correspond to the eigenvalues of M; in Figures 4.6¢ and 4.6d. Figures 4.8b and 4.8c indi-
cate that off-diagonal components of M| can be ignored for high frequencies. Figure 4.9
shows the components of basis functions shown as uy1, u12, up; and us; versus frequencies
(1, @) for parameters k,, = 10705 s~1, kopr = 107! s=1, Dy =30 um?/s, D, = 10~*
um? /s and @,, = 0.5 wm with nsteps = 10,000 and ¢ f = 1. Figures 4.9a and 4.9b show
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Figure 4.6: Eigenvalues versus frequencies (@, @) are shown with nsteps = 10,000 and
tf = 1. Parameters are k,, = 10795 g1, kofr = 10-' s, Dy =30 ,umz/s and D, = 10~*
um?/s.

the constant basis functions in frequency space. The absolute values of these basis functions
are the constant k, sr. Figures 4.9¢ and 4.9d show the other basis functions which vary in

frequency space. Figure 4.9c shows stronger frequency dependence compared to Figure 4.9d.

Figure 4.10 shows the solutions # (unbound) and b (bound) in physical space (x,y)
and frequency space (o, @,) for parameters k,, = 10795 g1, korr = 10°' s, D; =30
um?/s, Dy = 10~* um? /s and @,, = 0.5 wm with nsteps = 100 and ¢ f = 1. Figure 4.11
shows the solutions u (unbound) and b (bound) in physical space (x,y) and frequency space
(w1, @) for the same parameters with nsteps = 10,000 and ¢ f = 1. Figure 4.12 shows the
solutions u (unbound) and b (bound) in physical space (x,y) and frequency space (®;, @)
for the same parameters with nsteps = 10,000 and 7 f = 1. Comparison between Figures
4.10,4.11 and 4.12 gives insight into the behavior of the solutions u (unbound) and b (bound)
in both physical and frequency space over evolution of 100, 1,000 and 10,000 time steps.
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Figure 4.7: M| components versus frequencies (®;, @,) are shown with nsteps = 10,000 and

tf = 1. Parameters are k,, = 10793 51, kofr = 1071 s~ 1, Dy =30 ,umz/s and D, = 1074
2

wm=/s.

These 3 sets of Figures provide us a comparison between solutions in both physical and
frequency space at different time scales. Also, by tracking the dependence of solutions
u (unbound) and b (bound) on the frequency and physical space variables, we can get a

reasonable estimate of the fraction of both mobile and immobile species.

Figure 4.13 shows the total solution u + b in physical space (x,y) for parameters k,, =
10795 571 korp = 1071 571, Dy =30 um? /s, D, = 107* um? /s and @,, = 0.5 pm with
nsteps = 100, 1,000, 10,000 and 7 f = 1. It shows the evolution of the total solution u + b
on physical space for different time steps. Figure 4.14 shows the total solution u + b in
frequency space (@;, @) for parameters ko, = 10795 571k, = 1071 571, Dy =30 um?/s,
Dy =10~* um? /s and ,, = 0.5 wm with nsteps = 100, 1,000, 10,000 and ¢ f = 1. It shows

the evolution of the total solution u + b in frequency space for different time steps.
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Figure 4.8: M components versus frequencies (@, @) are shown with nsteps = 10,000 and
tf = 1. Parameters are ko, = 1079 571, k,rp = 1071 571, Dy =30 um? /s and D, = 10~*
um?/s.

4.2.2 Effective Diffusion Case

Figure 4.15 shows eigenvalues of M; and M, versus frequencies (w1, @) for parameters
kon =10% s korp =151, Dy =30 um? /s and ®,, = 0.5 pm with nsteps = 10,000 and
tf = 1. Figure 4.15a indicates the non-frequency-dependent eigenvalue since it is constant
in frequency space. Figure 4.15b indicates the non-frequency-dependent eigenvalue since its
value is constant in frequency space. Also, Figure 4.15¢ shows the non-frequency-dependent
eigenvalue since it is constant in frequency space. Finally, Figure 4.15d shows the frequency-
dependent eigenvalue since its value varies in frequency space. Figures 4.15a and 4.15c¢
show more variation near the low frequencies compare to the previous case.

Figure 4.16 shows the components of the M versus frequencies (®;, @;) for parameters
kon = 1033 571, kopr =1 571, Dy = 30 um? /s and @, = 0.5 um with nsteps = 10,000
and rf = 1. Figures 4.16a and 4.16d show components of M; which correspond to the
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Figure 4.9: Basis function components versus frequencies (@, @, ) are shown with nsteps =
10,000 and ¢ f = 1. Parameters are ko, = 1079 571, k,pp = 107! 571, D; = 30 um? /s and
D> =10"* um?/s.

eigenvalues of M in Figures 4.15a and 4.15b. Figures 4.16b and 4.16¢ indicate that off-
diagonal components of M| can be ignored for high frequencies.

Figure 4.17 shows the components of M; versus frequencies (@, @,) for parameters
kon =103 571 kypp =1 571, Dy = 30 um?/s and @y, = 0.5 um with nsteps = 10,000
and ¢t f = 1. Figures 4.17a and 4.17d show components of M; which correspond to the
eigenvalues of M in Figures 4.15¢ and 4.15d. Figures 4.17b and 4.17¢ indicate that off-
diagonal components of M| can be ignored for high frequencies. Figure 4.18 shows the
components of basis functions shown as u;1, u2, up; and uy; versus frequencies (@, @)
for parameters k,, = 1035 571, kopr =1 s, Dy =30 umz/s and w,, = 0.5 um with
nsteps = 10,000 and ¢t f = 1. Figures 4.18a and 4.18b show the constant basis functions
in frequency space. The absolute values of these basis functions are the constant k7.
Figures 4.18c and 4.18d show the other basis functions which vary in frequency space.

Figure 4.19 shows the solutions u (unbound) and b (bound) in physical space (x,y) and
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Figure 4.10: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 100 and 1 f = 1. (c) and (d) solutions: u# (unbound) and » (bound)
versus frequencies (@;, ;) are shown with nsteps = 100 and ¢f = 1. Parameters are
kon =1079% 571 kyrp =101 571, Dy =30 um? /s and D, = 10~% um?/s.

frequency space (@, @,) for parameters ko, = 1033 571 kyrp = 1571, Dy =30 um? /s and
@, = 0.5 um with nsteps = 100 and ¢ f = 1. Figure 4.20 shows the solutions u# (unbound)
and b (bound) in physical space (x,y) and frequency space (@;, @) for the same parameters
with nsteps = 10,000 and ¢f = 1. Figure 4.21 shows the solutions # (unbound) and b
(bound) in physical space (x,y) and frequency space (@, @,) for the same parameters with
nsteps = 10,000 and ¢ f = 1. Comparison between Figures 4.19, 4.20 and 4.21 gives insight
into the behavior of the solutions u (unbound) and b (bound) in both physical and frequency
space over evolution of 100, 1,000 and 10,000 time steps. These 3 sets of Figures provide
us a comparison between solutions in both physical and frequency space at different time
scales. Also, by tracking the dependence of solutions u# (unbound) and b (bound) on the
frequency and physical space variables, we can get a reasonable estimate of the fraction of

both mobile and immobile species.
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Figure 4.11: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 1,000 and ¢ f = 1. (c) and (d) solutions: u (unbound) and » (bound)
versus frequencies (®;,@,) are shown with nsteps = 1,000 and 7 f = 1. Parameters are
kon =1079% 571 kyrp =101 571, Dy =30 um? /s and D, = 10~% um?/s.

Figure 4.22 shows the total solution u + b in physical space (x,y) for parameters k,, =
1035 571 kyrp= 1571, Dy =30 um? /s and ®,, = 0.5 wm with nsteps = 100, 1,000, 10,000
and ¢ f = 1. It shows the evolution of the total solution u + b on physical space for different
time steps. Figure 4.23 shows the total solution u + b in frequency space (@, ®,) for
parameters k,, = 1039 571, korr=1 s1. Dy =30 umz/s and ®,, = 0.5 um with nsteps =
100, 1,000,10,000 and ¢ f = 1. It shows the evolution of the total solution u + b in frequency

space for different time steps.

4.2.3 Pure Diffusion Dominant Case

Figure 4.24 shows eigenvalues of M; and M, versus frequencies (w1, @) for parameters
kon=10"25"1 kyrp =105, Dy =30 um? /s and @, = 0.5 wm with nsteps = 10,000 and

tf = 1. Figure 4.24a indicates the non-frequency-dependent eigenvalue since it is constant
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Figure 4.12: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 10,000 and ¢ f = 1. (c¢) and (d) solutions: u (unbound) and » (bound)
versus frequencies (@, ®,) are shown with nsteps = 10,000 and ¢ f = 1. Parameters are
kon =1079% 571 kyrp =101 571, Dy =30 um? /s and D, = 10~% um?/s.

in frequency space. Figure 4.24b indicates the frequency-dependent eigenvalue since its
value varies in frequency space. Also, Figure 4.24c shows the non-frequency-dependent
eigenvalue since it is constant in frequency space with few oscillations near low frequencies.
Finally, Figure 4.24d shows the frequency-dependent eigenvalue since its value varies in
frequency space.

Figure 4.25 shows the components of the M, versus frequencies (@, @,) for parameters
kon =1072 571 kopr =10 571, Dy =30 um?/s and @, = 0.5 pm with nsteps = 10,000
and tf = 1. Figures 4.25a and 4.25d show components of M; which correspond to the
eigenvalues of M in Figures 4.24a and 4.24b. Figures 4.25b and 4.25c¢ indicate that off-
diagonal components of M| can be ignored for high frequencies.

Figure 4.26 shows the components of M; versus frequencies (@, @,) for parameters
kon = 1072 571 kopr = 10 571, Dy =30 um?/s and @, = 0.5 um with nsteps = 10,000
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Figure 4.13: Solutions u + b versus coordinates (x,y) are shown with nsteps =
100, 1,000, 10,000 and ¢ f = 1. Parameters are ko, = 10795 571, k,,r = 1071 571, D; =30
um?/s and Dy = 10~* um?/s.

and ¢ f = 1. Figures 4.26a and 4.26d show components of M; which correspond to the
eigenvalues of M in Figures 4.24c and 4.24d. Figures 4.26b and 4.26c¢ indicate that off-
diagonal components of M| can be ignored for high frequencies. Figure 4.27 shows the
components of basis functions shown as u;1, u12, up; and uy; versus frequencies (@, @)
for parameters k,, = 1072 571, korr =10 s~ D =30 ,umz/s and @, = 0.5 um with
nsteps = 10,000 and ¢t f = 1. Figures 4.27a and 4.27b show the constant basis functions
in frequency space. The absolute values of these basis functions are the constant k,zy.
Figures 4.27c and 4.27d show the other basis functions which vary in frequency space.
Figure 4.27c shows stronger frequency dependence compared to Figure 4.27d. Figure 4.28
shows the solutions u (unbound) and b (bound) in physical space (x,y) and frequency space
(wy, @) for parameters ko, = 1072 s~ 1, korr =10 s~1, Dy =30 um?/s and @,, = 0.5
um with nsteps = 100 and 7f = 1. Figure 4.29 shows the solutions # (unbound) and b

(bound) in physical space (x,y) and frequency space (®;,@,) for the same parameters
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Figure 4.14: Solutions u + b versus frequencies ®; and @, are shown with nsteps =
100, 1,000, 10,000 and ¢ f = 1. Parameters are ko, = 10793 571k, = 1071 571, D; =30
um?/s and Dy = 10~* um?/s.

with nsteps = 10,000 and 7f = 1. Figure 4.30 shows the solutions u# (unbound) and b
(bound) in physical space (x,y) and frequency space (@, @,) for the same parameters with
nsteps = 10,000 and 7 f = 1. Comparison between Figures 4.28, 4.29 and 4.30 gives insight
into the behavior of the solutions u (unbound) and b (bound) in both physical and frequency
space over evolution of 100, 1,000 and 10,000 time steps. These 3 sets of Figures provide
us a comparison between solutions in both physical and frequency space at different time
scales. Also, by tracking the dependence of solutions u# (unbound) and b (bound) on the
frequency and physical space variables, we can get a reasonable estimate of the fraction of
both mobile and immobile species.

Figure 4.31 shows the total solution u + b in physical space (x,y) for parameters k,, =
1072571 kopp = 10571, Dy =30 um? /s and @, = 0.5 wm with nsteps = 100, 1,000, 10,000
and 7f = 1. It shows the evolution of the total solution u# + b on physical space for dif-
ferent time steps. Figure 4.32 shows the total solution u + b in frequency space (@, @)
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Figure 4.15: Eigenvalues versus frequencies (@;, ®,) are shown with nsteps = 10,000

and tf = 1. Parameters are ko, = 10°° 571, kypp = 1571, Dy =30 um? /s and D, = 104
2
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for parameters ko, = 1072 571, ko = 10 s71, Dy = 30 um?/s and ®,, = 0.5 um with
nsteps = 100, 1,000,10,000 and 7 f = 1. It shows the evolution of the total solution u + b
in frequency space for different time steps.

4.2.4 Diffusion Dominant Case

Figure 4.33 shows eigenvalues of M and M, versus frequencies (@, @,) for parameters
kon =255 571, korp =31 571, Dy = 45 um?/s and Dy = 2.5 um?/s and @y, = 0.6 um
with nsteps = 10,000 and ¢f = 1. Figure 4.33a indicates the non-frequency-dependent
eigenvalue since it is constant in frequency space. Figure 4.33b indicates the frequency-
dependent eigenvalue since its value varies in frequency space. Also, Figure 4.33c shows
the non-frequency-dependent eigenvalue since it is constant in frequency space. Finally,
Figure 4.33d shows the frequency-dependent eigenvalue since its value varies in frequency
space. Figures 4.33a and 4.33c have few oscillations near low frequencies.
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Figure 4.16: M| components versus frequencies (®;, @,) are shown with nsteps = 10,000
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Figure 4.34 shows the components of the M versus frequencies (®;, @, ) for parameters
kon =255 71, korp =31 571, Dy =45 um?/s and Dy = 2.5 um?/s and @y, = 0.6 um
with nsteps = 10,000 and 7 f = 1. Figures 4.34a and 4.34d show components of M| which
correspond to the eigenvalues of M| in Figures 4.33a and 4.33b. Figures 4.34b and 4.34c
indicate that off-diagonal components of M| can be ignored for high frequencies.

Figure 4.35 shows the components of M; versus frequencies (@, @,) for parameters
kon =255 571, korp =31 571, Dy =45 um?/s and Dy = 2.5 um?/s and @y, = 0.6 um
with nsteps = 10,000 and ¢ f = 1. Figures 4.35a and 4.35d show components of M; which
correspond to the eigenvalues of M in Figures 4.33c and 4.33d. Figures 4.35b and 4.35¢
indicate that off-diagonal components of M; can be ignored for high frequencies. Figure 4.36
shows the components of basis functions shown as u;1, u12, uz; and uy; versus frequencies
(@, @) for parameters k,, = 255 s~ !, korr =31 s™1, Dy =45 um?/s and D, = 2.5 um?/s
and ®,,;, = 0.6 um with nsteps = 10,000 and ¢f = 1. Figures 4.36a and 4.36b show the
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Figure 4.17: M, components versus frequencies (@, @,) are shown with nsteps = 10,000

and 7 f = 1. Parameters are k,, = 1033 571, korr =1 s1. D; =30 umz/s and D, = 1074
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constant basis functions in frequency space. The absolute values of these basis functions
are the constant &, r¢. Figures 4.36¢ and 4.36d show the other basis functions which vary in
frequency space. Figure 4.36¢ shows stronger frequency dependence compared to Figure
4.36d. Figure 4.37 shows the solutions u (unbound) and b (bound) in physical space (x,y)
and frequency space (@y, @) for parameters k,, = 255 s, korr =31 s~ Dy =45 um?/s
and Dy = 2.5 um? /s and @,,, = 0.6 wm with nsteps = 100 and 7 f = 1. Figure 4.38 shows the
solutions u (unbound) and b (bound) in physical space (x,y) and frequency space (®;, @)
for the same parameters with nsteps = 10,000 and ¢ f = 1. Figure 4.39 shows the solutions
u (unbound) and b (bound) in physical space (x,y) and frequency space (®;,@,) for the
same parameters with nsteps = 10,000 and 7 f = 1. Comparison between Figures 4.37, 4.38
and 4.39 gives insight into the behavior of the solutions u (unbound) and b (bound) in both
physical and frequency space over evolution of 100, 1,000 and 10,000 time steps. These 3

sets of Figures provide us a comparison between solutions in both physical and frequency
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Figure 4.18: Basis function components versus frequencies (®;,@,) are shown with
nsteps = 10,000 and tf = 1. Parameters are ko, = 10°° 571, k,pp =1 571, D; =30
um?/s and Dy = 10~* um?/s.

space at different time scales. Also, by tracking the dependence of solutions u (unbound) and
b (bound) on the frequency and physical space variables, we can get a reasonable estimate
of the fraction of both mobile and immobile species.

Figure 4.40 shows the total solution u + b in physical space (x,y) for parameters k,, =
255 574, ko =31 57!, D1 = 45 um?/s and D, = 2.5 um?/s and @, = 0.6 um with
nsteps = 100,1,000, 10,000 and ¢ f = 1. It shows the evolution of the total solution u + b
on physical space for different time steps. Figure 4.41 shows the total solution u + b in
frequency space (@, @) for parameters ko, = 255 s, kopr =31 571, Dy =45 um? /s and
D, =2.5 um?/s and ®,,, = 0.6 wm with nsteps = 100, 1,000, 10,000 and ¢ f = 1. It shows

the evolution of the total solution u + b in frequency space for different time steps.
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Figure 4.19: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 100 and 1 f = 1. (c) and (d) solutions: u# (unbound) and » (bound)
versus frequencies (@;, ;) are shown with nsteps = 100 and ¢f = 1. Parameters are
kon =10% 571 kopp =151, Dy =30 um?*/s and Dr = 10~ um?/s.

4.2.5 Full Model Case

Figure 4.42 shows eigenvalues of M| and M versus frequencies (@, @,) for parameters
kon =10? s71 kopr = 1071 571, Dy =30 um? /s and D, = 10~ um? /s and @,, = 0.5 um
with nsteps = 10,000 and ¢f = 1. Figure 4.42a indicates the non-frequency-dependent
eigenvalue since it is constant in frequency space. Figure 4.42b indicates the frequency-
dependent eigenvalue since its value varies in frequency space. Figure 4.42c indicates the
non-frequency-dependent eigenvalue since it is constant in frequency space. Finally, Figure
4.42d shows the frequency-dependent eigenvalue since its value varies in frequency space.
Figures 4.42a and 4.42c have few oscillations near to low frequencies.

Figure 4.43 shows the components of the M, versus frequencies (@, @,) for parameters
kon =10% s71 kopr = 1071 571, Dy =30 um? /s and D> = 10~ um? /s and @,, = 0.5 um
with nsteps = 10,000 and ¢ f = 1. Figures 4.43a and 4.43d show components of M| which
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Figure 4.20: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 1,000 and ¢ f = 1. (c) and (d) solutions: u (unbound) and » (bound)
versus frequencies (®;,@,) are shown with nsteps = 1,000 and 7 f = 1. Parameters are
kon =10% 571 kopp =151, Dy =30 um?*/s and Dr = 10~ um?/s.

correspond to the eigenvalues of M; in Figures 4.42a and 4.42b. Figures 4.43b and 4.43c
indicate that off-diagonal components of M| can be ignored for high frequencies.

Figure 4.44 shows the components of M; versus frequencies (@, @,) for parameters
kon =10% s71 kopr = 1071 571, Dy =30 um? /s and Dy = 10~ um? /s and @,, = 0.5 um
with nsteps = 10,000 and ¢ f = 1. Figures 4.44a and 4.44d show components of M which
correspond to the eigenvalues of M in Figures 4.42c and 4.42d. Figures 4.44b and 4.44c
indicate that off-diagonal components of M; can be ignored for high frequencies.

Figure 4.45 shows the components of basis functions shown as uy1, u1, up; and us;
versus frequencies (@, @,) for parameters k,, = 10> s~ !, korr = 10~ 571, Dy =30 um?/s
and D, = 10~ um? /s and w,,, = 0.5 wm with nsteps = 10,000 and ¢ f = 1. Figures 4.45a
and 4.45b show the constant basis functions in frequency space. The absolute values of these

basis functions are the constant k, sr. Figures 4.45¢ and 4.45d show the other basis functions
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Figure 4.21: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 10,000 and ¢ f = 1. (c¢) and (d) solutions: u (unbound) and » (bound)
versus frequencies (@, ®,) are shown with nsteps = 10,000 and ¢ f = 1. Parameters are
kon =10% 571 kopp =151, Dy =30 um?*/s and Dr = 10~ um?/s.

which vary in frequency space. Figure 4.45c shows stronger frequency dependence compared
to Figure 4.45d. Figure 4.46 shows the solutions u (unbound) and b (bound) in physical
space (x,y) and frequency space (@i, @) for parameters ko, = 10? s 1, ko = 1071 571,
D; =30 um?/s and D = 10~" um? /s and @,, = 0.5 wm with nsteps = 100 and 1 f = 1.
Figure 4.47 shows the solutions u (unbound) and b (bound) in physical space (x,y) and
frequency space (@, @;) for the same parameters with nsteps = 10,000 and ¢ f = 1. Figure
4.48 shows the solutions u (unbound) and b (bound) in physical space (x,y) and frequency
space (m;,@,) for the same parameters with nsteps = 10,000 and zf = 1. Comparison
between Figures 4.46, 4.47 and 4.48 gives insight into the behavior of the solutions u
(unbound) and b (bound) in both physical and frequency space over evolution of 100, 1,000
and 10,000 time steps. These 3 sets of Figures provide us a comparison between solutions in

both physical and frequency space at different time scales. Also, by tracking the dependence
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Figure 4.22: Solutions u + b versus coordinates (x,y) are shown with nsteps =
100, 1,000, 10,000 and #f = 1. Parameters are ko, = 10°° 57!, kyrp =1 571, D1 = 30
um?/s and Dy = 10~* um?/s.

of solutions u# (unbound) and b (bound) on the frequency and physical space variables, we
can get a reasonable estimate of the fraction of both mobile and immobile species.

Figure 4.49 shows the total solution u + b in physical space (x,y) for parameters k,, =
10% 571, korp = 1071 571, Dy =30 um? /s and D, = 107! um?/s and @, = 0.5 wm with
nsteps = 100, 1,000, 10,000 and 7 f = 1. It shows the evolution of the total solution u + b
on physical space for different time steps. Figure 4.50 shows the total solution u + b in
frequency space (@, @) for parameters ko, = 102 s~ 1, k,rp = 1071 571, Dy =30 um?/s
and D> = 10~! um? /s and ®,, = 0.5 um with nsteps = 100, 1,000,10,000 and ¢ f = 1. It

shows the evolution of the total solution u + b in frequency space for different time steps.
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Figure 4.23: Solutions u + b versus frequencies w; and @, are shown with nsteps =
100, 1,000, 10,000 and f = 1. Parameters are ko, = 10°2 s, korp =1 571, D1 =30
um? /s and Dy = 10~4 um?/s.
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Figure 4.24: Eigenvalues versus frequencies (®;, @,) are shown with nsteps = 10,000 and
tf = 1. Parameters are k,, = 1072571, kopr =10 s71, Dy =30 ,umz/s and Dy = 10~
um?/s.
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Figure 4.25: M| components versus frequencies (@, ®,) are shown with nsteps = 10,000
and ¢ f = 1. Parameters are k,, = 107251, korr =10 s, D; =30 [,Lmz/s and D, = 10~*

um?/s.
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Figure 4.26: M, components versus frequencies (@, @,) are shown with nsteps = 10,000
and ¢ f = 1. Parameters are k,, = 1072571, korr =10 s~1, Dy =30 umz/s and D, = 10~*

um?/s.



72

nsteps=10000,tf=1

nsteps=10000,tf=1

(a) (b)

nsteps=10000,tf=1 nsteps=10000,tf=1

Iogu22
[ N RPN

log Uy,

30

(©) (d)

Figure 4.27: Basis function components versus frequencies (@;,@,) are shown with
nsteps = 10,000 and 7f = 1. Parameters are ko, = 1072 57!, korp = 10 571, Dy = 30
um? /s and Dy = 10~* um?/s.
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Figure 4.28: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 100 and 1 f = 1. (c) and (d) solutions: u# (unbound) and » (bound)
versus frequencies (@, ;) are shown with nsteps = 100 and ¢f = 1. Parameters are
kon=10"2 571 kopr =10 571, Dy =30 um?/s and D, = 10~ um?/s.
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Figure 4.29: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 1,000 and ¢ f = 1. (c) and (d) solutions: # (unbound) and b (bound)
versus frequencies (®;,@;) are shown with nsteps = 1,000 and ¢f = 1. Parameters are
kpp=10"2 571, korr =10 s™1, Dy =30 um?/s and D, = 10~* um?/s.
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Figure 4.30: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 10,000 and ¢ f = 1. (c) and (d) solutions: u (unbound) and b (bound)
versus frequencies (@, ®,) are shown with nsteps = 10,000 and ¢ f = 1. Parameters are
kpp=10"2 571, korr =10 s™1, Dy =30 um?/s and D, = 10~* um?/s.
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Figure 4.31: Solutions u + b versus coordinates (x,y) are shown with nsteps =
100, 1,000, 10,000 and 7f = 1. Parameters are ko, = 1072 57!, k,rp = 10 s, D; =30
um? /s and Dy = 10~* um?/s.
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Figure 4.32: Solutions u + b versus frequencies w; and @, are shown with nsteps =
100, 1,000, 10,000 and ¢f = 1. Parameters are ko, = 1072 571, k= 10 571, D} = 30
um? /s and Dy = 10~4 um?/s.
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Figure 4.33: Eigenvalues versus frequencies (@, ®,) are shown with nsteps = 10,000 and
tf = 1. Parameters are k,, = 255 s, korr =31 s, Dy =45 um? /s and Dy = 2.5 um?/s.
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Figure 4.34: M| components versus frequencies (@, ®,) are shown with nsteps = 10,000
and ¢tf = 1. Parameters are k,, = 255 s kopr =31 s~ Dy =45 ,umz/s and D, = 2.5

um?/s.
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Figure 4.35: My components versus frequencies (@, @,) are shown with nsteps = 10,000

and 7 f = 1. Parameters are k,, = 255 st korr =31 s~ Dy =45 ,umz/s and D, = 2.5
2
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Figure 4.36: Basis function components versus frequencies (@;,@,) are shown with
nsteps = 10,000 and ¢f = 1. Parameters are k,, = 255 st kopr = 31 s71, Dy =45

um?/s and Dy = 2.5 um?/s.
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Figure 4.37: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 100 and 1 f = 1. (c) and (d) solutions: u# (unbound) and » (bound)
versus frequencies (@, ;) are shown with nsteps = 100 and ¢f = 1. Parameters are
kon =255 s\, korr =3157!, Dy =45 pum? /s and D, = 2.5 um?/s.



83

nsteps=1000,tf=1 nsteps=1000,tf=1

-0.05
-0.9652
-0.9654 -0.0505
-0.9656
> 2 -0.051
8 -0.9658 2
-0.966 -0.0515
-0-9662 -0.052
-0.9664
6 6
(@) (b)
nsteps=1000,tf=1 nsteps=1000,tf=1
0 0
5 5 o .5
> o
° °

(© (d)

Figure 4.38: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 1,000 and ¢ f = 1. (c) and (d) solutions: # (unbound) and b (bound)
versus frequencies (®;,@;) are shown with nsteps = 1,000 and ¢f = 1. Parameters are
kon =255 s\, korr =3157!, Dy =45 pum? /s and D, = 2.5 um?/s.
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Figure 4.39: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 10,000 and ¢ f = 1. (c) and (d) solutions: u (unbound) and b (bound)
versus frequencies (@, ®,) are shown with nsteps = 10,000 and ¢ f = 1. Parameters are
kon =255 s\, korr =3157!, Dy =45 pum? /s and D, = 2.5 um?/s.
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Figure 4.40: Solutions u + b versus coordinates (x,y) are shown with nsteps =
100, 1,000, 10,000 and #f = 1. Parameters are ko, = 255 s~ !, kopr =31 s, D1 =45
um? /s and Dy = 2.5 um?/s.
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Figure 4.41: Solutions u + b versus frequencies w; and @, are shown with nsteps =

100, 1,000, 10,000 and f = 1. Parameters are ko, = 255 s~ 1, kopr =31 s, D1 = 45
um? /s and Dy = 2.5 um?/s.
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Figure 4.42: Eigenvalues versus frequencies (®;, @,) are shown with nsteps = 10,000 and
tf = 1. Parameters are k,, = 10% 571, kofr = 107! s71, D; =30 umz/s and Dy = 107!

um?/s.
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Figure 4.43: M| components versus frequencies (@, ®,) are shown with nsteps = 10,000
and 7 f = 1. Parameters are k,,, = 102571, kofr = 10-'s71, D; =30 umz/s and D, = 107!

um?/s.
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Figure 4.44: M, components versus frequencies (@, @,) are shown with nsteps = 10,000

and 7 f = 1. Parameters are k,,, = 102571, kopr = 10-'s71, Dy =30 ;,Lmz/s and D, = 107!
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Figure 4.45: Basis function components versus frequencies (o;,@,) are shown with
nsteps = 10,000 and ¢f = 1. Parameters are k,, = 102 571, korr = 107! 571, D; =30

um?/s and Dy = 107" um?/s.
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Figure 4.46: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 100 and 1 f = 1. (c) and (d) solutions: u# (unbound) and » (bound)
versus frequencies (@, ;) are shown with nsteps = 100 and ¢f = 1. Parameters are
kon =102 571 kopr = 1071 571, Dy =30 um? /s and D, = 107! um?/s.
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Figure 4.47: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 1,000 and ¢ f = 1. (c) and (d) solutions: # (unbound) and b (bound)
versus frequencies (®;,@;) are shown with nsteps = 1,000 and ¢f = 1. Parameters are
kon =10% 571 kopr =107 571, Dy =30 um? /s and D, = 107! um?/s.
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Figure 4.48: (a) and (b) solutions: u (unbound) and b (bound) versus coordinates (x,y) are
shown with nsteps = 10,000 and ¢ f = 1. (c) and (d) solutions: u (unbound) and b (bound)
versus frequencies (@, ®,) are shown with nsteps = 10,000 and ¢ f = 1. Parameters are
kon =102 571 kopr = 1071 571, Dy =30 um? /s and D, = 107! um?/s.
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Figure 4.49: Solutions u + b versus coordinates (x,y) are shown with nsteps =
100, 1,000, 10,000 and ¢ f = 1. Parameters are ko, = 10> s 1, kopp = 107! 571, D; = 30
um?/s and Dy = 10~! um?/s.
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Figure 4.50: Solutions u + b versus frequencies w; and @, are shown with nsteps =
100, 1,000, 10,000 and ¢ f = 1. Parameters are ko, = 10% s~ 1, ko = 107! 571, D; =30
um? /s and Dy = 10~ um?/s.
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Chapter 5

Conclusion

We applied a first-order KSS method to solve the first-order photobleaching kinetics partial
differential equations with general initial conditions and the initial conditions that came
from a pre-bleach steady state. It has been shown that by applying block Arnoldi iteration
symbolically for each Fourier coefficient, an approximate analytical solution can be obtained
that facilitates qualitative analysis of short-time behavior. The numerical results indicate
satisfactory accuracy of the method for both reaction-dominated and diffusion dominated
cases, which is promising for application to FRAP laboratory research. We present a simple
analytical solution to this model which makes analysis feasible for scientists in the field of
cell biology.

Future work will consist of proving stability and convergence, consideration of more gen-
eral laser profiles, and other generalizations of interest such as generalizing time-dependent
coefficients to model both the bleaching stage and recovery stage, including to three-
dimensional problems as in [3]. Efficient application of higher-order KSS methods (that is,
K > 1) will also be investigated.



97

Appendix A
COMPUTER RESULTS

A.1 Computer Code

function[x,y,wl,w2,totall,total2,total3,total4,totals,total6,absoluteErr,
relativeErr,exact,B12,B22,v11,v21,v12,v22,ull1,u21,ul2,u22,cons,wim,w2m,
Rlaml,Rlam2,laml,lam2,RM11,RM21,RM12,RM22,M11,M21,M12,M22,Tv1,Tv2]=
test2(N,nsteps,tf,coefs)

dx=2%pi/N;

dy=2*pi/N;

x=dx*(0:N-1);

y=dy*(0:N-1);

[x2,y2]=meshgrid(x,y) ;

x2=reshape (x2,numel (x2) ,1);

y2=reshape (y2,numel(y2),1);

eN2=ones(N~2,1);

kb=1.0;

10=1.0;

wl=[0:N/2 -N/2+1:-1];

w2=[0:N/2 -N/2+1:-1];

ci=1.0;

if coefs==
kon=10~(-0.5);
koff=1.e-1;
D1 = 30;
D2 = 1.e-4;
rn=0.5;

elseif coefs==2
kon=10"(3.5);
koff=1;



D1 = 30;
D2 = 1.e-4;
rn=0.5;
elseif coefs==3
kon=255.0;
koff=31.0;
D1 = 45;
D2 = 2.5;
rn=0.6;
elseif coefs==
kon=1.e-2;
koff=10;
D1 = 30;
D2 1.e-4;
rn=0.5;
else
kon=10"2;
koff=10~(-1);
D1 = 30;
D2 = 10~(-1);
rn=0.5;
end
Irn=(2.0*I0./pi.*rn."2).*exp(-2.0%((x2-pi). 2+ (y2-pi)."2)./rn."2);
D=-2xeye(N)+diag(ones(N-1,1),1)+diag(ones(N-1,1),-1);
D(1,N)=1;
D(N,1)=1;
D=D/dx"~2;
D=sparse(D) ;
Lapl=kron(D,eye(N))+kron(eye(N),D);
D3=diag(ones(N-1,1),1);
D3(N,1)=1;
D3=D3-D3’;
D3=D3/(2%*dx) ;
D3=sparse (D3) ;
Dx=kron(D3,eye(N)) ;
Dy=kron(eye(N),D3);
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B12=(ci.*koff) ./ (koff+kon)*eN2;

B22=(ci.x*kon) ./ (koff+kon) *eN2;

L12=koff*speye(N~2);

L21=kon*speye(N~2) ;

L11=-kb*spdiags(Irn,0,N~2,N~2)+D1*Lapl-L21;

L22=-kb*spdiags(Irn,0,N~2,N~2)+D2*Lapl-L12;

L=[L11 L12;L21 L22];

L=sparse (L) ;

[wim,w2m]=meshgrid(wl,w2);

wim=reshape (wim,numel (wim),1);

w2m=reshape (w2m,numel (w2m) ,1) ;

ull=1.0.xkoff*eN2;

ul2=1.0.*xkoff*eN2;

u21=0.5.*((wim. 2+w2m."~2) .*(D1-D2)+(kon-koff) )+
0.5.*xsqrt ((wim. 2+w2m."2).~2.%(D1-D2) .7 2+. ..
(wim. 2+w2m."2) .%(2.0.%(D1+D2) . * (kon+koff) -
4.0.%((D1.xkoff)+(D2.x*kon)))+(kon+koff) . 2);

u22=0.5.*((wim. 2+w2m."~2) .*(D1-D2) +(kon-koff)) -
0.5.*xsqrt((wim. 2+w2m.~2).~2.%(D1-D2) .7 2+. ..
(wim. 2+w2m."~2) .*(2.0.*(D1+D2) . * (kon+koff) -
4.0.x((D1.*koff)+(D2.x*kon)))+(kon+koff)."2);

cons=ull.*u22-ul2.x*u2i;

v11=(u22./cons);

v21=(-ul2./cons);

v12=(-u21./cons);

v22=(ull./cons);

dt=tf/nsteps;

tc = [dt:dt:tf]’;

totall=zeros(N~2,nsteps);

total2=zeros(N~2,nsteps);

total3=zeros(N,N,nsteps);

totald=zeros(N,N,nsteps);

totalb=zeros(N~2,nsteps);

total6=zeros(N,N,nsteps);

nstep=1;

for t=dt:dt:tf
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u2=reshape(B12,N,N);

b2=reshape (B22,N,N) ;

Tum=fft2(u2) ;

Tbm=£fft2(b2) ;

u2=reshape (u2,N°2,1);

b2=reshape (b2,N~2,1);

u2x=Dx*u?2;

u2y=Dy*u2;

b2x=Dx*b2;

b2y=Dy*b2;

Tum=reshape (Tum,N~2,1);

Tbm=reshape (Tbm,N~2,1) ;

ve=(v1l.~2)+(v21.72);

Tum=Tum* (2*pi/N) ~2;

Tbm=Tbm* (2*pi/N) ~2;

Templ=(v11l.~2.xTum)+(v21.*v11l.xTbm) ;

Temp2=(v21.~2.xTbm)+(v21.*v11l.*Tum) ;

Temp3=(v11.~2.*conj(Tum))+(conj(v21) .*conj(vil) .*conj(Tbm)) ;

Temp4=(v21.72.*conj(Tbm))+(conj(v21) .*conj(vil) .*conj(Tum)) ;

u2c=(norm(u2x, ’fro’)*(2*pi/N)) . 2+ (norm(u2y, ’fro’) * (2*pi/N)) .~ 2;

b2c=(norm(b2x, ’fro’) *(2*pi/N)) . 2+ (norm(b2y, ’fro’) * (2*pi/N)) . 2;

RM11=-(kb.*mean(Irn))+(((koff.*conj(v1il).*v21)+(kon.*conj(v21l) .*v1l)-
(((D1.xv11.72)+(D2.%v21.72)) .*(wim. 2+w2m."2)) -
(koff.*xv21.72)-(kon.*v11.72))./(v11.~2+v21.72));

RM12=(-4*pi~2.xkb.*(v11.72+v21.72) . % (((myfft2(Irn.*u2)*(2*xpi/N)~2) .*conj(vil))
+((myf£t2(Irn.*b2)*(2*pi/N)~2) .*conj(v21)))+ ...
4xpi~2.*kb.*mean(Irn) .*((Templ) .*conj(vil)+(Temp2) .*conj(v21))- ...
4xpi~2.*(wim. "2+w2m."2) .*(v11."2+v21.72) . %
((D1.*conj(vil) .*xTum)+(D2.*v21.*Tbm))+ ...
4xpi~2.*(wim. 2+w2m.~2) .*((D1.*conj(v1il) .*
(Temp1))+(D2.*conj(v21) .*(Temp2)))+ ...
4xpi~2.%(v11.72+v21.72) .%
((conj(vil) .*x(koff.*Tbm-kon.*Tum))+(conj(v21) .*(kon.*Tum-koff.*Tbm)))+ ...
4xpi~2.*(conj(vil)-conj(v21)).*((kon.*(Templ))-(koff.*(Temp2))))./ ...
(2%pi.*sqrt(vll. ~2+v21.72) .*sqrt (16*pi~4.*(v1il. 2+v21.72) .72 %
((norm(u2,’fro’)*(2xpi/N)) . 2+(norm(b2, ’fro’) *(2%pi/N)) .~ 2)- ...
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real (8*pi~2.*(v1l.~2+v21.72) .*((conj(Tum) . *Temp3)+(conj(Tbm) .*Temp4)))+ ..
4xpi~2.*((Temp2) .2+ (Templ) .~2)));

RM21=(-4*pi~2.xkb.*(v11.72+v21.72) .*((conj(myfft2(Irn.*u2)*(2*pi/N)~2) .*v11)
+(conj(myfft2(Irn.*b2)* (2*pi/N)~2) .*v21))+ ...
4%pi~2.%kb.*mean(Irn) .*((Temp3) .*v11+(Temp4) .*v21)- ...
4xpi~2.*(wim. "2+w2m.~2) .*x(v11l."2+v21.°2) . %
((D1.*v11l.*conj(Tum))+(D2.*v21.*conj(Tbm)))+ ...
4xpi~2.*(wim. 2+w2m."2) .*((D1.*v11l.*(Temp3))+(D2.*v21.*(Temp4)))+ ...
4xpi~2.%(v11.72+v21.72) .x((v1l.*(kon.*conj(Tbm)-kon.*conj(Tum)))+
(v21.*(koff.*conj(Tum)-koff.*conj(Tbm))))+ ...
4xpi~2.*((v1l.%*kon)-(v21.*xkoff)) .*((Temp3)-(Temp4)))./ ...
(2%pi.*sqrt(vil. ~2+v21.72) .*sqrt (16*pi~4.*(v1il. 2+v21.72) .72 %
((norm(u2,’fro’)*(2xpi/N)) . 2+(norm(b2, ’fro’) *(2%pi/N)) .~ 2)- ...
real (8*pi~2.*(v1il."~2+v21.72) .*((conj(Tum) . *Temp3)+(conj(Tbm) .*Temp4)))+ ..
4xpi~2.*((Temp2) .2+ (Templ) .72)));

RM22=((-4*pi~2.*kon.*(Templ) .~ 2) - (4xpi~2.*koff.*(Temp2)."2)+ ...
4xpi~2.*kon.*(Templ) .*(Temp4)+ ...
4xpi~2.*koff.*(Temp3) .*(Temp2)- ...
64*pi~6.*kb.*(vc) . 2.*%(mean(Irn.*u2. 2)+mean(Irn.*b2.72))+ ...
4xpi~2.*%kb.*vc.* (((myfft2(Irn.*u2)*(2*pi/N)~2) .*(Temp3))+
((myf£t2(Irn.*b2)* (2%pi/N)~2) .*(Temp4)))- ...
16%pi~4.*(vc) .~2.%(D1.*(u2c)+D2.*%(b2c))+ ...
4xpi~2.*vc.*(Templ) . *((-kon.*conj(Tbm))+(D1.*(wim. 2+w2m."2) . *
conj(Tum) )+ (kon.*conj(Tum)))+ ...
4xpi~2.*vc.*(Temp2) . * ((-koff.*conj(Tum))+(D2.*(wim. 2+w2m."2) . *
conj (Tbm) )+ (koff.*conj(Tbm)))- ...
4xpi~2.*kb.*mean(Irn) .*((Temp2) . 2+(Templ) . 2)+ ...
4xpi~2.*vc.*(Tempd) . * ((koff.*Tbm) - (kon.*Tum))- ...
4%pi~2. % (wim. 2+w2m."2) . *((D1.*(Temp3) .~2)+(D2.*(Tempd) ."2) )+ ...
4xpi~2.*vc.*((kon.*Tum) - (koff.*Tbm)) . *(Temp3)+ ...
16xpi~4.x(vc) . 2.*((-kon.* (norm(u2,’fro’)*x(2xpi/N)) . ~2)+
(4*pi~2.*koff.*mean(u2.*b2))+(4*pi~2.*kon.*mean(b2.*u2)) -
(koff.*(norm(b2, ’fro’)*(2%pi/N)) .~2))- ...
4xpi~2.*kvc.*(wim. 2+w2m.~2) .*x((D1.*Tum. * (Temp3))+(D2.*Tbm.* (Temp4)) )+ ...
4xpi~2.*kb.*xvc.*((conj(myfft2(Irn.*u2)*(2xpi/N)~2) .*(Temp3))+
(conj(myfft2(Irn.*b2)*(2*%pi/N)~2) .*(Temp4))))./ ...
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(16*pi~4.*(vc) .~ 2.*%((norm(u2, ’fro’)*x(2*pi/N)) . 2+ (norm(b2,’fro’) *
(2xpi/N))."2)- ...
real (8*pi~2.*vc.*((conj(Tum) .*(Temp3))+(conj(Tbm) .*(Temp4))))+ ...
4%pi~2.*((Temp2) .~ 2+(Templ) ."~2));
vee=(v12.72)+(v22.72);
Temp5=(v12."2.xTum)+(v22.*v12.*Tbm) ;
Temp6=(v22."2.xTbm)+(v22.*v12.*Tum) ;
Temp7=(v12.72.*conj(Tum))+(conj(v22) .*conj(v12) .*conj(Tbm)) ;
Temp8=(v22."2.*conj(Tbm))+(conj(v22) .*conj(vi2) .*conj(Tum)) ;
M11=-(kb.*mean(Irn))+(((koff.*conj(vi2).*v22)+(kon.*conj(v22).*v12)-
(((D1.*v12.72)+(D2.*v22.72)) .x(wim. " 2+w2m."2)) -
(koff.*v22.72)-(kon.*v12.72))./(v12.72+v22.72));
M12=(-4*pi~2.*kb.*(v12.72+v22.72) .*(((myf£ft2(Irn.*u2)*(2*pi/N)~2) .*conj(vi2))+
((myfft2(Irn.*b2)*(2xpi/N)~2) .*conj(v22)))+ ...
4%pi~2.%*kb.*mean(Irn) .*((Temp5) .*conj(vi2)+(Temp6) . *conj(v22))- ...
4xpi~2.* (wim. "2+w2m.~2) .*x(v12.72+v22.72) . *
((D1.*conj(v12) .*xTum)+(D2.*v22.*Tbm) )+ ...
4xpi~2.*(wim. 2+w2m."~2) .*((D1.*conj(v12) .*(Temp5))+(D2.*conj(v22) .*
(Temp6)))+ ...
4xpi~2.%(v12.72+v22.72) .*((conj(v12) .*(koff.*Tbm-kon.*Tum) )+
(conj(v22) .*(kon.*Tum-koff.*Tbm)))+ ...
4xpi~2.x(conj(v12)-conj(v22)) .*((kon.*(Temp5))-(koff.*(Temp6))))./ ...
(2xpi.*sqrt(v1i2.~2+v22.72) .xsqrt (16*pi~4.*(v12.72+v22.72) . "2 *
((norm(u2,’fro’)*x(2xpi/N)) . 2+(norm(b2, ’fro’) *(2*pi/N)) .~ 2)- ...
real (8*pi~2.*(v12.72+v22.72) .*((conj(Tum) . *Temp7)+(conj (Tbm) . *
Temp8)))+ ...
4xpi~2. % ((Temp6) . ~2+(Temp5) .~2))) ;
M21=(-4*pi~2.*kb.*(v12.72+v22.72) .*((conj (myfft2(Irn.*u2)*(2*pi/N)~2) .*v12)+
(conj (myfft2(Irn.*b2)*(2*pi/N)~2).*v22))+ ...
4xpi~2.*kb.*mean(Irn) .*((Temp7) .*v12+(Temp8) .*v22)- ...
4xpi~2.*(wim. "2+w2m."2) .*x(v12.72+v22.°2) . *
((D1.*v12.*conj(Tum))+(D2.*v22.*conj(Tbm)) )+ ...
4xpi~2.*(wim. " 2+w2m.~2) .*((D1.*v12.*(Temp7))+(D2.*v22.*(Temp8)))+ ...
4xpi~2.%(v12.72+v22.72) .*x((v12.*(kon.*conj(Tbm) -kon.*conj (Tum)))+
(v22.*(koff.*conj(Tum) -koff.*conj(Tbm))))+ ...
4xpi~2.%((v12.%kon) - (v22.*xkoff)) .*((Temp7)-(Temp8)))./ ...
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(2%pi.*sqrt(v12.72+v22.72) .*sqrt (16*pi~4.*(v12.72+v22.72) ."2. %
((norm(u2,’fro’)*(2xpi/N)) . 2+(norm(b2, ’fro’) *(2%pi/N)) .~ 2)- ...
real (8*pi~2.*(v12.72+v22.72) .*((conj (Tum) . *Temp7)+(conj (Tbm) . *Temp8)) )+ ..
4%pi~2.*((Temp6) . ~2+(Temp5) .~2)));

M22=((-4*pi~2.*kon.*(Temp5) . ~2) - (4*pi~2.*koff.*(Tempb) .~ 2)+ ...
4xpi~2.*kon.* (Tempb5) . *(Temp8)+ ...
4xpi~2.*koff.*(Temp7) .*(Tempb) - ...
64*pi~6.*kb.*(vcec) . 2. *%(mean(Irn.*u2."2)+mean(Irn.*b2.72))+ ...
4xpi~2.*kb.*vcc.* (((myfft2(Irn.*u2)*(2xpi/N)~2) .*(Temp7))+
((myf£t2(Irn.*b2)*(2%pi/N)~2) .*(Temp8)))- ...
16%pi~4.*(vcc) .~2.x(D1.*(u2c)+D2.*(b2c))+ ...
4xpi~2.*vcc.*(Tempb) . *
((-kon.*conj(Tbm))+(D1.*(wim. 2+w2m."2) .*conj (Tum))+(kon.*conj(Tum)) )+ ...
4xpi~2.*vcc.*(Tempb) . x
((-koff.*conj(Tum))+(D2.*(wim. 2+w2m.~2) .*conj (Tbm) )+ (koff.*conj(Tbm)))- .
4xpi~2.*kb.*mean(Irn) .*((Temp6) . 2+ (Temp5) .~ 2)+ ...
4xpi~2.*vcc.*(Temp8) . x ((koff.*Tbm) - (kon.*Tum))- ...
4xpi~2.*(wim. 2+w2m."2) .*((D1.*(Temp7) ."2)+(D2.*(Temp8) ."2))+ ...
4xpi~2.*vcc.*((kon.*Tum) - (koff.*Tbm)) . * (Temp7)+ ...
16*%pi~4.*(vcc) .~2.*%((-kon.*(norm(u2,’fro’)*(2xpi/N)) .~ 2)+
(4%pi~2.*koff.*mean(u2.*b2))+
(4%pi~2.*kon.*mean(b2.*u2)) - (koff.*(norm(b2,’fro’)*(2*xpi/N)).~2))- ...
4xpi~2.xvce.x (wim. ~2+w2m.~2) . * ((D1.*Tum. * (Temp7))+(D2.*Tbm.* (Temp8) ) )+ . ..
4xpi~2.*kb.*vcc.*((conj(myfft2(Irn.*u2)*(2xpi/N)~2) .*(Temp7))+
(conj(myfft2(Irn.*b2)*(2*%pi/N)~2) .*(Temp8))))./ ...
(16*pi~4.*(vce) .~2.*%((norm(u2, ’fro’)*(2%pi/N)) . 2+ (norm(b2, ’fro’) *
(2xpi/N))."2)- ...
real (8*pi~2.*vcc.*((conj(Tum) .*(Temp7))+(conj(Tbm) .*(Temp8))))+ ...
4%pi~2.*((Temp6) . ~2+(Temp5) .~2));

TrRM=RM11+RM22;

TrM=M11+M22;

DetRM=RM11.*RM22-RM12.*RM21;

DetM=M11.x*M22-M12.*M21;

DiscRM=sqrt (TrRM. ~2-4*DetRM) ;

DiscM=sqrt (TrM. ~2-4*DetM) ;

Rlam1=(TrRM+DiscRM)/2;



Rlam2=(TrRM-DiscRM)/2;
lam1=(TrM+DiscM)/2;
lam2=(TrM-DiscM)/2;
Tum=Tum/ (2%pi/N) ~2;
Tbm=Tbm/ (2*pi/N) ~2;
p=L11*u2+L12x%b2;
q=L21*%u2+L22%xb2;
p2=reshape(p,N,N);
g2=reshape(q,N,N);
Tpm=£fft2(p2) ;
Tqm=f£ft2(q2);

Tpm=reshape (Tpm,N~2,1);

Tgm=reshape (Tqm,N~2,1);
Rc1=((exp(Rlam2*dt)-exp(Rlaml*dt)) ./(Rlam2-Rlaml)) ;
RcO=exp(Rlam2*dt)-Rcl.*Rlam2;
c1=((exp(lam2*dt)-exp(lamix*dt)) ./(lam2-laml));
cO=exp(lam2*dt)-cl.*lam2;

Tvi=ull
ull
ul?2
ul2

Tv2=u21
u21
u22
u22

.*(Rc0.*((u22./cons)
.*(Rcl.x((u22./cons)
.*(c0.*((-u21./cons)
.*(c1.%((-u21./cons)
.*(Rc0.*((u22./cons)
.*(Rcl.x((u22./cons)
.*(c0.*((-u21./cons)
.*(cl.x((-u21./cons)

Tvi=reshape(Tvi,N,N);
Tv2=reshape(Tv2,N,N);
v1=ifft2(Tvl);
v2=ifft2(Tv2);
vi=reshape(v1,N~2,1);
v2=reshape (v2,N"2,1);

vv=[v1l;v2];

B12=v1;

B22=v2;

Sf=vv;
totall(:,nstep)=B12;

.*Tum+(-ul2./cons) . *Tbm) ) +. . .
.*Tpm+(-ul2./cons) .*Tqm) ) +. ..
.*Tum+(ull./cons) .*Tbm) ) +. ..
.*Tpm+(ull./cons) .*Tqm)) ;

.*Tum+(-ul2./cons) . *Tbm) ) +. . .
*Tpm+(-ul2./cons) . *Tqm) ) +. . .
.*Tum+(ull./cons) .*Tbm) ) +. ..

.*Tpm+(ull./cons) .*Tqm)) ;
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total2(:,nstep)=B22;

total3(:,:,nstep)=Tvl;

totald(:,:,nstep)=Tv2;

T=B12+B22;

totalb(:,nstep)=T;

Tv=Tv1+Tv2;

total6(:,:,nstep)=Tv;

nstep=nstep+1;
end
[exactl,exact2]=refsoln(coefs,64,tf) ;
exact=exactl+exact?2;
exactl=reshape(exactl,64,64);
exact2=reshape(exact2,64,64);
r=64/N;
Sf=reshape (Sf ,numel (Sf),1);
Sf1=Sf(1:end/2);
Sf2=Sf (end/2+1:end);
Sfi=reshape(Sf1,N,N);
Sf2=reshape (Sf2,N,N);
absoluteErri=norm(Sfl-exact1(l:r:64,1:
relativeErrl=norm(Sfi-exacti(1l:r:64,1:
norm(exact1(l:r:64,1:r:64),’inf’);
absoluteErr2=norm(Sf2-exact2(1:r:64,1:
relativeErr2=norm(Sf2-exact2(1:r:64,1:
norm(exact2(l:r:64,1:r:64),’inf’);
absoluteErr=absoluteErri+absoluteErr2

relativeErr=relativeErrl+relativeErr2

r

r

r

:64),’inf?);
:64),’inf?) ./
:64),°inf’);
:64),’inf?) ./
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