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ABSTRACT

SOLUTION OF NONLINEAR TIME-DEPENDENT PDE THROUGH

COMPONENTWISE APPROXIMATION OF MATRIX FUNCTIONS

by Alexandru Cibotarica

August 2015

Exponential propagation iterative (EPI) methods provide an efficient approach to the

solution of large stiff systems of ODE, compared to standard integrators. However, the

bulk of the computational effort in these methods is due to products of matrix functions and

vectors, which can become very costly at high resolution due to an increase in the number

of Krylov projection steps needed to maintain accuracy. In this dissertation, it is proposed to

modify EPI methods by using Krylov subspace spectral (KSS) methods, instead of standard

Krylov projection methods, to compute products of matrix functions and vectors. This

improvement allowed the benefits of KSS methods observed in linear PDE to be extended

to the nonlinear case. Numerical experiments demonstrate that this modification causes

the number of Krylov projection steps to become dramatically reduced, thus improving

efficiency and scalability.
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NOTATION AND GLOSSARY

General Usage and Terminology

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field. The italicized capital letters, A,B, · · · are used to denote
matrices. Functions are denoted by the letter f or greek letters. Lower case letters such
as i, j,k, l,m,n are used to denote indices, while lower case bold letters are used to denote
vectors. Norms are typeset using double pairs of lines, e.g., || · ||.
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1

Chapter 1

INTRODUCTION

The increase in computing power over the last decade has made it possible to use mathemat-
ical models with higher spatial resolution. However, these models have introduced greater
stiffness into the system of ordinary differential equations (ODEs) that is obtained from the
spatial discretization of a time-dependent partial differential equation (PDE). This stiffness
poses problems for both explicit and implicit time-stepping methods. For explicit methods,
the time step is severely restricted; i.e. a very small time step is required to be used, while
for implicit methods, an ill-conditioned system must be solved during each time step, for
which an iterative method requires many iterations or a specially developed preconditioner
[16].

Consider an autonomous, stiff system of ODE

y′ = F(y), y(t0) = y0, (1.1)

such as one that would arise from spatial discretization of a PDE. Finding a solution to (1.1)
requires the computation of matrix function-vector products of the form w = ϕ(Aτ)b, where
ϕ is a smooth function, A is an ill-conditioned matrix, τ is a parameter determined by the
time step, and b is a vector. Exponential propagation iterative (EPI) methods, introduced by
Tokman et al. [14, 16], are designed to reduce the number of Krylov projection steps needed
to compute such matrix function-vector products. One approach [14, 10] to computing
w for a general nonsymmetric matrix A is to use Krylov projections obtained from the
Arnoldi algorithm. The Arnoldi iteration produces an orthonormal basis Vm = [v1, . . . ,vm],
where v1 = b/‖b‖2, of the Krylov subspace Km = span(b,Ab, . . . ,Am−1b) and an upper
Hessenberg matrix Hm

Hm =V T
m (A)Vm. (1.2)

Then the matrix function-vector product can be approximated as follows

ϕ(Aτ)b≈VmV T
m f (Aτ)VmV T

m b. (1.3)

Using (1.2), we can rewrite (1.3) as

V T
m ϕ(Aτ)Vm ≈ ϕ(V T

m AτVm)≈ ϕ(Hmτ), (1.4)



2

producing the approximation

ϕ(Aτ)b≈Vmϕ(Hmτ)V T
m b. (1.5)

Using the fact that V T
m b = ‖b‖2e1, we can express (1.5) as

w = ϕ(Aτ)b≈ ‖b‖2Vmϕ(Hmτ)e1, (1.6)

where e1 =
[

1 0 · · · 0
]T . Since the matrix A arises from a stiff PDE, the eigenvalues

of A are not clustered, which means that a large number of Arnoldi or Lanczos iterations
might be required in order to obtain a good approximation of w. In the case where (1.1) is a
linear system of ODE, one way to solve this problem is by using an outer iteration

wm+1
j ≈ e−A∆twm

j , m = 0,1, . . . , w0
j = v, (1.7)

for some ∆t� t. In this case, ∆t must be chosen very small, which might not be practical.
The coupling of the components of the solution with different frequencies is the main

difficulty that time-stepping methods have with stiffness. Another problem is that explicit
time-stepping methods use a polynomial function and implicit time-stepping methods use
a rational function to approximate all the components of ϕ(Aτ)b, which cannot be done
effectively on a large interval except at high degree, resulting in high computational expense.
A solution to this problem is to use Krylov subspace spectral (KSS) methods [12, 18], that use
an interpolating polynomial with frequency-dependent interpolating points to approximate
the function ϕ , resulting in a component-wise approach to the problem. Thus, each Fourier
coefficient of the solution is computed using an approximation of the solution operator that
is tailored to that component. As a consequence, these methods demonstrate a high order of
accuracy and stability like that of implicit methods.

The need to compute component-dependent nodes and weights of block Gausian quadra-
ture rules [12, 19] accounts for most of the computational expense in KSS methods. Through
an asymptotic analysis of the recursion coefficients produced by block Lanczos iteration [5],
Lambers was able to obtain a much faster version of KSS [19], by using quadrature nodes
that are prescribed based on estimates of the extremal nodes of these block Gaussian rules.

After performing a more thorough asymptotic analysis, we are able to estimate all of the
block Gaussian nodes, not just the extremal ones. As a result, more efficient implementation
of the central idea behind KSS methods is possible. Compared to traditional Krylov
subspace-based approaches to computing ϕ(A)b [9, 10, 11, 25], KSS methods are not only
highly accurate and stable, but also scalable with respect to the number of grid points used
in the spatial discretization of the underlying PDE.
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Untill now, KSS methods have been used mainly on linear PDE on n-dimensional boxes,
for n = 1,2,3, with either periodic or homogeneous boundary conditions. A succesful
implementation of KSS methods for nonlinear PDE was used by Guidotti, et al. [7] when a
one-node KSS method was applied to nonlinear diffusion equations from image processing
to obtain first-order accuracy in time. However, in order to achieve higher-order accuracy
for nonlinear PDE, in addition to using more nodes, it is also necessary to account for the
nonlinearity more carefully than with a simple linearization at each time step. This can be
accomplished by combining KSS methods with EPI methods.

We present such a combination in this dissertation, for solving systems of ODE of the
form (1.1) that are obtained through spatial discretization of nonlinear PDE, or systems of
nonlinear PDE, defined on rectangular domains with periodic, homogeneous Dirichlet, or
homogeneous Neumann boundary conditions. This method includes the following features:

• Instead of applying a Krylov projection method (e.g. see [9, 10, 11]) for computing
approximations of expressions of the form y = ϕ(τA)b, where A is an N×N matrix,
b is an N-vector, τ is a scaling factor derived from the time step, and ϕ is a smooth
function, such a method is applied only to a low-frequency approximation of b, in
order to avoid the larger number of iterations that these methods typically incur at
higher spatial resolution. Furthermore, denoising is applied to the Krylov subspace
basis produced by this iteration, to remove the obstacle to convergence that is presented
by spurious high-frequency oscillations that occur in the basis vectors.

• For the high-frequency portion of the vector b, application of ϕ(τA) is performed
using a KSS method, as described in [15]. In this particular KSS method, each Fourier
component of the output vector y is approximated using its own block Gaussian
quadrature rule, except that the quadrature nodes are obtained through high-frequency
analysis of block Lanczos iteration, which yields formulas for approximation of the
nodes.

This approach differs from KSS methods from [12, 18], in which block Lanczos
iteration is performed for each Fourier component and the resulting block tridiagonal
matrices are diagonalized to obtain the Gaussian quadrature nodes and weights, and
from KSS methods from [19], in which asymptotic analysis is used to approximate
only the extremal nodes, while the interior nodes are prescribed using equal spacing.
The benefit of the approach used in [15] is that it combines the accuracy of the
approach of [12, 18] with the efficiency of the approach of [19].

In [15], formulas for the nodes were given for a 1-D, self-adjoint second-order operator
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with periodic boundary conditions. In this dissertation, a similar analysis is applied to
other operators, that illustrate generalizations to other boundary conditions, higher
spatial dimension, non-self-adjoint operators, and systems of coupled equations.

• Once the nodes are determined as described above, it is necessary to construct and
apply frequency-dependent interpolating polynomials of the matrix A to the high-
frequency portion of the vector b. This dissertation provides implementation details
for this task, and explains how it can be accomplished using approximately half of the
number of Fourier transforms that a straightforward implementation would require.

The outline of this dissertation is as follows. Chapter 2 gives a description of KSS
methods. Chapter 3 discusses the acceleration of the KSS methods based on a thourough
asymptotic analysis of the recursion coefficients for different cases. Chapter 4 provides a
brief description of the EPI methods, and shows the high-frequency oscillations that can
occur when using standard Krylov projection with an EPI method. Also, Chapter 4 describes
how KSS and EPI methods are combined. Numerical results are presented in Chapter 5, and
conclusions are stated in Chapter 6.
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Chapter 2

Krylov Subspace Spectral Methods

To review the essential aspects of KSS methods, as first described in [12], we consider the
parabolic PDE ut +Lu = 0 on the interval [0,2π], where L is a Sturm-Liouville operator,
with appropriate initial conditions and periodic boundary conditions. The idea behind KSS
methods is that the Fourier coefficients of the computed solution ũ(x, tn+1) are obtained by
applying the exact solution operator to the previously computed solution ũ(x, tn). These
Fourier coefficients are given by

û(ω, tn+1) =

〈
1√
2π

eiωx,e−L∆t ũ(x, tn)
〉
, (2.1)

where ω is an integer representing the wave number, 〈·, ·〉 denotes the standard inner product
on [0,2π] and e−L∆t is the solution operator of the PDE.

As a result of the spatial discretization of (2.1), we obtain the following bilinear form

uT f (A)v, (2.2)

where u = 1√
2π

eiωx and v = ũ(x, tn) are N-vectors, A = LN is an N×N symmetric positive

definite matrix that comes from discretizing the operator L, and f (λ ) = e−λ t .
The matrix A has real eigenvalues b = λ1 ≥ λ2 ≥ ·· · ≥ λN = a > 0, and corresponding

orthonormal eigenvectors q j, j = 1, . . . ,N. As a result, we have the following spectral
decomposition of (2.1)

uT f (A)v =
N

∑
j=1

f (λ j)uT q jqT
j v. (2.3)

As mentioned by Golub and Meurant in [4], (2.1) can also be viewed as a Rieman-
Stieltjes integral

uT f (A)v =
∫ b

a
f (λ )dα(λ ), (2.4)

where

α(λ ) =


0, if λ < a
∑

N
j=i α jβ j, if µi ≤ λ < µi−1

∑
N
j=1 α jβ j, if b≤ λ

, α j = uT q j, β j = qT
j v.
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We can approximate the integral in (2.4) using Gaussian quadrature rules, where the nodes
and weights are obtained using the Lanczos algorithm applied to A with initial vectors u and
v [4].

In the case where u 6= v,the presence of a negative weight would destabilize the quadra-
ture rule [1]. Alternatively, we consider the approximation of the 2×2 matrix integral[

u v
]H f (A)

[
u v

]
. (2.5)

The expression in (2.5) can be regarded as a matrix-valued Riemann-Stieltjes integral∫ b

a
f (λ )dµ(λ ) =

[
uH f (A)u uH f (A)v
vH f (A)u vH f (A)v

]
where µ(λ ) is a 2×2 matrix, each entry of which is a measure of the form α(λ ).

We use the most general K-node quadrature formula, as described in [4], to obtain an
approximation for (2.4) of the form∫ b

a
f (λ )dµ(λ ) =

2K

∑
j=1

f (λ j)v jvH
j + error, (2.6)

where, for each j, λ j is a scalar and v j is a 2-vector. Each node λ j is an eigenvalue of the
matrix

TK =


M1 BH

1
B1 M2 BH

2
. . . . . . . . .

BK−1 MK

 , (2.7)

which is a block-tridiagonal matrix of order 2K. The vector v j consists of the first two
elements of the corresponding normalized eigenvector. The matrices M j and B j are computed
using the block Lanczos algorithm [5]:

X0 = 0, R0 = [u,v], R0 = X1B0 (QR factorization)
for n = 1,2, . . . ,K

V = AXn

Mn = XH
n V

Rn =V −Xn−1BH
n−1−XnMn

Rn = Xn+1Bn (QR factorization)
end

The block KSS method starts by defining

R0(ω) =
[

êω un ] , (2.8)
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where êω is a discretization of 1√
2π

eiωx and un is the computed solution at time tn. The QR

factorization of R0(ω) yields R0(ω) = X1(ω)B0(ω), with

X1(ω) =
[

êω
un

ω

‖un
ω‖2

]
(2.9)

and
B0(ω) =

[
1 êH

ω un

0 ‖un
ω‖2

]
,

where
un

ω = un− êω êH
ω un. (2.10)

Then, block Lanczos iteration is applied to the discretized operator LN with initial block
X1(ω), producing a block tridiagonal matrix TK(ω) of the form (2.7), where each entry is a
function of ω . Then, each Fourier coefficient of the solution at time tn+1 can be expressed as

[ûn+1]ω =
[
BH

0 EH
12e−TK(ω)∆tE12B0

]
12
, E12 =

[
e1 e2

]
. (2.11)

This algorithm has temporal accuracy O(∆t2K−1) for parabolic problems [12]. Even
higher-order accuracy, O(∆t4K−2), is obtained for the second-order wave equation [18].
Furthermore, under appropriate assumptions on the coefficients of the PDE, the 1-node KSS
method is unconditionally stable [12, 18].

It may seem that KSS methods appear to be prohibitively expensive, due to the computa-
tion of a large number of Krylov subspaces, when compared to the Krylov subspace methods
such as those in [9, 10, 11, 25]. However, the latter methods require a number of Arnoldi or
Lanczos iterations that increase with the number of grid points in order to preserve the same
level of accuracy. At the same time, the Krylov subspaces generated by KSS methods are
closely related by the wave number ω , which allows elimination of redundant computations
[19]. In the next chapter we will see how we can get individual approximations for each
component through asymptotic analysis, to make KSS methods even more efficient.
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Chapter 3

Asymptotic Analysis of Block Lanczos Iteration

The main idea in KSS methods is to compute each Fourier component of the solution using
an approximation that is optimal for that component. In particular, each component of the
solution uses its own polynomial approximation of S(LN ;∆t) = e−LN∆t , where the function
S is based on the solution operator of the PDE

ut +Lu = 0,

and LN is the discretization of the spatial differential operator. These polynomial approx-
imations are obtained by interpolation of the function S(λ ;∆t) at selected nodes for each
component. Then, the computed solution has the form [19]

un+1 = S(LN ;∆t)un =
2K

∑
j=0

D j(∆t)L j
Nun,

where D j(∆t) is a matrix that is diagonal in the chosen basis. The diagonal entries are
the coefficients of these interpolating polynomials in the monomial basis, with each row
corresponding to a particular component. The interpolation points of the original block KSS
method [12, 18] were obtained by performing block Lanczos iteration and then diagonalizing
a 2K×2K matrix–for each component. In this chapter, we develop a much faster way of
obtaining interpolation points, by studying the behavior of block Lanczos in the limit as
|ω| → ∞, where ω is the wave number.

3.1 The Block Case

The block Lanczos algorithm is as follows:

X0 = 0, R0 = [u,v], R0 = X1B0 (QR factorization)

for n = 1,2, . . . ,K
V = AXn

Mn = XH
n V

if n < K



9

Rn =V −Xn−1BH
n−1−XnMn

Rn = Xn+1Bn (QR factorization)
end

end

Let un be a discretization of the solution at time tn = n∆t on an uniform N-point grid.
For the initial R0 =

[
eiωx/

√
2π un

]
, we start the first iteration of the block Lanczos

algorithm by finding the QR-factorization of R0:

[
a1 a2

]
=
[

q1 q2
][ r11 r12

0 r22

]
, (3.1)

where

r11 = ‖a1‖2 =

∥∥∥∥ eiωx
√

2π

∥∥∥∥
2
= 1, (3.2)

q1 =
a1

r11
=

eiωx
√

2π
, (3.3)

r12 = 〈q1,a2〉 ≈
1√
2π

∫ 2π

0
e−iωxundx = ûn(ω), (3.4)

where ûn(ω) is a coefficient of the Fourier interpolant of un,

r22 = ‖a2− r12q1‖2 =

∥∥∥∥un− 1√
2π

ûn(ω)eiωx
∥∥∥∥

2
, (3.5)

q2 =
a2− r12q1

r22
=

un− 1√
2π

ûn(ω)eiωx∥∥∥∥un− 1√
2π

ûn(ω)eiωx
∥∥∥∥

2

. (3.6)

If we let un− 1√
2π

ûn(ω)eiωx = un
ω , then (3.6) can be written as

q2 =
un

ω

‖un
ω‖2

. (3.7)

Thus, the QR-factorization of R0 yields the two matrices

X1 =

[
eiωx
√

2π

un
ω

‖un
ω‖2

]
and B0 =

[
1 ûn(ω)
0 ‖ûn(ω)‖2

]
. (3.8)

The next step is to find M1

M1 = XH
1 LNX1, (3.9)
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where Lu = puxx +q(x)u, and p is a constant. Using the value of X1 from (3.8) into (3.9)
yields

M1 =


−ω2 p+ q̄

L̂Nun
ω

‖un
ω‖2

L̂Nun
ω

‖un
ω‖2

R(LN ,un
ω)

 , (3.10)

where R(LN ,un
ω) =

〈un
ω ,LNun

ω〉
〈un

ω ,un
ω〉

is the Rayleigh quotient of the operator LN and un
ω and q̄ is

the average of the function q. As |ω| increases, the Fourier coefficients of a function go to
zero as long as the function is at least piecewise continuous, and therefore the non-diagonal
entries of M1 become negligible, i.e.,

M1 ≈
[
−ω2 p+ q̄ 0

0 R(LN ,un
ω)

]
. (3.11)

In the next step of the block Lanczos algorithm, we obtain R1 as follows

R1 = LNX1−X1M1 =

[
1√
2π

eiωxq̃
LNun

ω

‖un
ω‖2
−un

ωR(LN ,un
ω)

]
. (3.12)

To obtain X2, we repeat the process of the block Lanczos algorithm and perform the QR-
factorization of R1

r11 = ‖q̃‖2, (3.13)

q1 =
q̃eiωx
√

2π‖q̃‖2
, (3.14)

where q̃ = q− q̄,

r12 ≈
1√

2π‖q̃‖2

∫ 2π

0
e−iωx q̃

(
LNun

ω

‖un
ω‖2
−un

ωR(LN ,un
ω)

)
dx

≈

̂
q̃
(

LNun
ω

‖un
ω‖2
−un

ωR(LN ,un
ω)

)
‖q̃‖2

, (3.15)
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where the multiplication of vectors is performed componentwise,

q2 =

LNun
ω

‖un
ω‖2
−un

ωR(LN ,un
ω)−

q̃eiωx
̂

q̃
(

LNun
ω

‖un
ω‖2
−un

ωR(LN ,un
ω)

)
√

2π‖q̃‖2
2∥∥∥∥∥∥∥∥∥

LNun
ω

‖un
ω‖2
−un

ωR(LN ,un
ω)−

q̃eiωx
̂

q̃
(

LNun
ω

‖un
ω‖2
−un

ωR(LN ,un
ω)

)
√

2π‖q̃‖2
2

∥∥∥∥∥∥∥∥∥
2

=
r1,ω

‖r1,ω‖2
. (3.16)

Therefore, X2 is given by

X2 =

[
q̃eiωx
√

2π‖q̃‖2

r1,ω

‖r1,ω‖2

]
. (3.17)

We then find M2 as follows

M2 = XH
2 LNX2 =


−ω2 p+ q̄q̃2

̂q̃LNr1,ω

‖q̃‖2‖r1,ω‖2

̂q̃LNr1,ω

‖q̃‖2‖r1,ω‖2
R(LN ,r1,ω)

 , (3.18)

where q̄q̃2 is the average value of q(x) with respect to the weight function q̃2(x) and is given

by q̄q̃2 =

∫ 2π

0 q(x)q̃2(x)dx∫ 2π

0 q̃2(x)dx
.

Since the off-diagonal entries of M2 are Fourier coefficients, as |ω| increases, the Fourier
coefficients of a function go to zero. Therefore M2, just as M1, becomes approximately
diagonal, i.e.,

M2 ≈
[
−ω2 p+ q̄q̃2 0

0 R(LN ,r1,ω)

]
. (3.19)

Continuing this process, it can be seen that every (nonzero) off-diagonal entry of M j or
B j, for j = 1,2, . . . , is a Fourier coefficient of some function that is a differential operator
applied to u. Therefore, as long as the Fourier coefficients of un decay to zero at a sufficiently
high rate as |ω| → ∞, these off-diagonal entries will also decay to zero.

In the case where the leading coefficient p(x) of L is not constant, the blocks B0 and M1

are the same as in the case where p is constant, except that the (1,1) entry of M1 is p̄ω2 + q̄.
We then have
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R1 =

[
ω2p̃êω

LNuω

‖uω‖2
−R(LN ,uω)

uω

‖uω‖2

]
+ lower order terms, (3.20)

where p̃ contains the values of p̃(x) from x j = j∆x, j = 0,1, . . . ,N−1. It can be seen that as
in the case of constant p, when we compute the QR factorization R1 = X2B1, the (1,2) entry
of B1, modulo lower-order terms, will be a Fourier coefficient of

w1 = p̃
(

LNuω

‖uω‖2
−R(LN ,uω)

uω

‖uω‖2

)
,

which will approach 0 as |ω| → ∞. Continuing this process reveals that the behavior is the
same as in the case where p is constant.

It follows that in this high-frequency limit, the block tridiagonal matrix TK produced
by block Lanczos applied to R0 as defined above converges to the matrix that would be
obtained by applying “non-block” Lanczos iteration to the two columns of R0 separately, and
then alternating rows and columns of the tridiagonal matrices produced by these iterations.
Therefore, by reordering the rows and columns of TK in such a way that odd-numbered and
even-numbered rows and columns are grouped together, we find that the eigenvalue problem
for this matrix decouples, and the block Gaussian quadrature nodes can be obtained by
computing the eigenvalues of these smaller, tridiagonal matrices [15]. For finite ω , we can
then use non-block Lanczos to at least estimate the true block Gaussian quadrature nodes.

3.2 The Non-Block Case

The decoupling observed in the preceding discussion reveals that we can obtain approxima-
tions of half of the block Gaussian quadrature nodes for all Fourier components by applying
“non-block” Lanczos iteration to the matrix LN with initial vector un, the computed solution,
as is done in standard Krylov projection methods such as those described in [9, 10, 11].
These nodes will be referred to as f requency− independent nodes. To estimate the other
half of the nodes, we perform an asymptotic analysis of Lanczos iteration applied to LN with
initial vector êω ; these are called f requency−dependent nodes. The algorithm for Lanczos
iteration is given as follows:

β0 = 0, m0 = 0, m1 = u/‖u‖2

for n = 1,2, . . . ,K
vn = Amn

αn = mH
n vn
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vn = vn−βn−1mn−1−αnmn

βn = ‖vn‖2

mn+1 = vn/βn

end

Thus, if u =
1√
2π

eiωx and Lu = puxx + q(x)u, where p is a constant, then the first

iteration of the Lanczos algorithm is as follows

m =
u
‖u‖

=

1√
2π

eiωx

‖ 1√
2π

eiωx‖2
=

eiωx

‖eiωx‖
= eiωx. (3.21)

v = Lm = p(eiωx)xx +qeiωx = p(−ω
2eiωx)+qeiωx = eiωx(−ω

2 p+q). (3.22)

α1 = mHv≈
∫ 2π

0
e−iωxeiωx(−ω

2 p+q)dx =−ω
2 p+ q̄, (3.23)

where q̄ = 1
2π

∫ 2π

0 q dx is the average value of the function q(x) over the interval [0,2π]. In
the next step, ew update v and obtain β1 as follows

v = v−β0l−α1m = eiωx(−ω
2 p+q)− eiωx(−ω

2 p+ q̄)

= eiωx(q− q̄) = eiωxq̃, (3.24)

where q̃ = q− q̄.

β1 = ‖eiωxq̃‖2 = ‖q̃‖2, (3.25)

We then continue by updating the values of l and m

l = eiωx, (3.26)

m =
eiωxq̃
‖q̃‖2

. (3.27)

The second iteration of the Lanczos algorithm yields

v =
1
‖q̃‖2

[p(−ω
2eiωxq̃+2iωeiωxqx + eiωxqxx)+ eiωxqq̃]. (3.28)
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α2 ≈
1
‖q̃‖2

2

∫ 2π

0
(−ω

2 pq̃2 +2iω pq̃qx + pq̃qxx +qq̃)dx

≈ −ω
2 p+ q̄q̃2− p

‖qx‖2
2

‖q̃‖2
2
, (3.29)

where
∫ 2π

0 2ipω q̃qxdx = 0 and q̄q̃2 =
∫ 2π

0 qq̃2dx is the average value of q(x) with respect
to q̃2 on the interval [0,2π]. The dominant term in (3.29) is −ω2 p. The other terms are
insignificant compared to this term, so if we drop the lower order terms, 3.29 can be rewritten
as

α2 ≈−ω
2 p. (3.30)

We update v and obtain

v =
1
‖q̃‖2

[p(−ω
2eiωxq̃+2iωeiωxqx + eiωxqxx)+qq̃eiωx]

−eiωx‖q̃‖2− (−ω
2 p)

eiωxq̃

‖q̃‖2
. (3.31)

Since the ω2-terms in (3.31) cancel and we are only interested in the highest order
ω-terms, eq. (3.31) can be written as

v =
2ipωeiωxqx

‖q̃‖2
. (3.32)

Then, we update β2 to obtain

β2 =

∥∥∥∥2ipωeiωxqx

‖q̃‖2

∥∥∥∥
2
=

2pω‖qx‖2

‖q̃‖2
. (3.33)

Updating l and m we obtain

l =
eiωxq̃
‖q̃‖2

(3.34)

m =
ieiωxqx

‖qx‖2
. (3.35)

The third iteration of the Lanczos algorithm yields

v = i
1
‖qx‖2

[p(−ω
2eiωxqx +2iωeiωxqxx + eiωx + eiωxqxxx)+ eiωxqqx], (3.36)
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α3 ≈
1
‖qx‖2

2

∫ 2π

0
[p(−ω

2q2
xeiωx +2iωqxqxx +qxqxxx)+qq2

x ]dx. (3.37)

Simplifying (3.37) we obtain

α3 ≈−ω
2 p+ q̄q2

x
+ p
‖qxx‖2

2
‖qx‖2

2
. (3.38)

Similarly to (3.29), we drop the lower order terms in (3.38) to obtain

α3 ≈−ω
2 p. (3.39)

Thus, we obtain the following matrix with recursion coefficients as functions of the wave
number ω: α1 β1 0

β1 α2 β2
0 β2 α3

≈
 pω2 ‖q̃‖2 0
‖q̃‖2 pω2 2p|ω|‖qx‖2/‖q̃‖2

0 2p|ω|‖qx‖2/‖q̃‖2 pω2

 .
It follows that the frequency-dependent nodes can easily be estimated as

λ1,ω = pω
2, λi,ω = pω

2±
√

β 2
1 +β 2

2 , i = 2,3. (3.40)

We now consider the case of homogeneous Neumann boundary conditions, with the
same operator. Let x be a vector of uniformly spaced grid points on [0,2π). Given the initial
values β0 = 0, l = 0, u = cos(ωx), and Lu = puxx +q(x)u, we first find m

m =
u
‖u‖2

=
cos(ωx)
‖cos(ωx)‖2

=
cos(ωx)√

π
. (3.41)

Then the first itertion of the Lanczos algorithm proceeds as follows:

v = Lm =
1√
π
[−pω

2 cos(ωx)+qcos(ωx)]. (3.42)

α1 ≈mT v =
1
π

∫ 2π

0
(−ω

2 pcos2(ωx)+qcos2(ωx))dx (3.43)

Since
∫ 2π

0 cos(ωx)2dx = π , then (3.43) simplifies to

α1 ≈−ω
2 p+ q̄. (3.44)

The next step in the Lanczos algorithm is to update v

v = v−β0l−α1m

=
1√
π
[−pω

2 cos(ωx)+qcos(ωx)]+(ω2 p+ q̄)
cos(ωx)√

π

= (q− q̄)
cos(ωx)√

π
=

q̃cos(ωx)√
π

. (3.45)
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From (3.45), we obtain the new β

β1 =

∥∥∥∥ q̃cos(ωx)√
π

∥∥∥∥
2
=
‖q̃cos(ωx)‖2√

π
. (3.46)

To conclude the first iteration of the Lanczos algorithm, we update the values of l and m

l = m =
cos(ωx)√

π
(3.47)

m =
v
β1

=
q̃cos(ωx)
‖q̃cos(ωx)‖2

. (3.48)

We continue with the second iteration of the Lanczos algorithm and obtain the next v

v =
1

‖q̃cos(ωx)‖2
[p(−ω

2q̃cos(ωx)−2ωqx sin(ωx)+qxx cos(ωx))

+qq̃cos(ωx)]. (3.49)

We proceed with obtaining the next α value

α2 ≈
1

π‖q̃cos(ωx)‖2
2

∫ 2π

0
q̃cos(ωx)[p(−ω

2q̃cos(ωx)−2ωqx sin(ωx)

+qxx cos(ωx))+qq̃cos(ωx)]dx (3.50)

If we drop the lower order ω-terms, then α2 simplifies to

α2 ≈−pω
2. (3.51)

The next step in the Lanczos algorith is to update v

v =
1

‖q̃cos(ωx)‖2
[p(−ω

2q̃cos(ωx)−2ωqx sin(ωx)+qxx cos(ωx))

+qq̃cos(ωx)]− ‖q̃cos(ωx)‖2 cos(ωx)
π

+ pω
2 q̃cos(ωx)
‖q̃cos(ωx)‖2

(3.52)

Dropping the lower order ω-terms is (3.52) simplifies to

v =
−2pωqx sin(ωx)
‖q̃cos(ωx)‖2

. (3.53)

As a result, the new β is given by

β2 =
2pω‖qx sin(ωx)‖2

‖q̃cos(ωx)‖2
. (3.54)

Finally, we update l and m

l =
q̃cos(ωx)
‖q̃cos(ωx)‖2

(3.55)
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m =− qx sin(ωx)
‖qx sin(ωx)‖2

. (3.56)

The third step of the Lanczos algorith proceeds as follows

v = − 1
‖qx sin(ωx)‖2

[p(−ω
2qx sin(ωx)+2ωqxx cos(ωx)

+qxxx sin(ωx))+qqx sin(ωx)]. (3.57)

The next α is given by

α3 ≈
1

‖qx sin(ωx)‖2
2

∫ 2π

0
qx sin(ωx)[p(−ω

2qx sin(ωx)+2ωqxx cos(ωx)

+qxxx sin(ωx))+qqx sin(ωx)]dx. (3.58)

Dropping the lower order ω-terms in (3.58) yields

α3 ≈−pω
2. (3.59)

After neglecting lower-order terms, we have the following matrix of recursion coeffi-
cients as functions of the wave number ω:

 α1 β1 0
β1 α2 β2
0 β2 α3

≈


−pω2 ‖q̃cos(ωx)‖2√
π

0

‖q̃cos(ωx)‖2√
π

−pω2 2pω‖qx sin(ωx)‖2

‖q̃cos(ωx)‖2

0
2pω‖qx sin(ωx)‖2

‖q̃cos(ωx)‖2
−pω2

 .

Then, we obtain the approximate quadrature nodes using (3.40).

3.3 The 2D Case

We now generalize to a two-dimensional domain [0,2π]2, with periodic boundary conditions
in both directions. Given the initial values β0 = 0, m = 0, u = eiω·x, and the differential
operator L =−p∆+q(x,y), we first find

m1 =
1

2π
eiω·x

1
2π
‖eiω·x‖2

= eiω·x. (3.60)

Then, the first iteration of the Lanczos algorithm proceeds as follows:

v1 = Lm1 =−p‖ω‖2
2eiω·x +qeiω·x (3.61)

α1 ≈mH
1 v1 =

∫ 2π

0

∫ 2π

0
[−p‖ω‖2

2 +q] dy dx =−p‖ω‖2
2 + q̄, (3.62)
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where q̄ is the average value of the function q(x,y) over the rectangle [0,2π]2. We update v
to obtain

v1 = v1−β0l1−α1m1

≈ −‖ω‖2
2 peiω·x +qeiω·x− (−p‖ω‖2

2 + q̄)eiω·x

≈ (q− q̄)eiω·x = q̃eiω·x, (3.63)

where l1 = m0. From (3.63) we obtain β1

β1 = ‖v1‖2 ≈ ‖q̃‖2. (3.64)

Then, we obtain l2 and m2 to finish the first iteration of the Lanczos algorithm

l2 = m1 = eiω·x (3.65)

m2 ≈
v
β1

=
q̃eiω·x

‖q̃‖2
. (3.66)

The second iteration of the Lanczos algorithm yields

v2 ≈
1
‖q̃‖2

[p(−‖ω‖2
2q̃+2iω ·∇q+∆q)eiω·x +qq̃eiω·x]. (3.67)

Then, we find the next value of α

α2 ≈
1
‖q̃‖2

2

∫ 2π

0
q̃[p(−‖ω‖2

2q̃+2iω ·∇q+∆q)+qq̃]ds

≈ −p‖ω‖2
2 + q̄q̃2 +

1
‖q̃‖2

2

∫ 2π

0
q̃[2ipω ·∇q+∆q]ds, (3.68)

where q̄q̃2 is the average value of the function q(x,y) on the rectangle [0,2π]2 with respect
to q̃2. If we drop the lower order ω-terms, then we can rewrite (3.68) as

α2 ≈−p‖ω‖2
2 (3.69)

We update the value of v2 to obtain

v2 ≈
1
‖q̃‖2

[p(−‖ω‖2
2q̃+2iω ·∇q+∆q)eiω·x +qq̃eiω·x]

+p‖ω‖2
2

q̃eiω·x

‖q̃‖2
−‖q̃‖2eiω·x. (3.70)

Dropping the lower-order terms in (3.70) yields

v2 ≈
1
‖q̃‖2

2ipω ·∇qeω·~x. (3.71)
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From (3.71), we obtain the next value of β

β2 ≈
2p‖ω ·∇q‖2

‖q̃‖2
. (3.72)

We then obtain l3 and m3 to finish the second iteration of the Lanczos algorithm

l3 ≈
q̃eiω·x

‖q̃‖2
(3.73)

m3 ≈
ieiω·xω ·∇q
‖ω ·∇q‖2

. (3.74)

The third iteration of the Lanczos algorithm yields

v3 ≈
1

‖ω ·∇q‖2
[p(−‖ω‖2

2iω ·∇q−2ω ·∇(ω ·∇q)+

+∆(iω ·∇q))eiω·x + iqω ·∇qeiω·x]. (3.75)

The next value of α is

α3 ≈
1

‖ω ·∇q‖2
2

∫ 2π

0
ω ·∇q[p(−‖ω‖2

2ω ·∇q−2ω ·∇(iω ·∇q)−

−i∆(iω ·∇q))eiω·x +qω ·∇qeiω·x]ds. (3.76)

Dropping the lower-order ω-terms in (3.76) yields

α3 ≈−p‖ω‖2
2. (3.77)

The matrix of recursion coefficients as functions of wave number ω is given by

 α1 β1 0
β1 α2 β2
0 β2 α3

≈

−p‖ω‖2

2 ‖q̃‖2 0

‖q̃‖2 −p‖ω‖2
2

2p‖ω ·∇q‖2

‖q̃‖2

0
2p‖ω ·∇q‖2

‖q̃‖2
−p‖ω‖2

2

 .
Then, as in (3.40), we obtain the estimated quadrature nodes

λ1,ω = p‖ω‖2
2, λi,ω = p‖ω‖2

2±
√

β 2
1 +β 2

2 , i = 2,3.

When the differential operator includes advection terms, the same approach can be used
for node estimation, except that it is best to use Arnoldi iteration instead of unsymmetric
Lanczos, and, of course, the resulting nodes can have imaginary parts.
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3.3.1 Non-Self-Adjoint Operators

When the spatial differential operator L is not self-adjoint, spatial discretization yields an
unsymmetric matrix A. Therefore, Arnoldi iteration is best used for the approximation
of ϕ(τA)b instead of unsymmetric Lanczos iteration, which can suffer from “serious
breakdown” [6]. The Arnoldi algorithm proceeds as follows, with a given matrix A and
initial vector z0:

v1 = z0/‖z0‖2

for j = 1,2, . . .
z j = Av j

for k = 1,2, . . . , j

hk j = vH
k z j

z j = z j−hk jvk

end
h j+1, j = ‖z j‖2

v j+1 = z j/h j+1, j

end

This iteration produces an upper Hessenberg matrix Hm and matrix Vm with orthonormal
columns such that

AVm =VmHm +hm+1,mzm+1eH
m .

By analogy with (2.11), to approximate u = ϕ(τA)b, we could compute each discrete
Fourier component [û]ω of u, corresponding to wave number ω , by applying block Arnoldi
iteration [26] to A, with initial block R0(ω) as defined in (2.8), and after m iterations that
yield a block upper Hessenberg matrix Hm(ω), we obtain the approximation

[û]ω =
[
BH

0 EH
12ϕ(τHm(ω))E12B0

]
12 , (3.78)

where B0 and E12 are as defined in Chapter 2. However, as in the case of block Lanczos, the
eigenvalue problem for Hm(ω) approximately decouples for high frequencies, due to the de-
cay of the Fourier coefficients of b. Therefore, we can approximate the frequency-dependent
eigenvalues, which are used as interpolation points for a polynomial approximation of ϕ(λ ),
by applying non-block Arnoldi iteration, described above, with initial vector êω , in the case
of periodic boundary conditions, or an appropriate discretization of a sine or cosine function
for homogeneous Dirichlet or Neumann boundary conditions, respectively.
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We illustrate the use of Arnoldi iteration for selection of frequency-dependent interpola-
tion points, in the high-frequency case. First, we consider a 2-D ADR (advection-diffusion-
reaction) problem on [0,2π]2, with periodic boundary conditions (see Section 5.2.5). We
will apply Arnoldi iteration to a matrix A that is a spatial discretization of the differential
operator

Lu = p∆u+q(ux1 +ux2)+φ(x1,x2)u,

where p and q are constants. We use the initial vector z0 = eiω·x, where ω contains the wave
numbers and x is a vector of equally-spaced grid points. We begin the first iteration of the
Arnoldi algorithm by finding v1:

v1 =
eiω·x

‖eiω·x‖2
=

1
2π

eiω·x. (3.79)

We then have

z1 = Lv1 ≈
1

2π
(−‖ω‖2

2 peiω·x +qieiω·x(ω1 +ω2)+φeiω·x). (3.80)

In the next step, we compute

h11 = vH
1 z1

≈ 1
4π2

(∫ 2π

0

∫ 2π

0
e−iω·xeiω·x(−‖ω‖2

2 p+qi(ω1 +ω2)+φ)dx1 dx2

)
≈ −‖ω‖2

2 p+qi(ω1 +ω2)+ φ̄ , (3.81)

where φ̄ is the average of the function φ(x1,x2) over the rectangle [0,2π]2. We then update
z1 as follows:

z1 = z1−h11v1 ≈
1

2π
eiω·x(φ − φ̄)≈ 1

2π
eiω·x

φ̃ , φ̃ ≡ φ − φ̄ . (3.82)

Next, we compute

h21 = ‖z1‖2 ≈
1

2π
‖φ̃‖2. (3.83)

We conclude the first outer iteration of the Arnoldi algorithm by computing

v2 =
z1

h21
=

eiω·xφ̃

‖φ̃‖2
. (3.84)

The second iteration of the Arnoldi algorithm starts by computing z2

z2 = Lv2

=
1
‖φ̃‖2

[peiω·x(−‖ω‖2
2φ̃ +2iω ·∇φ +∆φ)+qieiω·x

φ̃(ω1 +ω2)

+ qeiω·x(φx1 +φx2)+ eiω·x
φφ̃ ]. (3.85)
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We continue by finding h12 and h22

h12 = vH
1 z2

= 〈u1,z2〉

=
1

2π‖φ̃‖2

∫ 2π

0

∫ 2π

0
[p(−‖ω‖2

2φ̃ +2iω ·∇φ +∆φ)+qiφ̃(ω1 +ω2)

+ q(φx1 +φx2)+φφ̃ ]dx1dx2. (3.86)

All the terms in (3.86) will be equal to zero except for
∫ 2π

0

∫ 2π

0
φφ̃dx1dx2 =

∫ 2π

0

∫ 2π

0
(φ̃ 2+

φ̃ φ̄)dx1dx2 =
∫ 2π

0

∫ 2π

0
φ̃

2dx1dx2 = ‖φ̃‖2
2. Therefore, equation (3.86) becomes

h12 ≈
‖φ̃‖2

2π
. (3.87)

h22 = vH
2 z2

=
1
‖φ̃‖2

2

∫ 2π

0

∫ 2π

0
[p(−‖ω‖2

2φ̃
2 +2iφ̃ω ·∇φ + φ̃∆φ)+qiφ̃ 2(ω1 +ω2)

+qφ̃(φx1 +φx2)+φφ̃
2]dx1dx2

≈ −p‖ω‖2
2−

p(‖φx1‖2
2 +‖φx2‖2

2)

‖φ̃‖2
2

+qi(ω1 +ω2)+ φ̄
φ̃ 2 , (3.88)

where φ̄
φ̃ 2 is the average of the function φ , with weight function φ̃ 2, on the rectangle [0,2π]2.

In the next step we update z2 as follows:

z2 = Lv2

≈ 1
‖φ̃‖2

[peiω·x(2iω ·∇φ +∆φ)+qeiω·x(φx1 +φx2)+ eiω·x
φφ̃ ]

+
‖φ̃‖2eiω·x

4π2 − eiω·xφ̃

‖φ̃‖2

(
−

p(‖φx1‖2
2 +‖φx2‖2

2)

‖φ̃‖2
2

+ φ̄
φ̃ 2

)
. (3.89)

Dropping the lower order ω-terms in (3.89) yields

z2 ≈
2ipω ·∇φeiω·x

‖φ̃‖2
. (3.90)
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Continuing, we then compute

h32 = ‖z2‖2 ≈
2p‖ω ·∇φ‖2

‖φ̃‖2
,

h13 = vH
1 z3

≈ i
2π‖ω ·∇φ‖2

∫ 2π

0

∫ 2π

0
[p(−‖ω‖2

2(ω ·∇φ)+2iω ·∇(ω ·∇φ)

+∆(ω ·∇φ))+qi((ω ·∇φ)x1 +(ω ·∇φ)x2)

+qi(ω ·∇φ)(ω1 +ω2)+φ(ω ·∇φ)]dx1 dx2

≈ 0, (3.91)

h23 = vH
2 z3

≈ 2p‖ω ·∇φ‖2

‖φ̃‖2
, (3.92)

h33 = vH
3 z3

≈ −p‖ω‖2
2−

p(‖(ω ·∇φ)x1‖2
2 +‖(ω ·∇φ)x2‖2

2)

‖ω ·∇φ‖2
2

+qi(ω1 +ω2)+ φ̄(ω·∇φ)2.

We see that the matrix H3 is well approximated by a matrix that is complex symmetric and
tridiagonal. Furthermore, as the diagonal entries are all equal except for lower-order terms
in ‖ω‖2, we can readily estimate the eigenvalues of H2, for a 3rd-order method, by

λ1,2 = h11±h12, (3.93)

whereas for a 5th-order method, the eigenvalues of H3 can be estimated using

λ1 = h11, λ2,3 = h11±
√

h2
12 +h2

23. (3.94)

Next, we consider a system of coupled PDE, based on a linearization of the 2-D Brusse-
lator (see Section 5.2.6). The system is

ut = α∆u+ pu+φv,

vt = α∆v+qv+ψu,

with appropriate initial conditions and periodic boundary conditions. It is assumed that α is
a constant, and all other coefficients are variable. Following an approach described in [20]
for constructing basis functions for a coupled system of PDE, it can be shown that at high
frequencies, these basis functions can be approximated by (eiω·x,0) and (0,eiω·x), for each
wave number ω .

Therefore, given the operator L and the initial vector z0 defined by

L =

[
α∆+ p φ

ψ α∆+q,

]
, z0 =

[
eiω·x

0

]
,

[
0

eiω·x

]
, (3.95)
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with a matrix A representing a spatial discretization of L, we apply the Arnoldi algorithm to
A with the initial vector z0 being the first vector given in (3.95); the iteration with the second
vector is similar. The first step of the first outer iteration of the Arnoldi algorithm is to find
v1:

v1 =
z0

‖z0‖2
=


eiω·x

2π

0

 . (3.96)

We then find z1 by applying the matrix A to v1:

z1 = Lv1 ≈


(−α‖ω‖2

2 + p)eiω·x

2π

ψeiω·x

2π

 . (3.97)

The next steps are to compute h11 and update z1:

h11 = vH
1 z1 ≈

1
4π

∫ 2π

0

∫ 2π

0
(−α‖ω‖2

2 + p)dx1 dx2 ≈−α‖ω‖2
2 + p̄. (3.98)

z1 = z1−h11v1 ≈


p̃eiω·x

2π

ψeiω·x

2π

 . (3.99)

We conclude the first outer iteration of the Arnoldi algorithm by computing

h21 = ‖z1‖2 ≈

√
‖p̃‖2

2 +‖ψ‖2
2

2π
. (3.100)

and normalizing our updated z1 to obtain v2.

v2 =
z1

h21
≈



p̃eiω·x√
‖p̃‖2

2 +‖ψ‖2
2

ψeiω·x√
‖p̃‖2

2 +‖ψ‖2
2


. (3.101)
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Continuing with the second and third outer iterations, we obtain

h12 = vH
1 z2 ≈

‖p̃‖2
2 +φψ

2π

√
‖p̃‖2

2 +‖ψ‖2
2

,

h22 = vH
2 z2 ≈−α‖ω‖2

2 +
−α(‖px1‖2

2 +‖px2‖2
2 +‖ψx1‖2

2 +‖ψx2‖2
2)+ p̄p̃2 + q̄ψ2 + p̃φψ + ¯̃pψ2

‖p̃‖2
2 +‖ψ‖2

2
,

h32 = ‖z2‖2 ≈
2α

√
‖ω ·∇p‖2

2 +‖ω ·∇ψ‖2
2√

‖p̃‖2
2 +‖ψ‖2

2

,

h13 ≈
iφ(ω ·∇ψ)

2π

√
‖ω ·∇p‖2

2 +‖ω ·∇ψ‖2
2

,

h23 ≈
2α(‖ω ·∇p‖2

2 +‖ω ·∇ψ‖2
2)+ ip̃φ(ω ·∇ψ)+ iqψ(ω ·∇ψ)+ iψ2(ω ·∇p)√

‖p̃‖2
2 +‖ψ‖2

2

√
‖ω ·∇p‖2

2 +‖ω ·∇ψ‖2
2

,

h33 ≈ −α‖ω‖2
2−

α[‖(ω ·∇p)x1‖2
2 +‖(ω ·∇p)x2‖2

2 +‖(ω ·∇ψ)x1‖2
2 +‖(ω ·∇ψ)x2‖2

2]

‖ω ·∇p‖2
2 +‖ω ·∇ψ‖2

2

+
p̄(ω·∇p)2 +φ(ω ·∇p)(ω ·∇ψ)+ q̄(ω·∇ψ)2 +ψ(ω ·∇p)(ω ·∇ψ)

‖ω ·∇p‖2
2 +‖ω ·∇ψ‖2

2

As expected, the matrix H3 does not have any kind of symmetry; however, it is worth noting
that except for lower-order terms in ‖ω‖2, h32 and h23 are equal, as are all of the diagonal
entries. By neglecting the lowest-order entries, which are h12, h21 and h13, we obtain the
estimated nodes

λ1 = h11, λ2,3 = h11±
√

h23h32 (3.102)

for a 5th-order method, whereas for a 3rd-order method, our estimated nodes are

λ1,2 = h11±
√

h12h21. (3.103)
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Chapter 4

KSS-EPI Methods

4.1 EPI Methods

We now give a brief description of exponential propagation iterative (EPI) methods, intro-
duced by Tokman [16]. Suppose that we have a nonlinear autonomous system of ODE of
the form (1.1). Then we use the Taylor expansion of F(y(t)) around y(tn) to obtain

dy
dt

= F(y(tn))+An(y(t)−y(tn))+R(y(t)), (4.1)

where An =
dF(y(tn))

dy
is the Jacobian of F(y(t)) and R(y(t)) is the nonlinear remainder

function. Using an integrating factor e−Ant and integrating (4.1) over the time interval
[tn, tn+1] gives us the integral form of (1.1)

y(tn+1) = y(tn)+ [eAn∆t− I]A−1
n F(y(tn))+

∫ tn+1

tn
eAn(tn+1−τ)R(y(τ))dτ. (4.2)

Then, the integral term is approximated numerically, which requires the computation of
products of matrix functions and vectors of the form ϕ(Aτ)b.

These products are evaluated using a Krylov subspace approximation in the following
way

ϕ(Aτ)b≈ ‖b‖2Vmϕ(Hmτ)e1, (4.3)

where Hm is an upper Hessenberg matrix which is given by Hm = V T
m AVm, and Vm =

[v1 v2 · · ·vm], where {v1,v2, . . . ,vm} is an orthonormal basis of the Krylov subspace Km(A,b),
which can be obtained using the Arnoldi algorithm [6]. The accuracy of the approximation
in (4.3) depends on the number of the Krylov vectors constructed, the eigenvalues of A, the
magnitude of τ , and ϕ .

In this dissertation we will look at three EPI methods. The first is a 3rd-order, 2-stage
EPI method [16]

Y1 = yn +
1
3

ha11ϕ1

(
1
3

hA
)

F(yn),

yn+1 = yn +hϕ1(hA)F(yn)+3hb1ϕ2(hA)[F(Y1)−F(yn)−A(Y1−yn)], (4.4)
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where a11 = 9/4 and b1 = 32/81, and

R(Y1) = F(Y1)−F(yn)−A(Y1−yn).

For this method,

ϕ1(λ ) =
eλ −1

λ
, ϕ2(λ ) =

eλ −λ −1
λ 2 , ϕ3(λ ) =

eλ (6−λ )− (6+5λ +2λ 2)

λ 3 .

The second is a 4th-order, 3-stage EPI method [16]

Y1 = yn +
1
3

ha11ϕ1

(
1
3

hA
)

F(yn),

Y2 = yn +
2
3

ha21ϕ1

(
2
3

hA
)

F(yn), (4.5)

yn+1 = yn +hϕ1(hA)F(yn)+3hb1ϕ2(hA)R(Y1)+

3
2

hb2ϕ3(hA)[−2R(Y1)+R(Y2)],

where

a11 =
27c3

4
, a21 =

9s
8c3

, b1 =
32(54− s2)c4

729
, b2 =

128c4

81
,

with s =
√

30 and

c1 = 54−3s2 +2s3, c2 = s2 +18, c3 =
c1

c2
, c4 =

c2
3

c2
.

The third is a 5th-order, 3 stage EPI method [17]

Y1 = yn +ha11ψ1(g11hA)F(yn),

Y2 = yn +ha21ψ1(g21hA)F(yn)+ha22ψ2(g22hA)R(Y1), (4.6)

yn+1 = yn +hb1ψ1(g31hA)F(yn)+hb2ψ2(g32hA)R(Y1)+

hb3ψ3(g33hA)[−2R(Y1)+R(Y2)],

where

ψi(z) =
j

∑
j=1

pi jϕ j(z), i = 1,2,3,

and the coefficients are

a11 = g11 = 0.41657015580651858694, a21 = g21 = 0.86246743701274574979,

a22 = 1.32931146991722972036, g22 = 0.5, g31 = 1.0, g32 = 0.730416157608327661916,

g33 = 0.325076967060782773227, b1 = 1.0, b2 = 1.15468303405015770322,
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b3 = 0.30931492086655796815, p11 = p33 = 1, p21 = p22 = p31 =
2
3
, p32 =

1
2
.

For larger matrices A and larger time steps τ , the number of iterations m can increase
substantially. When this occurs, convergence can be hindered by the appearance of spurious
high-frequency oscillations in the columns of Vm, even when the initial vector b represents
a very smooth function. This is illustrated in Figure 4.1. For this reason, in the numerical

Figure 4.1: Columns of Vm from (4.3) generated by Arnoldi iteration applied to the matrix
from Burgers’ equation (see Section 5.2.3)

experiments performed in Chapter 5, a simple denoising process is applied after each matrix-
vector multiplication, in which Fourier components whose magnitudes are below a certain
threshold are zeroed. The effect of this denoising can be seen in Figure 4.2. As can be
seen in the results presented in Chapter 5, this can substantially improve efficiency without
sacrificing accuracy. However, it is important to select this threshold properly in order to
realize this gain in efficiency without causing the Arnoldi iteration to break down due to
linear dependence of the Krylov subspace basis vectors. Future work will include adaptive
selection of this threshold.

Figure 4.2: Columns of Vm from (4.3) generated by Arnoldi iteration, with denoising, applied
to the matrix from Burgers’ equation (see Section 5.2.3)

4.2 KSS-EPI Methods

The combination of KSS and EPI methods is easily described: whenever an EPI method
computes a matrix function-vector product of the form ϕ(Aτ)b, for some function ϕ , matrix
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A, scaling parameter τ based on the time step, and vector b, the following procedure is
carried out in place of standard Krylov projection as in (4.3):

1. Use an FFT to decompose b = bL +bH , where bL consists of low-frequency compo-
nents and bH contains all other (high-frequency) components. This is accomplished
by zeroing all Fourier coefficients of bL for which the absolute value of any wave
number exceeds a selected threshold.

2. Use standard Krylov projection as in (4.3) to compute ϕ(Aτ)bL.

3. Use KSS, with nodes prescribed as in Chapter 3, to compute ϕ(Aτ)bH .

4. Add the results of steps 2 and 3 to obtain ϕ(Aτ)b.

The decomposition of b in step 1 must be chosen so that the computation in step 2 does
not require many more Krylov projection steps than would be required for step 3, which is
one more than the desired order of temporal accuracy. However, it is also important to not
include too few low-frequency components in bL, as the nodes prescribed in Section 3 are
based on a high-frequency analysis and are therefore not effective choices at low frequencies
[15].

We will denote by Nc the cutoff point for the low-frequency components. Specifically,
a Fourier coefficient b̂(~ω) of b will be zeroed in bL if ‖~ω‖∞ ≥ Nc. In this work, the Nc

value has been determined by experimentation. Future work will include development of an
adaptive approach to this decomposition, based on criteria such as the smoothness of the
solution and number of iterations required for convergence in step 2 from previous time
steps.

We now elaborate on how step 3 can be performed more efficiently, by minimizing the
number of FFTs. Recall from Chapter 2 that when K iterations of block Lanczos (or block
Arnoldi, in the case where L is not self-adjoint) are performed in KSS methods for PDE
with a first-order time derivative, the temporal error is O(∆t2K−1). In this case, there are 2K

total quadrature nodes for each Fourier component, with wave number ω .
As discussed in Chapter 3, from the decoupling of the block tridiagonal matrix TK in

the high-frequency limit (or a block upper Hessenberg matrix, in the case of block Arnoldi
iteration), half of these quadrature nodes depend on ω and half do not. For each ω , the
frequency-independent nodes are {λ1,λ2, . . . ,λK} and the frequency-dependent nodes are
{λ1,ω ,λ2,ω , . . . ,λK,ω}.

The frequency-independent nodes are obtained by applying Arnoldi (or Lanczos, as
appropriate) iteration to bH , as described in Chapter 4, and computing the eigenvalues of
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HK . The frequency-dependent nodes are estimated using the coefficients of the differential
operator on which A is based, as described in Chapter 3.

The Fourier component of ϕ(Aτ)bH corresponding to the wave number ω is obtained by
computing the same Fourier component of p2K−1(Aτ)bH , where p2K−1 is the polynomial
interpolant of ϕ(λ ) with interpolation points {λi,λi,ω}K

i=1. Expressing this interpolant in
Newton form, we have

p2K−1(λ ) = ϕ[λ1]+ϕ[λ1,λ2](λ −λ1)+ · · ·

+ϕ[λ1,λ2, . . . ,λK](λ −λ1) · · ·(λ −λK−1)

+ϕ[λ1, . . . ,λK,λ1,ω ](λ −λ1) · · ·(λ −λK)

+ϕ[λ1, . . . ,λ2,ω ](λ −λ1,ω)(λ −λ1) · · ·(λ −λK)+ · · ·

+ϕ[λ1, . . . ,λK,ω ](λ −λ1,ω) · · ·(λ −λK−1,ω)(λ −λ1) · · ·(λ −λK),(4.7)

where ϕ[λ1, . . . ,λi] =
ϕ[λ2, . . . ,λi]−ϕ[λ1, . . . ,λi−1]

(λi−λ1)
is the i-th divided difference. Arrang-

ing the interpolation points in the order indicated above allows us to reduce the number of
FFTs needed. Using the relation from Lanczos iteration,

AXK = XKTK + rKeT
K, (4.8)

we define

v = pK−1(A)bH = {ϕ[λ1]+ϕ[λ1,λ2](A−λ1I)+ · · ·

+ϕ[λ1,λ2, . . . ,λK](A−λ1I) · · ·(A−λK−1I)}bH

= ‖bH‖2XK pK−1(A)e1,

w = qK(A)bH = (A−λ1I) · · ·(A−λKI)bH

= β1β2 . . .βK−1rK

= β1 . . .βKXK+1eK+1,

and

p̃K−1(λ ) = ϕ[λ1, . . . ,λK,λ1,ω ]+ϕ[λ1, . . . ,λ2,ω ](λ −λ1,ω)+ · · ·

+ϕ[λ1, . . . ,λK,ω ](λ −λ1,ω) · · ·(λ −λK−1,ω)

= Cω
K−1λ

K−1 + · · ·+Cω
1 λ +Cω

0 .

Then, using F to denote the discrete Fourier transform, we have

ϕ(Aτ)bH ≈ p2m−1(Aτ)bH = v+ p̃K−1(A)w = v+F−1
K−1

∑
j=0

[Cω
j ]FA jw, (4.9)
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and it can easily be seen that the solution at each time step requires K FFTs and one inverse
FFT. The coefficients Cω

j , j = 0,1, . . . ,K− 1, of the power form of p̃K−1 can easily be
obtained by repeatedly applying nested multiplication to the last K terms of the Newton
form of p2K−1(λ ).
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Chapter 5

Numerical-Results

5.1 Linear Problems

In this section, we demonstrate the effectiveness of our approach to selecting component-
dependent interpolants of the solution operator for PDE. The following three approaches are
compared:

• Block KSS, as described in [12, 18],

• Block KSS with rapid node estimation, and

• Krylov projections as seen in (1.6).

Krylov subspaces of the same dimension are used in all three methods to show the benefit
of using component-wise polynomial approximations of the solution operator rather than a
polynomial approximation.

A comparison of the performance, in terms of both accuracy and efficiency, of block
KSS with rapid node estimation against (1.6) is given at the end of this section. In all
experiments, as the exact solution to these variable-coefficient problems is not known, error
is estimated by computing the solution at various time steps and comparing all solutions
against the one computed with the smallest time step.

5.1.1 1-D Parabolic Problems

We start by showing the accuracy of KSS methods combined with rapid node estimation on
a parabolic equation in one space dimension,

ut− (p(x)ux)x +q(x)u = 0, 0 < x < 2π, t > 0, (5.1)

where the coefficients p(x) and q(x), given by

p(x) = 1, q(x) =
4
3
+

1
4

cosx, (5.2)

are chosen to be smooth functions. The initial condition is

u(x,0) = 1+
3

10
cosx− 1

20
sin2x, 0 < x < 2π, (5.3)
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and periodic boundary conditions are imposed.
First, we use a Krylov subspace of dimension 4, in order to get 3rd-order accuracy in

time. The results are shown in Figure 5.1 and Table 5.1. For both KSS methods, we observe
slightly greater than 3rd-order convergence in time, and the error estimates are basicly the
same. However, block KSS with rapid node estimation is approximately 10 times faster
than standard block KSS for N = 128, and 20 times faster when N = 256. While (1.6) can
achieve 3rd-order accuracy as we decrease the time step, this is not the case for ∆t used in
Table 5.1, and a slight degradation of performance is observed as N increases. At the same
time, the accuracy of the two KSS methods with the two grid sizes is virtually identical.

Figure 5.1: Estimates of relative error at t = 1 in the solution of (5.1), (5.2), (5.3), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (solid curve), a 4-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid and various time
steps. All methods are 3rd-order accurate in time.

Increasing the Krylov subspace dimension to 6 should produce fifth-order accurate
methods. However, as can be seen from the results shown in Figure 5.2 and Table 5.2, both
KSS methods are only fourth-order accurate in time. A decrease in the time step would
produce fifth-order convergence. While the accuracy in both KSS methods is independent
of the number of grid points and the node selection scheme, KSS with rapid node estimation
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N ∆t KSS-est KSS-Gauss Lanczos
1 4.268e-004 4.268e-004 8.997e-002
1/2 1.979e-005 1.979e-005 8.973e-002

128 1/4 1.495e-006 1.495e-006 3.620e-002
1/8 1.435e-007 1.435e-007 5.311e-003
1/16 1.415e-008 1.415e-008 2.258e-002
1 4.268e-004 4.268e-004 1.944e-001
1/2 1.979e-005 1.979e-005 1.937e-001

256 1/4 1.495e-006 1.495e-006 1.163e-001
1/8 1.435e-007 1.435e-007 6.864e-002
1/16 1.415e-008 1.415e-008 2.149e-002

Table 5.1: Estimates of relative error at t = 1 in the solution of (5.1), (5.2), (5.3), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (KSS-est), a 4-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid and various time steps. All
methods are 3rd-order accurate in time.

is approximately 10 times faster for N = 128 and 20 times faster for N = 256. Using Krylov
projections with the same Krylov subspace dimension does not yield a similar accuracy. To
achieve a similar accuracy, a larger dimension is required.

N ∆t KSS-est KSS-Gauss Lanczos
1 1.518e-006 1.520e-006 3.407e-004
1/2 5.579e-008 5.579e-008 3.189e-003

128 1/4 3.913e-009 3.913e-009 1.425e-002
1/8 8.989e-011 8.989e-011 3.707e-002
1/16 2.285e-012 2.286e-012 7.244e-002
1 1.518e-006 1.520e-006 1.567e-001
1/2 5.579e-008 5.579e-008 1.565e-001

256 1/4 3.913e-009 3.913e-009 9.261e-002
1/8 8.989e-011 8.989e-011 3.391e-002
1/16 2.288e-012 2.285e-012 1.987e-002

Table 5.2: Estimates of relative error at t = 1 in the solution of (5.1), (5.2), (5.3), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (KSS-est), a 6-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid and various time steps. All
methods are 5th-order accurate in time.

The nodes used by both KSS methods for Krylov subspace dimensions 4 and 6 are
plotted in Figure 5.3.
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Figure 5.2: Estimates of relative error at t = 1 in the solution of (5.1), (5.2), (5.3), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (solid curve), a 6-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid and various time
steps. All methods are 5th-order accurate in time.

Figure 5.3: Quadrature nodes used by block KSS with Gaussian nodes (red crosses) and
estimated Gaussian nodes (blue circles) with 2 (left plot) and 3 (right plot) block Lanczos
iterations applied to the operator Lu = −(pux)x +qu, with p and q defined in (5.2), for a
total of 4 or 6 scalar nodes per frequency component (indicated by ω) in the left and right
plots, respectively.
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We now change equation (5.1) by adding more oscillatory coefficients

p(x) = 1+
1
4

cosx− 1
4

sin2x+
1
8

cos3x,

q(x) = 1+
1
4

sinx− 1
4

cos2x+
1
8

sin3x− 1
8

cos4x (5.4)

and initial data

u(x,0) = 1+
3

10
cosx− 3

20
sin2x+

3
40

cos3x, 0 < x < 2π. (5.5)

For third-order methods, the results are shown in Figure 5.4 and Table 5.4. As before,
both KSS methods perform identically in terms of accuracy independently of the grid size,
but are only second-order accurate in time; third-order accuracy can be observed at much
smaller time steps. Again, the Krylov projections approach of (1.6) is not competitive with
KSS at this Krylov subspace dimension or choice of time step. Figure 5.5 plots the nodes
used by both methods.

Figure 5.4: Estimates of relative error at t = 1 in the solution of (5.1), (5.4), (5.5), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (solid curve), a 4-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid and various time
steps. All methods are 3rd-order accurate in time.
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N ∆t KSS-est KSS-Gauss Lanczos
1 1.546e-002 1.541e-002 4.287e-002
1/2 4.323e-003 4.434e-003 4.262e-002

128 1/4 1.180e-003 1.213e-003 3.804e-002
1/8 3.722e-004 3.466e-004 1.372e-002
1/16 1.021e-004 1.068e-004 7.108e-003
1 1.545e-002 1.540e-002 7.075e-002
1/2 4.320e-003 4.431e-003 5.914e-002

256 1/4 1.177e-003 1.210e-003 3.463e-002
1/8 3.685e-004 3.435e-004 2.480e-002
1/16 9.918e-005 1.036e-004 8.636e-003

Table 5.3: Estimates of relative error at t = 1 in the solution of (5.1), (5.4), (5.5), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (KSS-est), a 4-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid and various time steps. All
methods are 3rd-order accurate in time.

Figure 5.5: Quadrature nodes used by block KSS with Gaussian nodes (red crosses) and
estimated Gaussian nodes (blue circles) with 2 block Lanczos iterations applied to the
operator Lu =−(pux)x +qu, with p and q defined in (5.4), for a total of 4 scalar nodes per
frequency component (indicated by ω). The left plot shows frequencies 0≤ ω ≤ 64, while
the right plot zooms in on frequencies 6≤ ω ≤ 15.

We now increase the Krylov subspace dimension to 6 for all three methods. For the
first time, we observe a disparity in the performance of the original block KSS method and
block KSS with rapid node estimation, which is not as accurate in this case, although both
KSS methods again yield results that are, for the most part, independent of the grid size.
The reason for this disparity lies in the quadrature nodes corresponding to low-frequency
components. While the estimation methods deliver sufficiently accurate approximations of
the block Gaussian nodes for nearly all frequencies in the case where the leading coefficient
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p(x) of the operator L is constant, this is not so when p(x) varies. This is illustrated in
Figure 5.7. While overall there is good agreement, as shown in the left plot of the figure,
this is not the case for low frequencies, as shown in the right plot, compared to the 4-node
case presented earlier.

Figure 5.6: Estimates of relative error at t = 1 in the solution of (5.1), (5.4), (5.5), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (solid curve), a 6-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid and various time
steps. All methods are 5th-order accurate in time.

5.1.2 1-D Hyperbolic Problems

We now apply all three methods to the second-order wave equation

utt = (p(x)ux)x−q(x)u, 0 < x < 2π, t > 0, (5.6)

with smooth coefficients p(x) and q(x) defined in (5.2). The initial data is

u(x,0) = 1+
3

10
cosx− 1

20
sin2x, ut(x,0) =

1
2

sinx+
2

25
cos2x, 0 < x < 2π, (5.7)

and periodic boundary conditions are imposed. KSS methods are applied to the wave
equation by reducing it to a first-order system and then computing both the solution and its
time derivative.
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N ∆t KSS-est KSS-Gauss Lanczos
1 9.370e-003 8.944e-003 3.705e-002
1/2 1.130e-003 7.235e-004 1.207e-002

128 1/4 7.759e-004 5.832e-005 1.281e-002
1/8 2.337e-004 5.727e-006 1.722e-002
1/16 8.212e-005 2.645e-005 2.687e-002
1 9.367e-003 8.941e-003 7.634e-002
1/2 1.128e-003 7.213e-004 5.699e-002

256 1/4 7.754e-004 5.931e-005 2.695e-002
1/8 2.337e-004 8.889e-006 1.960e-002
1/16 2.069e-005 1.737e-005 8.812e-003

Table 5.4: Estimates of relative error at t = 1 in the solution of (5.1), (5.4), (5.5), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (KSS-est), a 6-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid and various time steps. All
methods are 5th-order accurate in time.

Figure 5.7: Quadrature nodes used by block KSS with Gaussian nodes (red crosses) and
estimated Gaussian nodes (blue circles) with 3 block Lanczos iterations applied to the
operator Lu =−(pux)x +qu, with p and q defined in (5.4), for a total of 6 scalar nodes per
frequency component (indicated by ω). The left plot shows frequencies 0≤ ω ≤ 64, while
the right plot zooms in on frequencies 6≤ ω ≤ 15.

The results for 4-dimensional Krylov subspaces are shown in Figure 5.8 and Table
5.5. In this case, KSS methods are generally 6th-order accurate in time. As before, both
KSS methods yield similar results on the two different grids, whereas (1.6), while more
competitive with KSS than in the parabolic case, exhibits a substantial degradation in
accuracy as the number of grid points increases.

We now change the problem in (5.4) by adding more oscillatory coefficients and the
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Figure 5.8: Estimates of relative error at t = 1 in the solution of (5.6), (5.2), (5.7), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (solid curve), a 4-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid and various time
steps. All methods are 6th-order accurate in time.

following initial data

u(x,0) = 1+
3

10
cosx− 3

20
sin2x+

3
40

sin3x,

ut(x,0) =
1
2

sinx+
1
4

cos2x− 1
8

sin3x, 0 < x < 2π, (5.8)

with periodic boundary conditions.
The results for 4-dimensional Krylov subspaces are shown in Figure 5.9 and Table 5.6.

While both KSS methods have very similar results for both grid sizes, KSS with rapid
estimation is slightly more accurate. At the same time, (1.6), while more competitive with
KSS than in the parabolic case, again shows a decrease in accuracy as the number of grid
points increases.
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N ∆t KSS-est KSS-Gauss Lanczos
1 1.167e-005 1.167e-005 4.751e-006
1/2 3.127e-007 3.127e-007 7.488e-006

128 1/4 4.917e-009 4.917e-009 8.900e-005
1/8 7.360e-011 7.360e-011 3.961e-011
1/16 3.181e-012 3.181e-012 3.072e-012
1 1.167e-005 1.167e-005 4.915e-006
1/2 3.127e-007 3.127e-007 1.513e-003

256 1/4 4.917e-009 4.917e-009 1.814e-003
1/8 7.346e-011 7.345e-011 5.828e-003
1/16 1.971e-012 1.971e-012 2.768e-010

Table 5.5: Estimates of relative error at t = 1 in the solution of (5.6), (5.2), (5.7), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (KSS-est), a 4-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid and various time steps. All
methods are 6th-order accurate in time.

N ∆t KSS-est KSS-Gauss Lanczos
1 6.543e-003 7.501e-003 2.730e-002
1/2 3.265e-004 4.084e-004 1.909e-003

128 1/4 4.390e-006 5.508e-006 1.168e-003
1/8 8.150e-008 1.066e-007 5.349e-007
1/16 1.344e-009 1.768e-009 5.164e-009
1 6.543e-003 7.501e-003 2.730e-002
1/2 3.265e-004 4.084e-004 1.428e-002

256 1/4 4.390e-006 5.508e-006 2.315e-002
1/8 8.150e-008 1.066e-007 3.325e-002
1/16 1.344e-009 1.768e-009 2.466e-002

Table 5.6: Estimates of relative error at t = 1 in the solution of (5.6), (5.4), (5.8), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (KSS-est), a 4-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid and various time steps. All
methods are 6th-order accurate in time.

5.1.3 2-D Parabolic Problems

The last linear problem that we consider is the 2-D parabolic equation

ut−∇ · (p(x,y)∇u)+q(x,y)u = 0, 0 < x,y < 2π, t > 0, (5.9)
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Figure 5.9: Estimates of relative error at t = 1 in the solution of (5.6), (5.4), (5.8), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (solid curve), a 4-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid and various time
steps. All methods are 6th-order accurate in time.

where the smooth coefficients are given by

p(x,y) = 1, q(x,y) =
4
3
+

1
4

cosx− 1
4

siny. (5.10)

The initial condition is

u(x,y,0) = 1+
3

10
cosx− 1

20
sin2y, 0 < x,y < 2π, (5.11)

and periodic boundary conditions are imposed for both dimensions.
The results are shown in Figure 5.10 and Table 5.7. Both KSS methods produce

approximately 3rd-order accuracy in time with similar error estimates. At the same time,
block KSS with rapid node estimation is approximately 150 times faster than standard block
KSS for N = 16, and 600 times faster when N = 32. While Krylov projections method does
not show a similar accuracy in time and a slight degradation of performance is observed as
N increases.

Next, we increase the Krylov subspace dimension to 6, so that all methods should be
fifth-order accurate. The results are shown in Figure 5.11 and Table 5.8. Again, in terms
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Figure 5.10: Estimates of relative error at t = 1 in the solution of (5.9), (5.10), (5.11), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (solid curve), a 4-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid (per dimension)
and various time steps. All methods are 3rd-order accurate in time.

of accuracy, the performance of both KSS methods is independent of the number of grid
points and the node selection scheme; however, as before, KSS with rapid node estimation is
approximately 150 times faster for N = 16 and 600 times faster for N = 32. Using (1.6) with
the same Krylov subspace dimension is not competitive in terms of accuracy. To achieve
similar accuracy a larger Krylov dimension is needed. Unlike the parabolic 1-D case, both
KSS methods actually do achieve the expected fifth-order accuracy in time. As N increases,
the degradation in performance of (1.6) is far more substantial than in the 4-dimensional
case.

We repeat the experiment with more oscillatory coefficients

p(x,y) = 1+
1
2

cos(x+ y)− 1
4

sin(2(x− y))+
1
8

cos(3(x+ y)),

q(x,y) = 1+
1
4

sinx− 1
4

cos2y+
1
8

sin3x− 1
8

cos4y. (5.12)
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N ∆t KSS-est KSS-Gauss Lanczos
1 1.385e-003 1.385e-003 4.823e-003
1/2 9.948e-005 9.948e-005 6.809e-004

16 1/4 9.785e-006 9.785e-006 7.708e-005
1/8 1.083e-006 1.083e-006 8.911e-006
1/16 1.146e-007 1.146e-007 1.884e-007
1 1.385e-003 1.385e-003 4.823e-003
1/2 9.948e-005 9.948e-005 6.811e-004

32 1/4 9.785e-006 9.785e-006 1.021e-003
1/8 1.083e-006 1.083e-006 6.588e-004
1/16 1.146e-007 1.146e-007 1.884e-007

Table 5.7: Estimates of relative error at t = 1 in the solution of (5.9), (5.10), (5.11), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (KSS-est), a 4-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid (per dimension) and various
time steps. All methods are 3rd-order accurate in time.

N ∆t KSS-est KSS-Gauss Lanczos
1 2.272e-005 2.272e-005 3.114e-004
1/2 5.715e-007 5.715e-007 1.427e-005

16 1/4 1.593e-008 1.593e-008 2.204e-006
1/8 4.591e-010 4.591e-010 2.194e-009
1/16 1.335e-011 1.335e-011 2.984e-011
1 2.272e-005 2.272e-005 3.114e-004
1/2 5.715e-007 5.715e-007 4.058e-004

32 1/4 1.593e-008 1.593e-008 8.116e-004
1/8 4.591e-010 4.591e-010 4.578e-004
1/16 1.335e-011 1.335e-011 4.187e-005

Table 5.8: Estimates of relative error at t = 1 in the solution of (5.9), (5.10), (5.11), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (KSS-est), a 6-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid (per dimension) and various
time steps. All methods are 5th-order accurate in time.

The initial data

u(x,y,0) = 1+
3

10
cosx− 3

20
sin(2(x+ y))+

3
40

cos3x, 0 < x,y < 2π, (5.13)

is more oscillatory as well.
For third-order methods, the results are shown in Figure 5.12 and Table 5.12. Both

KSS methods are only slightly greater than second-order accurate in time while third-order
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Figure 5.11: Estimates of relative error at t = 1 in the solution of (5.9), (5.10), (5.11), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (solid curve), a 6-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid (per dimension)
and various time steps. All methods are 5th-order accurate in time.

accuracy can be observed at much smaller time steps. As before, the approach of (1.6) is not
competitive with KSS at this Krylov subspace dimension or choice of time step, and once
again, there is significant degradation in accuracy as N increases, as this increase requires a
corresponding increase in the Krylov subspace dimension.

We now increase the Krylov subspace dimension to 6 for all three methods. As in the
1-D case, we observe a disparity in the performance of the original block KSS method and
block KSS with rapid node estimation, which is not as accurate in this case. Furthermore, we
also observe a disparity in the results for the two grid sizes, except that accuracy and order
of convergence improves as N increases, while (1.6), once again, shows the opposite trend.
Because the time step is too large, the KSS methods only exhibit roughly second-order
accuracy again, on average.
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Figure 5.12: Estimates of relative error at t = 1 in the solution of (5.9), (5.12), (5.13), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (solid curve), a 4-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid (per dimension)
and various time steps. All methods are 3rd-order accurate in time.

5.1.4 Performance

Now, we use (1.6) in a different way, that is consistent with its use in time-stepping methods
such as those described in, among other sources, [10, 14]. That is, for each product of the
form f (A)b that needs to be computed, Lanczos iteration continues until convergence is
achieved to within a specified tolerance, rather than being restricted to a Krylov subspace
dimension that is determined by the desired temporal order of accuracy, as in KSS methods.
We solve the 1-D parabolic problem (5.1), (5.2), (5.3), with smooth coefficients and initial
data, with grids of dimension N = 128,256,512.

The results are shown in Figure 5.14. It can be seen that as N increases, the amount of
time needed to achieve a given level of accuracy by (1.6), allowed to run until convergence
is achieved to a relative error tolerance of 10−7, is far greater than that required by a 4-node
block KSS method with rapid node estimation. For the KSS method, the Krylov subspace
dimension is always 4, whereas for (1.6), the maximum number of iterations needed in a
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N ∆t KSS-est KSS-Gauss Lanczos
1 1.357e-002 1.370e-002 1.284e-001
1/2 3.911e-003 3.766e-003 8.602e-002

16 1/4 1.299e-003 1.051e-003 3.845e-002
1/8 1.011e-004 6.626e-005 5.205e-003
1/16 1.830e-005 1.703e-005 9.002e-004
1 1.357e-002 1.375e-002 1.273e-001
1/2 3.923e-003 4.065e-003 1.142e-001

32 1/4 1.310e-003 1.172e-003 9.730e-002
1/8 4.192e-004 3.860e-004 7.405e-002
1/16 1.529e-004 1.146e-004 3.295e-002

Table 5.9: Estimates of relative error at t = 1 in the solution of (5.9), (5.12), (5.13), with
periodic boundary conditions, computed by a 4-node KSS method with rapidly estimated
nodes (KSS-est), a 4-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid (per dimension) and various
time steps. All methods are 3rd-order accurate in time.

N ∆t KSS-est KSS-Gauss Lanczos
1 8.998e-003 8.423e-003 9.219e-002
1/2 2.971e-003 8.671e-004 2.787e-002

16 1/4 9.370e-004 6.374e-005 4.485e-003
1/8 3.549e-005 2.653e-005 4.631e-004
1/16 1.714e-005 1.682e-005 3.737e-005
1 8.803e-003 8.488e-003 1.099e-001
1/2 2.678e-003 1.457e-003 8.929e-002

32 1/4 1.626e-003 3.309e-004 5.766e-002
1/8 1.078e-004 7.003e-006 1.185e-002
1/16 5.230e-007 4.257e-007 1.199e-003

Table 5.10: Estimates of relative error at t = 1 in the solution of (5.9), (5.12), (5.13), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (KSS-est), a 6-node block KSS method with Gauss nodes (KSS-Gauss), and Lanczos
iteration as described in (1.6) (Lanczos) on an N-point grid (per dimension) and various
time steps. All methods are 5th-order accurate in time.

time step for N = 128,256,512 was 21,35 and 60, respectively. On the other hand, the time
required by the KSS method scales approximately linearly with N.
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Figure 5.13: Estimates of relative error at t = 1 in the solution of (5.9), (5.12), (5.13), with
periodic boundary conditions, computed by a 6-node KSS method with rapidly estimated
nodes (solid curve), a 6-node block KSS method with Gauss nodes (dashed curve), and
Lanczos iteration as described in (1.6) (dotted curve) on an N-point grid (per dimension)
and various time steps. All methods are 5th-order accurate in time.

5.2 Non-Linear Problems

In this section we compare several versions of EPI methods, as applied to three test problems.
The versions differ in the way in which they compute matrix function-vector products of the
form ϕ(Aτ)b:

• Standard Krylov projection, as in (4.3), hereafter referred to as “Krylov-EPI”, either
with or without denoising as in Chapter 4,

• Using the KSS approach, as described in Section 4.2, hereafter referred to as “KSS-
EPI”,

• Newton interpolation using Leja points [2], hereafter referred to as “LEJA”, and

• Adaptive Krylov projection [23], hereafter referred to as “AKP”.
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Figure 5.14: Estimates of relative error at t = 1 in the solution of (5.1), (5.2), (5.3), with
periodic boundary conditions, computed by a 4-node block KSS method with rapid node
estimation (solid blue curves), and Lanczos iteration as described in (1.6) (dashed red
curves) with various time steps. For both methods, the curves, as displayed from left to
right, correspond to solutions computed on N-point grids for N = 128,256,512.

All of these approaches are used in the context of three EPI methods described in Chapter
4. Errors reported are the relative errors computed with respect to an “exact” solution that
is obtained using the MATLAB ODE solver ode15s with the smallest allowable time step.
For all test problems, various grid sizes are used to demonstrate the effect of increased
resolution on performance; throughout this section, N refers to the number of grid points
per dimension.

5.2.1 LEJA and AKP

We start this section by giving a brief description of the Newton interpolation using Leja
points as described in [2] and [3]. Given a compact set K ⊂ C, the sequence of Leja points
{z j}∞

j=0 are defined recursively by starting with a fixed point z0 ∈K, where |z0|= maxz∈K |z|,
and then the z j are chosen such that

j−1

∏
k=0

∣∣z j− zk
∣∣= max

z∈K

j−1

∏
k=0

∣∣z j− z
∣∣ , j = 1,2 . . . . (5.14)
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The LEJA method interpolates ϕ(hλ ) using the Leja points for a suitable timestep h≤ ∆t

on the interval [c−2γ,c+2γ], where γ is the analytic capacity of K . The matrix Newton
polynomials pm of degree m that interpolate ϕ(hA) using Leja points are defined as

pm(A) =
m

∑
i=0

diΩi ≈ ϕ(hA), Ωi =
i−1

∏
j=0

((A− cI)/γ− z jI), (5.15)

where {di} is the corresponding divided difference for the function ϕ(hA). The sequence of
polynomials in (5.15) converges maximally to ϕ on K, i.e.

limsup‖ϕ− pm‖1/m
K = limsup‖ϕ− p∗m‖

1/m
K , (5.16)

where ‖ · ‖K is the maximum norm of K, and {p∗} is the sequence of best uniform approxi-
mation polynomials of ϕ on K.

When the expected degree of convergence is too large, LEJA with the original time step
∆t becomes unfeasible. To deal with this, the LEJA algorithm divides the original time
step into smaller time steps h = hk. Then, it produces the solution vector ϕ(hA)v using the
following time steping scheme:

yk+1 = yk +hkϕ(hkA)(Ayk + v), k = 0,1, . . . , (5.17)

where ∑hk = ∆t and ∆tϕ(∆tA)v is the solution at time t = ∆t of the differential system
y′(t) = A(y)(t)+v,y(0) = 0.

We now give a brief description of the AKP method as seen in [23]. Given the ODE
system

u′(t) = Au(t)+b1 + tb2 + · · ·+
t p−1

(p−1)!
bp, u(0) = b0, (5.18)

with the exact solution

u(t) = ϕ0(tA)b0 + tϕ1(tA)b1 + t2
ϕ2(tA)b2 + · · ·+ t p

ϕp(tA)bp, (5.19)

the idea behind the AKP method is to evaluate a linear combination of type

ϕ0(A)b0 +ϕ1(A)b1 +ϕ2(A)b2 + · · ·+ϕp(A)bp,

which is just the expression (5.19) evaluated at time t = 1. By splitting the interval [0,1]
into subintervals 0 = t0 < t1 < · · ·< tk < tk+1 = tk + τk < · · ·< tK = 1, the solution at time
tk+1 can be expressed exactly in terms of the solution at the previous time step as follows

u(tk+1) = ϕ0(τkA)u(tk)+
p

∑
i=1

τ
i
kϕi(τkA)

p−1

∑
j=0

t j
k
j!

bi+ j, τk = tk+1− tk. (5.20)
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At each step τk, only one evaluation of the ϕ-function product is needed. Since the matrix A

is scaled by τk, where 0 < τk < 1, the computation of ϕp(τkA)wp needs less Krylov vectors
than the computation of ϕp(A)wp. This adaptive substepping approach is more efficient
if the total comptational cost of evaluating the small Krylov subspaces for all K substeps
is smaller than computing one large Krylov subspace for the large initial time step. Since
the computational cost of evaluating one Krylov projection scales quadratically with the
number of Krylov vectors needed, it is possible that evaluating a few smaller Krylov bases
is cheaper than computing a large Krylov subspace.

5.2.2 Diffusive Problem

The first test problem is the two-dimensional Allen-Cahn equation given by

ut = α∇
2u+u−u3, x,y ∈ [0,1], t ∈ [0,0.2] (5.21)

with α = 0.1, using homogeneous Neumann boundary conditions and initial conditions
given by

u0(x,y) = 0.4+0.1cos(2πx)cos(2πy).

The ∇2 term is discretized using a centered finite difference. For KSS-EPI, the low-frequency
portion bL consists of all components with wave numbers ωi ≤ 7, i = 1,2. The low value
of this threshold is due to the smoothness of the initial data. That is, the value of Nc, as
defined in Section 4.2, for this problem is 7. The formula for the frquency-dependent nodes,
as defined in (3.40), of the 3-rd order EPI scheme is given by

n f =
[
0.1‖~ω‖2 + q̄−‖q̃‖ 0.1‖~ω‖2 + q̄+‖q̃‖

]
, (5.22)

where q = 1−3u2 is obtained from the Jacobian of (5.21), q̄ is the average value of q, and
q̃ = q− q̄. Similarly, the 4-th and 5-th order frequency-dependent nodes are computed by
the formula

n f =
[
0.1‖~ω‖2 + q̄−

√
2‖q̃‖ 0.1‖~ω‖2 + q̄ 0.1‖~ω‖2 + q̄+

√
2‖q̃‖

]
. (5.23)

Figures 5.15, 5.16 and 5.17 show the error vs. time performance for the two approaches
to matrix-function-vector multiplication, used within the 3rd- and 5th-order EPI methods,
respectively, as well as the Leja point approximation and adaptive Krylov (AKP) methods,
while Tables 5.11, 5.14, and 5.17 show the errors for all four methods relative to the time
step. We can see from the tables that the errors for both Krylov-EPI and KSS-EPI methods
are essentially the same, but as can be seen in the figures, the computational time is different.
For both orders, only for the grid size N = 25 grid points per dimension is the Krylov-EPI
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method slightly faster than the KSS-EPI method, while it is significantly slower for N = 150
and N = 300. Most significantly, as the number of grid points increases, the increase in
computational expense is much more pronounced with Krylov-EPI, due to the increase in
Krylov projection steps needed for convergence as can be seen in Tables 5.13, 5.16 and 5.19.
For both methods, the same matrix is being used for Lanczos iteration, but in KSS-EPI,
the initial vector is only a low-frequency approximation of that used for Krylov-EPI, thus
drastically reducing the number of iterations needed.

The denoising effect is clearly shown in this problem. From Tables 5.13, 5.16, and 5.19
we can see that denoising does not reduce the number of iterations considerably for N = 25
and N = 50, resulting in a slight increase in computational time. However, for N = 150 and
and N = 300, the number of iterations is reduced considerably, as can be seen in Tables
5.12, 5.15, and 5.18. Although AKP is slightly more accurate than KSS-EPI for 5th order,
this is more than offset by the far superior efficiency of KSS-EPI with denoising.

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

0.0020 0.0020 0.0020 0.0020 0.0020
3.9197e-04 3.9197e-04 3.9197e-04 3.9197e-04 3.9197e-04

25 5.4020e-05 5.4020e-05 5.4020e-05 5.4020e-05 5.4021e-05
6.3915e-06 6.3915e-06 6.3915e-06 6.3915e-06 6.3921e-06
7.4846e-07 7.4846e-07 7.4846e-07 7.4846-07 7.4856e-07

0.0021 0.0011 0.0021 0.0021 0.0021
4.0639e-04 4.0639e-04 4.0639e-04 4.0639e-04 4.0639e-04

50 5.6536e-05 5.6536e-05 5.6536e-05 5.6536e-05 5.6537e-05
6.7028e-06 6.7028e-06 6.7028e-06 6.7028e-06 6.7034e-06
7.8453e-07 7.8453e-07 7.8453e-07 7.8453e-07 7.8464e-07

0.0021 3.3942e-04 0.0021 0.0021 0.0021
4.1072e-04 1.3867e-05 4.1072e-04 4.1072e-04 4.1072e-04

150 5.7300e-05 1.9368e-05 5.7300e-05 5.7301e-05 5.7302e-05
6.7977e-06 3.9875e-06 6.7977e-06 6.7977e-06 6.8033e-06
7.9553e-07 7.9555e-07 7.9553e-07 7.9553e-07 7.9655e-07

0.0021 2.7226e-04 0.0021 0.0021 0.0021
4.1112e-04 5.4533e-05 4.1112e-04 4.1112e-04 4.1126e-04

300 5.7372e-05 3.8506e-05 5.7372e-05 5.7373e-05 5.7412e-05
6.8066e-06 1.2076e-05 6.8067e-06 6.8067e-06 6.8123e-06
7.9656e-07 2.8286e-06 7.9657e-07 7.9659e-07 7.9755e-07

Table 5.11: Error for Allen-Cahn equation, 3rd order

5.2.3 Advective Problem

The second test problem is the one-dimensional Burgers’ equation

ut +uux = νuxx, x ∈ [0,1], t ∈ [0,1] (5.24)
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

0.0936 0.1716 0.0780 0.3120 0.0780
0.0780 0.2808 0.1560 0.0624 0.0624

25 0.0624 0.5772 0.2652 0.1092 0.1092
0.0624 1.1388 0.3432 0.1092 0.2184
0.1248 2.3088 0.3276 0.2964 0.2964
0.1560 0.3432 0.0936 0.1092 0.1092
0.2340 0.4368 0.2496 0.1248 0.1560

50 0.2184 0.8268 0.3432 0.2028 0.2469
0.3276 1.3572 0.6084 0.2808 0.4680
0.3744 2.5428 0.8736 0.5928 0.7488
8.8765 3.0264 2.3556 4.2588 1.0920

18.7045 3.2916 2.4180 4.4928 1.2636
150 19.7341 4.1808 2.7144 3.3228 1.8720

17.6437 4.8516 3.0108 2.8860 3.3072
17.1289 7.3008 4.2900 4.1496 5.4912

152.1478 49.7643 19.15695 73.9133 4.1964
337.9606 49.8111 21.4345 64.4908 5.3352

300 354.3407 48.9999 25.8182 41.3871 8.1277
293.5939 49.4835 32.6822 21.4501 13.7125
269.8817 51.3555 31.7618 21.2629 24.3674

Table 5.12: Computational time for Allen-Cahn equation, 3rd order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

14.5000 42.5000 18.0000 13.5000 13.5000
12.5000 30.0000 14.5000 10.5000 10.0000

25 10.3750 21.3750 10.2500 8.1250 8.0000
8.0000 15.3750 7.3125 6.6875 6.6875
6.5000 11.5938 5.3125 5.7188 5.6875

26.0000 142.0000 47.0000 19.0000 16.0000
23.2500 54.2500 39.5000 14.5000 10.2500

50 17.5000 38.1250 20.0000 9.8750 8.3750
12.7500 26.1250 12.7500 7.1250 6.8125
9.2188 19.5625 7.8750 5.8438 5.7813

63.5000 1.0745e+03 375.5000 46.0000 16.5000
62.2500 509.7500 235.2500 32.0000 10.5000

150 47.0000 252.3750 104.1250 16.7500 8.0000
32.8750 125.9375 46.5000 9.0625 6.7500
22.9375 47.7500 26.3750 6.4375 5.7813
122.0000 4286.0000 656.0000 89.0000 16.5000
119.7500 2.0628e+03 547.5000 58.2500 10.7500

300 91.7500 979.6250 318.5000 28.2500 8.1250
63.1250 471.4375 193.5625 12.9375 6.6250
43.6250 225.4375 82.7188 7.3438 5.6875

Table 5.13: Number of iterations for Allen-Cahn equation, 3rd order
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(a) KSS-EPI (b) Krylov-EPI

(c) KSS-EPI denoised (d) Leja

(e) AKP

Figure 5.15: Allen-Cahn equation, 3rd order

with ν = 0.03, using Dirichlet boundary conditions and initial condition

u0(x) = sin3(3πx)(1− x)3/2.

For KSS-EPI, the low-frequency portion bL consists of all components with wave numbers
ω ≤Nc. A higher threshold Nc = 40 is used in this problem than for the Allen-Cahn equation,
as the initial data is less smooth. The 3-rd order frequency-dependent nodes, as defined in
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

4.5620e-04 9.0236e-04 8.4186e-04 4.5621e-04 4.8852e-04
6.6711e-05 4.1242e-04 4.1596e-04 6.6712e-05 6.7060e-05

25 5.5878e-06 1.3398e-04 1.4079e-04 5.5878e-06 5.7474e-06
3.5303e-07 3.5032e-05 3.7431e-05 3.5303e-07 3.7913e-07
2.0112e-08 8.6735e-06 9.3370e-06 2.0112e-08 2.3368e-08
4.6947e-04 6.6385e-04 8.1799e-04 4.6948e-04 5.0168e-04
7.0286e-05 4.1041e-04 4.1292e-04 7.0287e-05 7.0580e-05

50 5.9719e-06 1.3523e-04 1.1499e-04 5.9719e-06 6.1310e-06
3.7955e-07 3.5499e-05 3.7928e-05 3.7955e-07 4.0625e-07
2.1668e-08 8.7942e-06 9.4669e-06 2.1665e-08 2.5072e-08
4.7340e-04 4.6924e-04 8.1090e-04 4.7431e-04 5.0559e-04
7.1370e-05 2.7112e-04 4.1196e-04 7.1371e-05 7.1647e-05

150 6.0901e-06 1.0023e-04 1.4235e-04 6.0901e-06 6.2152e-06
3.8777e-07 2.9602e-05 3.8076e-05 3.8776e-07 4.0961e-07
2.2183e-08 8.8224e-06 9.5058e-06 2.2150e-08 2.4723e-08
4.7377e-04 4.4949e-04 8.1024e-04 4.7378e-04 5.0596e-04
7.1471e-05 2.5622e-04 4.1187e-04 7.1473e-05 7.1748e-05

300 6.1013e-06 9.1483e-05 1.4238e-04 6.1012e-06 6.2268e-06
3.8860e-07 2.5132e-05 3.8090e-05 3.8852e-07 4.1040e-07
2.2338e-08 6.6219e-06 9.5095e-06 2.2193e-08 2.4774e-08

Table 5.14: Error for Allen-Cahn, 4th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

0.3744 0.3900 0.5148 0.4836 0.1404
0.8424 0.9204 0.4056 0.7644 0.1716

25 1.1856 1.4664 0.5772 1.1700 0.1872
2.0748 2.9328 0.9516 1.5132 0.3432
2.8392 5.4444 0.7644 1.4040 0.4680
0.7956 0.6084 0.3432 0.5772 0.1560
1.2792 1.2948 0.6396 0.9204 0.2184

50 1.9500 2.0124 0.9204 1.3728 0.4524
3.3540 3.2916 1.4040 2.0436 0.7488
5.5536 6.2556 2.1060 3.6036 1.4040
2.9640 5.4288 8.0700 2.3712 1.4040
5.8032 5.8656 6.6612 2.9016 1.9500

150 23.4158 6.3804 8.3461 4.1808 3.1668
38.7038 8.6737 8.8297 7.0980 5.6784
52.8687 13.9933 10.4677 12.7453 10.6237
10.3741 89.9802 54.1167 8.3305 6.2556

111.4315 79.8101 57.7984 10.9669 9.1105
300 323.5329 69.8260 71.3705 15.6469 13.2757

455.5229 64.4752 79.6853 26.2238 23.9306
554.8332 66.9712 84.4589 46.3167 46.4415

Table 5.15: Computation time for Allen-Cahn, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

14.3333 48.0000 17.0000 13.6667 12.6667
12.6667 32.0000 12.0833 10.5000 9.3333

25 9.6667 21.1667 8.4167 8.0833 7.0833
8.1250 14.7500 6.1875 6.7083 6.0417
6.8542 9.9583 4.3750 5.7083 5.4583

20.3333 157.3333 34.1667 16.3333 14.0000
17.3333 53.5000 28.6667 11.6667 9.6667

50 13.5000 34.4167 15.7083 8.4167 7.1667
11.9167 22.5417 10.0000 6.9167 6.2083
9.4167 14.3333 5.8542 5.8333 5.3958

21.6667 1.3013e+03 302.8333 17.6667 14.0000
21.1667 519.5000 209.3333 12.0000 9.8333

150 30.5833 190.5833 114.2083 8.5833 7.1667
28.8333 70.2917 48.1250 6.9583 6.0833
22.9583 25.1250 20.9063 5.8542 5.5000
23.0000 5.2227e+03 873.6667 17.6667 14.0000
50.1667 2.1858e+03 506.4167 11.8333 10.0000

300 61.2500 808.0000 295.0000 8.5833 6.9167
54.5833 281.8750 155.9375 6.9167 6.0417
42.8542 101.0208 73.2396 5.8542 5.8333

Table 5.16: Number of iterations for Allen-Cahn, 4th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

2.6065e-05 9.4043e-04 2.6065e-05 2.6071e-05 2.6071e-05
2.5909e-07 2.9471e-04 2.5880e-07 2.5869e-07 2.5876e-07

25 4.4053e-08 8.4422e-05 4.4019e-08 4.4008e-08 4.4569e-08
2.2979e-09 2.1781e-05 2.2612e-09 2.2617e-09 3.5787e-09
1.0488e-10 5.4379e-06 8.3054e-11 8.4803e-11 8.3231e-10
2.6675e-05 0.012 2.6675-05 2.6681e-05 2.6681e-05
2.6101e-07 2.9641e-04 2.5858e-07 2.5964e-07 2.5827e-07

50 4.7887e-08 8.5382e-05 4.7241e-08 4.7274e-08 4.7739e-08
2.8597e-09 2.2074e-05 2.4656e-09 2.4671e-09 4.3559e-09
9.2058e-10 5.5124e-06 9.0992e-11 9.3881e-11 1.0330e-09
2.6872e-05 0.014 2.6872e-05 2.6875e-05 2.6878e-05
2.9126e-07 4.0409e-04 2.5871e-07 2.7710e-07 2.5834e-07

150 5.6581e-08 1.0736e-04 4.7228e-08 4.9135e-08 1.0347e-07
2.8521e-08 2.5263e-05 2.5292e-09 5.0278e-09 9.0062e-09
1.7910e-08 5.5347e-06 9.3473e-11 8.2219e-10 1.4776e-09
2.6891e-05 0.0014 2.6891e-05 2.6901e-05 2.6900e-05
3.9812e-07 4.2024e-04 2.5873e-07 2.7520e-07 2.5847e-07

300 8.5739e-08 1.1555e-04 4.8321e-08 1.0100e-07 1.0067e-07
8.2542e-08 2.8554e-05 2.5353e-09 6.0632e-08 9.0657e-09
3.0576e-08 6.7601e-06 9.3708e-11 8.5444e-09 1.5032e-09

Table 5.17: Error for Allen-Cahn equation, 5th order
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(a) KSS-EPI (b) Krylov-EPI

(c) KSS-EPI denoised (d) Leja

(e) AKP

Figure 5.16: Allen-Cahn equation, 4th order

(3.40), are given by

n f =
[
0.03‖~ω‖22−ω‖u− ū‖ 0.03‖~ω‖2−ω‖u− ū‖

]
, (5.25)

while the 4-th and 5-th order formula is

n f =
[
0.03‖~ω‖2−

√
2ω‖u− ū‖ 0.03‖~ω‖2 0.03‖~ω‖2−

√
2ω‖u− ū‖

]
. (5.26)

For this test problem, both the Krylov-EPI and KSS-EPI methods have similar error
for the same time steps, with KSS-EPI being slightly more accurate for the smaller grid
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

0.0312 0.4368 0.2496 0.0780 0.0936
0.0780 0.4680 0.3432 0.0936 0.1560

25 0.0936 0.8112 0.4992 0.1560 0.2340
0.1248 1.5132 0.7956 0.2652 0.2028
0.2184 3.1824 0.7020 0.5460 0.5616
0.1872 0.4212 0.2652 0.1872 0.1872
0.2496 0.7488 0.5460 0.1872 0.2808

50 0.3120 1.0608 0.7176 0.3276 0.4212
0.4056 2.1216 1.2324 0.5772 0.7956
0.5928 3.8688 1.9812 1.1388 1.5600
19.0477 5.3040 4.2276 5.7564 1.5756
26.2550 5.6160 4.0560 4.3056 2.0592

150 26.4110 7.3320 4.8828 3.4944 3.6660
24.8510 8.2525 6.5520 4.7268 5.7096
23.9462 10.6549 8.3773 8.8141 11.7157

288.3990 86.8302 39.9987 71.6825 6.8484
416.7723 85.8630 38.9222 44.9439 8.7829

300 402.1238 83.9285 44.1327 20.4049 14.0089
346.5250 84.4172 50.5443 22.6045 25.2410
310.2548 88.1094 58.0168 39.3435 50.0763

Table 5.18: Computational time for Allen-Cahn equation, 5th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

13.3333 32.6667 14.3333 12.3333 12.0000
10.6667 22.8333 10.1667 9.0000 8.6667

25 8.6667 16.5833 7.1667 6.8333 6.8333
7.0417 12.1250 5.2708 5.7083 5.7083
6.4375 9.7919 3.8958 5.3750 5.4167

24.3333 97.6667 27.5000 16.0000 13.6667
19.3333 41.0000 19.1667 10.5000 9.0000

50 14.4167 29.0833 11.6667 7.0833 6.9167
10.6250 20.5000 7.7083 5.7917 5.7917
8.8750 14.7500 4.9271 5.5000 5.7083

64.6667 736.3333 231.1667 37.000 14.0000
52.5000 364.6667 107.8333 20.8333 9.1667

150 37.2500 186.6667 54.5833 9.8333 6.9167
26.5417 84.1250 29.2083 6.2083 5.7083
19.8542 34.3958 14.7083 5.7917 5.4167
121.0000 2.8133e+03 598.5000 63.6667 14.0000
98.8333 1.3497e+03 327.6667 33.5000 9.1667

300 71.5833 659.6667 173.8333 12.7500 6.7500
49.0417 318.0833 90.8958 6.8333 5.6667
34.2708 152.1250 46.2813 5.5417 5.4375

Table 5.19: Number of iterations for Allen-Cahn equation, 5th order
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(a) KSS-EPI (b) Krylov-EPI

(c) KSS-EPI denoised (d) Leja

(e) AKP

Figure 5.17: Allen-Cahn equation, 5th order

sizes N = 250 and N = 500, as can be seen in Tables 5.20, 5.44, and 5.26. The difference
in computational time is almost insignificant for N = 250 in KSS-EPI and Krylov-EPI for
both 3rd, 4th and 5th order, but as the grid size increases, we can see that KSS-EPI method
is showing far superior efficiency compared to the Krylov-EPI method, as can be seen in
Figures 5.18, 5.19 and 5.20. As shown in Tables 5.22, 5.25, and 5.28, this is again due to
the increasing number of Krylov projection steps needed for Krylov-EPI.

The effect of denoising applied to KSS-EPI is even more pronounced than in the case
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of the Allen-Cahn equation. For example, from Table 5.27, we can see that it takes only 4
seconds for KSS-EPI denoised to compute the solution for the first time step of the grid
size N = 3000 for 5th order, while it takes Krylov-EPI 16,575 seconds to produce the same
solution. A similar decrease is observed in the number of iterations, as seen in Tables 5.22,
5.25, and 5.28. It is worth mentioning that both Leja points interpolation and AKP are more
accurate and more efficient than Krylov-EPI. At the same time, both Leja interpolation and
AKP are more accurate but much slower than KSS-EPI denoised, in terms of computational
time and number of matrix-vector products.

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

0.0161 1.7985e-05 0.0161 0.0161 0.0161
0.0024 2.1581e-06 0.0024 0.0024 0.0024

250 3.0029e-04 2.6364e-07 3.0027e-04 3.0029e-04 3.0028e-04
3.5659e-05 3.2574e-08 3.5651e-05 3.5661e-05 3.5652e-05
4.2649e-06 4.0665e-09 4.2603e-06 4.2619e-06 4.2616e-06

0.0161 4.3335e-05 0.0161 0.0161 0.0161
0.0024 2.1643e-06 0.0024 0.0024 0.0024

500 3.0117e-04 2.6444e-07 3.0113e-04 3.0117e-04 3.0113e-04
3.5776e-05 3.2752e-08 3.5755e-05 3.5788e-05 3.5756e-05
4.2861e-06 4.1306e-09 4.2726e-06 4.2890e-06 4.2738e-06

0.0161 9.4851e-05 0.0161 0.0161 0.0161
0.0024 2.2526e-05 0.0024 0.0024 0.0024

1500 3.0151e-04 4.9639e-06 3.0138e-04 3.0163e-04 3.0140e-04
3.5875e-05 8.2588e-07 3.5786e-05 3.6182e-05 3.5796e-05
4.3389e-06 5.3323e-09 4.2726e-06 4.6207e-06 4.2791e-06

0.0161 1.0175e-04 0.0161 0.0161 0.0161
0.0024 2.5492e-05 0.0024 0.0024 0.0024

3000 3.0169e-04 6.1770e-06 3.0141e-04 3.0209e-04 3.0147e-04
3.6006e-05 1.4330e-06 3.5789e-05 3.8213e-05 3.5993e-05
4.3883e-06 3.0784e-07 4.2766e-06 1.0413e-05 4.8464e-06

Table 5.20: Error for Burgers’ equation, 3rd order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

6.7860 16.4113 1.1076 5.1480 2.1528
3.0264 29.7494 1.2480 2.1060 1.1388

250 2.1216 57.0964 2.0436 1.3884 1.3104
2.0280 110.1055 3.4164 0.8580 1.2168
1.8408 214.7510 3.9624 0.8892 1.3416

69.6388 20.8417 3.2136 52.0419 3.2760
25.4282 40.2015 4.3836 14.9293 1.5132

500 11.3881 67.4548 6.2556 5.2260 1.6380
8.0029 125.2844 9.4849 2.9172 2.2620
6.7080 241.9420 12.3085 2.0748 2.7144

2.9888e+03 47.0187 14.1181 2.1350e+03 7.8781
1.1803e+03 72.6809 16.4113 651.7722 3.0732

1500 523.0246 113.3347 20.2177 179.2763 3.2604
249.3052 195.0481 26.4110 43.6023 4.8204
130.1204 357.7415 33.0410 12.6829 7.6752

3.2265e+04 125.0816 56.5348 2.2289e+04 13.6969
1.2544e+04 165.0491 59.4052 6.5714e+03 5.1792

3000 5.8142e+03 229.5867 68.3440 1.8069e+03 5.1012
2.9093e+03 325.1373 79.4825 473.0262 7.5348
1.6709e+03 519.5301 87.3138 79.9973 11.7157

Table 5.21: Computational time for Burgers’ equation,3rd order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

70.4500 31.6000 208.0000 64.0500 37.9000
43.2250 23.2675 106.2750 34.9000 22.0500

250 27.7625 16.5463 54.3375 18.1125 14.5125
18.2938 12.5256 23.5563 9.4500 10.4438
12.3281 9.4388 10.8094 6.4875 7.8250

135.1500 109.9000 543.2500 121.7000 43.4000
82.5250 43.6200 282.8250 67.6000 22.8500

500 52.6375 28.9275 150.3375 34.3375 14.6750
34.6188 20.9913 74.2875 16.2250 10.5688
22.7594 14.8294 34.9594 7.9750 7.9344

381.7000 749.8550 2.8464e+03 338.0000 44.7000
234.4500 364.9675 1.3123e+03 189.7500 23.1250

1500 149.9875 181.6525 701.3875 101.8375 14.8125
96.9750 93.6288 385.8125 47.5125 10.7313
64.4031 36.6297 182.2250 15.8844 8.0063

734.4500 2.9607e+03 6.4046e+03 638.2000 44.7000
452.8000 1.4244e+03 3.2878e+03 355.0750 23.1250

3000 291.6875 675.7688 1.8237e+03 192.9375 14.8875
187.3000 314.5081 1.0106e+03 93.9813 10.6563
125.6531 143.7350 499.4906 27.3531 8.0219

Table 5.22: Number of iterations for Burgers’ equation,3rd order
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(a) KSS-EPI (b) Krylov-EPI

(c) KSS-EPI denoised (d) Leja

(e) AKP

Figure 5.18: Burgers’ equation, 3rd order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

0.0034 0.0104 0.0154 0.0034 0.0035
3.0292e-04 0.0043 0.0055 3.1406e-04 3.3586e-04

250 1.5942e-05 0.0014 0.0015 2.0542e-05 2.4377e-05
9.2655e-07 3.7894e-04 3.7731e-04 8.1617e-07 1.5068e-06
3.5075e-07 9.4171e-05 9.3398e-05 3.2615e-08 1.1855e-07

0.0033 0.0092 0.154 0.0033 0.0035
2.6682e-04 0.0035 0.0055 2.9405e-04 3.3689e-04

500 8.0746e-06 0.0010 0.0015 1.5345e-05 2.4217e-05
3.3771e-06 3.0270e-04 3.7762e-04 5.8013e-07 1.5092e-06
1.4000e-06 9.6171e-05 9.3475e-05 1.5045e-07 1.1901e-07

0.0030 0.0088 0.0153 0.0031 0.0035
1.9862e-04 0.0033 0.0055 2.4483e-04 3.3590e-04

1500 1.6140e-05 9.3069e-04 0.0015 8.2784e-06 2.4971e-05
1.0921e-05 2.4351e-04 3.7771e-04 3.4392e-06 1.7710e-06
5.5045e-06 6.8424e-05 9.3498e-05 1.5998e-06 1.3404e-07

0.0028 0.0088 0.0153 0.0029 0.0035
1.4683e-04 0.0033 0.0055 2.4860e-04 3.3705e-04

3000 3.5829e-05 9.1986e-04 0.0015 2.9881e-05 2.9361e-05
2.3436e-05 2.3738e-04 3.7772e-04 1.5819e-05 8.4965e-06
9.8058e-06 6.4545e-05 9.3500e-05 6.0488e-06 4.2095e-06

Table 5.23: Error for Burgers, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

6.9888 7.7376 3.1980 4.6800 1.3260
4.5240 13.6033 3.7284 2.3244 1.1544

250 3.4788 27.2222 5.5224 1.9344 1.4352
3.5256 44.0703 8.1433 1.6536 1.3884
3.8064 76.2533 8.7829 1.4976 2.0124
67.1428 11.4661 10.8109 37.3622 2.0592
33.0566 18.0649 14.3833 13.6345 1.4976

500 18.2209 29.4842 19.7653 6.0060 2.1528
14.0713 53.0871 27.2690 4.1340 3.5100
12.5425 106.8763 29.2814 3.2760 3.3852

2.6684e+03 44.2419 46.4259 1.6902e+03 5.3508
1.3589e+03 51.0123 54.0855 662.8170 3.1356

1500 759.8185 70.5749 61.9948 191.8032 4.4304
432.0136 100.3398 75.5357 44.8659 7.7220
240.8499 154.9402 90.1374 17.3629 13.6189

3.0659e+04 223.0346 176.2499 1.8186e+04 9.6409
1.5935e+04 221.8490 189.4476 6.9875e+03 5.2884

3000 8.7187e+03 233.0343 207.4033 2.1565e+03 7.2852
4.8650e+03 260.6777 214.7978 458.6585 11.9185
2.7317e+03 331.7673 224.6570 76.9709 21.2005

Table 5.24: Computation time for Burgers, 4th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

65.3667 366.6333 186.4333 55.1333 27.0667
43.2333 173.1833 96.5750 32.7833 16.0167

250 28.4167 61.2833 46.8583 18.0000 11.0917
19.2292 34.2458 18.0167 9.5542 8.3292
12.9688 20.7146 7.1573 6.1000 6.6104

125.5333 1.3257e+03 498.5000 107.0000 29.3000
82.2167 590.0667 263.0917 61.7833 16.4833

500 54.5917 264.8083 136.2042 31.8583 11.2583
36.9875 109.1325 66.4104 13.8208 8.4083
25.0083 36.1979 23.8927 6.8313 6.6417

353.9333 1.1760e+04 2.3576e+03 303.8000 30.0667
233.2667 5.2436e+03 1.2660e+03 178.3500 16.6667

1500 156.4750 2.3059e+03 629.9333 93.5500 11.4250
105.1083 991.7125 311.0938 38.3042 8.4875
68.7813 391.4313 139.7115 13.3896 6.6813

679.1333 4.8977e+04 6.0456e+03 579.8667 30.1000
454.6500 2.2547e+04 3.1899e+03 348.7167 16.6333

3000 3047500. 1.0100e+04 1.7028e+03 186.4583 11.3417
196.5667 4.3356e+03 811.3792 73.0500 8.5583
125.7771 1.7993e+03 362.4531 21.0833 6.7500

Table 5.25: Number of iterations for Burgers, 4th order
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(a) KSS-EPI (b) Krylov-EPI

(c) KSS-EPI denoised (d) Leja

(e) AKP

Figure 5.19: Burgers’ equation, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

2.3480e-04 1.4120e-04 1.4018e-04 2.1824e-04 1.9903e-04
2.1374e-05 3.4971e-05 4.9610e-06 1.8124e-05 1.0066e-05

250 3.2881e-06 8.6913e-06 1.8102e-07 2.2339e-06 1.1042e-06
9.7105e-07 2.1657e-06 6.5889e-09 3.9863e-07 1.7425e-07
2.3316e-07 5.4051e-07 2.2893e-10 5.1162e-08 8.5376e-08
2.7689e-04 1.5929e-04 1.4070e-04 2.6430e-04 2.0282e-04
3.4008e-05 3.4999e-05 4.9926e-06 2.6770e-05 1.1991e-05

500 7.2781e-06 8.6982e-06 1.8248e-07 4.1766e-06 1.0005e-06
2.0652e-06 2.1674e-06 6.6462e-09 1.1006e-06 1.8249e-07
5.1971e-07 5.4089e-07 2.3109e-10 1.4746e-07 8.8101e-08
3.8221e-04 1.8320e-04 1.4086e-04 3.6507e-04 2.1540e-04
6.4847e-05 4.3995e-05 5.0020e-06 5.6508e-05 1.1803e-05

1500 1.6690e-05 1.0499e-05 1.8292e-07 1.1101e-05 4.2042e-06
4.6827e-06 2.4241e-06 6.6635e-09 2.8963e-06 9.9159e-07
1.9779e-06 5.4041e-07 2.3203e-10 1.1776e-06 1.0522e-07
4.8117e-04 1.8672e-04 1.4087e-04 4.6786e-04 2.0923e-04
9.2039e-05 4.5690e-05 5.0029e-06 8.9693e-05 1.4885e-05

3000 2.4561e-05 1.1160e-05 1.8296e-07 2.3928e-05 1.2566e-05
7.7607e-06 2.6935e-06 6.6649e-09 1.0537e-05 8.3789e-06
3.7903e-06 6.2979e-07 2.3174e-10 5.3535e-06 4.1938e-06

Table 5.26: Error for Burgers’ equation, 5th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

3.8220 24.2426 2.2308 2.6052 1.0140
2.6052 42.6819 3.2916 1.7004 1.0608

250 2.5116 80.4029 4.7424 1.7628 1.0620
2.6052 154.2538 5.8500 1.2480 1.2636
1.7004 308.5388 6.9888 1.3884 2.2776
31.7774 29.1878 6.9576 16.9261 1.3416
15.3505 53.8515 10.0777 6.7080 1.5288

500 10.6181 92.4930 13.3537 4.2744 2.3400
8.9701 173.0675 17.2069 3.4476 2.3712
9.1261 330.4569 20.7949 3.0732 3.4320

1.4553e+03 65.0992 28.5794 763.6405 2.7456
753.9060 102.0715 32.9942 262.1129 2.8392

1500 411.0626 163.4890 40.3419 67.2988 4.4772
250.4752 262.3001 52.1355 21.9493 7.7844
164.9867 464.5086 63.8512 14.9605 14.2429

1.6575e+04 173.9879 105.4411 8.6653e+03 4.3368
8.0333e+03 218.2142 113.0539 2.9622e+03 4.2744

3000 4.8663e+03 293.2195 124.8008 852.3895 6.9420
3.1460e+03 457.7225 130.7600 179.3543 12.0121
1.9679e+03 724.0006 141.6957 47.4867 23.2909

Table 5.27: Computational time for Burgers’ equation, 5th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI KSS-EPI
(denoised)

48.9000 23.9833 114.8667 39.2333 19.4333
32.7833 17.4133 58.4083 22.8667 12.5000

250 22.1833 12.3383 25.5625 13.0000 9.2417
15.0708 9.5792 10.9208 7.2583 7.3375
10.6354 7.9671 5.3167 5.5229 5.9875
93.7667 70.7767 314.6333 75.2000 19.9000
62.7167 31.5333 167.1917 42.8667 12.6333

500 41.6167 21.5267 78.0750 22.6417 9.3500
28.3667 15.0625 36.2188 10.2083 7.3917
19.8000 10.3608 14.4177 6.0438 5.9938

269.0333 497.5800 1.5025e+03 218.2333 20.0000
175.8833 250.2800 766.3833 125.3500 12.7000

1500 118.2500 119.7742 390.3625 62.2250 9.3750
81.9958 58.9100 195.9667 26.6417 7.4000
56.4000 24.9115 88.3052 10.4833 6.0375

521.6333 1.9266e+03 3.8573e+03 422.9667 20.0000
341.1667 917.4833 2.0312e+03 244.3833 12.6833

3000 232.9917 428.4083 1.0655e+03 124.6000 9.4167
160.5458 202.3358 485.5333 49.5542 7.3833
108.2063 90.3694 220.4406 16.0188 6.1271

Table 5.28: Number of iterations for Burgers’ equation, 5th order
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(a) KSS-EPI (b) Krylov-EPI

(c) KSS-EPI denoised (d) Leja

(e) AKP

Figure 5.20: Burgers’ equation, 5th order
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5.2.4 ADR Problem

The next test problem is the one-dimensional advection-diffusion-reaction equation

ut = εuxx−αux + γu(u− 1
2
)(1−u) x ∈ [0,1], t ∈ [0,0.2] (5.27)

with ε = 1/100, α =−10, and γ = 1. We used periodic boundary conditions with initial
conditions given by

u0(x) = 256(x(1− x))2 +0.3.

For KSS-EPI, the low-frequency portion bL consists of all components with wave numbers
|ω| ≤ 75. The Nc value is 20. The formula for the 3-rd order frequency-dependent nodes, as
defined in (3.40) is

n f =
[
0.01‖~ω‖2 + q̄+ i(10ω− i‖q̃‖) 0.01‖~ω‖2 + q̄− i(10ω− i‖q̃‖)

]
, (5.28)

where q = 3u−0.5−3u2 is obtained from the Jacobian of (5.27). The corresponding 4-th
and 5-th order frequency-dependent nodes are computed as follows

n f =
[
0.01‖~ω‖2 + q̄+ i(10ω− i‖q̃‖) 0.01‖~ω‖2 + q̄ 0.01‖~ω‖2 + q̄− i(10ω− i‖q̃‖)

]
(5.29)

For this test problem, just like with the Allen-Cahn equation, both Krylov-EPI and
KSS-EPI yield approximately the same accuracy for 3rd-, 4th- and 5th-order accuracy, as
can be seen from Tables 5.29, 5.32, and 5.35, for the most part (Krylov-EPI is more accurate
than KSS-EPI for the same time steps with N = 3000 grid points with the 5th-order ). From
Tables 5.30, 5.33, and 5.36, we can see that while Krylov-EPI is faster at the smaller grid
sizes, there is a much greater increase in needed Krylov projection steps for Krylov-EPI as N

increases. However, for this problem, Tables 5.31, 5.34, and 5.37 show that Krylov-EPI does
not need as many projection steps compared to the other test problems, so the advantage
is much less pronounced. Also, since the number of iterations required to converge to the
solution is small, the extra computational cost inquired by applying denoising to KSS-EPI
is greater than the time saved from the reduction of the number of iterations, so KSS-EPI
denoised was not added to the result tables. The AKP and Leja methods show similar errors
to KSS-EPI and Krylov-EPI for both 3rd and 5th orders and sligtly worse error for 4th order,
as can be seen from Tables 5.29, 5.32, and 5.35. However, the Leja method is slower than
both Krylov-EPI and KSS-EPI for smaller grid sizes for 3rd and 5th orders, and only slightly
faster than KSS-EPI for N = 1500 and N = 3000 for 3rd order, and N = 3000 for 5th order.
On the other hand, AKP seems to be faster than both KSS-EPI and Krylov-EPI for all grid
sizes for 3rd and 5th orders. Nevertheless, Table 5.33 shows that KSS-EPI is faster than
both AKP and Leja for 4th order.
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.0019 0.0019 0.0019 0.0019

2.1800e-04 2.1800e-04 2.1800e-04 2.1800e-04
250 2.5204e-05 2.5204e-05 2.5204e-05 2.5204e-05

2.9869e-06 2.9869e-06 2.6869e-06 2.9869e-06
3.6230e-07 3.6085e-07 3.6230e-07 3.6230e-07

0.0019 0.0019 0.0019 0.0019
2.1800e-04 2.1800e-04 2.1800e-04 2.1800e-04

500 2.5204e-05 2.5204e-05 2.5204e-05 2.5216e-05
2.9869e-06 2.9874e-06 2.9869e-06 2.9869e-06
3.6229e-07 3.6254e-07 3.6229e-07 3.6229e-07

0.0019 9.2211e-04 0.0037 0.0019
2.1800e-04 2.1800e-04 2.1800e-04 2.1800e-04

1500 2.5204e-05 2.5203e-05 2.5204e-05 2.5205e-05
2.9867e-06 2.9874e-06 2.9869e-06 2.9876e-06
3.6226e-07 3.6232e-07 3.6229e-07 3.6231e-07

0.0019 0.0025 0.0072 0.0019
2.1800e-04 5.1477e-04 2.5725e-04 2.1800e-04

3000 2.5203e-05 9.5135e-05 2.5480e-05 2.5220e-05
2.9867e-06 2.9854e-06 2.9869e-06 3.0204e-06
3.6228e-07 3.6092e-07 3.6229e-07 3.9264e-07

Table 5.29: Error for ADR, 3th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
2.6676 2.0904 0.5772 2.9172
1.9812 4.0872 0.5772 2.4960

250 2.9796 7.2852 0.9828 4.1028
5.0388 14.4769 1.7472 7.0980
8.5333 29.6090 3.1356 12.2149
4.1652 1.6380 0.9048 4.0092
4.7580 3.2916 1.1544 5.0700

500 3.3384 6.2400 1.0296 3.8844
5.3820 11.7157 1.7472 6.7236
9.2041 23.0101 3.2136 11.7781

18.7513 2.3556 1.5132 11.0917
17.9869 4.1184 2.9796 10.2493

1500 19.6717 7.4880 4.1964 10.7953
24.4766 13.3069 5.9280 16.6297
35.1002 25.3034 9.0949 29.2658
84.5837 3.6036 3.8844 32.7914
50.9655 5.9904 4.5552 14.3209

3000 45.3963 9.6409 8.2837 14.3209
48.4383 16.7233 11.2321 18.9697
66.0820 30.8414 15.4129 29.1566

Table 5.30: Computation time for ADR, 3th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
10.6500 18.0000 12.9500 10.6000
7.9750 14.0000 9.1250 7.9500

250 6.6625 12.0000 7.0750 6.6625
5.8438 11.2500 5.5625 5.8438
5.0000 10.0625 5.0313 5.0000
15.4500 22.5000 18.4500 13.6000
9.4750 20.1250 10.9500 8.7250

500 6.7250 13.3375 7.1750 6.7375
5.8500 10.2375 5.6250 5.8438
5.0000 10.3563 5.0375 5.0000
39.6500 104.4500 32.4500 28.5000
22.8500 39.2750 27.3250 13.7250

1500 13.8000 27.9125 16.3875 7.7750
8.5938 19.3938 10.0188 5.8500
6.2219 14.4750 6.5969 5.0000
75.7000 333.2000 52.1000 49.3500
41.7500 176.8000 35.520 18.7000

3000 25.7750 98.9250 37.0125 9.9625
15.5125 37.8938 23.3625 6.0313
11.0094 27.2250 11.9906 5.0000

Table 5.31: Number of iterations for ADR, 3th order
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(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.21: ADR, 3rd order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.0013 0.0052 0.0052 0.0013

1.0548e-04 0.0016 0.0016 1.0548e-04
250 9.3359e-06 4.1534e-04 4.1534e-04 9.3359e-06

9.3797e-07 1.0412e-04 1.0412e-04 9.3797e-07
1.0379e-07 2.5949e-05 2.5949e-05 1.0379e-07

0.0013 0.0052 0.0052 0.0013
1.0548e-04 0.0016 0.0016 1.0548e-04

500 9.3359e-06 4.1536e-04 4.1536e-04 9.3359e-06
9.3798e-07 1.0412e-04 1.0412e-04 9.3798e-07
1.0379e-07 2.5950e-05 2.5950e-05 1.0379e-07

0.0013 0.0040 0.0060 0.0013
1.0548e-04 0.0016 0.0016 1.0548e-04

1500 9.3360e-06 4.1536e-04 4.1536e-04 9.3371e-06
9.3817e-07 1.0413e-04 1.0413e-04 9.3827e-07
1.0381e-07 2.5950e-05 2.5950e-05 1.0379e-07

0.0013 0.0033 0.0086 0.0013
1.0548e-04 0.0012 0.0016 1.0548e-04

3000 9.3366e-06 3.4221e-04 4.1570e-04 9.3468e-06
9.3810e-07 1.0413e-04 1.0413e-04 9.5171e-07
1.0375e-07 2.5950e-05 2.5950e-05 1.0605e-07

Table 5.32: Error for ADR, 4th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.9984 5.3196 1.3416 0.3432
0.7332 9.5629 1.9032 0.4368

250 1.0452 17.3629 2.3556 0.4524
1.8720 35.4746 4.1652 0.8268
3.1512 73.1117 6.8796 1.5600
1.7628 3.8532 2.3556 0.5460
1.9812 7.9249 2.1216 0.7800

500 1.2948 16.2553 2.5584 0.7800
2.0436 29.7338 4.1808 1.0140
3.4788 57.9232 7.3320 1.9968
8.7361 5.3508 3.7128 4.1652
6.4428 9.7969 6.7080 2.6364

1500 6.4116 17.5345 9.6097 2.9172
6.8952 34.5542 14.1961 5.0544

10.4209 63.4300 21.0601 9.7345
116.5483 9.6877 7.3632 30.2486
74.0537 14.0557 10.0777 9.3289

3000 66.4408 23.2753 17.6281 8.1745
72.8993 41.0439 26.1926 9.4693
111.4627 75.1301 37.5962 17.9401

Table 5.33: Computation time for ADR, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
10.4000 31.0667 12.4800 10.4333
7.8500 22.2667 8.4600 7.8333

25 6.5500 18.3167 6.5150 6.5500
5.7917 16.7167 4.9950 5.7917
5.0000 15.5250 4.2963 5.0000
14.6000 37.9000 17.7600 12.9333
8.9833 32.8667 10.0200 8.4167

50 6.6000 21.1417 6.5700 5.5667
5.8000 16.1833 5.1000 5.7958
5.0000 16.4938 4.4475 5.0000
36.4333 162.7000 32.4800 27.7667
20.9167 64.4333 25.3700 13.4000

150 12.6500 43.5333 15.2000 7.1250
8.2125 30.1667 9.4925 5.7958
6.4217 21.4063 6.2550 5.0000
69.5333 526.9000 46.5200 46.4000
37.7833 271.8167 32.8800 19.4500

300 23.5333 152.6917 32.2000 10.3917
14.5917 61.0583 23.1325 5.2625
11.1979 41.0000 12.1238 5.0000

Table 5.34: Number of iterations for ADR, 4th order

(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.22: ADR, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
1.2834e-04 1.2834e-04 1.2834e-04 1.2834e-04
4.4759e-06 4.4759e-06 4.4759e-06 4.4759e-06

250 1.3486e-07 1.3484e-07 1.3486e-07 1.3486e-07
4.0011e-09 3.9782e-09 4.0014e-09 4.0011e-09
1.2170e-10 1.0517e-10 1.2106e-10 1.2168e-10
1.2834e-04 1.2834e-04 1.2834e-04 1.2834e-04
4.4758e-06 4.4759e-06 4.4759e-06 4.5187e-06

500 1.3485e-07 1.3487e-07 1.3486e-07 1.3486e-07
4.0012e-09 4.0038e-09 4.0013e-09 4.0010e-09
1.2270e-10 1.2200e-10 1.2101e-10 1.2174e-10
1.2834e-04 4.9928e-04 0.0033 1.2834e-04
4.4758e-06 4.4758e-06 4.4758e-06 4.4842e-06

1500 1.3479e-07 1.3488e-07 1.3486e-07 2.0019e-07
4.4881e-09 3.9953e-09 4.0013e-09 2.3433e-08
4.3802e-10 1.3504e-10 1.2097e-10 3.2315e-10
1.2834e-04 0.0012 0.0069 1.2834e-04
4.4756e-06 1.0973e-04 1.3605e-04 4.5510e-06

3000 1.3442e-07 1.3480e-07 2.7834e-06 4.7402e-07
5.0917e-09 3.9650e-09 4.0013e-09 1.5502e-07
8.9753e-10 1.2865e-10 1.2129e-10 2.1472e-08

Table 5.35: Error for ADR, 5th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
3.1824 5.8188 1.0140 2.5428
2.9016 11.3881 1.4508 3.2292

250 4.8984 22.1521 2.5584 5.5380
8.7673 43.8363 4.2744 9.8281

15.3349 86.9394 7.4412 17.3005
5.3196 4.5396 2.0436 4.9140
6.5520 9.2197 2.3712 5.9280

500 5.3664 17.9401 2.6364 5.3196
9.1261 35.0846 4.4460 9.4537

15.6157 67.5172 7.6128 17.2537
20.8261 6.3180 4.8672 13.1509
21.5593 11.1853 5.9904 13.1353

1500 24.8666 20.4673 9.0325 15.6313
30.4826 39.7179 13.9309 27.2222
46.8783 75.5357 20.5921 44.3667
107.2039 9.9373 10.0153 50.5603
64.3972 16.2709 13.1821 21.5437

3000 57.1432 25.8650 21.9805 21.7465
62.0884 45.1155 24.2582 28.9694
83.0861 84.8489 34.8818 53.4459

Table 5.36: Computation time for ADR, 5th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
9.2000 29.8000 9.2167 9.1333
7.2333 23.5333 7.0583 7.2167

250 6.1417 20.7500 5.5750 6.1417
5.5167 19.1167 4.3813 5.5167
4.8458 17.5500 3.7885 4.8396
12.1333 36.9000 11.5500 10.9667
8.1667 28.4333 7.5417 7.5333

500 6.1833 21.9750 5.6667 6.1500
5.5250 20.4542 4.5083 5.5208
4.8396 19.2625 3.8240 4.8583
29.5333 120.9333 33.1333 21.3000
17.4333 57.5667 16.5083 11.2167

1500 11.0167 39.1583 10.2875 6.5917
7.4250 28.2833 6.8271 5.5208
5.6979 21.3375 4.5802 4.8417
55.1000 401.3000 51.5500 34.9667
31.6000 179.3000 34.4833 15.9500

3000 19.7333 89.0250 29.7042 8.5250
12.8917 54.5083 13.8021 5.2583
9.4979 37.2708 8.0125 4.8271

Table 5.37: Number of iterations for ADR, 5th order

(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.23: ADR, 5th order
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5.2.5 2D ADR Problem

The fourth test problem is the two-dimensional advection-diffusion-reaction equation

ut = ε(uxx +uyy)−α(ux +uy)+ γu(u− 1
2
)(1−u) x,y ∈ [0,1], t ∈ [0,0.1] (5.30)

with ε = 1, α = −10, and γ = 1. We used homogeneous Neumann boundary conditions
with initial conditions given by

u0(x) = sin(4πx)cos(6πy).

For KSS-EPI, the low-frequency portion bL consists of all components with wave numbers
|ω| ≤ Nc = 20. The formula for the 3-rd frequency-dependent order nodes, as defined in
(3.93), is given by

n f =
[
‖~ω‖2 +10i(ω1 +ω2)+ φ̄ +µ ‖~ω‖2 +10i(ω1 +ω2)+ φ̄ −µ

]
, (5.31)

where µ =

√
‖φ̃‖2

4π2 +
4‖~ω ·∇φ‖2

‖φ̃‖2
and φ = u(u− 1

2)(1−u). The formula for the 4-th and

5-th order frequency-dependent nodes, as defined in (3.94), is

n f =


‖~ω‖2 +10i(ω1 +ω2)+ φ̄

‖~ω‖2 +10i(ω1 +ω2)+ φ̄ +µ

‖~ω‖2 +10i(ω1 +ω2)+ φ̄ −µ

 (5.32)

For this test problem, all four methods yield approximately the same accuracy, but both
Leja interpolation and Adaptive Krylov are more efficient than Krylov-EPI and KSS-EPI, as
we can see from Table 5.39. While Krylov-EPI is faster than KSS-EPI at the smaller grid
sizes (N = 25,50), we again observe the much greater increase in needed Krylov projection
steps (Table 5.40) for Krylov-EPI as N increases. However, for this problem, Krylov-EPI
does not need as many projection steps compared to, for example, Burgers’ equation, so the
advantage is much less pronounced. Also, since KSS-EPI does not require many iterations
to converge to the solution, denoising applied to KSS-EPI did not reduce the number of
iterations enough, but added extra computational time. Therefore, KSS-EPI denoised was
not added to Tables 5.38, 5.39, and 5.40.
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.0227 0.0227 0.0227 0.0227
0.0027 0.0027 0.0027 0.0027

25 3.2241e-04 3.2237e-04 3.2237e-04 3.2241e-04
3.9533e-05 3.9524e-05 3.9526e-05 3.9533e-05
4.8917e-06 4.8898e-06 4.8914e-06 4.8917e-06

0.0251 0.0251 .0251 0.0251
0.0030 0.0030 0.0030 0.0030

50 3.5600e-04 3.5595e-04 3.5595e-04 3.5598e-04
4.3623e-05 4.3616e-05 4.3616e-05 4.3623e-05
5.3965e-06 5.3957e-06 5.3958e-06 5.3965e-06

0.0259 0.0259 0.0259 0.0259
0.0030 0.0030 0.0030 0.0030

150 3.6695e-04 3.6657e-04 3.6655e-04 3.6660e-04
4.4984e-05 4.4915e-05 4.4907e-05 4.4915e-05
5.5678e-06 5.5538e-06 5.5549e-06 5.5558e-06

0.0259 0.0274 0.0259 0.0260
0.0031 0.0047 0.0031 0.0031

300 3.6847e-04 3.6760e-04 3.6756e-04 3.6804e-04
4.5202e-05 4.5011e-05 4.5030e-05 4.5052e-05
5.8755e-06 5.5877e-06 5.5701e-06 5.5710e-06

Table 5.38: Error for 2D-ADR, 3rd order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.8112 13.2601 2.3556 1.1388
1.2792 26.5826 3.2136 1.7940

25 2.1372 51.4023 4.6336 2.6208
5.6472 101.5411 6.3336 6.9108
3.7596 214.5482 11.7313 7.3164
2.9172 15.8809 3.8376 2.5116
4.1184 30.2330 5.9124 4.2276

50 6.4584 63.1804 9.4849 8.1121
10.2337 119.9180 15.8653 15.4285
18.0961 226.6851 24.6014 25.0226
224.4854 40.1547 21.7933 49.7955
224.8754 67.5796 26.2394 53.8359

150 244.3444 117.2816 39.4995 77.7977
281.9874 206.8573 64.1944 122.0240
330.5661 388.4269 106.4239 205.2817

4.0516e+03 249.0244 147.4053 438.5968
3.7590e+03 295.2163 184.3620 452.6993

300 3.7677e+03 378.1932 204.9073 644.2217
3.9029e+03 626.7340 309.4280 827.0237
4.2586e+03 1.0882e+03 498.8444 1.3007e+03

Table 5.39: Computation time for 2D-ADR, 3rd order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
6.8050 7.7300 4.4100 6.6850
6.0525 7.0175 3.0400 5.9525

25 5.6300 6.9913 2.4238 5.6563
6.3750 6.9694 2.0775 6.1738
4.6125 6.8825 1.8519 4.6941
10.4350 11.7000 6.3650 7.3400
8.3525 9.0975 3.8900 6.4175

50 7.1088 7.4125 2.7600 6.0000
5.9500 6.7819 2.1844 5.6019
5.4566 6.7953 1.8975 4.7466
28.3850 33.8100 26.8850 8.9500
20.7850 21.9125 10.7325 6.5125

150 15.5600 15.8500 6.2850 5.7825
11.7663 11.2044 4.1919 5.1494
8.8566 9.0122 2.9497 4.7509
55.4450 139.4600 58.5200 14.0850
40.1475 67.6875 32.2525 8.6550

300 29.4163 29.2638 13.4025 6.1488
21.4300 20.7869 8.2669 5.1775
15.7866 15.0753 5.4694 4.7609

Table 5.40: Number of iterations for 2D-ADR, 3rd order

5.2.6 System of Coupled PDE

For our final test problem, we consider the 2-D Brusselator problem [8, 22]

ut = 1+uv2−4u+α∇
2u, x,y ∈ [0,1], t ∈ [0,0.1], (5.33)

vt = 3u−u2v+α∇
2u, (5.34)

with α = 0.2, homogeneous Dirichlet boundary conditions, and initial data

u(x,y,0) = sin(6πx)sin(7πy), v(x,y,0) = sin(5πx).

The Nc value for Brusselator equation is 30. The formula for 3-rd order frequency-dependent
nodes, as defined in (3.103), is given by

n f =
[

a−√q11q12 a+
√

q11q12
a−√q21q22 a+

√
q21q22

]
, (5.35)

where
a =−0.2(N +1)2

(
4−2cos

(
ω1

N +1

)
2cos

(
ω1

N +1

))
, (5.36)

q11 =
‖p̃‖2

2 +φψ

2π

√
‖ p̃‖2

2 +‖ψ‖2
2

, (5.37)
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(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.24: 2D-ADR, 3rd order

q21 =
‖q̃‖2

2 +φψ

2π

√
‖q̃‖2

2 +‖φ‖2
2

, (5.38)

q12 =

√
‖p̃‖2

2 +‖ψ‖2
2

2π
, (5.39)

q22 =

√
‖φ‖2

2 +‖q̃‖2
2

2π
, (5.40)

and p = v2− 4, φ = 2uv, ψ = 3− 2u, and q = −u2. The functions p, φ , ψ , and q are
obtained from the Jacobian of (5.33). The 4-th and 5-th order frequency-dependent nodes,
as defined in (3.102) are given by

n f =
[

a−
√

q11q12 +b11b12 a a+
√

q11q12 +b11b12
a−
√

q21q22 +b21b22 a a+
√

q21q22 +b21b22

]
, (5.41)

where

b11 =
0.4(‖~ω ·∇p‖2

2 +‖~ω ·∇ψ‖2
2)√

‖ p̃‖2
2 +‖ψ‖2

2

√
‖~ω ·∇p‖2

2 +‖~ω ·∇ψ‖2
2

, (5.42)
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b21 =
0.4(‖~ω ·∇φ‖2

2 +‖~ω ·∇q‖2
2)√

‖φ‖2
2 +‖q̃‖2

2

√
‖~ω ·∇φ‖2

2 +‖~ω ·∇q‖2
2

, (5.43)

b12 =
0.4
√
‖~ω ·∇p‖2

2 +‖~ω ·∇ψ‖2
2√

‖p̃‖2
2 +‖ψ‖2

2

, (5.44)

b22 =
0.4
√
‖~ω ·∇φ‖2

2 +‖~ω ·∇q‖2
2√

‖φ‖2
2 +‖q̃‖2

2

. (5.45)

As we can see from Tables 5.41, 5.44, and 5.47, both Krylov-EPI and KSS-EPI yield
similar error for the the smaller grid sizes N = 25 and N = 50 for 3rd and 5th orders, and
N = 25 for 4th order, while Krylov-EPI is slightly more accurate KSS-EPI for the other
grid sizes. At the same time, we again observe a decrease in the number of iterations used
by KSS-EPI compared to Krylov-EPI as N increases, for both 3rd, 4th, and 5th orders, as
shown in Tables 5.43, 5.46, and 5.49. However, since the number of iterations used for
KSS-EPI is not much smaller than the number of iterations used for Krylov-EPI, the cost of
Fourier transforms offset the advantage in the number of iterations, thus causing KSS-EPI
to be only slightly more efficient than Krylov-EPI. This can also be observed in Tables 5.42,
5.45 and 5.48, and Figures 5.25, 5.26, and 5.27. Also, just like in the case of 2D ADR,
denoising applied to KSS-EPI did not decrease the number of iterations significantly, adding
extra computational time.
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
6.6193e-05 6.6193e-05 6.6193e-05 6.6193e-05
7.3512e-06 7.3511e-06 7.3511e-06 7.3512e-06

25 8.2593e-07 8.2586e-07 8.2587e-07 8.2593e-07
9.6575e-08 9.6548e-08 9.6548e-08 9.6575e-08
1.1345e-08 1.1633e-08 1.1632e-08 1.1645e-08
6.3453e-05 6.3453e-05 6.3453e-05 6.3450e-05
7.0286e-06 7.0279e-06 7.0279e-06 7.0277e-06

50 7.8699e-07 7.8660e-07 7.8660e-07 7.8643e-07
9.1994e-08 9.1872e-08 9.1873e-08 9.1830e-08
1.0188e-08 1.1065e-08 1.1066e-08 1.1069e-08
6.2598e-05 2.7120e-05 6.2594e-05 0.0015
6.9258e-06 6.9225e-06 6.9226e-06 3.0811e-05

150 7.7445e-07 7.2778e-07 7.2181e-07 7.7359e-07
9.1561e-08 9.0128e-08 9.0146e-08 9.1252e-08
1.1995e-08 1.0868e-08 1.0875e-08 1.2603e-08
6.2524e-05 4.5662e-05 6.2511e-05 0.1028
6.2011e-06 9.8543e-06 6.9124e-06 0.0307

300 7.7782e-07 1.5304e-06 7.7148e-07 0.0034
9.6536e-08 8.9860e-08 8.9959e-08 4.6994e-05
1.7033e-08 1.0839e-08 1.0845e-08 1.9347e-08

Table 5.41: Error for Brusselator equation, 3rd order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.4992 1.9812 0.6708 0.5460
0.8268 3.1200 0.9984 0.7488

25 1.1856 6.1308 1.7316 1.2636
2.0592 11.6377 2.9328 2.0280
3.6816 22.3549 5.0700 3.8844
3.0732 1.9188 1.1076 2.8548
3.9936 3.6348 1.5444 3.8532

50 5.4288 6.8640 2.5116 6.0216
7.7376 13.0573 4.0560 9.9373

13.4161 26.3174 6.9264 19.0009
143.9733 10.9513 9.8593 70.9493
135.9549 13.2133 11.2321 65.9260

150 144.7221 23.6498 15.9901 75.1613
170.8679 42.5571 23.0881 108.6547
226.0454 73.7729 35.9894 187.1232

2.2553e+03 118.3580 107.4535 1.1094e+03
1.8700e+03 129.7304 84.6305 869.3468

300 1.7421e+03 139.7541 103.2571 669.3067
1.8892e+03 153.5050 139.3089 662.8482
2.1976e+03 251.0212 200.1961 923.4479

Table 5.42: Computation time for Brusselator equation, 3rd order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
11.6000 16.1000 11.0000 11.6000
8.8250 12.0750 7.5750 8.8250

25 7.2500 10.7750 5.7375 7.2500
6.0875 10.7250 4.6000 6.0875
5.5438 10.6375 3.7125 5.5438

18.0500 26.6000 18.5500 15.5500
12.4750 19.1500 11.6000 11.0250

50 9.1250 13.7875 7.4875 8.2375
7.0063 10.9688 5.2313 6.6688
6.0656 10.1031 4.0625 5.8719

47.6000 120.7500 56.3000 34.6500
31.1250 46.7750 33.7500 17.6000

150 20.9500 33.6750 20.1125 10.7750
14.4250 23.0500 11.9875 7.4625
10.4938 16.9563 7.3875 6.1563
90.8000 423.1000 199.7500 64.9500
58.9250 216.6000 76.3000 38.0250

300 38.8125 101.5500 42.4625 18.8750
26.5750 39.5563 24.8188 9.9813
18.2188 28.3938 14.9938 6.9625

Table 5.43: Number of iterations for Brusselator equation, 3rd order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
1.9390e-04 0.0013 0.0013 1.9390e-04
1.5164e-05 3.2562e-04 3.2564e-04 1.5164e-05

25 1.2886e-06 7.7112e-05 7.7108e-05 1.2886e-06
1.2456e-07 1.8424e-05 1.8416e-05 1.2456e-07
1.3354e-08 4.4892e-06 4.4785e-06 1.3354e-08
2.0925e-04 0.0013 0.0013 2.0930e-04
1.6196e-05 3.3609e-04 3.3615e-04 1.6216e-05

50 1.3675e-06 7.9614e-05 7.9584e-05 1.3777e-06
1.3197e-07 1.9003e-05 1.8990e-05 1.3473e-07
1.4121e-08 4.6213e-06 4.6150e-06 1.4606e-08
2.1422e-04 0.0010 0.0013 2.1885e-04
1.6503e-05 3.3949e-04 3.3955e-04 1.6559e-05

150 1.3887e-06 8.0520e-05 8.0372e-05 1.4702e-06
1.3521e-07 1.9174e-05 1.9170e-05 2.6074e-07
1.5218e-08 4.3757e-06 4.6581e-06 8.4155e-08
2.1471e-04 8.2644e-05 0.0034 0.1673
1.6535e-05 2.4603e-04 3.6265e-04 0.0104

300 1.3926e-06 6.6651e-05 8.0939e-05 6.9401e-05
1.3719e-07 1.9246e-05 1.9188e-05 1.3757e-07
1.7834e-08 4.7818e-06 4.6623e-06 1.1388e-07

Table 5.44: Error for Brusselator, 4th order
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(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.25: Brusselator equation, 3rd order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
4.1028 3.7752 1.4352 6.9264
6.3804 7.7532 2.1996 10.1557

25 10.2181 15.3193 3.6348 17.4409
18.0805 28.1894 6.2868 28.8134
30.0926 56.6440 10.6393 49.7643
10.2181 4.5084 2.5428 12.9949
12.9949 8.7985 3.5880 18.6109

50 19.9369 16.6453 5.2884 28.6574
30.8414 32.6510 8.8921 45.8799
54.1011 62.6032 15.0853 80.6057
219.7742 19.1725 50.8251 126.1268
228.5259 28.0490 56.8468 121.2752

150 265.6073 45.9735 54.3351 150.3850
3402538 82.1501 62.4160 219.4310
477.7531 148.1541 83.8505 378.5832

3.2683e+03 173.1455 514.8813 1.6977e+03
2.9652e+03 187.9032 624.0820 1.3777e+03

300 3.0498e+03 213.2846 729.1643 1.1449e+03
3.5814e+03 269.6789 746.2152 1.2348e+03
4.5542e+03 463.1514 736.1375 1.8053e+03

Table 5.45: Computation time for Brusselator, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
14.3333 48.0000 17.0000 13.6667
12.6667 32.0000 12.0833 10.5000

25 9.6667 21.1667 8.1467 8.0833
8.1250 14.7500 6.1875 6.7083
6.8542 9.9583 4.3750 5.7083

20.3333 157.3333 34.1667 16.3333
17.3333 53.5000 28.6667 11.6667

50 13.5000 34.4167 15.7083 8.4167
11.9167 22.5417 10.0000 6.9167
9.4167 14.3333 5.8542 5.8333

21.6667 1.3013e+03 302.8333 17.6667
21.1667 519.5000 209.3333 12.0000

150 30.5833 190.5833 114.2083 8.5833
28.8333 70.2917 48.1250 6.9583
22.9583 25.1250 20.9063 5.8542
23.0000 5.2227e+03 873.6667 17.6667
50.1667 2.1858e+03 506.4167 11.8333

300 61.2500 808.0000 295.0000 8.5833
54.5833 281.8750 155.9375 6.9167
42.8542 101.0208 73.2396 5.8542

Table 5.46: Number of iterations for Brusselator, 4th order

(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.26: Brusselator equation, 4th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
1.8136e-06 1.0652e-07 1.0838e-07 1.8136e-06
2.4172e-07 4.7414e-09 4.6168e-09 2.4172e-07

25 3.7753e-08 2.9361e-09 1.6170e-10 3.7753e-08
6.7439e-09 2.1235e-09 6.5355e-12 6.7439e-09
2.2535e-09 2.8176e-09 2.5613e-12 2.2535e-09
1.4488e-05 1.0909e-07 1.1164e-07 9.0526e-06
2.3530e-06 1.1528e-08 4.8339e-09 6.6851e-07

50 2.3556e-07 3.8756e-09 1.7317e-10 1.1561e-07
4.3887e-08 2.1031e-09 6.7663e-12 1.7210e-08
2.9021e-09 2.3449e-09 2.5513e-12 2.7587e-09
9.3983e-05 1.1719e-05 1.1298e-07 5.1901e-05
1.5337e-05 1.6509e-08 4.9085e-9 5.9497e-06

150 3.1141e-06 1.6802e-08 3.0252e-10 1.1869e-06
7.9372e-07 1.6824e-10 4.3692e-11 1.1416e-07
2.5822e-07 6.4371e-09 6.0797e-12 1.6684e-08
1.6072e-04 2.3853e-05 1.1314e-07 0.0229
3.1909e-05 4.2411e-06 4.8932e-09 0.0019

300 9.9838e-06 4.3337e-07 2.8651e-10 1.7218e-05
3.1886e-06 5.6779e-09 4.2807e-11 5.7163e-07
7.3789e-07 9.9066e-09 7.9912e-12 9.4780e-08

Table 5.47: Error for Brusselator equation, 5th order

Grid Size Krylov-EPI LEJA AKP KSS-EPI
0.5928 4.5708 1.4976 0.7800
1.0452 8.6581 2.3088 1.0920

25 1.6848 17.7373 3.7596 1.9032
2.9796 64.4606 6.0528 3.4632
5.3664 67.0648 10.1557 6.2088
3.4164 5.3664 2.2776 4.4460
4.6488 9.9841 3.5100 7.4256

50 6.5988 19.5001 5.4756 12.7609
10.6705 37.8458 8.6581 23.9774
18.4237 72.7121 14.1337 43.5243
145.9857 20.4673 19.0477 69.1240
152.4754 30.2330 22.7605 81.6509

150 173.8943 50.9811 30.7478 122.3360
213.3782 93.5538 43.7739 211.7870
294.6547 174.0971 68.4220 395.1661

2.1684e+03 180.3372 152.4442 848.3958
1.9709e+03 205.4221 157.1710 664.5487

300 1.9515e+03 232.2855 199.7125 669.0727
2.1222e+03 293.5315 265.2173 949.8901
2.8139e+03 514.1325 372.2652 1.6401e+03

Table 5.48: Computation time for Brusselator equation, 5th order
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Grid Size Krylov-EPI LEJA AKP KSS-EPI
9.1333 15.2333 7.3667 9.1333
7.4000 12.2667 5.2333 7.4000

25 6.3417 11.4417 3.8792 6.3417
5.6750 10.2458 2.9750 5.6750
5.0792 9.5479 2.3219 5.0688
13.7333 22.9333 11.3833 11.8000
10.1000 15.0500 7.1917 8.8833

50 7.5750 11.8167 4.7417 7.0000
6.2125 9.8792 3.4229 6.0542
5.4208 9.4063 2.5760 5.3792
34.4667 68.1333 27.5000 18.7000
23.5000 30.9000 19.1667 11.2667

150 16.3500 22.1267 11.6667 7.9500
11.6458 16.4542 7.7083 6.3458
8.8438 11.8917 4.9271 5.4938
65.5000 242.4333 93.1667 38.6667
43.7833 122.1500 42.7750 19.9333

300 29.4250 54.1667 23.9708 10.5586
20.5625 25.2833 13.3771 7.0958
15.0750 18.4604 7.6135 5.6813

Table 5.49: Number of iterations for Brusselator equation, 5th order

(a) KSS-EPI (b) Krylov-EPI

(c) Leja (d) AKP

Figure 5.27: Brusselator equation, 5th order
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5.2.7 Discussion of Efficiency

From these five test problems, we see that the performance of KSS-EPI, with or without
denoising, varied considerably in comparison to Leja interpolation and adaptive Krylov
projection. The following observations are worth making.

• Of the methods used, KSS-EPI is unique in that it requires Fourier transforms, which
are the most computationally expensive tasks performed in the processing of the high-
frequency portion of the solution. The number of transforms is related to the desired
order of accuracy, as can be seen in (4.9). When not many matrix-vector products are
needed to achieve convergence for Leja interpolation or standard or adaptive Krylov
projection, the cost of these transforms becomes more significant, thus reducing or
eliminating the advantage of a KSS-EPI approach. However, these transforms can be
performed in parallel, even if only a very small number of processors are available.

• In this dissertation, KSS was used in conjunction with standard Krylov projection for
the low-frequency part of the solution. However, there is no reason why KSS could
not be combined with an alternative approach to matrix function-vector products, such
as Leja interpolation or adaptive Krylov projection. This will be explored in future
work, as it requires examination of error estimation and stopping criteria for these
methods in order to determine whether their convergence can be accelerated if it is
known that the initial vector represents a smooth function, due to the elimination of
high-frequency components.
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Chapter 6

CONCLUSIONS

We have demonstrated that when solving stiff systems of nonlinear ODE derived from the
spatial discretization of a nonlinear PDE, the eigenvalue problem for the block tridiagonal
matrix produced by the block Lanczos algorithm decouples in the limit as the frequency
increases. As a result, we were able to accurately compute block Guassian quadrature
nodes for all frequencies much more efficiently than the computational cost of evaluating
them directly. Also, we have seen that an increase in the number of grid points in the
spatial discretization of the PDE does not necessarily require a corresponding increase in
the number of Krylov projection steps needed to maintain high-order accuracy in time. By
employing a componentwise approach to the computation of ϕ(τA)b as in KSS methods, in
which each component of the solution with respect to an appropriate orthonormal basis is
computed using an individualized approximation of the function ϕ , the Krylov subspace
dimension can be bounded independently of the grid size and instead determined by the
desired temporal order of accuracy.

Future work on the combination of KSS and EPI methods will focus on the compu-
tation of low-frequency components of the solution. It will be necessary to develop an
adaptive approach to determining the threshold Nc for retaining low-frequency components.
Also, as mentioned in the previous chapter, combination with other methods for matrix
function-vector products, including Leja interpolation and adaptive Krylov projection, will
be investigated. Finally, it will be essential to generalize the approach demonstrated in
this dissertation for estimating frequency-dependent nodes to other classes of differential
operators. Given that these nodes tend to be smooth functions of the wave number, this
generalization could be accomplished via interpolation.
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