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ABSTRACT 

Network parameters such as cross-link density or intermolecular interactions were 

used as effective parameters to control polymer chain packing or free volume and thereby 

control the mass transport properties of networks.  

A series of polyethylene glycol (PEG) based thiol-ene elastomeric networks 

having a broad range of molecular weight between cross-links, Mc, (inverse of cross-link 

density) was prepared. The specific volume of the networks was studied as a function of 

temperature and pressure using high pressure dilatometry, and the obtained PVT data was 

fit using Simha-Somcynsky equation of state (S-S eos) analysis. Fractional free volume, 

quantified through S-S eos analysis, changed linearly as a function of cross-link density 

of the networks proving that the system obeyed Fox and Loshaek model. Average free 

volume hole size, <vh>, of the networks was directly probed using positron annihilation 

lifetime spectroscopy (PALS). <vh> of the networks also changed linearly as a function 

of cross-link density. Typically, in traditional elastomers, changing cross-link density 

also causes simultaneous changes in chemical nature or polarity of the system, therefore 

those systems deviate from Fox and Loshaek model. Internal pressure Pi of the networks, 

calculated from PVT data, showed similar values for all networks, and the same was the 

case for storage permittivity values obtained from dielectric spectroscopy analysis. This 

proved that the chemical nature of the networks was unaffected and cross-link density 

was the only parameter controlling the free volume of the networks. Gas diffusivity of the 

networks obeyed Cohen Turnbull model, and thus the experimental gas diffusivity trends 

were modeled as a function of molecular weight between cross-links of the networks. 
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The effect of intermolecular (repulsive) interactions on free volume and gas 

transport was studied in a series of perfluorinated thiol-ene elastomers. Perfluorinated 

thiol-ene elastomers were prepared via 2-step synthesis. In the first step, a four-functional 

thiol was converted into a three functional thiol containing a perfluorinated dangling 

moiety via Thio Michael addition reaction with a perfluorinated acrylate. The modified 

thiol monomer was then reacted with triene to obtain perfluorinated thiol-ene networks. 

Fluorine content was varied by changing the length of perfluorinated moiety used in Thio 

Michael addition and this enabled the synthesis of a series of perfluorinated networks 

containing perfluorinated dangling moieties of different lengths. Fast reaction kinetics of 

thiol-ene chemistry prevented the phase separation of perfluorinated moieties and locked-

in the thermodynamically frustrated perfluorinated moieties within the thiol-ene scaffold. 

The repulsive interactions between highly non-polar perfluorinated moieties and polar 

thiol-ene backbone created huge free volume pockets in the network. For the biggest 

perfluorinated dangling moiety used in this study, <vh> increased by four times in 

comparison to an unmodified network. The gas transport properties showed a significant 

improvement as a function of the length of the dangling moiety. But gas diffusivity of the 

networks did not obey Cohen Turnbull model. The deviation was explained by the static 

nature of free volume pockets around perfluorinated moieties, and percolation of free 

volume pockets as the sizes of free volume cavities increased.   

The 2-step synthetic approach was taken a step further to prepare a series of 

hybrid thiol-ene elastomers containing varying concentrations of polar PEG moieties and 

non-polar perfluorinated moieties. The effect of PEG and perfluorinated concentrations 

(or attractive and repulsive interactions) on chain packing was studied. PEG moieties 
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improved CO2 gas permeability and selectivity because of the Lewis acid-base type 

interactions between PEG and CO2.  

In the final chapter, the effect of moisture sorption on free volume, oxygen, and 

water vapor transport was studied on five different epoxy-amine networks having Tgs in 

the range between -11 °C to 227 °C. Water sorption did not show any effect on <vh> of 

elastomeric networks. Whereas, glassy networks showed a V-shaped trend when <vh> 

was plotted as a function of relative humidity or water content. The decrease in <vh> was 

due to water molecules filling free volume holes. Increasing water concentration in the 

networks beyond 75% relative humidity (RH) resulted in swelling of the networks and 

thereby <vh> increase. Effect of water sorption on oxygen permeability of the glassy 

networks also showed a similar V-shaped trend, but the mechanism was more complex as 

water sorption affected both oxygen diffusivity and solubility. Water vapor permeability 

of the glassy networks was unaffected until 75% RH. Beyond 75% RH, free volume 

increase due to swelling resulted in water vapor permeability increase. 
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CHAPTER I - FREE VOLUME AND GAS TRANSPORT IN POLYMERS: 

BACKGROUND 

1.1 Introduction 

Free volume is one of the most critical parameters in polymers which has a strong 

influence on gas transport, mechanical, rheological properties etc. among many others. 

But the property of interest for this thesis is gas or vapor transport in polymers. The gas 

or vapor permeation requirements of a polymer material obviously would depend on the 

type of application. Typically high permeation or flux is required for membrane or gas 

separation applications, and therefore membrane scientists strive to develop high flux 

polymers that selectively permeate the gas of interest. In chapters 2-4 we discuss the 

development of high flux polymer networks for membrane applications. Whereas low 

flux or high barrier is required for packaging or coating applications, and therefore there 

are needs for new packaging materials that can enhance the shelf life of foods or new 

coating resins that can further enhance barrier against corrosive species and prevent 

metals from corroding for longer durations. In Chapter 5 we discuss how the presence of 

moisture in epoxy amine networks affects polymer chain packing, and thereby its 

complex effect on oxygen permeation. 

1.2 Free volume in polymers   

The free volume of a polymer is the difference between its specific volume Vsp 

and the volume occupied by its molecules, i.e., Vocc.
1  

𝑉𝑠𝑝 = 𝑉𝑜𝑐𝑐 + 𝑉𝑓 (1) 

Where Vf is the specific free volume. Furthermore, Vf is the product of concentration, Nh’, 

and the average size of free volume holes <vh>. 
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𝑉𝑠𝑝 = 𝑉𝑜𝑐𝑐 + 𝑁ℎ
′ 〈𝑣ℎ〉  (2) 

Occupied volume Vocc is the product of van der Waal's volume Vvdw of the polymer and 

interstitial free volume. 

  Different natures of free volume in amorphous glasses and elastomers (liquids) 

can be understood from Figure 1.1. In elastomers (T>Tg) (Figure 1.1), the overall volume 

change has a higher slope (liquid line Vl), i.e., thermal expansivity is higher in elastomers. 

As the chain mobility increases (when T> Tg), the polymer expands because of the 

expansion of free volume holes. In this state, because of the higher mobility of the chains, 

the free volume holes in the polymer is dynamic in nature, i.e. it is constantly getting 

redistributed. Whereas, as the polymer is cooled down to a temperature below glass 

transition temperature (T<Tg), the long-range and the segmental mobility of the chains 

cease, and therefore the polymer has lower thermal expansivity (glassy line Vg). In this 

nonequilibrium state, free volume holes are frozen-in or static in nature because of the 

cessation of chain motions. This different nature of free volume states (i.e. static in 

glasses compared to dynamic in elastomers) influences the way gas transport happens 

through the polymer, which is briefly discussed in chapter 5.   

1.3 Factors affecting free volume in elastomers 

 In linear polymers, i.e., liquids, according to Fox and Loshaek, free volume (or 

specific volume) is usually dictated by the molecular weight of the chains.2 That is, as the 

number of chain ends decrease (or as molecular weight increases), the free volume of a 

polymer decreases and this has been proved experimentally as well.3  
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Figure 1.1  Schematic representation of Vsp vs. temperature following the concepts of 

Simha and Boyer4. 

But the focus of this thesis is on cross-linked polymers or thermosets. For cross-

linked polymers, according to the classical Fox Loshaek equation, increasing cross-link 

density results in free volume or specific volume decrease.2 That is, replacement of van 

der Waal’s or other intermolecular interactions with covalent bonds results in a decrease 

of free volume.2 Most studies agree with Fox Loshaek theory, i.e., increasing cross-link 

density of elastomers results in a decrease of free volume.5-9 But there are a few studies 

which showed no effect10 or contradictory results (i.e., increase in free volume with 

increasing cross-link density).11 Usually, elastomers are cross-linked by cross-linking 

agents or hardeners which along with cross-link density might also change the chemical 

nature of the system. For example, the concentration of sulfur is increased in a nonpolar 



 

4 

elastomer such as polybutadiene to increase cross-link density, and this increase in sulfur 

will also change the polarity or chemical nature of the elastomer along with cross-link 

density. Polarity or chemical nature of cross-linking moieties can affect the 

intermolecular interactions, and thereby affect chain packing or free volume. Therefore, 

two parameters, i.e., cross-link density and chemical nature change are together affecting 

free volume or chain packing in most polymer systems, when cross-link density is 

changed. This results in the deviation from the model derived by Fox and Loshaek which 

relates cross-link density to free volume in polymer networks.2 In chapter 2 of this thesis, 

we describe a series of polymer elastomeric networks prepared using thiol-ene chemistry, 

where molecular weight between cross-links Mc was changed by an order of magnitude 

without changing the chemical nature across the series. By doing that, we showed that 

this system obeys the Fox and Loshaek model. Whereas, in chapter 3 through 

perfluoriantion of thiol-ene networks, we discuss the effect of intermolecular interactions 

(repulsive interactions), i.e., the effect of changing chemical nature on free volume while 

cross-link density was kept constant. Chapter 4 gives insight on the synthesis and 

properties of hybrid thiol ene networks containing perfluorinated and polyethylene glycol 

moieties, which are polar opposite to each other.   

As mentioned earlier, free volume in elastomers is dynamic in nature, but in the 

case of perfluorinated thiol-ene elastomers, we surprisingly found that the huge free 

volume pockets formed, because of the repulsive interactions, around perfluorinated 

moieties are mostly static in nature. Altogether, chapters 2-4 of this thesis will shed light 

on how parameters such as cross-link density, and altering chemical nature of networks 
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can be effectively used to tune free volume, and thereby the gas transport properties of 

elastomers.  

1.4 Factors affecting free volume in glassy networks 

 Typically, in glasses, free volume scales as a function of Tg or chain rigidity.12-15 

When the chains are made by more rigid components, chain mobility ceases at a higher 

temperature (i.e., the material will have a higher Tg), and this results in accumulation of 

higher amounts of frozen-in or static hole free volume at room temperature (or any 

temperature below Tg). In chapter 5, there is a discussion in regards to the free volume in 

glassy epoxy-amine networks having different Tg values or chain rigidity. But the major 

focus of that chapter is to understand the effect of moisture sorption on free volume in 

glassy networks.  

 It has been shown in linear polymers that, moisture sorption results in a V-shaped 

trend. That is, initially as the glassy polymer absorbs water, free volume decreases. And 

beyond a particular moisture concentration, free volume of the polymer increases. It is 

mostly accepted that the initial decrease in free volume is due to water molecules filling 

free volume holes.16-17 But the possibility of moisture induced aging is also considered as 

a cause for this decrease.18 To the best of our knowledge, we could not find any studies 

on the effect of the moisture concentration on free volume of network (or crosslinked) 

polymers. Therefore, chapter 5 dwells about a comprehensive study on the effect of 

moisture sorption on free volume, oxygen, and water vapor transport of glassy epoxy-

amine networks.  
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1.5 Gas transport through polymers 

The transport of small molecules through polymers occurring as a result of the 

difference in partial pressures on either side of the material is commonly described by the 

solution-diffusion model where small molecule gases first sorb into the material, diffuse 

across free volume holes of sufficient size and desorb on the lower pressure side. Barrer 

described this phenomenon using the equation 𝑃 = 𝐷 × 𝑆, where P is the permeability 

coefficient, D is the diffusion coefficient and S is the solubility coefficient.19  Figure 1.2 

shows a schematic of this model.  

Permeability P is a proportionality coefficient of the material that defines the 

number of gas molecules that permeate a thickness, l, across a partial pressure 

differential, Δp, at a constant flux, J. The diffusion coefficient D of the material defines 

the random walk of small molecule gases through a polymer film with the total jump 

length, l (i.e film thickness), and a time lag, θ. The solubility coefficient S is Henry’s law 

constant for a given gas-polymer pair describing the amount of gas sorbed, C, into a 

polymer at a given external pressure, p.  

𝑃 =
𝐽∙𝑙

𝛥𝑝
  𝐷 =

𝑙2

6∙𝜃
 𝑆 =

𝐶

𝑝
  (3) 

In amorphous polymers, the diffusion process of light or small gases is considered 

to be a random walk of jumps between free volume elements of sufficient size at a given 

distance apart. 
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Figure 1.2  Schematic of the solution-diffusion model  

1.6 The relationship between gas transport and free volume in polymers 

Typically, gas diffusivity is related to free volume in the material by Cohen 

Turnbull model1 which is written as follows:20-24 

𝐷 = 𝐷ℎ𝑒(
−𝐵ℎ

ℎ
)
   (4) 

Where D is gas diffusivity, h is the fractional free volume of the material. Dh, and Bh are 

parameters which depend on penetrant gas. Therefore according to equation 4, the 

logarithm of gas diffusivity should change linearly as a function of 1/free volume 

according to equation 4, and it is well known that elastomers do obey this relationship.25 

In chapter 2, we show that the family of elastomers having a broad range of cross-link 

density did obey this model. But, the perfluorinated thiol-ene networks discussed in 

chapter 3 and alkylated thiol-ene networks discussed in a previous manuscript26 from our 

lab shows deviation from Cohen Turnbull model. This deviation is explained through the 

static nature of free volume pockets around the perfluorinated and alkylated moieties. 

Because of the static nature, these free volume holes cannot be redistributed and thereby 

results in lower gas diffusivity values than what it is supposed to be.   
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 Glassy polymers typically show good correlation between the free volume hole 

size and gas solubility.27-28 In chapter 5, we discuss the complex effect that water sorption 

has on free volume and thereby, gas transport properties in epoxy amine networks, and in 

particular on glassy epoxy amine networks. 

1.7 Thiol-ene Chemistry 

Thiol-ene reactions fall under Sharpless’ description of click chemistry.29-31 Click 

chemistry is the category wherein selective, highly efficient, modular, and orthogonal 

reactions that give no by-products can be found.  Thiol-ene reactions occur under mild 

conditions and produce nearly 100% yields, which allows for the development and study 

of various network systems without intense chemical synthesis or purification methods. 

Also, thiol-ene reactions require no solvents, can be performed in air and at room 

temperature. 

 

Figure 1.3 Mechanism of thiol-ene reactions 

The UV initiated radical addition of a thiol to a carbon-carbon double bond, 

known as a thiol-ene reaction, has seen a revival in research in recent years.30, 32-33  Figure 
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1.3 shows the mechanism of reaction between any thiol and an ene during UV 

polymerization. The key step in this reaction is the chain transfer from carbon-centered 

radical to thiyl radical via abstraction of hydrogen from thiol. The benefits of this 

reaction come from the radical step-growth nature of this polymerization. Contrary to 

oxygen inhibition in acrylates, where peroxy radicals cannot add to a double bond, in 

thiol-ene systems, peroxy radicals are able to extract hydrogen radicals from thiol 

moieties, allowing for the continuation of the polymerization. Also, thiol-ene chemistry 

produces more uniform networks with better control over cross-link density, which was 

taken advantage of for the preparation of a family of networks having a broad range of 

cross-link density described in chapter 2. Another biggest advantage of thiol-ene 

chemistry is the modularity, as there are a lot of thiol and ene functional monomers that 

are available commercially and also the monomers can be further modified to incorporate 

different functionalities.  

The reaction between acrylate and thiol via thio Michael addition allows for the 

expansion of thiol monomer toolbox. With the wide variety of monoacrylates available, 

different functionalities can be incorporated into the thiol-ene networks via the 

preparation of modified thiol monomers using the aforementioned thio Michael addition, 

which can significantly impact the intermolecular interaction within the network. Our 

group has previously shown this through the use of variety of different functional 

acrylates having widely different polarities, which were successfully incorporated into 

thiol-ene network scaffold.26, 34-35 In chapters 3 and 4, this method was utilized in creating 

perfluorinated and PEG modified thiol monomers to create perfluorinated and hybrid 

thiol-ene networks.     
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1.8 Pressure-Volume-Temperature High Pressure Dilatometry (PVT) 

Zoller developed a high pressure mercury dilatometer specifically for polymeric 

materials where mercury is mostly used as the confining fluid.36 This dilatometer 

measures the volume change of a polymer as a function of pressure and temperature. The 

resulting data can be used for calculating fundamental thermodynamic parameters of 

polymers such as coefficient of thermal expansion, compressibility, bulk modulus, and 

internal pressure. Figure 1.4 shows an example of special volume (Vsp) data collected 

from a standard isothermal run at pressures from 10 MPa to 140 MPa and in the 

temperature range of 30 °C to 150 °C. Gnomix software using Tait extrapolation then 

gives data extrapolated to 0.1 MPa. Vsp data obtained from this instrument is accurate to 

within ± 0.0015 cm³/g.36 

 

Figure 1.4 Example of PVT data obtained from Gnomix dilatometer.  
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This sample is D1E00 discussed in chapter 2. Dotted lines are S-S eos fits of the data 

PVT data is typically fit using Simha Somcynsky equations of state (S-S eos)37 to 

obtain the fractional free volume and a few other important molecular parameters of 

polymers. The equation of state is described in greater detail in chapter 2.  

1.9 Positron Annihilation Lifetime Spectroscopy (PALS) 

Positron annihilation lifetime spectroscopy is a technique that can directly probe 

the free volume elements in a polymer sample. The radioactive decay of 22Na (source) 

results in a gamma quantum of energy 1.28 MeV and a positron, e+.  The gamma quanta 

are detected by a BaF2 equipped photomultiplier tube (PMT) assembly tuned with a 

constant fraction discriminator (CFD) and is used to signify the “birth” of o-Ps.38 In a 

polymer sample, positron couples with an electron to form an ortho-Positronium species 

which has a radius close to that of a hydrogen atom, 0.529 Å. In a vacuum, o-Ps has an 

intrinsic lifetime of 142 ns but in condensed matter, such as polymers, the lifetime is 

reduced to a few nanoseconds or lower. Upon the “death” of o-Ps, caused by a pick-off of 

the positron by an electron in the surrounding medium, two gamma quanta of energy 

0.511 MeV are emitted and that is detected by another tuned PMT assembly. The time 

between these “birth” and “death” events is recorded using a time-to-amplitude converter 

(TAC) and compiled using a multi-channel analyzer (MCA). The frequency of these 

lifetime events is plotted as counts vs. lifetime as shown in Figure 1.5. Typical spectra are 

collected over one hour and the instrument is tuned to collect greater than 106 counts over 

that period of time. Figure 1.6 shows a typical PALS setup where the photomultipliers are 

aligned to the sample chamber and the figure also shows a general schematic of the fast-

fast coincidence system.  
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Figure 1.5  Typical PALS spectrum of the frequency of an event vs.. the lifetime of that 

event. 

Discs having a diameter of 1 cm are prepared for this analysis. The minimum 

sample thickness has to be at least 1 mm to ensure all Ps are annihilated within the 

polymer sample and not in the surrounding media. Two such disks are prepared. For thin 

films, disks can be stacked together to form 1 mm in thickness and then wrapped using 

aluminum foil. A foil-wrapped 22Na source packet is sandwiched between the two sample 

disks, and the sample source assembly is held together by a non-adhesive Teflon tape. 

The sample source assembly is then placed in the sample chamber, between the PMTs as 

shown in Figure 1.6. 

 

Figure 1.6 Schematic of a typical PALS instrument setup where temperature-controlled 

sample chamber is utilized for the tests.  

The schematic on the right shows the different components of a typical PALS spectrometer. 
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A typical PALS spectrum includes the lifetime contributions of three annihilation 

events: the short-lived para-Positronium annihilation, free positron annihilation, and the 

long-lived ortho-Positronium annihilation. The deconvolution of the three lifetimes from 

a spectrum is performed using PATFIT-88 software39 which outputs the average lifetime 

and relative fraction of positrons that annihilate from each of these Ps events. The 

resulting lifetimes (τ1, τ2, and τ3) and intensities (I1, I2, and I3) are obtained from the 

software. Since the first two annihilation events occur at lifetimes much shorter than the 

long-lived o-Ps annihilation, polymer data analysis only focuses on the o-Ps lifetime and 

intensity, τ3 and I3. Eldrup and Tao correlated τ3 with void volumes in zeolite membranes 

with the assumption that the voids are spherical.40 The radius of a free volume element, 

R, can be obtained from the experimentally determined τ3 using eq 5. 

𝜏3 =
1

2
[1 −

𝑅

𝑅𝑜
+

1

2𝜋
sin (

2𝜋𝑅

𝑅𝑜
)]

−1

  (5) 

 In chapter 5, the effect of moisture sorption on free volume is discussed. 

To study that accurately, moisture desorption or adsorption should not happen during the 

testing of a moisture sorbed sample. To address that issue, a novel PALS humidity 

chamber was designed and fabricated in-house, and chapter 5 discusses the methodology 

of humidity control within that chamber.   

1.10 Constant Volume Variable Pressure (CVVP) instrument 

The transport phenomena of light gases through polymers can be studied using 

various techniques, CVVP is one among them. The constant volume variable pressure 

(CVVP), or diffusion lag technique allows for the determination of all three transport 

properties, i.e., P, D, and S, from one single experiment.19, 41 In this test high pressure gas 

is applied to the upstream side of a polymeric film. The desorbed gas is collected in a 
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downstream vessel which has a calibrated volume. The downstream pressure increases as 

a function of time and is recorded using a differential pressure transducer where the 

reference pressure is a high vacuum. Figure 1.7 shows a typical CVVP data collected for 

a polymer film. First the gas sorbs into the upstream surface, then it diffuses through and 

desorbs on the downstream side of the film. The pressure in the downstream slowly 

increases until a steady state pressure increase versus time, dp1/dt, is achieved. Steady-

state pressure vs time is fit using first order linear regression. The permeability 

coefficient P is then calculated using: 

𝑃 =
𝑉𝑑𝑙

𝑝2𝐴𝑅𝑇
[(

𝑑𝑝1

𝑑𝑡
)

𝑠𝑠
− (

𝑑𝑝1

𝑑𝑡
)

𝑙𝑒𝑎𝑘
]  (6) 

where Vd is the downstream volume, l is the film thickness, A is the film area exposed to 

the permeate gas, R is the gas constant, and T is the absolute temperature.41 The linear 

extrapolation of the steady state pressure to x-axis will give time lag, θ, which is then 

used to calculate the diffusion coefficient according to Equation 2. Applying the solution-

diffusion model, the solubility of the gas can be determined using S = P/D. 
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Figure 1.7  A standard downstream and upstream pressures as a function of time 

collected during a CVVP test. 

Figure 1.8 shows a schematic of the instrument used in our lab which is based on Pye’s 

description of the instrument.41 In this experimental setup, there are two sample cells to 

allow for the testing of two samples simultaneously. Samples are typically degased 

overnight or for greater than 12 hours.  

 

Figure 1.8 Schematic of a constant volume variable pressure apparatus. 
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1.11 Summary 

Therefore, based on the background, the objectives of this research were devised 

as follows: 

• To quantify free volume in a family of networks having a broad range of 

cross-link density using thiol-ene chemistry and to check if the networks 

obey Fox Loshaek model (Chapter 2). 

• To synthesize a series of perfluorinated thiol-ene networks containing 

varying lengths of the perfluorinated dangling moiety, and therefore study 

the effect of repulsive intermolecular interactions on free volume and gas 

transport properties of networks (Chapter 3). 

• To synthesize hybrid networks containing perfluorinated and PEG 

dangling moieties, and to study the effect of intermolecular interactions on 

free volume and gas transport properties (Chapter 4).  

• To study the effect of moisture sorption on free volume, oxygen, and 

water vapor transport of epoxy-amine networks (Chapter 5).    
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CHAPTER II - PROBING FREE VOLUME IN MODEL PEG CONTAINING THIOL-

ENE NETWORKS: THE EFFECT OF CROSSLINK DENSITY 

2.1 Abstract 

A family of PEG based elastomeric networks having a broad range of molecular 

weight between cross-links Mc was produced by gradually decreasing the ratio of 

trifunctional to bifunctional thiol monomers, and curing with a bifunctional ene monomer 

while maintaining 1:1 thiol:ene stoichiometry. Dielectric spectroscopy studies revealed 

similar dielectric permittivity values for the networks, which indicated uniformity in 

chemical nature across the series. High pressure dilatometry studies were performed to 

study the effect of temperature and pressure on the specific volume of the networks (PVT 

analysis). The Simha-Somcynsky equation of state theory was used to fit the PVT data of 

the networks and to extract the fractional free volume of the networks. The fractional free 

volume of the networks changed linearly as a function of cross-link density, which agrees 

with the Fox and Loshaek theory.  Average free volume hole size of the networks probed 

using positron annihilation lifetime spectroscopy, also changed linearly as a function of 

cross-link density. A free volume based model was developed to describe the gas 

diffusivity trends of the networks as a function of cross-link density. 

2.2 Introduction 

 Polymer membranes offer several important advantages, i.e., lower energy 

consumption and environmental footprint, over more traditional gas separation methods 

such as distillation and pressure swing adsorption.1-3 In the gas separation industry, 

carbon dioxide separation from other important light gases such as methane, nitrogen, 

and hydrogen has been an important domain for natural gas enrichment, flue gas capture, 
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hydrogen purification industries respectively.4-6  Over the last few years, a considerable 

amount of research has been carried out towards the development of polymer membranes 

for CO2 separation.7-11 It is well known that the addition of poly(ethylene glycol) (PEG) 

units improves the CO2 selectivity of the membranes, because of the Lewis acid-base 

type interaction between the PEG units and CO2.
7-8, 11  

Recently, our group developed and studied the gas transport and gas selectivity of 

a series of elastomeric networks containing PEG units, which were synthesized using 

thiol-ene chemistry.8 In these networks, PEG content was increased by increasing the 

ratio of a PEG containing dithiol to a trithiol crosslinker, which were then UV cured with 

a PEG containing diene, while maintaining 1:1 thiol:ene stoichiometry (Figure 2.1). This 

method produced a series of networks, in which increases in PEG content led to 

simultaneous increases in molecular weight between cross-links (Mc). The experimental 

gas diffusivities of these networks showed outstanding dependence on Mc, which was 

hypothesized as a free volume effect. A free volume based model was developed to 

describe the gas diffusivities of these networks as a function of their Mc, assuming that 

the system obeyed Fox Loshaek model.8  

 Fox and Loshaek studied the effect of cross-link density on changes in specific 

volume and glass transition temperature. According to their model, the specific volume of 

the networks should linearly decrease and glass transition temperature should linearly 

increase with cross-link density. But if the changes in cross-link density also cause 

simultaneous changes in chemical nature (or polarity), the linearity between the 

aforementioned parameters gets affected.12 There have been quite a few studies, in the 

past, on the effect of cross-link density on either free volume or gas transport in polymer 
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networks.13-19 As expected, most of these studies showed that decreases in cross-link 

density led to increases in free volume or gas diffusivity (or permeability), but there were 

very few attempts to show if the system obeys the Fox and Loshaek model.17 This might 

be because, changes in cross-link density, in most cases, causes simultaneous changes in 

chemical nature (or polarity). For example, if the amounts of polar cross-linking agents 

like sulfur, isocyanate or peroxides etc. are varied to change the cross-link density of 

predominantly hydrocarbon networks, it can dramatically affect the chemical nature as 

well, alongside the cross-link density. The chemical nature or polarity can also affect the 

chain packing and free volume. Thereby, the linear relationship between free volume and 

cross-link density can get affected, as mentioned earlier and the system might not obey 

the Fox and Loshaek model.  In some cases, changes in cross-link density are made by 

varying the ratio of a difunctional monomer to a  monofunctional monomer.7, 20-22 In such 

cases, apart from cross-link density, the chain ends of the mono-functional monomer will 

also affect the free volume.12 Also, networks synthesized through step growth or chain 

growth cross-linking produces heterogeneous networks. Thus, the task of studying the 

effect of cross-link density alone on free volume becomes arduous.        

In the PEG based thiol-ene networks, though Mc was changed by an order of 

magnitude, we assumed that the chemical nature (or polarity) remained uniform across 

the entire series.8 Also, it is well known that thiol-ene chemistry produces more uniform 

networks when compared to the step growth or chain growth cross-linking.23-25 Owing to 

the uniformity and chemical similarity of the networks, it was hypothesized that these 

PEG based thiol-ene networks will obey Fox and Loshaek model, and therefore the 

diffusivity trends were excellently modeled as a function of Mc (or cross-link density), 
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but free volume parameters were not quantified in the previous paper.8 Thus, the goal of 

this work was to quantify the free volume parameters of the PEG based thiol-ene 

networks and to check if the system obeys the Fox and Loshaek model, as hypothesized 

in the previous paper.  

2.3 Experimental  

2.3.1 Materials 

Monomers triethylene glycol divinyl ether (TEGDVE), 2,2′- 

(ethylenedioxy)diethanethiol (EDDT) and photo-initiator 2,2-dimethoxy-2-

phenylacetophenone (DMPA) were obtained from Aldrich. Trithiol cross-linker 

trimethylolpropanetri(3- mercaptopropionate) (3T) was provided by Bruno Bock. All 

materials were used as received and their chemical structures are shown in Figure 2.1.         

2.3.2 Sample preparation 

 The recipes used for sample preparation are shown in Table 2.1. The amounts of 

bifunctional thiol (EDDT) and trifunctional cross-linker thiol (3T) were varied to change 

the concentration of cross-links in the networks while maintaining 1:1 thol:ene 

stoichiometry. Films were prepared by UV curing using the procedure shown elsewhere.8 

Monomers were taken in a vial in accordance with the recipes shown in Table 2.1 along 

with 1wt% DMPA photoinitiator for preparing the samples. The mixtures were sonicated 

for 10 min at room temperature and then were poured onto the glass plates, where they 

were sandwiched by placing another glass plate on top. Sample thicknesses of around 0.5 

mm were achieved by placing spacers in between the glass plates. Glass plates with the 

samples were then placed under the UV light for 4 min to cure the samples, where the 

plates were flipped after 1 min. The membranes were then removed from the glass plates 
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and checked for homogeneity, clarity, and bubbles. As shown in the previous work, 

theoretical molecular weight between cross-links, Mc, was calculated assuming 1:1 

thiol:ene stoichiometry of the reactants used in a homogeneous, crystalline lattice-like 

structure having tri-functional junction points.8 Table 2.1 shows the broad range of Mc 

achieved in this system, the values of which will be used in the results and discussion 

section to compare the volumetric and transport properties of this system as a function of 

their cross-link density.               

2.3.3 Characterization 

 The bulk density of the film samples was calculated via the Archimedes principle, 

using an analytical balance and the values are shown in Table 2.1.     

 Changes in specific volume with temperature and pressure were measured using 

the Gnomix pressure-volume-temperature (PVT) dilatometer,26 where mercury was used 

as the confining liquid in the sample cell for the experiments. Measurements were 

conducted in isothermal mode, where the pressure was ramped from 10 MPa to 140 MPa 

at different temperatures starting from 30° C to 150° C with a step increment of 5° C. The 

instrument measures changes in specific volume with an accuracy of ±0.0002 cc/g. The 

Gnomix software uses Tait extrapolation to calculate specific volume values at 

atmospheric pressure. Then using Simha-Somcynsky lattice hole theory, changes in 

fractional free volume with temperature and pressure were calculated.27-28      

 Positron Annihilation Lifetime Spectroscopy (PALS) analysis was used to probe 

the free volume directly. In this technique, foil wrapped positron source, 30 μCi 22Na, is 

sandwiched between two polymer discs having dimensions of 1 cm diameter and 1 mm 

thickness. The sample source assembly is placed between two photomultiplier tubes 
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(PMT). PMTs are equipped with BaF2 γ-radiation sensitive scintillators and are tuned in a 

way that one PMT senses γ-photons associated with positron birth, and the other PMT its 

annihilation. The lifetimes of positrons are then compiled using a multi-channel analyzer, 

with a time resolution of 290 ps.  

Positron emitted from the source gets thermalized inside the material to form 

positronium. A positronium in which the spins of both the electron and the positron is in 

the same direction is called an ortho-positronium (o-Ps). Since o-Ps is easily polarizable 

it prefers to localize in the low electron density regions i.e. free volume holes. The o-Ps 

gets annihilated when it gets picked off by an electron of opposite spin from the material, 

and this is called a “pick-off” annihilation. Therefore, the lifetime of the o-Ps depends on 

the electron density of the material or the physical size of the hole. Tao developed a semi-

empirical model which relates the radius of the free volume hole R in the material to the 

o-Ps lifetime τ3,
29 which can be written in the form shown below:         

𝜏3 = 0.5 [1 −
𝑅

𝑅0+𝑅
+

1

2𝜋
sin (

2𝜋𝑅

𝑅0+𝑅
)]

−1

 𝑛𝑠       (1) 

Where R0 = 0.1656 nm, is the empirically derived electron layer thickness.29 Assuming a 

spherical hole, the average free volume hole size <vh>  was then calculated from the 

radius, < 𝑣ℎ > =
4

3
𝜋𝑅3.  

 PALS measurements were carried out under vacuum, for a temperature range 

from -40° C to 100° C with a step size of 5° C. At each temperature, spectrum was 

collected for an hour to obtain more than 106 incidences using Ortec Positron Lifetime 

System (Advanced Measurement Technology, Oak Ridge, TN), and the temperature 

sweep was performed three times to obtain the average and the standard deviation of free 
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volume hole sizes across temperatures. The PALS spectra were then fit and deconvoluted 

to obtain the lifetime of the long-lived o-Ps species, τ3, using the PATFIT-88 software.30  

 Novocontrol GmbH Concept 80 Broadband Dielectric Spectrometer was used to 

collect the dielectric spectra of the networks. The spectra were collected over the 

frequency range of 0.1 Hz – 3 MHz at room temperature (23° C). The sample was placed 

between two stainless steel discs having a diameter of 2 cm. Prior to the measurement, 

the sample-electrode assembly was conditioned in a dry nitrogen environment for 24 

hours.    

The permeability of the networks for different gases was measured by a custom 

built constant volume variable pressure (manometric) device which is described 

elsewhere by our group.9 The permeability data of the networks to the gases CO2, H2, O2, 

N2, and CH4 was presented in the previous paper.8 In this work, we additionally measured 

the permeability to SF6 gas. Permeability, diffusivity, and solubility of membranes to all 

the above-mentioned gases were calculated as shown in our previous work.8 Sample cell 

used for gas transport measurements were maintained at a constant temperature of 23° C, 

and a high vacuum was used to degas the samples for 24 hours prior to the 

measurements. For the measurements, the upstream pressure was maintained at ~3 atm, 

and the change in downstream pressure was monitored as a function of time. Downstream 

pressure vs time curves was plotted for all the samples and they showed a typical Fickian 

behavior. Slope of the steady-state data gives dp/dt, Vd is the downstream volume, l is the 

membrane thickness, p is the applied upstream pressure, A is the testing area, R is the 

universal gas constant and T is the temperature, and substituting all these values in eq 6 

gave the permeability, P, of the membranes to the gases, as shown below:  
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𝑃 =  
𝑉𝑑𝑙

𝑝𝐴𝑅𝑇

𝑑𝑝

𝑑𝑡
          (2) 

The extrapolation of the steady state slope to x-axis gives the time lag values, tL, from 

which the diffusivity of the membranes, D, as follows:  

𝐷 =  
𝑙2

6𝑡𝐿
          (3) 

                

 

Figure 2.1 Chemicals used for the synthesis and schematic of networks 
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Table 2.1 Formulation for the networks a 

sample parts 

EDDT 

parts 

3T 

parts 

TEGDVE 

theoretical Mc 

(g/mol) 

density 

(g/cc) 1 D1E00 0 67 100 467 1.205 

2 D1E20 20 53 100 564 1.205 

3 D1E40 40 40 100 724 1.19 

4 D1E60 60 26.7 100 1040 1.185 

5 D1E80 80 13.3 100 2010 1.173 

6 D1E90 90 6.7 100 3930 1.165 

a ”parts” indicate relative molar quantities of each monomer.  
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Figure 2.2 Specific Volume Vsp as a function of temperature.  

Closed symbols P = 0.1 MPa, open symbols P = 140 MPa. 

2.4 Results and discussion 

2.4.1 PVT analysis  

 Figures 2.2 and 2.3 show thermal expansion and compression respectively of the 

networks obtained from PVT experiments. Vsp vs. T data shows that there were no 

transitions within the studied range of temperatures and pressures, as the networks have a 
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glass transition temperature of -42° C and lower as showed in the previous 

communication.8 From the data, it was clear that Vsp increased gradually with increasing 

Mc. From the PVT data, parameters such coefficient of thermal expansivity α, 

compressibility β, and internal pressure Pi were calculated using the equations (4-6) and 

the values are reported in Table 2.2.  

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
      (4) 

𝛽 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
  (5) 

𝑃𝑖 = 𝑇 (
𝛼

𝛽
) − 𝑝 (6) 

 The slope from the Vsp vs. T data are shown in Figure 2.2 was used to calculate α 

shown in Table 2.2. Vsp vs. P data are shown in Figure 2.3 was fit using a second order 

polynomial equation and the derivative of that was taken in order to obtain β shown in 

Table 2.2 using equation 5. Using α and β, internal pressure Pi was calculated using 

equation 6.  
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Figure 2.3 Specific volume Vsp as a function of pressure. Closed symbols T = 27.5° C, 

open symbols T = 146° C.  

Table 2.2 Network parameters obtained from PVT experiments. α at 0.1 MPa, β and Pi at 

27.5 °C and 0.1 MPa.  

sample Mc (g/mol)  α (° C -1)  β (MPa-1) 
Pi 

(MPa) 

1 467 6.32E-04 3.58E-04 529 

2 564 6.40E-04 3.69E-04 521 

3 724 6.45E-04 3.58E-04 542 

4 1040 6.56E-04 3.70E-04 532 

5 2010 6.64E-04 3.82E-04 522 

6 3930 6.65E-04 3.86E-04 518 
 

In order to quantify free volume, PVT data was analyzed using Simha-Somcynsky 

equation-of-state (S-S eos) theory.27, 31The S-S eos model was used to fit the obtained 

PVT data of the networks. According to this model, a polymer chain is divided into s 

equal segments called s-mers, where each s-mer occupies a lattice cell. 𝑠𝑀𝑠 = 𝑛𝑀𝑟𝑒𝑝 =
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𝑀𝑛, where Ms is the molar mass of the s-mer, Mrep is the molar mass of the monomer 

repeat unit, n is the degree of polymerization and Mn is the number average molar mass 

of the polymer chain. s-mers occupy a fraction of the lattice which is represented by y 

and the remaining vacant space is called the hole fraction (or fractional free volume), h = 

1-y. The S-S theory assumes random mixing and utilizes the Flory-Huggins approach for 

calculating the configurational entropy. S-S eos constitutes of two coupled equations (eq 

7 and 8) which was solved simultaneously.  

(�̃��̃�)/�̃� = [1 − 𝑦 (2
1

2𝑦�̃�)
−

1

3
]

−1

+ 𝑦 �̃�⁄ [2.002(𝑦�̃�)
−4

− 2.409(y�̃�)
−2

]            (7) 

3𝑐 [(2−
1

6y(1 𝑦�̃�⁄ )
1

3 − 1 3⁄ ) (1 − 2−
1

6y(1 𝑦�̃�⁄ )
1

3)⁄ −

𝑦(1 𝑦�̃�⁄ )
2

(3.033(1 𝑦�̃�⁄ )
2

− 2.409) 6�̃�⁄ ] + (1 − 𝑠) − 𝑠 ln( 1 − 𝑦) 𝑦⁄ = 0         (8)   

Where  �̃� = 𝑃/𝑃∗,  �̃� = 𝑉/𝑉∗, and �̃� = 𝑇/𝑇∗ are the reduced variables, and P*, V*, and 

T* are the scaling parameters. The scaling parameters are defined as shown in equation 9, 

where R is the gas constant, zq is the number of interchain contacts for a lattice cell with 

a coordination number z, 3c is the external volume-dependent degrees of freedom, ϵ* and 

v* are Lennard-Jones interaction parameters: maximum attraction energy and segmental 

repulsion volume respectively. For long polymer chains s → ∞, so it is typically assumed 

that 3c/s = 1. 

𝑃∗ = 𝑧𝑞𝜖∗ 𝑠𝜐∗⁄

𝑇∗ = 𝑧𝑞𝜖∗ 𝑅𝑐⁄

𝑉∗ = 𝜐∗ 𝑀𝑠⁄
} (𝑃∗𝑉∗𝑀𝑠)/𝑇∗ = 𝑅𝑐/𝑠 ⇒ 𝑅/3     (9) 

From r2 values shown in Table 2.3, it can be said that the S-S eos model gave 

good fits to the PVT data. Previously, S-S eos model has been successfully applied for 
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numerous linear polymer melts, blends, and nanocomposites.32-37  Rodgers reviewed six 

equations of state models by fitting them to the PVT data of 56 polymers available in the 

literature. He found that the SS eos was one of the two models, which fit the PVT data of 

polymers in equilibrium, for a wide range of temperatures and pressures, outstandingly 

well,32 and thus it shows the validity of using S-S eos model for these PEG thiol-ene 

networks.  

Table 2.3 shows the S-S eos fitting parameters for the PEG based thiol-ene 

networks. Interestingly, the change in cross-link density did not affect the size of the 

lattice cells, i.e., the lattice cell parameters: volume of a lattice cell v* and molecular 

weight of a s-mer Ms (which occupies a lattice cell) remained almost constant as can be 

seen from Table 2.3. However, the fraction of unoccupied lattice cells (or fractional free 

volume) h changed linearly with the crosslink density (i.e. 1/Mc) as shown in Table 2.3 

and Figures 2.7. Analogous results have been previously shown in linear systems, where 

the changes in molecular weight of polystyrene did not have much of an effect on v* and 

Ms,
38 but they had a significant effect on fractional free volume.39  Thus, the S-S eos 

analysis of these PEG based thiol-ene networks clearly showed that the changing cross-

link density only affected the free volume, in this lattice model of polymer networks.  

Comparable S-S lattice cell parameters across the broad range of cross-link 

density further indicate the uniformity in chemical nature across the entire series. To get 

another estimate of the polarity of networks, permittivity was quantified using dielectric 

analysis. It is well known that the polarity or chemical nature of the material has a strong 

influence on permittivity.40 Figure 2.4 clearly shows that changing cross-link density did 

not influence storage permittivity. Also, the internal pressure values of the networks were 
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constant across the series (Table 2). Internal pressure describes the changes in internal 

energy of the system in the event of a volume change, and it is a measure of cohesive 

energy or intermolecular interactions within a material. Constant Pi values further prove 

the similarity of chemical nature across the series. Figure 2.1 shows the building blocks 

used for the synthesis of the networks and Table 2.1 shows their molar amounts. The 

molar amounts of the ene component TEGDVE was kept constant across the series. To 

decrease cross-link density, the ratio of molar amounts of trifunctional thiol 3T to 

bifunctional thiol EDDT was decreased. Whereas, to maintain 1:1 thiol:ene 

stoichiometry, if 3T was decreased by two units, EDDT was increased by three units.  3T 

has three ester groups and a hydrocarbon tail, whereas EDDT is made up of two ether 

groups. Therefore, when cross-link density was decreased, for every ester group that was 

removed, an ether group was added. Ester group is comparatively more polar than the 

ether group.41 But the decrease in cross-link density also led to a decrease in the molar 

amounts of non-polar hydrocarbon content (contribution from the hydrocarbon tail of 

3T). Therefore, ester content and hydrocarbon content were decreased, whereas ether 

content was increased because of decreasing cross-link density. This compensation effect 

led to the uniformity of chemical nature across the entire series.  
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Table 2.3 Simha-Somcynsky EOS fit parameters 

sample Mc P*(bar) V*(cc/g) T*(K) Ms v*(cc/mol) ε*(kJ/mol) ha  r2 

D1E00 467 10418 0.83029 10845.2 34.74659 28.84974 3.005566 0.05257 0.9994536 

D1E20 564 10230 0.827991 10737.7 35.13167 29.08871 2.975775 0.05407 0.9998156 

D1E40 724 10281.7 0.838805 10696.9 34.37326 28.83246 2.964468 0.05458 0.9996527 

D1E60 1040 10071.6 0.842383 10581.3 34.56366 29.11584 2.932431 0.05634 0.9995829 

D1E80 2010 9983.75 0.848619 10489.6 34.31162 29.11749 2.907018 0.05783 0.9997821 

D1E90 3930 9667.97 0.854985 10515 35.25366 30.14135 2.914057 0.05737 0.9998030 

a h data estimated at 27.5° C and 0.1 MPa is shown in the table 

Figure 2.5 shows the changes in fractional free volume with temperature and 

pressure for the highest cross-link density system and the lowest cross-link density 

system. The specific free volume Vf of the networks can be calculated as 𝑉𝑓 = ℎ ×  𝑉𝑠𝑝. 

Figure 2.6 shows for different cross-link densities, how the specific free volume changed 

with the temperature. It can be seen that, increases in Mc led to free volume increases, 

which is in line with what was hypothesized for this system in the previous paper.8 At 

27.5° C and 0 MPa, Vf increased by 13%, when Mc was increased from 467 g/mol to 3930 

g/mol, which shows the significant effect cross-link density has on free volume (which in 

turn would have a significant effect on transport and mechanical properties).  



 

37 

0.001 100 1E7

10
1

10
2

10
3

10
4

10
5

D1E60

D1E90

D1E40

ε'

Frequency (Hz)

D1E00

 

Figure 2.4 Dielectric storage ε’ as a function of frequency measured at room temperature 

(23° C). 

 

 

Figure 2.5 Fractional free volume vs. temperature at different pressures for (a) D1E00 

and (b) D1E90. 
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Figure 2.6 Specific free volume Vf as a function of temperature for all the networks. 

 Fox and Loshaek derived an equation12 which relates the degree of cross-linking 

to the specific volume of a polymer. The premise behind that derivation is that, cross-

linking involves replacement of van der Waals’ bonds by shorter and more compact 

covalent bonds, which causes decreases in specific volume v. The equation is written as 

follows12 

𝑣(𝜌, 𝑀) = 𝑣0(∞) + 𝛼∞𝑇 +
𝑚(∆𝛼𝑇+∆𝑣0)

𝑀
− [∆𝛼𝑥𝑇 + ∆𝑣0(𝑥)]𝑚𝑥𝜌   (10) 

Where, ρ is the number of cross-links per gram, M is the molecular weight of the polymer 

with no cross-links, v0(∞), α∞ is the specific volume at 0 K, thermal expansivity 

respectively of the polymer having infinite length, T is temperature, m is the molecular 

weight of the repeat unit of the chain, Δα = αl - α∞, Δv0 = v0(l) – v0(∞), v0(l), αl is the 

specific volume at 0 K, thermal expansivity respectively of the monomer. 
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∆𝛼𝑥 = 𝛼𝑥 − 𝛼∞; 𝛼𝑥 =
𝑑𝑣(𝑥)

𝑑𝑇
; 𝑣(𝑥) =

𝑉𝑥

𝑚𝑥
; ∆𝑣0(𝑥) = 𝑣0(𝑥)- 𝑣0(∞)    (11)  

Vx is the volume shrinkage caused by the introduction of each cross-link, mx is the weight 

of two atoms eliminated while forming a cross-link, and v0(x) is v(x) at 0 K. The 

simplified form of equation 10 can be written as follows 

𝑣 =  𝑣𝑙𝑝 − 𝑐𝑙𝑝𝜌          (12) 

Where, vlp is the specific volume of the linear polymer with no cross-links and clpρ is the 

reduction in specific volume caused by the introduction of cross-links.  

In practical applications, cross-linking is introduced to the polymer by the 

addition of a cross-linking agent or a hardener, whose chemical nature, in most cases, is 

vastly different from that of the chain backbone. Fox and Loshaek further modified 

equation 10 to take the chemical nature change into account for the calculation of the 

specific volume of the cross-linked polymer. Their assumption was that the polymer 

networks can be considered as a copolymer, wherein the comonomer creates the cross-

link points or junctions in the network. The modified form of specific volume equation of 

a polymer network can be written as follows.12  

𝑣(𝜌) = 𝑣0(𝑐) + 𝛼𝑐𝑇 − (∆𝛼𝑐𝑇 +
∆𝑉0

𝑚𝑐
)𝑚𝑐𝜌      (13) 

Where, v0(c), αc is the specific volume at 0 K, thermal expansivity respectively of the 

copolymer having no cross-links, which would depend on composition. Δαc = αl – αc, 

where αl is the average thermal expansivity of the monomers (dependent on 

composition), ΔV0 is the volume contraction caused by the reaction of a mole of the 

functional group in the cross-linking agent at 0 K. mc is the average molecular weight of 

the monomers (dependent on composition). Therefore, if the chemical nature of the 
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monomers is vastly different, most parameters on the right side of the equation 13 can 

change with composition (which in this case is cross-link density). Therefore, if changes 

in cross-link density also induce changes in chemical nature, the system might deviate 

from linearity according to equation 13. Equation 13 can be written in simplified form as 

follows:     

𝑣 =  𝑣𝑐𝑝 − 𝑐𝑐𝑝𝜌         (14) 

Where, vcp is the specific volume of the copolymer with no cross-links ccpρ is the 

reduction is specific volume caused by the introduction of cross-links. Specific volume is 

the sum of occupied volume and free volume, 𝑣 =  𝑣𝑜𝑐𝑐 + 𝑣𝑓. Therefore, the equation 14 

can be written in the following form:  

𝑣𝑓

𝑣
=

𝑣𝑣𝑝−𝑣𝑜𝑐𝑐

𝑣
−

𝑐𝑐𝑝𝜌

𝑣
         (15)  

Where, 𝑣𝑓 𝑣⁄  is the fractional free volume h of the material. Number of cross-links per 

gram is directly proportional to the reciprocal of molecular weight between cross-links, 

1/Mc. Therefore, equation 15 can be written as follows 

 ℎ = ℎ0 −
𝑐

𝑀𝑐
          (16) 

Equation 16 is similar to the equation used in previous works, where fractional 

free volume was studied as a function of cross-link density.8, 17 Fractional free volume 

obtained from S-S analysis h can be plotted as a function of cross-link density (i.e. 1/Mc) 

to check whether this system obeys the Fox and Loshaek model. The fractional free 

volume of the networks at 23°C was obtained by linear extrapolation of S-S eos 

fractional free volume-temperature data. Figure 2.6 shows that fractional free volume 

changed linearly with 1/Mc. Over the entire range of temperature and pressure conditions, 



 

41 

this was the case and the linear fits gave r2 values 0.83 or greater. At ambient conditions, 

i.e. 23° C and 0.1 MPa, the fractional free volume data fitted linearly to 1/Mc, gave Fox 

Loshaek parameters h0 = 0.0556 and c = 2.66508 g/mol and the r2 for the fit was 0.96. 

Thus, it can be validated that Fox Loshaek theory can be applied to this system, as 

hypothesized in the previous paper.8 Previously Morgan et al used 129Xe NMR peak shift 

to qualitatively obtain fractional free volume change in poly(oxypropylene) networks 

having four different Mc values. Their data showed a reasonable fit to the Fox and 

Loshaek equation but the data also showed a deviation from linearity.17 In the case of 

those networks, triiscocyante cross-linkers were used, which probably also resulted in 

chemical nature change, therefore the deviation from linearity. Whereas, in this PEG 

based thiol-ene system, changing Mc by even an order of magnitude did not result in 

changes in chemical nature, thereby the system showed the model Fox and Loshaek 

behavior.  

 The constants h0 and c were obtained from the linear fits of equation 13 for the 

entire range of temperatures and pressures studied. The constants were then studied for 

their temperature and pressure dependence.  h0 and c show a linear dependence to 

temperature (Figure 2.8(a)) as expected, and the parent equation derived by Fox and 

Loshaek12 (equation 10) shows the same. However, Fox and Loshaek did not derive an 

equation which has the effect of pressure in it. Our results showed that h0 and c have a 

non-linear pressure dependence (Figure 2.8(b)) similar to that of the free volume pressure 

dependence of these PEG thiol-ene networks (Figure 2.8(c)) and other polymers as 

well.42,43,44      
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Table 2.4 Free volume parameters and gas diffusivities of the networks at 23 °C  

sample 

theoretical 

Mc (g/mol) 

free volume 

parameters 

gas diffusivity D (cm2 s-1) 

h 

<vh> 

(Å³) 

H2
a O2

 a N2
 a CO2

 a CH4
 a SF6 

D1E00 467 0.04962 172 3E-6 3.8E-7 2.4E-7 2.2E-7 1.6E-7 2.8E-9 

D1E20 564 0.05113 175 3.2E-6 6E-7 4.7E-7 3.4E-7 2.5E-7 1.7E-8 

D1E40 724 0.05171 182 5.3E-6 7.6E-7 5E-7 5.1E-7 3.5E-7 3.7E-8 

D1E60 1040 0.05338 193 6.2E-6 8.7E-7 7E-7 5.3E-7 4.2E-7 6.2E-8 

D1E80 2010 0.05472 208 6.4E-6 1.1E-6 8.2E-7 7.9E-7 5.9E-7 9.4E-8 

D1E90 3930 0.05435 2010 6.1E-6 1.1E-6 7.2E-7 7.3E-7 5.5E-7 1.8E-7 

a Gas diffusivity values reported in the previous paper, ref 1, p 3250.   

 

Figure 2.7 Hole fraction or fractional free volume (h) as a function of 1/Mc. 

Dashed lines indicate the Fox Loshaek fits to the data. 
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Figure 2.8 Fox Loshaek parameters h0 and c as a function of temperature (a) and pressure 

(b) respectively. (c) fractional free volume of the networks D1E00, D1E90 as a function 

of pressure.   

Dashed lines indicate linear fits in figures 2.8 (a) and second order polynomial fits in figure 2.8(b) and (c).  

 

Figure 2.9 Average free volume hole size <vh> as a function of temperature for all the 

networks. 



 

44 

Dashed lines are the linear fits to the data from -35° C to -5° C. Error bars indicate one standard deviation. 
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Figure 2.10 Free volume hole size <vh> (at 23° C and -10° C) as a function of 1/Mc.  

Dashed lines indicate the Fox Loshaek fits to the data. 

 

  

Figure 2.11  (a). Ortho positronium intensity I3 (%) as a function of temperature for all 

the networks. (b). Concentration of free volume holes Nh’ as a function of Mc. Error bars 

indicate one standard deviation. 

 

 

2.4.2 PALS analysis:  

A B 
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The free volume quantity that can be directly probed using the PALS technique is 

the average free volume hole size <vh>. Figure 2.9 shows the temperature dependence of 

<vh> from -35° C to 45° C. <vh> showed linear dependence with temperature till 0° C, 

after that it started leveling off (all the networks showed this behavior, but for clarity, the 

high temperature data for only D1E90 was included in Figure 2.9). As previously stated, 

the networks used in this study have Tg values -42° C or lower, therefore at 0° C, the 

networks are well above their Tgs. The explanations for this behavior at T >> Tg that are 

available in the literature are: positronium bubble formation,45 o-Ps lifetime is 

comparable to the relaxation time of the chains. 46-47 Therefore, when T >> Tg, o-Ps 

lifetime would not give a good measure of free volume hole size, which caused the 

leveling-off behavior that is shown in Figure 2.9. Assuming linear thermal expansion of 

free volume holes, extrapolated values of <vh> can be obtained at higher temperatures 

(i.e. ≥ 0° C). For linear fits, data points for <vh> from -35° C (well into rubbery regime) 

to -5° C (beyond this temperature positron bubble effect was observed in the networks) 

was used. Figure 2.9 and Table 2.3 shows that increases in Mc led to increases in <vh>, as 

expected.  

The specific free volume can be written as the product of average free volume 

hole size and the concentration of holes: 

𝑣𝑓 =< 𝑣ℎ > ×  𝑁ℎ
′          (17) 

Where, Nh’ is the number of free volume holes per gram of the material (concentration of 

free volume holes). Combining equations 14 and 17, the following expression can be 

written: 

< 𝑣ℎ >=
𝑣𝑐𝑝−𝑣𝑜𝑐𝑐

𝑁ℎ
′ −

𝐶𝑐𝑝𝜌

𝑁ℎ
′          (18)    
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This equation can be further simplified and written as follows: 

< 𝑣ℎ > = < 𝑣ℎ >0−  
𝑐2

𝑀𝑐
        (19) 

Thus, free volume parameter computed using PALS technique, <vh>, can be 

plotted as a function of 1/Mc to check the validity of the equation 19. Figure 2.10 shows 

that <vh> also changed linearly with 1/Mc. At ambient temperature, i.e. 23° C, the 

average free volume hole size data fitted linearly to 1/Mc, gave Fox Loshaek parameters 

<vh>0 = 215.5 Å³ and c2 = 21821 Å³g/mol and the r2 for the fit was 0.97. This result 

further proves that cross-link density alone was effecting free volume changes in this 

system. According to the equation 18, if both concentration of free volume holes and 

cross-link density were changing simultaneously, the system might deviate from linearity.  

The system did maintain linearity (Figure 2.10), which means that the concentration of 

free volume holes remained constant even though Mc was changed by almost an order of 

magnitude. Previous studies have shown that ortho-positronium intensity I3 is 

proportional to the concentration of free volume holes.42, 48 Figure 2.11(a) shows that I3 

does not have any dependence on Mc and temperature, which again proves that the 

concentration of free volume holes remains constant with changes in cross-link density. 

The concentration of the free volume holes Nh’ can also be calculated by combining the 

PVT and PALS data using the formula 𝑁ℎ
′ =  

𝐸𝑟

𝑒ℎ𝑟
 .49 Where, Er is the thermal expansivity 

of the networks and ehr is the thermal expansivity of the free volume holes of the 

networks. Figure 2.11(b) further confims that degree of cross-linking had no significant 

effect on the concentration of free volume holes in this system.  
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Recently, Mansilla et al studied the effect of degree of cure on free volume in 

polybutadiene rubbers using PALS technique.50 They claimed that in one of the systems, 

the degree of curing had no effect on the free volume hole size and whereas in the other 

system the free volume hole size increased with the degree of cure (i.e. the opposite 

trend). In that study, the PALS measurements were performed at room temperature, and 

those elastomers had a glass transition temperature of -100° C or lower.50 Since the PALS 

measurements were performed at a temperature more than 120° C above the glass 

transition temperature, the networks were possibly in the bubbling regime. As previously 

discussed, when the samples are in the positron bubbling regime, accurate values of free 

volume hole sizes cannot be obtained from PALS, which is probably why different trends 

were observed in those systems. Whereas, Lin et al showed that crosslinking does not 

have any effect on free volume and gas transport in poly(ethylene glycol diacrylate) 

networks.7 This was probably because of the inhomogeneity in the networks because 

traditional chain polymerization is not known to produce homogeneous networks. In 

those networks, cross-link density was varied by gradually reducing the prepolymer 

concentration in the solution, thereby gradually increasing the intramolecular cross-

linking loops (or decreasing cross-link density) during free radical polymerization. The 

inhomogeneity of the network structure caused by the chain growth polymerization and 

intramolecular cross-linking loops most likely caused the non-dependence of free volume 

and gas transport on cross-linking.  But most previous studies show a similar trend to 

what we see with these PEG thiol-ene networks (i.e. free volume increases as cross-link 

density decreases).17-19, 51-52 However, in most of the systems chemical nature (or 

polarity) change could also have additionally affected the chain packing, and thereby the 
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free volume. In most systems, the concentration of highly polar cross-linking agents such 

as sulfur,51 amines,52 isocyanates17 etc. are changed to vary the degree of cross-linking. 

Also, unreacted chain ends, heterogeneity in network structure caused by traditional 

polymerization methods would make it an arduous task to single out the effect of cross-

linking “alone” on free volume. Whereas, in these PEG based networks, thiol-ene 

chemistry was employed and it is well established that this chemistry produces more 

uniform networks with better control over cross-link density.23-24. Furthermore, the 

similarity in chemical nature enabled in the creation of model networks to study the effect 

of cross-link density “alone” on free volume.             
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Figure 2.12 (a). Experimentally obtained free volume related parameters vs. 1/Mc. (b) 

Fractional free volume obtained by WLF method plotted vs. 1/Mc. (c) Fraction free 

volume obtained by group contribution method plotted as a function of 1/Mc. 

Figure 2.12(a) summarizes that all the experimentally free volume related 

parameters such as average free volume hole size <vh>, the coefficient of thermal 

expansivity α, compressibility β, and glass transition temperature Tg of these PEG thiol-

ene networks has a linear dependence to1/Mc.  

Fractional free volume can also be quantified from Tg using the following 

equation:53  

𝑓𝑊𝐿𝐹 = 𝑓𝑔 + ∆𝛼(𝑇 − 𝑇𝑔) (20) 

Where fg is the fractional free volume of the material at Tg and Δα is the difference in 

thermal expansion coefficients above and below Tg. Using the universal constants value 

for fg = 0.025 and Δα = 4.8 X 10-4 given by WLF, the fWLF values were calculated for the 

PEG thiol-ene networks and they showed a linear dependence to 1/Mc (Figure 2.12 (b)), 

because Tg showed a linear dependence as well.  

 Fractional free volume is also commonly calculated via group contribution 

methods and is commonly used to compare free volume in polymer networks.7, 54-55 In 

this method occupied volume is calculated via group contribution method56. The 

occupied volume can be subtracted from the specific volume of the material obtained 

from density measurements to obtain free volume, and thereby fractional free volume 

(FFV). FFV obtained via this method strangely showed no dependence on Mc. Change in 

density across the series is rather small, and because of the chemical similarity of the 

networks, occupied volume obtained from group contribution methods were similar, 

which explains why FFV did not show any dependence on Mc.  
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2.4.3 Diffusion-Mc model: 

 The previous sections showed that the effect of cross-link density on free volume 

obeys the Fox and Loshaek relationship. It is well known that increases in free volume 

lead to significant increases in gas diffusivity and the Cohen Turnbull equation21, 57-62 

relates the aforementioned parameters. The Cohen Turnbull relationship can be written as 

follows:   

𝐷 = 𝐷ℎ𝑒(
−𝐵ℎ

ℎ
)
           (21) 

Where D is gas diffusivity, h is the fractional free volume of the material. As previously 

discussed, the concentration of free volume holes remains almost constant with changes 

in cross-link density, therefore the Cohen Turnbull relationship can be modified to 

compare the effect of free volume hole size <vh> on gas diffusivity and the equation can 

be written as follows:  

 𝐷 = 𝐷𝑣ℎ𝑒
(

−𝐵𝑣ℎ
<𝑣ℎ>

)
         (22) 

Dh, Dvh, Bh, and Bvh are parameters which depend on penetrant gas.  

Gas transport analysis of the networks for CO2, H2, O2, N2, and CH4 was 

discussed in details in the previous paper8 and in addition to that, in this work, transport 

analysis of a bigger gas molecule SF6 was added. Using the CVVP instrument, the gas 

diffusivities of the networks were calculated using the equation 3 shown in the 

experimental section. Figure 2.13 shows that, when logarithms of gas diffusivities were 

plotted as a function of 1/h or 1/<vh> (extrapolated values of h and <vh> at 23°C were 
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used for the plots) linear relationships were obtained, which shows that the Cohen 

Turnbull equations 21 and 22 are valid for this system.  

Since this PEG thiol-ene system obeys both the Fox Loshaek and the Cohen 

Turnbull equations, the diffusion-Mc model that was proposed in the previous paper8 was 

validated.  Combining equations 16 and 21, 19 and 22, the diffusion-Mc equations 23 and 

24 respectively were derived. 

𝐷 =  𝐷ℎ exp (
−𝐵ℎ

ℎ0−
𝑐

𝑀𝑐

)   `      (23) 

𝐷 =  𝐷𝑣ℎ exp (
−𝐵𝑣ℎ

<𝑣ℎ>0−
𝑐2
𝑀𝑐

)        (24) 

The above diffusion-Mc equations enable to correlate the effect of molecular weight 

between cross-links (or cross-link density) directly on gas diffusivities.  Parameters Dh, 

Bh were obtained from the fits of equation 21 to the experimental data (shown in Table 

2.4), h0, c from equation 16, Dvh, Bvh from equation 22 (shown in Table 2.4), and <vh>0, 

c2 from equation 19. Figure 2.14 shows the experimental gas diffusivities of the networks 

as a function of molecular weight between cross-links. Diffusion-Mc models based on 

both the free volume quantities, fractional free volume (Figure 2.14(a)) and average free 

volume hole size (Figure 2.14(b)) described the experimental data very well for all the 

gases and the r2 values are shown in Table 2.5.      
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Figure 2.13 Logarithm of gas diffusivities as a function of 1/h (a), 1/<vh> (b). 

 Dashed lines indicate linear fits based on eq 17 (a) and eq 18 (b). 

 

Figure 2.14 Gas diffusivities as a function of Mc.  

Dashed lines are diffusivities calculated using eq 19 for (a) and eq 20 for (b). 
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Table 2.5 Cohen Turnbull fit parameters 

Gas 

Cohen Turnbull fit parameters using h 

(data in table 2.3 fit to eq 17) 

Cohen Turnbull fit parameters using <vh> 

(data in table 2.3 fit to eq 18) 

Dh Bh r2 Dvh Bvh r2 

H2 0.018076 0.43156 0.83032 0.000179 683.0424 0.77386 

O2 0.023536 0.54255 0.95281 6.527E-05 842.8186 0.85545 

N2 0.040841 0.58942 0.92433 5.424E-05 872.6351 0.75378 

CO2 0.090953 0.63744 0.93449 9.678E-05 1003.81 0.86218 

CH4 0.122819 0.669 0.97002 9.274E-05 1052.737 0.89365 

SF6 2.28 × 108 1.90886 0.90932 0.231504 2966.794 0.81724 

 

Table 2.6 The coefficient of determination of gas diffusivities and Mc based on diffusion-

Mc equations 19 and 20 

Gas r2 based on eq 19 (h)  r2 based on eq 20 (<vh>) 

H2 0.7745 0.8002 

O2 0.9366 0.9546 

N2 0.7717 0.8264 

CO2 0.9008 0.9161 

CH4 0.9233 0.9399 

SF6 0.9468 0.9601 

 

  



 

54 

2.5 Conclusions 

Free volume parameters were quantified both experimentally and using 

theoretical models in a PEG thiol-ene network series, where Mc was changed by an order 

of magnitude across the series. Fractional free volume obtained from Simha Somcynsky 

equation of state fitting of PVT data, average free volume hole size obtained from PALS 

analysis, fractional free volume obtained from WLF universal constants, changed linearly 

as a function of 1/Mc, and thereby showing that this series of networks obey Fox Loshaek 

model. The model behavior of these networks was because of the similarity in chemical 

nature across the series. Similar permittivity, obtained from dielectric spectroscopy 

analysis, and internal pressure values, obtained from PVT data, across the series shed 

light on the similarity in chemical nature. Therefore, cross-link density or molecular 

weight between cross-links was the only material factor which was affecting free volume 

in this series. Because of this model behavior, the experimental gas diffusivities of the 

networks were modeled as a function of molecular weight between cross-links. 
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2.7 Supplementary informtion 

Table 2.7 PVT data of network 1 - D1E00 

 

  

0.1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

27.5 0.8354 0.8324 0.8295 0.8265 0.8239 0.8213 0.8189 0.8165 0.8143 0.8119 0.8100 0.8079 0.8059 0.8039 0.8019

32.5 0.8379 0.8348 0.8318 0.8289 0.8263 0.8236 0.8209 0.8184 0.8161 0.8141 0.8119 0.8099 0.8078 0.8056 0.8037

37.4 0.8406 0.8373 0.8341 0.8308 0.8284 0.8255 0.8231 0.8208 0.8184 0.8160 0.8139 0.8119 0.8096 0.8076 0.8057

42.3 0.8430 0.8397 0.8366 0.8335 0.8304 0.8280 0.8253 0.8225 0.8204 0.8180 0.8160 0.8138 0.8116 0.8096 0.8076

47.1 0.8455 0.8421 0.8389 0.8359 0.8328 0.8302 0.8274 0.8250 0.8224 0.8201 0.8178 0.8157 0.8136 0.8116 0.8093

51.9 0.8480 0.8446 0.8414 0.8381 0.8352 0.8323 0.8295 0.8269 0.8245 0.8221 0.8198 0.8176 0.8154 0.8132 0.8112

56.9 0.8504 0.8469 0.8437 0.8403 0.8373 0.8344 0.8318 0.8290 0.8264 0.8241 0.8219 0.8196 0.8173 0.8151 0.8130

61.5 0.8532 0.8495 0.8461 0.8428 0.8395 0.8368 0.8338 0.8311 0.8285 0.8260 0.8237 0.8215 0.8192 0.8169 0.8148

66.7 0.8558 0.8521 0.8485 0.8452 0.8417 0.8389 0.8361 0.8333 0.8306 0.8281 0.8257 0.8234 0.8212 0.8189 0.8168

71.7 0.8583 0.8545 0.8511 0.8474 0.8443 0.8411 0.8381 0.8354 0.8326 0.8301 0.8277 0.8254 0.8230 0.8209 0.8184

76.8 0.8608 0.8570 0.8534 0.8497 0.8465 0.8433 0.8402 0.8374 0.8347 0.8322 0.8296 0.8272 0.8248 0.8225 0.8203

81.6 0.8636 0.8596 0.8557 0.8520 0.8486 0.8455 0.8425 0.8397 0.8368 0.8342 0.8316 0.8291 0.8267 0.8244 0.8221

86.7 0.8664 0.8622 0.8580 0.8544 0.8509 0.8478 0.8446 0.8416 0.8388 0.8359 0.8335 0.8310 0.8286 0.8261 0.8238

91.6 0.8688 0.8646 0.8605 0.8567 0.8533 0.8498 0.8470 0.8438 0.8409 0.8380 0.8356 0.8327 0.8303 0.8281 0.8257

96.4 0.8714 0.8671 0.8631 0.8592 0.8554 0.8520 0.8490 0.8459 0.8428 0.8399 0.8373 0.8346 0.8322 0.8298 0.8274

101.5 0.8741 0.8697 0.8655 0.8615 0.8579 0.8544 0.8510 0.8479 0.8449 0.8420 0.8392 0.8366 0.8342 0.8315 0.8292

106.4 0.8767 0.8721 0.8678 0.8637 0.8600 0.8566 0.8532 0.8501 0.8470 0.8440 0.8411 0.8385 0.8359 0.8334 0.8310

111.1 0.8796 0.8748 0.8702 0.8662 0.8624 0.8588 0.8554 0.8520 0.8491 0.8459 0.8432 0.8404 0.8377 0.8351 0.8327

116.4 0.8817 0.8771 0.8728 0.8684 0.8644 0.8609 0.8573 0.8541 0.8510 0.8480 0.8450 0.8423 0.8395 0.8370 0.8345

121.3 0.8846 0.8797 0.8752 0.8709 0.8668 0.8631 0.8597 0.8563 0.8531 0.8500 0.8470 0.8441 0.8415 0.8388 0.8362

126.3 0.8875 0.8824 0.8776 0.8733 0.8693 0.8655 0.8620 0.8585 0.8551 0.8520 0.8490 0.8461 0.8433 0.8405 0.8380

131.4 0.8900 0.8849 0.8800 0.8756 0.8714 0.8676 0.8638 0.8605 0.8570 0.8539 0.8509 0.8479 0.8450 0.8424 0.8396

136.5 0.8926 0.8874 0.8824 0.8779 0.8739 0.8700 0.8660 0.8625 0.8592 0.8560 0.8529 0.8499 0.8471 0.8442 0.8415

141.5 0.8954 0.8901 0.8849 0.8803 0.8760 0.8721 0.8684 0.8646 0.8611 0.8580 0.8547 0.8515 0.8487 0.8460 0.8431

146.6 0.8983 0.8927 0.8875 0.8827 0.8783 0.8742 0.8705 0.8669 0.8633 0.8600 0.8569 0.8534 0.8506 0.8479 0.8451

Pressure (MPa)
T (°C)
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Table 2.8 PVT data of network 2 - D1E20 

 

  

0.1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

27.5 0.8351 0.8319 0.8288 0.8258 0.8229 0.8205 0.8179 0.8157 0.8132 0.8110 0.8089 0.8067 0.8045 0.8026 0.8005

32.0 0.8370 0.8339 0.8308 0.8278 0.8251 0.8226 0.8201 0.8176 0.8151 0.8130 0.8107 0.8085 0.8065 0.8045 0.8025

36.9 0.8397 0.8364 0.8331 0.8301 0.8274 0.8246 0.8219 0.8196 0.8172 0.8148 0.8127 0.8105 0.8081 0.8062 0.8042

41.9 0.8421 0.8387 0.8355 0.8325 0.8294 0.8266 0.8242 0.8215 0.8192 0.8168 0.8145 0.8122 0.8101 0.8080 0.8059

46.8 0.8447 0.8412 0.8378 0.8347 0.8318 0.8288 0.8262 0.8236 0.8210 0.8187 0.8165 0.8141 0.8118 0.8098 0.8077

51.7 0.8472 0.8436 0.8402 0.8368 0.8337 0.8310 0.8281 0.8255 0.8230 0.8206 0.8183 0.8161 0.8137 0.8115 0.8095

56.5 0.8496 0.8459 0.8424 0.8392 0.8361 0.8331 0.8302 0.8275 0.8249 0.8225 0.8201 0.8179 0.8156 0.8134 0.8113

61.4 0.8521 0.8484 0.8448 0.8415 0.8380 0.8353 0.8324 0.8296 0.8270 0.8245 0.8218 0.8197 0.8176 0.8153 0.8130

66.5 0.8546 0.8509 0.8473 0.8439 0.8406 0.8373 0.8345 0.8318 0.8290 0.8265 0.8240 0.8215 0.8193 0.8171 0.8148

71.5 0.8571 0.8532 0.8495 0.8460 0.8429 0.8395 0.8366 0.8338 0.8310 0.8283 0.8258 0.8234 0.8210 0.8188 0.8166

76.2 0.8596 0.8556 0.8520 0.8484 0.8450 0.8417 0.8387 0.8358 0.8330 0.8304 0.8278 0.8253 0.8229 0.8206 0.8184

81.2 0.8623 0.8583 0.8543 0.8508 0.8473 0.8441 0.8409 0.8378 0.8351 0.8322 0.8298 0.8273 0.8248 0.8224 0.8200

86.3 0.8650 0.8608 0.8566 0.8531 0.8496 0.8463 0.8430 0.8401 0.8371 0.8344 0.8315 0.8292 0.8266 0.8242 0.8219

91.3 0.8678 0.8634 0.8593 0.8557 0.8519 0.8486 0.8451 0.8423 0.8393 0.8364 0.8336 0.8311 0.8286 0.8260 0.8236

96.2 0.8702 0.8659 0.8618 0.8579 0.8541 0.8507 0.8474 0.8444 0.8413 0.8384 0.8355 0.8329 0.8305 0.8279 0.8255

100.9 0.8732 0.8687 0.8644 0.8605 0.8566 0.8532 0.8498 0.8465 0.8433 0.8405 0.8376 0.8350 0.8324 0.8298 0.8273

105.8 0.8758 0.8712 0.8669 0.8628 0.8589 0.8554 0.8520 0.8488 0.8454 0.8425 0.8398 0.8370 0.8343 0.8317 0.8291

111.0 0.8787 0.8739 0.8693 0.8651 0.8614 0.8576 0.8542 0.8509 0.8476 0.8445 0.8416 0.8388 0.8361 0.8334 0.8310

115.6 0.8811 0.8763 0.8717 0.8675 0.8636 0.8599 0.8562 0.8527 0.8495 0.8464 0.8437 0.8407 0.8380 0.8352 0.8326

120.7 0.8841 0.8791 0.8743 0.8700 0.8658 0.8622 0.8584 0.8550 0.8518 0.8485 0.8455 0.8425 0.8399 0.8371 0.8345

125.8 0.8868 0.8816 0.8768 0.8724 0.8685 0.8645 0.8607 0.8573 0.8538 0.8507 0.8474 0.8445 0.8417 0.8389 0.8363

130.6 0.8893 0.8842 0.8794 0.8748 0.8704 0.8667 0.8629 0.8592 0.8558 0.8525 0.8495 0.8464 0.8435 0.8409 0.8380

135.7 0.8924 0.8870 0.8818 0.8773 0.8729 0.8690 0.8652 0.8614 0.8581 0.8549 0.8516 0.8485 0.8455 0.8426 0.8398

140.8 0.8953 0.8898 0.8843 0.8798 0.8754 0.8713 0.8674 0.8636 0.8601 0.8565 0.8536 0.8504 0.8475 0.8445 0.8419

145.8 0.8985 0.8926 0.8871 0.8821 0.8780 0.8737 0.8697 0.8657 0.8622 0.8589 0.8555 0.8523 0.8492 0.8464 0.8437

T (°C)
Pressure (MPa)
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Table 2.9 PVT data of network 3 - D1E40

 

  

0.1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

27.3 0.8458 0.8427 0.8400 0.8368 0.8343 0.8317 0.8288 0.8266 0.8242 0.8219 0.8195 0.8175 0.8154 0.8133 0.8113

32.3 0.8488 0.8455 0.8422 0.8392 0.8363 0.8337 0.8310 0.8283 0.8262 0.8239 0.8216 0.8195 0.8171 0.8152 0.8132

37.3 0.8511 0.8478 0.8446 0.8414 0.8386 0.8356 0.8332 0.8308 0.8281 0.8257 0.8235 0.8214 0.8192 0.8170 0.8149

42.0 0.8538 0.8504 0.8471 0.8440 0.8409 0.8381 0.8353 0.8327 0.8302 0.8278 0.8258 0.8233 0.8211 0.8189 0.8169

46.8 0.8563 0.8528 0.8495 0.8463 0.8430 0.8402 0.8375 0.8349 0.8322 0.8300 0.8276 0.8253 0.8231 0.8209 0.8188

51.9 0.8585 0.8551 0.8518 0.8485 0.8454 0.8425 0.8397 0.8370 0.8342 0.8317 0.8297 0.8273 0.8250 0.8227 0.8207

57.0 0.8615 0.8578 0.8543 0.8508 0.8478 0.8446 0.8419 0.8390 0.8364 0.8339 0.8316 0.8294 0.8270 0.8247 0.8224

61.8 0.8642 0.8604 0.8569 0.8532 0.8500 0.8470 0.8441 0.8411 0.8384 0.8361 0.8336 0.8311 0.8290 0.8266 0.8245

66.7 0.8665 0.8627 0.8592 0.8558 0.8522 0.8493 0.8462 0.8435 0.8406 0.8381 0.8357 0.8332 0.8309 0.8285 0.8263

71.8 0.8689 0.8652 0.8617 0.8583 0.8547 0.8514 0.8485 0.8456 0.8429 0.8401 0.8377 0.8351 0.8327 0.8304 0.8282

76.6 0.8721 0.8680 0.8642 0.8606 0.8570 0.8537 0.8506 0.8477 0.8448 0.8423 0.8396 0.8371 0.8346 0.8323 0.8299

81.6 0.8748 0.8706 0.8665 0.8628 0.8594 0.8560 0.8527 0.8498 0.8470 0.8439 0.8413 0.8390 0.8366 0.8341 0.8316

86.6 0.8776 0.8733 0.8690 0.8654 0.8616 0.8580 0.8549 0.8520 0.8492 0.8462 0.8435 0.8410 0.8385 0.8359 0.8335

91.6 0.8804 0.8759 0.8719 0.8677 0.8640 0.8606 0.8575 0.8542 0.8511 0.8483 0.8457 0.8429 0.8404 0.8379 0.8356

96.4 0.8828 0.8784 0.8742 0.8703 0.8664 0.8627 0.8595 0.8562 0.8533 0.8502 0.8475 0.8449 0.8422 0.8398 0.8373

101.3 0.8858 0.8811 0.8767 0.8728 0.8687 0.8650 0.8618 0.8585 0.8554 0.8523 0.8495 0.8467 0.8442 0.8416 0.8390

106.3 0.8882 0.8836 0.8792 0.8749 0.8713 0.8673 0.8638 0.8606 0.8574 0.8543 0.8513 0.8487 0.8459 0.8435 0.8409

111.1 0.8912 0.8863 0.8819 0.8775 0.8735 0.8697 0.8661 0.8627 0.8594 0.8565 0.8533 0.8506 0.8479 0.8452 0.8426

116.3 0.8937 0.8888 0.8842 0.8797 0.8757 0.8719 0.8683 0.8648 0.8615 0.8584 0.8552 0.8525 0.8498 0.8471 0.8445

121.3 0.8966 0.8915 0.8867 0.8821 0.8781 0.8744 0.8704 0.8671 0.8635 0.8604 0.8574 0.8544 0.8516 0.8489 0.8462

126.2 0.8995 0.8942 0.8893 0.8848 0.8806 0.8765 0.8727 0.8689 0.8656 0.8625 0.8594 0.8563 0.8535 0.8508 0.8481

131.0 0.9022 0.8968 0.8919 0.8872 0.8830 0.8790 0.8750 0.8713 0.8676 0.8645 0.8615 0.8583 0.8555 0.8524 0.8499

136.2 0.9053 0.8997 0.8947 0.8897 0.8853 0.8814 0.8775 0.8735 0.8701 0.8667 0.8635 0.8603 0.8573 0.8545 0.8517

141.3 0.9081 0.9024 0.8971 0.8923 0.8877 0.8835 0.8796 0.8758 0.8722 0.8687 0.8654 0.8622 0.8593 0.8563 0.8536

146.3 0.9106 0.9050 0.8997 0.8947 0.8903 0.8860 0.8817 0.8780 0.8743 0.8706 0.8676 0.8642 0.8612 0.8583 0.8554

T (°C)
Pressure (MPa)
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Table 2.10 PVT data of network 4 - D1E60 

 

  

0.1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

27.5 0.8504 0.8473 0.8445 0.8414 0.8387 0.8358 0.8331 0.8306 0.8281 0.8258 0.8237 0.8215 0.8194 0.8173 0.8152

32.1 0.8538 0.8504 0.8472 0.8438 0.8409 0.8382 0.8356 0.8330 0.8304 0.8281 0.8257 0.8235 0.8213 0.8192 0.8172

37.1 0.8564 0.8529 0.8495 0.8463 0.8433 0.8404 0.8379 0.8351 0.8326 0.8303 0.8278 0.8255 0.8234 0.8212 0.8190

41.7 0.8592 0.8556 0.8522 0.8488 0.8458 0.8428 0.8398 0.8375 0.8349 0.8322 0.8299 0.8276 0.8253 0.8232 0.8211

47.0 0.8616 0.8580 0.8545 0.8511 0.8480 0.8450 0.8421 0.8396 0.8370 0.8345 0.8320 0.8296 0.8273 0.8251 0.8229

51.6 0.8640 0.8605 0.8570 0.8537 0.8504 0.8472 0.8444 0.8416 0.8389 0.8363 0.8340 0.8316 0.8294 0.8270 0.8249

56.6 0.8673 0.8633 0.8595 0.8559 0.8527 0.8496 0.8466 0.8438 0.8410 0.8384 0.8360 0.8336 0.8312 0.8289 0.8268

61.5 0.8696 0.8657 0.8621 0.8582 0.8550 0.8519 0.8487 0.8459 0.8432 0.8403 0.8378 0.8355 0.8332 0.8309 0.8286

66.5 0.8724 0.8683 0.8646 0.8610 0.8573 0.8540 0.8512 0.8481 0.8452 0.8424 0.8398 0.8373 0.8350 0.8328 0.8305

71.2 0.8748 0.8708 0.8672 0.8634 0.8596 0.8564 0.8532 0.8503 0.8474 0.8448 0.8419 0.8392 0.8370 0.8346 0.8323

76.1 0.8779 0.8736 0.8697 0.8656 0.8621 0.8586 0.8555 0.8524 0.8494 0.8467 0.8439 0.8413 0.8389 0.8364 0.8339

81.0 0.8807 0.8762 0.8719 0.8680 0.8644 0.8609 0.8577 0.8546 0.8515 0.8487 0.8459 0.8432 0.8408 0.8383 0.8359

86.0 0.8831 0.8787 0.8744 0.8704 0.8667 0.8634 0.8597 0.8567 0.8535 0.8508 0.8480 0.8453 0.8428 0.8403 0.8378

91.0 0.8859 0.8813 0.8770 0.8731 0.8691 0.8656 0.8622 0.8591 0.8558 0.8528 0.8500 0.8471 0.8446 0.8420 0.8396

96.1 0.8883 0.8838 0.8797 0.8755 0.8715 0.8679 0.8644 0.8610 0.8580 0.8549 0.8520 0.8493 0.8466 0.8439 0.8414

100.9 0.8914 0.8867 0.8821 0.8779 0.8740 0.8702 0.8666 0.8633 0.8600 0.8571 0.8539 0.8510 0.8484 0.8457 0.8432

105.7 0.8943 0.8894 0.8847 0.8803 0.8763 0.8724 0.8691 0.8654 0.8622 0.8590 0.8561 0.8531 0.8503 0.8475 0.8450

110.5 0.8972 0.8921 0.8873 0.8828 0.8787 0.8749 0.8713 0.8676 0.8641 0.8609 0.8580 0.8551 0.8521 0.8495 0.8466

115.5 0.9001 0.8948 0.8898 0.8851 0.8810 0.8772 0.8733 0.8698 0.8662 0.8631 0.8599 0.8570 0.8539 0.8512 0.8486

120.3 0.9028 0.8974 0.8922 0.8877 0.8835 0.8795 0.8758 0.8719 0.8686 0.8651 0.8621 0.8590 0.8561 0.8532 0.8505

125.7 0.9054 0.9000 0.8950 0.8902 0.8860 0.8819 0.8779 0.8743 0.8708 0.8673 0.8641 0.8610 0.8578 0.8550 0.8522

130.8 0.9084 0.9028 0.8972 0.8928 0.8884 0.8842 0.8803 0.8765 0.8730 0.8693 0.8661 0.8629 0.8599 0.8569 0.8540

135.8 0.9111 0.9055 0.9003 0.8953 0.8908 0.8866 0.8825 0.8788 0.8751 0.8718 0.8681 0.8650 0.8619 0.8589 0.8559

141.0 0.9145 0.9085 0.9029 0.8978 0.8933 0.8891 0.8852 0.8811 0.8774 0.8739 0.8706 0.8672 0.8639 0.8609 0.8579

146.1 0.9171 0.9112 0.9054 0.9006 0.8957 0.8914 0.8873 0.8835 0.8795 0.8758 0.8725 0.8690 0.8657 0.8629 0.8597

T (°C)
Pressure (MPa)
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Table 2.11 PVT data of network 5 - D1E80 

 

  

0.1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

27.7 0.8591 0.8559 0.8527 0.8498 0.8467 0.8437 0.8408 0.8384 0.8360 0.8336 0.8314 0.8290 0.8268 0.8246 0.8225

32.5 0.8620 0.8585 0.8553 0.8519 0.8488 0.8460 0.8430 0.8406 0.8381 0.8355 0.8332 0.8307 0.8286 0.8263 0.8243

37.2 0.8644 0.8608 0.8572 0.8539 0.8509 0.8480 0.8451 0.8424 0.8397 0.8374 0.8350 0.8328 0.8305 0.8282 0.8259

41.9 0.8665 0.8631 0.8598 0.8565 0.8531 0.8504 0.8476 0.8445 0.8418 0.8398 0.8371 0.8346 0.8323 0.8300 0.8278

47.6 0.8695 0.8658 0.8621 0.8589 0.8556 0.8524 0.8493 0.8470 0.8442 0.8414 0.8390 0.8367 0.8341 0.8319 0.8298

51.9 0.8724 0.8685 0.8648 0.8611 0.8580 0.8549 0.8516 0.8489 0.8462 0.8437 0.8412 0.8385 0.8362 0.8339 0.8317

57.2 0.8750 0.8710 0.8673 0.8638 0.8603 0.8572 0.8542 0.8510 0.8481 0.8457 0.8432 0.8406 0.8381 0.8359 0.8336

61.6 0.8778 0.8736 0.8696 0.8660 0.8627 0.8594 0.8561 0.8534 0.8505 0.8477 0.8453 0.8427 0.8402 0.8377 0.8354

66.8 0.8801 0.8760 0.8721 0.8683 0.8649 0.8614 0.8586 0.8555 0.8526 0.8498 0.8472 0.8447 0.8422 0.8397 0.8373

71.4 0.8832 0.8789 0.8750 0.8704 0.8672 0.8640 0.8606 0.8576 0.8547 0.8519 0.8490 0.8466 0.8442 0.8416 0.8393

76.5 0.8857 0.8814 0.8771 0.8733 0.8696 0.8662 0.8631 0.8597 0.8569 0.8541 0.8510 0.8486 0.8459 0.8435 0.8412

81.3 0.8884 0.8841 0.8801 0.8759 0.8722 0.8685 0.8651 0.8619 0.8591 0.8562 0.8533 0.8508 0.8480 0.8454 0.8430

86.2 0.8916 0.8869 0.8826 0.8783 0.8746 0.8710 0.8675 0.8643 0.8614 0.8583 0.8551 0.8526 0.8500 0.8474 0.8447

91.1 0.8944 0.8896 0.8850 0.8808 0.8768 0.8735 0.8699 0.8664 0.8631 0.8602 0.8572 0.8546 0.8520 0.8492 0.8466

96.4 0.8971 0.8923 0.8879 0.8833 0.8793 0.8755 0.8722 0.8686 0.8656 0.8621 0.8592 0.8563 0.8537 0.8511 0.8485

101.4 0.9001 0.8951 0.8905 0.8859 0.8818 0.8778 0.8743 0.8708 0.8676 0.8646 0.8615 0.8583 0.8557 0.8530 0.8503

106.1 0.9032 0.8980 0.8931 0.8885 0.8844 0.8807 0.8766 0.8731 0.8697 0.8666 0.8634 0.8607 0.8577 0.8550 0.8523

111.1 0.9059 0.9006 0.8956 0.8912 0.8869 0.8828 0.8791 0.8755 0.8719 0.8687 0.8653 0.8626 0.8596 0.8568 0.8541

116.3 0.9089 0.9035 0.8983 0.8937 0.8891 0.8851 0.8812 0.8777 0.8743 0.8709 0.8675 0.8646 0.8617 0.8587 0.8561

121.4 0.9115 0.9061 0.9012 0.8964 0.8919 0.8877 0.8839 0.8800 0.8762 0.8731 0.8697 0.8667 0.8636 0.8608 0.8580

126.2 0.9142 0.9088 0.9036 0.8989 0.8946 0.8902 0.8860 0.8825 0.8788 0.8752 0.8719 0.8687 0.8658 0.8628 0.8599

131.2 0.9179 0.9120 0.9064 0.9016 0.8970 0.8926 0.8884 0.8845 0.8810 0.8775 0.8742 0.8706 0.8677 0.8647 0.8618

136.1 0.9206 0.9148 0.9094 0.9042 0.8994 0.8952 0.8912 0.8869 0.8832 0.8796 0.8764 0.8729 0.8698 0.8665 0.8637

141.5 0.9238 0.9178 0.9120 0.9069 0.9022 0.8975 0.8933 0.8893 0.8856 0.8819 0.8784 0.8749 0.8719 0.8686 0.8657

146.4 0.9271 0.9208 0.9149 0.9097 0.9047 0.9002 0.8959 0.8918 0.8880 0.8843 0.8806 0.8771 0.8740 0.8709 0.8677

T (°C)
Pressure (MPa)
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Table 2.12 PVT data of network 6 - D1E90 

 

 

0.1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

27.5 0.8649 0.8615 0.8582 0.8550 0.8517 0.8492 0.8463 0.8438 0.8413 0.8388 0.8364 0.8341 0.8318 0.8295 0.8274

32.5 0.8679 0.8643 0.8609 0.8576 0.8543 0.8513 0.8486 0.8459 0.8434 0.8409 0.8384 0.8360 0.8336 0.8315 0.8294

37.2 0.8703 0.8666 0.8631 0.8599 0.8566 0.8535 0.8507 0.8479 0.8455 0.8430 0.8404 0.8379 0.8357 0.8333 0.8311

42.1 0.8727 0.8691 0.8656 0.8621 0.8589 0.8558 0.8527 0.8499 0.8473 0.8449 0.8423 0.8399 0.8374 0.8351 0.8330

46.8 0.8755 0.8717 0.8679 0.8646 0.8613 0.8580 0.8550 0.8522 0.8495 0.8468 0.8443 0.8419 0.8393 0.8371 0.8347

52.0 0.8783 0.8744 0.8705 0.8669 0.8635 0.8603 0.8572 0.8543 0.8514 0.8487 0.8463 0.8438 0.8414 0.8390 0.8366

56.6 0.8810 0.8769 0.8730 0.8693 0.8658 0.8626 0.8593 0.8565 0.8535 0.8508 0.8483 0.8458 0.8432 0.8409 0.8384

61.4 0.8834 0.8794 0.8755 0.8717 0.8679 0.8647 0.8614 0.8585 0.8556 0.8530 0.8503 0.8476 0.8453 0.8428 0.8404

66.7 0.8865 0.8823 0.8783 0.8744 0.8707 0.8672 0.8640 0.8610 0.8580 0.8551 0.8524 0.8497 0.8471 0.8447 0.8423

71.5 0.8892 0.8848 0.8808 0.8768 0.8730 0.8695 0.8662 0.8632 0.8601 0.8572 0.8544 0.8517 0.8490 0.8464 0.8441

76.4 0.8923 0.8877 0.8834 0.8791 0.8754 0.8719 0.8685 0.8653 0.8621 0.8593 0.8563 0.8536 0.8511 0.8484 0.8459

81.3 0.8947 0.8901 0.8859 0.8817 0.8778 0.8741 0.8708 0.8675 0.8642 0.8612 0.8584 0.8556 0.8529 0.8503 0.8477

86.3 0.8973 0.8927 0.8883 0.8841 0.8802 0.8765 0.8729 0.8697 0.8664 0.8632 0.8604 0.8576 0.8549 0.8521 0.8496

91.3 0.9003 0.8955 0.8909 0.8865 0.8826 0.8789 0.8751 0.8718 0.8686 0.8655 0.8625 0.8596 0.8568 0.8540 0.8513

96.3 0.9032 0.8982 0.8935 0.8893 0.8850 0.8810 0.8776 0.8740 0.8707 0.8672 0.8642 0.8615 0.8585 0.8558 0.8531

100.8 0.9063 0.9010 0.8961 0.8915 0.8872 0.8835 0.8798 0.8761 0.8729 0.8694 0.8663 0.8635 0.8605 0.8577 0.8550

105.9 0.9089 0.9037 0.8987 0.8942 0.8898 0.8859 0.8819 0.8783 0.8749 0.8715 0.8684 0.8656 0.8625 0.8596 0.8569

111.0 0.9119 0.9065 0.9014 0.8967 0.8921 0.8880 0.8843 0.8804 0.8771 0.8738 0.8703 0.8670 0.8642 0.8616 0.8586

115.7 0.9149 0.9093 0.9040 0.8992 0.8948 0.8906 0.8867 0.8828 0.8793 0.8758 0.8727 0.8694 0.8663 0.8634 0.8606

120.5 0.9178 0.9121 0.9067 0.9020 0.8973 0.8932 0.8889 0.8850 0.8814 0.8780 0.8747 0.8715 0.8683 0.8654 0.8623

125.8 0.9206 0.9148 0.9093 0.9044 0.8997 0.8954 0.8913 0.8873 0.8836 0.8801 0.8767 0.8734 0.8703 0.8672 0.8644

130.7 0.9240 0.9179 0.9122 0.9069 0.9021 0.8978 0.8937 0.8896 0.8857 0.8823 0.8789 0.8753 0.8724 0.8691 0.8661

135.4 0.9267 0.9206 0.9150 0.9095 0.9048 0.9004 0.8962 0.8921 0.8884 0.8844 0.8810 0.8777 0.8745 0.8712 0.8682

140.8 0.9300 0.9237 0.9180 0.9124 0.9075 0.9027 0.8987 0.8945 0.8905 0.8869 0.8830 0.8798 0.8766 0.8733 0.8703

145.8 0.9332 0.9267 0.9206 0.9150 0.9101 0.9054 0.9006 0.8967 0.8928 0.8891 0.8854 0.8821 0.8787 0.8754 0.8724

T (°C)
Pressure (MPa)
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CHAPTER III - EFFECT OF PERFLUORINATED DANGLING MOIETIES ON FREE 

VOLUME, OXYGEN AND WATER VAPOR TRANSPORT PROPERTIES OF 

THIOL-ENE ELASTOMERIC NETWORKS 

3.1 Abstract 

 Perfluorinated thiol-ene elastomers were prepared using a two-step synthesis. In 

the first step, a tetrafunctional thiol was reacted with a perfluorinated acrylate, via Thio 

Michael addition to obtain trifunctional thiol containing perfluorinated dangling moiety. 

In the second step, this modified trifunctional thiol was reacted with a trifunctional ene to 

produce thiol-ene network containing perfluorinated dangling moiety. This strategy was 

used to produce a series of perfluorinated thiol-ene elastomers, where the length of the 

perfluorinated dangling moiety in the network was changed by altering the length of 

perfluorinated acrylate for the first step. Thiol monomer modifications were confirmed 

using 1H NMR analysis. Real time FTIR analysis showed that perfluorination and the 

length of perfluorination did not impact the fast reaction kinetics of thiol-ene chemistry, 

and near full conversions were obtained in all the cases. DSC and DMA analysis showed 

that length of the dangling moiety did not have any effect on Tg and cross-link density of 

the networks. Free volume analysis using PALS showed that average hole size increased 

as a function of the length of the perfluorinated dangling moiety, and was quadrupled 

when compared to an unmodified network. The oxygen permeability of the networks 

increased exponentially as a function of the length of the dangling moiety. Comparison of 

oxygen diffusivity to free volume sizes showed deviations from Cohen Turnbull model. 

The static nature of free volume pockets around perfluorinated moieties and percolation 

at higher free volume sizes, described using 2D lattice like model, was used to explain 
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the deviation from Cohen Turnbull model. Water vapor permeability of the networks was 

unaffected by the length of perfluorinated dangling moieties, and this was explained as a 

trade-off between diffusivity and solubility.         

3.2 Introduction 

 Perfluorinated polymers exhibit excellent properties such as hydrophobicity, 

chemical resistance, and thermal resistance among many others.1-2 Furthermore, the 

strong C-F bond enhances the oxidation and hydrolytic resistance of these polymers.3 

Hence these materials find applications as membranes, seals, o-rings etc. that are used in 

harsh chemical conditions. But the homopolymers such as polytetrafluoroethylene, 

polyvinylidene fluoride (PVDF) are highly crystalline and are difficult to melt or solvent 

process. Therefore, a generation of perfluorinated co/ter polymers where generated, 

where disorder (brought by the second or third monomer) reduces or gets rid of high 

crystallinity,1, 4 and these polymers are typically amorphous and elastomeric. Typically, 

fluoroalkenes are copolymerized using free radical polymerization under high 

temperature and pressure, or emulsion conditions to obtain most of the commercially 

available fluoroelastomers, and the synthetic processes involved are rather complex.2 

These commercial fluoroelastomers are typically cured using peroxide cross-linking. 

Therefore, any alternative chemistries or processes that can ease the synthesis of 

perfluorinated materials will be highly beneficial.  

 Addition of small concentrations of perfluorinated monomer in epoxy5, acrylic6 

systems have been reported previously. Also, perfluorinated prepolymers have been 

incorporated in polyurethane7, acrylate chemistries8. Unfortunately, the above methods 

can result in phase separation or surface aggregation of perfluorinated moieties.  
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Therefore, novel methods that are easily processible and can produce homogeneous 

networks containing perfluorinated moieties are highly sought after, for coating and 

membrane applications.  

 Our lab previously demonstrated UV synthesis of perfluorinated elastomers using 

acrylate chemistry, which showed interesting side-chain liquid crystalline behavior, 

which can be used as a thermal stimulus for controlling gas permeability.9 Similar 

chemistry was used by Yao et al to produce fluorogels that showed excellent chemical 

resistance and anti-fouling properties.10 But compared to acrylate chemistry, thiol-ene 

chemistry offers advantages such as network uniformity, low oxygen inhibition, and low 

shrinkage stress.11-13 The reaction between thiol and ene functional groups present in the 

monomers produces uniform networks where cross-link density, and thereby glass 

transition temperature, modulus, transport properties etc. can be precisely controlled.14  

Our group has previously shown a two-step synthesis by which networks containing 

different dangling moieties can be prepared.15-16 In the first step, a tetrafunctional thiol is 

reacted with a monofunctional acrylate, via thio Michael addition, such that it produces a 

trifunctional thiol monomer containing a dangling moiety. In the second step, the 

modified monomer is reacted with ene monomers to produce modified thiol-ene 

networks. By varying the type of acrylate chosen, intermolecular interactions between the 

chains was altered, thereby an easy approach to alter/tune chain rigidity, free volume, and 

transport properties was demonstrated. In the preceding communication, using the 

aforementioned approach, the effect of length of hydrophobic alkylated dangling moieties 

on network properties were studied.16 It was shown that the fast reaction kinetics of thiol-

ene chemistry along with this 2-step approach, locks in the covalently bonded 
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hydrophobic moieties within the polar thiol-ene backbone. By changing the length of 

alkylated dangling moieties, oxygen permeability of the thiol-ene networks could be 

tuned in the range of 2 orders of magnitude.  In the present study, the main goal was to 

incorporate more hydrophobic perfluorinated dangling moieties into the thiol-ene 

networks, and to study their free volume and transport characteristics, and compare them 

with alkylated networks.           

3.3 Experimental  

3.3.1 Materials 

Thiol monomers pentaerythritol tetrakis(3-mercaptopropionate) (4T) and 

trimethylolpropane tris(3-mercaptopropionate) (3T) were provided by Bruno Bock 

Thiochemicals. Ene monomer 1,3,5-Triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione 

(TTT), photoinitiator 2,2-Dimethoxy-2-phenylacetophenone (DMPA), and nucleophilic 

catalyst, di-n-butyl amine (DBA), were obtained from Sigma-Aldrich. Perfluoroacrylates 

2,2,2 trifluoro ethyl acrylate (f2) and 1H,1H heptafluoro butyl acrylate (f4) were obtained 

from Synquest Laboratories (Alachua, FL). Whereas, 2-perfluorobutyl ethyl acrylate (f6), 

2-perfluorohexyl ethyl acrylate (f8), and 2-perfluorooctyl ethyl acrylate (f10) were 

obtained from Fluoryx Labs (Carson City, NV). All the chemicals were used as received. 

Figure 3.1 shows the chemical structures of all the aforementioned molecules.  

3.3.2 Synthesis of Perfluorinated Thiol Monomers 

 Perfluorinated thiol monomers were prepared using Thio-Michael addition 

reaction. Schematic of the reaction is shown in step 1 of Figure 3.2. Equimolar amounts 

of four functional thiol 4T and perfluorinated acrylate (fX) were used in this reaction. 4T 

was solubilized in excess acetone and was added to a round bottom flask. DBA catalyst 
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was then added to the solution to catalyze the reaction. Perfluorinated acrylate, dissolved 

in acetone, was then added drop-wise, using a separatory funnel, to the round bottom 

flask. The solution was sealed, kept stirring and the reaction was allowed to proceed 

overnight. The resulting product (4T-fX) will be a distribution of structures, but on 

average will be a trifunctional thiol containing perfluorinated moiety similar to the one 

shown in the product of reaction in step 1 of Figure 3.2.16  The same reaction procedure 

was used to prepare all the five perfluorinated thiol monomers by using five different 

perfluorinated acrylates (f2, f4, f6, f8, and f10).  Acetone was removed from 

perfluorinated monomers by Rotovap at 40 °C. The modified monomers were then 

subjected to vacuum to remove any residual acetone. 

3.3.3 Synthesis of Perfluorinated Thiol-Ene Elastomers 

 Step 2 of Figure 3.2 shows the schematic for perfluorinated network synthesis. 

Perfluorinated thiol monomer (4T-fX) and trifunctional thiol TTT monomer were taken 

in a vial such that the mixture maintained 1:1 thiol:ene stoichiometry. 1 wt% DMPA 

photoinitiator was added to the mixture. The mixture was first mixed using a vortexer, 

following which it was sonicated for 15 minutes. The monomers readily dissolved into 

each other with the exception of 4T-f10 monomer. 4T-f10 and TTT mixture was stirred 

and heated at 40 °C until a clear solution was obtained. The monomer mixture was then 

poured on to a clean glass plate and was sandwiched by placing another glass plate on 

top, and the thickness of the product film was controlled by placing spacers having 

thickness ~0.3 mm in the corners between the plates. The glass plates assembly was then 

exposed to UV light (UVA400 UV, Cure-Tek curing systems- intensity 76 mW/cm2) for 

4 minutes, where the assembly was flipped after 1-minute exposure. The resulting 
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perfluorinated thiol-ene elastomer film was then carefully removed from the glass plates. 

The control networks (4T-TTT and 3T-TTT), without any perfluorinated moieties, was 

synthesized where 4T or 3T and TTT were used as the monomers.       

 

Figure 3.1  Chemical structures of perfluorinated acrylates (f2, f4, f6, f8, f10), thiol (3T, 

4T), ene (TTT) monomers, photo-initiator (DMPA) and nucleophilic catalyst (DBA). 

3.3.4 Characterization of Modified Monomers and Network Conversion 

 Perfluorinated thiol monomers were characterized by 1H NMR using a Varian 

Mercury 200 MHz NMR spectrometer, where acetone-d6 was used as the solvent. 

Network conversion (i.e., crosslinking) reaction was studied using Thermo Fisher 
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Scientific Nicolet 8700 real time FT-IR spectrometer - light intensity of 20 mW/cm2 at 

365 nm irradiance. A mixture containing stoichiometric quantities of monomers having 1 

wt% DMPA was made. A drop was taken from that mixture and was placed between two 

KBr plates, and was then subjected to FTIR analysis. The change in areas under thiol 

peak (2570 cm-1) and ene peak (3080 cm-1) were monitored as a function of irradiance 

time in order to study network conversion.   

 

Figure 3.2  Schematic of 2-step perfluorinated thiol-ene elastomer synthesis. (c) 

Schematic of the family of networks produced in this study 
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 Thermal analysis of the networks was performed using a differential scanning 

calorimetry - TA Q2000. Heat-cool-heat program was employed, i.e., 35 °C to 100 °C at 

a ramp rate of 10 °C/min, 100 °C to -70°C at 5 °C/min, and -70 °C to 100 °C at 10 

°C/min. TA data analysis software was used to process the data. Glass transition 

temperature of the networks was determined from the second heat curves.     

 Dynamic mechanical thermal analysis (DMTA) was performed using 

Rheometric Scientific DMTAV instrument. The measurements were done at a frequency 

of 1 Hz, strain rate of 0.05%, and a temperature range of -50 °C to 200 °C at a ramp rate 

of 5 °C/min. 

 Water contact angle of the networks were measured using Rame-Hart model 

200-00 standard goniometer. DI water droplets having diameter of ~5 mm were placed on 

a clean film and the contact angle was recorded using Rame-hart DROPimage Standard 

software.   

 Water sorption characteristics of the networks were studied using a TA 

Instruments Q5000 Sorption Analyzer. Discs having diameter of 6.3 mm and thickness of 

~0.3 mm were punched out from the films. The disc was placed in a quartz pan and was 

subjected to drying at 60 °C and 0% RH, following the water sorption characteristics 

were studied at 20 °C and 95% RH.  

 Average free volume hole size, <vh>, of the networks were measured using 

positron annihilation lifetime spectroscopy (PALS).  Discs having diameter of 1 cm were 

punched out from the films. Discs were stacked to make thickness of 1 mm. Positron 

source, 30 μCi 22Na, enclosed in an Al foil was sandwiched between two stacked discs. 

The sample source assembly was then placed between two photomultiplier tubes (PMT). 
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PMTs contain BaF2 γ-radiation sensitive scintillators and are tuned such that one PMT 

can detect γ quanta associated with the birth signal and the other PMT with its 

annihilation. A multichannel analyzer compiled the positron lifetimes, i.e. the time 

difference between the birth and death signals of the positrons, with a time resolution of 

290 ps. 

Table 3.1 Fluorine content and glass transition temperature of the networks 

Sample 
identity 

Thiol 

component  
Fluorine content 

(wt%) 

T
g 

(° C) 

DSC 

4T-TTT 4T 0 30 

3T-TTT 3T 0 22.1 

f2 4T-f2 6.4 12.9 

f4 4T-f4 13.4 13.6 

f6 4T-f6 16.2 11.7 

f8 4T-f8 21.4 13.5 

f10 4T-f10 25.7 13.4 

 

 Positrons thermalize in the sample and can form positronium species with 

secondary electrons. The longer lived ortho positronium (o-Ps) species, in which both 

electron and positron spins in the same direction, localizes within the less electron dense 

regions, i.e., free volume holes within the sample. o-Ps gets annihilated when it gets 

picked-off by an electron having opposite spin and this is called pick-off annihilation. 

Therefore, the lifetime of o-Ps depends on electron scarcity within the sample or the 

physical size of the free volume hole in which o-Ps localizes. Using semi-empirical 
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equation (eq. 1) derived by Tao, o-Ps lifetime τ3 was related to free volume hole radius 

R.17  

𝜏3 = 0.5 [1 −
𝑅

𝑅0+𝑅
+

1

2𝜋
sin (

2𝜋𝑅

𝑅0+𝑅
)]

−1

 𝑛𝑠  (1) 

Where R0 = 0.1656 nm is the empirically derived electron layer thickness.17 If it is 

assumed that the free volume holes are spherical, then average free volume hole size, <

𝑣ℎ > =
4

3
𝜋𝑅3. 

 Each PALS spectrum was collected for 1 hour to get at least 1 million incidences 

using Ortec Positron Lifetime System (Advanced Measurement Technology, Oak Ridge, 

TN). For each sample, seven spectrums were collected at ambient conditions (i.e., 23 °C 

and 45% RH). Spectrums were fit and o-Ps lifetimes τ3 were obtained using PATFIT-88 

software to obtain <vh> values.18     

 Oxygen permeation of the networks were studied using custom-built constant 

volume variable pressure (CVVP) instrument described elsewhere by our group.19 

Networks were degassed for at least 12 hours prior to permeation experiments. In the 

upstream oxygen gas was purged at a pressure of ~3 atm.  Increase in pressure in the 

downstream was recorded as a function of time. Oxygen permeability P of the networks 

were calculated from the steady state slope of downstream pressure vs. time (dp/dt) using 

equation 2.    

𝑃 =
𝑉𝑑𝑙

𝑝𝐴𝑅𝑇
(

𝑑𝑝

𝑑𝑡
)  (2) 

Where, Vd is the downstream volume, l is the film thickness, p is the applied upstream 

pressure, A is the area under test, R is the universal gas constant, and T is temperature. 

The extrapolation of steady state slope to x-axis gives the time lag values (tL), from which 
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the oxygen diffusivity of the networks were calculated using equation 3. Oxygen 

solubility S can be calculated from 𝑃 = 𝐷 × 𝑆.  

𝐷 =
𝑙2

6𝑡𝐿
   (3) 

Water vapor permeability of the networks was measured using desiccant and 

wet cup test methods as described by ASTM E 96-95. In this method an open mouth cup 

containing desiccant or water was covered by the test sample. The edges of the sample 

film were sealed to the edges of the cup. The assembly was then placed in a 57% relative 

humidity chamber, where the 57% relative humidity was controlled by having saturated 

sodium bromide solution. The mass of the cup test assembly was then recorded at 

periodic intervals, from which the water vapor transmission rate (WVTR) was calculated 

as follows.   

𝑊𝑉𝑇𝑅 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑝

𝑡𝑖𝑚𝑒 × 𝐴
  (4) 

Where, A is the cup mouth area. The sample was allowed to equilibrate for one day, after 

which the mass readings were taken at different time intervals for over a period of 10 

days. Change in mass of the cup assembly showed linear trend, when it was plotted as a 

function of time, and from that slope, change in mass of the cup/time was obtained. Water 

vapor permeability (WVP) was then calculated as follows:  

𝑊𝑉𝑃 = 𝑊𝑉𝑇𝑅 (
𝑙

∆𝑝
)  (5) 

Where, l is the sample thickness and Δp is the water vapor pressure difference across the 

film, which can be calculated based on the relative humidity difference across the film.  

3.4 Results and discussion 
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1H NMR was used to confirm the completion of the reaction (step 1) shown in 

Figure 3.2. Figure 3.3(a) shows the 1H NMR spectra of unreacted acrylate which shows 

the acrylate double bond shifts at 6 ppm. Following the thio-Michael reaction, the 

modified monomers (i.e., 4T-fX) were analyzed using 1H NMR and Figure 3.3(a) shows 

the disappearance of acrylate peaks which confirmed that the perfluorinated thiol 

monomers were produced.  

Figure 3.3(b) and (c) shows the thiol and ene conversions of f2 and f10 networks 

respectively. It can be seen that the perfluorination of thiol monomers did not impact the 

network formation. UV exposure resulted in >90% conversion within few seconds of 

irradiation, demonstrating that perfluorination and long perfluorinated dangling moieties 

did not impact the fast reaction kinetics of thiol-ene chemistry. These network conversion 

results were consistent with the previous results published by our lab on alkylated thiol-

ene networks.16      

Even the network (f10) containing fluorine content as high as 27% (Table 3.1), 

was a clear film, i.e, no visible phase separation was seen. Previously, work on acrylic 

networks showed that when more than 0.8% (w/w) perfluorinated monomers were used, 

the resulting films were opaque because of phase separation of perfluorinated acrylates.20 

Whereas in the present study, perfluorinated moieties are covalently bonded (or locked) 

to the thiol monomer (i.e., 4T) post thio-Michael reaction. During the film formation (or 

curing), the fast reaction kinetics11-12 of thiol-ene chemistry (Figure 3.3(b) and (c)) 

prevents the phase separation of perfluorianted moieties, and therefore the perfluorinated 

moieties are locked in to the network, and hence homogeneous networks were obtained 
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even at a high fluorine content of 27 wt%. Figure 3.2(c) shows the schematic of 

perfluorinated networks produced in this series.      

 

Figure 3.3  (a) NMR spectra of unreacted acrylate (bottom spectrum) and 4T modified 

with acrylates (top 5 and the number indicates the type of perfluorinated acrylate). (b) 

Thiol and ene conversion of 4T-f2 and TTT reaction obtained from real time FTIR 

analysis. (c) Thiol and ene conversion of 4T-f10 and TTT. Dashed lines represent thiol 

conversion and solid lines indicate ene conversion in figures b and c.   

Figure 3.4 compares the schematic of perfluorinated networks with the alkylated 

networks that were reported by our group previously.16 The network architecture is 

similar except for the alkylated dangling moieties, the present networks consist of 

perfluorinated dangling moieties.  

Figure 3.5(a) and Table 3.1 compares the Tg of the perfluorinated networks. 

Henceforth, network properties are mainly plotted as a function of the length of the 

dangling moiety. For e.g. 2 is the count of carbon atoms (count does not include the 

carbon atoms in the acrylate group) in the f2 dangling acrylate, 4 for f4, and 6 for f6 and 
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so on. The length of the dangling moiety did not affect the Tg of the networks, and 

therefore it can be concluded that Tg was dictated by the network scaffold. Compared to 

the alkylated networks, perfluorinated networks’ Tgs were higher by 5 °C or greater 

(Figure 3.5(a)). This is probably because perfluorinated dangling moieties pose more 

restriction to the mobility of the backbone than the alkylated networks.  

Figure 3.5(b) compares the storage modulus of perfluorinated networks obtained 

from DMA analysis. There was no significant difference in the rubbery modulus (i.e., 

Storage modulus at Tg + 40 °C) of the networks.  This shows that the presence or length 

of dangling moiety did not influence the cross-link density. Because rubbery modulus is a 

measure of cross-link density of the networks. Also, the rubbery modulus of 

perfluorinated networks were comparable to the rubbery modulus of alkylated 

networks16. The presence of single glass transitions (Figure 3.5 (b) and (c)) further 

indicates that perfluorination of thiol-ene networks did not result in any phase separation.  

Figure 3.6 shows the oxygen transport properties of perfluorinated networks 

compared with alkylated networks. Increasing the size of perfluorinated dangling moiety 

led to an exponential increase in oxygen permeability of the networks (Figure 3.6(a) and 

Table 3.2). The network containing longest perfluorinated dangling chains (f10) showed 

oxygen permeability value which was two orders of magnitude greater than that of the 

unmodified network (4T-TTT). Perfluorination of the networks yielded much greater 

improvements in oxygen permeability than alkylation. For e.g. when dangling chain 

length was 10, the perfluorinated network (f10) showed oxygen permeability value which 

was an order of magnitude greater than thiol-ene network having alkylated dangling 

moiety of the same length (Figure 3.6(a)). In order to get a deeper understanding of the 
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effect of dangling moieties on oxygen transport, oxygen permeability values were 

decoupled to obtain oxygen diffusivity and oxygen solubility values as outlined in the 

experimental section.  

 

Figure 3.4 Schematic of perfluorinated and alkylated thiol-ene networks  

Figure 3.6(b) shows that the exponential increase in oxygen permeability of the 

networks can be attributed mainly to the oxygen diffusivity, i.e., oxygen diffusivity (of 

f10) also showed about two orders of magnitude increase compared to the unmodified 

network. Increasing the length of perfluorinated moiety also caused slight increases in the 

oxygen solubility of the networks. When compared to alkylated networks, the length of 

the dangling chain had a much more pronounced effect on both oxygen diffusivity and 

solubility. Transport properties are often correlated to the free volume in the material, and 

hence we compared the average free volume hole size <vh> of the networks, obtained 

from PALS analysis, to oxygen diffusivity of the networks.     

Figure 3.7(a) and Table 3.2 shows that <vh>, of the networks, increases as a 

function of the length of the perfluorinated dangling moiety. Perfluorinated network f10 

showed a <vh> value four times greater than that of the unmodified network. Whereas, 
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alkylation with 16 chain length dangling moieties only resulted in 100% increase in 

<vh>.16 Therefore, the enormous improvements in oxygen transport properties of 

perflourinated networks, as expected, is because of the high amounts of free volume in 

them.       

 

Figure 3.5  (a) Glass transition temperatures (DSC) of perfluorinated, alkylated16 

networks plotted as a function of length of dangling chain. (b) Storage modulus of 

networks obtained from DMA analysis. (c) Specific heat flow vs. temperature of 

networks obtained from DSC experiments.   

Some of the factors which can increase free volume in elastomers are, increasing 

the concentration of chain ends21-24 and decreasing cross-link density14, 21, 25-27. Whereas 

in this series, the number of chain ends per cross-link junction is the same (Figure 3.2(c)), 
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though the length of the dangling moiety is changed. Also, DMA analysis showed that 

the cross-link density, as expected, remained constant across the series. Therefore, it can 

be said that perfluorinated dangling moiety and its length were only responsible for the 

increase in free volume and oxygen transport properties.   

 

Figure 3.6 (a) Oxygen permeability, (b) oxygen diffusivity, and (c) oxygen solubility of 

perfluorinated and alkylated16 networks plotted as a function of length of dangling chain. 

Table 3.2 Oxygen transport parameters and free volume hole size <vh> of networks 

Sample  
Oxygen tranport parameters 

<vh> 

(Å³) 
Permeability 

(cc.cm/m2.day.atm) 

Diffusivity 

(cm2/s) 

Solubility 

(cc/cc.atm) 

4T-TTT 0.04 1.7E-09 0.03 63 

f2 1.1 2.8E-08 0.05 96 
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f4 3 5.3E-08 0.07 164 

f6 4.5 1.0E-07 0.05 210 

f8 14.8 2.9E-07 0.06 265 

f10 55 9.4E-07 0.07 276 

 

In the previous work on alkylated networks, it was hypothesized that rigid and 

hydrophobic alkylated dangling moieties reduce the intermolecular interactions that are 

present in the backbone, and these moieties act as spacers resulting in free volume 

increase.16 Similar hypothesis have previously been reported for linear polymers.28-29 

Also, we recently reported on hybrid epoxy-amine networks where free volume was 

significantly increased by hydrophobic POSS moieties covalently bonded to epoxy amine 

networks.30  Whereas, the effect from perfluorinated moieties is much more pronounced 

than all the aforementioned cases because of the more rigid and more hydrophobic nature 

of perfluorinated moieties. It can be hypothesized that, as the size of the perfluorinated 

dangling moiety is increased, the sizes of free volume pockets around it increases, 

because of the repulsive forces between hydrophobic perfluorinated moieties and polar 

backbone. Previously, Guizard et al showed improvements in permeation properties of 

silicone elastomers with the incorporation of perfluorinated moieties. But in their 

chemistry, along with increasing perfluorination concentration, they also simultaneously 

decreased cross-link density, therefore the effect of perfluorination alone on free volume 

cannot be understood.31 Whereas, in our study, as we discussed earlier, cross-link density 

and chain end concentration, i.e., other factors that could also influence free volume, 

were constant. Therefore, it can be said that enormous increments of free volume were 

only because of the incorporation of perfluorinated moieties.  



 

88 

Gas diffusivity D of the material can be quantitatively related to free volume by 

Cohen Turnbull relationship,23, 32-37 which can be written as shown in equation 6.  

𝐷 = 𝐷𝑣ℎ𝑒
(

−𝐵𝑣ℎ
<𝑣ℎ>

)
 (6) 

Where Dvh and Bvh are parameters which depend on penetrant gas. 

 

 

Figure 3.7 (a) Free volume hole size <vh> of perfluornated networks compared with 

alkylated16 networks. (b) Logarithm of oxygen gas diffusivity of perfluorinated and 

alkylated16 networks plotted as function of 1/<vh>. 

 Logarithm of gas diffusivity should change linearly as a function of 1/<vh> 

according to equation 6, and it is well known that elastomers do obey this relationship.23 

Figure 3.7(b) shows that both perfluorinated and alkylated networks show deviation from 

Cohen Turnbull relationship, but the deviation is more pronounced in perfluorinated 

networks. At lower free volume (i.e. higher 1/<vh>), the networks have lower gas 

diffusivities than what their <vh> value suggests, i.e. they are showing negative deviation 

from Cohen Turnbull model. Again, this deviation is more pronounced for perfluorinated 

networks as can be seen from Figure 3.7(b). During oxygen transport through a material, 
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the oxygen molecules occupy free volume holes and jump or hop between free volume 

holes towards the region of lower oxygen partial pressure. In the case of elastomers (Tg < 

room temperature), the higher segmental motions of the chains make the free volume 

holes dynamic and are redistributed, which aids in transport.34 Whereas, in the case of 

glasses (Tg > room temperature), the free volumes holes are frozen-in or static, and the 

diffusion happens by penetrant molecules hoping between different static free volume 

holes due to thermal rearrangement of chains aided by sub-Tg relaxations.34, 38 Therefore, 

Haraya observed that when the logarithm of gas diffusivity is plotted as a function of the 

inverse of free volume, rubbery polymers show a larger slope when compared to glassy 

polymers, i.e. changes in free volume have a more significant effect in elastomers than in 

glasses.34 It can be assumed that, in case of these perfluorinated or alkylated networks, 

the free volume pockets around these hydrophobic moieties are static in nature, i.e., 

though these networks are elastomeric, the free volume pockets around hydrophobic 

moieties cannot be redistributed through the network. Hence, the oxygen diffusivity of 

these networks (up to dangling chain length of 6, i.e., lower two data points for 

perfluorinated and lower four data points for alkylated in Figure 3.7(b)) show lower 

values than what they are supposed to give according to Cohen Turnbull equation. 

Tanaka et al observed this under prediction or downward deviation from Cohen Turnbull 

model in glassy polymers.39-40 

After dangling chain length of 6, there is an upswing in oxygen diffusivity, (i.e., 

third data point from below for perfluorinated and fourth data point from below for 

alkylated).  This upswing can be assumed as a transition where the free volume pockets 

start to percolate. Once the free volume pockets started to percolate, oxygen diffusivity 
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values started to increase tremendously when free volume was increased (by changing the 

length of dangling moiety). This can explain the deviation from the Cohen Turnbull 

model for top three and top four data points for perfluorinated and alkylated networks 

respectively. Percolation of free volume pockets has been previously used to explain the 

tremendous increase in diffusivity values seen in highly glassy polymers.41-43 In order to 

understand this free volume percolation phenomenon, an idealized lattice-like two 

dimensional model was created assuming all trans configurations as shown in Figure 3.8. 

The distance between alternating junction points containing perfluorinated dangling 

moiety is compared to the length of the perfluorinated dangling moiety. For networks f2 

and f4 the length of perfluorinated moieties are way smaller than the distance between the 

alternating junction points. Therefore, the free volume pockets around perfluorinated 

dangling moieties which are static cannot aid in diffusion significantly. For network f6, 

the length of dangling moiety approaches the distance between alternating junction points 

if an ideal 2D lattice like model is assumed. This indicates that beyond f6, the 

perfluorinated dangling moieties will be close enough for the free volume pockets around 

them to start merging or percolating, which results in higher than expected oxygen 

diffusivity values for networks f6, f8 and f10.  
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Figure 3.8 Idealized two-dimensional lattice like model of the perfluorinated thiol-ene 

networks. The distance between alternating junctions containing perfluorinated moiety is 

compared to the length of perfluorinated dangling moieties.  

Interestingly, the length of dangling moiety did not have any effect on water 

vapor permeability (Figure 3.9(a)). This can be explained by the compromise between 

increases in water vapor diffusivity compensated by decreases in water vapor solubility. 

As discussed earlier, increasing the length of perfluorinated dangling moiety led to 

increases in free volume, and Figure 3.9(b) shows improvements in water vapor diffusion 

rates (i.e, the initial part of the curve) as a function of the length of dangling moiety 

because of the enhancements in free volume. But increasing the amount of hydrophobic 

perfluorinated moieties led to decreases in the amount of water sorbed by the networks, 

i.e. water vapor solubility of the networks decreased as a function of the length of the 

dangling moiety. Thus, the water vapor diffusivity increase was compensated by water 

vapor solubility decrease, and therefore their product, i.e., water vapor permeability 

remained constant across the series of networks. This increase in hydrophobicity or 

reduction in water vapor solubility is further explained by the gradual increase in water 
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contact angle as a function of the length of perfluorinated dangling moiety incorporated 

into the network (Figure 3.9(c)). But most importantly, these hydrophobic networks 

(water contact angle > 100°) can still let water vapor permeate through them at high rates. 

Water vapor permeability of these hydrophobic networks are in the range of 4000 

Barrers, i.e., these perfluorinated elastomers are breathable but would not swell when 

exposed to water.        

3.5 Conclusions 

 Novel perfluorinated thiol-ene elastomers were synthesized using easy 2-step UV 

synthesis. Fluorine content and the network properties were altered by changing the 

length of perfluorinated dangling moieties within these networks. The length of dangling 

moieties did not have any effect on the Tg of the networks, and Tg was mainly controlled 

by the network scaffold. The fast reaction kinetics of thiol-ene chemistry locked in the 

perfluorinated moieties within the network scaffold and prevented phase separation, and 

the repulsive interaction between the hydrophobic perfluorinated moieties and polar 

backbone resulted in creation of huge free volume pockets within the networks, and 

PALS analysis showed that the sizes of these free volume holes increased with increasing 

length of perfluorinated dangling moiety. As expected, perfluorinated dangling moieties 

created more free volume in the networks than the alkylated dangling moieties. Because 

of this free volume effect, the networks showed an exponential increase in oxygen 

permeability values as a function of the length of perfluorinated dangling chain. Oxygen 

diffusivity values of the networks did not obey Cohen Turnbull model. Static free volume 

and percolation of free volume as hole sizes increased, was used to explain the deviation, 

and a 2D lattice like model was used to explain this behavior. Perfluorinated chain length 
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did not show any effect on water vapor transport properties, because the increase in 

diffusivity (due to free volume) was compensated by the decrease in solubility, which 

was explained using water sorption analysis.        

 

Figure 3.9  (a) Water vapor permeability of the perfluorinated networks plotted as a 

function of length of dangling moiety. (b) Water sorption characteristics of the networks 

obtained from DVS analysis. (c) Water contact angle of the networks plotted vs. length of 

dangling moiety  
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CHAPTER IV – PREPARATION OF HYBRID THIOL-ENE ELASTOMERIC 

NETWORKS CONTAINING PEG AND PERFLUORINATED MOIETIES 

4.1 Abstract 

Thiol-ene networks containing perfluorinated and poly(ethylene glycol) (PEG) 

dangling moieties were synthesized using a 2-step synthetic procedure. Modified 

trifunctional thiol crosslinkers (4T-PEG, 4T-f6) containing PEG and perfluorinated 

dangling moieties respectively were prepared using Thio-Michael addition reaction, 

where a four-functional thiol (4T) was reacted with a functional acrylate (PEG and 

perfluorinated). Hybrid networks were then prepared by varying the ratio of 4T-PEG:4T-

f6 and UV crosslinking them with a tri-functional ene (TTT), while maintaining 1:1 

thiol:ene stoichiometry, which resulted in a series of networks having varying amounts of 

PEG and fluorine contents in them. Increasing the PEG content resulted in decreases in 

glass transition temperature due to the more flexible nature of PEG dangling moieties. 

PALS analysis showed that with increasing PEG content, the average free volume hole 

size within the networks decreased. This is because increasing the ratio of PEG:fluorine 

content resulted in a contraction of the networks brought about by increased attractive 

interactions. Increasing the PEG content, resulted in increases in water vapor 

permeability of the networks due to increases in hydrogen bonding interactions. Gas 

transport analysis showed that with increasing PEG content, CO2 solubility increased 

because of the Lewis acid-base interactions between CO2 and PEG moieties. Addition of 

PEG increased both CO2 permeability and selectivity, over N2, of the networks. 
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4.2 Introduction 

Polymer membranes for gas separation is a fast-growing industry. Within that, 

CO2 gas separation is one of the most targeted sectors. CO2 separation is commercially 

very relevant because it is required for natural gas purification, power plant flue gas 

capture, hydrogen purification etc.1-5 Presence of ether or amide groups in membranes 

can improve its CO2 solubility because of the Lewis acid - Lewis base type interaction 

between these functional groups and CO2.
6-8 Therefore, designing amorphous membranes 

containing ether or amide groups can improve CO2 gas separation performance.9-16 

Previously, our group showed that thiol-ene chemistry can be utilized to synthesize a 

family of PEG-containing thiol-ene networks of varying cross-link densities. These PEG 

containing thiol-ene membranes showed good CO2 gas selectivity performance.16 Recent 

studies in our group have also identified the amount of PEG required in membranes for 

CO2 solubility saturation. In addition to selectivity, another important performance 

criterion, required for membranes, is high permeability. Kwisnek et al from our group 

showed that using thiol-ene chemistry, networks containing long alkyl dangling moieties 

can be synthesized, where the fast reaction kinetics of thiol-ene chemistry17-18 “locks-in” 

the incompatible moieties, thereby preventing phase separation.19 Using a similar 

strategy, in the previous chapter, we discussed the synthesis and properties of thiol-ene 

networks containing long perfluorinated moieties. The repulsive interaction between the 

long perfluorinated dangling chains and the backbone resulted in networks with very high 

free volume hole size and permeability. In the present work, the goal was to create hybrid 

thiol-ene networks containing dangling PEG and perfluorinated moieties and to study 
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how the concentration of these moieties affects chain mobility, free volume, and transport 

properties.  

4.3 Experimental 

4.3.1 Materials 

Thiol monomer pentaerythritol tetrakis(3-mercaptopropionate) (4T) was provided 

by Bruno Bock Thiochemicals. Ene monomer 1,3,5-Triallyl-1,3,5-triazine-

2,4,6(1H,3H,5H)-trione (TTT), photoinitiator 2,2-Dimethoxy-2-phenylacetophenone 

(DMPA), nucleophilic catalyst di-n-butyl amine (DBA), and poly(ethylene glycol) 

methyl ether acrylate (PEG-Ac) were obtained from Sigma-Aldrich. 2-perfluorobutyl 

ethyl acrylate (f6) was obtained from Fluoryx Labs (Carson City, NV). All the chemicals 

were used as received. Figure 4.1 shows the chemical structures of all the aforementioned 

molecules.  

 

Figure 4.1 Chemical structures of perfluorinated acrylate (f6), PEG acrylate (PEG-Ac) 

thiol (4T), ene (TTT) monomers, photo-initiator (DMPA) and nucleophilic catalyst 

(DBA). 
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4.3.2 Synthesis of perfluorinated and PEG modified thiol monomers  

4T-f6 and 4T-PEG monomers shown in Figure 4.2 were synthesized using thio-

Michael reaction. The quantities of reactants are taken such that only thiol moiety of 4T 

in average gets reacted to the acrylate to produce a trifunctional thiol monomer 

containing PEG or perfluorinated dangling moiety (Figure 4.2). The synthetic procedure 

is explained in detail in Chapter 3. Prepared 4T-PEG modified monomer was analyzed 

using 1H NMR to confirm the modification. The procedure of this analysis is explained in 

detail in Chapter 3.  

 

Figure 4.2  (a) Network components. (b) Schematic of a hybrid PEG and perfluorinated 

thiol-ene network.  
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4.3.3 Synthesis of Hybrid Thiol-Ene Elastomers 

 Appropriate amounts of 4T-f6 and 4T-PEG modified monomers were reacted 

with TTT while maintaining 1:1 thiol:ene stoichiometry, to obtain network films. Even 

though perfluorinated and PEG moiety were very different in their chemical nature, since 

they were covalently bonded to a common entity, i.e. 4T (Figure 4.2(a)), the modified 

monomers 4T-f6 and 4T-PEG readily dissolved into each other. Five networks were 

synthesized having varying amounts of PEG and perfluorinated contents using the 

synthetic procedure outlined in Chapter 3. Table 3.1 shows the list of networks 

synthesized and Figure 4.2(b) shows a schematic of the network.  

Table 4.1 List of hybrid thiol-ene networks and their PEG and fluorine contents 

Sample PEG content (wt%)  Fluorine content (wt%) 

PEG00 0 16.19 

PEG08 8.44 11.76 

PEG16 16.363 7.61 

PEG24 23.824 3.69 

PEG30 29.486 0.72 

 

Thermal analysis of the networks was performed using a differential scanning 

calorimetry - TA Q2000. Heat-cool-heat program was employed, i.e., 35 °C to 100 °C at 

a ramp rate of 10 °C/min, 100 °C to -70°C at 5 °C/min, and -70 °C to 100 °C at 10 

°C/min. TA data analysis software was used to process the data. Glass transition 

temperature of the networks was determined from the second heat curves.     

Average free volume hole size, <vh>, of the networks were measured using 

positron annihilation lifetime spectroscopy (PALS).  Discs having a diameter of 1 cm 
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were punched out from the films. Discs were stacked to make the thickness of 1 mm. 

Positron source, 30 μCi 22Na, enclosed in an Al foil was sandwiched between two stacked 

discs. A detailed description regarding PALS experimental procedure can be obtained 

from Chapter 3.  

Each PALS spectrum was collected for 1 hour to get at least 1 million incidences 

using Ortec Positron Lifetime System (Advanced Measurement Technology, Oak Ridge, 

TN). For each sample, seven spectrums were collected at ambient conditions (i.e., 23 °C 

and 45% RH). Spectrums were fit and o-Ps lifetimes τ3 were obtained using PATFIT-88 

software to obtain <vh> values.20     

Water vapor permeability of the networks was measured using wet cup test 

method as described by ASTM E 96-95. In this method, an open mouth cup containing 

water was covered by the test sample. The edges of the sample film were sealed to the 

edges of the cup. The assembly was then placed in a 57% relative humidity chamber, 

where the 57% relative humidity was controlled by having saturated sodium bromide 

solution. Further details regarding experimental procedure and analysis can be obtained 

from Chapter 3.  

Gas permeation of the networks was studied using custom-built constant volume 

variable pressure (CVVP) instrument described elsewhere by our group.15 Networks were 

degassed for at least 12 hours prior to permeation experiments. In the upstream, gas was 

purged at a pressure of ~3 atm.  Increase in pressure in the downstream was recorded as a 

function of time. Permeability P of the networks were calculated from the steady-state 

slope of downstream pressure vs. time (dp/dt) using equation 2.    

𝑃 =
𝑉𝑑𝑙

𝑝𝐴𝑅𝑇
(

𝑑𝑝

𝑑𝑡
)  (2) 
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Where Vd is the downstream volume, l is the film thickness, p is the applied upstream 

pressure, A is the area under test, R is the universal gas constant, and T is temperature. 

The extrapolation of steady-state slope to x-axis gives the time lag values (tL), from 

which the gas diffusivity of the networks was calculated using equation 3. Gas solubility 

S can be calculated from 𝑃 = 𝐷 × 𝑆.  

𝐷 =
𝑙2

6𝑡𝐿
   (3) 

4.4 Results and discussion 

 4T-PEG monomer modification was confirmed by the 1H NMR analysis. Figure 

4.2(a) shows the disappearance of acrylate shifts at 6 ppm to confirm monomer 

modification.19, 21  

 

Figure 4.3  (a) 1H NMR spectra of 4T-PEG modified monomer. (b) Picture of a 

transparent hybrid PEG and perfluorinated thiol-ene network film.  
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 The hybrid thiol-ene networks obtained through this 2-step strategy yielded clear 

and transparent films and Figure 4.2(b) shows an example of a film produced through this 

method. This means, no visible phase separation was seen, even though two incompatible 

entities such as PEG and perfluorinated moieties were varied within the system. This 

again demonstrates the benefits of this 2-step approach and the fast reaction kinetics of 

thiol-ene chemistry.18-19, 21-22 Since PEG and perfluorinated moieties are covalently 

bonded to the thiol monomer 4T (through the first step), during the thiol-ene curing (i.e., 

the second step), the fast reaction kinetics of thiol-ene chemistry prevents the phase 

separation, and locks-in PEG and perfluorinated dangling moieties within the network 

scaffold.    

 

 

Figure 4.4  (a) Second heat thermograms of the hybrid networks obtained from DSC 

analysis (endo up). (b) Glass transition temperature of the hybrid networks plotted vs. 

PEG content 

 DSC results further proved the homogeneity of the networks, as only a single 

glass transition temperature was seen (Figure 4.4(a)) for all networks. Also, no 

endothermic peaks were seen, i.e., amorphous networks were obtained. The absence of 
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endothermic peaks also indicates that thiol-ene curing reactions resulted in close to 100% 

conversion.  

Figure 4.4(b) shows a gradual decrease in Tg of the networks as PEG 

concentration was increased (or as fluorine concentration was decreased).  It is well 

known that the flexible nature of PEG moieties can plasticize the material,23 and this led 

to a gradual decrease in Tg of the networks as PEG concentration was increased. Addition 

of 30 wt% PEG resulted in a Tg decrease of ~25 °C. 

 

Figure 4.5 Average free volume hole size of the networks <vh> plotted as a function of 

PEG content.  

In the previous chapter, the effect of perfluorinated moieties to create high 

amounts of free volume was discussed in detail. The repulsive interaction between 

perfluorinated dangling moieties and polar backbone is the reason why high free volume 

networks were created. Whereas, in this study as perfluorinated dangling moieties are 

gradually replaced with PEG moieties, <vh> measured from PALS analysis decreased as 
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shown in Figure 4.5. Unlike perfluorinated moieties, PEG moieties can have attractive 

polar interactions with the polar moieties in the thiol-ene backbone, which will reduce the 

average free volume hole size of the networks as shown in the schematic of Figure 4.2(b).   

 

Figure 4.6 (a) Gas permeability, (b) Gas solubility, and (c) Gas diffusivity of the 

networks as a function of PEG content  

 Figure 4.6(a) shows that PEG concentration only influenced CO2 permeability. 

For all other gases, PEG concentration did not have any significant effect on gas 

permeability.  For CO2, the permeability increased till 15 w% PEG, and after that CO2 
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permeability leveled off. To get a deeper understanding, decoupled values, i.e., 

diffusivity and solubility are plotted as a function of PEG concentration.  

Network modification did not affect gas solubility, except for CO2 solubility 

(Figure 4.6(b)). Gas solubility scaled as a function of its critical temperature, i.e., CO2 gas 

owing to its higher critical temperature has high solubility. Also, favorable interactions 

between gas molecules and network moieties can result in increase of gas solubility, and 

it is known that Lewis acid-base type interactions exist between CO2 and PEG.7-8 

Therefore, as PEG concentration was increased, CO2 solubility of the hybrid networks 

increased, and the effect leveled off beyond 15 wt% CO2 (Figure 4.6(b)).  

Whereas, surprisingly, PEG concentration did not have any effect on gas 

diffusivity (Figure 4.6(c)). Figure 4.5 shows that when PEG content in the network was 

about 30% wt%, <vh> of the networks decreased by 4 times compared to a network 

containing no PEG, i.e., only perfluorinated dangling moieties. It is well known that gas 

diffusivity depends on free volume in the material.24-30 If that is the case, gas diffusivity 

should have shown a clear decreasing trend with increasing PEG concentration. But in 

chapter 3, we discussed the static nature of free volume around perfluorinated moieties 

which results in a negative deviation from Cohen Turnbull model24, i.e., lower values of 

gas diffusivity than what its free volume suggests. Also, Figure 4.4 shows a clear 

decrease in Tg of the networks with increasing PEG concentration. That is, as the PEG 

concentration is increased, chain mobility of the networks increases, which will aid in the 

redistribution of free volume, which in turn would aid gas diffusivity.31 Therefore, it can 

be said that the decreases in free volume were compromised by the increases in chain 

mobility, which thereby resulted in no effect of PEG concentration on gas diffusivity.    
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Figure 4.7 Robeson plot for CO2/N2 gas pair.32  Data points for hybrid PEG 

perfluorinated thiol-ene networks are compared with that of perfluorinated thiol-ene 

networks. 

Selectivity for CO2 with respect to N2, α, was calculated for each network using 

equation 4. 

  α = PCO2/PN2                                                                                 (4) 

where PCO2 is CO2 permeability and PN2 is N2 permeability. Selectivity values were 

plotted as a function of CO2 permeability in Figure 4.7.  It can be seen that for this series, 

as PEG concentration was increased, both permeability and selectivity for CO2 increased 

because PEG concentration did not have any effect on N2 permeability. Therefore, the 

networks were moving toward the Robeson upper bound.  All PEG containing networks 

in this series had a CO2 selectivity value greater than 30, which can make them suitable 

for CO2 separation membrane applications.3 
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Figure 4.8 Water vapor permeability of the networks plotted as a function of PEG content 

of hybrid PEG and perfluorinated networks 

 Water vapor permeability of the hybrid networks increased as PEG concentration 

was increased (Figure 4.8), because of the enhancements in hydrogen bonding sites 

brought about by increasing PEG concentration, which in turn will increase water 

sorption, and thereby water vapor permeability.  

4.5 Conclusions 

 Novel hybrid thiol-ene networks containing hydrophobic perfluorinated and 

hydrophilic PEG moieties were synthesized using a two-step approach. DSC analysis 

showed a single Tg in all networks and thereby confirmed that there was no phase 

separation in the networks. Tg of the networks decreased with increasing PEG 

concentration because of the plasticization effect of PEG moieties. <vh> of the networks 

decreased with increasing PEG concentration because of the increase in the number of 

attractive interactions as a result of an increase in the concentration of polar PEG 

moieties. Water vapor permeability of the networks increased with increasing PEG 
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concentration because of the affinity of PEG moieties for water. Gas permeability studies 

revealed that these networks have high CO2 permeability and high selectivity for CO2 

over N2, thereby making them suitable for CO2 separation applications.    
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CHAPTER V – EFFECT OF MOISTURE INGRESS ON FREE VOLUME, OXYGEN, 

AND WATER VAPOR TRANSPORT PROPERTIES OF EPOXY-AMINE 

NETWORKS 

5.1 Abstract  

A series of five different epoxy-amine networks were synthesized using 1:1 

epoxide to amine hydrogen stoichiometry. The series consisted of rubbery networks 

having Tgs of -11 °C, -8 °C to glassy networks having Tgs of 61 °C, 136 °C, and 227 °C. 

Moisture sorption characteristics of the networks were evaluated using dynamic vapor 

sorption (DVS) analysis. The effect of water sorption on Tg was studied using RH-DMA 

analysis. Positron Annihilation Lifetime Spectroscopy (PALS) was used to understand 

the effect of water sorption on free volume. A novel PALS humidity chamber was built to 

maintain and control the required humidity during PALS experiments on epoxy-amine 

networks sorbed with water. For rubbery networks, water sorption did not show any 

effect on the average free volume hole size <vh> measured using PALS experiments. 

Whereas, glassy networks showed a V-shaped trend when <vh> was plotted as a function 

of RH, i.e., free volume gradually decreased with increasing relative humidity, and 

beyond 75% RH, <vh> increased. The competition between two processes, i.e., water 

molecules filling frozen-in free volume holes and plasticization of chains caused by water 

molecules were used to explain the V-shaped trend. The oxygen permeability of the 

glassy networks also showed a V-shaped trend, when it was plotted vs. relative humidity. 

The effect of water sorption on oxygen permeability was more complex as the sorbed 

water molecules affected both the oxygen solubility and diffusivity in different ways. 
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Whereas, water vapor permeability of glassy networks was unaffected until 75% RH, and 

beyond 75%RH, swelling of networks led to an increase in water vapor permeability.        

5.2 Introduction  

Organic coatings which are implemented to prevent or resist corrosion of metals 

need to have sufficient barrier properties against corrosive species such as oxygen, water, 

and electrolytes.1 Epoxy-amine networks are often used as the matrix or the binder 

material for the primer or the intermediate coating layers which are tasked to prevent 

corrosion at the metal surface. Though most commercially used epoxy-amine chemistry 

based coatings have many beneficial characteristics such as good adhesion to metal, high 

hardness, and good chemical resistance, the presence of polar moieties and hydrogen 

bonding sites makes them absorb moisture, with maximum reported moisture content 

ranging between 1-7 wt%.2-4 The absorbed moisture not only affects the water transport 

itself but also can affect the oxygen and electrolyte transport in a complex manner. There 

have been numerous previous reports that have tried to correlate factors such as network 

topology, polarity, and chain dynamics on moisture sorption and kinetics in epoxy-amine 

networks.5-7 But an actual anti-corrosion application has mixed transport involving three 

penetrants, i.e. oxygen, water, and electrolytes which makes this transport phenomenon 

heavily convoluted. Also, the final coating formulation might contain additional 

substances such as pigments, solvents, fillers, and additives which further adds to the 

complexity. Hence the elucidation of the effect of epoxy-amine network structure and 

topology on mixed gas transport involving water and oxygen is still not available in the 

literature.    
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It is well known that the transport of small molecules such as oxygen etc. has a 

good correlation to the free volume in the material.8-12 Whereas free volume or molecular 

level imperfections in networks are in turn affected by factors such as chain rigidity13-14, 

cross-link density15-20, intermolecular interactions or polarity of the network21 etc. In 

addition to these network parameters, the presence of sorbed water22-25 or solvent also 

affects the free volume of the material. The effect of water sorption or relative humidity 

on free volume has been mostly been studied on high barrier linear polymers such as 

polyamides22, 24, ethylene-vinyl alcohol23 copolymer etc. which are used as packaging 

films, or on highly permeable polymer like poly(arylene ether sulfone)25 which is used 

for membrane application. Macqueen et al observed inconsistencies in the trends for free 

volume in epoxy-amine networks prior to and post saturation of networks with water. 

Thus, it can be said that the effect of water sorption on free volume of epoxy-amine 

networks is still not clear. Therefore, the goal of this study was to elucidate the effect of 

water sorption on free volume, oxygen, and water vapor transport properties of epoxy-

amine networks having different structures.      

5.3 Experimental 

5.3.1 Materials 

Cycloaliphatic epoxy resin, Eponex™ 1510 (E1510, epoxy equivalent weight 

(EEW) = 205-215 g/eq), and diglycidyl ether of bisphenol A (DGEBA) epoxy resin, 

Epon™ 825 (E825, EEW = 175-180 g/eq), were supplied by Hexion (Momentive 

Specialty Chemicals). Diamine crosslinking agents Jeffamine EDR 148 (amine hydrogen 

equivalent weight (AHEW) = 74 g/eq), Jeffamine ED900 (AHEW = 250 g/eq), and 

Jeffamine THF100 (AHEW = 260 g/eq) were supplied by Huntsman Corporation. 
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Whereas 4,4’-diaminodiphenyl methane (DDM, AHEW = 49.57 g/eq) was supplied by 

Acros Organics, and 4,4’-diaminodiphenyl sulfone (DDS, AHEW = 62.075 g/eq) was 

supplied by TCI America. Figure 5.1 displays their chemical structures. The chemicals 

were used as received. 

5.4 Network preparation 

The network was formulated on 1:1 stoichiometry (epoxy to amine-hydrogen). 

Table 5.1 shows the epoxy resin and diamine crosslinker combinations used in this study. 

Appropriate quantities of epoxy resin and diamine crosslinker were taken and hand 

stirred prior to mixing at high speeds using a FlackTek SpeedMixer. Diamine 

crosslinkers DDM and DDS are solids at room temperature, therefore compositions 

containing these crosslinkers were heated in an oven at 150 °C with periodic stirring until 

a homogeneous mixture was obtained. The monomer mixture was then placed in a 

vacuum oven at low pressure for approximately five minutes to remove air bubbles. 

Networks were prepared by curing the monomer mixtures while sandwiched between two 

glass plates with Teflon spacers having a thickness of ~300 µm placed at the corners 

between the plates to ensure uniform film thicknesses.  Prior to the addition of monomer 

mixture, the plates were sprayed with a thin layer of silicone-free release agent and then 

placed in an oven pre-heated to the temperature corresponding to the primary cure 

temperature of that particular composition (Table 5.1).  The degassed epoxy-amine 

mixture was then poured onto the bottom glass plate before slowly applying the top plate 

to avoid inclusions of air bubbles.  The assembly was then placed in an oven and the cure 

profile shown in Table 5.1 was followed. After the curing process, the assembly was 

allowed to cool slowly to room temperature before separating the plates and removing the 
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solid epoxy-amine films. Larger volume samples were produced by curing bars in 

silicone molds with wells having dimensions of 76 x 15 x 12.7 mm (L x W x T).  

5.5 Characterization  

 Water Sorption Analysis. Water sorption characteristics of the networks were 

studied using a TA Instruments Q5000 Sorption Analyzer. Circular discs having 

diameters of 6.3 mm and ∼0.3 mm thickness were placed in quartz pans and subjected to 

a drying at 60 °C and 0% RH, following which the sorption characteristics were 

measured at 5, 22, 44, 57, 75, or 95% RH environments at 25 °C. At each RH condition, 

the weight change (%) was monitored until a saturation or near-equilibrium stage was 

achieved. 

 

Figure 5.1 Chemical structure of the monomers used in this work 
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Table 5.1 Epoxy-amine networks prepared for this study and the curing profiles that were 

employed 

Epoxy-Amine 

Combination 

Primary Cure 

Temperature (°C) 

Primary Cure 

Time (hours) 

Secondary Cure 

Temperature (°C) 

Secondary Cure 

Time (hours) 

E1510-THF100 35 5 75 24 

E1510-ED900 35 5 75 24 

E1510-EDR148 60 2 120 2 

E1510-DDM 90 2 150 1 

E825-DDS 150 2 250 1 

 

The dynamic mechanical analysis was carried out on free films with 

approximate dimensions of 12 x 5 x 0.3 mm on a TA instruments Q800 DMA outfitted 

with a RH controller.  Single frequency temperature ramp testing was conducted in 

tensile mode with a heating rate of 1 °C/ minute from 15 – 115 °C, a strain rate of 0.1%, a 

pre-load force of 0.01 N, and frequency of 1 Hz.  Storage Modulus (Eʹ), Loss Modulus 

(Eʹʹ), and Tan Delta (δ) signals were monitored over the entire temperature range.  

Free Volume Analysis. Average free volume hole size <vh> of the networks, at 

different relative humidity conditions, were measured using positron annihilation lifetime 

spectroscopy (PALS). Discs having a diameter of 1 cm were punched out from the 

network films and were stacked to form thicknesses of 1 mm. Positron source, 30 μCi 

22Na, was sandwiched between two stacked discs, and the sample source assembly was 

wrapped using a Teflon tape and was placed inside a custom-built PALS humidity 

sample chamber (Figure 5.2(a)). The sample chamber was placed between two 

photomultiplier tubes (PMT) which are equipped with BaF2 γ-radiation sensitive 

scintillators. PMTs are tuned such that one PMT can detect γ quanta and convert that into 

a signal associated with positron emission and the other with its annihilation. A 
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multichannel analyzer compiled the coincidences, i.e., the time difference between birth 

and death signal of positrons (lifetimes), with a time resolution of 290 ps.     

Positrons thermalize in the sample and can form positronium species with 

secondary electrons. The longer lived ortho-positronium (o-Ps) species localizes within 

the less electron dense region, i.e. free volume holes within the sample. o-Ps gets 

annihilated when it gets “picked off” by an electron from the sample that has opposite 

spin and this phenomenon is called the pick-off mechanism. Therefore, the lifetime of the 

o-Ps is determined by the electron density of the sample and physical size of the free 

volume hole in which it is localized.  o-Ps lifetime τ3 was related to free volume hole 

radius R in accordance with the semi-empirical equation derived by Tao (equation 1).26     

𝜏3 = 0.5 [1 −
𝑅

𝑅0+𝑅
+

1

2𝜋
sin (

2𝜋𝑅

𝑅0+𝑅
)]

−1

 𝑛𝑠  (1) 

Where, 0 = 0.1656 nm is the empirically derived electron layer thickness.26 Assuming that 

the free volume holes are spherical, average free volume hole size of the networks can be 

calculated as follows, < 𝑣ℎ > =
4

3
𝜋𝑅3. 

 Prior to PALS experiment, the sample was equilibrated for 24 hours in that RH 

condition by placing the sample discs in appropriate RH chambers.  The equilibrated 

sample (along with the source) was then placed in the PALS humidity chamber. An 

automated technique was devised to accurately maintain the required RH% in the 

chamber (Figure 5.2(b)). In this technique, there is a constant influx of nitrogen gas 

bubbled through DI water (wet N2) into the chamber. RH% is monitored at the gas 

outflux from the chamber by a humidity sensor. If the RH value goes beyond the set 

value, the humidity controller (which is connected to the humidity sensor) activates the 



 

126 

solenoid valve, which then lets dry nitrogen into the chamber. The dry nitrogen then 

brings down the RH% within the chamber, and once the RH% goes below the set value, 

the humidity controller turns off the solenoid valve, thereby stopping the influx of dry 

nitrogen, and the cycle continues. This automated dynamic technique accurately 

maintained any RH% value between 0 – 80% range. For tests at RH greater than 80%, a 

sponge containing a saturated salt solution or DI water was placed inside completely 

enclosed and sealed PALS sample chamber (Figure 5.2(c)). For RH values of 85% and 

99%, sponge contained a saturated potassium chloride solution and DI water respectively.          

At each relative humidity, seven spectra were generated. Each PALS spectrum 

was collected for one hour to get at least 1 million incidences using Ortec Positron 

Lifetime System (Advanced Measurement Technology, Oak Ridge, TN). Spectra were fit 

and deconvoluted using PATFIT-88 software assuming three lifetime components, to 

obtain τ3, and thereby <vh> values.27      

Oxygen Permeation was measured using a Mocon OX-TRAN® 2/21 instrument. 

Experiments were conducted at 23 °C and at a broad range of RHs. Prior to the oxygen 

permeation experiment at each RH condition, the sample was pre-conditioned at that 

particular RH for 24 hours. From the experimental oxygen flux J(t) data, oxygen 

permeability P and diffusivity D values were obtained by performing a two-parameter 

least-square fit to Fick’s second law equation.    

𝐽(𝑡) =
𝑃𝑝

𝑙
[− ∑ (−1)𝑛exp (−𝐷𝜋2𝑛2𝑡/𝑙2)∞

𝑛=1 ]  (2) 

Using the solution-diffusion model, solubility S can then be calculated as 𝑃 = 𝐷 × 𝑆. 
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Figure 5.2 (a) Design of PALS humidity control chamber along with photomultiplier 

tubes (b) Automated technique devised to generate 0 – 80% RH. (c) The technique 

devised to achieve high humidities within the sample chamber (RH > 80%) 

Bulk Volume Calculations. Cured E1510-EDR148 network samples having 

dimensions of approximately 15 x 12.7 x 6 mm were prepared and their masses were first 

measured on a Mettler Toledo XS104 analytical balance. Following which the densities 

of samples were determined via Archimedes method using a density kit attachment to the 

Toledo XS104 analytical balance, where water was used as the buoyant fluid. From the 

aforementioned steps, the dry mass and the dry density of the samples were obtained, 

from which the volume of the sample was calculated. Following which the samples were 

placed in different relative humidity chambers. The samples were exposed to different 

relative humidities for approximately 3 months to ensure that moisture absorption 

reached saturation. Following which the mass and the density of the samples were 
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measured. Through this, the bulk volume change of the E1510-EDR148 network was 

obtained at different %RH conditions.  

Water Permeation Experiments. Water vapor permeability of the samples at 

different relative humidities was measured using desiccant cup test method described by 

ASTM E 96-95. In this method, an open mouth cup containing desiccant was covered by 

the test sample. The edges of the test specimen were sealed to the edges of the cup. The 

assembly was then placed in a relative humidity chamber, where the required relative 

humidity was controlled by having the appropriate saturated salt (potassium carbonate – 

43% RH, sodium bromide – 57% RH, sodium chloride – 75% RH, potassium chloride – 

85%) solution or DI water (for 99% RH) within the chamber. The mass of the cup test 

assembly was measured at periodic intervals, from which the water vapor transmission 

rate (WVTR) into the cup was calculated as follows.   

𝑊𝑉𝑇𝑅 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑝

𝑡𝑖𝑚𝑒 × 𝐴
  (3) 

Where A is the cup mouth area. The sample was allowed to equilibrate in the RH 

chamber for one day, after which the mass readings were taken at different time intervals. 

Change in mass of the cup assembly showed a linear trend as a function of time, and the 

slope of that line was used to obtain change in mass of the cup/time. Water vapor 

permeability (WVP) was calculated as follows:  

𝑊𝑉𝑃 = 𝑊𝑉𝑇𝑅 (
𝑙

∆𝑝
)  (4) 

Where, l is the sample thickness and Δp is the water vapor pressure difference across the 

film, which can be calculated from the relative humidity difference across the film. 
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Experiments were conducted in different relative humidity chambers to generate water 

vapor permeability of the samples as a function of relative humidity.     

5.6 Results and discussion 

 In this study epoxy-amine networks having different Tg values were chosen and 

Figure 5.3 shows the tan delta peaks of the networks obtained from DMA experiments 

and the figure also indicates the Tg of the networks.  DGEBA based E825-DDS (Tg = 227 

°C) was the most rigid among glassy networks, followed by the ones containing 

cyclohexyl derivative based E1510, i.e. E1510-DDM and E150-EDR148 which showed 

Tg of 136 °C and 61 °C respectively. Whereas, the networks containing long chain amine 

crosslinkers, i.e., E1510-ED900 and E1510-THF100 formed rubbery networks, because 

of lower cross-link density.    

Figure 5.4 (a-e) shows the moisture sorption kinetics of the networks at different 

%RH conditions and it also indicates the moisture content at saturation or near saturation 

for all the networks at different %RH conditions obtained from DVS analysis. In rubbery 

networks, moisture absorption reaches saturation in about 200 minutes or lesser, except 

for the highly polar E1510-ED900 at 95% RH. Whereas in glassy networks, the moisture 

absorption reaches saturation within 1000 minutes (less than a day), except for the more 

polar E1510-EDR148 which at 75% and 95% RH does not reach saturation even after 

2500 minutes of exposure, but the curve characteristics show that the moisture absorption 

is close to reaching saturation.  Figure 5.4(f) compares the moisture absorption of the 

networks. After 1-day exposure to 95% RH, comparatively more polar glassy networks 

E1510-EDR148 and E1510-DDM absorbed more than 3.5 wt% moisture. Whereas, 

E825-DDS and E1510-THF100 contained less water, i.e., 1.9 and 2.5 wt% water 
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respectively after a 1-day exposure to 95% RH. The highly polar E1510-ED900 network 

absorbs 27 wt% water at 95% RH because of the presence of long chain PEG based 

amine cross-linker, i.e., ED900. 

To study the effect of moisture on network plasticization, E1510-EDR148 

network was studied using RH-DMA experiments. Figure 5.5 shows the decrease in Tg of 

the network with an increase in relative humidity. After 2 hours of exposure to 95% RH, 

the Tg of the network was reduced to 59.4 °C compared to the dry Tg of 70 °C.     

 

Figure 5.3 Tan delta vs. temperature obtained from DMA analysis plotted for all the 

networks. Number indicates the tan delta peak, i.e. Tg. 

  



 

131 

 

Figure 5.4 Water vapor sorption characteristics of (a) E1510-EDR148, (b) E1510-DDM, 

(c) E825-DDS, (d) E1510-THF100, (e) E1510-ED900 networks at different relative 

humidities. (f) shows the water content in the samples after 1-day exposure to different 

relative humidities 
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Figure 5.5 Storage Modulus E’, Loss Modulus E”, and Tan Delta plots of E1510-

EDR148 at different RH% conditions. 

 Figure 5.6 shows the depression in Tg of the network (obtained from tan δ peak of 

RH-DMA analysis) as a function of water weight fraction in it. The water content of the 

network at different %RH conditions obtained from DVS experiments was used for the 

plot. The experimental Tg depression was compared with the Fox equation prediction28, 

which is based on equation 5.   

1

𝑇𝑔
=

𝑤𝑡1

𝑇𝑔1
+

𝑤𝑡2

𝑇𝑔2
  (5) 
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Where Tg is the glass transition temperature of the network at different hydrated states. 

𝑤𝑡1and 𝑤𝑡2 are weight fraction of water and polymer respectively in the system. 𝑇𝑔1 is 

the glass transition temperature of water which was assumed as -137 °C29 and 𝑇𝑔2 is the 

glass transition temperature of the dry network. The depression in Tg of the network 

showed a negative deviation from the Fox prediction (Figure 5.6). This negative 

deviation from Fox equation has been associated with weakening of the intermolecular 

interactions of the stiffer component by the second component.30 In the case of hydration 

of E1510-EDR148 network, it can be assumed that in addition to the dilution effect, 

bound water also disrupts the intramolecular hydrogen bonding in the network leading to 

further lowering of  Tg than what Fox equation predicts.      

 Figure 5.7(a) shows the effect of relative humidity on average free volume hole 

size of the networks obtained from PALS analysis. In the dry state, the average free 

volume hole size <vh> of the elastomeric networks, i.e., E1510-THF100 and E1510-

ED900 were greater than 140 Å³ and these values were significantly higher than that of 

the glassy networks that were analyzed in this study. Though the elastomeric networks 

had different amine crosslinkers they showed very similar free volume in the dry state 

and this can be attributed to the similarity of the chain lengths of the amine cross-linkers 

THF100 and ED900, i.e., the cross-link density or average molecular weight between 

cross-links of both the elastomeric networks were comparable, and it is well known that 

cross-link density is one of the important parameters affecting free volume in 

elastomers.15-18 Among glasses, in the dry state <vh> values correlated with network 

rigidity (Tg). i.e. E825-DDS showed a higher free volume followed by E1510-DDM and 
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E1510-EDR148, and in general, it is known that glasses with higher chain rigidity have 

larger free volume.13-14, 19-20      

 

Figure 5.6 Tg vs. water fraction of the E1510-EDR148 network compared with Fox 

equation prediction 

 In both the elastomers, moisture sorption did not have any effect on <vh> (Figure 

5.7(a)). The free volume holes in elastomers are dynamic in nature. In the case of E1510-

THF100, even at 95% RH, the network absorbs only around 2.5 wt% moisture (Figure 

5.4(d)) which probably was not enough to cause any substantial amount of swelling, and 

therefore relative humidity or moisture absorption did not have any effect on the free 

volume of E1510-THF100 network. Whereas E1510-ED900 absorbs about 27 wt% 

moisture at 95% RH (Figure 5.4(e)) and yet the free volume parameter <vh> measured by 

PALS at 85% and 99% RH surprisingly did not show any significant difference from that 
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of <vh> of E1510-ED900 measured at dry state. Swelling and plasticization of E1510-

ED900 network by >20 wt% water would have significantly reduced the Tg of the 

network. DMA analysis of dry E1510-ED900 gave a Tg value of -11 °C and if -137 °C29 

is assumed as the Tg of water, then the network containing 0.2 weight fraction of water 

will have a Tg of ~-52 °C according to  Fox equation (eq. 5)28. PALS measurements were 

performed at room temperature, i.e., 23 °C which is much greater than Tgs (< -52 °C) of 

water swollen E1510-ED900 network at 85% and 99% RH. It has been reported in the 

literature that when PALS measurements are performed at a T>>Tg, because of 

positronium bubble formation31 or because o-Ps lifetimes are comparable to the 

relaxation times of polymer,32-33 o-Ps lifetimes does not reflect the actual values of free 

volume hole sizes. Therefore, the aforementioned phenomenon can be assumed as the 

reason why RH did not have any effect on <vh> of E1510-ED900 network.         

 

Figure 5.7 (a) Average free volume hole size <vh> vs. relative humidity of the networks. 

(b) <vh> vs. water content of E1510-EDR148 and E1510-DDM. 

Whereas, the glassy networks showed a V-shaped trend for <vh> as a function of 

RH or water content (Figure 5.7). The V-shaped trend was more pronounced for E1510-
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EDR148 and E1510-DDM networks than for E825-DDS network, and this is because the 

first two networks absorb more water (>3.5 wt% after a day in 95% RH), whereas the 

later network absorbs 2.5 wt% after a day’s exposure to 95% RH (Figure 5.4(f)). The 

inherent differences in the polarity of the networks influence the moisture content in the 

networks at different RH conditions which in turn influences the free volume of the 

networks at different RH conditions. For E1510-EDR148, <vh> decreased from 74 Å³ to 

60 Å³ after 1-day exposure to 75% RH. Similarly, for E1510-DDM <vh> decreased from 

87 Å³ to 75 Å³. This decrease in <vh> was caused by 2.2 wt% and 2.4 wt% water for 

E1510-EDR148 and E1510-DDM networks respectively. This decrease in <vh> due to 

water sorption has previously been reported for linear glassy polymers such as ethylene-

vinyl alcohol copolymer (EVOH)23, polyamide 622, poly(arylene ether sulfone)25, 

aromatic polyamides24, and DGEBA based epoxy amine network34. In the 

aforementioned studies, the effect of water sorption on free volume was studied by pre-

conditioning the polymer samples at different RH conditions or exposing the samples to 

liquid water, followed by <vh> measurements using PALS experiments. Except for the 

study on EVOH23 and poly(arylene ether sulfone)25, the other studies did not discuss 

maintaining the RH condition during the PALS experiment or how they took into account 

moisture desorption or absorption that can happen during the duration of PALS 

experiment. However, in the study on polyamide 6, the authors used Fick’s law of 

diffusion and extrapolated the o-Ps lifetimes to zero time to obtain the values of <vh> at 

different RH conditions to account for moisture desorption and absorption during the 

experiments.22 Whereas in our study since RH conditions were accurately maintained, 

<vh> values remained consistent across seven hours (or seven spectrums), i.e., during 
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one PALS experiment at any particular RH conditions, consistent <vh> values were 

obtained from all seven spectrums.  

Most researchers agree that water molecules occupy the frozen-in (or static) free 

volume holes of glassy polymers which causes this decrease in <vh>,23, 25 i.e., Langmuir 

type of sorption. But they do not rule out the possibility of humidity-induced aging, i.e., 

the overall decrease in bulk volume caused by relaxation (or plasticization) of chains 

caused by water, leading to better packing22. Figure 5.8 compares the <vh> and the 

volume change of E1510-EDR148 network at different relative humidities. After 

exposure to 44% RH, there was negligible change in volume (i.e., 0.06%), whereas <vh> 

decreased from 74 Å³ to 69 Å³. This means that the 1.5 wt% (value obtained from DVS 

analysis) of water that was absorbed by E1510-EDR148 network after a 1-day exposure 

to 44% RH, mostly filled the frozen-in holes of the E1510-EDR148 network. From 44% 

to 75% RH, while the <vh> of the network decreased from 69 Å³ to 60 Å³, the volume of 

the network increased by 1%. This means that in E1510-EDR148 network, beyond 44% 

RH, in addition to the water molecules filling the pre-existing free volume holes, they 

also started to sorb into the network, i.e. Henry type sorption, which caused the increase 

in volume.  

Beyond 75% RH, <vh> of all the glassy networks increased, which creates the V-

shaped trend for <vh> as a function of RH. For the E1510-EDR148 network, the <vh> 

increased from 60 Å³ to 88 Å³ as RH was increased from 75% to 99%. This is because, 

beyond 75% RH, Henry type sorption dominates, i.e. sorbed water dissolves into the 

network causing the swelling of the networks. As water molecules swell into the network, 

they increase the distance between the chains, decrease the intermolecular interactions, 
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and thereby causing the increase in <vh> and bulk volume alike.  Figure 5.8 shows that at 

99% RH, the volume of E1510-EDR148 increased by 2.5%. Previous studies on glassy 

linear polymers such as polyamide 622, EVOH23, poly(arylene ether sulfone)25, aromatic 

polyamides24, poly(ethylene imine)/poly(acrylic acid) multilayers35 have shown this V-

shaped trend and studies on poly(vinyl alcohol)36,  and poly(propylene glycol) based 

epoxy amine network34 have shown an increase in free volume after sorption in liquid 

water. The study on EVOH showed a transition from the regime where free volume 

decreases to the regime where free volume increases, at 30% RH,23 whereas for 

polyamide 6 it was at 50% RH,22 and for aromatic polyamides at 54% RH24. In this study, 

all the networks showed a transition at around 75% RH. This difference in the region of 

transition for different polymers might be due to the differences in the amount of 

moisture absorbed by different polymers at different RH conditions, which in turn is due 

to the differences in polarity of the polymers, i.e., a more polar network might show a 

transition at a lower RH. EVOH and polyamide polymers are more polar and have more 

H-bonding sites for water compared to the glassy networks used in the present study and 

hence the linear polymers studied in the previous reports showed the transition at lower 

RHs. E1510-EDR148 and E1510-DDM both show transition at 75% RH because of the 

similar polarity of the networks, as they absorb similar levels of water at different RH 

conditions (Figure 5.4(f)), and hence the trends of <vh> as a function of water content 

(Figure 5.7(b)) looks similar for both E1510-EDR148 and E1510-DDM.              

Figure 5.9 compares the oxygen transmission of E1510-EDR148 and E1510-

DDM networks measured at different RH conditions by MOCON instrument. As 

expected, once equilibrium is attained, oxygen transmission of the E1510-DDM network 
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is much higher than that of the E1510-EDR148 because of the inherently higher free 

volume of the E1510-DDM network (Figure 5.7). To get a deeper understanding of 

oxygen transport, oxygen flux (transmission) data was fit using eq 2 as described in the 

experimental section.                

Figure 5.10 shows that, in the dry state, the oxygen permeability of E1510-

EDR148 is almost half as that of the E1510-DDM network. This difference is mainly due 

to the differences in oxygen solubility of the two networks, as there was not any 

significant difference in oxygen diffusivity. Oxygen gas sorbs in to the frozen-in free 

volume holes in glasses, and the transport happens by hoping of gas molecules between 

neighboring free volume holes towards the direction of lower chemical potential or lower 

oxygen partial pressure region.37-39 Therefore, solubility is proportional to the amount of 

free volume in the material, and hence oxygen solubility and thus the oxygen 

permeability is higher in E1510-DDM when compared to E1510-EDR148.   
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Figure 5.8 Average free volume hole size <vh> and bulk volume change of E1510-

EDR148 network plotted as a function of relative humidity. 
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Figure 5.9 Oxygen transmission of (a) E1510-EDR148 and (b) E1510-DDM network 

films measured as a function of time by MOCON instrument. 

 

Figure 5.10 Oxygen transport parameters (permeability, diffusivity, and solubility) of (a) 

E1510-EDR148 and (b) E1510-DDM vs. relative humidity. 9(c) Oxygen transport 

parameters of E1510-EDR148 vs. water content in the network. 
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Like the <vh> vs. RH (or water content) trend (Figure 5.6), there is a dip or 

minimum for oxygen permeability for both E1510-EDR148 and E1510-DDM networks 

when plotted as a function of RH (or water content) (Figure 5.10). A similar trend for 

oxygen transport vs. RH has been previously been reported for Nylon 640-41, EVOH23, 42, 

and aromatic polyamides24. In general, it is agreed that the oxygen permeability trend is 

more complex, as it is a product of diffusivity and solubility. For both E1510-EDR148 

and E1510-DDM networks, oxygen solubility decreases when relative humidity (or water 

content) is increased (Figure 5.10). As relative humidity increases, the water content in 

the networks increase, and these water molecules sorb and occupy the frozen-in free 

volume of the networks, which means there is less free volume available for oxygen 

sorption and this causes the decrease in oxygen solubility for both the networks when RH 

is increased. A similar trend for oxygen solubility vs. RH was seen in aromatic 

polyamides.24  

 The water sorption did not have any effect on oxygen diffusivity for the E1510-

DDM network (Figure 5.10(b)), whereas 44% RH (or 1 wt% water sorption) caused 

~30% decrease in oxygen diffusivity for the E1510-EDR148 network (Figures 5.10(a) 

and 10(c)). The conformational changes and chain motions let gas molecules hop 

between different frozen-in (or static) free volume holes.43 In the case of E1510-EDR148, 

since the free volume is lesser, even 1 wt% water probably fills up most of the free 

volume holes, which probably increases the average distance between the remaining free 

volume holes, and therefore increasing the hoping or jump distance for oxygen molecules 

which caused the decrease in oxygen diffusivity at 44% RH (Figure 5.10(a)). Whereas, in 

the case of E1510-DDM, since the free volume is higher, to begin with, the average 
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hopping distance or jump distance for oxygen gas molecules remains constant even 

though water molecules fill some free volume holes, which explains the reason why 

water sorption did not have any effect on oxygen gas diffusivity of E1510-DDM network.   

Beyond 44% RH, oxygen diffusivity through E1510-EDR148 network increased. 

As the chain motions increase, the activation energy required for oxygen gas molecules to 

hop between free volume holes decreases and therefore increasing the oxygen 

diffusivity.43 It can be hypothesized that in the case of E1510-EDR148, water starts to 

sorb into the network beyond 44% RH disrupting the intermolecular Hydrogen bonding, 

which caused the improvements in chain dynamics resulting in oxygen diffusivity 

upswing. As discussed earlier this Henry-type sorption also caused volume increase 

beyond 44% RH (Figure 5.8) in E1510-EDR148 network.  

 

Figure 5.11 Effect on relative humidity on (a) water vapor transmission and (b) water 

vapor permeability in E1510-EDR148 and E1510-DDM networks. 

Figure 5.11(b) shows that there is no significant difference between the water 

vapor permeability values of E1510-EDR148 and E1510-DDM networks up till 85% RH. 

Also, RH had no significant effect on water vapor permeability up till 75% RH, and 



 

143 

beyond 75% RH, water vapor permeability increases. Similar trends were seen in EVOH 

polymers, but the upswing in water vapor permeability happened at a much lower RH.42  

This trend is different from that of oxygen permeability vs. RH trend. The water 

molecules that are sorbed into the free volume holes will not act as a barrier for water 

transport, whereas they do reduce oxygen sorption, and hence water vapor permeability 

remains almost constant up till 75% RH. Beyond 75% RH, higher water absorption 

results in network swelling which results in increased free volume, and thereby the water 

vapor permeability upswing beyond 75% RH.    

5.7 Conclusions 

 A comprehensive study on the complex effect of water sorption on free volume, 

oxygen, and water vapor permeability of epoxy-amine networks was performed. In 

glasses, free volume showed a V-shaped trend when plotted against water content. The 

decrease in free volume was caused by the filling of free volume holes by water 

molecules. Beyond a certain limit, further ingress of water molecules into the network 

resulted in swelling which caused the increase in free volume and thereby the V-shaped 

trend.  

 The oxygen permeability of the E1510-EDR148 network showed a V-shaped 

trend when plotted as a function of water content. But the trend was more complex as 

water sorption affected both oxygen solubility and oxygen diffusivity. The Langmuir-

type sorption of water, i.e. filling of free volume holes by water molecules reduced the 

oxygen solubility because of the reduction in free volume spaces for oxygen sorption. 

Initially, i.e., at lower water content, oxygen diffusivity also decreased for E1510-

EDR148 because of the increase in average jump distance or hoping distance for oxygen 
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molecules, as the water molecules filled most of the free volume holes. With further 

ingress, the water molecules started to penetrate the network (i.e., Henry-type sorption) 

and disrupt the intermolecular interactions and plasticize the chains, leading to an 

increase in oxygen diffusivity values.  

     Water vapor permeability values remained almost constant until the networks started 

to swell (i.e., for E1510-EDR148 and E1510-DDM up till 75% RH). Because the water 

molecules which fill the free volume holes do not act as barrier for water vapor transport. 

Whereas, beyond 75% RH, as the networks started to swell or as the free volume started 

to increase, water vapor permeability increased.  
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