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ABSTRACT 

This research represents an effort to deliver a new fundamental understanding of 

how polymer matrix characteristics influence corrosion protection of organic coatings, in 

particular the performance of corrosion inhibitor-containing primers.  By modifying the 

structural and compositional features of an epoxy-amine matrix which commonly serves 

as the binder for protective coatings, the thermal/mechanical, adhesion, and transport 

properties which govern coating performance and inhibitor release were altered in such 

ways that directly influenced protection efficacy.  The projects discussed herein detail 

three distinct approaches towards systematically varying the resulting thermoset network 

characteristics and observing the impact of those characteristics on transport behaviors 

and corrosion prevention, with an ultimate goal of understanding what optimal 

characteristics provide improved protection from chromate replacement inhibitor 

pigments (CRIs).  In the first network series, free volume properties and water sorption 

values served as the primary polymeric characteristics monitored with respect to differing 

relative humidity environments and trends in moisture transport were observed and 

quantified.  Experimental observations which indicated that the thermomechanical 

properties and oxygen permeation values shift following water sorption were related to 

polymer void size and varied between environmental severity conditions with clear 

distinctions relative to swelling processes.  The second section of research was focused 

on a matrix series with incremental shifts in crosslink densities, dry glass transition 

temperatures, and hydrophilic monomer concentration while the degree to which these 

characteristics influenced water sorption and hydroplasticization were monitored and, in 

turn, modified the matrix swelling characteristics and corrosion protection efficiency with 
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either chromate or chromate-free corrosion inhibitors.  The third and final research 

section revolved around a network series formulated to drive varying compositional 

features while maintaining a minimal variance in raw materials and a static structural 

motif.  Moisture transport properties were related with corrosion protection while 

quantifying inhibitor depletion under accelerated corrosion tests using Raman 

microscopy to quantify these differences versus time.  The findings of these varied 

approaches were combined and compared to produce a more comprehensive description 

of water and inhibitor transport in epoxy-amine matrices and to directly interrogate the 

performance criteria that increase CRI performance in organic protective coatings.
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CHAPTER I - INTRODUCTION 

1.1 Overview 

Chromate inhibitors have served as the dominate corrosion prevention approach 

in protective organic coatings for much of the last half-century despite the recognition of 

hexavalent chromium as a carcinogen and toxic pollutant.1  A major issue resulting from 

the attempt to rapidly replace chromate chemistries with alternative chromate-

replacement inhibitors (CRIs) in corrosion prevention of aluminum and steel substrates is 

the potential for performance or processing deficiencies which may occur upon 

substitution of any coatings system component, e.g. porous matrix development due to 

CRI-network interaction during cure.  Replacement of hexavalent chromium-based 

inhibitors with CRIs has been successfully implemented to some extent in organic 

coatings, but there are no commercially viable alternatives that match the protection 

efficacy or duration of chromates.  Part of the challenge lies in the poor understanding of 

how inhibitor pigments impart corrosion prevention and what the factors are that affect 

performance.  It is believed that the availability of inhibitor ions at the substrate may be 

the determining factor in corrosion prevention performance outside of given 

electrochemical aspects:  dissolution of the pigment particle followed by diffusion of ions 

to the substrate interface must occur for inhibition to take place.2  If solubility is too high 

and diffusion of the inhibitor ions through the coating matrix occurs at exceedingly high 

rates, the ability to impede corrosion over long time spans will be lowered and blistering 

will likely occur.  Alternatively, below a low solubility and diffusion threshold, adequate 

inhibitor ions are unlikely to reach the substrate.  Other factors that influence the 

efficiency with which inhibitors prevent corrosion include presence of vapor/liquid phase 
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water, oxygen concentration within the coating, temperature or pH-dependency of 

specific inhibitor ions, and galvanic potential of the substrate.  Of particular interest to 

this work is how polymer matrix properties affect inhibitor transport/efficiency and how 

network characteristics can be tailored to improve inhibition efficiency of chromate-

replacement chemistries.  

To understand how inhibitors can be better implemented as corrosion prevention 

technologies, the role of polymer matrices in inhibitor transport and delivery to the 

substrate will be investigated.  This research is designed to study the polymer 

compositional and architectural features and gain understanding of the proper retention, 

release, and transport of alternative corrosion inhibitor technology in cross-linked 

coatings.  A well-planned compositional series of epoxy-amine networks are anticipated 

to provide a systematic means of adjusting network parameters for practical but tunable 

differences in corrosion inhibitor diffusion rates, and delivery of solubilized ions for 

spatial and temporal inhibitor distribution.  Specifically, the network composition and 

architecture will be adjusted by the amount and type of matrix building blocks, i.e., epoxy 

pre-polymers, chain extenders, and distinct cross-linker building blocks, to achieve 

distinct levels of cross-link density, glass transition temperatures (Tgs, with regard to 

rubber, glass, and leather physical states), and solubility parameters.  The resulting high 

to mildly heterogeneous networks are expected to display a wide range of water affinity 

and transmission behaviors.  For the thorough investigation of the role of matrix-inhibitor 

interaction and transport properties in corrosion prevention, three objectives are targeted: 

(1) investigate the ability to tune bulk water permeation behaviors of epoxy-amine 

matrices by varying network characteristics, (2) understand how local water transport 
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behavior in combination with network properties affects inhibitor transport through 

epoxy-amine networks, and (3) develop an inhibitor network balance which yields 

improved corrosion resistance for a given chromate-replacement corrosion inhibitor 

system. 

These objectives stem from three hypotheses: (1) water permeation rates and 

saturation levels in epoxy-amine networks can be adjusted by modifying Tg, network 

architecture and composition, (2) inhibitor release and diffusion rates through a coating to 

the substrate can be manipulated through tuning of network characteristics (inhibitor-

matrix interaction, Tg, cross-link density, and (3) improvement in CRI performance can 

be achieved by altering network properties to allow transport of active species to the 

substrate under timelines ideal for the inhibition process. 

1.2 Background 

1.2.1 Use of Chromates and CRIs in Primers 

For decades, hexavalent chromium has provided one of the most effective means 

of preventing the corrosion of metal substrates via dispersion of chromate pigments (e.g., 

zinc chromate, strontium chromate, lead chromate) in organic coatings.3  The mixed 

anodic/cathodic protection provided by these chromates is very effective in reducing the 

corrosion activity of metal surfaces, and is still widely used in commercial applications.  

However, the carcinogenicity and toxicity of hexavalent chromium necessitates that it be 

replaced with less harmful inhibitors and pigments.2,3  Alternative pigments and 

methodologies that have been investigated include both organic and inorganic 

compounds and may provide anodic passivation, deposit insoluble salts at cathodic areas, 

or act as ion-exchange reservoirs.2,4-6  However, none of these possess the efficiency of 
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chromates over an array of environmental conditions or for extended periods of time, 

hence the continued use of hexavalent chromium-based inhibition in critical applications 

such as the aerospace industry and military.6  To develop a sufficient replacement for 

toxic chromates for inhibited primers, the mechanisms of inhibitor leaching and transport 

must be understood in addition to the electrochemical activity responsible for corrosion 

inhibition.  Sinko posited that any inhibitor pigment incorporated into organic coatings 

requires in situ solubilization, dissociation, and hydrolysis to mobilize the inhibitive 

capacity of pigments, but that it is ion transport via diffusion through the polymer that 

facilitates the protective mechanism.2  Organic coatings require that  the inhibitor possess 

a number of physical properties (in addition to electrochemical activity) to function 

successfully as a corrosion inhibitor pigment:  very low solubility in the polymer medium 

with relatively higher solubility in water (but less than 2 g/100 mL), low vapor pressure, 

and high melting point.2  Chromates provide an ideal solubility range for use as inhibitors 

in organic coatings such that at least the minimum concentration of ions are released (> 

10-4 mol/L) and diffuse readily to the substrate.7   

A number of researchers have attempted to elucidate the mechanism of chromate 

inhibitor transport.  Sellaiyan and co-workers utilized positron annihilation lifetime 

spectroscopy (PALS), radiotracers, and scanning electron microscopy (SEM) to observe 

chromate release and transport in a strontium chromate-inhibited epoxy-amine coating 

immersed in a 5 wt% sodium chloride solution.  It was suggested that although some 

inhibitor diffused into the matrix regions surrounding the dispersed particles, a majority 

of the ion transport took place via a combination of small voids separated by very short 

distances and by micro-channels left behind by dissolved SrCrO4 particles.8  Similarly, 
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Scholes et al. proposed that swelling in epoxy-polyamide primers containing strontium 

and barium chromate upon immersion in 5 wt% NaCl solution developed a network of 

pores and channels as evidenced by PALS and Raman spectroscopy mapping.  Although 

the differences in network properties, chromate transport, and swelling behaviors of the 

two coatings were not investigated, the authors opined that this porous network 

development was critical to inhibitor release in both films.9  Prosek and Thierry proposed 

that diffusion of solubilized chromate through the polymer was central to corrosion 

inhibition during early stages of corrosion but dissolution of the particle was likely to be 

the rate-limiting step in long-term chromate leaching.10  Several works noted pH-

dependency of chromate leaching in organic coatings:  the lower the pH of the solution in 

which the primer was immersed, the greater was the inhibitor release and transport rates.  

However, in highly acidic environments and at extended immersion times, this may be 

due to the development of porous networks following localized matrix degradation.9,11-13   

Some strides have been made in the utilization of CRIs in organic coatings.  

Frankel and co-workers investigated a number of CRIs including molybdates, silicates, 

praseodymium salts, and an array of cationic species.14  Through a range of 

electrochemical analyses and polymer morphology studies, the availability of the 

inhibitor at the substrate interface and the resulting corrosion performance was studied.  It 

was determined that the water and inhibitor transport properties were influenced by the 

fine structure of the polymer matrix and variability of porosity in the different coating 

interfacial regions (Figure 1.1) as observed via PALS and Doppler Broadening of Energy 

Spectra (DBES) methods, although the extent to which these characteristics affect 

transport was not examined.  In the films that did not exhibit satisfactory corrosion 



 

6 

prevention, it was suggested that inhibitor transport to the substrate was sub-optimal, and 

that the tractability of the transport network within the polymer matrix may allow for 

engineering of controlled transport properties.14 

 

Figure 1.1 Cross-sectional depiction of free volume domains within an epoxy-amine 

primer following cure. 

Demonstration of free volume void domains within a coating detected using positron beam analysis as described by Frankel and co-

workers.14 

 

Markley and co-workers investigated cerium diphenylphosphate, Ce(dpp)3, in 

epoxy coatings applied to aluminum substrates and observed that although the rare earth 

metal complex impeded filiform corrosion growth, network formation was interrupted by 

the cerium allowing for a porous network to form.  This porosity influenced a higher rate 

of water uptake and lead to an increased amount of solubilized cerium in the leachant, but 

the resulting impact on overall coating integrity was not reported.15  Similarly, van 

Soesterbergen and co-workers dispersed Ce(dpp)3 in an epoxy primer, and reported that 

inhibitor leaching rates reached high levels only at high pigment loading levels.  In low 

pH ranges, the development of a highly porous network compromised coating barrier 
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efficiency.16  Although these and other studies were conducted to understand how 

inhibitor transport takes place, no attempts were made to manipulate the polymer network 

to improve inhibitor delivery while maintaining the high coatings standards necessary for 

corrosion prevention (wet and dry adhesion along with suitable barrier properties). 

1.2.2 Permeation, Tg, and Swelling in Polymer Coatings 

Given the disparate reporting in the literature relating to moisture uptake and 

diffusion behaviors in thermoset polymers, a solid understanding of the commonly used 

terminology is necessary.  Permeation is the transport of liquids or vapors through solids 

and is defined by three events:  sorption (liquid/vapor uptake), diffusion (movement of 

one or more molecules across a concentration gradient), and desorption (liquid/vapor 

loss).17  The permeability coefficient is characterized as the product of a solubility-related 

thermodynamic term and diffusivity kinetic term.18  The polymer physical state has 

substantial influence over permeability – diffusion behaviors are known to vary 

substantially between glassy and rubbery states.  Crank first purported that diffusion 

through rubbery polymers is expected to be Fickian while diffusion through glasses 

should follow non-Fickian behavior.19  Fickian diffusion is typically specified as 

transport kinetics that can be described by Fick’s law.  A number of other diffusion 

behaviors have been noted in polymers:  “two-stage,” “sigmoidal,” and “Case II” are 

among some of the specific types of non-Fickian transport forms (classified by their 

appearance in kinetic plots) that may occur due to varying degrees of interaction between 

the water and polymer or structural relaxation events (Figure 1.2).17  It has been reported 

that increases in cross-linking generally have the effect of decreasing diffusivity in both 

rubbers20 and glasses21 although other polymer characteristics (polarity, polymer 
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backbone flexibility, etc.) have substantial influence over permeation behaviors as well.20  

External factors may influence water permeability in coatings, for instance, salt has been 

found to increase swelling by enhancing the solubility of water in polymers, and different 

additives (pigments, fillers, etc.) meant to influence coatings processing and performance 

will also impact moisture solubility.22  Water acts as a plasticizer in polymer networks, 

lowering the Tg and increasing permeability up to a saturation point that is dependent 

upon both free volume and chemical composition.23  In particular, thermoset chemistries 

may exhibit variable permeation/diffusion behavior depending on the experimental 

conditions (temperature, salinity, etc.) or network characteristics in addition to Tg.
24,25 

 

Figure 1.2 Example sorption kinetic plots exhibited by different diffusion cases. 

Fickian, two-stage, Case II, and sigmoidal (clockwise from top left) sorption profiles noted in various organic coatings.17 
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1.2.3 Moisture Transport in Cross-linked Epoxy Networks 

Epoxy-amine polymer networks are produced from the reaction of primary and 

secondary amines with epoxide rings and depending on the monomer molecular mass, 

stoichiometry, and functionality this can form matrices with a wide range of crosslink 

densities.  The high concentration of secondary hydroxyls and tertiary amine functional 

groups that form upon polymerization, as shown in Figure 1.3, result in materials that are 

moderately hydrophilic due to the propensity for hydrogen bonding and polar 

interactions.  As such, epoxy resin-based polymers exhibit an array of moisture diffusion 

kinetics and saturation levels (1-7 wt%) depending on experimental conditions and 

network properties.19,22,24,29-32    

 

Figure 1.3 Demonstration of the epoxy-amine reaction leading to a crosslinked network 

containing secondary hydroxyl and tertiary amine functional groups. 

 

Additionally, it has been suggested that different types of water populations may 

exist following permeation into a polymer depending on degree of molecular 

interaction.33,34  Li and co-workers examined water diffusion mechanisms in diglycidyl 

ether of Bisphenol-A (DGEBA), triglycidyl p-amino phenol (TGAP), and tetraglycidyl 

ether of 4,4′ diaminodiphenyl methane (TDGGM)-based epoxy-amine networks using 
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attenuated total reflectance (ATR) – Fourier transform infrared reflectance (FTIR) and 

near infrared (NIR) spectroscopy with 2D correlation analysis, and determined that most 

diffusion into these networks is accomplished by water molecules in a loosely-bound 

doubly hydrogen-bonded state.35  Often, a dual mode sorption is reported (in highly 

cross-linked epoxy systems below their Tg) wherein one population of water occupies 

free volume first, then additional water forms a hydrogen-bonded cluster within the 

network29 with polymer-water interactions (polar and hydrogen-bonding) slowing the rate 

of diffusion.31  However, some authors have witnessed Fickian-type diffusion of moisture 

and suggested that chemical adsorption of water onto polar interaction sites occurs first 

followed by permeation through free volume voids.24,30  In addition to free volume and 

polarity characteristics, local chain rearrangement (segmental dynamics/swelling) and 

network architecture/cross-link density influence epoxy-amine water permeation 

properties.32,35,36   

Phillipe and co-workers studied epoxy resin coatings at temperatures well below 

the Tg using ATR-FTIR and noted non-Fickian water diffusion behavior, which was 

attributed to a two-stage sorption process associated with different populations of 

hydrogen-bonding water distributions that progressed to single-stage Fickian behavior as 

the temperature increased to near the Tg.  This is in agreement with the assumption that 

rubbery polymers exhibit Fickian diffusion while glassy polymers are thought to yield 

non-Fickian behaviors,19 which is attributed to the higher mobility of water in cross-

linked polymers in their rubbery form.37  Soles and co-workers examined the water 

uptake behavior of a number of different epoxy-amine chemistries and found that matrix 

polarity, glassy dynamics, and free volume contributions acted in concert to control 



 

11 

diffusion properties with local scale motion related to the β-relaxation acting as the 

limiting factor in transport kinetics.32,36  MacQueen and co-workers used PALS to 

examine changes in polyamide cross-linked DGEBA networks following immersion in 

water at 23 °C, and suggested that although a linear relationship between dry free volume 

fraction and water saturation level was found with 3-4% decrease in free volume cavity 

size, solvent interactions and swelling also have a significant impact on permeation 

behavior in epoxy films.38  Patil and co-workers varied the chain length of 

polyetheramines used as cross-linkers in DGEBA-based networks and found that average 

free volume cavity size, as measured via PALS, increased with chain length and the water 

uptake behavior was influenced by the chemical composition, free volume characteristics, 

and segmental relaxations.39  Van Landingham and co-workers witnessed Fickian 

diffusion in epoxy-amine networks only when they contained excess amine content (off-

stoichiometric mixtures of components), suggesting that variability in diffusion activation 

energies resulted from regions of low or high phase density.  While some deviation from 

Fickian behavior in epoxy samples has been attributed to temperature dependencies 

(affecting relaxation phenomena) or stoichiometric considerations (variation in phase 

domain diffusion),25 others have indicated incomplete cure or oxidation upon water 

uptake may be responsible.40 

1.2.4 Hydrogels and Network Heterogeneity 

Another field of polymer research that may prove advantageous in understanding 

network properties in relation to inhibitor release and transport in polymer matrices is 

that of hydrogels as drug delivery vehicles.  Much like inhibited primers, the use of 

hydrogels in drug delivery is often dependent upon sorption and diffusion of an aqueous 
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solution into a polymer network followed by release, transport, and desorption of small 

molecules contained within the gel.  Hydrogels composed of cross-linked networks have 

been modified in a number of ways to provide distinct water permeation and drug 

transport behaviors.41  A number of studies have yielded insight into the relationship 

between network properties and water uptake/small molecule release and transport in 

hydrogels.  Wu and co-workers examined via molecular dynamics the effect of cross-

linking density on water, ion, and small molecule diffusion in polyethylene glycol 

hydrogels by varying the Mc from 572 – 3,400 g/mol, and found that diffusion slowed 

with increasing cross-link density primarily due to heightened water hydrogen bonding 

dynamics with the greatest decrease in diffusion at the polymer-water interface.42  

Khandai and co-workers investigated the use of heterogeneous hydrogel networks as drug 

delivery vehicles for the highly water-soluble propranolol hydrochloride.  Matrices 

consisting of equal weight fractions of hydrophilic hydroxypropyl methylcellulose and 

hydrophobic ethyl cellulose exhibited drug release profiles with heightened sustainability 

following swelling and erosion in phosphate buffer (pH 6.8) solution than matrices 

consisting of only one polymer type.43  Hydrophilic polymer networks may also prove 

beneficial to organic coatings meant for corrosion resistance.  Weber and co-workers 

found that hydrophilic polymer layers provided corrosion resistance as coatings for 

biodegradable metallic implants despite significantly high water content and ion 

permeability of the films following immersion in salt solutions due to the reduced 

chemical activity of water while bound to polyelectrolyte ion pairs.44  It could be 

expected that increasing the content of hydrophilic groups within the polymer would also 

have the effect of increasing solubility of inhibitor pigments or drugs. 
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Heterogeneous network structure or development of separate 

hydrophobic/hydrophilic phases in mixed polymer networks may result in regions of 

variable solubility and influence complex diffusion behaviors.  Kasargod and co-workers 

investigated dual-mode sorption solubility isotherms for glassy polymers, and determined 

that their heterogeneous nature resulted in inhomogeneous distribution of solute, 

identifying their diffusion type as pseudo-Fickian.45  Zhang and co-workers enhanced the 

drug release profiles of poly(N-isopropylacrylamide) hydrogels through the introduction 

of heterogeneous network structure, which enabled the development of diffusion 

channels that expressed higher water release rates than a homogeneous network control.46  

Although epoxy-amine networks were once considered strictly homogeneous structures, 

some findings indicate that processing conditions or reactive component selection may 

result in inhomogeneity.  Krakovsky and co-workers developed hydrophilic epoxy 

networks based on a α,ω-diamino terminated poly(oxypropylene)-b-poly(oxyethylene)-b-

poly(oxypropylene) (Jeffamine® ED-600) cross-linking agents, and noted nanophase 

separated structures via small-angle neutron scattering (SANS).  It was suggested the 

length scale of separation was controlled by network topology and cross-link density.47 

1.2.5 Inhibitor-Matrix Interactions and Corrosion Performance 

Following uptake and diffusion of water through a coating, inhibitor solubilized 

from inhibitor particles dispersed within the coating must traverse the polymer matrix to 

the substrate.  In addition to water uptake and diffusion behavior, polymer-inhibitor 

interactions will influence the rate and mode of inhibitor transport through the coating to 

the substrate.  To this effect, Tabor and co-workers sought to predict inhibitor release 

behavior by varying a number of theoretical matrix and inhibitor characteristics 
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(interaction between matrix and inhibitor, coating porosity, partition coefficients).48  

Modeling of the leaching-induced mass change (M1) due to solubilization and diffusion 

of inhibitor as accomplished using the exponential equation: 

𝑀1 ≈ 𝑡𝛼  

to describe the amount of inhibitor released at time t where α is the release/transport 

exponent (α = 0.5 represents Fickian diffusion, 0.5 < α < 1 represents anomalous 

diffusion, and α > 1 represents pseudo-Fickian diffusion).  By assuming constant small or 

large local release of inhibitor and varying the partition coefficients of the inhibitor and 

matrix, the model revealed values for α between 0.5 and 1.5, signifying that transport of 

inhibitor following dissolution and release could follow a wide range of different 

diffusion profiles simply by altering the matrix properties and matrix-inhibitor 

interactions.  Yasakau and co-workers identified the potential for chemical interaction 

between inhibitor and a sol-gel matrix as a means of influencing the coating barrier 

integrity and corrosion efficiency.49  It has been demonstrated that high intensities of 

interaction or bonding between coatings components and some chromate-replacement 

inhibitors may result in porous barriers (from network development disruption) or 

insufficient inhibitor release.15,49  Transport of active species is highly dependent upon 

inhibitor solubility; very low water solubility will result in insufficient amounts of 

inhibitor reaching the substrate corrosion sites while excessive solubility will only 

provide protection for a short time and may result in blistering and delamination due to 

osmotic pressure build-up following rapid transport to the substrate.50  A combination of 

highly soluble organic pigments and significantly less soluble inorganic pigments has 

been reported to improve the corrosion resistance of primers over variable time periods.51   
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Recently, a variety of “smart” or stimuli-responsive coatings technologies have 

been investigated to improve corrosion resistance of chromate-free inhibited primers.52-54  

Particle encapsulation and carrier loading methods for the purpose of triggered release of 

immobilized inhibitors have been suggested as approaches to improving efficiency; both 

the enhancement of inhibitor delivery efficiency following a localized trigger event, and 

the prevention of detrimental inhibitor-matrix interactions that might interfere with 

coating barrier integrity or inhibitor activity were sought in this approach.50  Carriers 

composed of porous polymeric or inorganic media, hollow particles, and nanotubes 

loaded with inhibitors have been dispersed in primers for directed delivery following pH, 

ion-exchange, or mechanical rupture-related triggers.54  A number of these studies have 

reported improved corrosion resistance in organic coating systems in comparison to 

freely dispersed CRI particles; however, chromate-level inhibition remains unattained in 

practical form.  To our knowledge, no attempts have been made to systematically modify 

the polymer composition and matrix to understand how to control chromate-free 

corrosion inhibitor retention, delivery, and performance. 

1.2.6 Rationale of Research 

Considering the widespread need to sufficiently protect metal substrates from 

corrosion and the necessity for current chromate-replacement technologies to perform 

similarly or superior to the corrosion control efficiency of hexavalent chromium, a 

measure how the inhibitor free and inhibitor containing matrix affects the protection and 

environmental contamination and transport to the substrate is both desirable and 

necessary to understand the current and future process(es) of metal asset protection.  

Material properties in terms of mechanical, barrier and adhesion properties each impact 
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the performance aspects for corrosion control surface coatings.  Combined with corrosion 

inhibitors the polymer properties are needed in different ways, e.g., water sorption and 

diffusion into and through the polymer coating is pivotal for inhibitor to be dissolved and 

electrically activated and ultimately delivered to the appropriate region of the substrate 

for passivation.  The matrix characteristics, e.g., transport and permeability properties are 

clearly tethered to inhibitor release concentration and rates.  Additionally, the ease with 

which the solubilized inhibitor traverses through the polymer directly influences the rate 

of corrosion inhibition efficiency, and matrix-inhibitor interactions may also influence 

transport rates.  A number of studies have indicated that epoxy-amine networks exhibit a 

range of sorption and diffusion behaviors with solvents and small molecules stemming 

directly from a number of varying network characteristics.32,36,55  This research was 

designed to systematically quantify the polymer matrix compositional and architectural 

properties direct control and indirect influence of inhibitor release and transport in 

corrosion-resistant coatings, and investigate the polymer/surface coating characteristics 

that are tunable to improve CRI performance. 
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CHAPTER II - METHODS 

This research is divided into three separate sections, each of which involves a 

separate series of epoxy-amine networks.  These systems utilize a number of unique 

monomer components which afford the ability to modify matrix structural and 

compositional features including crosslink density, Tg, and hydrophilicity.  An 

explanation of each series formulation and sample preparation techniques are given 

below. 

2.1 Materials 

2.1.1 Chapter III Network Series 

A series of five different epoxy-amine networks were formulated using either a 

diglycidyl ether of Bisphenol A (DGEBA) epoxy resin, Epon™ 825 (E825, reported Epoxy 

Equivalent Weight of 175-180 g/eq), or a cyclohexyl (hydrogenated) derivative, Eponex™ 

1510 (E1510, EEW of 205-215 g/eq), both supplied by Hexion (Momentive Specialty 

Chemicals).  Figure 2.1 exhibits the chemical structures of the epoxy resins along with the 

five diamine crosslinking agents: 4,4’-diaminodiphenyl sulfone (DDS, Amine-Hydrogen 

Equivalent Weight = 62.075 g/eq, supplied by TCI America), 4,4’-diaminodiphenyl 

methane (DDM, AHEW = 49.57 g/eq, supplied by Acros Organics), Jeffamine EDR148 

(AHEW = 74 g/eq), Jeffamine ED900 (AHEW = 250 g/eq), and Jeffamine THF100 

(AHEW = 260 g/eq), supplied by Huntsman Corporation. All the chemicals were used as 

received unless mentioned otherwise.  In addition to model epoxy-amine networks, a fully 

formulated coating was selected for comparison in select analyses.  Deft® 02GN084, 

supplied by PPG Aerospace Products, is a two-component solvent-borne non-chrome 
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epoxy polyamide primer (classified as a MIL-PRF-23377K Type I Class N primer) 

containing a praseodymium oxide-type corrosion inhibitor. 

 

Figure 2.1 Chemical structures of Chapter III epoxy-amine network monomers. 

 

2.1.2 Epoxy-Amine Network Formulation and Sample Preparation – Chapter III 

All epoxy networks were formulated to 1:1 stoichiometry (epoxy to amine-

hydrogen) with their corresponding amine curing agents.  Four of the networks were 

composed of E1510 crosslinked by either EDR148, DDM, THF100, or ED900 while the 

fifth network consisted of E825 crosslinked with DDS.  Polymer samples were prepared 

by first combining the appropriate quantities of epoxy resin with liquid diamine curing 

agent (EDR148, THF100, or ED900) and stirring by hand prior to mixing at high speeds 

using a FlackTek SpeedMixer.  These were then placed in a vacuum oven at low pressure 

for approximately five minutes to remove any air bubbles.  Both DDM and DDS are 

solids (powders) at room temperature and required high temperatures following mixing to 
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melt and fully combine with the epoxy resins.  The E1510-DDM and E825-DDS 

stoichiometric quantities were combined in a scintillation vial and mixed by hand then 

placed in an oven at 150 °C with occasional stirring until completely homogeneous 

before removing any remaining air bubbles via vacuum oven.  Sheets of crosslinked 

epoxy-amine network films were prepared by curing the liquid mixtures while 

sandwiched between two glass plates with small PTFE spacers of approximately 0.30 

mm placed at the corners between the plates to ensure uniform thickness between 

samples.  Prior to addition of the monomer mixture the plates were sprayed with a thin 

layer of silicone-free release agent then placed in an oven pre-heated to the temperature 

corresponding with the first cure profile temperature for the appropriate resin-curing 

agent combination.  The degassed epoxy-amine mixture was then poured onto the bottom 

glass plate before slowly applying the top plate to avoid inclusions of air bubbles.   

Crosslinking proceeded according to the cure profiles shown in Table 2.1, which 

were determined from analysis of reaction exothermic peak data provided by 

heat/cool/heat cycles of differential scanning calorimetry (DSC) carried out on epoxy-

amine monomer mixture samples to ensure each polymer reached its ultimate glass 

transition temperature (Tg∞) through complete conversion.  Following the cure process 

the polymer and glass was allowed to cool slowly to room temperature before separating 

the plates and removing the solid epoxy-amine films.  Films were stored in plastic bags 

and samples for various analyses were removed using blades or hollow punches.  Larger 

bulk samples of E1510-EDR148 were produced by curing bars in silicone molds with 

wells of approximate dimensions of 76 x 15 x 12.7 mm (L x W x T) using the same cure 

profile then cut to smaller proportions using a band saw.  Free films of the aircraft primer 
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Deft 02GN084 were obtained by combining the coating base and catalyst components in 

quantities specified by the manufacturer then mixed thoroughly.  Coatings were prepared 

by applying the mixture to a polypropylene slab using a drawdown bar (6 wet mils) and 

allowed to dry overnight before curing at 75 °C for 4 hours then cooled to room 

temperature slowly at which point films were removed using a razor blade. 

Table 2.1  

Epoxy-Amine Network Cure Profiles 

Epoxy-Amine Combination Primary Cure (°C/hours) Secondary Cure (°C/hours) 

E1510-THF100 35 / 5 75 / 24 

E1510-ED900 35 / 5 75 / 24 

E1510-EDR148 60 / 2 120 / 2 

E1510-DDM 90 / 2 150 / 1 

E825-DDS 150 / 2 250 / 1 

 

2.1.3 Chapter IV Network Series 

A series of nine different epoxy-amine networks were formulated using diglycidyl 

ether of Bisphenol A (DGEBA) liquid epoxy resin, Epon™ 825 (E825, reported Epoxy 

Equivalent Weight of 175-180 g/eq) supplied by Hexion (Momentive Specialty 

Chemicals) and a mixture of amine-type reactants including the primary monoamine 

chain extender benzylamine (BA, AHEW = 53.575 g/eq, supplied by Acros Organics) or  

di-secondary amine PolyLink™ 4200 (PL4200, AHEW = 155.24 g/eq, supplied by The 

Hanson Group, LLC) along with tetrafunctional amine crosslinking agents Jeffamine 

ED600 (ED600, AHEW = 132 g/eq, supplied by Huntsman Corporation) and 2-methyl-

1,5-pentamethylene diamine (MPMD, AHEW = 29.05 g/eq, supplied by Sigma Aldrich) 

or 1,3-bisaminocyclohexane (1,3-BAC, AHEW = 35.56 g/eq, supplied by Acros 

Organics).  Figure 2.2 exhibits the chemical structures of the epoxy resin along in 
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addition to the chain extenders and crosslinkers.  All the chemicals were used as received 

unless mentioned otherwise. 

 

Figure 2.2 Chemical structures of Chapter IV epoxy-amine network monomers. 

Epoxy resin (top), di-secondary amine and primary monoamine chain extenders (middle), and tetrafunctional amine crosslinking 

network reactants (bottom). 

 

2.1.4 Epoxy-Amine Network Formulation and Sample Preparation – Chapter IV 

Formulating the network series was carried out using a crosslinking density 

estimation method described elsewhere1 that estimates the molecular weight between 

crosslinks, Mc, of a fully converted epoxy-amine network containing a bifunctional chain 

extender and multifunctional crosslinking agent as: 

𝑀𝑐 =
2𝑀𝐸 + 𝑀𝐴

𝑛𝑐
 

where ME and MA are the molecular mass of the epoxy and amine components, 

respectively, and nc is the number of covalent crosslinks per constitutional crosslinking 

unit (CCU).  Within a network consisting of bifunctional epoxy resin (or chain extended 
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epoxy-functional oligomer) and tetrafunctional amine crosslinking agent the CCU is 

given as an epoxy-amine-epoxy trimer and nc is reduced to: 

𝑛𝑐 = 1 + (4𝑥 + 3) 

where x is the degree of conversion.  For the purpose of network series formulation all 

thermosets were assumed to reach 100% conversion and each CCU consisted of either an 

epoxy-amine-epoxy trimer or extended epoxy-amine-extended epoxy trimer whereby the 

amine was given by either ED600 or 1,3-BAC (NS1)/MPMD (NS2) and under these 

premises the number of covalent crosslinks within each CCU, nc, is 2.  Using a specific 

target amine content (for example, 50% ED600 and 50% 1,3-BAC by amine-hydrogen 

equivalents) and chain extension aim (for example, 50% of all epoxide groups available 

for reaction with amine arise from E825-BA-E825 trimers) the weighted proportions of 

each CCU can be adjusted until the estimated Mc matches the intended goal.  This is 

repeated until nine separate networks are produced which represent of the three crosslink 

density and amine content ranges.  An example of the actual formulated masses of a set 

of networks is given in Table 2.2. 
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Table 2.2  

Epoxy-Amine Network Formulations of Network Series 2 

α-I   mass β-I   mass γ-I   mass 

High Tg E825 70.33 Mid Tg E825 73.08 Low Tg E825 75.22 

High Mc PL4200 29.66 High Mc PL4200 26.91 High Mc PL4200 24.77 

76 eq% MPMD 4.59 47 eq% MPMD 3.29 25 eq% MPMD 1.94 

24 eq% ED600 6.59 53 eq% ED600 16.89 75 eq% ED600 26.47 

  Mc 1102.74   Mc  1102.9   Mc  1101.88 

α-II   mass β-II   mass γ-II   Mass 

High Tg E825 82.87 Mid Tg E825 85.01 Low Tg E825 87.15 

Mid Mc PL4200 17.12 Mid Mc PL4200 14.98 Mid Mc PL4200 12.84 

72 eq% MPMD 7.52 50 eq% MPMD 5.60 28 eq% MPMD 3.34 

28 eq% ED600 13.30 50 eq% ED600 25.48 72 eq% ED600 39.15 

  Mc  839.64   Mc  838.62   Mc  837.61 

α-III   Mass β-III   Mass γ-III   Mass 

High Tg E825 93.88 Mid Tg E825 98.16 Low Tg E825 99.69 

Low Mc PL4200 6.11 Low Mc PL4200 1.83 Low Mc PL4200 0.30 

90 eq% MPMD 12.89 46 eq% MPMD 7.28 30 eq% MPMD 4.91 

10 eq% ED600 6.51 54 eq% ED600 38.87 70 eq% ED600 52.11 

  Mc  564.33   Mc  562.3   Mc  562.16 
Note: Masses are given in grams. Average molecular mass between crosslinks (Mc) is given in g/mol. 

 

Bulk polymer samples were prepared by first combining the appropriate quantities 

of epoxy resin with PL4200 or BA chain extender (EDR148, THF100, or ED900) in a 

container and stirring by hand prior to mixing at high speeds using a FlackTek 

SpeedMixer.  These were then placed on a rolling mill for approximately 1 hour and 

allowed to pre-react before adding the crosslinking agents (ED600 and MPMD or 1,3-

BAC).  Once all reactants were combined and mixed the containers were agitated via 

rolling mill for 2-3 hours before casting or applying.  Larger bar samples were produced 

by casting mixtures into silicone molds with wells 60 x 10 x 1 mm (L x W x T) while 

films were prepared by applying the liquid mixtures over polypropylene slabs (for free 

films) or 6” x 3” S-36 SAE CRS 1008/1010 steel Q-panels from Q-Lab (for substrate-
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bound coatings) which were degreased with acetone prior to application.  Films were 

applied using a drawdown bar applicator at 6 wet mils and all samples were allowed to 

dry and vitrify under ambient conditions overnight prior to subjecting to the curing 

process.  The cure profile was determined by examination of the reaction mixture 

exothermic activity via differential scanning calorimetry and was applied to all networks 

regardless of preparation method or sample type.  The cure schedule consisted of 2 hours 

at 60 °C followed by 1 hour at 120 °C then a slow cool-down to room temperature. 

2.1.5 Chapters V & VI Network Series 

A diglycidyl ether of Bisphenol-A (DGEBA)-based liquid epoxy, EPON™ Resin 

825, (E825, epoxy equivalent weight (EEW) 176.16 g/equivalent) was donated by 

Momentive (Hexion).  Diamine modifiers, Jeffamine® THF100, (amine hydrogen 

equivalent weight (AHEW) 260 g/eq) and Jeffamine® ED900 (AHEW 250 g/eq), were 

donated by Huntsman Corporation.  A commercial polyamidoamine, Ancamide® 2445, 

(AHEW 133 g/eq), was donated by Air Products.  TiPure™ R-902+ (DuPont) was used as 

the primary pigment with strontium chromate (SrCrO4, Alfa Aesar) as the chromate-based 

pigment corrosion inhibitor while Halox® 650 (H650, a benzothiazolylthiosuccinic acid 

derivative, Israel Chemicals Limited\Advanced Additives) was used as the CRI additive.  

Chemical structures of the various network components and CRI are given in Figure 2.3. 
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Figure 2.3 Chemical structures of epoxy resin, amine-functional polyethers, chromate-

based inhibitor, and organic-type CRI pigment described in Chapters V and VI. 

 

The dispersant, Disperbyk®-161, was donated by BYK Additives and Instruments 

(ALTANA Group).  Tripropylene glycol n-butyl ether (TPnB) (Dowanol™ TPnB, Dow 

Chemical Company), parachlorobenzotrifluoride (PCBTF, Sigma Aldrich), and sec-butyl 

alcohol (Fisher Chemical) were the solvents of choice.  The coatings were applied to 

untreated 5” x 3” 2024T3 aluminum and 6” x 3” S-36 CRS SAE 1008/1010 steel Q-panels 

from Q-Lab which were degreased with acetone prior to application. 

2.1.6 Bulk Polymer Sample and Film Formation – Chapters V & VI 

Contained in five scintillation vials, varying ratios of THF100 and ED900 (10:90, 

25:75, 50:50, 75:25, and 90:10 by equivalent) were blended with the polyamidoamine 

hardener while maintaining 85% equivalent of polyamide in the blend.  Each mixture was 

added to the epoxy resin at 1:1 epoxy:amine stoichiometry, stirred by hand for two minutes, 

blended three times for 90 seconds at 1200 rpm in a centrifugal FlackTek SpeedMixer and 
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de-aerated via ultrasonication for 3 minutes.  Free films were prepared via drawdown bar 

(6 wet mils) on polypropylene sheets while sample bars (50 x 5 x 1.3 mm) were prepared 

by casting the blends into silicone molds containing 50 x 5 x 1.3 mm wells.  Samples were 

allowed to vitrify overnight under ambient conditions before a pre-cure stage at 60 °C for 

one hour followed by a post-cure stage at 120 °C for two hours, and 75 °C overnight. 

2.1.7 Pigmented Coatings Formulation and Preparation – Chapters V & VI 

Two different control inhibitor packages and hence two main types of coating 

systems were prepared: one which included a chromate-based corrosion inhibitor pigment 

(SrCrO4), while the other implemented an organic CRI additive (Halox 650), both included 

in quantities recommended by the manufacturers.  Part A of the coatings was formulated 

with epoxy resin, TiO2 (TiPure R-902+), and the corrosion inhibitors using a solvent blend 

of equal parts of TPnB, PCBTF, and 2-butanol by weight (Table 2.3), using ceramic beads 

to disperse the pigments on a roller mill for 48 hours.  Approximately 0.1 wt% Disperbyk-

161 was added to aid in the organic corrosion inhibitor dispersion. 

Table 2.3  

Coating Part A Quantities 

Coating Epoxy Resin TiO2 Inhibitor Solvent 

Chromate (SrCrO4) 143.53 71.75 7.46 64.58 

CRI (H650) 143.53 71.75 6.65 76.61 
Note: Masses are given in grams. 

  

Part B of the coatings was prepared by blending the polyamide (85% by 

equivalents) with various ratios (all at 15% by equivalents) of ED900 and THF100 

mixtures (10:90, 25:75, 50:50, 75:25, and 90:10 by equivalent), comprising the remaining 

15% by equivalents.  The overall coating formulations (for chromate-containing systems) 
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are shown in Table 2.4. Chromate-containing coatings were formulated to a solids content 

of 79.8% while CRI systems were formulated to 77.4% solids and both systems with a 

7.11% pigment-volume concentration (PVC). Parts A and B were blended and applied on 

S-36 steel and 2024T3 aluminum panels using a 6 wet mil drawdown bar and automatic 

drawdown instrument.  The films were dried overnight under ambient conditions before 

curing at 60 °C for 1 hour, followed by 120 °C for 2 hours.  Free films were obtained by 

applying 6 wet mil drawdowns on polypropylene slabs that were dried overnight prior to 

curing at 80 °C for 48 hours. Coated and scribed panels were placed in a salt-fog chamber 

(Q-FOG CCT-600) for 440 hours and evaluated as per ASTM B117.  Direct weathering 

(natural outdoor exposure) was carried out on coated and scribed panels secured to open-

back metal racks facing south at an angle of 120° to the horizon positioned on the roof of 

the Polymer Science Research Center in Hattiesburg, MS (18.91 °C average annual 

temperature, 156.49 cm average annual rainfall).  Digital images were taken occasionally 

to monitor corrosion progress and after 440 hours, the relative corrosion areas were 

approximated using Adobe Acrobat software.  The coated panels were evaluated via gloss 

at 60° (BYK micro-TRI-gloss 4446), Koenig hardness (TQC SP0500 Pendulum Hardness 

Tester), scratch adhesion, impact resistance at 60 lb., conical mandrel bend, and methyl 

ethyl ketone (MEK) double rubs. 
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Table 2.4  

Coating Part B (Chromated) Quantities 

Formulation Polyamide THF100 ED900 Solvent Part A 

THF10-ED90 12.85 0.50 3.87 39.54 7.12 

THF25-ED75 12.85 1.24 3.29 39.70 7.11 

THF50-ED50 12.85 2.36 2.11 39.59 7.11 

THF75-ED25 12.85 3.34 1.13 39.59 7.11 

THF90-ED10 12.85 3.99 0.45 39.71 7.12 
Note: Masses are given in grams. 

 

Pull-off adhesion tests were performed using a 10 kN Mechanical Testing System 

load frame and a 2.5 kN load cell, at a strain rate of 0.5 mm/min.  The adaptors for the 

load frame used in pull-off testing were custom made to hold a coated panel on the 

bottom and fit an Elcometer 20 mm diameter stud on the top.  Studs applied to the 

coating are prepared by abrading the surface first with 80 grit sand paper and then with 

Scotch Brite pads and rinsing with acetone.  Likewise, the stud attachment face was 

abraded with Scotch Brite prior to adhering.  Studs were adhered to the coating surface 

with Scotch Weld DP460 and were applied by hand.  The adhesive was allowed to cure 

for 24 hours under ambient conditions before testing. 

2.2 Experimental Techniques 

2.2.1 Dynamic Mechanical Analysis (DMA) and Relative Humidity-Controlled 

Dynamic Mechanical Analysis (RH-DMA). 

Dynamic mechanical analysis was carried out on free films with approximate 

dimensions of 12 x 5 x 0.3 mm on a Q800 DMA from TA Instruments, Inc.  Single 

frequency temperature ramp testing was conducted in tensile mode with a heating rate of 

2 °C per minute, a strain rate of 0.1%, a pre-load force of 0.01 N, and frequency of 1 Hz.  
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Storage Modulus (Eʹ), Loss Modulus (Eʹʹ), and Tan Delta (tan δ) signals were monitored 

over the entire temperature range, the limits of which varied depending on the polymer 

being analyzed.  Relative humidity-controlled analysis was carried out on a Q800 

instrument outfitted with a RH controller in tensile mode between 15 and 115 °C using a 

heating rate of 1 °C per minute, strain rate of 0.1%, 0.01 N pre-load force, and strain 

frequency of 1 Hz. 

2.2.2 Differential Scanning Calorimetry (DSC). 

Differential scanning calorimetry (DSC) was carried out on both free film and 

bulk polymer (bar) samples weighing between 5-20 mg on a Q2000 Differential Scanning 

Calorimeter from TA Instruments, Inc.  Once prepared, polymer samples were placed in 

aluminum pans and sealed with crimped lids before placing within the instrument along 

with an empty reference aluminum pan.  Heat flow and heat capacity signals were 

monitored during heat/cool/heat cycles between -150 and 150 °C with heating rates of 10 

°C and cooling rates of 5 °C. 

2.2.3 Dynamic Vapor Sorption (DVS). 

Dynamic vapor sorption was conducted using a Q5000 Sorption Analyzer from 

TA Instruments, Inc.  Circular discs with diameters of 6.3 mm and approximately 0.3 mm 

thickness were placed in quartz pans and subjected to 5, 22, 44, 57, 75, 86, or 95% RH 

environments at 25 °C following a drying step at 60 °C and 0% RH.  Samples were 

exposed to the various moisture levels while the weight change (%) was monitored via 

microbalance until a saturation or near-equilibrium stage was achieved, the time of which 

varied between the different epoxy-amine formulations. 
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2.2.4 Gravimetric and Volumetric Analysis of Bulk Polymers. 

Rectangular samples of cured E1510-EDR148 with dimensions of approximately 

15 x 12.7 x 6 mm were prepared and their dimensions were measured with a digital 

caliper measuring tool while their masses were measured on a Mettler Toledo XS104 

analytical balance while dry and following immersion in DI water or exposed to a 

number of different relative humidity levels.  Additionally, the densities (ρ) of samples 

were determined via the water displacement method using a density kit in conjunction 

with the XS104 balance and measured at room temperature.  Essentially, if ρ0 is the 

density of water, the density of any solid can be written as: 

𝜌 =
𝐴

𝐴 − 𝐵
(𝜌0 − 𝜌𝐿) + 𝜌𝐿 

wherein A is the weight of the sample in air, B is the weight of the sample in water, and 

ρL is the density of air (0.0012 g/cm3).1 

2.2.5 Water Vapor Transmission Rate Analysis (WVTR). 

Water vapor transmission rate analysis was carried out using a dry cup method on 

a VTI-SA sorption analyzer from TA Instruments, Inc.  Samples of approximately 10 mm 

diameter and 0.3 mm thickness were placed over a small aluminum cup that was loaded 

with a few milligrams of desiccant then sealed and held in place with a thin ring of double 

sided tape.  The assembled film and cup were then placed within the microbalance 

gravimetric sorption analysis instrument and the sample was subjected to a 95% RH 

environment at 25 °C following an initial drying step at 0% RH and 60 °C for 2 hours.  

Single sorption experiments were held for up to 600 minutes while cyclic testing 
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implemented alternating steps of 250 minutes.  The water vapor transmission rate is 

calculated via the following equation: 

𝑊𝑉𝑇𝑅 =
𝑝𝑒𝑟𝑚𝑒𝑎𝑛𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑟𝑒𝑎 × 𝑡𝑒𝑠𝑡 𝑡𝑖𝑚𝑒
 

Alternatively, for some samples water permeation testing was carried out using a 

permeability cup test method (ASTM E-96).  A PTFE cup with matching lid was applied 

over a sample film with diameter of 30 mm and thickness of 0.30 mm.  The cap film is 

secured to the cup with a threaded lid and sealed with an appropriately sized flexible O-

ring to prevent loss of water.  Films were dried in a vacuum oven overnight prior to the 

test start and once assembled (with cup, film, lid, and water) the cups were placed inside 

humidity chambers with occasional weighing before and during RH exposure for a period 

of one week with five distinct RH levels were chosen for analysis (43, 57, 75, 83, and 

95%).  The permeability was calculated according to: 

𝑃 =
𝑚 ∙ 𝑙

𝑡 ∙ 𝐴 ∙ ∆𝑃𝑣
= 𝐼 ∙

𝑙

𝐴 ∙ ∆𝑃𝑣
 

where m is the mass of the cup at time t, l is sample thickness, A is the exposed film area, 

ΔPv is the vapor pressure differential between the interior and exterior of the sealed cup, 

and I is the slope of the graph obtained from plotting the measured cup mass as a function 

of elapsed test time. 

2.2.6 Relative Humidity-Controlled Oxygen Permeability Analysis. 

Oxygen barrier of the LNC films and neat polymer were measured at 25 °C and 1 

atm partial oxygen pressure difference using a commercially manufactured diffusion 

apparatus, OX-TRAN 2/21 ML (MOCON, Inc.) which employs a continuous-flow 
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method (ASTM D3985-81) with nitrogen as a carrier gas to measure oxygen flux through 

polymeric films under varying relative humidity conditions.  Film samples with a surface 

area of 50 cm2 and 0.3 mm thickness were used for testing.  The specimens were 

conditioned in a vacuum oven or humidity chamber at a specified RH until an 

equilibrium water content was reached (as determined by DVS measurements for each 

formulation and RH).  Oxygen flux, J(t), was measured and a solution to Fick’s second 

law was employed, as shown in the following equation, to fit the experimental oxygen 

flux data, where Δp is the oxygen partial pressure difference across the film (1 atm here), 

l is the thickness of the film, and t is the time (in seconds). 

𝐽(𝑡) =
𝑃∆𝑝

𝑙
[1 + 2 ∑(−1)𝑛

∞

𝑛=1

𝑒𝑥𝑝 (−
𝐷𝜋2𝑛2𝑡

𝑙2
)] 

From this two parametric fit, the permeability P and diffusivity D were calculated as 

described elsewhere.2  The solubility (S) was calculated from the relationship P = D × S.  

Values of permeability coefficients in this study are given in Barrer (1 Barrer = 10−10 

(cm3 O2) ∙ cm ∙ cm−2 ∙ s−1 ∙ cmHg−1 = 3.35 x 10-16 mol ∙ m ∙ m-2 ∙ s-1 ∙ Pa-1).  The 

permeability coefficient P can also be calculated directly from the steady-state flux J∞ 

value as follows P = J∞ ∙l /Δp. 

2.2.7 Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR). 

Attenuated total reflected Fourier transform infrared spectroscopy (ATR-FTIR) 

was conducted on pigmented substrate-bound coatings using a Mettler Toledo ReactIR™ 

iCIR10 along with a K-conduit attached to a Durasampler™ temperature controlled 

stainless steel surface ATR accessory as shown in Figure 2.4.  Epoxy primer coating 

mixtures were applied using a drawdown bar at 6 wet mils and cured onto the 
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Durasampler™ stainless steel substrate that incorporates a 3-bounce ATR crystal diamond 

interface with a 45° angle of reflectance.  The coatings were cured onto the accessory but 

because the stage could not be exposed to high temperatures (> 100 °C) the curing schedule 

was modified to 6-8 hours at 80 °C after overnight drying.  The coating was measured from 

the substrate interface for the diffusion of either DI H2O or 5-15 wt% NaCl solution through 

a dried/unexposed film.  In some experiments the films were uncovered and dried for 

subsequent exposure to liquid.  In most instances the appearance of water was indicated at 

30-40 minutes and saturation or equilibrium conditions were met within 24 hours.  Using 

ATR-FTIR allowed for a discrete volume of observation to calculate concentrations of 

solvent in the presence of a polymer film.4  The depth of penetration, dp, for the coating 

system was less than the total thickness of the coating, which is given by:   

𝑑𝑝 =
𝜆

2𝜋[𝑛1
2 𝑠𝑖𝑛2 𝜃 −  𝑛2

2]1 2 ⁄
 

where n1 is the rarer medium, n2 is the refractive index of the propagating medium, and the 

equation is wavelength-dependent as given by λ in μm.  Because the depth of penetration 

of the coating was limited to the region of the polymer and the polymer was always in 

range of the IR depth of penetration, the water fraction was the limiting factor for 

calculating the volume of the observation space.  The calculated volume of observation 

was based on the dp of 1.5 μm at 3300 cm-1 which resulted in 4.71 x106 μm3. 
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Figure 2.4 Demonstration of ATR-IR setup for evaluation of substrate-bound coating. 

 

Calculating the rate of diffusion in the polymer coating by ATR-FTIR was accomplished 

by using established methods which take into account the limit of penetration for the IR 

wave into the sample.4  The general relationship between IR signal and diffusion is given 

by: 

𝐴𝑡
𝐴∞

 = 1 −
8𝛾

𝜋[1 − exp(−2𝛾𝐿)]
 ∙  [

𝑒𝑥𝑝 (−
𝐷𝜋2𝑡
4𝐿2 ) (

𝜋
2𝐿 exp (−2𝛾𝐿) + (2𝛾))

(4𝛾2 +
𝜋2

4𝐿2)
] 

where γ is the penetration depth, L is the coating thickness, and D is the diffusion 

coefficient.  Wavelengths of interest included the H–O–H stretch (1650 cm-1) and –OH 

asymmetric bend (3700-3000 cm-1), which was resolved into separate components 

according to polymer-water interaction and lead to the ratio of different types of hydrogen 

bonded water in the network, i.e., S2ʹʹ (~3320 cm-1), S2ʹ (~3224 cm-1), S1 (~ 3433 cm-1), 

and S0 (~ 3555 cm-1), according to the work of Musto and co-workers.5 
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2.2.8 Relative Humidity-Controlled Positron Annihilation Lifetime Spectroscopy 

(RH-PALS). 

Relative humidity-controlled positron annihilation lifetime spectroscopy (RH-

PALS) measurements were carried out using an in-house custom instrument employing a 

22Na positron source.  Two specimens of approximately 0.30 mm and 1 cm diameter were 

sandwiched between the positron source and a custom built apparatus consisting of 

Hamamatsu H3378-50 photomultiplier tubes with attached BaF2 scintillation crystals was 

used to detect positron birth and death signals.  A fast-fast coincidence system based on 

commercial EC&G Ortec NIM modules (model 583 constant fraction discriminators), 

and a model 566 time-to-amplitude converter was used.  Because only the longest life-

time signal was used for analysis, no source corrections were carried out.  The time 

resolution was determined using the fitting program “Resolution” of the PATFIT-88 

software, which decomposed spectra into three discrete lifetime components, the longest 

of which was attributed to o-Ps pick-off annihilation. 

For the calculation of free volume hole sizes, a simple quantum mechanical model 

proposed by Tao-Eldrup was used, which assumes the Ps to be confined to a spherical 

potential well with infinitely high walls.5  In the model the electron density of the 

surrounding molecules is approximated by an electron layer of constant thickness.  In 

polymers, Ps is trapped by local free volumes (holes) of the disordered structure, the size 

of which determines the o-Ps τ3 lifetime typically in the nanosecond (ns) range.  From τ3 

the mean radius R of the local free volume, <Vh>, is calculated according to the semi-

empirical equation: 
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𝜏3 = 0.5 [1 −
𝑅

𝑅0
+

1

2𝜋
sin (

2𝜋𝑅

𝑅0
)]

−1

 

where ΔR = R0 - R = 0.1656 nm.  The pre-factor represents the Ps annihilation rate at 0.5 

ns.  The quantities R and ΔR are the radius of the hole and an empirical parameter that 

describes the thickness of the electron layer, respectively.  The value of ΔR has been 

previously determined to be 1.656 Å by fitting the equation to positron lifetime values 

measured in systems of known hole sizes.  Because the o-Ps lifetime is expected to show 

a distribution of values in polymers, the discrete o-Ps lifetime obtained using the 

PATFIT88 processing system actually represents a mean value.  Assuming that the free 

volume holes are spherical, average free volume hole size of the networks can be 

calculated as < 𝑉ℎ >= (
4

3
)𝜋𝑅3. 

 Prior to PALS experiment, the sample was equilibrated for 24-72 hours in the 

corresponding water vapor environment by placing the sample discs in appropriate RH 

chambers.  The equilibrated sample (along with the source) was then placed in the PALS 

humidity chamber.  An automated technique was devised to accurately maintain the 

required RH in the chamber via a constant influx of nitrogen gas bubbled through DI H2O 

(wet N2) into the chamber, as shown in Figure 2.5.  Relative humidity is monitored at the 

gas outflux from the chamber by a humidity sensor.  If the RH value goes beyond the set 

value, the humidity controller (which is connected to the humidity sensor) activates the 

solenoid valve, which then lets dry nitrogen into the chamber.  The dry nitrogen then 

lowers the RH% within the chamber and once the RH% goes below the set value the 

humidity controller turns off the solenoid valve thereby stopping the influx of dry 

nitrogen, and the cycle continues.  This automated dynamic technique accurately 
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maintained any RH% value between 0-80% range.  For tests at RH greater than 80%, a 

sponge containing saturated salt solution or DI water was placed inside completely 

enclosed and sealed PALS sample chamber.  For RH values of 85% and 99%, sponge 

contained saturated potassium chloride solution and DI water respectively. 

 

Figure 2.5 Schematic illustrating the RH-PALS apparatus setup. 

 

2.2.9 Raman Microscopy of Pigmented Coatings. 

Raman spectroscopy was carried out using a Thermo Scientific™ DXR Raman 

Microscope system.  Specimens were illuminated through either a 50x/0.75 or 50x/0.5 

objective with a 633 nm excitation from a He-Ne laser source.  The incident power 

source ranged from 5-7 mW and resulted in a spot size of 0.8 µm with 3-4 µm spacing 

intervals between each map point.  Single point spectra were collected between 3350-50 

cm-1 while mapping studies were collected between 3200-100 cm-1 and averaged over 64 

or 32 scans, respectively, with a spectral wavelength resolution of 1 cm-1.  Collection 

times for mapping studies were approximately 30 seconds per spectrum/point and for all 

samples an auto-fluorescence correction factor (5th order polynomial) was applied to 
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collected data.  Maps of both scribed and non-scribed regions of coatings were collected 

over an area of approximately 1.0 x 104 µm2, an example of which can be seen in Figure 

6.4. 
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CHAPTER III - FREE VOLUME INFLUENCE ON MOISTURE SORPTION AND 

INFLUENCE OVER MACROSCOPIC PROPERTIES 

3.1 Introduction 

Organic coatings implemented in the pursuit of corrosion protection require, 

fundamentally, adhesion to the substrate and barrier properties sufficient to reduce or 

prevent the ingress of corrosive species (water, oxygen, and electrolytes) in quantities 

sufficient to initiate or sustain corrosive degradation.1  Epoxy-amine networks, along 

with other crosslinked polymer chemistries, are an often employed source of the matrix 

or binder material for the primer or intermediate coating layers tasked with helping to 

prevent corrosion at the metal substrate.  Despite a number of beneficial material 

characteristics, including high hardness, adhesion, and chemical resistance, the hydrogen 

bonding capability and polar nature of epoxy-amine matrices lends to an inherent 

tendency to take on moisture, with reported maximum water quantities varying between 

1-7 wt% (equilibrium water content – EWC).2,3,4  The mechanism of moisture  sorption 

and diffusion has been studied extensively to clarify how epoxy-amine network structural 

and compositional features influence water transport, although the full extent of the 

relationship between polymer features (free volume, polar group concentration, crosslink 

density, etc.) and water interaction and transport is incomplete.5-7  Furthermore, how 

these characteristics carry over to impact fully formulated coatings containing various 

solvents, pigments, fillers, and additives in addition to the matrix component is as yet not 

entirely understood.8,9 

Positron annihilation lifetime spectroscopy (PALS) has been demonstrated as a 

powerful and versatile means of evaluating the nano-scale free volume properties of 
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polymers, including those incorporated into coatings used in corrosion protection roles.  

Macqueen and co-workers implemented PALS for probing free volume characteristics of 

epoxy-amine networks based on BPA and glycol ether-based epoxy resins in both dry 

and H2O-saturated states.  Inconsistency in the correlations between the free volume 

fractions or hole sizes and the saturation water content and EIS-determined corrosion 

protection suggested that other factors, including polymer swelling and solvent 

interaction, determine the shift in material properties in conjunction with free volume 

traits under variable exposure conditions.10  Similarly, Madani and co-workers utilized 

mixtures of the same epoxy resins crosslinked with a polyamide hardener and PALS 

testing to demonstrate a relationship between free volume fraction and water saturation 

content while also suggesting that more flexible and hydrophilic matrices are more likely 

to experience growth in free volume hole size with the ingress of water.  It was also 

determined that the inclusion of borate or silicate inhibitor pigment had no effect on 

water sorption behavior of DGEBA-based networks but resulted in increased free volume 

cavity volumes in glycol ether epoxy-amide matrices.11  However, in these analyses the 

ability to maintain a controlled relative humidity or water saturation state over the entire 

PALS measurement period could not be ensured and as such it is possible that the 

physical state of the samples driven by environmental severity differences shifted during 

testing. 

Additional investigations of epoxy-amine network free volume characteristics 

have yielded valuable insight into how polymer microstructural features determine 

transport properties of small molecule penetrants in addition to water.  Jackson and co-

workers created a model network series consisting of DGEBA, DGEBF, or TGDDM 
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epoxy resins crosslinked with diaminodiphenyl sulfone isomers and subjected samples to 

immersion in water or organic solvents of varying van der Waals volumes (18 – 88 Å3).  

Gravimetric sorption results were compared with PALS measurements of dry samples to 

determine that as solvent molecular size approached the measured epoxy-amine network 

free volume values (59 – 82 Å3) the diffusion kinetics slowed or even halted, indicating 

that free volume sizes and ratios alone could potentially prevent the ingress of 

penetrant.12  However, the absence of a direct linear relationship between solvent sorption 

quantity and permeant volume for each network indicated that additional polymer 

features (segmental mobility, secondary interactions) also influenced transport.  Frank 

and co-workers studied a series of networks composed of stoichiometric mixtures of di-, 

tri-, and tetra-functional epoxy resins crosslinked with a single diamine and correlated the 

resulting H2O and MEK transport properties with free volume characteristics.  It was 

observed that increasing the proportion of higher functionality monomer resulted in 

higher crosslink densities and higher free volume fractions while also lowering the 

average free volume hole size, <Vh>.  This had the result of increasing the total amount 

of solvent within the polymer at saturation but decreasing the kinetics of sorption.13  

Lange and co-workers investigated the extent to which polymer physical and chemical 

characteristics influenced oxygen transport in more than 15 different epoxy-amine 

combinations and found significant decreases in O2 permeability as hydrogen bonding 

and polar group concentration increased but very little to no correlation between Tg and 

transmission rates although free volume properties were not investigated.14 

Few investigations have reported the impact of hydroplasticization and the 

presence of moisture on polymer free volume properties and the resulting shifts in 
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transport behaviors.  Muramatsu and co-workers subjected an ethylene-vinyl alcohol 

copolymer to increasing relative humidity levels at room temperature and noted a U-

shaped decrease then increase in free volume hole size (between 0-95% RH) which 

corresponded with a similar pattern in oxygen permeability.  It was suggested that these 

trends were the result of water molecules filling free volume pores between 0-30% RH 

which then induced plasticization and allowed for the increased measured volumes at 

higher water vapor concentrations.15  Similar findings were presented by Dlubek and co-

workers who subjected Polyamide 6 to varying relative humidity environments and 

employed PALS to observe an approximately 12% drop in free volume hole size from the 

dry glassy state to 45% RH followed by an increase to previous values as higher moisture 

content ranges (> 90% RH) were reached.  The authors posited that in addition to simply 

filling free volume holes the water molecules participated in varying degrees of 

interaction with the polymer, the extent of which was dependent upon H2O molar 

concentration, which resulted in fluctuating degrees of plasticization.16  Mo and co-

workers monitored oxygen and water vapor transmission rates as a function of relative 

humidity in hydrophilic (polyvinyl alcohol, PVA) and hydrophobic (polypropylene, PP) 

films and found that the water-soluble PVA exhibited exponential increases in both 

oxygen and water vapor transport rates as RH increased from 35 to 90%.  In contrast, the 

PP samples exhibited a slight linear increase in water vapor transmission and decrease in 

oxygen transport over the same range.17  The differences in response to water vapor 

concentration indicate that polymer solubility plays a central role in determining both the 

interaction between matrix and water and the extent to which free volume-directed 

transport properties are affected. 
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Extensive investigations of epoxy-amine free volume and topological properties suggest 

that although these features influence aspects of water, salt, and oxygen sorption and 

transport behaviors, they act in tandem with other polymer characteristics such as 

segmental mobility and secondary interactions associated with polar and hydrogen 

bonding groups.5-7  However, a comprehensive analysis and explanation of shifts in 

network free volume properties following uptake of moisture or as a function of water 

content is not presently available.  Given the dynamic nature of polymer free volume hole 

size and fraction characteristics it is necessary to elucidate these changes as corrosion 

protection coatings are likely to experience a range of exposure conditions.  The 

following investigation was designed to provide a range of humidity level challenges to a 

series of epoxy-amine networks which vary in dry or unexposed free volume conditions 

and observe the resulting impact on transport and thermomechanical properties. 

3.2 Experimental 

3.2.1 Methodology 

A series of five different model epoxy-amine networks were formulated using 

either E825 or E1510 epoxy resins and combined with one of five different crosslinking 

agents: EDR148, DDM, DDS, THF100, or ED900, the chemical structures of which are 

given in Figure 3.1.  These matrices provided a means of evaluating glasses that vary in 

Tg along with a comparison of two rubbery networks that reflect very different extents of 

water sorption.  In addition to these model epoxy-amine networks, a fully formulated 

coating was selected for comparison in select analyses.  Deft® 02GN084, supplied by 

PPG Aerospace Products, is a two-component solvent-borne non-chrome epoxy 

polyamide primer (classified as a MIL-PRF-23377K Type I Class N primer) containing a 
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praseodymium oxide-type corrosion inhibitor.  A number of analytical techniques were 

implemented in evaluating the transport properties as a function of free volume properties 

using RH-DMA, RH-PALS, and others. 

 

Figure 3.1 Chemical structures of epoxy-amine network monomers. 

 

3.3 Results and Discussion 

3.3.1 Thermomechanical Properties of Cured Epoxy-Amine Networks. 

Following the cure of epoxy-amine samples, DMA revealed a broad range of Tg 

values, as interpreted from the maxima of tan δ peaks.  Three of the networks exhibited 

increasing glassy values (at room temperature): 60.56 °C (E1510-EDR148), 135.75 °C 

(E1510-DDM), and 226.67 °C (E825-DDS) while the two remaining networks revealed 

sub-ambient values at -8.26 °C (E1510-THF100) and -11.24 °C (E1510-ED900), as 

shown in Figure 3.2. 
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Figure 3.2 DMA thermographs of cured Chapter III epoxy-amine networks. 

Tan Delta (tan δ, left) and Storage Modulus (Eʹ, right) and of the matrices through their glass transitions. 

 

These five epoxy-amine networks present a wide range of viscoelastic states at 

room temperature conditions with Tgs ranging across a nearly 235 °C span and Eʹ values 

between 4 MPa and 1.6 GPa at room temperature (approximately 25 °C).  The tan δ 

peaks of all networks reveal uniform Gaussian peaks indicating the complete cure of each 

epoxy-amine mixture.  The two polymers with the lowest Tg values, E1510-THF100 and 

E1510-ED900, offer the opportunity to evaluate and compare two different epoxy-amine 

rubbers of similar Tg and network architecture (given the similarity of monomer 

molecular structure and equivalent weight) that should exhibit very different hydrophilic 

character due to the difference in the backbone composition that makes up the majority of 

the polyether component: polytetramethylene oxide (THF100) and polyethylene oxide 

(ED900), which are known to exhibit moderately hydrophobic and hydrophilic 

properties, respectively.  The three glassy networks (E1510-EDR148, E1510-DDM, and 

E825-DDS) were selected for comparison primarily for the nearly equivalent separation 
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in glass transition temperatures (70-90 °C between each network) and not for variability 

in solubility/hydrophilicity, crosslink density, or chemical composition. 

3.3.2 Moisture Sorption of Epoxy-Amine Networks at Different RH Levels 

DVS was implemented in determining the kinetics and equilibrium water vapor 

sorption or saturation limits the various cure thermoset systems at relative humidity limits 

mirroring those used in RH-PALS testing, specifically, 5, 22, 44, 57, 75, and 95% RH, 

although some formulations were only subjected to only the upper, middle, and lower RH 

levels.  Sample discs 6.3 mm in diameter and thicknesses ranging from 250 to 300 µm 

were suspended in a quartz sample pan and subjected to a drying protocol at 60 °C and 

0% RH for 60-120 minutes (until a change in mass subsided) then the appropriate 

moisture sorption levels were applied.  Figure 3.3 illustrates the water vapor sorption 

profiles of the dried epoxy-amine networks at varying RH levels. 
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Figure 3.3 Water vapor sorption profiles of each epoxy-amine network and comparison 

of the water saturation quantities as a function of relative humidity. 
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What is evident from the DVS plots is the variability in sorption characteristics 

between the epoxy-amine networks.  The glassy polymers take on increasing quantities of 

moisture with decreasing Tg (E1510-EDR148 > E1510-DDM > E825-DDS, at 95% RH) 

although the exact extent to which composition and concentration of hydrophilic 

functional groups is not immediately obvious.  The rubbery networks exhibit faster 

uptake rates, as is evident in Figure 3.4, whereby the samples with sub-ambient Tg values 

exhibit significantly higher initial moisture uptake slopes and reach near-equilibrium 

levels within 500 minutes of exposure.  At low water vapor all networks except for the 

hydrophilic rubber take on similar quantities of moisture (between 0.065 and 0.079 wt%) 

while at higher relative humidity levels the difference in sorption properties becomes 

more apparent with water content at saturation ranging from 0.903 to 1.789 wt% (and 

3.073 wt% for E1510-ED900) at 57% RH.  The E1510-ED900 demonstrates a 

substantially higher hydrophilicity, with a maximum water content in excess of 27 wt% at 

95% RH, in contrast to the 2.046 to 4.464 wt% found with the other samples.  

Additionally, it can be seen that the E1510-EDR148 epoxy-amine network requires more 

time to reach equilibrium levels of water vapor content than the other glassy samples. 
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Figure 3.4 Water vapor sorption profile comparison of the epoxy-amine matrices at 5% 

(left) and 57% RH (right). 

 

A wide array of epoxy-amine diffusion kinetics have been reported, with both 

Fickian (Case I) and non-Fickian characteristics (for example anomalous21,22 or dual-

mode sorption23 mechanisms), with some apparent dependency on the exact combination 

of resin and curing agent, Tg and/or testing temperature, stoichiometry, degree of cure, 

solvent content, etc.  However, to easily estimate the variability in water vapor sorption 

kinetics, all were treated as Fickian in nature, in which case the water uptake and 

diffusion process can be described via the Fickian diffusion solution24 as: 

𝑀𝑡

𝑀∞
= 1 −

8

𝜋2
∑

𝑒−𝑡𝐷(
𝑘𝜋

𝑙
)

2

𝑘2
≅ 1 − 𝑒𝑥𝑝 [−7.3 (

𝐷𝑡

𝑙2
)

0.75

]

𝑘 𝑜𝑑𝑑

 

wherein D is the diffusion coefficient, Mt is the moisture content at time t, M∞ is the 

moisture content at saturation, and 𝑙 is the sample thickness.  This can then be simplified 

at early stages25 to: 
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𝑀𝑡

𝑀∞
=

4

𝜋1/2
(

𝐷𝑡

𝑙2
)

1/2

 

When Mt/M∞ is plotted as a function of t1/2/𝑙 the initial slope (usually when Mt/M∞ < 0.5), 

or I, is related to D by: 

𝐷 = 𝐼2 (
𝜋

16
) 

 

Figure 3.5 Demonstration of diffusion coefficient, D, calculation for DVS sorption 

process of E1510-THF100 sample at 95% RH (top), and D as a function of relative 

humidity for glass (bottom left) and rubber (bottom right) samples. 
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Applying this method (Figure 3.5) to the DVS isotherms resulted in calculated 

diffusion coefficients that predictably varied between the networks24 with higher 

diffusivity ranges (8.55 x 10-9 to 1.15 x 10-7 cm2/s) for rubbery epoxy-amine samples, 

regardless of saturation quantity, compared to glassy networks (1.12 x 10-9 to 1.3 x 10-8 

cm2/s).  It is also apparent that glassy network diffusion coefficients exhibit little to no 

dependency on relative humidity level beyond 5% RH.  However, given the lower signal-

to-noise ratio of the measured masses when operating near the lower limits of the DVS 

instrument it is possible that these values (< 20% RH) may be inflated.  The diffusion 

coefficient of the hydrophilic low Tg epoxy-amine network, E1510-ED900, demonstrates 

the greatest dependency on RH level with a near linear decrease in diffusivity as 

environmental moisture concentration increases. 

3.3.3 Free Volume Properties at Different RH Levels 

The use of a relative humidity-controlled apparatus combined with positron 

annihilation lifetime spectroscopy (PALS) allowed for probing of the epoxy-amine 

network free volume characteristics at various points of moisture exposure without 

risking any loss of water during testing.  Samples were held at different relative humidity 

levels in chambers equilibrated using saturated salt solutions until an anticipated 

equilibrium saturation level was reached within each epoxy-amine network, for a period 

of time determined by DVS.  These samples were then transferred and subjected to PALS 

testing and the influence of water at specific levels of exposure concentrations that were 

maintained throughout the course of the measurement.  As seen in Figure 3.6 the glassy 

and rubbery epoxy-amine networks exhibit distinct ranges of measured free volume hole 

sizes across the entire range of relative humidity levels, with the two rubbery samples 
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yielding sizes ranging from 140-150 Å3 and glasses bearing values between 60-90 Å3.  

This separation between networks based on Tg is predicted by classical polymer free 

volume theory but an additional dissimilarity between the two groups is the presence of 

an RH-dependent increase or decrease in free volume size that is not present in the 

rubbery samples.  All three glassy networks reveal decreasing pore volume between 0-

75% RH and increasing or rebounding values at higher RH levels (75-100%).  Due to the 

interaction between positrons and water leading to annihilation it is assumed that the 

decreasing trend in sizes observed at lower relative humidity levels is due to the filling of 

free volume holes at lower sorption levels.  As moisture levels are increased the number 

and extent to which pores are filled with water molecules increases until approximately 

70-80% RH is reached at which point large scale swelling occurs allowing for 

substantially increased polymer chain mobility.  This swelling results in larger voids 

forming throughout the sample which further expand upon increasing humidity levels.  

When comparing these data to DVS results it is apparent that this shifting in free volume 

hole sizes does not have a direct impact on the kinetics of water diffusion (Figure 3.5) nor 

do the saturation quantities reveal a shift in uptake behaviors within the same range (70-

80% RH).  However, it could be expected that at longer times the increase in average free 

volume hole size would allow for additional ingress of water. 
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Figure 3.6 Average free volume hole size as a function of relative humidity level for 

glassy and rubbery epoxy-amine network samples (left) and a commercial CRI-

containing pigmented epoxy primer (left). 

 

A free film of a CRI-pigmented epoxy-amine primer, Deft 02GN084 (Tg ≈ 85 

°C), was subjected to the same testing protocol and a similar pattern in free volume 

average hole size decrease from lower to mid-range relative humidity followed by a 

subsequent increase at higher levels was observed.  This demonstrates that the effect of 

shifting polymer properties is not hindered via the addition of pigments, solvents, or 

additives and could be expected to occur throughout the service lifetime of a coating 

subjected to variable humidity or precipitation conditions (e.g., any exterior corrosion 

protection coating).  Inevitably, fluctuating water transport behaviors will directly 

influence the sorption and permeation of other penetrants central to corrosion protection 

performance, specifically, oxygen and ions (including inhibitors) by occupying to varying 

degrees what is ostensibly the primary, or most accessible, pathways for diffusion to the 

substrate. 
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3.3.4 Water Vapor and Oxygen Transmission Analysis 

Two glassy epoxy-amine networks, E1510-EDR148 (Tg = 60.56 °C) and E1510-

DDM (Tg = 135.76 °C), were selected for additional investigation regarding transport of 

both water and oxygen through epoxy-amine network samples under varying relative 

humidity conditions.  Free films were subjected to specific relative moisture 

concentrations (43, 58, 73, 83, and 99% RH) in humidity chambers until a sorption 

saturation point was attained, as determined via DVS.  These samples were then secured 

in pre-weighed PTFE cups filled with DI H2O and placed back into the humidity 

chambers with periodic measurements of weight according to ASTM E-96.  From this the 

respective transmission and permeability were calculated, as illustrated in Figure 3.7.  It 

is apparent from these data that a shift in transport rates occurs at approximately 75% RH 

whereby exposure to higher relative humidity conditions results in higher rates of 

permeation.  This coincides with the steep increase in measured free volume hole size 

observed in the RH-PALS experiments at higher relative humidity levels.  It is likely that 

a threshold is reached wherein a sufficient moisture concentration is reached for swelling 

to occur due to increases in polymer segment or chain mobility which results in growth of 

pore volume and an escalation in water permeability. 
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Figure 3.7 Measured water vapor transmission (right) and calculated permeability (left) 

through epoxy-amine networks E1510-EDR148 and E1510-DDM. 

 

Additionally, the transmission of oxygen is influenced by the presence and 

concentration of H2O within epoxy-amine networks.  As water molecules occupy the 

empty physical spaces and interact with polar and hydrogen bonding sites accessible to 

penetrants following sorption, it could be anticipated that competition for space 

availability within the polymer could limit the ingress or transmission of additional 

penetrants.  Figure 3.8 illustrates the effect of the presence of moisture on O2 transport 

behaviors within the epoxy-amine network E1510-DDM and the resulting permeability, 

diffusivity, and solubility as a function of relative humidity exposure.  Free film samples 

(thicknesses of approximately 0.3 mm) were subjected to oxygen transmission testing 

using a continuous flow technique in a humidity-controlled instrument following 

exposure to varying relative humidity environments until moisture saturation levels were 

reached.  It is evident that increasing the concentration of H2O within the polymer (as 

much as 2.518 wt% at 75% RH) has the resulting effect of lowering O2 transmission 

equilibrium levels. 
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Figure 3.8 Measured oxygen gas transmission rates through glassy E1510-DDM (right) 

under varying relative humidity levels and the respective calculated permeability, 

diffusivity, and solubility under those conditions. 

 

From these data the oxygen permeability, diffusivity, and solubility are 

determined (as these properties are related by P = D × S) and evaluated as a function of 

relative humidity.  Both the permeability and solubility terms drop off in value with 

increasing moisture content while the diffusivity exhibits a very slight increase and only 

decreases at the highest measured relative humidity (75%).  This indicates that the 

increasing concentrations of water molecules within polymer free volume holes reduces 

the transport of oxygen through the samples without having a pronounced impact on the 

kinetics of diffusion until higher moisture content levels are reached at which point it is 

expected that swelling of the epoxy-amine network is beginning to occur.  Oxygen 

permeation analysis of E1510-EDR148, shown in Figure 3.9, reveals a fairly dissimilar 

response to increasing relative humidity.  It is seen that this lower Tg network exhibits a 

lower (approximately halved) flux compared to E1510-DDM under dry conditions and 

reveals a more pronounced drop in O2 transmission following the sorption of moisture at 

lower levels (44 and 64% RH).  Furthermore, this system exhibits a slight increase at a 
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higher relative humidity level indicating that once a higher moisture content is reached 

(2.559 wt% at 75% RH) either polymer swelling or intensified segmental mobility due to 

hydroplasticization allows for more extensive oxygen transmission despite the presence 

of more water within the matrix as compared to previous levels. 

 

Figure 3.9 Measured oxygen gas transmission rates through glassy E1510-EDR148 

(right) under varying relative humidity levels and the respective calculated permeability, 

diffusivity, and solubility under those conditions. 

 

Comparison of transport terms between the two networks reveals that the O2 

permeability and solubility is generally lower in E1510-EDR148 across all RH levels 

although both systems exhibit decreases in solubility as moisture levels increase.  

Permeability is seen to decrease within both matrices across RH levels but the higher Tg 

network reveals a gradual drop-off while the lower Tg matrix demonstrates a more 

immediate decrease before increasing slightly at 75% RH.  Diffusivity of E1510-DDM 

increases very slightly from 0 to 57% RH before lowering at higher levels while E1510-

EDR148 mirrors the permeability term with increasing moisture content.   

The saturation water content at various water vapor concentrations as measured 

by DVS (Figure 3.5) indicates that these systems take on comparable quantities of H2O 
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although oxygen transmission analysis suggests differing extents of interaction between 

water and polymer, which impacts O2 permeation.  Accounting for the variability in 

oxygen transport properties of the two matrices requires examination of both structural 

and compositional features, primarily the chemical composition and free volume 

properties.  The higher Tg network maintains a higher average free volume hole size at all 

tested RH levels (0-75%) while the E1510-EDR148 consists of a higher concentration of 

polar and hydrogen bond-accepting ether groups which also contribute to a lower 

molecular rigidity than the diphenyl methane groups in E1510-DDM.  These combined 

features likely determine the extent to which polymer segmental mobility is impacted 

following sorption of water.  Larger free volume hole sizes result in greater oxygen flux 

regardless of water content (within the tested range) but the potential for H2O molecules 

to interrupt intramolecular hydrogen bonding should enhance molecular chain mobility 

dynamics to the effect of a relative increase in oxygen.  In the E1510-EDR148 system 

this translates into a slight increase in oxygen permeability at higher water concentrations 

while E1510-DDM reveals a decrease across the entire water vapor concentration range. 

3.3.5 RH-DMA of E1510-EDR148 

To further evaluate how epoxy-amine network physical properties shifted relative 

to sorption at low degrees of water vapor exposure, RH-DMA was carried out on samples 

of E1510-EDR148 at numerous RH levels similar to those implemented in RH-PALS and 

DVS testing.  Sample free films were installed into the RH-DMA tensile clamp, and the 

testing was initiated with an equilibration step at 35 °C and the appropriate relative 

humidity level.  The samples were exposed, unstrained, to the moisture atmosphere for 

200-400 minutes before starting the normal RH-DMA temperature ramp.  Figure 3.10 
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reveals the depression in Eʹ, Eʹʹ, and tan δ with increasing discrete moisture sorption 

levels.  As expected the maxima of both Eʹʹ and tan δ peaks shift to roughly 15 °C lower 

temperatures as does the Eʹ transition onset as hydroplasticization occurs.  In addition, the 

Eʹ signals reveal the development of a peak shoulder in samples at 50% RH and increases 

with exposure to higher moisture concentrations which suggests that some degree of 

network heterogeneity appears due to the development of spatial distributions of more 

and less solvated or swollen regions of the epoxy-amine matrix. 

 

Figure 3.10 Storage Modulus, Tan Delta, and Loss Modulus plots of E1510-EDR148 

relative to exposure to various relative humidity levels. 
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DVS isotherm plots were used to estimate the approximate moisture concentration 

during testing, assuming minimal loss due to high temperature at later stages during the 

test.  The resulting impact of the presence of water on the glass transition temperature 

was assessed by comparing observed hydroplasticized Tg values, determined from tan δ 

peak maxima, at various RH levels with the Tg depression predicted via the Fox Equation 

which is given by: 

1

𝑇𝑔𝑡𝑜𝑡𝑎𝑙
=

𝑤𝑡1

𝑇𝑔1
+

𝑤𝑡2

𝑇𝑔2
 

In this instance wt1/wt2 and Tg1/Tg2 represent the weight fractions and Tgs (K), 

respectively, of the individual components and Tg
total represents the composite Tg of the 

whole system.26  This model has traditionally been used to predict the glass transition 

temperature of polymer blends although it has also been implemented in describing 

polymer-solvent systems, including hydroplasticized polymers whereby the Tg of water 

was assumed to be -137 °C.27  Figure 3.11 demonstrates the shift in E1510-EDR148 Tg 

as water is absorbed and the deviation from predicted values.  It can be seen that the 

presence of even small quantities of moisture depresses the polymer Tg but the 

experimentally determined hydroplasticized figures are lower than what is predicted by 

the Fox Equation, which could be due to a number of factors.  Although the prediction 

method assumes a completely homogenized mixture of components, heterogeneous 

uptake of water by epoxy-amine networks is known to occur due to inhomogeneous 

distributions microstructural features such as free volume pores and polar group 

concentrations.28   
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Figure 3.11 Comparison of hydroplasticized Tg values of E1510-EDR148 as measured in 

RH-DMA and the Tg depression estimated by the Fox Equation. 

 

Additionally, sub-ambient DMA was carried out on samples (rectangular bars 

with dimensions of 10 x 5 x 1 mm) of E1510-EDR148 immersed in room temperature DI 

H2O for 0, 24, and 72 hours to examine the shift in segmental relaxation properties with 

increasing concentrations of absorbed water prior to saturation.  Various secondary 

transitions in amine-cured epoxy resins have been investigated through numerous studies 

and correlated with methylene unit trans-gauche isomerization and aromatic ring π flips29 

in addition to  camshaft-like rotations of hydroxypropyl ether segments30 which, as part 

of the highly polar and hydrogen bonding portion of the polymer network, is purported to 

contribute a significant role in the water transport mechanism.6  Figure 3.12 exhibits the 

change in the β relaxation, with peak maxima centered around -50 °C, with increasing 

water uptake.  Both the tan δ and loss modulus signals reveal an increase in peak heights 

from 0 to 24 hours followed by a decrease to the lowest values at 72 hours.  Although the 
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peaks are relatively broad, the maximum values also shift slightly to higher temperatures 

from -48.05 to -41.50 °C following initial immersion then a decrease to the lowest level 

at -48.68 °C with subsequent water sorption while the peaks broaden and a slight 

shoulder appears on the lower temperature side, indicating some degree of increase in 

network heterogeneity.  These trends indicate that lower concentrations of water limit the 

extent of segmental mobility of these hydrophilic units compared to the dry or pristine 

network before increasing this degree of movement at higher sorption limits, which may 

coincide with the onset of larger-scale swelling. 

 

Figure 3.12 DMA thermographs (Tan Delta, left, and Loss Modulus, right) of E1510-

EDR148 bulk samples following immersion in DI H2O at room temperature for 0, 24, and 

72 hours. 

 

3.3.6 Volume and Density Analysis of Bulk Samples 

In order to further understand how polymer free volume characteristics shift 

during moisture sorption and the resulting influence on other material properties a macro-

scale volume analysis of epoxy-amine network E1510-EDR148 was carried out.  

Rectangular bulk samples with dimensions of approximately 15 x 12.7 x 6 mm were 
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prepared and their dimensions were measured with a digital caliper measuring tool while 

their masses and densities were measured on a Mettler Toledo XS104 analytical balance.  

All samples were conditioned beforehand in an oven at 85 °C for several hours then 

placed in a desiccator for several days to remove as much moisture from within the 

polymer as possible without causing any thermal degradation.  These were then placed in 

humidity chambers at either 43, 57, 75, 83, or 99% RH and removed, patted dry with 

paper towels, and weighed/measured after several months to allow for samples to reach 

saturation equilibrium in the respective water vapor environments.  Figure 3.13 compares 

the shifts in nano- and macro-scale volume properties of this epoxy-amine network as a 

function of relative humidity.  It is seen that the volume and density of bulk samples 

increase across the tested RH range in contrast to the free volume hole size which 

exhibits a discontinuity around ~75% RH as discussed previously.  This indicates that 

water sorption-induced swelling occurs in distinct stages depending on the size scale 

observed: as moisture ingress occurs within the network free volume pores are filled until 

a concentration is reached whereupon hydroplasticization allows for sufficient polymer 

segment mobility such that these holes can significantly increase in size.  However, large-

scale bulk sample volume reveals an increase even at low RH levels but does express a 

more substantial surge within the same high moisture content range.  A similar trend is 

found with the sample density which increases steadily through the tested RH range. 
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Figure 3.13 Comparison of free volume hole size and macro-scale sample volume and 

density shift with increasing relative humidity (left) and shifts in volume and density of 

bulk samples immersed in DI H2O (left) of epoxy-amine network E1510-EDR148 

samples. 

 

Bulk samples of E1510-EDR148 were also subjected to exposure to liquid water 

by immersing in DI H2O with periodic measurement of mass, density, and physical 

dimensions.  As seen in Figure 3.13 both volume and density are found to increase 

throughout the entire sorption process prior to reaching equilibrium or saturation.  This 

further demonstrates that while nano-scale free volume properties of the epoxy-amine 

network reveals distinct regimes of growth or reduction dependent upon moisture 

concentration, the macroscopic characteristics respond to the ingress of water unilaterally 

and immediately. 

3.3.7 ATR-IR Evaluation of H2O-Immersed E1510-EDR148 

Free film disc samples of approximately 15 mm in diameter and 0.3 mm thickness 

were immersed in DI H2O at room temperature and ATR-IR spectra were collected at 0, 

1, 4, and 24 hours.  The broad peak centered around 3550 – 3200 cm-1 (–OH stretch) was 

observed and a deconvolution protocol was used to determine the relative peak areas 
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corresponding to water in different states of hydrogen bonding.  These areas were then 

combined to distinguish “bound” (S1, S2ʹ, S2ʹʹ or singly, weak and strong doubly 

hydrogen-bonded) water states from “free” (S0 or free) molecules, according to the extent 

of hydrogen bonding between polymer and H2O.3, 31 

 

Figure 3.14 ATR-IR overlay of E1510-EDR148 after immersion in DI H2O and 

proportions of free (red) versus bound (black) water type populations, as a reflection of 

the total amount of water present in samples immersed in DI H2O for 0, 1, 4, and 24 

hours. 

 



 

74 

The resulting groupings as illustrated in Figure 3.14 indicate that at all time points 

there exists a higher proportion of bound water than free within all formulations.  This 

population includes H2O molecules that associate with the polymer through only a single 

hydrogen bond in addition to those that are either loosely or tightly bound to ether, 

hydroxyl, or tertiary amine moieties within the system.  The free water fractions in glassy 

networks increase across all time points and appear to scale with Tg while the free water 

fraction of the rubber samples may be primarily dependent upon water content or 

hydrophilicity.  Given the proclivity for polymer free volume hole size at a given 

temperature to increase with glass transition temperature it is expected that more physical 

space is available for free water molecules to gather although contributions by network 

chemical composition must also be considered.  These results suggest that increasing free 

water fractions at longer times in high moisture or liquid water environments may 

correlate with swelling that is distinct from hydroplasticization (decrease in Tg and 

modulus) which is detectable even at short times or low moisture content. 

3.4 Conclusions 

In this collection of experiments a number of interesting trends related to transport 

properties of both water and oxygen as a function of polymer moisture content in epoxy-

amine networks were disclosed.  A series of matrices that vary in Tg (a range of nearly 

250 °C) were selected for comparison of free volume properties as a function of water 

sorption and subjected to RH-controlled PALS measurements after samples had 

equilibrated under a number of humidity conditions.  It was noted that each glassy 

network (Tg > 50 °C) exhibited a water content-dependent reversible shift in free volume 

hole size that decreased between 0-75% RH and but significantly increased at higher 
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levels.  In contrast, the low Tg systems (rubbery throughout the environmental conditions) 

demonstrated very little change throughout the entire relative humidity range, regardless 

of water sorption extent.   Although the effect of water on epoxy-amine network 

properties is evident at low moisture sorption levels (low RH levels or early stages of DI 

H2O immersion) the increase in average free volume only takes place at higher levels (≥ 

75% RH), suggesting that water molecules first fill the most easily accessible or 

interconnected free volume voids and act locally on polymer polar or hydrogen bonding 

segments before a critical water content threshold is reached whereby larger-scale 

swelling occurs and heightened polymer mobility is possible.  However, larger samples 

were subjected to the same humid environments as well as immersion in DI H2O and 

increases in volume and density were found at all exposure levels and times, indicating 

that although the free volume holes decrease in size between 0-75% RH the macro-scale 

swelling initiates as soon as water ingress take place.  In any case the trend observed in 

RH-PALS experiments was also reflected by a fully formulated inhibitor-containing 

epoxy primer which implies that a coating may experience variability in free volume 

properties due to environmental variability (e.g. diurnal cycle) which could influence 

barrier properties and therefore corrosion protection. 

DVS measurements revealed that although there appeared to be a correlation 

between Tg and the amount of water absorbed at saturation (> 75% RH), it is more likely 

to be dependent upon chemical composition than glass transition temperature although 

the diffusion coefficient of the glasses did appear to scale with Tg which could be 

explained by the difference in free volume hole size between networks, at least below 

95% RH.  Rubbery samples exhibited saturation levels and sorption kinetics that are 



 

76 

almost entirely based on differences in polar and hydrogen bonding group concentrations 

given the similarity in Tg, crosslink density, and free volume hole size.  The transport 

properties of two of the glassy networks, E1510-EDR148 and E1510-DDM, were 

evaluated further via water vapor permeability testing using the cup method.  It was 

observed that two distinct regimes of permeation rates occurred at RH levels that 

corresponded with shifts in free volume as measured by RH-PALS.  This lends additional 

credibility to the postulation that below 75% RH the free volume pores are filled by water 

molecules as polymer moisture content increases before widespread swelling of the 

microstructure allows for increasing hole size which promotes higher permeability.  

Oxygen permeability testing yielded results which support this wherein transmission rates 

were observed to decrease, in general, from 43 to 75% RH despite the lower Tg network 

demonstrating a slight increase at the higher end of the water vapor range.  Although 

trends in O2 diffusivity differed between the networks it was revealed that both systems 

experienced a lowering of polymer-oxygen solubility as water content increased which 

may be a product of how segmental mobility is modified by the presence of, and 

interaction with, moisture at varying concentrations.32 

DMA and RH-DMA of E1510-EDR148 allowed for the examination into the 

impact of moisture on thermomechanical properties at different concentrations and 

through these methods it was observed that distinct regimes of hydroplasticization exist.  

Both the glass transition temperature, given by the tan δ maxima, and glassy storage 

modulus decrease from higher to lower values from low to high RH, which occurs 

simultaneously with free volume pore size decrease.  The drop in Tg exceeds what is 

predicted by the Fox Equation which may be due to intramolecular hydrogen bond 
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interruption following sorption of even small amounts of water.  This is supported by 

shifts in secondary relaxations of E1510-EDR148 following immersion in DI H2O: early 

stages of water sorption reveal a decrease in β transition peak height/area as compared to 

the dry or pristine state before increasing to its highest levels following additional uptake.  

This would suggest that camshaft rotations of the hydroxypropyl ether segments within 

the epoxy-amine network are subdued as tightly bound water acts as a hydrogen bonding 

“bridge” at low water concentrations, then swelling takes place with higher water 

concentrations which allows for enhanced molecular mobility.  ATR-IR analysis of free 

films following immersion in DI H2O indicates that the extent to which polymer-water 

interaction shifts at varying points in the sorption process differs between the epoxy-

amine formulations although all systems reveal a surplus of “bound” water at all stages, 

which would most likely disrupt polymer-polymer secondary interactions. 

These results taken in combination reveal a more complete picture of the water 

sorption mechanism in epoxy-amine networks and demonstrates how the complex 

interactions between water and polymer shape the shift in thermomechanical properties 

and oxygen transport processes.  The findings indicate that water first traverses the most 

easily accessible free volume pathways, occupying the empty spaces and acting locally 

on polymer chains by disrupting a small proportion of hydrogen ponding and initiating 

hydroplasticization (lowering Tg and Eʹ).  As additional water content ingresses, larger-

scale swelling occurs such that free volume holes increase and size and allows for 

additional mobility in polymer chain dynamics as “free” water population size increases.  

Although this general mode of moisture uptake has been suggested not only for 

crosslinked epoxy networks but for glassy amorphous polymers in general33 this work 
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provides some of the first evidence from the aspect of free volume as a function of water 

content.  Additionally, as RH-PALS testing of an actual formulated corrosion protection 

primer revealed similar results to the model networks it is possible that these 

examinations could be applied or extended to the process of coating formulating to 

influence water transport and hence barrier properties.  Based on these results it is 

hypothesized that coatings systems which absorb higher quantities of moisture allow for 

less permeation of oxygen to the substrate with greater extent of water-polymer 

interaction resulting in slower O2 diffusion rates which would potentially decrease the 

rates of corrosion initiation and propagation. 
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CHAPTER IV – TUNING OF TRANSPORT AND THERMOMECHANICAL 

PROPERTIES OF MIXED THERMOSET NETWORKS AND COATINGS 

4.1 Introduction 

A pragmatic method of establishing structure-property relationships in epoxy-

amine systems has been the utilization of network series whereby a number of distinct 

matrices are prepared using separate combinations of resins and crosslinking agents and 

the resulting material properties are evaluated and related to the chemical composition 

and structural attributes.  This is demonstrated in studies reported by Soles and co-

workers which evaluated the impact of monomer flexibility and functionality on free 

volume properties and transport kinetics.1-2  Additionally, Linde and co-workers 

compared epoxy-amine matrices composed of disparate crosslinking agents to determine 

what influence Tg has on moisture diffusion and solubility.3  However, this method of 

analysis as applied to the influence of water transport characteristics of a coating binder 

on inhibitor release and protection efficacy of pigmented coatings is not currently found 

in the literature.  The following research is intended to serve as a means of developing an 

understanding of the relationships between polymer matrix properties and inhibited 

primer performance using a series of mixed thermoset networks composed of the same 

monomeric materials. 

Many coatings, and in particular corrosion protection primers, are formulated 

around polymeric binder materials which are typically glassy in nature with Tg values 

that vary between 50-150 °C.  A higher value is assumed to aid in preventing shifts in 

coating physical properties upon exposure to a variety of environmental challenges 

including periodic temperature, moisture, and pressure fluctuations.4-5  Glass-forming 
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polymers, including thermoset matrices, represent a non-equilibrium thermodynamic 

state and as such are prone to physical aging processes.  This occurs slowly at 

temperatures well below the Tg as a gradual shift in molecular configuration via 

rearrangement to reach a condition closer to equilibrium but is accelerated when exposed 

to temperatures 10-20 °C within the transition range.  Several material property shifts 

accompany the physical aging process and includes increases in density, modulus, and 

brittleness in addition to decreases in viscoelastic response and toughness, all of which 

could potentially impact performance of a coating derived from a glassy polymer.  

Additionally, small molecule transport rates are diminished as a function of physical 

aging due to decreases in free volume and would therefore impact both the barrier 

properties and inhibitor release capability of a pigmented primer coating.6-7  Due to the 

tendency of water to depress polymer Tg via the process of hydroplasticization, it could 

be assumed that sorption of significant quantities would assist in accelerating the physical 

aging of a given coating system.  However, it was demonstrated that exposure of urethane 

and polyester/melamine coatings to increasing levels of relative humidity had the result 

of accelerating the initiation but hindering the overall extent of physical aging as 

compared to dry thermally treated samples.8  Nevertheless, the impact of specific network 

features on the interplay between physical aging, transport processes, and inhibited 

primer protection is still unknown. 

In this chapter the relationships between glass transition temperature, crosslink 

density, and hydrophilic network component proportion and the extent to which transport 

properties can be adjusted while maintaining a set of matrix structural and compositional 

targets is described.  This was achieved using a series of mixed epoxy-amine systems 
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consisting of a singular epoxy resin, a chain extender, and two different crosslinking 

agents, the relative ratios of which were manipulated for iterative shifts in material 

features.  The resulting sample thermomechanical and moisture transport characteristics 

were observed and compared in both dry and relative humidity-exposed conditions and 

the impact on physical aging was observed.  Free film and substrate-bound coatings, both 

pigmented and non-pigmented, were developed from a selection of these matrices and the 

extent of water-polymer interaction was assessed with ATR-IR while the corrosion 

protection efficacy of the formulations while under static salt fog conditions was 

observed.  

4.2 Experimental 

4.2.1 Methodology 

A series of nine different epoxy-amine networks were formulated using a single 

liquid epoxy resin (E825), a chain extender (either BA or PL4200 for Network Series 1 

(NS1) and 2 (NS2), respectively), and a mixture of crosslinking agents (ED600 and either 

1,3-BAC (NS1) or MPMD (NS2)), all formulated to a 1:1 epoxy:amine-hydrogen 

stoichiometry.  The chemical structures of the monomer components are given in Figure 

4.1. 
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Figure 4.1 Chemical structures of epoxy resin (top) along with primary monoamine and 

di-secondary amine chain extenders (middle) and tetrafunctional amine crosslinking 

network reactants (bottom). 

 

Within the respective networks series (NS1 and NS2) each matrix was formulated to 

contain all of the same monomers (epoxy, chain extender, and two crosslinking agents) in 

varying quantities as to maintain a 1:1 epoxy:amine-hydrogen stoichiometry and targeted 

crosslink density and crosslinking agent equivalent percentage. 

4.2.2 Epoxy-Amine Network Formulation 

A series of nine distinct epoxy-amine networks was prepared with three separate 

crosslink density ranges (Mc = high, mid, or low) and hydrophilicity levels as contributed 

by the ED600 polyethylene oxide component while maintaining a 1:1 epoxy to amine-

hydrogen stoichiometry for all thermosets.  By controlling the percent of amine content 

provided by the ED600 (≤ 30, ≈50, or ≥70 eq%) versus the small molecular weight 

crosslinking agent (MPMD or 1,3-BAC), both the glass transition temperature and 

hydrophilic nature of overall network was varied.  Additionally, the crosslink density was 
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adjusted to three distinct levels by the careful selection of the ratio of epoxy resin (E825) 

and chain extender (PL4200 or BA) proportions.  Figure 4.2 demonstrates the intended 

shifts in network structural and compositional features as a function of reactive 

component ratios.  Within each row the network Tg decreases while hydrophilicity 

increases from α to γ due to increasing ED600 content and each column represents an 

increase in crosslink density from I to III as the ratio of E825 to chain extender increases.  

This strategy of network design allows for the creation of a series of distinct epoxy-amine 

materials that vary in chemical and topological features to the extent that transport 

properties of water, salt, and inhibitor are impacted.  Two different versions of the 

network series were formulated and prepared: the first employed the use of crosslinking 

agent 1,3-BAC and chain extender BA (Network Series 1, NS1) while the second 

substituted these reactants with crosslinking agent MPMD and chain extender PL4200 

(Network Series 2, NS2).  The resulting formulations were adjusted to ensure the same 

degree of variability in crosslink density while maintaining 1:1 reactant stoichiometry in 

both NS1 and NS2.  The two different series were produced to provide some flexibility in 

processing and sample preparation with most fundamental polymer characterizations 

carried out on NS1 networks and coatings (both pigmented and pigment-free) analyses 

carried out on NS2 networks. 
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Figure 4.2 Outline of networks series consisting of nine networks containing the same 

four molecular components at varying ratios. 

 

4.3 Results and Discussion 

4.3.1 Thermomechanical Properties of Network Series 

Bulk polymer samples (bars) of each of the nine network formulations from NS1 

were evaluated via DMA and DSC to evaluate the extent to which varying the network 

reactant proportions varied the resulting Tg values.  Figure 4.3 illustrates the 

thermomechanical response measured during DMA testing with the tan δ and Eʹ signals 

highlighted.  It is immediately apparent that three specific groupings exist, owing to the 

three levels of crosslinking agent ratios included within the networks (α, β, and γ).  Glass 

transition temperatures range from approximately 50 to 95 °C with the lower Tg ranges 

corresponding to γ networks and higher Tg values represented by α formulations.  Tg 
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values within each grouping were anticipated to increase from I to III as crosslink density 

increased due to higher ratios of E825 to chain extender BA.  However, given the higher 

molecular flexibility of ED600 the β and γ groupings exhibited limited to slight decreases 

in Tg with decreasing chain extender and increasing crosslink density per unit volume, 

respectively. 

 

Figure 4.3 DMA overlays of all NS1 formulations detailing the Tan Delta (tan δ, left) and 

Storage Modulus (Eʹ, right). 

 

These trends were also observed in DSC testing as shown in Figure 4.4, with 

increasing measured Tg values in the α series as crosslink density increases while the 

reverse development is found in γ network group.  As is commonly encountered in these 

two methods the DMA Tg values observed are approximately 10-20 °C higher than those 

found in DSC analysis.  A comparison of measured glass transition values (DMA and 

DSC) is given in Table 4.1. 
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Figure 4.4 DSC overlays of all NS1 formulations detailing the glass transition during the 

second heating cycle (exotherm up). 

 

Table 4.1  

Network Series 1 Measured Glass Transition Temperatures (°C) 

Formulation DMA DSC 

α-I 86.59 69.97 

α-II 86.37 68.35 

α-III 95.24 78.08 

β-I 74.24 55.10 

β-II 73.40 54.56 

β-III 71.88 52.94 

γ-I 60.53 44.29 

γ-II 60.09 42.13 

γ-III 54.69 36.99 

 

In order to confirm that crosslink density values and groupings conformed to 

those anticipated based on formulation specifics the post-Tg Eʹ values were measured and 

the resulting molecular mass between crosslink junctions (Mc) values were calculated 

according to the theory of rubbery elasticity as given by the following equation: 
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𝑀𝑐 =
𝑞3𝜌𝑅𝑇

𝐸′𝑇𝑔+50

 

where q is a front factor (usually assumed to be 1), ρ is the sample density, R is the 

universal gas constant, T is the temperature at 50 K above Tg, and Eʹ represents the 

storage modulus at 50 K above Tg.
9  Three sample bars of each formulation were used to 

measure average density using the Archimedes method by measuring the samples in air 

and water. 

Similarly, the crosslink density (νc), or the moles of elastically effective network 

chains per unit volume, as given by the expression: 

𝜈𝑐 =
𝐸′

3𝑅𝑇
 

was monitored and compared between measured and theoretical values.  The resulting 

quantities are summarized in Table 4.2. 

Table 4.2  

Network Series 1 Theoretical and Measured νc and Mc 

Formulation 
νc (theoretical) 

(mol/cm3 ∙ 10-4) 

Mc (theoretical) 

(g/mol) 

νc (measured) 

(mol/cm3 ∙ 10-4) 

Mc (measured) 

(g/mol) 

α-I 12.18 950.17 5.69 1733.27 

α-II 15.00 774.53 8.63 1346.11 

α-III 19.54 591.78 10.4 1111.65 

β-I 12.22 950.16 6.48 1591.63 

β-II 14.97 778.06 8.31 1302.20 

β-III 19.52 596.82 12.3 946.71 

γ-I 12.04 960.24 8.29 1403.35 

γ-II 14.80 786.61 9.64 1207.01 

γ-III 19.34 603.36 13.3 876.77 
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Figure 4.5 Comparison of theoretical and measured Mc values as determined from the 

theory of rubbery elasticity. 

 

Figure 4.5 compares the differences in theoretical and measured Mc quantities as 

determined from DMA results for all network formulations.  It is seen that all matrices 

exhibit measured crosslink density values approximately half as high as estimated via the 

empirical method (measured Mc values are twice as high as theoretical).  Deviations from 

estimated values have been previously noted as larger Mc values are reached (lower 

crosslink density ranges) using this method.9  Other sources for the variability may 

include a difference in front factor (q) between the samples or potential interference 

between competing epoxy-amine reactions of each crosslinking agent or chain extender, 

resulting in a number of unreacted functional groups or network defects.  DSC 

thermographs exhibited no residual exothermic activity within the temperature range 

tested, signifying that the substantially higher Mc values are not due to low conversions 

but rather inherent to the mixed thermosets as formulated.  For the purposes of this 

research, however, the ultimate crosslink density ranges are not restrictive and rather the 
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relative increases and spacing between column groupings (I to III for all amine 

proportions) represent satisfactory variability in network structural features. 

4.3.2 Dynamic Vapor Sorption 

Polymer thin film discs of each of the nine network formulations from NS1 were 

subjected to gravimetric experiments under high humidity environments (DVS) at 25 °C.  

Figure 4.6 illustrates the respective sorption behaviors of the epoxy-amine networks 

where it is found that, in general, relative quantities of water absorbed by each 

formulation is similar to the proportion of the hydrophilic amine, ED600 (α < β < γ).  

Additionally, within each group the trend of increasing absorbed water amounts follows 

the increase in crosslink density (I < II < III), which is likely due to a combination of two 

factors: firstly, each crosslink junction is composed of a tertiary amine and two 

hydroxypropyl ether segments, which are functional groups with a propensity for polar 

and hydrogen-bonding interactions and are therefore hydrophilic.  It has also been 

observed that increasing crosslink density is accompanied by an increase in free volume 

fraction, which allows for a greater amount of water to ingress within the polymer.12 
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Figure 4.6 Gravimetric analysis of NS1 epoxy-amine samples via DVS testing. 

 

Interestingly, there exists some overlap between some network formulations, 

specifically, β-I/α-III and γ-II/β-III appear to take on similar amounts of moisture which 

suggests that the hydrophilic nature of the polymer matrices is a balance of the molar 

volume of hydrophilic crosslink junction functional groups and the polyethylene oxide 

segments of the ED600 crosslinking agent.  In addition to the total amount of water 

ingress the rates of diffusion, D, were calculated according to the methods outlined in 

Chapter III, which are outlined in Figure 4.7. 
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Figure 4.7 Comparison of water sorption contents and rates as measured by DVS. 

 

In general the diffusivity of each epoxy-amine formulation scales with the total 

amount of absorbed water, although there are some deviations from this trend.  It is 

apparent from these results is the tendency for both the total amount of water absorbed 

and the rate of water sorption increases primarily with the quantity of the hydrophilic 

ED600 component.  This is reflected in the water vapor transmission rate analysis as 

determined using the dry cup method of gravimetric analysis (ASTM E-96) in 95% RH at 

25 °C, as illustrated by Figure 4.8. 
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Figure 4.8 Water vapor transmission analysis of NS1 epoxy-amine samples via DVS 

testing. 

 

As with the sorption analysis the variance in moisture transmission appears to scale 

primarily with the proportion of hydrophilic crosslinking agent while within each 

grouping the tendency for greater amounts of vapor to permeate the film progresses with 

increasing crosslink density.  After taking into consideration sample thickness and area 

the water vapor transmission rate (WVTR) can be determined using the slope of mass 

increase as a function of time within the linear region at which point the polymer sample 

is saturated with moisture and a steady rate of water vapor permeates the polymer.  Table 

4.3 provides a summarization of moisture content at saturation, diffusion coefficient, and 

water vapor transmission rates of the network formulations under 95% RH. 
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Table 4.3  

Network Series 1 Moisture Sorption Characteristics (95% RH, 25 °C) 

Formulation 
Water Content  

(wt%) 

Diffusivity  

(cm2/s ∙  108) 

  WVTR  
(mg/min∙mm2 ∙  107) 

α-I 2.537 8.01 1.567 

α-II 3.069 5.63 2.029 

α-III 3.234 9.36 1.847 

β-I 3.342 6.94 1.987 

β-II 3.909 11.8 2.918 

β-III 4.648 19.4 4.159 

γ-I 4.215 15.2 3.552 

γ-II 4.669 16.1 5.061 

γ-III 5.699 34.3 7.145 

 

4.3.3 Impact of Hydroplasticization on Thermomechanical Properties 

Free film strips of cured NS1 epoxy-amine samples were subjected to RH-DMA 

thermal sweeps in tensile mode under “dry” and “wet” conditions to compare the extent 

of hydroplasticization that occurs as a function of crosslink density, moisture content, and 

Tg and the resulting impact on thermomechanical properties.  Samples were installed 

within the RH-DMA clamp chamber and held at either 95% RH and 25 °C (“wet” 

condition) or 0% RH and 60 °C (to remove any residual moisture) for up to 300 minutes 

during equilibration before cooling slowly to 5 °C, at which point the thermal scan 

proceeded as normal while maintaining the respective relative humidity levels.  Figure 

4.9 reveals the shifts in Tg as gauged by the tan δ signal under wet and dry conditions.  It 

can be seen that between 90-100 °C many of the samples under the 95% RH condition 

exhibit artificial peaks in tan δ which are likely caused by the water nearing its boiling 

point and is amplified in networks which maintain higher Tg values (primarily α matrices) 

and for the purposes of this work will be ignored. 
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Figure 4.9 RH-DMA tan δ signals of the nine separate NS1 epoxy-amine formulations 

within 0 and 95% RH environments demonstrating the relative degrees of 

hydroplasticization in α, β (top left and right, respectively) and γ networks (bottom). 

 

The primary focus of this analysis, however, is the drop in glass transition 

temperature for each network formulation due to plasticization by the presence of 

moisture.  It can be seen that nearly all of the samples exhibit decreases in Tg by 20-30 °C 

from dry to wet conditions, as illustrated in Figure 4.10.  Again the tendency for 

increasing crosslink density to correspond with heightened amounts of water ingress 

results in a more substantial impact on Tg shift.  However, within these results the impact 
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of hydrophilic network component ratio does not trend with the extent of 

hydroplasticization.  That is to say that the formulations which absorb the highest 

quantities of water and exhibit the highest water vapor transmission rates do not also 

reveal the greatest decreases in glass transition temperature.  This becomes clear 

following normalization of each network’s Tg shift by the respective quantity of water 

ingress during DVS testing (Figure 4.10) after which it is found that the 

thermomechanical reduction per wt% moisture sorption decreases as the total amount of 

water uptake increases.  One probable cause for this is the higher flexibility imparted by 

the hydrophilic ED600 segments which contribute to lower Tg values under dry 

conditions while maintaining similar or higher crosslink density values than those 

exhibited by α or β formulations. 

 

Figure 4.10 Degree of hydroplasticization as measured by shift in Tg from 0 to 95% RH. 

 

Another method of thermomechanical evaluation via RH-DMA included the 

measurement of swelling-induced tensile displacement or strain during isothermal RH 

exposure or sweeps.  During these tests a sample was held within the clamp under a very 
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slight preload force (0.001 N) and equilibrated at 0% RH and 25 °C for a period of 120 

minutes at which point a 95% RH environment was introduced to the chamber and the 

displacement or strain required to maintain the static tensile force was monitored as a 

function of time.  It was assumed that the increase in displacement following exposure to 

the high humidity conditions is due solely to swelling that occurs concomitantly with 

moisture sorption within the dimension of the applied force. 

 

Figure 4.11 Degree of moisture-induced swelling as measured by tensile strain (left) and 

development of strain per water sorption content (right). 

 

Figure 4.11 highlights the variability in swelling-induced strain that occurs upon 

shifting from low to high moisture environments with some resemblance of water 

sorption and transmission time dependencies and an equilibration state achieved by most 

formulations at longer periods.  As with previous analyses the γ group of networks 

exhibits the most change following exposure due to sorption of the highest quantities of 

water and within each group increasing crosslink density (I to III) corresponds with 

heightened degrees of strain development (again, due to more relative water ingress).  

However, an unexpected deviation from other results is the lower strain developments in 
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β matrices than α (β < α < γ) despite absorbing a generally higher concentration of water 

per sample.  This becomes more evident following normalization of the strain curves by 

the respective water content of each formulation with respect to time as determined via 

DVS, with a more substantial increase in swelling-induced strain per water sorption 

amount in α and γ than β.  Although the exact cause for this is not clear the near 50:50 

equivalents content of amine crosslinking agent types within this group may allow for 

redistribution of water molecules within the network structure in such a way that a 

minimum stress level is attained.  This dissimilarity in strain development during 

hygrothermal conditioning demonstrates that epoxy-amine networks may take on 

analogous quantities of moisture but distribute or “manage” the water in different 

regards. 

4.3.4 Physical Aging in Wet and Dry Environments 

Free film samples of all nine networks of NS1 were subjected to extensive (long-

term) physical aging experiments in both wet and dry conditions.  Following sample 

preparation and cure, free film discs of approximately 15 mm diameter were placed in 

labeled scintillation vials that were either empty or filled with DI H2O.  These samples 

were then stored under ambient conditions for 250 days before removing, drying, and 

cutting small sections for DSC analysis.  Figure 4.12 compares the first heating cycle of 

each formulation under wet and dry aging following exposure.  It is immediately apparent 

that the dry-aged formulations undergo more extensive physical aging, as is seen from the 

larger enthalpy recovery peaks near the Tg of specific formulations.  Additionally, a 

greater number of dry-aged formulations exhibit the effects of physical aging as 

compared to those aged while immersed in DI H2O.  The extent to which the physical 
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aging differs between wet and dry conditions is illustrated in Figure 4.13 which directly 

compares each formulation during the first and second heating scans following exposure 

to the different conditions. 

 

Figure 4.12 DSC heating thermographs (first heating cycle) of dry (left) and wet-aged 

(right) samples following 250 days of exposure. 

 

 

Figure 4.13 DSC heating thermograph overlays of first (left) and second (right) heating 

cycles of both wet (dashed lines) and dry-aged (solid lines) samples following 250 days 

of exposure. 
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It is apparent from the overlay of dry-aged (solid lines) and wet-aged (dashed 

lines) second cycle DSC thermographs that despite the variability in extent of physical 

aging between exposure conditions, the removal of moisture and thermal history during 

the first heating cycle results in plots that overlap nearly exactly.  This suggests that no 

permanent changes to the polymer network compositional or structural characteristics are 

inflicted by the presence of water during physical aging but also reveals that the presence 

of moisture severely impedes the aging process.  It could be anticipated that the 

occupation of free volume within the polymer matrix by the water molecules acts as a 

buffer for physical aging by eliminating available space for conformational or 

configurational ordering or compression.  This is despite the hydroplasticizing effect that 

water has on epoxy-amine polymer chains which would otherwise aid glassy networks to 

reach equilibrium dynamic states through physical aging processes.   

In order to compare the extent of physical aging of each sample the endotherm 

area correlating to enthalpy recovery peak near the glass transition region is calculated 

using previously defined methods.13  When examining the quantified enthalpy recovery 

of wet and dry-aged samples, as seen in Table 4.4, it is seen that the dry samples do in 

fact exhibit greater extents of physical aging than those subjected to immersion 

conditions. 
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Table 4.4  

Network Series 1 Physical Aging Characteristics 

Formulation Dry Tg (°C) Wet Tg (°C) Msat (wt%) Dry ΔH (J/g) Wet ΔH (J/g) 

α-I 76.40 62.24 2.5 0 2.163 

α-II 78.29 60.34 3.1 2.626 2.367 

α-III 95.19 68.81 3.2 0 0 

β-I 72.35 49.79 3.3 6.247 3.347 

β-II 73.36 48.67 3.9 6.424 3.963 

β-III 71.90 45.62 4.6 6.095 0 

γ-I 60.51 38.74 4.2 7.582 0 

γ-II 60.17 36.94 4.7 6.006 0 

γ-III 54.87 31.86 5.7 0 0 

 

It has been previously established that exposure of a single coating type to increasing RH 

levels results in faster initial rates of physical aging but lower final degrees of aging, with 

a lower Tg - Texposure value correlating with smaller enthalpy recovery peaks at the 

conclusion of exposure.8  However, the findings illustrated here reveal that the interplay 

between Tg, amount of water sorption (and thus Tg hydroplasticization), and crosslink 

density may further influence the physical aging process. 

 

Figure 4.14 Comparison of wet (blue) and dry-aged (red) sample measured enthalpy 

recovery as a function of reduced Tg (left) and normalized by the total amount of 

moisture absorbed at saturation (right). 
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In Figure 4.14 the extent of variability in physical aging between the different 

conditions is illustrated with a clear differentiation of wet (blue) and dry-aged (red) 

enthalpy recovery values after 250 days aging while all demonstrate exponential trends.  

It is found that, in general, as the Tg of the network increases the extent of physical aging 

decreases owing to the fact that the exposure temperature does not meet or exceed the 

thermal energy barrier that must be overcome in order to allow for sufficient polymer 

chain mobility (at least at accelerated rates).  This is also encountered when normalized 

by the amounts of water each respective network absorbs near the saturated state, as 

determined via gravimetric analysis of samples immersed in DI H2O.  Interestingly, only 

one formulation containing the highest level of crosslink density (β-II, Mc = 595 g/mol) 

exhibits any extent of endothermic peak associated with physical aging.  When 

comparing this network to the other β formulations, it is also seen that the measured 

enthalpy recovery peak area is less than those of β-I and β-II, indicating that increased 

levels of crosslinking acts to impede the physical aging process through the restriction of 

mobility on the scale associated with configurational rearrangement.  Within the wet-

aged samples none of the highest crosslink density formulations exhibited any degree of 

enthalpy recovery which suggests that the combination of decreased polymer chain 

molecular mobility and occupation of available free volume by water results in little to no 

capability for structural relaxation. 

 The resulting impact these findings could have for protective coatings, and in 

particular for inhibitor-containing corrosion resistant primers, could vary depending on 

formulation and environmental conditions.  Assuming that the ingress of water and 

leaching or depletion of inhibitor coincides with or precedes the onset of physical aging 
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the resulting barrier and transport properties could be influenced in such a way that 

hinders the protective capability.  It is hypothesized that the dissolution and leaching of 

inhibitor which results in residual voids would decrease barrier properties within the 

primer matrix while the aging process, with the potential for densification and 

configurational rearrangement, could mitigate or minimize some of these cavities.  

Additionally, permeation and other small molecule penetrant transport properties in 

general have been shown to decrease as physical aging proceeds.6, 8  However, the 

reduction in toughness and viscoelastic response rate that also coincides with physical 

aging may prove detrimental to coating performance with regard to adhesion loss (due to 

shifts in internal stress) or impact resistance (due to mechanical stimuli).  In general, 

these results suggest that the presence of moisture at or near saturation levels and for 

extensive periods of time stimulate very little, if any, physical aging to the effect that 

large shifts in transport or physical properties would be impacted.  Whether or not any 

aging does arise, as determined by the development of endothermic enthalpy recovery 

peaks in DSC, appears to be dependent upon a balance of polymer Tg, network crosslink 

density, and the amount of water absorbed by the matrix.  While it is possible that the 

sorption of moisture might plasticize the Tg of a network to within 10-15 °C of the 

environmental/exposure temperature, and thereby initiate accelerated aging rates, the 

presence of water molecules within free volume voids and cavities excludes polymer 

chain or segment rearrangement or densification.  Additionally, increased crosslink 

density will hinder the mobility of polymer chains available for physical aging and may 

limit any rearrangement to configurational (short-term or segment) only. 

 



 

107 

4.3.5 Coating Formulations and Characterization 

4.3.5.1 Coatings Preparation. 

Following evaluation of physical phenomena related to transport processes, select 

epoxy-amine formulations of NS2 were chosen for development into fully formulated 

primer coatings for characterization of corrosion protection via accelerated weathering 

and analysis of transport behaviors using IR spectroscopy.  NS2 was chosen in lieu of 

NS1 due to superior film forming properties while thermomechanical and water sorption 

properties exhibited trends nearly identical to those of NS1 presented above.  Rather than 

preparing samples and films of each of the nine matrices, three of the networks were 

selected for further analysis: α-I, β-II, and γ-III due to the largest variation in properties 

(crosslink density, Tg, and water sorption amount) these formulations provided.  Between 

these samples α-I exhibits the highest glass transition temperature, lowest crosslink 

density and water sorption at saturation while γ-III is formulated to the highest crosslink 

density and water sorption but reveals the lowest Tg and in this regard β-II offers a middle 

ground to each of these characteristics.   

Between these systems two separate preparations were developed: pigmented, 

containing solvents along with filler and inhibitor pigment, and non-pigmented, 

containing only solvents.  For this study anatase titanium dioxide (TiPure™ R-902+, 

DuPont) and strontium chromate (SrCrO4, Alfa Aesar) were incorporated as filler and 

inhibitor, respectively, while the mixture of solvents utilized included a 1:1:1 mixture (by 

mass) of parachlorobenzotrifluoride (PCBTF), methyl propyl ketone (MPK), and sec-

butanol.  This allowed for the direct evaluation of the impact of pigments, in this instance 

serving as fillers and corrosion inhibitors, on coating moisture transport and polymer-
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water interactions, the exact quantities of which are given in Table 4.5.  Coatings were 

prepared by combining epoxy resin with the solvent blend and mixing via rolling mill 

until homogeneous at which point the pigments were introduced and agitated through use 

of a mechanical stirrer then further incorporated on a rolling mill for several days.  After 

homogenization both free films and substrate-bound coatings were prepared by mixing 

the appropriate amounts of pigmented epoxy grind with amine monomers as described 

previously and applied to either polypropylene sheets or degreased S-36 CRS SAE 

1008/1010 steel Q-panels using a drawdown bar at 6 wet mils.  Following an overnight 

drying period the coatings were subjected to the same cure profile as described 

previously and the steel coated panel edges were covered with a polyimide water-

proofing tape prior to application of X-shaped scribes through the coatings using a hand 

scribing instrument. 

Table 4.5  

Network Series 2 Coatings Composition 

Component α-I β-II γ-III 

Epoxy-Amine Mixture (g) 89.58 104.86 125.62 

Solvent Mixture (g) 22.39 26.22 31.40 

Solids Content (wt%) → 80 ← 

Inhibitor Loading (wt%) → 6 ← 

Pigment-Volume Concentration (%) → 22.83 ← 

SrCrO4 PVC (%) → 2.98 ← 

TiO2 PVC (%) → 19.85 ← 

 

4.3.5.2 ATR-IR Spectroscopic Evaluation of Substrate-Bound Films. 

Figure 4.15 demonstrates a collection of ATR-IR spectra as a function of time and 

the peaks which correspond to shifts in water absorption of degree of interaction with 
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polymer, specifically the asymmetrical –OH stretch (3700-3000 cm-1) and H–O–H bend 

(1650 cm-1) of substrate-bound pigmented films during exposure to 5 wt% NaCl solution.   

 

Figure 4.15 Collection of ATR-IR spectra collected at the coating-substrate interface 

following the introduction of water to the top side with peak assignments (left) and dry 

film subtraction (right) as a function of time. 

 

The asymmetric hydroxyl stretch peak at from 3700 to 3000 cm-1 is associated 

with the degree of interaction between polymer and water through hydrogen bonding and 

has been presented as a method of interpreting the states of water within material.  Some 

dispute remains regarding the exact nature of each potential water molecule condition 

represented by individual peaks at different wavelengths in addition to the number of 

possible states within this region.  Resolutions of the components within this region have 

been reported as a culmination of anywhere between two to five separate contributions 

and molecular interactions, most of which are assigned to free or “unbound” water and a 

range of more or less “bound” or interacting states.14-16  Additionally, the absorption peak 

resolution has been described by the extent of water self-interaction via separation of the 

signals into monomeric, dimer, chain, and cluster assignments.17  To better identify the 

species of water, deconvolutions of the saturation of NS2 α-1, β-II, and γ-III were 
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performed and the resulting summation of the individual peaks were plotted to compare 

the total peak shape as well as the respective contributions from the different water types.  

The deconvoluted peaks for each saturation cycle were identified and compared with the 

area under the total peak for each water species to determine the distribution of water 

species at the substrate interface. 

The asymmetrical hydroxyl stretch peak between 3700-3000 cm-1 at the time of 5 

wt% NaCl saturation, approximately 16 hours, of the three separate coating systems is 

compared in Figure 4.16.  Although the distribution of peak shape differs between α-I 

and β-II, the relative absorbance maximum and area is similar especially when compared 

to that of γ-III.  Multi-peak resolution was carried out according to the methods defined 

by Musto and co-workers which defines four individual components according to 

polymer-water interaction types and one Fermi overtone assignment.11  In addition to the 

increase in overall absorption peak heights of the respective components from α-I to γ-III 

it is observed that a shift in majority from lower wavelength components to higher values 

corresponds to an increase in total amount of water sorption. 
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Figure 4.16 ATR-IR subtracted spectra overlay comparing the relative shifts in 

asymmetric hydroxyl stretch of pigmented α-I, β-II, and γ-III coatings (solid lines) 

detailing the distribution in water types (dashed lines). 

 

Figure 4.17 highlights the distribution of water types within each coating system 

as measured from the substrate interface and denotes the peaks assigned to S0 

(free/unbound), S1 (singly hydrogen bound), S2′ (weak doubly hydrogen bound), and S2′′ 

(strong doubly hydrogen bound) molecular associations.  It is immediately apparent the 

water type S1 scales primarily with the increase in water sorption amount, more so than 

others.  S2′ appears to decline in proportion from α-I to γ-III although to a significantly 

lesser extent which indicates that higher concentrations of absorbed water in separate 

epoxy-amine network formulations corresponds to a greater proportion of singly 

hydrogen bound water and fewer doubly hydrogen bound molecules.  This decrease in 

water-polymer interaction would likely serve to assist in heightened mobility of 

individual molecules.  Between all coatings systems the amount of free or unbound water 
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represents the smallest proportion of water type which is likely due to the restricted 

amount of molecule clustering per free volume hole. 

 

Figure 4.17 Relative quantities of water type populations for each pigmented coating 

following saturation in a 5 wt% NaCl solution. 

 

Given the likelihood of cyclical exposure conditions (i.e. diurnal cycle) 

throughout the lifetime of a protective coating it is necessary to understand the impact of 

repeated moisture sorption and desorption conditions on transport properties.  As seen in 

Figure 4.18 both the Tg and crosslink density have substantial impact on the extent to 

which sorption behaviors shift during multiple exposures of pigmented coatings to 5 wt% 

NaCl solution.  The normalized uptake amounts and rates increase considerably more 

between cycles as Tg increases and crosslink density decreases.  As reported by others, 

the potential for microstructural reorganization which would allow for increased access 

of water ingress to hydrophilic polymeric regions during subsequent immersion or 

exposure likely accounts for the cause of shifting sorption properties.18  It could be 

reasoned that the combination of an increased glassy state (higher Tg) and lower crosslink 
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density (higher Mc) would result in a more extensive shift in physical properties 

following the uptake of moisture which would then lead to a heightened propensity for 

transport variability. 

 

Figure 4.18 Comparison of normalized solution uptake profiles of pigmented NS2 α-I, β-

II, and γ-III over the course of three separate exposures (left) and the calculated diffusion 

coefficients as a function of cycle (right). 

 

The D values calculated from these measurements reveal a similar tendency in 

shifting diffusion trends with increasing rates following subsequent sorption cycles for all 

networks but is shown to be more substantial (higher slope from cycles 1 to 3) with α-I > 

β-II > γ-III.  This is in agreement with RH-DMA results which indicate higher Tg and Mc 

values lead to more extensive shifts in thermomechanical properties and swelling per 

amount of water absorbed. 

In addition to comparing the impact of polymer characteristics on water 

interaction and multiple sorption cycles, the influence of salt concentration was also 

investigated.  Figure 4.19 illustrates the –OH asymmetric stretch peak of each network 
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following exposure to several solutions of varying NaCl concentration, specifically, 15, 

10, 5, and 0 wt% (DI H2O). 

 

Figure 4.19 Comparison of –OH asymmetric stretch of NS2 α-I, β-II, and γ-III at 

saturation following exposure to salt solutions of varying concentration. 

 

Each of the NS2 pigmented coatings exhibited increased area of normalized –OH peak 

absorption as salt concentration decreased, owing primarily to the decrease in water 

activity of the NaCl solution.  In general, the distribution of water type populations did 

not differ significantly with change in salt concentration although β-II revealed a shift in 

majority area from S2′′ to S2′, or from tightly to loosely doubly-bound hydrogen bonding 

water.  The α-I coating does exhibit a slight shift between the 5-15 wt% NaCl range of 

the same water types though not to  the same degree and the distribution in water 

interaction populations of γ-III remains constant throughout each salt solution exposure.  

Although it is not clear why only the β-II coating exhibited this shift it could possibly be 

related to the relaxation or short-range rearrangement that occurs during the first sorption 
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cycle and availability of hydrophilic functional groups to water ingress upon subsequent 

exposure. 

4.3.5.3 Accelerated Corrosion Protection of Steel Substrates by Pigmented and Non-

pigmented Coatings. 

Coatings of approximately 50-80 µm thickness were applied to cleaned steel 

panels and cured according to the same temperature schedule utilized for bulk polymer 

samples.  Once dry and cured the panel edges were covered with waterproof tape and a 

single scribe was placed through each coating to the substrate.  These were then subjected 

to accelerated corrosion testing according to the neutral salt spray (NSS) conditions 

stipulated by ASTM B117 in a salt-fog chamber (Q-FOG CCT-600) for up to 720 hours 

with periodic removal for visual inspection.  Although both pigmented and non-

pigmented (containing only solvent) coatings were subjected to the same exposure 

conditions the resulting corrosion behaviors were somewhat dissimilar.  Figure 4.20 

compares α-I, β-II, and γ-III-coated panels following 72 hours of exposure where it is 

seen that the extent and type of corrosion varies between the samples.  All panels reveal 

reddish-brown corrosion products within the regions of the scribe only while γ-III is 

marked with small black spots all throughout the steel surface at the coating-substrate 

interface.  It is very likely that these are magnetite (Fe3O4) formations due to the black 

appearance while the reddish-brown corrosion products which formed within the scribed 

areas panels are various hydrated ferric oxides (Fe2O3, “rust”).  Additionally, the β-II 

coating exhibited slight whitening of film area immediately surrounding the scribe mark 

while γ-III displayed more extensive discoloration which stretched further outward from 

the demarcation.  These findings are indicative of the variability in both the water 
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sorption amounts and the respective amounts of strain each network experiences 

following exposure. 

 

Figure 4.20 Comparison of NS2 non-pigmented film corrosion protection following 72 

hours of exposure to ASTM B117 salt fog testing. 

 

Although less stable in air than typical Fe2O3-type rust formations, magnetite has 

been shown to form under conditions of continuous wetting whereby the electrochemical 

oxidation conditions necessary for rust formation do not develop.19  This suggests that the 

amount of moisture present within the γ-III coating is sufficient to form a continuous 

layer of water within the interface between polymer and metal, potentially displacing 

points of coating adhesion.  As discussed in Chapter III the occupation of free volume 

pores within the polymer can also potentially exclude the transport of oxygen unless 

significant swelling occurs whereby the free volume hole size can increase (which is 
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limited in the case of a substrate-bound film).  A similar disparity in panel corrosion 

condition was exhibited by the pigmented coatings following approximately 720 hours of 

salt fog testing as seen in Figure 4.21. 

 

Figure 4.21 Comparison of NS2 pigmented film corrosion protection following 720 hours 

of exposure to ASTM B117 salt fog testing. 

 

One of the more apparent differences between systems was the discoloration of 

the coatings from a yellow hue (due to the presence of corrosion inhibitor SrCrO4) to 

white (TiO2).  The extent of discoloration increases with the amount of network water 

sorption (α-I < β-II < γ-III) which suggests that modifying this property has a prevailing 

impact on inhibitor dissolution and release.  Interestingly, both α-I and γ-III exhibit 

consistent coloration across the entire coating area while β-II only reveals a differential in 

yellow to white transition adjacent to the scribe area, indicating a release of inhibitor only 

in localized regions.  Likewise, the development of blisters is only apparent near the 

coating damage region while α-I and γ-III developed formations throughout the entirety 
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of the exposed areas with an inverse relationship between the size of blister and network 

moisture sorption quantity.  Although the extent of iron oxide formation seems to 

decrease from α-I to γ-III this may be due to either more extensive inhibition from 

SrCrO4 release or higher rates of corrosion product transport away from the scribe region 

following iron oxidation. 

4.3.5.4 Network Heterogeneity and Impact on Coating Transport Properties. 

While developing the network series formulations it was found that diversity in 

reaction kinetics of the individual matrix components could potentially lead to 

inhomogeneous network formation as observed via DMA.  By adjusting the order of 

monomer addition and processing the resulting samples of NS1 β-II could present either a 

single glass transition peak, as shown in Figure 4.22, or a bimodal peak centered around 

the same temperature region and with an identical transition breadth.  The difference 

between these two networks originated from the addition of all amine components to the 

epoxy resin at the same time (bimodal) as compared to the pre-reaction between chain 

extender and epoxy prior to introduction of the crosslinking agents (unimodal).  The 

samples (free films/bars) procured from these methods did not exhibit any visual 

indication of phase separation such as color change or cloudy appearance, suggesting that 

the extent of network heterogeneity was either very slight or occurred on a small scale. 
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Figure 4.22 DMA thermographs of NS1 β-II free films presenting variability in 

thermomechanical properties based on network formation differences. 

 

This is confirmed by the presence of a dual peak in the DMA tan δ signal that 

otherwise overlaps with the unimodal sample while the E′ signals for the two networks 

are very similar.  However, within the post-Tg rubbery plateau region it is observed that a 

slightly lower modulus value found with regard to the bimodal matrix.  Provided that the 

sample densities of the two networks are similar, this would indicate that the crosslink 

density is lower than that of the homogeneous network.  Considering that DSC tests of 

prepared samples did not reveal any residual exothermal peaks post-Tg it is likely that this 

variability in crosslink density resulted from an inhomogeneous topological connectivity 

that arises from the differences in reactivity towards epoxy of the different amine 

components.  Contemporary theory of epoxy-amine networks suggests that microgel 

formation and development occurs during early stages of the matrix followed by 

connection and extensive growth over long ranges at later stages, all of which could be 

impacted by mixing of two or more co-reactants each with variable reactivity.20-21 
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Figure 4.23 SEM micrographs of NS1 β-II unimodal (left) and bimodal (right) samples 

detailing the differences in fracture surface morphologies. 

 

Scanning electron microscopy confirmed the assumption of small-scale network 

heterogeneity (Figure 4.23) with a comparison of the cryogenically fractured surfaces of 

bimodal and unimodal samples revealing a stark contrast in topological connectivity.  

The NS1 β-II bimodal network is found to consist primarily of well-defined rounded 

nodules approximately 20-50 nm in diameter, some of which organize into less defined 

larger bodies within the range of 100-300 nm (mesoscale).  The unimodal network 

sample exhibits a much smoother fracture surface with poorly defined domains on the 

nanoscale only which indicates a more interconnected matrix structure compared to the 

bimodal material.  It could be expected that an inhomogeneous distribution of crosslink 

junctions and hydrophilic functional groups would have some influence on transport 

properties which is confirmed by water sorption measurements as seen in Figure 4.24.  It 

is observed that the film consisting of the heterogeneous network microstructure absorbs 

more water (46.15% higher moisture content at saturation) at a faster rate (24.59% higher 

H2O diffusivity) than the homogeneous matrix, most likely due to more access of 
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penetrant to interconnected free volume cavities and hydrophilic sites as compared to the 

unimodal material. 

 

Figure 4.24 Comparison of water sorption behaviors of unimodal and bimodal network 

variations of β-II free film samples as measured via ATR-IR. 

 

Both network forms were developed into fully formulated primers according to 

the same methods and quantities of materials as described above, including TiO2 and 

SrCrO4 pigments.  These were again applied to steel panel substrates and, once dried and 

cured, immersed in separate containers of deionized water for up to three days at which 

point aliquots of the immersion solution were obtained and evaluated for chromium (Cr) 

content via inductively coupled plasma mass spectroscopy (ICP-MS) analysis provided 

by Bonner Analytical (Hattiesburg, MS).  As demonstrated in Figure 4.25 the coating 

composed of the heterogeneous binder matrix released higher quantities of inhibitor ions 

into the environment as determined from the amount of Cr content within the leachant 

when compared to the homogeneous network-containing primer, with nearly twice the 

amount of Cr detected within the immersion solution after three days (9.1 vs 17.8 PPM).  
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This provides an additional correlation between increased rates and amounts of moisture 

transport to enhanced dissolution and release of incorporated corrosion inhibitor. 

 

Figure 4.25 Comparison of chromium detected via ICP-MS in the leachant of coatings 

immersed in 5 wt% NaCl solution after three days and the respective calibration curve. 

 

However, with the increase in small molecule transport properties the propensity 

for decreased overall barrier efficiency should not be overlooked.  This is highlighted in 

the post-exposure analysis of pigmented primers following 175 hours of neutral salt spray 

ASTM B117 salt fog testing of steel panels coated with unimodal and bimodal-containing 

coatings shown in Figure 4.26. 
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Figure 4.26 SEM micrographs of NS1 β-II pigmented coatings formulated from unimodal 

(left) and bimodal (right) networks following exposure to 175 hours of ASTM B117 salt 

fog testing. 

 

SEM analysis of these exposed coatings emphasizes the dissimilar transport 

properties of topologically homogeneous and heterogeneous matrices.  When comparing 

the pigmented primer microstructure of samples obtained from areas near scribe marks, it 

can be seen that coating produced from the inhomogeneous network displays a greater 

extent of creases and protuberances similar to those found in the bulk polymer 

micrographs.  This could impact the dispersion efficiency of pigment particles and 

potentially be responsible for enhanced small molecule transport by acting as channels 

for penetrant movement.  Additionally, deposited cubic salt crystals attest to the increased 

transport rates of corrosive contaminants along with water molecules and inhibitor ions.  

Although the development of a heterogeneous matrix structure assists in the dissolution 

and release of corrosion inhibitor the resulting decrease in barrier properties to other 

small molecules, namely oxygen and salt ions, would likely negate any benefit.  

However, this simple comparison does not account for all potential forms of phase 
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separation and more extensive isolation of hydrophilic polymer regions could have 

further impact on transport and barrier properties. 

4.4 Conclusions 

These series of networks were designed to serve as a tool for developing an 

understanding of how epoxy-amine matrix properties impact water transport behaviors, 

the relationship between transport and thermomechanical phenomena, and the resulting 

influence over inhibited primer corrosion protection efficacy.  Rather than developing a 

collection of networks derived from dissimilar monomeric components to provide a range 

of structural and compositional features, the approach discussed here revolved around 

using a mixture of amine reactants with disparate functionality, molecular mass, and 

concentration of hydrophilic functional groups for all matrices.  When combined with an 

epoxy resin in different pragmatically determined ratios, the crosslink density, Tg, and 

water sorption/transmission characteristics were shifted iteratively to produce a number 

of distinct epoxy-amine networks, all of which maintained a 1:1 epoxy:amine-hydrogen 

stoichiometry and satisfied one of three specific Mc and amine equivalent proportion 

targets for a total of nine systems.  From these formulations bulk and free film samples 

were produced and subjected to a range of experiments which allowed for comparison of 

water transport characteristics and thermomechanical property shifts as a function of the 

structure-property relationships and application form, i.e., solution versus bulk. 

 The resulting network glass transition temperatures ranged between 

approximately 55-95 °C (DMA) or 35-80 °C (DSC) and were found to absorb between 

2.5-5.7 wt% moisture at 95% RH at diffusion rates of roughly 8-35 ∙ 108 cm2/s at 25 °C 

and ambient pressure.  Water vapor transmission rates exhibited a spread along the same 
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lines (1.6-7.4 ∙ 107 mg/min∙mm2) and within each of these properties a trend became 

apparent of increasing amounts and rates of transport from low to high hydrophilic 

crosslinking agent content in addition to increasing crosslink density.  This is to be 

expected given that the epoxy-amine crosslink junction consists of a collection of 

hydrogen bonding functional groups (a tertiary amine and two secondary hydroxyls per 

crosslink junction) in a relatively small molecular volume and increased crosslink density 

has been correlated with an increase in free volume fraction.12   

However, what was not anticipated was the extent to which Tg decrease was 

dependent upon the original dry/unexposed glassy state rather than the total amount of 

water absorbed.  Specifically, the degree of Tg depression increased from γ < β < α while 

the total amount of water sorption at 95% RH decreased from γ > β > α, which indicated 

that the higher glassy state is more sensitive to physical property depression upon 

hydroplasticization.  A novel method of measuring swelling-induced strain during 

exposure to a controlled RH environment (RH-DMA) was employed and found to agree 

with these findings when each network sample was normalized by the amount of water 

sorption.  Interestingly the β series of formulations (mid-Tg, mid-water sorption amounts) 

revealed a decreased or lesser extent of shift in physical property than the extremes.  

Physical aging experiments in both wet and dry conditions indicated that the presence of 

moisture hinders the process of aging-related processes by occupying molecular volume 

necessary for polymer relaxation.  Additionally, it was observed that an optimal range of 

crosslink density (Mc > 600 g/mol) and hydroplasticized glass transition temperature (10-

20 °C above exposure temperature) resulted in greater extents of physical aging due to 
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proximity to glassy equilibrium states and molecular mobility necessary for 

rearrangement. 

Further spectroscopic evaluation of water-polymer interaction of substrate-bound 

pigmented coatings derived from a selection of these networks (α-I, β-II, and γ-III) and 

from the substrate interface perspective allowed for interpretation of water-polymer 

interaction as a function of matrix structural and compositional features.  Following 

introduction of a 5 wt% NaCl solution to the top of the coatings the presence of moisture 

via ATR-IR was measured as a function of time, solution salt concentration, at saturation, 

and after several dry/wet cycles.  Subtracted and normalized –OH stretch peaks were 

interpreted in such a way as to determine the extent of molecular association between the 

matrix and water molecules.  The coatings exhibited very small proportions of 

free/unbound water molecules regardless of polymer Tg/Mc/water sorption content while 

a definitive trend existed in increasing S1 (singly hydrogen bound) and decreasing S2′ 

(loose doubly hydrogen bound) populations as overall moisture sorption increased, which 

is indicative of greater water molecule mobility.  This trend also correlated with 

decreasing Tg and increasing crosslink density from α-I to γ-III with more substantial 

increases in S1 proportions than the observed S2′ population reduction.  It could be 

assumed that this development stemmed from a higher concentration of hydrophilic 

functional groups contributed by both the hydrophilic ED600 and the crosslink junctions 

in combination with heightened chain mobility. 

Similarly, multiple salt solution application and drying cycles revealed the extent 

to which sorption behaviors shift during subsequent exposures.  Each coating formulation 

exhibited an increase in the rate and amount of solution sorption between the first, 
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second, and third cycles although the extent of these shifts varied extensively.  The 

greatest degree of shifting transport properties (diffusion rate and sorption quantity) were 

expressed by the coating composed of the α-I matrix with the highest glass transition 

temperature and lowest crosslink density, suggesting that these factors predominantly 

contribute to the extent to which microstructural reorganization takes place while in the 

glassy state upon the sorption and saturation of water.  The coating derived from γ-III 

exhibited the least amount of drift in water transport behaviors between cycles which 

indicates that the lower glass transition temperature (within 25 °C of the testing/exposure 

temperature) undergoes significantly less relaxation following moisture ingress despite 

absorbing substantially more water than the other coatings and consisting of a higher 

crosslink density matrix. 

Steel substrate-bound coatings, both pigmented and non-pigmented, were 

subjected to accelerated corrosion conditions in neutral salt spray testing.  The non-

pigmented test panels exhibited an increase in the extent to which the polymer regions 

directly surrounding the scribe mark appeared to whiten along with the amount of 

corrosion product development within the scribe.  Furthermore, the coating with the 

highest water sorption (γ-III) revealed the production of under-film magnetite (Fe3O4) 

formations, signifying that a substantial quantity of water at the coating-substrate 

interface catalyzes the degradation of steel but also limited oxygen availability which 

prevented the further oxidation into ferric oxide (Fe2O3) and its hydroxides and hydrates.  

Pigmented coatings containing SrCrO4 corrosion inhibitors demonstrated similar trends 

in that discoloration of the epoxy-amine primer following exposure increased with the 

degree of matrix water sorption which indicated greater extents of chromate dissolution 
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and release.  The development of large and small blisters in α-I and γ-III coatings are 

likely associated with the extensive shift in physical state and displacement by water of 

polymer at the substrate, respectively. 

Finally, a method of heterogeneous network development was pursued and the 

resulting materials were evaluated via electron microscopy along with thermomechanical 

and moisture sorption analysis.  Fully formulated and inhibited coatings were developed 

utilizing either heterogeneous or homogeneous epoxy-amine matrices for the binder 

component, applied to steel substrates, and immersed in electrolyte solution.  It was 

determined that the increase in transport properties afforded by the microstructural 

inhomogeneity resulted in faster chromate inhibitor leaching rates but also allowed for 

more rapid accumulation of salt within the coating, which could potentially result in more 

extensive corrosion at longer periods of exposure.  Taken in concert these findings 

demonstrate the potential to modify coating protection efficacy through manipulation of 

the polymeric structural and composition properties without introducing new monomeric 

or network component species.  By adjusting the Tg, Mc, hydrophilic crosslinking agent 

fraction, and microstructural homogeneity the water sorption and transmission behaviors 

were varied extensively.  The relationship between transport and thermomechanical 

properties was assessed in addition to the contribution of these characteristics to aging 

processes and coating performance in accelerated weathering.  Based on these results it 

could be posited that a balance of mechanical resilience and heightened moisture 

transport would provide for a more effective inhibited primer.  It is hypothesized that an 

inhibited epoxy primer would most benefit from a glass transition temperature of 

approximately 40-50 °C above the anticipated average exposure temperature, molecular 
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mass between crosslinks value of anywhere between 400 and 1000 g/mol, and moisture 

sorption/solubility of 3-5 wt% (with nearly equal proportions of S1 to S2′ water types for 

maximum small molecule mobility) for optimal balance of inhibitor release and barrier 

integrity. 

4.5 References 

1. Soles, C. L.; Chang, F. T.; Bolan, B. A.; Hristov, H. A.; Gidley, D. W.; Yee, A. 

F., Contributions of the nanovoid structure to the moisture absorption properties 

of epoxy resins. J. Polym. Sci., Part B: Polym. Phys. 1998, 36, 3035-3048. 

2. Soles, C. L.; Chang, F. T.; Gidley, D. W.; Yee, A. F., Contributions of the 

nanovoid structure to the kinetics of moisture transport in epoxy resins. J. Polym. 

Sci., Part B: Polym. Phys. 2000, 38, 776-791. 

3. Linde, E.; Giron, N. H.; Celina, M. C., Water diffusion with temperature enabling 

predictions for sorption and transport behavior in thermoset materials. Polymer 

2018, 153, 653-667. 

4. Wicks, Z. W., Jr.; Jones, F. N.; Pappas, S. P., Organic Coatings: Science and 

Technology, 2nd Ed. Federation of Societies for Coatings Technology: 1999; Vol. 

71, p 67-73. 

5. Mueller, B., Coating Technology - BASF Handbook. Mater. Corros. 2003, 54, 

812. 

6. Perera, D. Y., Physical ageing of organic coatings. Prog. Org. Coat. 2003, 47, 61-

76. 

7. Guo, J. H.; Robertson, R. E.; Amidon, G. L., Influence of physical aging on 

mechanical properties of polymer free films: the prediction of long-term aging 



 

130 

effects on the water permeability and dissolution rate of polymer film-coated 

tablets. Pharm. Res. 1991, 8, 1500-4. 

8. Perera, D. Y., Effect of thermal and hygroscopic history on physical ageing of 

organic coatings. Prog. Org. Coat. 2002, 44, 55-62. 

9. Pramanik, M.; Fowler, E. W.; Rawlins, J. W., Another look at epoxy thermosets 

correlating structure with mechanical properties. Polym. Eng. Sci. 2014, 54, 1990-

2004. 

10. Fieldson, G. T.; Barbari, T. A., The use of attenuated total reflection FTIR 

spectroscopy to characterize penetrant diffusion in polymers. Polymer 1993, 34, 

1146-53. 

11. Cotugno, S.; Larobina, D.; Mensitieri, G.; Musto, P.; Ragosta, G., A novel 

spectroscopic approach to investigate transport processes in polymers: the case of 

water-epoxy system. Polymer 2001, 42, 6431-6438. 

12. Frank, K.; Childers, C.; Dutta, D.; Gidley, D.; Jackson, M.; Ward, S.; Maskell, R.; 

Wiggins, J., Fluid uptake behavior of multifunctional epoxy blends. Polymer 

2013, 54, 403-410. 

13. Croll, S. G.; Shi, X.; Fernando, B. M. D., The interplay of physical aging and 

degradation during weathering for two crosslinked coatings. Prog. Org. Coat. 

2008, 61, 136-144. 

14. Sun, Q., Local statistical interpretation for water structure. Chem. Phys. Lett. 

2013, 568-569, 90-94. 



 

131 

15. Marechal, Y., The molecular structure of liquid water delivered by absorption 

spectroscopy in the whole IR region completed with thermodynamics data. J. 

Mol. Struct. 2011, 1004, 146-155. 

16. Max, J.-J.; Larouche, P.; Chapados, C., Orthogonalyzed H2O and D2O species 

obtained from infrared spectra of liquid water at several temperatures. J. Mol. 

Struct. 2017, 1149, 457-472. 

17. Sutandar, P.; Ahn, D. J.; Franses, E. I., FTIR ATR analysis for microstructure and 

water uptake in poly(methyl methacrylate) spin cast and Langmuir-Blodgett thin 

films. Macromolecules 1994, 27, 7316-28. 

18. Bouvet, G.; Cohendoz, S.; Feaugas, X.; Touzain, S.; Mallarino, S., 

Microstructural reorganization in model epoxy network during cyclic 

hygrothermal ageing. Polymer 2017, 122, 1-11. 

19. Nasrazadani, S.; Raman, A., Formation and transformation of magnetite (Fe3O4) 

on steel surfaces under continuous and cyclic water fog testing. Corrosion 

(Houston) 1993, 49, 294-300. 

20. Sahagun, C. M.; Morgan, S. E., Thermal Control of Nanostructure and Molecular 

Network Development in Epoxy-Amine Thermosets. ACS Appl. Mater. Interfaces 

2012, 4, 564-572. 

21. Vidil, T.; Tournilhac, F.; Musso, S.; Robisson, A.; Leibler, L., Control of 

reactions and network structures of epoxy thermosets. Prog. Polym. Sci. 2016, 62, 

126-179. 

 



 

132 

CHAPTER V - INVESTIGATING THE ROLE OF MATRIX HYDROPHILICITY IN 

THE PERFORMANCE OF INHIBITED PRIMERS 

5.1 Introduction 

In an anticorrosive multilayer coating system, the top coat provides the aesthetics 

and serves as the first barrier against environmental factors such as humidity and UV 

radiation, while the primer provides adhesion to the substrate and is formulated with 

corrosion inhibitor pigments.1  Water ingress through the topcoat and primer solubilizes 

the inhibitor pigment, releasing inhibitor ions that block the anodic and/or cathodic 

pathways of the redox corrosion reaction, and minimize substrate corrosion.  Historically, 

chromates have been favored for use as corrosion inhibitors as they are capable of mixed 

inhibition, i.e., their constituent ions interfere with both the anodic and cathodic 

pathways.  Strontium chromate salts also possess nearly ideal water solubility 

characteristics to meet the substrate quickly without much waste; they exhibit low 

solubility in water (< 0.2 g/100 mL) but are practically insoluble in the polymer.2  It is 

widely acknowledged that hexavalent chromium-based corrosion inhibitors pose a threat 

to the environment as they are highly toxic, mutagenic, and carcinogenic.3  Compounds 

intended to replace chromates, commonly termed chromate-replacement inhibitors 

(CRIs), have not exhibited the potential to effectively replace chromates in all coating 

functions.  For many military and aerospace applications, chromate pigments continue to 

serve as the corrosion inhibitor of choice in many primer formulations.4 

In addition to the electrochemical nature of the pigment, the effectiveness of 

corrosion inhibiting pigments is partly dependent upon the ability of the constituent ions 

to reach the substrate.4  Since the solubilization and mobility of inhibitor ions is driven by 
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the presence of water, it follows that the rate and mode of water uptake would influence 

the coating’s ability to inhibit corrosion.  If water uptake is too high, the inhibitor 

concentration would be depleted rapidly, thus reducing the coating longevity, moreover, 

the ions could cause delamination via osmotic pressure build-up.5  If water uptake is too 

low, an insufficient quantity of inhibitor ions may diffuse, or they may diffuse too slowly 

to inhibit corrosion.6  Additionally, increasing water sorption could potentially lead to 

greater corrosive ion mobility, leading to enhanced corrosion rates and therefore a careful 

balance must be struck.  Currently, epoxy-amine formulations are based on various 

processing and performance needs, and an understanding of water transport is not of great 

concern, save for the study and usage of extremely hydrophobic or hydrophilic coatings.  

The ability of an organic coating to take in water and transport solute depends on both the 

structure and composition of the polymer and, although studied extensively, is still not 

well understood.  In epoxy-amine networks, water uptake is mostly determined by the 

crosslink density of the network and the hydrophilicity of the network components.7-9   

By adjusting the network structure, it is possible to influence drastic changes in crosslink 

density and hydrophilicity of the final coating.  Crosslink density depends on the 

molecular weight, functionality, and chemical structure of the curatives, while 

hydrophilicity depends on the type and concentration of polar groups on the polymers. 

Altering the hydrophilicity of a given epoxy-amine matrix should influence the 

water sorption and transport behavior and also determine the rates of inhibitor 

dissolution.  However, epoxy-amine networks pose a unique challenge in that shifting 

any compositional features directly related to hydrophilicity/solubility also impacts 

structural characteristics which will inherently further affect transport characteristics.  
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This has been demonstrated in a multitude of studies wherein the utilization of an epoxy 

network series provides a means for elucidating polymer structure-property relationships 

and their influence on water transport behaviors.10-12  Often these series will consist of 

networks that differ in reactant stoichiometry, extent of cure, functionality, or molecular 

weight.  Given that the most hydrophilic molecular components of epoxy-amine networks 

are the crosslink junctions that consist of localized secondary hydroxyls and tertiary 

amines, modifying any aspect of the these structural features will directly impact polymer 

polar/hydrogen bonding group concentration.13  An example of this condition is 

illustrated by Figure 5.1 whereby alteration of model epoxy-amine network crosslink 

densities results in vastly different concentrations of hydrophilic moieties per unit area.  

Specific formulation considerations must be employed to create a series which varies in 

compositional features without also shifting structural characteristics. 

 

Figure 5.1 Comparison of concentration of hydrophilic regions (filled blue circles), 

composed of the secondary hydroxyl and tertiary amine groups found at the crosslink 

junctions, between epoxy-amine networks of varying crosslink density. 

 

In the current study, a series of epoxy primers with quantifiably distinct solubility 

characteristics were designed via the use of various ratios of hydrophobic and hydrophilic 

amine curatives.  To reduce the variability of water uptake resulting from disparate 

network architecture, only amine curatives of nearly equal molecular mass and size were 
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considered while pigment packages were selected to evaluate chromates against CRI 

pigments.  DMA studies were employed to establish the differences in network 

parameters such as extent of cure, Tg, crosslink density, and molecular weight between 

crosslinks in addition to following shifts in thermomechanical properties upon sorption of 

water.  DVS and water absorption studies were conducted to determine the water 

diffusion coefficients and compare uptake saturation levels.  The coatings were tested for 

hardness, gloss, adhesion, and impact resistance, while corrosion resistance was 

evaluated via natural outdoor weathering and accelerated weathering testing with neutral 

salt spray (NSS) exposure according to ASTM B117.  In addition to bulk polymer and 

model primer analyses a polyurethane top-coated multilayer system was formulated and 

the resulting corrosion protection performance was compared to other testing results.  

The subtle differences in the coating hydrophilicity resulting from the variable 

compositional ratios were expected to be reflected in varying levels of corrosion 

resistance and provide some insight into how polymer matrix composition might be used 

to influence inhibitor efficiency. 

5.2 Experimental 

5.2.1 Methodology 

The network series implemented in this research was designed such that each 

epoxy-amine matrix exhibited the same structural or topological framework while 

iteratively shifting the compositional (hydrophilic) nature in small increments.  This is 

made possible using two amine-functional polyethers (THF100 and ED900) of very similar 

molecular weight and length but dissimilar water solubility owing to the majority content 

of polytetramethylene oxide (THF100) or polyethylene oxide (ED900), as demonstrated in 
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Chapter III.  Chemical structures of the network components and CRI are given in Figure 

5.2. 

 

Figure 5.2 Chemical structures of epoxy resin, amine-functional polyethers, chromate-

based inhibitor, and organic-type CRI pigment. 

 

This series is constructed by formulating a 1:1 epoxy:amine-hydrogen network of 

E825 and a commercial polyamidoamine organic coating curative (Ancamide® 2445) 

which serves as a suitable host for the polyether modifiers while also acting as a glass-

forming thermoset hardener that would find application in corrosion protection coatings.  

Approximately 15% of the amine-hydrogen equivalents of the polyamidoamine (as 

provided by the manufacturer-specified AHEW) is removed from the formulation and 

substituted with a mixture of THF100/ED900, the ratio of which determines the extent of 

hydrophilic nature, as demonstrated in Figure 5.3.  Five separate modifier ratios were 

chosen for most analyses (THF90-ED10, THF75-ED25, THF50-ED50, THF25-ED75, 
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THF10-ED90) while an abbreviated series (THF90-ED10, THF50-ED50, THF10-ED90) 

was implemented in select characterizations and coatings evaluations.  Adjusting the ratio 

of polyether amines should have very little impact on structural variability given the 

similarity in molecular weight and length of the two. 

 

Figure 5.3 Design of Chapter V & VI epoxy-amine network series with controlled matrix 

hydrophilicities. 

A theoretical 15 eq% of the amine crosslinking content of an E825-2445 network (1:1 epoxy:amine-hydrogen stoichiometry) is 

replaced by a mixture of hydrophilic (ED900) and hydrophobic (THF100) diamine crosslinkers, the ratio of which determines the 

overall network hydrophilicity while maintaining 1:1 stoichiometry 

 

5.3 Results and Discussion 

5.3.1 Bulk Polymer Characterization 

An attempt to quantify the characteristic differences of in network solubility 

utilized the Hoftyzer-Van Krevelen group contribution theory for Hansen Solubility 

Parameter development (HSP, δ).14-16  The method provides estimates of the dispersion 

(δd), polar (δp), and hydrogen bonding (δh) components which contribute to an average HSP 

value (δtotal, otherwise known as the Hildebrand Solubility Parameter) and are given by the 

following equations: 
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𝛿𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
∑ 𝑛𝑖𝐹𝑑𝑖

𝑉
 

𝛿𝑝𝑜𝑙𝑎𝑟 =
√∑ 𝑛𝑖𝐹𝑝𝑖

2

𝑉
 

𝛿ℎ−𝑏𝑜𝑛𝑑𝑖𝑛𝑔 =
√∑ 𝑛𝑖𝐸ℎ𝑖

√𝑉
 

𝛿𝑡𝑜𝑡𝑎𝑙 = √𝛿𝑑
2 + 𝛿𝑝

2 + 𝛿ℎ
2
 

whereby ni corresponds to the number of specific functional groups per average network 

unit (without accounting for cure/conversion), V is the material volume, and Fdi, Fpi, and 

Ehi represent specific functional group values in (MJ/m3)½/mol or J/mol as per the group 

contribution theory.15  Differences between the various matrix dispersion, polar, hydrogen-

bonding, and total HSP value estimates are illustrated in Figure 5.3. 
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Figure 5.4 Calculated total Hansen Solubility Parameter component values based on 

average network unit structures and group contribution theory from the building block 

basis. 

 

It can be seen in each of the solubility components that altering the THF10-ED90 

ratio results in only slightly varied increments in the overall network solubility.  The 

hydrogen bonding and polar parameters, which are correlated with polymer hydrophilicity, 

exhibit shifts by only approximately 0.1 and 0.02 MPa½, respectively, between the 

modifiers ratio as the concentration is shifted from the mostly hydrophobic THF100-

containing formulation to the predominantly hydrophilic ED900-containing network.  The 

engineered shifts could potentially be explained by the relatively low concentration of the 

polyether content (accounting for only about 10% of the total network volume, i.e. 
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decreasing the 90% THF100 ratio to 75% results in only 0.10 * 0.15 = 1.5% increase in 

hydrophilic volume content).  Additionally, group contribution theory may not fully 

account for the differences in hydrophilicity between varying polyether species (in this 

case polyethylene oxide [ED900] and polytetramethylene oxide [THF100]).  Nevertheless, 

it was sufficient to reveal and exhibit calculated differences in matrix response to water 

and inhibitor uptake or transport to molecular composition in thermoset networks and 

establish the starting basis for macroscopic properties predictions through a relative 

comparison of interaction magnitude (i.e. polar, hydrogen bonding). 

Water absorption of polymer bar sections (5 x 5 x 1 mm) was studied via 

gravimetric analysis of samples immersed in DI H2O at ambient temperature.  Periodically 

over the course of one month, samples were removed from the water, patted dry, and 

weighed.  The relative change in weight due to water sorption (wt%) was calculated 

according to the expression: 

𝑊𝑎𝑡𝑒𝑟 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑤𝑡%) = (
𝑀𝑡 − 𝑀0

𝑀0
) × 100% 

where M0 represents the sample weight in the dry state and Mt is the weight at time t.  The 

resulting gravimetric uptake plots (Figure 5.5) reveal a gradient in both water sorption rates 

and saturation levels in the polymer samples derived from the network series.  As the 

hydrophilic ED900 content fraction increased, so did the maximum amount of water taken 

on by the networks, ranging from 3.04% (THF90-ED10) to 5.57% (THF10-ED90).  Slight 

increases in the slope of the initial (linear) region of the uptake plots suggested that 

increasing the hydrophilic ratio increases both the rate of water uptake and maximum of 

water sorption at saturation. 
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Figure 5.5 Gravimetric water uptake plots of the modified network series. 

 

From the modified matrix series, three networks (low, medium, and high 

hydrophilicity) were selected for additional gravimetric analysis DVS to identify 

differences in liquid and gas-phase water transport behaviors.  Samples were subjected to 

consecutive sorption/desorption cycles at 0 and 95% RH to the extent that equilibrium 

levels were reached as revealed in Figure 5.6.  During the 0% RH step the networks 

equilibrated at  0.08, 0.07, and 0.25 wt% (for THF90-ED10, THF50-ED50, THF10-ED90, 

respectively) which indicates that some quantity of moisture is retained during the 

desorption process at 0% RH, which is similar to the findings of other investigations that 

report most epoxy-amine networks require long times at high temperatures and vacuum to 

completely remove all water.17  These results suggest that quantity of “captured” (tightly 

bound or S2′′) water molecules may be dependent upon either the hydrophilicity of the 

polymer network or the amount of water present at saturation and less so on the chemical 

structure or architecture.   
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A wide array of epoxy-amine diffusion kinetics have been reported, with both 

Fickian (Case I) and non-Fickian characteristics (for example anomalous18-19 or dual-mode 

sorption20 mechanisms), with some apparent dependency on the exact combination of resin 

and curing agent, Tg and/or testing temperature, stoichiometry, degree of cure, solvent 

content, etc.  However, to easily estimate the variability in water vapor sorption kinetics, 

the plots were treated as Fickian in nature, in which case the water uptake and diffusion 

process can be described via methods outlined in Chapter III.21-22  Table 5.1 outlines the 

respective diffusion coefficients for each network from each sorption and desorption step.  

It can be seen that desorption diffusion rates suggest a substantially faster transport process 

than during sorption, which is often encountered in glassy epoxy thermosets.23-24  The trend 

of increasing diffusivity from the most hydrophilic network to the least indicates that rates 

of transport is slowed by penetrant-polymer interactions, which would dominate the 

earliest stages of sorption. 

 

Figure 5.6 Water vapor sorption plots for select networks THF10-ED90, THF50-ED50, 

and THF90-ED10 through cyclic exposures to 95% and 0% RH. 
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The increase in diffusion coefficient from the first to second sorption cycles is a 

phenomena found in many epoxy-amine networks and has been attributed to a 

“homogenization” process whereby the hydroplasticized polymer becomes more relaxed 

and allows for more polar or hydrophilic sites to become exposed and interact with water 

upon subsequent moisture exposures.25  As demonstrated in Figure 5.7, the difference in 

diffusion coefficient between the first and second 95% RH exposure cycle increases with 

greater THF100 content which would suggest that the initial uptake of moisture results in 

a microstructural relaxation that allows for some degree of separation between hydrophilic 

and hydrophobic polymeric regions.  Upon additional sorption cycles the exposure of 

higher concentrations of polar and hydrogen bonding groups available as compared to the 

initial state manifests as a greater increase in water diffusivity.  Interestingly, these data 

reveal a greater variance between the rate of water sorption of first and second cycles as 

polymer network hydrophilicity decreases (Figure 5.7).  This may suggest that a higher 

water-polymer solubility allows for greater ingress into the matrix as well as within free 

volume pores and voids with more access of water molecules to polar and hydrogen 

bonding moieties.  This increased availability of polymer sites to moisture may result in a 

comparatively muted response to sorption of water, i.e. microstructural reorganization, 

between multiple sorption and desorption cycles.  It could be expected that a more 

significant shift in matrix transport properties during cyclic exposure conditions (e.g. 

diurnal or precipitation cycles) would result in more dramatic alterations in coating 

protection performance of the service lifetime of a given coating. 
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Figure 5.7 Diffusion coefficients of the modified epoxy-amine networks as interpreted 

from each sorption/desorption cycle (left) and relationship between the difference in 

calculated diffusion coefficients between first and second sorption cycles as a function of 

the average quantity of moisture content at saturation (right). 

 

Although it has been suggested or demonstrated that some extent of polymer 

hydrolysis26 or oxidation27 upon sorption of water may occur in some epoxy networks, 

typically when combined with exposure to high temperatures, the trends shown here are 

not likely a result of any degradation given the mild ambient conditions under which the 

testing was carried out. 

Table 5.1  

Modified Matrices Dynamic Vapor Sorption Measured and Calculated Quantities 

Formulation 1st Sorption Cycle 2nd Sorption Cycle Desorption Cycle 

 Water Content (wt%) 

THF10-ED90 4.08 4.13 0.25 

THF50-ED50 3.05 3.17 0.07 

THF90-ED10 2.15 2.23 -0.08 

 Diffusivity (cm2/s) 

THF10-ED90 5.94 ∙ 10-10 6.61 ∙ 10-10 1.23 ∙ 10-9 

THF50-ED50 2.25 ∙ 10-9 3.12 ∙ 10-9 6.22 ∙ 10-9 

THF90-ED10 3.58 ∙ 10-9 4.91 ∙ 10-9 6.65 ∙ 10-9 
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The network series was designed with the intent of altering only the compositional 

element of the matrices, i.e. developing networks with higher or lower hydrophilicity while 

maintaining the same general network structure and connectivity.  For this reason, DMA 

was used to investigate the various mechanical properties associated with these network 

characteristics, which can be interpreted within the framework of molecular architecture 

and glassy/rubbery dynamics.  Figure 5.8 reveals a very narrow range of Tg values (average 

57.84 ± 5.88 °C) as interpreted from the tan δ signal peaks.  The slight increase in peak 

height and decrease in peak width of the samples as the ratio of polyether modifier ranges 

from 90% ED900 to 90% THF100 may be due to differences in flexibility of PEO and 

PTMO backbone units and the polydispersity of the two amine-functional polyethers, 

which influences the overall material dampening and network heterogeneity, respectively, 

by the ratio of the two modifiers.  All networks exhibited glassy (pre-Tg, ~0 °C) storage 

modulus values between 1.7 and 1.9 GPa and rubbery (post-Tg, 105 °C) values ranged 

between 9.1 and 11.1 MPa.  A summary of various thermomechanical properties is given 

in Table 5.2. 

Table 5.2  

Modified Matrices Bulk Polymer Thermomechanical Properties 

Formulation 
Tan δ 

Peak Max 

(°C) 

Tan δ 

FWHH 

(°C) 

E′′ 

Peak Max 

(°C) 

E′ 

Glassy 

(-50 °C, GPa) 

E′ 

Rubbery 

(125 °C, MPa) 

THF10-ED90 54.47 39.35 33.63 3.507 15.83 
THF25-ED75 55.80 38.14 34.95 3.424 15.73 
THF50-ED50 58.45 36.28 36.47 3.231 14.51 
THF75-ED25 60.16 35.36 37.04 3.154 14.28 
THF90-ED10 60.35 35.82 37.42 3.212 14.20 
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The molecular weight between crosslinks (Mc) was determined via the theory of 

rubbery elasticity as described in Chapter IV using an average density value of 1.045 g/cm3  

and a relatively small range of Mc values was determined (average of 1,075 ± 115 g/mol), 

suggesting that the average crosslink densities of the networks were approximately the 

same.  These trends, taken in concert, signify that altering the ratio of the two polyether 

modifiers successfully resulted in matrices with variable solubility characteristics while 

maintaining a similar network connectivity between all systems. 

 

Figure 5.8 DMA thermograph overlays of the modified epoxy-polyamidoamine 

networks: Tan Delta (left) and Storage Modulus (right). 

 

Additionally, cured bar samples (10 x 5 x 1 mm) of select networks (THF10-ED90, 

THF50-ED50, and THF90-ED10) were immersed in DI H2O and subjected to DMA testing 

after 1, 5, 25, and 60 days.  DMA was performed twice on the samples immersed for 60 

days, with the bar dimensions being re-measured and the samples re-installed prior to the 

second temperature ramp.  Figure 5.9 exhibits the shift in glass transition properties as 

given by the tan δ signal across the various immersion times.  Each of the networks exhibits 

a similar trend in initial reduction of Tg by approximately 10 °C after 1 day immersion in 

water accompanied by a slight increase in tan δ peak maximum value, indicating a 
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dampening of the transition associated with hydroplasticization.  Each subsequent time 

point plot reveals a decrease in tan δ signal peak maximum and slight increase in Tg which 

is suggestive of increasing polymer network conversion.  After 60 days of immersion in 

DI H2O the glass transition temperatures have increased to 1-2 °C above the original/dry 

values, demonstrating a complex sequence of events associated with interactions between 

the polymer and water.  Immediate response to water ingress is the depression in 

thermomechanical properties but as mobility increases the residual conversion of unreacted 

epoxy and amine groups takes place, leading to higher Tg values.29-30 

 

Figure 5.9 DMA (tan δ) thermograph overlays of the modified epoxy-polyamidoamine 

networks following immersion in DI H2O for various times. 
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The evolution of the tan δ peak shape at the glass transition throughout the 

immersion process also exhibits similar trends between the formulations with high 

temperature shoulders appearing after 1 day of exposure and low temperature shoulders at 

25 and 60 days.  The presence of these features indicates a non-uniform distribution of 

more or less plasticized regions early in the sorption process then higher or lower 

crosslinked regions following residual conversion of unreacted groups.  After completing 

a DMA test on each sample immersed in DI H2O for 60 days the samples were removed, 

the dimensions measured, and then re-installed into the DMA clamp.  These samples were 

then subjected to a second DMA temperature ramp to determine what effect the removal 

of water (due to heating during the original test) would have on the polymer network state 

following saturation with water.  As exhibited in Figure 5.10 the tan δ peak widths and 

maximum values return to within 1-3 °C of the original quantities although the Tgs reveal 

a slight increase, most likely due to a combination of enhanced cure attributed to residual 

non-reacted group mobility imparted by hydroplasticization and additional exposure to 

higher temperatures during testing.  However, the samples exhibited signs of brittle failure 

during the second DMA cycle which indicates some degree of hydrolysis took place 

concurrently as an effect of simultaneous presence of exposure to higher temperatures and 

water content.  These findings indicate that the matrices undergo considerable 

thermomechanical shifts following sorption of moisture although the extent to which these 

properties alter is not necessarily dependent upon total water present within the matrix. 
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Figure 5.10 DMA (tan δ) peak value trends for the modified matrices as a function of 

immersion time. 

 

5.3.2 Coatings Characterization 

All the coatings exhibited very similar properties as measured by the different test 

methods and the results suggested favorable primer performance: high flexibility (all 

coatings passed mandrel bend test), good mechanical resilience (> 120 in-lb. impact 

resistance), excellent crosshatch adhesion (5B), and chemical resistance (200+ MEK 

double rubs).  Koenig hardness readings (Figure 12) of the different coatings were also 

similar (between 20-40 seconds); in general, the addition of the ED900 and THF100 

resulted in slightly lower hardness as compared to the unmodified system (E825-2445).  

Only the gloss measurements revealed any variance between the systems, which is 

potentially due to the tendency for PEO units to aggregate at the interfacial surface and 

would result in some mild phase separation that influenced the light scattering.  Although 

care was taken to mechanically agitate the reactant mixture until moderate viscosities were 

obtained, which would assist in network growth under homogeneous mixture conditions, 
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it is still possible that some degree of mobility differentiation at later stages of cure could 

have resulted in higher concentrations of ED900-containing groups near the interface.  

Other coating properties suggested that, in general, the different formulations yielded 

uniform networks and primers. 

 

Figure 5.11 Comparison of fully formulated chromate-containing coatings properties: 

König pendulum hardness values of all modified network coatings on S-36 steel and 

2024T3 aluminum panels (left) and 20°/60° gloss measurements of coatings on steel. 

 

 

Figure 5.12 Comparison of fully formulated chromate-containing coatings pull-off stress 

of select networks (THF10-ED90, THF50-ED50, and THF90-10) on steel panels before 

and after immersion in DI H2O. 
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Of significant importance is the extent to which the sorption of water affects coating 

adhesion during the service lifetime.  Given the necessity for the presence of moisture 

within the primer to allow for inhibitor dissolution and leaching, a careful balance must be 

achieved to avoid coating delamination via displacement of polymer-substrate interactions 

at the interface by water molecules.  For that reason the shifts in adhesion between primer 

and metal following exposure to DI H2O were evaluated according to ASTM D4541 pull-

off testing.  As seen in Figure 5.12 the coatings exhibit very little variation between 

formulations following 1 and 7 days immersion.  In the dry state the most hydrophilic 

primer matrix (THF10-ED90) reveals a slightly higher average pull-off stress, likely due 

to a higher concentration of ether functional groups available for secondary interactions 

with the metal hydroxide layer, but at later stages of exposure almost no variance is found 

between the formulations at the respective time points, despite the different levels of 

moisture ingress each matrix is found to experience.  These results indicate that among the 

range of modified matrices analyzed here the difference in absorbed moisture has minimal 

effect on adhesion properties, at least within the time frame of exposure seen here. 

Coated panels tested in a Q-FOG CCT-600 neutral salt spray (NSS) cabinet as per 

ASTM B117 (35 °C and 20 psi) for at least 440 hours were scanned as such after patting 

them dry with paper towels.  The corroded area was expressed as a percent of the total 

exposed area determined for each series by using the trace feature of imaging software to 

measure a set distance from the center of the scribe to the ends of the scribes and connecting 

the corner points.  Images of the coated steel panels following testing and the corresponding 

corrosion area percentages are shown in Figure 5.13 along with a comparison of steel and 
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aluminum panel scribe corrosion areas at the conclusion of testing (Figure 5.14).  A general 

trend was noted in that increasing matrix hydrophilicity (as quantified via the hydrogen 

bonding Hansen solubility component and by the amount of water each polymer sample 

absorbed) correlated with lower values of average corrosion product area, although this 

variability was very slight in the case of the non-chromate inhibitor.  Coating systems 

containing the chromate inhibitor exhibited greater differences in corrosion area between 

the various networks with approximately 58% difference between the least and most 

hydrophilic formulations on steel and 35% difference on aluminum substrate.  The CRI 

inhibited systems only revealed a 13% difference in measured scribe corrosion area on 

steel panels but those on aluminum substrates revealed a distinct pattern, as illustrated in 

Figure 5.15.  CRI-containing aluminum coated panels did not exhibit any formation of 

visible corrosion products within the scribe but rather developed coating blisters within the 

defect area which first appeared at around 100 hours with the most hydrophilic networks.  

It was somewhat expected that the most hydrophilic matrices would absorb and retain 

sufficient water for hydroplasticization and loss of modulus to surpass the wet state osmotic 

pressure/adhesion ratio threshold to blister formation, leading to localized delamination 

and eventual ineffectiveness, while the most hydrophobic panels would be unable to 

transfer enough inhibitor to the substrate to be effective.  The CRI primer containing equal 

amounts of the hydrophilic and hydrophobic polyethers appeared to offer a sufficient 

balance between water transport to facilitate inhibitor release/mobility and delivery to 

better passivate corrosion without resulting in excessive osmotic pressure development that 

would ultimately lead to delamination. 
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Figure 5.13 Comparison of relative scribe corrosion areas of S-36 steel panels coated 

with chromate (top) or CRI (H650, bottom) inhibited primers following exposure to 

ASTM B117 for 440 hours. 

Numbers correspond to the relative size of corrosion product growth. 

 

 

Figure 5.14 Comparison of scribe corrosion areas of S-36 steel (left) and 2024T3 

aluminum (right) coated panels following exposure to ASTM B117 for 440 hours relative 

to the quantity of water absorbed by the respective polymer networks. 
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Figure 5.15 Comparison of modified matrix coating formulations containing the CRI 

H650 on 2024T3 aluminum panels following exposure to ASTM B117 for 440 hours. 

Panels with intact coating (top row) and following coating removal to reveal corrosion pitting at the sites of blisters (bottom row). 

Coating blisters are outlined in red. 

 

5.3.3 Comparison of Modified Matrix Primers within a Multi-Layer Coating 

Until researchers are able to mitigate the dissimilar results found in natural 

outdoor/in-service and laboratory/accelerated corrosion testing it is vital to understand how 

coatings may perform differently in varied conditions.22  In addition to analysis and 

characterization of bulk polymer and solvated, substrate-bound, and pigmented single layer 

films, the impact of a modified primer matrix within a multi-layer or stack-up coating 

system must be evaluated in both static and cyclical stimuli environments.  As many 

modern protective coatings consist of two to six individual layers, each serving a distinct 

purpose (adhesion to substrates, adhesion between layers, UV exposure protection, 

selective gas barrier, etc.), analyses of both individual layers and stack-up or multilayer 
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systems are necessary.  Moreover, natural outdoor exposure testing of coated panels can 

yield insight into top-coated primer corrosion protection that is not found within artificial 

testing conditions.  For these reasons an additional testing protocol consisting of outdoor 

exposure of multilayer systems was employed for further understanding of the relationship 

between matrix hydrophilicity and on coating performance in real-world conditions. 

Multi-layer coatings consisting of THF10-ED90, THF50-ED50, or THF90-ED10-

based primers were applied via drawdown bar film applicator at 6 wet mils on S-36 steel 

Q-panels then dried and cured according the profiles described previously.  The topcoat 

chosen for this study, Deft® 99GY001, is a two-component fluorinated polyurethane 

specified for use on aircraft external structures (classified as a MIL-PRF-85285E Type IV 

Class H topcoat).  The base and hardener/catalyst were mixed, applied, and cured according 

to the manufacturer specifications to result in two-layer coating systems consisting of the 

modified epoxy-amine matrix primers (chromate-containing) and urethane topcoats with 

approximately similar thicknesses (60-80 µm each).  To some of the panels a scribe through 

the coating to the steel substrate (65 mm length, 0.35 mm width) was applied using a 

narrow-nosed rotating burnishing tool on a Vision Express engraver.  Top-coated panels 

were then subjected to either ASTM B117 salt fog cabinet (Q-FOG CCT-600, 35 °C and 

20 psi) or outdoor exposure testing (mounted 120° to the southern horizon in Hattiesburg, 

MS) and occasionally images on a flatbed scanner to define progress of the corrosion 

within and around the scribe could be determined via image analysis. 
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Figure 5.16 Results of ASTM B117 NSS testing of top-coated samples after 7 weeks 

(top), with relative rates of in-scribe or scribe + blister corrosion product formation are 

compared (bottom). 

The iron oxide-containing scribe areas and blisters are outlined separately (top). 

 

It can be seen in Figure 5.16 that the relative rates of corrosion product and coating 

blister formation in salt fog cabinet accelerated corrosion testing decreases as primer matrix 

hydrophilicity increases.  The extent to which iron oxide products form within the scribe 

areas does not vary to a substantial degree between the different formulations but at later 

stages of exposure the formation of both large and small blisters adjacent to and around the 

scribe is more apparent within the lower hydrophilicity systems.  Blisters form due to the 
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build-up of osmotic pressure between the coating and substrate as water ingresses and 

collects at the interface and is commonly associated with the delamination of coating and 

the development of cathodic sites within the corrosion electrochemical cell region.  A lack 

of these features would suggest that a sufficient quantity of corrosion inhibitor has leached 

from the coating to prevent to further corrosion at exposed substrate sites.  However, at 

earlier times the opposite trend is observed: at 21 days a slight increase in the corroded 

scribe area correlates with increasing hydrophilicity which could possibly be explained by 

the expectation for latency of inhibitor activity between the initial exposure period and later 

time points.  During accelerated testing the higher hydrophilicity coating takes on more 

moisture and electrolyte contaminants which results in faster initial corrosion rates prior to 

dissolution and release of inhibitor but results in less relative corroded area at later stages 

due to a greater extent of substrate passivation by the chromate. 

 

Figure 5.17 Scribed polyurethane top-coated panels containing modified epoxy-amine 

matrix primers with chromate corrosion inhibitor after 21 days of outdoor exposure. 



 

158 

 

 

Figure 5.18 Magnified images of scribed top-coated panels containing modified epoxy-

amine matrix primers with chromate corrosion inhibitor after 2.5 months of outdoor 

exposure. 

 

The results of top-coated panel outdoor exposures also yield interesting trends 

within the relatively short time scale (approximately 2.5 months) and vary from accelerated 

corrosion testing trends.  At 21 days a noticeable decrease in the amount of dark iron oxide 

corrosion products within the scribe region correlates with THF100 content decreases and 

ED900 content increases, as seen in Figure 5.17.  Unlike what is observed in accelerated 

corrosion testing, the slower rate of contaminant ingress allows for greater quantities of 

inhibitor to dissolve and reach the substrate for the most hydrophilic primer such that it 

results in lower levels of corrosion products throughout the duration of the exposure.  
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Optical microscopy examination of the scribe regions, shown in Figure 5.18, reveals 

varying degrees of coating discoloration at the edge with increasing primer matrix 

hydrophilicity resulting in less brown or red iron oxides/hydrates and more whitening.  The 

composition of whitened areas would most likely be a result of leaching of pigment and 

residual solvent from the urethane top coat layer, the exact identity and quantity of which 

is unknown.  The corrosion protection performance of the top-coated primers suggests that 

the presence of a protective outer layer enhances the corrosion prevention capabilities of 

inhibited primers composed of hydrophilic matrices.  In both accelerated and natural 

exposure conditions the amount of corrosion product formed (both iron oxides/hydrates 

and coating blister areas) is found to decrease with increasing matrix hydrophilicity when 

formulated with inhibitor on steel panel substrates.  The addition of an outer layer 

consisting of polymer that presents a lower water solubility to a hydrophilic inhibited 

primer appears to result in a coating system that allows for expedient release of inhibitor 

at cut edges and defects without absorbing moisture in excessive amounts. 

5.4 Conclusions 

A series of formulations were designed to vary the ratio of hydrophobic and 

hydrophilic components of an epoxy-amine polymer matrix while maintaining a 

comparable molecular architecture configuration throughout.  Differences in network 

structure and connectivity were minimized through use of amine-functional polyether 

modifiers of similar molecular weight and length to yield systems with similar mechanical 

behavior while allowing for variation in water sorption and transport properties.  The 

calculated HSP values as quantified via the Hoftyzer-van Krevelen group contribution 

method confirmed distinct differences in solubility that correlated the differences in bulk 
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water uptake profiles.  DMA revealed very similar mechanical responses and Tgs in both 

the dry/unexposed state and during/after immersion in DI H2O for up to 60 days.  

Additionally, the fully formulated coatings consisting of these matrices and identical 

pigment and solvent loadings exhibited very little variance in general coatings properties, 

including adhesion in both dry and wet conditions.  However, it is still possible that 

differences in matrix microstructure (e.g. free volume properties) that were not detected 

through these methods could influence inhibitor transport behavior.  Krakovsky and co-

workers examined epoxy hydrogels crosslinked with polyethers (similar to those studied 

here) via the use of small angle neutron scattering and dielectric analysis, and determined 

that in the swollen state the systems were capable of phase separation in the nanoscale (0.1-

1 nm) range.27-32  A shift towards more or less organized microstructure would inherently 

influence diffusion properties but the mechanism and the extent of such influence is 

unknown.  Additionally, the differences in solubility of strontium chromate (< 0.2 g/100 

mL H2O at 15 °C) and the CRI (< 0.01 g/100 mL H2O) is likely to result in preferential 

incorporation of the inhibitor based upon the  hydrophobic characteristic of domains, 

however, was not observed at the macro-level in the coatings.  The data does correspond, 

however, to the differences in corrosion inhibition between the two systems: the lower 

solubility of the CRI would inevitably result in lower levels of solubilized inhibitor 

available to the substrate during ASTM B117 evaluation. 

Although the polymer matrix acts, in general, as a barrier to the ingress of corrosive 

contaminants, the presence of water is necessary to allow for concerted transport and 

delivery of solubilized inhibitor ions to the substrate for efficient corrosion resistance.  

Therefore, a balance of inhibitor efficacy based on solubility and redox capacity is critical 
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whereby the eventual corrosion of the substrate can be prevented via delivery of 

appropriate amount of inhibitor ions without sacrificing barrier efficiency.  This study has 

demonstrated the ability of minor network modifications regarding polymer network 

hydrophilicity to drastically impact corrosion resistance, and these results correlate with 

inhibitor solubilization rate differences that affect the ability of inhibitor ions to prevent 

corrosion at the substrate.  That is to say, that modification of matrix compositional 

features, without substantial structural alteration, impacted transport characteristics to the 

extent of influencing functional additive efficacy.  With increasing matrix hydrophilicity, 

> 50% difference in corrosion area between networks was quantified in chromated systems 

on steel panels.  However, CRI on aluminum panels exhibited detrimental effects as 

solubility differences are believed to have allowed for water to accumulate in greater 

quantities and more localized concentration and increase the osmotic pressure at the 

substrate interface (beneath intact protective coating), leading to small and yet prevalent 

blister formation early in the testing.  Given the range in solubility and surface energy 

values found in polymers, pigments, and substrates, it could be expected that customization 

may be a necessary means of providing optimized corrosion protection for each type and 

rate of corrosion event and each type of substrate-inhibitor-polymer matrix combination.  

Given the findings presented here, it is hypothesized that any (top-coated) primer 

containing an inhibitor with water solubility that approximates that of SrCrO4 (0.2 g/100 

mL H2O) would provide optimal release and hence protection performance with water 

sorption quantities nearing the upper range observed for epoxy-amine networks (4-7 wt%) 

without detrimentally impacting other performance variables such as internal stress 

development and adhesion under various environmental stresses. 
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CHAPTER VI – QUANTIFYING INHIBITOR LEACHING FROM MODIFIED 

MATRIX COATINGS USING 2D RAMAN MAPPING 

6.1 Introduction 

A number of powerful analytical techniques have been implemented in the effort 

to elucidate the mechanism and effect of chromate dissolution and leaching from organic 

coatings including X-ray computed tomography1, serial block face scanning and 

transmission electron microscopy2, and inductively coupled plasma mass spectroscopy.3-4  

Raman microscopy has often been coupled with these analyses, although typically as a 

qualitative means of confirming the presence of corrosion inhibitors and other pigments 

(or lack thereof).5-6  In these studies, coatings loaded with particularly high levels of 

inhibitor pigment (≥ 20 wt%), were immersed in electrolyte solution,  and investigated as 

free films, or otherwise strayed from formulating or testing conditions that reflect real-

world circumstances.  Although these conditions offer a means for convenient analysis 

they can potentially yield results that vary from realistic performance characteristics of 

protective coatings.  Additionally, the influence of polymer structure and composition on 

inhibitor release has not been thoroughly investigated in any of these investigations. 

In recent years significant progress has been made in illustrating the underlying 

mechanisms of inhibitor dissolution and transport from within primers, primarily while 

utilizing chromate-type compounds in systems for study.  Sellaiyan and co-workers 

employed a combination of PALS, SEM, and 51CrO4
2- radiotracer characterizations to 

evaluate a model inhibited epoxy-polyamide coating following immersion in electrolyte 

solution.7  Findings indicated that dissolution of inhibitor initially occurred only at the 

exposed surface and subsequent ingress of electrolyte allowed for additional release of 
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neighboring chromate particles.  This led to the development of a model wherein it was 

posited that closely interconnected pigment regions establish a channel or pathway for 

inhibitor release with only minute amounts of chromate ions diffusing into the bulk 

polymer matrix, as illustrated in Figure 6.01.7  Hughes and co-workers further 

investigated this system using a combination of X-ray computed tomography and serial 

block face SEM to recreate the pigment microstructures within model primer free film 

sections before and after electrolyte solution immersion.  It was reported that some areas 

of polymer between pigment clusters exhibited lower material density than the bulk 

epoxy-polyamide matrix, however, the results nonetheless indicated that voids left behind 

by dissolved chromate near the exposed surfaces acted as the primary inhibitor ion 

diffusion conduits.1-2, 4  

 

Figure 6.1 Demonstration of proposed transport paths for chromate release from within 

an inhibited primer and distribution of SrCrO4 pigments within a primer free film before 

and after electrolyte solution immersion. 

Current understanding of chromate leaching from within inhibited primers (left) during electrolyte immersion as depicted by Sellaiyan 

and co-workers7 (left), and rendering of inhibitor pigment particles dispersed within a coating matrix before and after immersion as 

reported by Hughes,et al.1-2 
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Although these studies have afforded substantial insight into the processes 

involved in inhibitor dissolution and leaching from within polymeric coatings there 

remain several uncertainties.  Among those is the question of whether these trends endure 

in substrate-bound and top-coated coating systems subjected to more realistic testing 

environments.  To that effect, Raman spectroscopy has proven a valuable tool in similar 

studies which evaluated the depletion of chromate-based inhibitor from within coatings 

systems and deposition onto aluminum substrate intermetallic particles subjected to 

neutral salt spray (NSS) testing, although primarily in a qualitative role.6, 8  Furthermore, 

there has been little, if any, consideration for the variability in transport and leaching 

properties imparted by polymeric components in these studies, and selection of coating 

matrix materials was of minor importance.  This investigation represents an attempt to 

advance the understanding of  processes associated with inhibitor dissolution from within 

primers including any influence matrix hydrophilicity imparts on the transport process 

via a quantitative Raman microscopy methodology. 

6.2 Experimental 

6.2.1 Materials 

Select formulations described in Chapter V were implemented in Raman mapping 

studies, specifically, THF90-ED10, THF50-ED50, and THF10-ED90 modified matrices 

were chosen as a means of incrementally shifting binder hydrophilicity while holding all 

other formulation metrics (stoichiometry, PVC, solids content, etc.) and network structure 

features static.  Coatings were prepared as previously described with approximately 80% 

solids by weight (1:1:1 mixture of p-chlorobenzotrifluoride, 2-butanol, and tripropylene 

glycol n-butyl ether), and pigment loadings at 7% PVC (58.25% CPVC) using a mixture 
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of TiO2 (DuPont Ti-Pure™ R-902+, 17.38 wt%) and SrCrO4 (3 wt%).  Following the 

mixing and processing of modified matrices, coatings were applied to 2024T3 aluminum 

panels with dimensions of 120 x 75 x 0.8 mm (L x W x T) using a drawdown bar 

applicator at 6 wet mils.  These coatings were dried overnight before curing at 60 °C for 1 

hour, followed by 120 °C for 2 hours with resulting dry film thicknesses that varied 

between 70-100 µm.  The coated panel edges were covered with a polyimide water-

proofing tape and a scalpel surgical blade was used to place a small vertical scribe (≤ 50 

µm width, 25 mm length) in the lower third portion of the exposed coating surface as 

shown in Figure 6.2. 

 

Figure 6.2 Example of coated and scribed 2024T3 aluminum panel displaying regions 

from which coating cross section samples were taken. 

 

6.2.2 Accelerated Corrosion Testing and Raman Sample Preparation 

Coated and scribed panels were subjected to a neutral salt spray (NSS) according 

to ASTM B117 salt fog cabinet (Q-FOG CCT-600, 35 °C and 20 psi) testing for 0 
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(dry/non-exposed), 1, 3, or 15 days before removal and drying briefly with paper towels.  

A table shear was used to cut the panels into small pieces no larger than 25 mm in length 

or width with multiple cross section samples provided from both the scribed and non-

scribed regions of the panels.  An embedding resin was applied to the cut edges and the 

pieces were allowed to dry and solidify in an oven at 35 °C for 48 hours.  Fixed cross 

sections were then polished with 400-1200 grit silicon carbide polishing discs just prior 

to Raman mapping.  Coated panel cross section samples were held upright using a binder 

clip fitted onto a steel panel which mounted to the Raman microscope automated stage. 

6.2.3 Raman Spectroscopy 

Raman spectroscopy was carried out using a Thermo Scientific™ DXR Raman 

Microscope system.  Specimens were illuminated through either a 50x/0.75 or 50x/0.5 

objective with a 633 nm excitation from a He-Ne laser source.  The incident power 

source ranged from 5-7 mW and resulted in a spot size of 0.8 µm with 3-4 µm spacing 

intervals between each map point.  Single point spectra were collected between 3350-50 

cm-1 while mapping studies were collected between 3200-100 cm-1 and averaged over 64 

or 32 scans, respectively, with a spectral wavelength resolution of 1 cm-1.  Collection 

times for mapping studies were approximately 30 seconds per spectrum/point and for all 

samples an auto-fluorescence correction factor (5th order polynomial) was applied to 

collected data.  Maps of both scribed and non-scribed regions of coatings were collected 

over an area of approximately 1.0 x 104 µm2, an example of which can be seen in Figure 

6.4. 
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6.3 Results and Discussion 

Single point Raman spectra of pure SrCrO4 and TiO2 pigments were collected and 

compared with a spectrum of a cured pigmented coating (THF10-ED90) sample, shown 

in Figure 6.3. 

 

Figure 6.3 Raman spectra overlay of SrCrO4, TiO2, and a sample pigmented coating 

demonstrating the presence of pigment component peaks within the polymer. 

 

Strontium chromate exhibits two groupings of peaks centered around 890 and 350 

cm-1 with two narrow and high intensity bands that also reflect in the coating sample at 

893 and 864 cm-1 while the titanium dioxide signal includes broad peaks of moderate 

intensity located at 610, 446, and 238 cm-1 which are also found within the dry coating 

sample.  Following the application of an automated baseline correction and background 

subtraction, spectral 2D maps were constructed either by detailing the intensity of a 

single wavelength over the cross-sectional area or through a correlation feature whereby 

the spectrum at each point within the map was compared to the spectrum of pure 
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pigment.  Cross-sectional areas were chosen to include regions of coating that displayed 

no signs of delamination (an effect of shearing the panel) and were free of coating 

defects.  Scribed coating region cross-sections were framed as to include both coating 

edges. 

 

Figure 6.4 Optical microscopy image of aluminum substrate-bound inhibited coating 

cross-section (left) and example Raman map of the coating cross-section demonstrating 

the spatial distribution of signal intensity associated with the chromate inhibitor peak 

(~870 cm-1). 

 

As TiO2 is insoluble in water the Raman maps detailing the wavelengths specific 

to this pigment serve as a means of ensuring the fidelity of coating cross section SrCrO4 

spectral data; chromate-specific maps of the same area can be normalized to those 

detailing the TiO2 signal to determine if abnormal shifts in spatial distributions or 

absences of SrCrO4 signals are due to inhibitor dissolution and leaching or coating mass 

loss caused by degradation during testing or processing.  Examples of Raman map 

overlays of scribed and non-scribed coating regions are revealed in Figures 6.4-6.6.  As 

anticipated from the formulated pigment loading the SrCrO4 and TiO2 map overlays of 

these coating cross sections reveal a significant disparity in signal intensity and hence 
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concentration in addition to spatial distribution.  The chromate inhibitor, loaded to 

approximately 3 wt% by solids content, exhibits very low signal intensity throughout the 

analyzed regions with a few high intensity circular areas less than 20 µm in diameter 

whereas the Raman scattering signal corresponding to titanium dioxide (~17.4 wt% by 

solids content) reveals a broad, uniform distribution of moderately high intensity 

throughout the entirety of both scribed and non-scribed dry coating cross sections at all 

exposure time points and coating formulations. 

 

Figure 6.5 Raman microscope image of dry/unexposed substrate-bound coating THF90-

ED10 cross section (left) and overlaid Raman maps of the same area correlating with 

strontium chromate (middle) and titanium oxide (right) content. 

 

 

Figure 6.6 Raman microscope image of the scribed area of dry/unexposed coating 

THF10-ED90 cross section (left) and overlaid Raman maps of the same area correlating 

with strontium chromate (middle) and titanium dioxide (right) content. 
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As seen in Figure 6.7 the overall general trend in chromate pigment feature 

concentration and distribution is a decrease in number and size from the dry/unexposed 

state to 15 days of NSS exposure time when comparing non-scribed regions of coating 

THF50-ED50.  This development was also observed in the coatings which included 

THF90-ED10 or THF10-ED90 modified matrices.  Throughout the exposure no 

definitive anisotropic dissolution profiles appear to develop within the undisturbed 

coating regions; although fewer and smaller features or less intense signals are found, the 

distribution of remaining pigment bodies within the cross section does not reveal any 

distinguishing spatial patterns.  Given the permeable nature of epoxy networks towards 

moisture it could be estimated that water penetrates through the bare primer to the 

aluminum substrate well before the 15 day time point.  Nevertheless, a discernable 

outline of an inhibitor dissolution front is not found to manifest in any specific 

dimension. 

 

Figure 6.7 Raman microscope images and overlaid Raman maps of THF50-ED50 

coatings illustrating the spatial distribution of SrCrO4 within non-scribed cross section 

regions following (a) 0, (b) 1, (c) 3, and (d) 15 days in NSS testing. 
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Comparison of the Raman maps detailing the cut edges of coatings within the 

scribed regions reveals a somewhat dissimilar trend.  In examining the SrCrO4 map 

overlays of THF10-ED90 coatings it is apparent the specified wavelength signal intensity 

recedes away from the cut edge as exposure time increases.  Initially the inhibitor is 

detected within the unexposed coating up to edge of the scribe, as exhibited in Figure 6.8 

(coatings are outlined in white).   As salt fog exposure time proceeds the distance 

between the scribed coatings physical margin and the appearance of detected SrCrO4 

signal increases, with as much as a 25 µm separation between the interior inhibitor front 

and primer cut edge after 15 days of NSS testing.  Of particular interest is the manner 

with which the inhibitor pigment signal depletes: dissolution at both the air and substrate 

interfaces directly adjacent to the cut edge exhibit the first indications of leaching SrCrO4 

followed by the interior region nearest the scribe mark, resulting in an elliptical shape of 

residual chromate content after 15 days of accelerated corrosion testing. 

 

Figure 6.8 Microscope images and overlaid Raman maps of scribed edges of THF10-

ED90 cross sections detailing the spatial distribution of SrCrO4 within the coatings after 

(a) 0, (b) 1, (c) 3, and (d) 15 days in NSS testing. 
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Each of the scribed coating samples was assessed to measure the rate of leaching 

as evidenced by the receding strontium chromate signal front from the coating cut edge.  

As demonstrated in Figure 6.9 both the cut coating boundaries and outer extents of the 

detected SrCrO4 signal were delineated and the horizontal distance between the two 

boundaries was calculated with the average distances of both scribe/inhibitor limits 

compared. 

 

Figure 6.9 Raman mapping analysis illustrating the separation of the coating scribed 

edge, outlined in white, and the extent of strontium chromate signal, outlined in yellow, 

of THF90-ED10 following NSS exposure after 1 day (left), and the comparison of 

dissolution fronts of the various formulations (right). 

 

It is evident from the plot in Figure 6.9 that throughout the duration of the salt fog 

exposure timeline the coatings did not exhibit a specific point at which cessation of 

inhibitor leaching occurred.  The most dramatic increase in SrCrO4 release, as interpreted 

from the increase in separation between coating physical boundary and detected inhibitor 

front, occurred at the initial stages between 0 and 3 days while at later stages the coatings 

exhibit similar rates of dissolution front procession.  At all time points following the start 

of the NSS exposure the relative distances between coating scribe and SrCrO4 front limits 

increase with matrix hydrophilicity (THF10-ED90 > THF50-ED50 > THF90-ED10), 
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indicating that rates of inhibitor dissolution and release are at primarily dependent upon 

amount of water content available within the coating. 

 

Figure 6.10 Demonstration of Raman mapping image analysis for quantification of 

inhibitor feature spatial distribution, concentration, and area of THF10-ED90 (1 Day NSS 

exposure) non-scribed coating cross section. 

 

For a more detailed quantitative examination of the inhibitor dissolution and 

leaching rates the Thermo Scientific™ Atlµs software for Raman mapping image 

analysis was used to determine concentrations and spatial distributions of SrCrO4 within 

both the scribed and non-scribed coating cross sections across all time points of exposure.  

Figure 6.10 offers an example of the resulting analytics corresponding to pigment feature 

number, size (area/perimeter), orientation, and histogram distribution of figures 

correlating to a given SrCrO4 signal intensity threshold.  Three signal intensity ranges 

were extrapolated from each map: those associated with low (blue-green), mid (yellow-

orange), or high (red) inhibitor concentration regions.  The corresponding pigment 

feature statistics associated with each range was collected and tabulated while a 

calibration curve to determine actual pigment concentration was created. 
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Figure 6.11 Calibration curve used to determine SrCrO4 concentration of pigment regions 

(left) and demonstration of pigment region allocation used to calculate concentration per 

pigment feature and per coating area (right). 

 

A strontium chromate concentration calibration curve was prepared by combining 

various quantities of SrCrO4 pigment with PKHB-80 powder (a DGEBA phenoxy resin-

type linear polymer with Mw = 32,000 g/mol), milling until thoroughly incorporated and 

blended, and obtaining single point spectra of each mixture within the series under the 

same Raman microscope conditions used for mapping studies.  The resulting calibration 

curve, exhibited in Figure 6.11, was then applied to each extrapolated inhibitor intensity 

signature map and the overall chromate inhibitor content per coating cross section area 

was determined according to: 

[𝐶𝑟𝑂4] 𝑝𝑒𝑟 𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝐴𝑟𝑒𝑎 =
𝐶𝐻𝑖𝐴𝐻𝑖 + 𝐶𝑀𝑖𝑑(𝐴𝑀𝑖𝑑 − 𝐴𝐻𝑖) + 𝐶𝐿𝑜𝑤(𝐴𝐿𝑜𝑤 − 𝐴𝑀𝑖𝑑)

𝐴𝑇𝐶
 

whereby C and A correspond to concentration and area while the subscripts denote 

regions of high, medium, or low SrCrO4 signal intensity and total coating cross section 

area, ATC.  The resulting inhibitor quantities are expressed as a function of exposure time 

as seen in Figure 6.12 wherein both scribed and non-scribed coating formulations are 
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compared with all values expressed as fractions of the concentrations per coating area 

(µg∙mg-1∙µm-2) measured for each respective formulation in the dry/unexposed state 

(baseline).  It is evident upon comparison of the scribed and non-scribed regions that a 

stark difference in SrCrO4 dissolution and leaching rate trends exists between the two 

coating regions.  After 15 days of salt fog exposure the inhibitor in the non-scribed 

coating regions exhibits a remainder of approximately 75-95% of the original or baseline 

strontium chromate signal per coating area while the scribed coatings reveal only 10-50% 

of their unexposed reference.  Additionally, the trends in inhibitor release behaviors of 

the modified matrices vary between the scribed and intact states.  Within the non-scribed 

coatings a slight increase in the rate and amount of inhibitor loss throughout the salt fog 

exposure appears as matrix hydrophilicity declines, with THF90-ED10 exhibiting a 

greater loss in SrCrO4 concentration per coating area (~24%) as compared to the dry 

state, while THF10-ED90 only reveals a loss of approximately 8% after 15 days of 

ASTM B117 exposure. 

In contrast, the inhibitor dissolution and leaching developments found within the 

scribed coatings yield a semi-exponential decline that scales with hydrophilicity with 

THF90-ED10 revealing 50% of the original inhibitor pigment signal per coating area and 

THF10-ED90 exhibiting only 10% at the end of accelerated corrosion testing.  However, 

the tendency for the greatest loss in SrCrO4 signal to occur during early stages of 

exposure is found in both coating regions.  Throughout the first 72 hours of salt fog 

testing each inhibited primer displays its greatest rate of decrease in concentration per 

coating area although the scribed areas demonstrate significantly more extensive leaching 
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at later stages in NSS exposure whereas the non-scribed coatings appear to near an 

equilibrium state. 

 

Figure 6.12 Concentrations of chromate inhibitor across un-scribed (top) and scribed 

(bottom) coating cross sections as a function of accelerated corrosion testing exposure 

time. 

Dotted lines are added as visual guides. 

 

Besides detailing the calculated concentration per coating area, the average 

pigment feature sizes (area in µm2) were tabulated, normalized to the unexposed state, 

and plotted as a function of NSS exposure time, as seen in Figure 6.13.  Detected 

inhibitor particles are found to exhibit a wide distribution of sizes ranging between 10 
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and 500 µm2 within each map when including a minimal SrCrO4 Raman scattering signal 

threshold.  The most hydrophilic (THF10-ED90) unperturbed coating cross sections 

depict a steady increase in the average pigment body area across the entire testing period 

while the less (THF50-ED50) and least (THF90-ED10) hydrophilic coatings reveal either 

slight increases or decreases, respectively, as compared to the dry/unexposed conditions.  

As it is improbable that pigments or inhibitor bodies collectively increase in volume 

during the leaching process, the shift in detected area is likely due to a combination of 

traits characteristic of specific matrix water sorption behaviors and pigment features.  

Following sorption of water, the dissolution and transport of smaller inhibitor pigments 

and ions into the surrounding environment would inherently result in larger overall size 

of remaining strontium chromate features.  However, if transport proceeded via a 

mechanism as described by Hughes, Sellaiyan, and others1,7 whereby leaching occurs 

through local transport of water through closest neighboring pigment bodies (paths of 

least resistance) it could be expected that larger inhibitor features would exhibit 

diminishing size initially given that bigger pigments are more likely to present shorter 

path lengths between neighboring features than smaller bodies, assuming the same 

loading and distribution.  These competing mechanisms are reflected in the trends of 

shifting average pigment size: the more hydrophilic matrix allows for faster ingress and a 

greater quantity of moisture throughout the bulk of the coating which results in 

dissolution of smaller features first while the least hydrophilic system experiences an 

initial decrease in average pigment size as larger forms experience preferential dispersion 

in early stages of exposure followed by dissolution of all other sizes at similar rates once 

the amount of absorbed water is sufficient to reach all areas within the coating.  The 
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THF50-ED50 system reveals a less intense increase throughout the initial testing period 

and it could be expected that a significantly more hydrophobic matrix would influence a 

more significant decrease in average pigment size throughout the accelerated corrosion 

process. 

 

Figure 6.13 Comparison of average pigment feature size between formulations as a 

function of exposure time within non-scribed (top) and scribed (bottom) coating regions. 

Dotted lines are added as visual guides 
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When considering the average pigment area shifts of scribed primers dissimilar 

trends are observed as the most hydrophilic coating (THF10-ED90) demonstrates a 

decrease in average pigment size immediately following introduction to the salt fog 

testing conditions while the least hydrophilic system exhibits an initial increase during 

the first day of exposure followed by a abrupt decline.  The coating derived from the 

THF50-ED50 matrix also reveals an increase in average SrCrO4 pigment size prior to 

gradually decreasing although to lesser magnitudes than what is encountered for THF90-

ED10.  Additionally, both THF90-ED10 and THF50-ED50-derived primers are found to 

yield average pigment feature sizes after 15 days of NSS testing that are 27% and 7% 

larger than what is measured within the unexposed cross sections, respectively.  This 

divergence in pigment feature trends suggests a different means by which dissolution and 

leaching occurs as compared to the non-scribed coatings.  The primary difference in 

water and ion transport between scribed and non-scribed conditions is the access to the 

metal substrate surface, coating-substrate interface, and any defects or voids within the 

coating bulk layer exposed upon formation of the scribe defect.  Multiple researchers 

have determined that the kinetics of ingress and transport of these contaminants at the 

coating-substrate interface is significantly higher than those measured through the coating 

itself.9-12  This coincides with the observation of SrCrO4 depletion of scribed coating 

regions (Figure 6.8) where it is seen that the extent to which inhibitor has leached from 

areas of the coating nearest the aluminum substrate meets or exceeds those observed at 

the coating-air interface.  Under these conditions the measured average pigment areas for 

each formulation suggest that increasing matrix hydrophilicity leads to more water 

sorption into the bulk polymer via access from interfacial regions, resulting in dissolution 
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and leaching of pigments of all sizes with equal access to larger features in addition to 

small particles.   

It is likely that coating voids and defects exposed or created by applying the 

scribe would impact the sorption and diffusion characteristics determined, in part, by 

polymer solubility.  The developments in average pigment feature area seen in Figure 

6.13 indicates that within scribe regions increasing hydrophilicity results in faster 

depletion of larger inhibitor elements while increasing hydrophobicity leads to more 

rapid disappearance of smaller pigment bodies in early stages.  These results are in direct 

contrast to what is found within non-scribed coating cross sections, indicating that 

sorption and transport within the coating matrix occurs through a modified process within 

defect sites.  What is not monitored directly through these experiments is the variability 

in water transport rates at the substrate-coating interface, which is anticipated to hold 

significant influence over inhibitor access in damaged or scribed coatings.  Given the 

higher diffusion coefficients exhibited by lower hydrophilicity matrices, it could be 

assumed that further ingress within the interfacial regions at faster rates (although at 

lower total quantities) allows for dissolution or depletion of smaller inhibitor pigment 

features along the coating edge prior sorption further into the polymer matrix.   

From these results several distinct trends are noted: within scribed regions of 

polymer, dissolution and depletion of inhibitor along the plane of the coating occurs at 

faster rates in coatings consisting of matrices that exhibit greater hydrophilicity.  By 

contrast, the intact coatings do not reveal any specific diffusion or leaching pathways 

despite loss of inhibitor concentration compared to the pristine or non-exposed state.  The 

mechanisms of moisture sorption and subsequent inhibitor leaching from matrices vary 
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significantly between intact and scribed coating states as observed in both pigment 

concentration and feature size developments throughout the exposure process.  This may 

be due to direct access to the coating-substrate interface and any matrix defects or voids 

that develop upon formation of the scribe in addition to pigments embedded within the 

coating.  Central to this work is the evidence of modification to inhibitor leaching rate 

and mechanism by shifting polymer-water solubility or hydrophilicity through adjustment 

of network reactant proportion.  Based on these findings a general depiction of matrix 

influence on pigment dissolution emerges: if considering a top-coated inhibited primer 

exposed to real-world (cyclical) conditions it could be expected that any leaching of 

SrCrO4 within an intact coating would take place in a manner analogous to that as 

described by previous studies with dissolution of pigment nearest the surface or interface 

providing a pathway perpendicular to the plane of the substrate for subsequent ingress of 

water.32  However, at defect sites water transport within the exposed matrix and along 

the substrate interface results in mixed modes of inhibitor dissolution with the extent of 

ingress within the plane of coating, as opposed to along/within the interface, determined 

by matrix hydrophilicity, as depicted in Figure 6.14. 
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Figure 6.14 Graphic depiction of water sorption through a coating cross section at a 

defect or cut edge site. 

The degree of matrix hydrophilicity within the inhibited (and top-coated) primer determines the extent to which water ingresses and 

initiates inhibitor dissolution within the coating as compared to along the coating-substrate interface. 

 

6.4 Conclusions 

When considering the general mechanism for inhibitor dissolution and leaching 

from within primer matrices as described by Hughes and co-workers it is necessary to 

recall that part of the rationale is based on free volume shifts of treated and untreated 

model primers.  It was suggested that minimal diffusion of inhibitor ions would take 

place through epoxy-polyamide or epoxy-amine matrices given the proximity in size of 

polymer free volume pores (0.27 – 0.60 nm diameter) and chromate ions (0.32 – 0.46 nm, 

excluding hydration shell).1,7  However, the method of PALS utilized by previous 

researchers necessitated removal of samples from the immersion solution (or other 
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exposure conditions) and into the instrument apparatus during which time the free 

volume characteristics could alter substantially as drying occurred.  As demonstrated in 

Chapter III the introduction of moisture results in shifting and reversible measured free 

volume pore sizes, with some glassy epoxy-amine networks exhibiting a larger <Vh> at 

high levels of moisture exposure (80-100% RH) than in the dry condition.  This could 

lead to artificially low measured pore sizes when compared to the polymer as it is 

exposed to liquid water or humid environments, in this case an electrolyte solution.  

Additionally, the reported <Vh> sizes represent an average value with both larger and 

smaller pores and voids present within the polymer. 

Nevertheless, trends reported here provide support for the previously proposed 

mechanism, if only in specific conditions.  Analysis of non-scribed or intact primers 

indicated that although no inhibitor dissolution channels were detected via Raman 

mapping, a substantially slower rate of SrCrO4 leaching was found when compared to 

scribed counterparts.  These primers displayed minor shifts in inhibitor concentration per 

coating area and/or average area per pigment during initial exposure stages but revealed 

little change after 3 days of salt fog chamber exposure (except for the most hydrophilic 

matrix primer, THF10-ED90).  This would indicate that moisture is absorbed into the 

matrix through interconnected free volume pathways during initial stages of salt fog 

testing but only higher water-soluble networks experience further ingress within the 

polymer at later times.  Scribed coating areas present a dissimilar process whereby access 

to the coating-substrate interface and exposed voids, defects, or embedded pigment 

allows for significantly faster depletion of inhibitor along the primer edges and indicates 

greater extents of moisture ingress into the polymer.   
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In both instances matrix hydrophilicity directly influences rates of dissolution and 

the extent to which water diffuses into the matrix.  Contrasting modes of shifting pigment 

concentration per coating area and average pigment body size are observed between the 

three primers and as all other properties (stoichiometry, pigment loading, Tg, molecular 

architecture) are unchanged between the formulations the source of these differences can 

be traced to the polymer-water interaction variations as outlined in Chapter V.  One 

potential implication of this study is that the rates and modes of inhibitor dissolution and 

leaching are more dependent upon polymer hydrophilicity, as determined by 

concentration of polar and hydrogen bonding functional groups, than transport kinetics.  

As discussed previously, the calculated diffusion coefficient (D) decreases overall while 

water saturation content (Msat) increases spanning from THF10-ED90 (Msat = 4.11 wt%, 

D = 6.275 x 10-10 cm2/s) to THF90-ED10 (Msat = 2.19 wt%, D = 4.245 x 10-9 cm2/s).  

Given that the primary factor determining concentrations of inhibitor ions within any 

solution is pigment water solubility, it would reason that the total amount of absorbed 

water available within the coating, and not the rates at which a coating absorbs moisture, 

determines the leaching characteristics.  These results should be considered when 

formulating or designing matrices for use in coatings systems that employ inhibitors of 

variable water solubility. 
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CHAPTER VII – SUMMARY 

7.1 Overview 

The research findings presented within this dissertation are collectively intended 

to assist in both increasing the understanding of structure-property relationships of 

epoxy-amine thermosets related to transport phenomena and thermomechanical 

properties central to substrate-bound organic coatings (primers) while also aiding the 

formulation process of corrosion inhibitor-containing systems to maximize inhibitor 

release and thereby prevention of degradation due to corrosion processes.  In general the 

results of these studies support the findings or presumptions of other researchers in that 

increasing amounts and rates of corrosion inhibitor release and transport resulted in less 

corrosion product formation, hence more efficient protection afforded by primer coatings.  

Thermomechanical properties were monitored following modification of network 

features to determine how these alterations which impact transport phenomena also 

influence physical traits central to coating performance.  It was found that networks of a 

higher glassy state (higher Tg) endured more substantial shifts in physical state per water 

sorption percent, but enhancing rates of water sorption and permeation by increasing the 

matrix hydrophilicity (through both structural and compositional modification) resulted 

in more extensive corrosion inhibition.  A substrate-bound, non-pigmented bare film 

composed of a low Tg/high crosslink density network that absorbed more than 5 wt% 

water demonstrated faster rates of magnetite-type (oxygen-starved) corrosion formations.  

However, apart from that exception, increasing the rates and quantities of moisture 

transport served to benefit substrate protection.  This would suggest that any primer 

coating containing a corrosion inhibitor (along with other pigments), and in particular an 
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inhibitor of low water solubility, would benefit from an increase in matrix hydrophilicity, 

within reason (< 10 wt%).  

7.1.1 Summary of Results 

With respect to the research tasks and goals established at the beginning of this 

project, several general gains in understanding are noteworthy: 

1) Relatively slight adjustments to epoxy-amine network structural and 

compositional features via judicious selection of formulation modification 

(stoichiometry, co-reactant nature and ratio, degree of cure, etc.) can be 

implemented to the effect each controllable tuning of moisture and inhibitor 

transport with or without concurrent shifts in physical properties in a controlled 

manner. 

2) Increasing the amount of water sorption and transport (and similarly the rates 

of sorption albeit to a lesser extent) has a direct correlative relationship to 

amplified quantities of inhibitor dissolution from within pigmented thermoset 

substrate-bound films. 

3) Within the range of matrix material building blocks, i.e., polymer coatings 

examined here a general trend emerged in which the systems which exhibited 

the highest moisture sorption also exhibited the least amount of corrosion 

product formation during each natural and accelerated weathering when the 

coatings were comprised of corrosion inhibitor and combined with a topcoat 

layer. 

With regard to the specific findings described here, in Chapter III a number of 

epoxy-amine matrices which varied in both Tg and total water sorption amount 
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demonstrated distinct shifts in free volume properties as moisture ingress increased.  

Glassy thermosets exhibited constant decreases in free volume size from 0-75% RH due 

to accumulation of water molecules within free volume holes followed by an abrupt 

increase as large-scale swelling occurred, which was also exhibited by a fully formulated 

coating free film.  The rubbery networks, despite absorbing very different amounts of 

water, exhibited similar free volume hole size with very little shift with respect to water 

content due most likely to heightened polymer chain dynamics.  Both water vapor and 

oxygen transmission property trends revealed similar dependencies on moisture content 

to what was encountered in RH-PALS which signified the dependence of transport 

characteristics on the fraction of free volume available prior to hydroplasticization-

induced swelling.  ATR-IR spectroscopic evidence suggested that the proportion of 

bound and unbound water states within the polymer scaled with matrix hydrophilicity in 

glassy networks and reaches an equilibrium state that closely matches the rates of 

sorption as measured via DVS.  Of particular interest is that the glassy networks 

exhibited an abrupt shift in free volume hole size at approximately the same moisture 

content environments (~75% RH) due to swelling, which may be due to the similar 

quantities of sorption (2-5 wt%) these networks exhibited. 

In Chapter IV the series of matrices all consisting of the same network 

components and formulated to the extent that distinct Mc and amine ratio levels were 

achieved and resulted in a range of Tg, water sorption/transmission rates, and amounts.  

Thermomechanical evaluation of these networks under both humid and dry conditions 

demonstrated that increasing shifts in physical properties (ΔTg and swelling-induced 

strain) resulted from matrices which expressed higher glassy states (higher Tg and 
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crosslink density), regardless of the quantity of moisture absorbed.  Physical aging 

experiments using these epoxy-amine networks under both dry and wet conditions 

resulted in the observation of impeded aging processes when in the presence of moisture 

(immersed in DI H2O), most likely due to the occupation of free volume by water 

molecules that would otherwise be necessary for molecular rearrangement.  However, 

extensive hydrogen bonding between matrix functional groups and water could hinder 

mobility of polymer chains that would otherwise participate in aging-related 

reconfiguration.  ATR-IR analysis of coatings formulated from select matrices (α-I, β-II, 

and γ-III) revealed similar findings in that a more glassy state expressed more variability 

in sorption properties with subsequent exposure/drying cycles while the predominant 

indicator of more water within a coating is a higher proportions of the S1 (singly h-

bonding) and decreasing S2′ (loosely dual h-bonding) water types.  This would suggest 

that a network which allows for greater water ingress interacts less with that water 

following sorption despite possessing a higher concentration of the hydrophilic groups at 

the crosslink junctions.  As observed in pigment-free coatings, this resulted in more water 

at the substrate interface and the development of oxygen-starved corrosion product 

formation.  Pigmented versions of these same films exhibited more extensive 

discoloration due to leaching of inhibitor while the more glassy coatings developed 

blisters at a significantly faster rate. 

Interestingly both bulk polymer samples and pigmented coatings developed from 

the 50:50 ratio of amine crosslinking agents (β column) exhibited trends that stood out 

from the other networks, namely, significantly less strain development due to swelling 

(per wt% of water absorbed) and a differential in the discoloration and blister formation 
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of coatings (near the scribe instead of the entire exposed surface) following exposure to 

corrosive conditions.  This could potentially be a result of the volumetric ratio of the two 

reactants meeting a threshold for phase separation which might impart transport and 

thermomechanical traits not encountered otherwise, however, no other indications of this 

were detected in any other analytical technique.  Finally, a means of producing 

topologically heterogeneous networks from one of the mixed thermosets (β-II) was 

developed and evaluated via thermomechanical, moisture transport, and electron 

microscopy analysis.  These were then incorporated into pigmented coatings whereby it 

was observed that the more inhomogeneous coating released more inhibitor but also 

allowed for enhanced rates of ion ingress, which would potentially negate any benefit of 

increased transport rates, unless protected from corrosive contaminants by a topcoat 

layer. 

Chapters V & VI discussed the impact that hydrophilic matrix component ratio 

has on water transport properties and the resulting effect on inhibitor dissolution and 

coating performance.  Matrices which varied only slightly in composition as the ratio of 

hydrophilic and hydrophobic modifiers was adjusted exhibited nearly identical 

thermomechanical properties and only minor differences in H2O sorption and diffusivity.  

Coatings formulated from these networks demonstrated similar characteristics (adhesion, 

hardness, etc.) but following exposure to accelerated weathering conditions a trend of 

increased hydrophilicity and lowered corrosion product growth was observed, both in 

chromate-containing systems and in CRI-containing coatings.  Both steel and aluminum 

coated panels revealed this inclination although CRI-containing coatings on 2024T3 

substrates showed a minimum at the 50:50 (hydrophilic:hydrophobic) formulation, 
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suggesting that for some inhibitor-substrate combinations an ideal balance of transport 

rates and water solubility can be determined.  Further development of top-coated coatings 

systems confirmed this trend in both accelerated and direct weathering experiments 

signifying that, in general, increasing the hydrophilicity of a coating binder assists in the 

corrosion protection efficacy of a primer by increasing the rate of dissolution and 

mobility of inhibitor. 

This was also observed in Raman microscopy experiments which evaluated 

inhibited primer cross sections as a function of exposure time.  In more hydrophilic 

systems both the dissolution and depletion of SrCrO4 occurred at faster rates although it 

was found that intact (non-scribed) coating regions failed to release inhibitor at 

appreciable rates due to limited mobility of hydrated ions through the polymer free 

volume network, regardless of the amount of water present.  Based on the findings of 

Chapter III it could be suggested that increasing the extent of polymer swelling would 

lead to increases in free volume hole size and thus would lower the barrier to inhibitor 

mobility following dissolution. 

These findings collectively suggest that increasing matrix hydrophilicity and 

lowering Tg benefits the inhibited primer by allowing for faster and more substantial 

dissolution and leaching of inhibitor.  However, a coating system containing a primer 

formulated specifically for inhibitor release in such a way would necessitate at least one 

neighboring coating layer (intermediate or topcoat) that provides a more substantial 

barrier to moisture in addition to other environmental elements.  Ideally an optimized 

system would consist of an outer coating which exhibits some degree of hydrophobicity 

and a substrate-bound hydrophilic layer.  Although the hydrophilic elements studied here 
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include both crosslink junction functional groups (tertiary amines and secondary 

hydroxyls) and backbone segments (polyethylene oxide) no particular distinct between 

the two was observed in terms of water type populations and impact on inhibitor release 

and transport.  With respect to glass transition temperature, the potential for physical 

property shift following exposure (including cyclic conditions) to moisture scaled with Tg 

which, contrary to traditional approaches, would suggest that less glassy state would 

provide an advantage to an inhibited primer. 

7.1.2 Future Work Considerations 

When reflecting on the coating aspects typically considered to be responsible for 

substrate protection efficacy, the dominant traits include (1) barrier and (2) adhesion 

properties.  Within the scope of the research presented here, only specific aspects of barrier 

properties were investigated, primarily as related to water sorption and transport.  Although 

a complete barrier would prevent ingress of any and all corrosive contaminants, including 

water, polymers are inherently relatively porous materials and as such it is considered that 

the organic coating acts primarily as a barrier to ions and oxygen which serve as the limiting 

factor in corrosion prevention.  With regard to the impact of modifying matrix water 

transport properties on adhesion of substrate-bound films, only limited investigations were 

carried out here.  Chapter V comparisons of networks that varied only in the concentration 

of hydrophilic polyethylene oxide backbone units revealed almost no impact on the 

resulting adhesion following immersion in DI H2O.  By contrast, the adhesion trends of 

Chapter IV coatings (α-I, β-II, and γ-III), which differed in multiple ways, suggests that 

increasing crosslink density and water sorption in addition to lower Tg results in higher 

adhesion both before and following exposure to water via immersion.  This can be 
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explained by both the higher concentration of polar functional groups per substrate unit 

area available for interaction with metal while a less glassy state would allow for faster 

polymer rearrangement following swelling or application of stress to ensure coating-metal 

intimacy.  In any case the modifications to the networks described here did not appear to 

alter adhesion to a detrimental extent, although much more research is necessary before 

any definitive conclusion regarding the impact of polymer matrix hydrophilicity on 

substrate adhesion can be reached. 

In addition to the networks examined here, other polymers should be investigated 

in a similar manner including the polyurethanes, polyesters, and polyacrylics which 

constitute a significant portion of coatings binder materials.  Most of these systems include 

a selection of monomers which match those found in epoxy-amine systems and as such 

should offer comparable potential for solubility, Tg, and topological modification.   

Finally, a more extensive range of modification could be explored to determine the 

extent to which a matrix may be modified to the benefit of an inhibited coating.  The 

systems implemented in this research represent a necessarily narrow range of transport 

properties for the purpose of precise control.  As such the reasonable range of moisture 

sorption properties can only be estimated at this point.  
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