
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Dissertations 

Spring 2019 

Enhancement of Krylov Subspace Spectral Methods Through the Enhancement of Krylov Subspace Spectral Methods Through the 

Use of the Residual Use of the Residual 

Haley Dozier 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/dissertations 

 Part of the Numerical Analysis and Computation Commons, and the Partial Differential Equations 

Commons 

Recommended Citation Recommended Citation 
Dozier, Haley, "Enhancement of Krylov Subspace Spectral Methods Through the Use of the Residual" 
(2019). Dissertations. 1658. 
https://aquila.usm.edu/dissertations/1658 

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted 
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more 
information, please contact Joshua.Cromwell@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=aquila.usm.edu%2Fdissertations%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=aquila.usm.edu%2Fdissertations%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=aquila.usm.edu%2Fdissertations%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/1658?utm_source=aquila.usm.edu%2Fdissertations%2F1658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


ENHANCEMENT OF KRYLOV SUBSPACE SPECTRAL METHODS THROUGH THE

USE OF THE RESIDUAL

by

Haley Renee Dozier

A Dissertation
Submitted to the Graduate School,
the College of Arts and Sciences,

and the School of Mathematics and Natural Sciences
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved by:

Dr. James Lambers, Committee Chair
Dr. Haiyan Tian

Dr. Zhifu Xie
Dr. Huiqing Zhu

Dr. James Lambers Dr. Bernd Schroeder Dr. Karen S. Coats
Committee Chair Director of School Dean of the Graduate School

May 2019



COPYRIGHT BY

HALEY RENEE DOZIER

2019



ABSTRACT

Depending on the type of equation, finding the solution of a time-dependent partial
differential equation can be quite challenging. Although modern time-stepping methods for
solving these equations have become more accurate for a small number of grid points, in a lot
of cases the scalability of those methods leaves much to be desired. That is, unless the time-
step is chosen to be sufficiently small, the computed solutions might exhibit unreasonable
behavior with large input sizes. Therefore, to improve accuracy as the number of grid points
increases, the time-steps must be chosen to be even smaller to reach a reasonable solution.

Krylov subspace spectral (KSS) methods are componentwise, scalable, methods used
to solve time-dependent, variable coefficient partial differential equations. The main idea
behind KSS methods is to use an interpolating polynomial with frequency dependent
interpolation points to approximate a solution operator for each Fourier coefficient.

This dissertation will discuss two techniques that were developed to eliminate error in
the low frequency components of the solution computed using KSS methods. These two
methods are a multigrid inspired technique (coarse grid residual correction) and developing
a step size controller using the residual as an error approximation (adaptive time stepping).

ii



ACKNOWLEDGMENTS

First and foremost I would like to thank my adviser Dr. James V. Lambers for his patience,
guidance, and support throughout my years at the University of Southern Mississippi. As
my teacher and mentor, Dr. Lambers has taught me more than I could ever give him credit
for here. He has shown me, by his example, what a good person and mathematician should
be.

I am additionally grateful to all of those whom I have had the pleasure of working with
at USM. Each member of my dissertation committee (Dr. Lambers, Dr. Tian, Dr. Xie,
and Dr. Zhu) has provided me with incredible insight and has led to my dissertation being
a stronger academic work. Additionally I would like to thank my coworkers and friends
Brianna Bingham, Corwin Stanford and Dr. Amber Sumner for being a constant support
system throughout my academic career.

Lastly, I would like to thank the members of my family. I am so thankful to have the
full support of my parents Jerry and Tami Dozier, my grandmother Frances Dozier, and
my sister Francie Sutherland. This dissertation would not have been possible without their
unconditional love, patience and support.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xii

NOTATION AND GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Numerical Methods for Solving Time Dependent Partial Differential Equations 5
1.2 Krylov Subspace Spectral Methods 8
1.3 Enhancement of Krylov Subspace Spectral Methods 9
1.4 Modified Adaptive Time-stepping 10
1.5 Outline 10

2 Krylov Subspace Spectral Methods . . . . . . . . . . . . . . . . . . . . . 12

3 Coarse Grid Residual Correction . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Multigrid Algorithm 18

4 Adaptive Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Derivation of an Adaptive Time Stepping Method 23

5 Enhancement of Krylov Subspace Spectral Methods Through the Use of the
Residual as an Error Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 Frequency Analysis 25
5.2 Convergence 30
5.3 Coarse Grid Residual Correction - A Multigrid Inspired Technique 30

6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1 Krylov Subspace Spectral Methods with Coarse Grid Residual Correction Case
1: 2-D Linear Parabolic Problems 39
6.2 Krylov Subspace Spectral Methods with Coarse Grid Residual Correction Case
2: 2-D Hyperbolic Problems 44

iv



6.3 Krylov Subspace Spectral Methods with Adaptive Time Stepping Case 1: 2-D
Linear Parabolic Problems 47
6.4 Adaptive Time Stepping Case 1: Comparison of Residuals 55
6.5 Adaptive Time Stepping Case 1: Performance 62
6.6 Adaptive Time Stepping Case 1: Inclusion of a Minimum Step Size 66
6.7 Adaptive Time Stepping Case 1: Without the High and Low Frequency Split 68
6.8 Krylov Subspace Spectral Methods with Adaptive Time Stepping Case 2: 2-D
Linear Systems of Equations 80
6.9 Adaptive Time Stepping Case 2: Comparison of Residuals 88
6.10 Adaptive Time Stepping Case 2: Performance 93
6.11 Adaptive Time Stepping Case 2: Inclusion of a Minimum Step Size 96

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

v



LIST OF ILLUSTRATIONS

Figure

5.1 Entries of M1 matrices obtained from Block Lanczos . . . . . . . . . . . . . . 28
5.2 Entries of M2 matrices obtained from Block Lanczos . . . . . . . . . . . . . . 29
5.3 This figure shows the fine grid residual in red and the coarse grid residual in

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Relative Error (logarithmically scaled) for varying starting time step sizes
(4t = 0.02,0.01,0.005,0.0025,0.00125) for the parabolic problem. . . . . . . 42

6.2 Relative error versus execution time in seconds (logarithmically scaled) for
varying starting time step sizes (4t = 0.02,0.01,0.005,0.0025,0.00125) for
the parabolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Relative Error (logarithmically scaled) for varying starting time step sizes for
the hyperbolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Relative error versus execution time in seconds (logarithmically scaled) for
varying starting time step sizes for the hyperbolic problem. . . . . . . . . . . . 46

6.5 The solution of the linearized Allen Cahn equation at the times t = 0.01, 0.03,
0.05, 0.07, 0.11, 0.13, 0.17, .2, with N = 50 points per dimension. . . . . . . 48

6.6 Time step size (4t) for each time step for using KSS with adaptive time stepping
with N = 50 points per dimension on the linearized Allen Cahn equation. From
first figure (top left) to last (bottom right) the starting time steps are 4t =
0.04,0.02,0.01,0.005,0.0025 seconds. . . . . . . . . . . . . . . . . . . . . . 49

6.7 Time step size (4t) for each time step for using KSS without adaptive time
stepping with N = 50 points per dimension on the linearized Allen Cahn equa-
tion. From first figure (top left) to last (bottom right) the time step sizes are
4t = 0.04,0.02,0.01,0.005,0.0025 seconds. . . . . . . . . . . . . . . . . . . 50

6.8 Time step size (4t) for each time step for using KSS with adaptive time stepping
with N = 150 points per dimension on the linearized Allen Cahn equation.
From first figure (top left) to last (bottom right) the starting time steps are
4t = 0.04,0.02,0.01,0.005,0.0025 seconds. . . . . . . . . . . . . . . . . . . 51

6.9 Time step size (4t) for each time step for using KSS without adaptive time
stepping with N = 150 points per dimension on the linearized Allen Cahn
equation. From first figure (top left) to last (bottom right) the time step sizes are
4t = 0.04,0.02,0.01,0.005,0.0025 seconds. . . . . . . . . . . . . . . . . . . 52

6.10 A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The
points per dimension in these experiments were N = 50. The starting time step
for both is4t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



6.11 A comparison of the final time after each time step for KSS with adaptive
time stepping on the left and KSS without adaptive time stepping on the right.
The starting time step for both is4t = 0.01 and there are N = 150 points per
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.12 The residual from using KSS on the high frequency components at each
time step when adaptive time stepping was used. Here N = 50 and t =
0.01, 0.032196, 0.057856, 0.075929, 0.11258, 0.1363, 0.17295, 0.2. . . . . 57

6.13 The computed residual from Kylov Projection on the the low frequency com-
ponents at each time step when adaptive time stepping was used. Here N = 50
and t = 0.01, 0.032196, 0.057856, 0.075929, 0.11258, 0.1363, 0.17295, 0.2. 58

6.14 A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next
figure is for 1/4 of initial starting step size, and the last figure is for 1/16 of the
initial starting step size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.15 A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next
figure is for 1/4 of initial starting step size, and the last figure is for 1/16 of the
initial starting step size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.16 Relative Error (logarithmically scaled for varying starting time step sizes for
the linearized Allen Cahn equation.) . . . . . . . . . . . . . . . . . . . . . . . 62

6.17 Relative Error versus execution time (logarithmically scaled) for varying starting
time step sizes for the linearized Allen Cahn equation.) . . . . . . . . . . . . . 63

6.18 Relative Error (logarithmically scaled) for varying starting time step sizes for
the linearized Allen Cahn equation. . . . . . . . . . . . . . . . . . . . . . . . . 66

6.19 Execution time (logarithmically scaled) for varying starting time step sizes for
the linearized Allen Cahn equation. . . . . . . . . . . . . . . . . . . . . . . . . 67

6.20 Relative error vs execution time (logarithmically scaled) for varying starting
time step sizes for the linearized Allen Cahn equation. . . . . . . . . . . . . . . 68

6.21 A logarithmically scaled (log10) comparison of execution time and relative error
between KSS-ATS, KSS, KP, and LEJA. . . . . . . . . . . . . . . . . . . . . 69

6.22 A logarithmically scaled (log10) comparison of starting time step size and
relative error between KSS-ATS, KSS, KP, and LEJA. . . . . . . . . . . . . . 70

6.23 A logarithmically scaled (log10) comparison between execution time and rela-
tive error for KSS-ATS and KSS with and without the frequency split. . . . . . 71

6.24 A logarithmically scaled (log10) comparison between starting time step size and
relative error for KSS-ATS and KSS with and without the frequency split. . . . 72

6.25 Time step size (4t) for each time step for using KSS using adaptive time
stepping without splitting the high and low frequency components (KSS-ATS2).
N = 25 points per dimension. From first figure (top left) to last (bottom right)
the starting time step sizes are4t = 0.04,0.02,0.01,0.005,0.0025 seconds. . . 73

vii



6.26 Time step size (4t) for each time step for using KSS using adaptive time
stepping without splitting the high and low frequency componenets. N = 50
points per dimension.From first figure (top left) to last (bottom right) the starting
time step sizes are4t = 0.04,0.02,0.01,0.005,0.0025 seconds. . . . . . . . . 74

6.27 Time step size (4t) for each time step for using KSS using adaptive time
stepping without splitting the high and low frequency componenets. N = 150
points per dimension.From first figure (top left) to last (bottom right) the starting
time step sizes are4t = 0.04,0.02,0.01,0.005,0.0025 seconds. . . . . . . . . 75

6.28 A logarithmically scaled (log10) comparison of starting time step size and
relative error between ATS including a minimum step size, ATS2 including a
minimum step size, ATS, KSS2, and ATS2 . . . . . . . . . . . . . . . . . . . 78

6.29 A logarithmically scaled (log10) comparison of execution time and relative error
between ATS including a minimum step size, ATS2 including a minimum step
size, ATS, KSS2, and ATS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.30 The first component of the solution to the Brusselator system of equations with
N = 50 points per dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.31 The second component of the solution to the Brusselator system of equations
with N = 50 points per dimension. . . . . . . . . . . . . . . . . . . . . . . . . 81

6.32 A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The
starting time step for both is 4t = 0.0025 and there are N = 50 points per
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.33 Time step size (4t) for each time step for using KSS with adaptive time stepping
with N = 50 points per dimension on the linearized Brusselator system of
equations. From first figure (top left) to last (bottom right) the starting time
steps are4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds. . . . . . . . . 83

6.34 Time step size (4t) for each time step for using KSS without adaptive time
stepping with N = 50 points per dimension on the linearized Brusselator system
of equations. From first figure (top left) to last (bottom right) the time step sizes
are4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds. . . . . . . . . . . . . 84

6.35 Time step size (4t) for each time step for using KSS with adaptive time stepping
with N = 150 points per dimension on the linearized Brusselator system of
equations. From first figure (top left) to last (bottom right) the starting time
steps are4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds. . . . . . . . . . 85

6.36 Time step size (4t) for each time step for using KSS without adaptive time
stepping with N = 150 points per dimension on the linearized Brusselator
system of equations. From first figure (top left) to last (bottom right) the time
step sizes are4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds. . . . . . . 86

6.37 A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The
starting time step for both is 4t = 0.0025 and there are N = 150 points per
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



6.38 A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next
figure is for 1/4 of initial starting step size, and the last figure is for 1/16 of the
initial starting step size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.39 A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next
figure is for 1/4 of initial starting step size, and the last figure is for 1/16 of the
initial starting step size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.40 Relative error (logarithmically scaled) for varying starting time step sizes for
the Linearized Brusselator Equation with N=25, N=50, then N=150 points per
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.41 Relative error (logarithmically scaled) and the execution time for the Linearized
Brusselator Equation with N=25, N=50, then N=150 points per dimension. . . . 95

6.42 Comparison of the relative error of KSS (logarithmically scaled with and without
adaptive time stepping with and without the minimum step size with respect
to each starting time step size. hmin = 0.01 has a minimum step size of .01,
hmin = 0.02 has a minimum step size of .02 and hmin = 0.005 has a minimum
step size of .005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.43 Comparison of the execution times of KSS with and without adaptive time
stepping with and without the minimum step size with respect to each starting
time step size. hmin = 0.01 has a minimum step size of .01, hmin = 0.02 has a
minimum step size of .02 and hmin = 0.005 has a minimum step size of .005. . 97

6.44 Comparison of the execution times versus the relative error of KSS with and
without adaptive time stepping with and without the minimum step size with
respect to each starting time step size. hmin = 0.01 has a minimum step size
of .01, hmin = 0.02 has a minimum step size of .02 and hmin = 0.005 has a
minimum step size of .005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



LIST OF TABLES

Table

6.1 Relative error calculated for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125
for the parabolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Execution times calculated for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125
for the parabolic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Number of iterations for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125 for
the parabolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Relative error calculated for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125
for the hyperbolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 Execution time in seconds for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125
for the hyperbolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.6 Number of iterations for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125 for
the hyperbolic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.7 A comparison of the final time step count for Krylov subspace spectral methods
with and without adaptive time stepping (KSS-ATS and KSS respectively). . . . 54

6.8 Estimates of local error for the linearized Allen Cahn equation with N = 50
points per dimension computed using the adaptive time stepping algorithm. The
starting time step size estimate used was4t = 0.04 seconds. . . . . . . . . . . 56

6.9 Estimates of local error for the linearized Allen Cahn equation with N = 50
points per dimension computed without the use of adaptive time stepping. . . . 56

6.10 Estimates of local error for the linearized Allen Cahn equation with N = 150
points per dimension computed using the adaptive time stepping algorithm. The
starting timestep size estimate used was4t = 0.04 seconds. . . . . . . . . . . 59

6.11 Estimates of local error for the linearized Allen Cahn equation with N = 150
points per dimension computed without the use of adaptive time stepping. . . . 59

6.12 Relative Error for the linearized Allen Cahn equation for starting time step sizes
4t = 0.04, 0.02, 0.01, 0.005, 0.0024 seconds. . . . . . . . . . . . . . . . . . . 64

6.13 Execution time for linearized Allen Cahn Equation for starting time step sizes
4t = 0.04, 0.02, 0.01, 0.005, 0.0024 seconds. . . . . . . . . . . . . . . . . . . 64

6.14 Average number of iterations for the linearized Allen Cahn Equation for starting
time step sizes4t = 0.04, 0.02, 0.01, 0.005, 0.0024 seconds. . . . . . . . . . . 65

6.15 Relative Error for KSS with and without adaptive time stepping without the
high/low frequency split for starting time step sizes4t = 0.04, 0.02, 0.01, 0.005,
0.0024 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.16 Number of Iterations for KSS with and without adaptive time stepping without
the high/low frequency split for starting time step sizes4t = 0.04, 0.02, 0.01,
0.005, 0.0024 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



6.17 Execution time per time step size for KSS with and without adaptive time
stepping without the high/low frequency split for starting time step sizes4t =
0.04, 0.02, 0.01, 0.005, 0.0024 seconds. . . . . . . . . . . . . . . . . . . . . . 77

6.18 Total number of time steps taken for the grid sizes N = 50 and N = 150 for both
the linearized Allen Cahn problem and the linearized Brusselator problem . . . 82

6.19 Estimates of local error for the linearized Brusselator system of equations
with N = 50 points per dimension computed using the adaptive time stepping
algorithm. The starting timestep size estimate used was4t = 0.01 seconds. . . 89

6.20 Estimates of local error for the linearized Brusselator system of equations with
N = 50 points per dimension computed without using the adaptive time stepping
algorithm. The starting time step size used was4t = 0.01 seconds. . . . . . . . 90

6.21 Estimates of local error for the linearized Brusselator system of equations
with N = 150 points per dimension computed using the adaptive time stepping
algorithm. The starting timestep size estimate used was4t = 0.01 seconds. . . 91

6.22 Estimates of local error for the linearized Brusselator system of equations
with N = 150 points per dimension computed without using the adaptive time
stepping algorithm. The starting timestep size estimate used was 4t = 0.01
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.23 Relative error for linearized Brusselator equation for starting time step size
4t = 0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625 . . . . . . . . . . . . . . . 93

6.24 Times for linearized Brusselator equation for starting time step sizes4t = 0.02,
0.01, 0.005, 0.0025, 0.00125, 0.000625. . . . . . . . . . . . . . . . . . . . . . 94

6.25 Number of iterations for linearized Brusselator equation for starting time step
sizes4t = 0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625. . . . . . . . . . . . . 95

xi



LIST OF ABBREVIATIONS

ATS - Adaptive Time Stepping
CGRC - Coarse Grid Residual Correction

EPI - Exponential Propagation Iterative
FFT - Fast Fourier Transform

IFFT - Inverse Fast Fourier Transform
KP - Krylov Projection

KSS - Krylov Subspace Spectral
ODE - Ordinary Differential Equation
PDE - Partial Differential Equation

xii



NOTATION AND GLOSSARY

General Usage and Terminology

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field. Bold font lower case letters or letters with an arrow above
them are used to indicate vectors, i.e. ~v or v. Functions are denoted by the letter f or greek
letters. Norms are denoted using double pairs of lines, i.e. || · ||. The symbols || · ||∞, || · ||2,
|| · ||F are the infinity-norm, the 2-norm, and the Frobenius-norm respectively.

xiii



Chapter 1

Background

Partial differential equations, or PDEs, are equations that contain unknown multivariate
functions as well as their partial derivatives. A few well known partial differential equations
are:

ut = uxx 1-D Heat Equation
ut = uxx +uyy 2-D Heat Equation
utt = uxx +uyy +uzz 3-D Wave Equation
urr +

1
r ur +

1
r2 uθθ = 0 Laplace’s Equation in Polar Coordinates

with the notation ut =
∂u
∂ t , utt =

∂ 2u
∂ t2 , etc. [6]

There are many different ways to classify the types of partial differential equations.
This is important because the way we solve these equations is often based on how a partial
differential equation is classified. Some of the basic classifications as described in [6] are

1. Order. The order of any partial differential equation is based on the highest partial
derivative in that equation. For example, all of the well-known partial differential
equations listed above are second order because the highest partial derivative in those
equations is the second partial derivative (i.e. uxx, utt ,...).

2. Number of Variables. A PDE can be classified by the number of independent variables
in the equation. For example, the 1-D heat equation listed above has two independent
variables (x and t) while the 2-D heat equation has 3 independent variables (x, y, and
t).

3. Linearity. Linear partial differential equations have dependent variables (and the
dependent variable’s partial derivatives) that occur linearly (e.g. they do not have a
power greater than 1 and aren’t multiplied together). If the partial differential equation
is not linear, then it is classified as non-linear.

4. Homogeneity. The general form for a linear, second-order partial differential equation
is

Auxx +Buxy +Cuyy +Dux +Euy +Fu = G(x,y) (1.1)

1



where A through G can be either constants or functions. The equation (1.1) is homo-
geneous if G(x,y) = 0. If G(x,y) 6= 0, then the equation is called non-homogeneous.

5. Parabolic, Hyperbolic, and Elliptic. There are 3 main classification of linear partial
differential equations. We will use equation (1.1) to classify these types of equation.

(a) Parabolic equations satisfy the property B2−4AC = 0. An example of a parabolic
partial differential equation is the 1-D heat equation: ut = uxx.

(b) Hyperbolic equations satisfy the property B2− 4AC > 0. An example of a
hyperbolic partial differential equation is the 1-D wave equation: utt = uxx.

(c) Elliptic equations satisfy the property B2−4AC < 0. An example of a elliptic
partial differential equation is Laplace’s equation: uxx +uyy = 0.

6. Type of Coefficient There are two types of coefficients that a partial differential
equation can have: constant or variable. For example if all of the coefficients A, B,
C, D, E, or F in equation (1.1) are constant, then the partial differential equation is a
constant coefficient equation. Otherwise the partial differential equation is classified
as a variable coefficient equation.

7. Time Dependence. Time dependent partial differential equations involve the par-
tial derivatives of the dependent variable with respect to time. Otherwise a partial
differential equation is called time independent.

A partial differential equation can have multiple classifications. For example, the
equation

utt = c2uxx + s(x, t) (1.2)

with appropriate boundary and initial conditions can be classified as a linear, constant
coefficient, time-dependent, non-homogeneous, hyperbolic PDE. In this dissertation, time
dependent variable coefficient partial differential equations will be discussed.

There are a multitude of phenomena in the world that are modeled by time dependent
PDEs such as sound, heat, fluid flow, and electrodynamics among many others. For example,
consider the 1-D parabolic PDE

ut = α
2uxx, 0 < x < 1, 0 < t < ∞ (1.3)

with boundary conditions

u(0, t) = 0 (1.4)

u(1, t) = 0 (1.5)

2



and initial condition
u(x,0) = φ(x). (1.6)

This PDE can be used to describe diffusion of heat through an iron rod.

To solve this type of PDE analytically typically the method of Separation of Variables is
used. This method has the following algorithm:

• Step 1: Find all solutions of equation (1.3) of the form u(x, t) = X(x)T (t), where X(x)

and T (t) are functions that rely solely on x and t respectively, and then substituting
X(x)T (t) into the original equation. Then a general solution form can be found after
solving for X(x) and T (t). For example, using the problem stated above where α = 1
for simplicity:

ut = uxx (1.7)

X(x)T ′(t) = X ′′(x)T (t) (1.8)
T ′(t)
T (t)

=
X ′′(x)
X(x)

. (1.9)

Equation (1.9) implies that both T ′(t)
T (t) and X ′′(x)

X(x) must be equal to a fixed constant k

since x and t are independent of each other (the left side of the equation depends on t

and the right depends on x). If we write

T ′(t)
T (t)

=
X ′′(x)
X(x)

= k (1.10)

then this implies that

T ′(t)− kT (t) = 0 (1.11)

X ′′(x)− kX(x) = 0 (1.12)

and if we let k =−λ 2 the general solutions to these two ordinary differential equations
are

T (t) = Ae−λ 2t (1.13)

X(x) = Asin(λx)+Bcos(λx) (1.14)

where A and B are arbitrary constants. Therefore a solution of of the PDE ut = uxx is
any function of the form

u(x, t) = X(x)T (t) (1.15)

= (e−λ 2t)(Asin(λx)+Bcos(λx)) (1.16)

3



• Step 2: Since equation (1.16) describes general solutions to the PDE (1.3), the next
step is to find a subset of solutions that satisfy the boundary conditions (in the example
problem the boundary conditions are u(0, t) = 0 and u(1, t) = 0). [6]
To find the subset of solutions that satisfy the boundary conditions, first the solutions
must be substituted into the boundary conditions

u(0, t) = (e−λ 2t)(Asin(0)+Bcos(0)) = 0 (1.17)

= Be−λ 2t = 0 (1.18)

which implies that B = 0, and

u(1, t) = (e−λ 2t)(Asin(λ )+Bcos(λ )) = 0 (1.19)

= (e−λ 2t)(Asin(λ )) = 0 (1.20)

which implies sin(λ ) = 0 (if A = 0 there would be a zero solution). Therefore the
subset of solutions to the PDE (1.3)that satisfy the boundary conditions is

un(x, t) = Ane−λ 2
n t sin(λnx) (1.21)

where λn is the solutions to sin(λ ) = 0 (i.e. λn =±nπ for n = 1,2,3, ...). It should
be noted that the solution can also be written as the sum

u(x, t) =
∞

∑
n=1

Ane−λ 2
n t sin(λnx). (1.22)

• Step 3: The last step in this method of solving PDEs is to ensure that the solution
found in step 2 also satisfies the initial condition of the PDE. For example, this can
done by substituting the sum in equation (1.22) into the initial condition u(x,0) = φ(x)

as follows

u(x,0) = φ(x) =
∞

∑
n=1

Ane0 sin(λnx) (1.23)

= φ(x) =
∞

∑
n=1

An sin(λnx). (1.24)

By expanding the sum and substituting nπ for λ , it can be shown that

φ(x) = A1 sin(πx)+A2 sin(2πx)+A3 sin(3πx)+ ... (1.25)

Then multiplying each side of the equation by sin(mπx) (m being an arbitrary integer),
integrating from 0 to 1, then solving for Am, returns the formula

Am = 2
∫ 1

0
φ(x)sin(mπx)dx. (1.26)

4



This implies that the solution of the PDE given in (1.3) with the given initial and
boundary conditions is

u(x, t) =
∞

∑
n=1

Ane−λ 2
n t sin(λnx) (1.27)

where the coefficients are of the same form as equation (1.26).

In practice, the exact solution in not always so easy, or so fast, to find. For example,
consider a PDE of the form

ut = (p(x)ux)x (1.28)

where p(x) is a function. If we use the separation of variables technique here the problem
becomes much more complex. If we substitute X(x)T (t) into the equation for u then we can
obtain

X(x)T ′(t) = (p(x)X ′(x)T (t))x (1.29)

and then use the product rule to get

X(x)T ′(t) = p′(x)X ′(x)T (t)+ p(x)X ′′(x)T (t). (1.30)

To separate the variables we can divide both sides by X(x)T (t) to get

T ′(t)
T (t)

=
p′(x)X ′(x)+ p(x)X ′′(x)

X(x)
= k (1.31)

where k is an arbitrary constant and we will set k to equal λ 2. From (1.31) we can create the
two ODEs

T ′(t)+λ
2T (t) = 0 (1.32)

p′(x)X ′(x)+ p(x)X ′′(x)+λ
2X(x) = 0. (1.33)

Equation (1.32) is a standard type ODE and so has a solution of T (t) = Ae−λ 2t but equation
(1.33) does not have an obvious solution. The solution to this dilemma is to use a numerical
method to approximate the solution of the equation.

1.1 Numerical Methods for Solving Time Dependent Partial Differential Equations

Consider a time-dependent, variable coefficient PDE, such as

ut +Lu = 0, 0 < x < 2π, t > 0 (1.34)

u(x,0) = f (x), 0 < x < 2π, (1.35)

5



where L is a second order, self-adjoint, positive definite differential operator, such as a
Sturm-Liouville differential operator. This type of problem often poses difficulties for both
implicit and explicit time-stepping methods due to the lack of scalability of these methods
caused by stiffness. That is, unless the chosen time-step is sufficiently small, the computed
solutions might exhibit nonphysical behavior with large input sizes [8].

Although there are many numerical methods used to solve time-dependent PDEs, this
section will focus on finite difference methods and a subclass of numerical methods called
spectral methods. These two methods will be focused on because finite difference is one
of the most well-known numerical methods used and the method that will be discussed in
future chapters is a type of spectral method.

1.1.1 Finite Difference Methods

Given a time-dependent initial value problem, the main idea behind explicit finite difference
methods is that a PDE can be replaced by its finite difference approximation and then can be
solved for the solution at a specific time using the solution at previous times. This process of
using the solution of an equation at a previous time to determine the solution of an equation
at a later time is often referred to as "time-stepping" or "time-marching". Finite difference
methods (both explicit and implicit) are very popular methods because they tend to be easy
to implement with high accuracy.

Consider a PDE similar to the one in equation (1.34) with periodic boundary conditions
where L is the second-order differential operator− d2

dx2 . If a uniform grid is defined on [0,2π]

with N grid points of equal spacing then the grid-points are located at x j = jh where h = 2π

N .
If we represent u(x) as a vector~u with N components, then we can approximate the action
of L on u(x j) using the stencil

Lu≈−
u(x j+1)−2u(x j)+u(x j−1)

4x2 . (1.36)

If a Crank-Nicholson method is used as the type stepping method to obtain the value of~u at
the next time step (t +4t), then the system that needs to be solved can be represented by(

I +
4t
2

A
)
~u(t +4t) =

(
I−4t

2
A
)
~u(t) (1.37)

where

A =
−1
h2



−2 1 0 · · · · · · 0 1
1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · · · ·

. . . . . . . . .
0 0 · · · · · · 1 −2 1
1 0 · · · · · · 0 1 −2


(1.38)

6



and4t is the length of the time-step [11].
Although this system has to be solved at each time step, the finite difference method

is still computationally efficient for this problem because of the structure of the matrix A.
However, with large grid sizes N, the finite difference method can be very expensive due to
the large amount of time steps needed for the finite difference method to be accurate.

1.1.2 Spectral Methods

The main idea behind most spectral methods for time-dependent PDEs is that a solution
of a PDE can be represented as a sum of basis functions (often Fourier basis functions)
with time-dependent coefficients and can be substituted into the original equation to yield a
system of ordinary differential equations that can be relatively easy to solve. Unlike finite
difference methods that require a large number of computations (large number of time steps)
for an accurate solution of a problem with significant spatial or temporal variation, spectral
methods allow for less computational expense. If the exact solution is smooth, spectral
methods can still be highly accurate with large time steps. If the exact solution is not smooth,
or there are variable-coefficients, using large time steps becomes more difficult.

There are two types of approaches to Fourier spectral methods; Galerkin methods and
collocation methods. In Galerkin spectral methods the residual is orthogonal to the space
in which the approximation to the solution is in. If the approximate solution ũ(x, t) to the
simple PDE

ut(x, t) = ux(x, t) (1.39)

is defined by

ũ(x, t) =
N

∑
ω=−N

û(ω, t)eiωx (1.40)

where −N
2 +1≤ ω ≤ N

2 if N is even and −N−1
2 ≤ ω ≤ N−1

2 if N is odd and the residual R

is defined by
R = ũt(x, t)− ũx(x, t) (1.41)

then in the Galerkin approach it is required that∫
π

−π

Re−iωxdx =
∫

π

−π

(ũt(x, t)− ũx(x, t))e−iωxdx = 0 (1.42)

for all−N ≤ω ≤N. This approach is very effective when solving a linear PDE, but becomes
much more complex and difficult to solve when the PDE is very nonlinear [6].

Collocation spectral methods are a little more complex than Galerkin methods but can
still be effective to solve highly nonlinear PDEs. In the collocation approach to solving

7



PDEs, the residual is required to vanish at a set of points rather than be orthogonal to the
space that the approximate solution is in. Consider the 1-D wave equation

utt(x, t) = uxx(x, t) (1.43)

where the approximate solution has a similar form to (1.40). The residual R can be defined
as

R = utt(x, t)−uxx(x, t) (1.44)

and for collocation methods, we require the residual to satisfy the condition

utt(x j, t)−uxx(x j, t) = 0 (1.45)

for some set of points x j where −N ≤ j ≤ N.
A Fourier spectral method for solving the time-dependent PDE in (1.34) proceeds as

follows. Assuming the solution u(x, t) is sufficiently smooth (the solution and its derivative
is piecewise continuous), an approximation to the solution ũ(x, t) can be written as the
Fourier series

ũ(x, t) =
1√
2π

∞

∑
ω=−∞

eiωxû(ω, t) (1.46)

where ω is the wave number for each Fourier component and û(ω, t) are the Fourier
coefficients. The approximation to the solution can then be substituted into equation (1.34)
to obtain

∞

∑
ω=−∞

1√
2π

ût(ω, t)eiωx +L
1√
2π

eiωxû(ω, t) = 0. (1.47)

Let λω be the eigenvalues of the operator L. Due to the orthogonality of the functions
eiωx, the decoupled system of ordinary differential equations

ût(ω, t)−λω û(ω, t) = 0 (1.48)

can be obtained. Equation (1.48) can then be solved using any numerical ordinary differential
equation solver [6].

1.2 Krylov Subspace Spectral Methods

Krylov subspace spectral (KSS) methods were developed by James Lambers in 2003 for
his doctoral dissertation [11]. KSS methods were created to solve time-dependent, variable-
coefficient problems in an efficient and effective manner. Like some other spectral methods,
the solution of a stiff PDE is found by spatially discretization the PDE and then solving

8



the system of ODEs that arises from the spatial discretization. This process involves the
computation of matrix function vector products that are of the form

~w = φ(At)~b (1.49)

where t is dependent on the time step,~b is a vector, φ is a smooth function and A is an
ill-conditioned matrix.

The main idea behind Krylov subspace spectral methods is to use an interpolating
polynomial with frequency-dependent interpolation points to approximate a solution operator
(φ ) for each Fourier coefficient. As a result, Krylov subspace spectral methods exhibit a
high order of accuracy and stability, and in some cases Krylov subspace spectral methods
have been recently proven to be unconditionally stable [1, 12]. A detailed description of
Krylov subspace spectral methods can be found in Chapter 2.

1.3 Enhancement of Krylov Subspace Spectral Methods

Due to the increase of computing power of computers as well as the availability of data,
scientists and engineers have been able to develop increasingly accurate mathematical
models to describe much of the phenomena found in the natural world. Because of the
progressively more complex mathematical problems, more and more sophisticated numerical
methods are needed to accurately and efficiently solve these problems.

This dissertation will predominantly focus on the optimization of Krylov subspace
spectral methods so that it can be implemented to solve today’s numerical problems. This
dissertation will provide two approaches to optimizing the results obtained from using
Krylov subspace spectral methods through the use of the residual as an error estimation
instead of using traditional error estimation techniques. These approaches will be described
in detail in Chapter 5, but an overview can be found below.

1.3.1 Coarse Grid Residual Correction

Until recently, one of the downfalls of using Krylov subspace spectral methods was that
the Lanczos algorithm had to be performed on each component. This dilemma resulted
in a high computational cost until the work done by A. Cibotarica et al. [1] where it was
shown that although all nodes needed for Gaussian quadrature were dependent on frequency,
half depend primarily on the solution. This led to an asymptotic analysis of Lanczos on
the frequency dependent nodes by using the coefficients of a differential operator which
was shown to be beneficial to the high frequency components of the solution but not to the
lower frequency components. This dilemma raised the question, what technique can be

9



implemented to eliminate error in the low frequency components of the approximate solution.
This dissertation proposes that implementing a multigrid inspired technique, specifically
coarse grid residual correction, can eliminate low frequency error in a cost effective way.

Although multigrid methods are generally used to solve linear systems that arise from the
spatial discretization of elliptic PDEs which are time-independent, we propose a technique
that is inspired by the multigrid algorithm and is generalized to a time dependent case.

1.4 Modified Adaptive Time-stepping

Many time-stepping methods use equally spaced time-steps to compute the solution of an
equation. In some cases, this approach is ineffective. For example:

• when the solution is highly oscillatory and the chosen time step is too large to suffi-
ciently resolve the solution,

• when the chosen time-step is too small for a relatively smooth solution resulting in
computational effort being wasted.

This dilemma raises the question: how can an appropriate time step size (4t) be chosen for
a problem?

Adaptive time-stepping techniques are used frequently in numerical methods to ensure
stability as well as decrease the computational expense of certain methods [16]. These
adaptive methods usually use estimates of the local truncation error to determine whether a
certain step size (4t) should be modified. With many numerical methods, adaptive time
stepping can be implemented simply by using the local truncation error of the method at a
time step then adjusting the time step based on a scaling factor that is calculated from how
large (or how small) the error is. For Krylov subspace spectral methods the approximate
local truncation error is very difficult to approximate which means that the scaling factor for
adaptive time stepping cannot be found. This dissertation will explore the effectiveness of
using the residual as an error estimate for adaptive time stepping.

1.5 Outline

The outline of this dissertation is as follows: Chapters 2, 3, and 4 will present overviews
of Krylov Subspace Spectral methods, coarse grid residual correction, and adaptive time-
stepping, respectively. Chapter 5 will discuss residual correction techniques using coarse

10



grid residual correction and adaptive time-stepping. Numerical results will be examined in
Chapter 6 and conclusions are presented in Chapter 7.

11



Chapter 2

Krylov Subspace Spectral Methods

We start by examining the initial value problem

∂u
∂ t (x, t)+L(x,D)u(x, t) = 0, 0 < x < 2π, t > 0 (2.1)

u(x,0) = f (x) (2.2)

with periodic boundary conditions u(0, t) = u(2π, t). Here, the operator L(x,D) is the
Sturm-Liouville differential operator defined by

Lu =−(p(x)ux)x +q(x)u, (2.3)

where p(x) and q(x) are both functions of x. For simplicity u(x, t) will be written as u,
L(x,D) will be written as L, and p(x) as well as q(x) will be written as p and q respectively.

A common way to solve this type of partial differential equation is to first approximate
the solution with its Fourier series, i.e.

u(x, t) =
1√
2π

∞

∑
ω=−∞

eiωxû(ω, t) (2.4)

where ω is the wave number for each Fourier component and û(ω, t) is the Fourier coefficient
of each component. Using the standard inner product,

〈 f , g〉=
∫ 2π

0
f (x)g(x)dx, (2.5)

we can represent the Fourier coefficients, û(x, t), of the solution on (0,2π) by

û(ω, tn+1) =

〈
1√
2π

eiωx,e−L4tu(x, tn)
〉
, (2.6)

where e−L4t is the exact solution operator.
As stated in the previous chapter, the fundamental idea behind Krylov subspace spectral

methods is to independently approximate all Fourier coefficients of the solution using an
approximation of the exact solution operator that is tailored to each Fourier coefficient.
Therefore, to approximate the exact solution operator, first (2.6) is spatially discretized to
obtain

û(ω, tn+1) =

(
1√
2π

eiω~x
)H (

e−LN4t~u(tn)
)

(2.7)

12



where LN is a N×N symmetric positive definite matrix obtained from spatial discretization
of L, and~x is a vector of equally spaced points in [0,2π).

Since L is a second order, self-adjoint, symmetric positive definite operator, we know
from [7] that LN can be written as

LN = QΛQT , (2.8)

where Q is an orthonormal matrix with columns that are the normalized eigenvectors of LN

and Λ are the eigenvalues (a = λ1 ≤ λ2 ≤ ·· · ≤ λn = b). This implies that given a smooth
function φ ,

φ(LN) = Qφ(Λ)QT . (2.9)

It follows that

~uH
φ(LN)~v = ~uHQφ(Λ)QT~v (2.10)

= ~uH~q jφ(Λ)~qH
j ~v (2.11)

=
n

∑
j=1

φ(λi)~uH~q j~qH
j ~v (2.12)

where~q j are the orthonormal eigenvectors of LN [7, 1].
In their work Matrices, Moments, and Quadrature, Golub and Meurant showed that this

type of bilinear form can be represented as a Riemann-Stieltjes integral

~uH
φ(LN)~v =

∫ b

a
φ(λ ) dα(λ ) (2.13)

where α(λ ) is defined by

α(λ ) =


0 if λ < a
∑

i
j=1~u

H~q j~qH
j ~v if λi ≤ λ ≤ λi−1

∑
N
j=1~u

H~q j~qH
j ~v if b≤ λ .

(2.14)

Although there are many ways to approximate the integral in equation (2.13), here
Gaussian quadrature is used because the weights are guaranteed to be positive if the measure
α(λ ) is positive and increasing and it has a high degree of accuracy. In fact, an n-point
quadrature rule can be constructed to obtain an exact result for polynomials of up to degree
2n−1 with an appropriate choice of nodes and weights for the quadrature rule.

Case 1: ~u =~v

As shown in [11], the nodes and weights for Gaussian quadrature can be found using the
Lanczos algorithm applied to LN with initial vectors~u and~v. The Lanczos algorithm is as
follows:

13



~r0 =~u

~x0 = 0
for j = 1,2, ...,n do

β j−1 =
∥∥~r j−1

∥∥
2

~x j =~r j−1/β j−1

α j =~xT
j A~x j

~r j = (A−α jI)~x j−β j−1~x j−1
end

where vectors x1,x2, ...,xn are called Lanczos vectors. Then Gaussian quadrature can be
used to approximate (2.13) as follows:∫ b

a
φ(λ )dα(λ ) =

K

∑
j=1

φ(λ j)w j + error (2.15)

where λ j are the nodes and w j are the weights. This quadrature rule is exact for polynomials
of degree up to 2K−1.

Case 2: u 6= v

In the case where ~u 6= ~v, the weights, w j, are not always positive real numbers. This
occurrence can destabilize the quadrature rule as shown in [2]. In this case, we consider a
block approach:

[~u~v]Hφ(LN)[~u~v]. (2.16)

We can represent this matrix as the Riemann-Stieltjes integral

[~u~v]Hφ(LN)[~u~v] =
∫ b

a
φ(λ ) dµ(λ ) =

[
~uHφ(LN)~u ~uHφ(LN)~v
~vHφ(LN)~u ~vHφ(LN)~v

]
, (2.17)

where µ(λ ) is a 2×2 matrix with entries of the form α(λ ) from (2.14) as demonstrated
in [7]. Then a quadrature rule is used to approximate the integral (2.17). This leads to the
approximation ∫ b

a
φ(λ ) dµ(λ )≈

k

∑
j=1

φ(λ j)~v j~vH
j + error (2.18)

where λ j is a scalar and each ~v j is a 2-vector. Each node for Gaussian quadrature is an
eigenvalue of the matrix Tk that is obtained from the block Lanczos algorithm.

The algorithm for block Lanczos, as described in [5], is

X0 = 0, R0 = [~u~v], R0 = X1B0 (QR factorization)
for j = 1,2, ...,K

14



V = LNX j

M j = XH
j V

if j < K

R j =V −X j−1BH
j−1−X jM j

R j = X j+1B j (QR factorization)
end

end.

After applying block Lanczos to LN using initial block [~u~v], we obtain the block tridiagonal
matrix with 2×2 blocks

TK =


M1 BT

1
B1 M2 BT

2
. . . . . . . . .

BK−1 MK

 , (2.19)

where each B j is upper triangular and both M j and B j are built using block Lanczos. As
previously stated, the eigenvalues of the matrix TK are used as the nodes for Gaussian quadra-
ture, and~v j~vH

j are the matrix-valued weights for Gaussian quadrature. It should be noted
that~v j consists of the first two components of the normalized eigenvector corresponding to
λ j.

A time step of block Krylov subspace spectral methods proceeds as follows. We begin
by defining

R0(ω) = [~̂eω ~un] (2.20)

where ~̂eω is the discretization of 1√
2π

eiω~x and~un is the computed solution at time tn (these
are~u and~v in (2.16) above). The QR factorization of (2.20) leads to

R0(ω) = X1(ω)B0(ω) (2.21)

with
X1(ω) =

[
~̂eω

~un
ω

||~un
ω ||2

]
and

B0(ω) =

[
1 ~̂eH

ω~u
n

0 ||~un
ω ||2

]
,

where
~un

ω =~un−~̂eω
~̂eH~un =~un−~̂eω

~̂u(ω, tn). (2.22)

Block Lanczos is then applied to the discretized operator, LN , with initial block X1(ω).
From block Lanczos, we obtain our M j and B j so that we can produce the matrix TK with the

15



same form as (2.19). The eigenvalues of this matrix are the nodes we will use for Gaussian
quadrature and the Fourier coefficients at time tn+1 can be represented as

[~̂un+1]ω = [BH
0 EH

12e−TK(ω)4tE12B0]12, E12 = [ ~e1 ~e2 ]. (2.23)

By applying an inverse Fast Fourier Transform (IFFT) to the vector of Fourier coefficients,
we obtain the vector~un+1, which approximates the solution u(x, tn+1) [13].

In [13] it was shown this algorithm has local temporal accuracy of O(4t2K−1) for the
parabolic problem and in [14] it was shown to have local temporal accuracy O(4t4K−2)

for the second-order wave equation. To reduce the computational expense of performing
Lanczos on each component, an asymptotic analysis of Lanczos can be performed. This
was first shown in [5] by Palchak, et al. and then expanded on in [1] by Cibotarica, et al.
The process is as follows.

Recall that ~̂u is the discrete Fourier transform of ~u on a uniform N-point grid. Krylov
subspace spectral methods use the block (2.20) for each ω as the initial block for block
Lanczos to obtain TK . It has been shown in [5] that for the PDE shown in (1.34), every
non-zero, off diagonal entry of the blocks M j and B j converges to zero as |ω| → ∞. It can
be shown that the matrix obtained from applying block Lanczos iteration to (2.20) actually
converges to the matrix obtained when “non-block" Lanczos is applied to the columns of R0

separately and then alternating rows and columns of the tridiagonal matrices produced by
the “non-block" Lanczos iterations.

This leads to a decoupling effect such that for a finite ω the Gaussian quadrature nodes
can be estimated from the eigenvalues of these smaller matrices, which has been shown to
be dramatically faster [5]. It should be noted that in the subsequent discussion, the nodes
that are computed from applying “non-block" Lanczos to the spectral discretization of L, LN ,
with initial vector~un will be referred to as the “frequency-independent nodes" since they are
mainly dependent on the computed solution. These nodes will only have to be calculated
once in the Krylov subspace spectral method. The rest of the nodes that are computed from
applying “non-block" Lanczos to ~̂eω will be referred to as “frequency-dependent nodes".

After obtaining the matrices from Lanczos iteration on the separate columns of R0

and computing the frequency independent nodes, the frequency-dependent nodes must
be computed for each ω . Here, an asymptotic analysis of Lanczos is used by estimating
the elements of TK in terms of the coefficients of a differential operator (neglecting the
lower-order terms in the polynomial ω). This implementation of the asymptotic analysis of
Lanczos was extremely beneficial in eliminating the high frequency error of the solution,
but did nothing to eliminate the low frequency error. In [1] Cibotarica et al. found that after
using a Fast Fourier Transform to split the solution into high and low frequency parts, the

16



asymptotic analysis of Lanczos could be applied to eliminate high frequency error, while
standard Krylov projection could be used to eliminate the low frequency error.

In summary, adding the asymptotic analysis of Lanczos as well as rapid node estimation
for Gaussian quadrature produces the following framework for KSS to compute un+1 from
un:

• Apply the Lanczos algorithm to LN using initial vector~un and compute the eigenvalues
of TK (the matrix obtained from Lanczos).

• Apply the Lanczos algorithm to LN using initial vector êω , then use the asymptotic
analysis of Lanczos to estimate the eigenvalues of the resulting matrix TK(ω).

• Combine the eigenvalues obtained from the previous steps to obtain the block Gaussian
quadrature nodes.

• We can compute ûn+1 (the Fourier coefficients of the approximate solution) and then
use a Fast Fourier Transform to obtain the approximate solution~un+1.

17



Chapter 3

Coarse Grid Residual Correction

In numerical analysis, multigrid methods are a type of numerical method that are used
to solve linear systems that can arise from the spatial discretization of elliptic PDEs. For
example, a multigrid method in conjunction with an iterative method could be used to solve
the linear equation

A~x =~b. (3.1)

Iterative methods are often used along with multigrid methods because most iterative
methods possess a "smoothing property" that effectively eliminates high frequency error but
leaves low frequency error relatively unaffected.

The process in which multigrid methods solve linear equations like equation (3.1) is
by first restricting some initial guess of the solution to a coarse grid (a grid with twice the
spacing of the original), solving the equation on the coarse grid, and then finally interpolating
the approximate solution back to the fine grid using restriction and interpolation operators.
If a multigrid method is used with an existing iterative method, then the coarse grid can
alternatively be used to correct the approximation to the solution found by implementing the
iterative method. This process can be carried out by first obtaining an error approximation on
the fine grid, restricting the error approximation to a coarse grid, using a relaxation method
on the error approximation, then interpolating back to the fine grid to use the newly obtained
error approximation to correct the approximate solution. This technique is called coarse grid
correction. Coarse grid correction is often effective because the low frequency error on the
fine grid that is largely unaffected by the iterative method "looks" more oscillatory (higher
in frequency) on a coarse grid.

Even on the next coarsest grid, the frequency of the wave appears higher than in the fine
grid, which allows the iterative method to be more effective at eliminating the error.

3.1 Multigrid Algorithm

To implement multigrid after using an iterative method as a smoother, two operators are
needed: a restriction operator and an interpolation operator. The restriction operator will
transfer a vector from a fine grid to the next coarsest grid. The interpolation operator will

18



transfer a vector from a coarse grid to the next finest one. Generally the coarse grid has
twice the spacing of the next finest grid [21].

Although there are many ways to restrict a vector to a coarse grid, the most obvious way
is by a process called injection. This process involves defining the restriction operator, I2h

h ,
as

I2h
h ~vh =~v2h (3.2)

where~v is the approximate solution of (3.1) found by the iterative method and~v2h
j =~vh

2 j.
This indicates that the jth node on the coarse grid is the same as the 2 jth node on the fine
grid (e.g. the 3rd node on the coarse grid is equal to the 6th node on the next finest grid).
This way the coarse grid vector is obtained directly from the fine grid.

Another process that is used to restrict a vector to the next coarsest grid is by full
weighting. To implement full weighting the coarse grid vectors are obtained from the
weighted averages of the fine grid vectors at neighboring points. Therefore we can define
the restriction operator in a similar way to equation (3.2), but

~v2h
j =

1
4
(~vh

2 j−1 +2~vh
2 j +~vh

2 j+1). (3.3)

To interpolate back to a fine grid, an interpolation operator is needed. A general
interpolation operator can be defined as

Ih
2h~v

2h =~vh, (3.4)

where
~vh

2 j =~v2h
j (3.5)

~vh
2 j+1 =

1
2
(~v2h

j +2h
j+1). (3.6)

Therefore, to interpolate to a fine grid the coarse grid vectors are mapped back to even fine
grid nodes and the odd fine grid nodes are the averages of the coarse grid vectors on either
side.

The multigrid algorithm for the linear system 3.1, where~v is an approximation of~x and
A is an n×n matrix, is

Smooth Ah~vh =~bh on the finest grid using initial approximation~vh.
Compute~b2h = I2h

h ~rh where I2h
h is the restriction operator and~rh is the residual

found by~rh =~bh−Ah~vh.
Smooth A2h~v2h =~b2h using initial guess~v2h.
Compute~b4h = I4h

2h~r
2h.

19



...
Solve Akh~vkh =~bkh

...
Correct~v2h←~v2h + I2h

4h~v
4h

Correct~vh←~vh + Ih
2h~v

2h.

In this algorithm the residual is used to obtain the approximation of the error.
Although in this discussion of multigrid we have concentrated on using a fine grid and

then a coarse grid with twice the spacing of the fine grid, a user can actually choose how
coarse of a grid to use. It is a standard practice to restrict to coarser grids with twice the
spacing of the fine grid so to restrict to a grid with four times the spacing the restriction
operator is applied twice. To ensure that the restriction method used is accurate, the residual
on the finest grid can be compared to the residual on the coarsest grid. The restriction to a
coarse grid and prolongation back to fine grid performed in multigrid is called a V-cycle.

20



Chapter 4

Adaptive Time Stepping

In general, algorithms for many time stepping methods use equally spaced time steps to
numerically compute the solution for whichever type of equation that the method is trying
to solve. This constant time step size is often chosen by the user and many texts have
exercises that are based on comparing the outcome of the time stepping method using
different time step sizes. It is often the case that a reader will find that a small time step size
more accurately approximates the solution of the ordinary or partial differential equation
listed in their exercise, but that accuracy comes with added computational expense (i.e.
their program takes longer to run). In practice, using an arbitrarily selected constant step
size is often an inappropriate approach to numerically solving differential equations. For
explicit methods of solving partial differential equations, choosing a step size that is above
the Courant-Friedrichs-Lewy (CFL) limit can cause the method not to converge to a solution.
For this reason, many modern software packages and numerical solvers have a built in step
size controller.

Step size controllers (adaptive time stepping algorithms) are often made to be dependent
on the accuracy of the numerical method that it is being used with. A good adaptive time
stepping algorithm in conjunction with a good error estimator can detect the when the
solution is highly oscillatory and the chosen time step is too large to sufficiently resolve
the solution or when the chosen time step is too small for a relatively smooth solution. For
an adaptive time stepping algorithm to work properly, a good estimation of the error must
be found. There are many approaches to estimating the error of a method. For simplicity,
consider a first-order initial value problem of the form

y′ = f (t,y) (4.1)

y(t0) = y0 (4.2)

where y is a real valued function in terms of t and y′ = dy
dt . A simple method that can be

used to solve an initial value problem of this type is a one step method (Euler’s method
for example). The main idea behind one step methods is that given the initial condition
y(t0) = y0, the value of the solution y at the next step can be found using the following
equation

yn+1 = yn +hφ(tn,yn;h), n = 0,1, ...,N−1 (4.3)

21



where h is defined to be the step (or mesh) size and N is a positive integer that denotes the
number of steps [16]. To determine the accuracy of this method, two common methods of
error estimation in error analysis are

• Global Error en = y(tn)− yn

• Local Truncation Error Tn =
y(tn+1)−y(tn)

h −φ(tn,y(tn),h).

It should be noted that y(tn) denotes the actual solution at tn while yn denotes the numerically
approximated solution.

Since the methods listed above for computing global and local truncation error involve
the exact solution, these methods are not useful when the exact solution is not known. One
way to obtain the local truncation error of a one step method without using the exact solution
is by using two one-step methods. Consider error estimation for one-step methods yn+1 and
ỹn+1 of order p and p+1 respectively. The local truncation error for each of these methods
is

Tn+1 = y(tn+1)−y(tn)
h −φp(tn,y(tn),h) (4.4)

T̃n+1 = ỹ(tn+1)−ỹ(tn)
h −φp+1(tn, ỹ(tn),h). (4.5)

Assuming these methods are exact at time tn, we can say that

Tn+1 = y(tn+1)−y(tn)
h (4.6)

T̃n+1 = y(tn+1)−ỹ(tn)
h (4.7)

and subtracting the two equations obtains

Tn+1− T̃n+1 = y(tn+1)−y(tn)
h − ỹ(tn+1)−ỹ(tn)

h (4.8)

= (y(tn+1)−y(tn))−(ỹ(tn+1)−ỹ(tn))
h (4.9)

= −y(tn)+ỹ(tn)
h . (4.10)

Since Tn+1 is order p and T̃n+1 is order p+1, the term of lower order can be neglected
to obtain the simple error estimate of the pth-order accurate one-step method as seen in
([16]) is

Tn+1 =
ỹ(tn)− y(tn)

h
. (4.11)

22



4.1 Derivation of an Adaptive Time Stepping Method

As stated before, adaptive time stepping techniques are used frequently in numerical methods
to ensure stability as well as decrease the computational expense of certain methods. In
general, these adaptive methods often use a user set tolerance as well as estimates of the
local truncation error to determine if and how a certain step size (h) should be modified.

To modify the time step size h using the local trucation error of two one step methods
(4.11), first the time step size h can be changed to qh for some scaling factor q. Then by
multiplying the error by qp we obtain the new local truncation error

|Tn(qh)| ≈ |q
p

h
(ỹn+1− yn+1)|. (4.12)

In adaptive time-stepping, the goal is to find a scaling factor q such that the local truncation
error is less than some prescribed tolerance ε . To solve for q we can set 4.12 to be less than
or equal to the prescribed tolerance and solve for q to obtain

q≤
(

εh
ỹn+1− yn+1

)1/p

. (4.13)

To avoid making the step size too large or too small a minimum and maximum step size
should be set.

23



Chapter 5

Enhancement of Krylov Subspace Spectral Methods Through the Use
of the Residual as an Error Estimator

Given the equation
f (~x) =~b, (5.1)

in numerical analysis the residual, R is defined to be

R =~b− f (~x0) (5.2)

for some approximation~x0 of the solution~x. The absolute error E is the difference between
the value of the solution and the approximate solution, i.e.

E =~x−~x0. (5.3)

If the exact solution to equation (5.1) is unknown, the absolute error cannot be found but the
residual can still be computed. This is a very simple example of a phenomenon in numerical
analysis - how to measure the error of an approximate solution when the exact solution is
unknown.

The residual is a useful tool for measuring error in cases when another error estimator
is either too computationally expensive or hard to find. In this chapter, we explore the use
of the residual as an error estimator with the purpose of (1) correcting the solution and (2)
to adaptively change the time step size of the method. Although the residual is not equal
to the local truncation error, the use of the residual for error approximation is useful tool
for KSS methods. This is because KSS methods are used to solve the system of ODEs that
arise from the spatial discretization of a PDE. This process involves matrix function vector
products of the form

w = φ(Aτ)b (5.4)

where φ = eL4t is a smooth function, b = un is solution from the previous time step, and
w = un+1 is the solution at the current time step. If we define the residual at the current time
step as

Rn+1 = un+1
t −Lun+1 (5.5)

24



where
un+1 = eL4tun +En (5.6)

where En is an error term, then it follows that

Rn+1 =
d
dt
(eL4tun +En)−Lun+1 (5.7)

= LeL4tun +En
t −L(eL4tun +En) (5.8)

= En
t −LEn. (5.9)

This shows that the formula for the residual for KSS methods can be written in terms of the
error. Therefore we are able to use the residual as an approximation of that error.

5.1 Frequency Analysis

Due to the work of Cibotarica, Lambers, and Palchak in [1], Krylov subspace spectral
methods are already highly effective at computing the high frequency components of the
error. The low frequency components of the error though are still computed using standard
Krylov projection as seen in [9]. To increase accuracy of the method, we first perform a
frequency analysis to more accurately separate the high and low frequency components and
to show that KSS can act as a smoother for the multigrid inspired technique - coarse grid
residual correction.

In Chapter 2, Krylov space spectral methods were described for solving an equation of
the form

ut +Lu = 0 (5.10)

for some differential operator L with some type of initial and boundary conditions. Also,
recall from Chapter 2, the aim of Krylov subspace spectral methods is to approximate
the solution of the partial differential equation using a Fourier series where the Fourier
coefficients are found using an approximation to the exact solution operator that is tailored
to each Fourier coefficient. If we define LN as the discretization of the operator L and the
approximation to the exact solution operator as

S(LN ;4t) = e−LN4t (5.11)

then we can obtain the approximation by interpolation of the function S(λ ,4t) at specified
nodes where λ are the eigenvalues of LN . The interpolation points can be found using block
Lanczos iteration.

We begin our frequency analysis with analyzing the behavior of the block Lanczos
algorithm. Recall, the algorithm for block Lanczos, as described in [5], is

25



X0 = 0
R0 = [~u~v]

R0 = X1B0 (QR factorization)
for j = 1,2, ...,K

V = LNX j

M j = XH
j V

if j < K

R j =V −X j−1BH
j−1−X jM j

R j = X j+1B j (QR factorization)
end

end.

Therefore to begin the first iteration of block Lanczos, we set X0 = 0 and R0 =

[eiωx/
√

2π un]. If we let eiωx/
√

2π = êω and un be a discretization of the solution at
time tn then the QR factorization of R0 can be found by performing the following operations:

R0 = X1B0 (5.12)

[a1 a2] = [q1 q2]

[
r11 r12
0 r22

]
(5.13)

where

r11 = ||a1||2 = ||êω ||2 = 1, (5.14)

q1 =
a1

r11
= êω , (5.15)

r12 = 〈q1,a2〉 ≈
∫ 2π

0

1√
2π

eßωxu(x, tn)dx = ûn(ω), (5.16)

r22 = ||a2− r12q1||2 = ||un− ûn(ω)êω ||2, (5.17)

and

q2 =

∣∣∣∣∣∣∣∣a2− r12q1

r22

∣∣∣∣∣∣∣∣
2
=

un− ûn(ω)êω

||un− ûn(ω)êω ||2
=

un
ω

||un
ω ||2

. (5.18)

It should be noted that ûn(ω) is a coefficient of the Fourier interpolant of un and un
ω =

un− ûn(ω)êω . From the QR factorization of R0 we obtain two matricies of the form

X1 = [q1 q2] =

[
êω

un
ω

||un
ω ||2

]
(5.19)

and
B0 =

[
r11 r12
0 r22

]
=

[
1 ûn(ω)
0 ||ûn(ω)||2

]
. (5.20)

26



Once X1 and B0 have been found, the matrices V and M1 can be found.

V = LNX1 =
[
LN êw LN

un
w

||un
w||

]
M1 = XH

1 V =

[
êH

w

(
un

w
||un

w||
)H

][
LN êw LN

un
w

||un
w||

]
=

[
êH

w LN êw êH
w LN

un
w

||un
w||

(
un

w
||un

w||
)HLN êw (

un
w

||un
w||
)HLN

un
w

||un
w||

]
Using LN =−p4+Q, where Q = q(x)I, p = p(x)I and I is the identity matrix, M1 can be
simplified to

M1 =

−w2 p+Q L̂Nun
w

||un
w||

L̂Nun
w

||un
w||

(
(un

w)
HLNun

w
||un

w||2
)


where Q is the average value of Q. From here, R1, X2, and B1 can be found by performing
the following operations:

R1 = X0BH
0 −X1M1 =

[
LN êw LN

un
w

||un
w||

]
−
[
êw ∗ un

w
||un

w||

]−w2 p+Q L̂Nun
w

||un
w||

L̂Nun
w

||un
w||

(
(un

w)
HLNun

w
||un

w||2
)


=

[
Q̃êw− un

wL̂Nun
w

||un
w||2

LNun
w

||un
w||
− êwL̂Nun

w
||un

w||
− un

w(u
n
w)

HLNun
w

||un
w||3

]
Then from the QR factorization of R1 we obtain X2 and B1.

R1 = X2B1
[
a1 a2

]
=
[
q1 q2

][r11 r12
r21 r22

]
where a1 = Q̃êw− un

wL̂Nun
w

||un
w||2

a2 =
LNun

w
||un

w||
− êwL̂Nun

w
||un

w||
− un

w(u
n
w)

HLNun
w

||un
w||3

r11 = ||a1||=
∥∥∥∥Q̃êw− un

wL̂Nun
w

||un
w||2

∥∥∥∥
q1 =

a1
r11

=
Q̃êw−

un
wL̂N un

w
||un

w||2∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥
r12 = 〈q1,q2〉=

Q̃êw−
un
wL̂N un

w
||un

w||2∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥
· LNun

w
||un

w||
− êwL̂Nun

w
||un

w||
− un

w(u
n
w)

HLNun
w

||un
w||3

27



Figure 5.1: Entries of M1 matrices obtained from Block Lanczos

r22 = ‖a2− r12q1‖= ‖a2−〈q1,a2〉q1‖

=

∥∥∥∥∥∥∥∥
LNun

w
||un

w||
− êwL̂Nun

w
||un

w||
− un

w(u
n
w)

HLNun
w

||un
w||3

−

 Q̃êw−
un
wL̂N un

w
||un

w||2∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥
· LNun

w
||un

w||
− êwL̂Nun

w
||un

w||
− un

w(u
n
w)

HLNun
w

||un
w||3

 ·
 Q̃êw−

un
wL̂N un

w
||un

w||2∥∥∥∥∥Q̃êw−
un

wL̂N un
w

||un
w||2

∥∥∥∥∥


∥∥∥∥∥∥∥∥

and q2 =
a2−r12q1

r22

=

LN un
w

||un
w||
− êwL̂N un

w
||un

w||
− un

w(un
w)H LN un

w
||un

w||3
−

 Q̃êw−
un
wL̂N un

w
||un

w||2∥∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥∥
· LN un

w
||un

w||
− êwL̂N un

w
||un

w||
− un

w(un
w)H LN un

w
||un

w||3

·
 Q̃êw−

un
wL̂N un

w
||un

w||2∥∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥∥


∥∥∥∥∥∥∥∥∥

LN un
w

||un
w||
− êwL̂N un

w
||un

w||
− un

w(un
w)H LN un

w
||un

w||3
−

 Q̃êw−
un
wL̂N un

w
||un

w||2∥∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥∥
· LN un

w
||un

w||
− êwL̂N un

w
||un

w||
− un

w(un
w)H LN un

w
||un

w||3

·
 Q̃êw−

un
wL̂N un

w
||un

w||2∥∥∥∥∥∥Q̃êw−
un
wL̂N un

w
||un

w||2

∥∥∥∥∥∥


∥∥∥∥∥∥∥∥∥

.

For a third order method, this process would need to be repeated to obtain M2.
Since the off diagonal entries of the matrix M1 are essentially Fourier coefficients of

a function, as the wave number increases these entries will approach 0. If we continue
following the Block Lanczos algorithm, it can be shown that the off-diagonal entries of all
M j decay to 0. This can also be confirmed from numerical experiments as shown in the
Figures 5.1 and 5.2. Since the off diagonal entries of M j decay to zero as the frequency (ω)
gets larger, we can define a cut off point for high and low frequency components by the
point in which those entries become lower than a set tolerance.

Consider a 2 dimensional partial differential equation of the form (5.10) and a third
order Krylov subspace spectral method. The frequencies for this type of problem come
in pairs, we will call these ω1 and ω2. To search for the "cut off point" for high and low
frequency, we are essentially searching for the point in which ω1 and ω2 are higher than
some bound. To find this point we begin by making a basis function for the problem’s given

28



Figure 5.2: Entries of M2 matrices obtained from Block Lanczos

boundary condition and given dimension. Then we can use that basis function along with the
discretization of the solution at a given time. The basis function becomes the first column
of R0 for block Lanczos and the discretization of the solution is the second column. Once
we perform black Lanczos using R0 as the initial block; we obtain the matrices M j and B j

for j = 1, 2 (since K = 2 for a third order method). If block Lanczos is performed for each
frequency pair on an N×N grid, then we can obtain all the off-diagonal entries of each M j.
Since these off-diagonal entries are complex conjugates (because M is Hermitian), from
here we will only consider one of these entries.

Now, we can define a matrix m1 as a matrix containing all of the 1,2 entries of the M1

matrices generated from performing block Lanczos using each frequency pair. We can
perform the frequency analysis as follows:

A = ||m1||F
n = 0
while B < ε ∗A

n = n+1

B =
√

∑
n
i=1 ∑

n
j=1 |Ai, j|2

end
C = n∗ k

where ε is a set tolerance, k is the bandwidth and || · ||F is the Frobenius norm. This algorithm
can also be repeated on the 1,2 entry of M2. The number C obtained from this algorithm is
the number of non-negligable values for the 1,2 entry of M1 (or M2). This value can be used
as the cut off point for high and low frequency. Future work will include a more efficient
way to obtain this value.

29



5.2 Convergence

We start with the error estimate derived from block Gaussian quadrature for a third order
KSS method from [1],

Eω,k = τ
k φ 2k(ξ )

2k!
~wH(L−λ1,ω)(L−λ2,ω)êω (5.21)

where LN = p4+q(x)I, w = (LN−λ1I)(LN−λ2,I)bH , bH = un, λ1,ω = pω2−|| ˜q(x), and
λ1,ω = pω2+ || ˜q(x)||2. From here we will say q(x)I = q. If we substitute ~wH(L−λ1,ω)(L−
λ2,ω)êω we obtain

~wH(pω
2q′′(x)+q(x)2− pq(x)ω2−||q̃||22)êω . (5.22)

If we say that the decay rate of the solution is ω−p then it follows that the decay rate
of ~wH is ω4−p. If we let the decay rate of q(x) be ω−η then it follows that the decay
rate of ~wH(pω2q′′(x)+ q(x)2− pq(x)ω2− ||q̃||22)êω can be found in a similar manner to
finding the decay rate of the convolution of two functions. That is given two functions
f and g with decay rates ω−α and ω−β respectively. The decay rate of the convolu-
tion of f and g, denoted f ∗ g, is min(ω−α ,ω−β ) [20]. If we examine each term of
~wH(pω2q′′(x)+q(x)2− pq(x)ω2−||q̃||22)êω as follows:

Term Decay Rate of the Term (ω−γ )
wH pω2qxxeiωx γ = min(p−4,η−2)
wHq2eiωx γ = min(p−4,η)

wH pqω2eiωx γ = min(p−4,η)

wH ||q̃||22eiωx γ = p−4

then we can see that if p > 4 and η > 2 then ~wH(L−λ1,ω)(L−λ2,ω)êω will approach 0
as the wave number ω approaches infinity. In cases where the function q is band-limited,
then the decay rate of q is effectively ω−∞ and so the error of the approximate solution will
approach 0.

5.3 Coarse Grid Residual Correction - A Multigrid Inspired Technique

As stated in Chapter 3, Multigrid is an effective way of eliminating low frequency error
in linear systems that arise from the spatial discretization on elliptic partial differential
equations (which are generally time independent like Laplace’s equation) [3]. To be able to
solve time dependent problems such as the ones considered in this dissertation we first need
to generalize the method to the time dependent case. We do that by defining the residual as

30



R = ut +Lu, then solving a non-homogeneous version of the partial differential equation to
obtain the error for the correction.

From the error analysis performed in the previous section, we can see that smoothing
already takes place in the Krylov subspace spectral method. To implement coarse grid
residual correction, three functions are needed:

1. a function to restrict the problem to a coarser grid (eg I2h
h )

2. a function to make a new Jacobian on the coarse grid

3. and a function to Interpolate back to the fine grid (eg Ih
2h).

It should be noted that the notation here is similar to the notation used by Briggs, Henson,
and McCormick in their book A Multigrid Tutorial. That is, the superscript of the restriction
and interpolation functions denotes the current grid (fine or coarse) and the subscript denotes
the grid that is being interpolated or restricted to.

To implement restriction by full weighting the residual must first be reshaped from a
vector to an n×n matrix B if the partial differential equation is on a 2-D Domain. Then, the
residual can be restricted to the coarse grid matrix, C, as seen in the following equation:

C(i, j) =
1
4
(B(2i−1,2 j−1)+B(2i−1,2 j)+B(2i,2 j−1)+B(2i,2 j)). (5.23)

To interpolate back to the fine grid, an interpolation function needs to be designed so
that a coarse grid matrix entry is mapped to the corresponding fine grid matrix entry, as well
as the entries surrounding it [4]. For our numerical experiments we perform this by padding
the Fourier transform with zeros.

Krylov subspace spectral with coarse grid residual correction proceeds as follows:

1. Use Krylov subspace spectral as described in section 2 for all components of the
solution (high and low frequency)

2. use coarse grid residual correction in a Fourier sense to eliminate low frequency error,

3. then combine the results of the previous two steps to obtain an approximate solution.

It should be noted that the Multigrid v-cycle will only descend to the next coarsest grid.
Coarser grids could be used though, and further research could explore the effectiveness of
this option.

31



5.3.1 Case 1: Parabolic Partial Differential Equation

The Allen-Cahn equation is a parabolic, non-linear, two dimensional partial differential
equation often used in mathematical physics. It is used to describe the reaction-diffusion of
the separation of iron alloys. The Allen-Cahn equation is

ut = α4u+u−u3, (5.24)

where α is a constant and for our problem α = 0.2. Since the Allen-Cahn equation is
nonlinear, then to use Krylov subspace spectral with coarse grid residual correction (KSS-
CGRC) to solve this problem, first we must linearize the equation. The linearized form is as
follows,

ut = α4u+(1−3u2
0)u (5.25)

where u0 is the initial data

u0 = 0.4+0.1cos(2πx)cos(5πy) (5.26)

and α = 0.2. Also, there are homogeneous Neumann boundary conditions.
As stated in Section 3.1, Multigrid can be used to improve the accuracy of iterative

methods that have the smoothing property. After KSS is applied, we are left with a relatively
smooth error. To use the Multigrid-like technique for residual correction, first the solution
computed from KSS is used for the initial approximation and therefore used to find the
residual, R(x, t). To restrict the residual to a coarse grid, the residual is reshaped to an n×n

matrix and restriction by full weighting can be implemented using (5.23).
To verify if the restriction operator appropriately maps the residual to the coarse grid, the

residual on the coarse grid and the residual on the fine grid can be compared by visualizing
both on the same grid. Figure 5.3 represents both the coarse and fine grid residuals for (5.24)
with Neumann boundary conditions. From this figure we observe that the fine and coarse
grid residual are approximately the same.

Once the residual is restricted to the coarse grid the differential operator L must be
restricted to the coarse grid. The operator L is defined as

L = α4+(1−3y2
0). (5.27)

Then we can solve the non-homogeneous equation

et = α4e+(1−3y2
0)e+R(x, t) (5.28)

32



Figure 5.3: This figure shows the fine grid residual in red and the coarse grid residual in
green.

where et is the error, e(x,0) is the initial condition and e(x,0) = e0 = 0. Also the residual is
R(x, t) = ut−Lu. It follows that

e = eLte0 +
∫ t

0
eL(t−s)R(x,s) ds. (5.29)

Using Gaussian quadrature rules, we know the integral in (5.29) is approximately equal
to ∫

∆t

0
eL(∆t−s)R(x,s)ds≈∑

k
wkeL(∆t−sk)R(x,sk) (5.30)

where sk are the Gauss-Legendre points, transformed to the interval [0,∆t] and wk are the
weights transformed to the same interval.

The newly obtained approximation can then be interpolated back to the fine grid where it
will be used to correct the solution. To interpolate back to the fine grid, (??) is used, where
a coarse grid matrix entry is mapped to the corresponding fine grid matrix entry as well as
the entries surrounding it.

33



5.3.2 Case 2: Hyperbolic Partial Differential Equation

Consider the hyperbolic partial differential equation

utt = Lu, on (0,2π) × (0,∞), (5.31)

u(x,0) = f (x), ut(x,0) = g(x), 0 < x < 2π. (5.32)

To apply KSS with coarse grid residual correction to solve a hyperbolic problem such as
this one, first a spatial discretization of the differential operator L must be obtained so that
a representation of the solution operator can be obtained. The solution operator can be
expressed as a matrix of functions of the operator L:[

cos(
√
−L4t) 1√

−L
sin(
√
−L4t)

−
√
−Lsin(

√
−L4t) cos(

√
−L4t)

]
. (5.33)

Therefore, we can use Krylov subspace spectral with coarse grid residual correction to
solve for the solution as well as the first derivative with respect to t as follows:

[
u
ut

]
n+1

=

[
cos(
√
−L4t) 1√

−L
sin(
√
−L4t)

−
√
−Lsin(

√
−L4t) cos(

√
−L4t)

][
u
ut

]
n
.

The residual, R, computed at various times is

R = utt−Lu,

then the error used to update the solution is

e =
∫

∆t

0

[
cos(
√
−L4t− s) 1√

−L
sin(
√
−L4t− s)

−
√
−Lsin(

√
−L4t− s) cos(

√
−L4t− s)

][
0

R(s)

]
ds. (5.34)

The entries of (5.34) indicate which functions are the integrands in the Riemann-Stieltjes
integrals that are used to compute the Fourier coefficients of the solution [15].

Consider an equation similar to the linearized form of the Allen-Cahn equation (6.6):

utt = α4u+(−3y2
0)u (5.35)

with Neumann boundary conditions as well. To implement KSS with coarse grid residual
correction to solve this problem, a similar process is followed as when solving (6.3). First,
the differential operator for any solution u becomes

Lu = α∆u+(−3y2
0)u. (5.36)

Then a spatial discretization of the differential operator L allows us to obtain a representation
of the solution operator, as seen by (5.33). Then the KSS method with coarse grid residual
correction can be applied in a similar manner.

34



5.3.3 Adaptive Time Stepping

As described in Chapter 3, most adaptive time stepping methods use the local truncation
error to control the step size of a time stepping method for solving differential equations.
Adaptive methods for controlling the time step size of a method are very useful because they
are able to concentrate the computational power of a method to areas that require it while
expending less power to areas that don’t require it.

Unlike the process described in Chapter 4 using two one step methods, finding a formula
for the local truncation error of a time step in KSS methods can be quite difficult. Since
an error approximation is necessary for adaptive methods and the global error would be
inefficient to use, in this dissertation, we consider an alternate approach. Specifically, we
propose using the residual as an error estimator to control the time step size in KSS methods.
To do this, a very accurate residual must be obtained. Unlike other time stepping methods,
by KSS we can obtain the time derivatives of the solution (ut and utt) exactly.

Consider the time dependent partial differential equation of the form

ut =−Lu (5.37)

with periodic boundary conditions. To find the optimal step size, first numerical approxima-
tions to ut and u must be found at the first time step. We do this by using a time step of the
the KSS method (as described in Chapter 2) to find an approximate solution for the high
frequency components and the low frequency components. Then, we define the residual for
the high frequency components as

RH = ũH
t +LũH (5.38)

and the residual for the low frequency components (found by using Krylov Projection) as

RL = ũL
t +LũL (5.39)

where ũH is an approximation of the high frequency components of the solution at that time
step and ũL is an approximation of the low frequency components of the solution at that
time step.

The scaling factor q can be found similarly to equation (4.13) in Chapter 4:

q =

(
ε

||RH +RL||∞

)1/p

(5.40)

where ε is the preset tolerance and p is the order of the method. If q is greater than or equal
to 1 then the solution can be accepted and the time step can be increased by a factor of q∗h.

35



If q is less than 1 then the error is too large for that time step size so the step size must be
reduced.

5.3.4 Case 1: Parabolic Problem

As mentioned in Section 5.2.1, the Allen-Cahn equation is a 2-D parabolic partial differential
equation used to describe the reaction-diffusion of the separation of iron alloys. The
linearized version of this equation is

ut = α4u+(1−3u2
0)u (5.41)

where u0 is the initial data is

u0 = 0.4+0.1cos(2πx)cos(5πy) (5.42)

and α = .1.
To create a time step size controller for Krylov subspace spectral methods, the approxi-

mate solutions for the high frequency components and low frequency components at the
starting time step must first be calculated. These approximate solutions are used to then find
the residuals for the high frequency components RH and low frequency components RL. If
we define the operator L as

L = α4+(1−3u0) (5.43)

then we can define the two residuals to be

RH = uH
t −LuH (5.44)

RL = uL
t −LuL. (5.45)

To use the residual as an error approximation for the step size controller we can use the
maximum absolute value of the sum of the residuals (the infinity-norm) to calculate our
scaling factor q:

q =

(
ε

||RH +RL||∞

) 1
3

. (5.46)

For most of our numerical experiments, the tolerance is set to be ε = 1.0×10−4 and the
tolerance is updated as the starting time step decreases using the formula

ε = ε/(2p); (5.47)

where p = 3 is the order of the original method.

36



5.3.5 Case 2: System of Equations

Consider a linearized version of the Brusselator problem

ut = α4u+ pu+φv (5.48)

vt = α4v+qv+ψu (5.49)

with homogeneous Dirichlet boundary conditions and appropriate initial data. Here we will
let α, p, and q be constant variables and φ and ψ are variable.

Similar to the parabolic problem, to create a step size controller for Krylov subspace
spectral methods we first find the approximate solutions for the high and low frequency
components and use these approximate solutions as well as the exact time derivative to find
the residuals RL and RH . If we define the operator L as the matrix

L =

[
α4+ p φ

ψ α4+q

]
(5.50)

then we can define the low and high frequency residuals as

RH = uH
t −LuH (5.51)

RL = uL
t −LuL. (5.52)

Then adaptive time stepping can be implemented in a similar manner to the parabolic
problem.

37



Chapter 6

Numerical Results

In this chapter, the effectiveness of Kylov subspace spectral methods with coarse grid
residual correction and then with adaptive time stepping will be demonstrated. In the result
sections for KSS with coarse grid residual correction, the following approaches will be
compared:

• Krylov subspace spectral methods (KSS) as described in Chapter 2 with the high/low
frequency split which will be represented in figures by a red solid line with star
markers.

• Krylov subspace spectral methods with coarse grid residual correction (KSS-CGRC2,
KSS-CGRC3, and KSS-CGRC5) as described in Chapter 3, which will be represented
by a black solid or dotted line with square markers (depending on the problem).

• Krylov subspace spectral exponential propagation iterative methods (KSS-EPI) as
described in [1] which will be represented by a magenta dash-dot line with star
markers.

• Krylov Projection (KP), as described in [9] which will be represented by a blue dashed
line with circle markers.

It should be noted that KSS-CGRC2 uses a 2-node Gaussian quadrature Rule, KSS-CGRC3
uses a 3-node Gaussian quadrature Rule, and KSS-CGRC5 uses a 5-node Gaussian quadra-
ture Rule. Two types of problems will be considered in this section, a parabolic problem and
a hyperbolic problem. The parabolic problem is the linearized version of the Allen Cahn
Equation which describes the process of phase separation in multi-component alloy systems.
The hyperbolic problem is a general wave equation.

In the result sections for Krylov subspace spectral methods with adaptive time stepping,
the following approaches will be compared:

• Krylov subspace spectral methods as described in Chapter 2 with and without the
high/low frequency split (KSS and KSS2 respectively.) KSS will always be repre-
sented in figures by a red solid line with circle markers. KSS2 will be represented by
a red dash-dot line with circle markers.

38



• Krylov subspace spectral methods with adaptive time stepping (ATS) as described in
Chapter 4 as well as modified adaptive time stepping methods:

– ATS hmin (or just hmin) is KSS with adaptive time stepping and will be repre-
sented by a cyan, magenta, or green (depending on the minimum step size)
dashed line with square markers.

– ATS2 is KSS2 with adaptive time stepping and will be represented by a black
dash-dot line with square markers.

– ATS2 hmin is KSS2 with adaptive time stepping and will be represented by a
cyan, magenta, or green (depending on the minimum step size) dash-dot line
with square markers.

• Krylov Projection (KP), as described in [9], which will be represented by a blue
dashed line with circle markers.

• Newton interpolation using Leja points (LEJA) which will be represented by a green
dashed line with plus sign markers.

Two types of problems will be considered in this section, a parabolic problem and a system
of equations. The parabolic problem is the same linearized Allen Cahn equation used in
the experiments for KSS-CGRC. The system of equations is a linearized version of the
Brusselator system of equations. The Brusselator system of equations describes a type of
auto-catalytic reactions.

In all of these experiments the "exact" solution is found using MATLAB’s ode15s solver
with the smallest possible time step.

6.1 Krylov Subspace Spectral Methods with Coarse Grid Residual Correction Case
1: 2-D Linear Parabolic Problems

We first demonstrate the effectiveness of all four methods when solving a linearized version
of the Allen Cahn equation:

ut = α4u+(1−3u2
0)u (6.1)

where u0 is the initial data

u0 = 0.4+0.1cos(9πx)cos(18πy) (6.2)

and alpha is a constant (α = 0.2). For this numerical experiment there are homogeneous
Neumann boundary conditions.

39



Table 6.1 contains the calculated relative error and Table 6.2 contains the execution
time per time step size for grid resolution sizes N = 50, N = 150 and N = 300 points per
dimension. When comparing the accuracy of all five methods (KSS-CGRC2, KSS-CGRC3,
KSS-EPI, KSS, and KP), it is obvious that the KSS-CGRC methods have significantly lower
error especially when using a small time step size (4t = 0.00125). This advantage becomes
more apparent when the grid size increases from N = 50 to N = 150 points per dimension
as seen in Figure 6.1.

KSS-CGRC2 KSS-CGRC3 KSS KSS-EPI KP
6.9647e-07 2.0368e-07 7.1375e-06 0.0001641 0.0001641

N=50 6.1329e-09 2.0551e-09 8.2972e-07 8.5766e-06 2.9759e-05
7.2752e-10 6.8869e-11 1.0589e-07 4.5585e-08 7.2182e-06
9.4961e-11 3.2213e-12 1.1477e-08 5.4246e-09 6.6096e-08
2.8871e-11 4.366e-11 1.2222e-09 6.5594e-09 4.0615e-09
5.0452e-07 1.5778e-07 7.364e-06 0.00016596 0.00016596

N=150 4.2637e-09 2.463e-09 8.6024e-07 2.041e-05 7.4835e-05
7.3494e-10 8.8751e-11 1.1013e-07 3.2691e-06 2.7004e-05
9.8793e-11 4.0197e-12 1.1938e-08 3.8396e-07 2.7823e-06
7.7294e-12 2.6783e-13 1.2666e-09 4.2296e-08 7.4641e-08
5.0351e-07 1.5909e-07 7.3879e-06 0.00016612 0.00016612

N=300 4.2653e-09 2.5183e-09 8.6291e-07 4.8436e-05 0.00010625
7.3494e-10 9.0492e-11 1.1052e-07 1.1786e-05 3.5554e-05
9.913e-11 4.112e-12 1.1981e-08 2.4341e-06 6.2902e-06
7.7676e-12 2.6502e-13 1.2709e-09 3.6416e-07 7.0351e-07

Table 6.1: Relative error calculated for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125 for
the parabolic problem.

Also, as the grid size increases we can observe a decrease in accuracy for both KSS-EPI
and Krylov projection. This phenomenon is not observed in the experimental results for
KSS where the accuracy for this methods is relatively constant regardless of grid size. The
results for KSS-CGRC get slightly more accurate on larger grid sizes.

Table 6.3 displays the Krylov subspace dimensions needed for the method. For the
KSS method, the Krylov subspace dimension is 4 and so KSS-CGRC2 and KSS-CGRC3
also will have a Krylov subspace dimension of 4 since no more dimensions are required to
do a correction. The number of iterations needed in a time step for Krylov Projection is
much more and increases as the grid size (N) increases. The maximum average number of
iterations needed for N = 50,150, and 300 was 6.3125, 15.375, and 27 respectively. This
result shows the scalability of the KSS and KSS-CGRC methods and that as the grid size
increases the computational expense will not grow as fast as it will for Krylov Projection.

40



KSS-CGRC2 KSS-CGRC3 KSS KSS-EPI KP
0.10938 0.03125 0 0.0625 0.015625

N=50 0.17188 0.14063 0 0.03125 0
0.125 0.17188 0.03125 0.125 0.015625
0.29688 0.35938 0.078125 0.0625 0.078125
0.34375 0.42188 0.125 0.21875 0.125
0.10938 0.125 0.046875 0.03125 0

N=150 0.26563 0.46875 0.125 0.15625 0.09375
0.42188 0.73438 0.20313 0.26563 0.35938
1.1094 1.0313 0.375 0.79688 2
1.8438 2.5625 0.73438 1.25 3.2188
0.5 0.57813 0.1875 0.10938 0.17188

N=300 1.0938 1.0938 0.42188 0.42188 0.39063
1.6875 2.1094 0.71875 1.0781 2.1719
3.6875 5.0156 1.375 1.9688 13.813
7.2344 10.25 2.8906 4.5469 30.953

Table 6.2: Execution times calculated for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125
for the parabolic problem

KSS-CGRC2 KSS-CGRC3 KSS KSS-EPI KP
4 4 4 4 4

N=50 4 4 4 6.5 5.5
4 4 4 7 7
4 4 4 6.75 7.875
4 4 4 6.4375 6.3125
4 4 4 4 4

N=150 4 4 4 6 5.5
4 4 4 6 8.5
4 4 4 6.25 16.625
4 4 4 6.125 15.375
4 4 4 4 4

N=300 4 4 4 5 5.5
4 4 4 5 11.5
4 4 4 5 24
4 4 4 5.375 27

Table 6.3: Number of iterations for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125 for the
parabolic problem.

41



Figure 6.1: Relative Error (logarithmically scaled) for varying starting time step sizes
(4t = 0.02,0.01,0.005,0.0025,0.00125) for the parabolic problem.

42



Figure 6.2: Relative error versus execution time in seconds (logarithmically scaled) for
varying starting time step sizes (4t = 0.02,0.01,0.005,0.0025,0.00125) for the parabolic
problem.

43



6.2 Krylov Subspace Spectral Methods with Coarse Grid Residual Correction Case
2: 2-D Hyperbolic Problems

We now demonstrate the effectiveness of all four methods when solving the hyperbolic
problem from Chapter 4:

utt =4u− (3u0)u, on (0,2π) × (0,∞), (6.3)

u(x,0) = f (x), ut(x,0) = g(x), 0 < x < 2π (6.4)

where u0 is the initial condition

u0 = 0.04+ .1cos(2πx)cos(5πy). (6.5)

Table 6.5 contains the time elapsed (per time step) is and Table 6.4 contains the relative
error calculated per time step size for grid sizes N = 50 and N = 150 for each test method
(KSS-CGRC3, KSS-CGRC5, KSS, KP, and KSS-EPI). For both KSS-CGRC methods, we
observe a higher accuracy than other methods for both grid sizes. Also the KSS-CGRC
methods improve as grid resolution increases whereas the results for KSS-EPI and Krylov
Projection decrease in accuracy. From Figure 6.3 we can also clearly see the difference in
accuracy of the methods at small time step sizes. When the grid resolution was N = 50, both
KSS-CGRC methods significantly improved as the time step size went from the original
size 4t = 0.02 to 1

16
th

of the original step size. This phenomenon is even more apparent
when the grid resolution increases to N = 150.

Similar to Section 6.1, KSS as well as both KSS-CGRC methods only needs a Krylov
subspace dimension of 4. For Krylov Projection, the number of iterations needed in a time
step is much more and increases as the grid size (N) increases. The maximum average
number of iterations needed for N = 50 and 150, was 36.5 and 18.5 respectively. This result
shows the scalability of the KSS and KSS-CGRC methods and that as the grid size increases
the computational expense will not grow as fast as it will for Krylov Projection.

44



KSS-CGRC3 KSS-CGRC5 KSS KSS-EPI KP
5.5349e-05 3.124e-05 0.0001967 9.54e-05 5.0232e-05

N=50 3.1533e-05 4.9734e-06 8.8408e-05 4.8842e-06 7.7929e-06
1.5991e-06 6.3904e-07 8.6061e-06 1.4539e-06 8.9385e-07
9.8503e-09 6.2675e-09 2.2604e-07 1.5063e-07 2.0124e-07
1.1217e-10 6.0229e-11 6.9945e-09 5.1051e-09 1.5384e-08
5.5914e-05 2.746e-05 0.00020072 2.8507e-05 0.0001427

N=150 1.3768e-05 7.9052e-06 0.00010045 5.1973e-05 0.00013132
2.0382e-06 7.0585e-07 3.3588e-06 7.2583e-05 0.00010472
6.66e-09 4.7481e-09 8.3558e-08 9.2289e-06 0.00011705
1.7555e-11 1.1384e-11 6.3856e-10 1.0968e-07 8.5461e-05

Table 6.4: Relative error calculated for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125 for
the hyperbolic problem.

KSS-CGRC3 KSS-CGRC5 KSS KSS-EPI KP
0.125 0.0625 0.03125 0.1875 0.1875

N=50 0.10938 0.26563 0.046875 0.3125 0.8125
0.25 0.51563 0.125 0.28125 0.48438
0.46875 0.6875 0.20313 0.26563 0.35938
0.95313 1.1406 0.42188 0.53125 0.375
0.3125 0.375 0.14063 7.3281 0.78125

N=150 0.60938 0.79688 0.23438 32.344 1.8125
1.3281 1.6094 0.42188 8.2344 2.2344
2.4531 3.0781 0.98438 4.3438 2.8594
4.4531 6.2813 1.8906 4.9844 4.4531

Table 6.5: Execution time in seconds for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125
for the hyperbolic problem.

45



KSS-CGRC3 KSS-CGRC5 KSS KSS-EPI KP
4 4 4 23 23

N=50 4 4 4 27 36.5
4 4 4 15.75 23
4 4 4 10.625 13.875
4 4 4 9 9.5
4 4 4 60 17

N=150 4 4 4 85 18.5
4 4 4 31.75 13.25
4 4 4 14.375 10.25
4 4 4 9 8.3125

Table 6.6: Number of iterations for time step sizes4t = 0.2, 0.1, 0.05, 0.025, 0.0125 for
the hyperbolic problem.

Figure 6.3: Relative Error (logarithmically scaled) for varying starting time step sizes for
the hyperbolic problem.

Figure 6.4: Relative error versus execution time in seconds (logarithmically scaled) for
varying starting time step sizes for the hyperbolic problem.

46



6.3 Krylov Subspace Spectral Methods with Adaptive Time Stepping Case 1: 2-D
Linear Parabolic Problems

Here we consider a similar linearized version of the Allen Cahn equation mentioned in
Section 6.1.

ut = α4u+(1−3u2
0)u (6.6)

where u0 is the initial data and alpha is a constant (α = 0.1). The initial data is

u0 = 0.4+0.1cos(2πx)cos(5πy). (6.7)

We begin by examining the approximate solution of the equation as shown in Figure 6.5.
Since the Allen Cahn equation (even the linearized version) is a diffusive partial differential
equation, the solution becomes less oscillatory over time. This implies that an accurate
step size controller would modify the time step size to be smaller at lower time steps then
allow the step size to increase as the solution becomes less oscillatory. Figures 6.6 and
6.6 show this result - at higher frequencies the step size controller decreases the time step
and at low frequencies less variation can be seen between solutions at different time steps
and so the step size controller allows the step size to become large again. We can see this
phenomenon in Figures 6.10 and 6.11. From these figures we can see that around t = 0.08
seconds the solution diffuses enough for the adaptive time stepping algorithm to increase the
time step size. This is particularly apparent in Figure 6.11, the slope of the line measuring
time versus the number of time steps for the adaptive algorithm increases dramatically after
approximately t = 0.08 seconds.

When N = 25 or N = 50 points per dimension, the total number of time steps required
to reach the set error tolerance is much lower than using traditional Krylov subpace spectral
methods. Comparing Figures 6.7 and 6.6, we can see that when using adaptive time stepping
with a starting time step of4t = .0025 seconds the method requires an eighth of the amount
of time steps used in the traditional method.

When the resolution of the problem increases to N = 150, adaptive time stepping
becomes less efficient to use because of the computational power require to reach the set
error tolerance on a high resolution grid. This phenomenon can be clearly seen when
comparing figures 6.9 and 6.8. The number of time steps in the version of Krylov subspace
spectral methods without adaptive time stepping are much less than the version with adaptive
time stepping implemented. This result implies that implementing a step size controller for
a diffusive type problem is most effective on problems with lower resolution (points per
dimension) unless an optimal minimum step size is set (see later experiments).

47



Figure 6.5: The solution of the linearized Allen Cahn equation at the times t = 0.01, 0.03,
0.05, 0.07, 0.11, 0.13, 0.17, .2, with N = 50 points per dimension.

48



Figure 6.6: Time step size (4t) for each time step for using KSS with adaptive time stepping
with N = 50 points per dimension on the linearized Allen Cahn equation. From first figure
(top left) to last (bottom right) the starting time steps are4t = 0.04,0.02,0.01,0.005,0.0025
seconds.

49



Figure 6.7: Time step size (4t) for each time step for using KSS without adaptive time step-
ping with N = 50 points per dimension on the linearized Allen Cahn equation. From first fig-
ure (top left) to last (bottom right) the time step sizes are4t = 0.04,0.02,0.01,0.005,0.0025
seconds.

50



Figure 6.8: Time step size (4t) for each time step for using KSS with adaptive time stepping
with N = 150 points per dimension on the linearized Allen Cahn equation. From first figure
(top left) to last (bottom right) the starting time steps are4t = 0.04,0.02,0.01,0.005,0.0025
seconds.

51



Figure 6.9: Time step size (4t) for each time step for using KSS without adaptive time step-
ping with N = 150 points per dimension on the linearized Allen Cahn equation. From first fig-
ure (top left) to last (bottom right) the time step sizes are4t = 0.04,0.02,0.01,0.005,0.0025
seconds.

52



Figure 6.10: A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The points per
dimension in these experiments were N = 50. The starting time step for both is4t = 0.01.

Figure 6.11: A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The starting time
step for both is4t = 0.01 and there are N = 150 points per dimension.

53



Starting KSS-ATS KSS
Time-step
.04 3 5
.02 5 10

N = 25 .01 6 20
.005 5 40
.0025 8 80
.04 6 5
.02 6 10

N = 50 .01 8 20
.005 8 40
.0025 10 80
.04 12 5
.02 66 10

N = 150 .01 253 20
.005 253 40
.0025 253 80

Table 6.7: A comparison of the final time step count for Krylov subspace spectral methods
with and without adaptive time stepping (KSS-ATS and KSS respectively).

54



6.4 Adaptive Time Stepping Case 1: Comparison of Residuals

As stated in the previous chapter, we define the residual R for the linearized Allen Cahn
equation to be

R = ut−Lu (6.8)

where ut is the first derivative of u with respect to time, and L = α4+(1− 3u2
0). Since

KSS methods split high and low frequency components of the solution as explained in the
frequency analysis section of Chapter 5, we will use RH to denote the residual obtained
from the high frequency components of the solution and RL to denote the residual obtained
from the low frequency components of the solution. The high frequency components of
the solution are obtained from using KSS as described in Chapter 2, and the low frequency
components of the solution are obtained from Krylov Projection (KP) [9].

Figures 6.12 and 6.13 show a plots of the high and low frequency residuals at times
t = 0.01, 0.032196, 0.057856, 0.075929, 0.11258, 0.1363, 0.17295, 0.2. The residual
for the high frequency components is much smaller than the residual computed for the
low frequency components. This is to be expected since it has been shown that KSS is
generally more accurate than Krylov Projection for these types of problems [1].The residuals
computed for the high frequency components range from −1×10−9 to 1×10−9 and the
residuals computed for the low frequency components range from −1×10−5 to 1×10−5.
This behavior coincides with previous work by Cibotarica et al [1]. Since the residual for the
low frequency components of the solution is much larger than those of the high frequency
components, the error estimation for the step size controller will depend primarily on the
size of the low frequency residual.

Tables 6.8, 6.9, 6.10, and 6.11 contain different local error estimates for KSS with and
without adaptive time stepping using starting step size 4t = 0.04.The equations used to
calculate each error estimate are:

Low Frequency Error =
||RL||∞

||bL +bH ||∞
(6.9)

High Frequency Error =
||RH ||∞
||bL +bH ||∞

(6.10)

Relative Residual =
||RL +RH ||∞
||bL +bH ||∞

(6.11)

Residual = RH +RL. (6.12)

In Tables 6.8 and 6.10, the residual column contains the error approximation for the accepted
step sizes. The error approximations for KSS-ATS are very uniform as expected. This is

55



due to the fact that if the error approximation calculated using any given step size was too
high, the step size controller shortened the step size to increase accuracy. Without adaptive
time-stepping, the error approximation can be more than ten times higher especially at the
beginning and the end of the time domain.

Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.048916 0.04 0 0.00010967 0.00010967 5.468e-05
2 0.071225 0.088916 1.2959e-10 7.3988e-05 7.3988e-05 3.2393e-05
3 0.10778 0.16014 4.0123e-12 6.8197e-05 6.8197e-05 2.8861e-05
4 0.013918 0.17011 1.1197e-08 8.414e-05 8.4144e-05 3.6703e-05
5 0.016311 0.18402 1.5781e-09 0.00014161 0.00014161 6.2126e-05
6 0.018203 0.2 6.4656e-10 0.00015292 0.00015292 6.7616e-05

Table 6.8: Estimates of local error for the linearized Allen Cahn equation with N = 50 points
per dimension computed using the adaptive time stepping algorithm. The starting time step
size estimate used was4t = 0.04 seconds.

Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.04 0.04 0 0.00010967 0.00010967 5.468e-05
2 0.04 0.08 8.013e-10 4.5163e-05 4.5164e-05 1.9773e-05
3 0.04 0.12 1.1396e-10 2.2638e-05 2.2638e-05 9.592e-06
4 0.04 0.16 1.2766e-11 3.5129e-05 3.5129e-05 1.4944e-05
5 0.04 0.2 2.6902e-11 0.00066233 0.00066233 0.00028887

Table 6.9: Estimates of local error for the linearized Allen Cahn equation with N = 50 points
per dimension computed without the use of adaptive time stepping.

56



Figure 6.12: The residual from using KSS on the high frequency components at
each time step when adaptive time stepping was used. Here N = 50 and t =
0.01, 0.032196, 0.057856, 0.075929, 0.11258, 0.1363, 0.17295, 0.2.

57



Figure 6.13: The computed residual from Kylov Projection on the the low frequency
components at each time step when adaptive time stepping was used. Here N = 50 and
t = 0.01, 0.032196, 0.057856, 0.075929, 0.11258, 0.1363, 0.17295, 0.2.

58



Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.014032 0.01 0 7.2417e-05 7.2417e-05 3.6197e-05
2 0.015222 0.024032 1.9321e-06 0.0001642 0.00016441 7.8321e-05
3 0.01691 0.039254 2.4758e-07 0.00016087 0.00016078 7.2951e-05
4 0.017466 0.056164 9.6755e-08 0.00020694 0.00020693 9.0742e-05
5 0.01926 0.07363 8.4663e-08 0.00017383 0.00017382 7.4578e-05
6 0.022229 0.092891 5.0941e-08 0.00015327 0.00015325 6.5049e-05
7 0.045867 0.11512 2.5124e-08 2.6917e-05 2.6904e-05 1.1383e-05
8 0.088932 0.16099 8.2834e-12 3.2321e-05 3.2321e-05 1.3719e-05
9 0.013073 0.17074 1.0453e-07 9.5143e-05 9.5162e-05 4.1533e-05

10 0.015087 0.18381 1.2874e-07 0.00014819 0.00014822 6.5057e-05
11 0.016986 0.1989 9.8652e-08 0.00015845 0.00015847 7.0065e-05
12 0.0058312 0.2 3.5864e-07 1.3146e-06 1.5105e-06 6.7334e-07

Table 6.10: Estimates of local error for the linearized Allen Cahn equation with N = 150
points per dimension computed using the adaptive time stepping algorithm. The starting
timestep size estimate used was4t = 0.04 seconds.

Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.04 0.04 0 0.010403 0.010403 0.0052
2 0.04 0.08 1.5325e-08 0.00063215 0.00063215 0.00027686
3 0.04 0.12 1.1245e-09 0.00099291 0.0009929 0.00042066
4 0.04 0.16 3.3118e-11 0.00011567 0.00011567 4.9205e-05
5 0.04 0.2 4.9632e-10 0.00073846 0.00073846 0.00032211

Table 6.11: Estimates of local error for the linearized Allen Cahn equation with N = 150
points per dimension computed without the use of adaptive time stepping.

59



Figure 6.14: A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next figure is for 1/4
of initial starting step size, and the last figure is for 1/16 of the initial starting step size.

60



Figure 6.15: A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next figure is for 1/4
of initial starting step size, and the last figure is for 1/16 of the initial starting step size.

61



6.5 Adaptive Time Stepping Case 1: Performance

In this section we compare the performance of KSS-ATS with KSS as described in Chapter
2, Krylov Projection (KP), and Leja Interpolation (LEJA). Figure 6.16 depicts the relative
error of the methods using varying starting time step sizes. Because of the chosen tolerance,
KSS-ATS is not as accurate as KSS but is significantly more accurate than Krylov Projection
(in most cases) and Leja interpolation. This phenomenon can also be seen in Figure 6.17
which depicts the relative error of the methods with the execution time. Although Krylov
Projection does relatively well on low resolution grids, it does not continue to do well as the
resolution increases. KSS without adaptive time stepping performs the best at the smallest
time step sizes, but when the first time step size is large, KSS with adaptive time stepping
has a much smaller relative error.

It should be noted that in previous sections KSS methods only required a Krylov subspace
of dimension 4 for all time step sizes and on any grid. Since the results from this section are
obtained from using KSS only on the high frequency components of the solution and Krylov

Figure 6.16: Relative Error (logarithmically scaled for varying starting time step sizes for
the linearized Allen Cahn equation.)

62



Figure 6.17: Relative Error versus execution time (logarithmically scaled) for varying
starting time step sizes for the linearized Allen Cahn equation.)

Projection on the low frequency components, the average number of Lanczos iterations
required will increase due to this high/low frequency split.

63



KSS-ATS KSS KP LEJA
4.5001e-07 5.3121e-08 1.6791e-05 0.0010

N = 25 5.4086e-09 2.9308e-10 4.8585e-06 3.2654e-05
1.9623e-10 2.8443e-11 1.0834e-06 1.9609e-05
1.3268e-09 3.7545e-12 1.0376e-09 3.1185e-06
7.4963e-10 2.8244e-11 8.5101e-11 2.4773e-06
3.4654e-07 1.6025e-06 2.238e-05 0.015756

N = 50 1.5395e-08 1.7359e-09 7.1928e-06 0.00017377
2.4321e-10 1.6514e-10 3.1733e-06 7.2937e-05
1.1643e-09 1.2885e-11 8.6563e-07 2.0942e-05
2.5983e-10 9.8412e-12 6.8766e-08 3.3349e-07
3.2607e-07 2.2329e-06 0.0037182 0.048547

N = 150 1.551e-09 3.9276e-08 0.00090998 0.0014814
1.9885e-10 3.0713e-09 4.0716e-06 0.0010469
1.9885e-10 2.4359e-10 1.6116e-06 2.9298e-05
1.9885e-10 3.4122e-11 5.3783e-07 5.9134e-06

Table 6.12: Relative Error for the linearized Allen Cahn equation for starting time step sizes
4t = 0.04, 0.02, 0.01, 0.005, 0.0024 seconds.

KSS-ATS KSS KP LEJA
0.0156 0.0313 0 0.9219

N=25 0.0313 0.0156 0 0.5625
0.0625 0.2500 0.03125 0.7969
0.0313 0.2813 0.0781 1.8125
0.0625 0.6250 0.0313 3.7344
0.1875 0.09375 0 0.78125

N=50 0.09375 0.20313 0.10938 0.6875
0.5 0.46875 0.0625 1.25
0.17188 0.67188 0.25 2.625
0.375 1.3281 0.67188 5.1563
1.6563 0.60938 0.10938 0.6875

N=150 9.3906 1.1406 0.65625 1.1875
33.516 2.1875 1.2344 2.0156
33.031 4.5938 1.9688 3.8438
33.047 8.625 3.4531 7.1875

Table 6.13: Execution time for linearized Allen Cahn Equation for starting time step sizes
4t = 0.04, 0.02, 0.01, 0.005, 0.0024 seconds.

64



KSS-ATS KSS KP LEJA
5.67 5.2 3.2 10

N=25 5.7 5.5 3.2 10
6.11 5.45 3.45 9
7.17 5.15 3.65 10
6.3 4.475 3.89 10
4.125 5 3.4 13.6

N=50 5.8571 5.4 4.2 16
6.6 5.6 3.75 14.3
6.625 5.2 3.8 10.95
6.3333 4.7375 3.8875 10
4.25 4.8 3 58

N=150 4.3765 5.2 5.9 54.4
4.135 5.4 7.55 30.2
4.1292 5.2 6.55 27.1
4.1235 4.7875 6.0125 24.163

Table 6.14: Average number of iterations for the linearized Allen Cahn Equation for starting
time step sizes4t = 0.04, 0.02, 0.01, 0.005, 0.0024 seconds.

65



6.6 Adaptive Time Stepping Case 1: Inclusion of a Minimum Step Size

In previous sections, the step size controller used for adaptive time stepping allowed the
time steps to become as big or as small as needed to reach the set error tolerance. This
caused the number of time steps for problems with a large grid size (N = 150) to grow very
large. Allowing the step size controller to decrease the time step size to a very small number
was very helpful in terms of accuracy but it became extremely inefficient.

Figures 6.18 and 6.19 compare the relative error against the total execution time and the
relative error against the starting time step size. The minimum step sizes in these figures
are hmin= 0.02, 0.01 and 0.005. From these figures, we can see that although there is a
slight disadvantage to choosing a minimum step size in terms of accuracy, there is a large
advantage in terms of efficiency of the method.

From Figure 6.18 it can be observed that choosing a minimum step size reduces the
execution time of the algorithm significantly, especially on high resolution grids (N = 150).
This is due to the fact that setting a minimum step size reduces the amount of time steps

Figure 6.18: Relative Error (logarithmically scaled) for varying starting time step sizes for
the linearized Allen Cahn equation.

66



Figure 6.19: Execution time (logarithmically scaled) for varying starting time step sizes for
the linearized Allen Cahn equation.

used. In general, as the minimum step size increases, the total number of time steps decrease
but this also increases the relative error slightly.

67



Figure 6.20: Relative error vs execution time (logarithmically scaled) for varying starting
time step sizes for the linearized Allen Cahn equation.

6.7 Adaptive Time Stepping Case 1: Without the High and Low Frequency Split

In this section we consider KSS methods without the high/low frequency split described in
[1]. Like in the previous section we will also consider the grid resolution sizes N = 25, 50,
and 150. In the graphs the label KSS-ATS2 and KSS2 will depict the experimental results
obtained from the KSS method with and without adaptive time stepping method and without
the frequency split.

Recall from Section 6.4, when the high and low frequency components are split, most
of the error per time step comes from performing Krylov Projection on the low frequency
components of the solution. When we no longer perform this split, in general, KSS is
less accurate which can be observed when comparing Tables 6.15 and 6.12. The accuracy
results of implementing adaptive time stepping are approximately the same but the execution
times of adaptive time stepping without splitting the high and low frequency components is
significantly less as shown in 6.23.

Figures 6.25, 6.26, and 6.27 depict the time step sizes with different starting time step

68



Figure 6.21: A logarithmically scaled (log10) comparison of execution time and relative
error between KSS-ATS, KSS, KP, and LEJA.

values with grid sizes N = 25, 50, and 150 respectively. As with previous experiments, for
grid sizes N = 25 and N = 50 the total number of time steps taken when using adaptive time
stepping are relatively small compared to KSS without adaptive time stepping but when the
grid size increases to N = 150 KSS with adaptive time stepping loses its advantage.

When comparing the number of time steps for KSS-ATS2 for each starting time step size
in Figure 6.26 to the number of time steps for KSS-ATS in Figure 6.6, we can see that the
total number of time steps required is less when the high/low frequency split is performed.
This implies that the execution time for KSS-ATS2 is less than that of KSS-ATS.

Next we will consider using a minimum step size to counteract the significant increase
in number of time steps observed in high resolution grid sizes. Table 6.15 contains the
relative error on grid sizes N = 25, 50, and 150 for starting time steps4t = 0.04, 0.02, 0.01,
0.005, and 0.0025. The relative error KSS-ATS2 with a minimum step size is approximately
the same as KSS-ATS2 without a minimum step size except at the largest grid size. The
benefit of setting a minimum step size is particularly apparent when examining the execution
times of all 3 methods at a large grid size (N = 150). When adaptive time stepping with a

69



Figure 6.22: A logarithmically scaled (log10) comparison of starting time step size and
relative error between KSS-ATS, KSS, KP, and LEJA.

minimum step size is implemented, the execution time at smaller starting time step sizes is
ten times faster.

70



Figure 6.23: A logarithmically scaled (log10) comparison between execution time and
relative error for KSS-ATS and KSS with and without the frequency split.

71



Figure 6.24: A logarithmically scaled (log10) comparison between starting time step size
and relative error for KSS-ATS and KSS with and without the frequency split.

72



Figure 6.25: Time step size (4t) for each time step for using KSS using adaptive time
stepping without splitting the high and low frequency components (KSS-ATS2). N = 25
points per dimension. From first figure (top left) to last (bottom right) the starting time step
sizes are4t = 0.04,0.02,0.01,0.005,0.0025 seconds.

73



Figure 6.26: Time step size (4t) for each time step for using KSS using adaptive time
stepping without splitting the high and low frequency componenets. N = 50 points per
dimension.From first figure (top left) to last (bottom right) the starting time step sizes are
4t = 0.04,0.02,0.01,0.005,0.0025 seconds.

74



Figure 6.27: Time step size (4t) for each time step for using KSS using adaptive time
stepping without splitting the high and low frequency componenets. N = 150 points per
dimension.From first figure (top left) to last (bottom right) the starting time step sizes are
4t = 0.04,0.02,0.01,0.005,0.0025 seconds.

75



KSS-ATS2 KSS2 KSS-ATS2
with hmin=0.01

3.6242e-08 4.537e-08 3.6242e-08
N=25 1.7882e-08 4.8474e-09 1.7882e-08

2.6315e-09 5.2853e-10 3.5713e-09
2.6315e-09 6.0639e-11 3.5713e-09
2.6315e-09 7.2363e-12 2.6315e-09
6.9356e-08 5.2352e-08 6.9356e-08

N=50 2.2615e-08 2.0787e-08 2.2615e-08
3.6632e-09 5.0852e-06 3.6632e-09
3.6632e-09 3.4751e-06 3.6632e-09
2.3256e-09 8.1189e-12 2.3256e-09
6.9074e-08 4.05e-07 6.9074e-08

N=150 2.1176e-09 1.017e-06 8.6758e-07
2.5167e-10 1.454e-06 8.4545e-07
2.5167e-10 6.0926e-07 8.4545e-07
2.1183e-10 5.5772e-07 3.8163e-07

Table 6.15: Relative Error for KSS with and without adaptive time stepping without the
high/low frequency split for starting time step sizes4t = 0.04, 0.02, 0.01, 0.005, 0.0024
seconds.

KSS-ATS2 KSS2 KSS-ATS2
with hmin=0.01

4 4 4
N=25 4 4 4

4 4 4
4 4 4
4 4 4
4 4 4

N=50 4 4 4
4 4 4
4 4 4
4 4 4
4 4 4

N=150 4 4 4
4 4 4
4 4 4
4 4 4

Table 6.16: Number of Iterations for KSS with and without adaptive time stepping without
the high/low frequency split for starting time step sizes4t = 0.04, 0.02, 0.01, 0.005, 0.0024
seconds.

76



KSS-ATS2 KSS2 KSS-ATS2
with hmin=0.01

0.0625 0 0.078125
N=25 0.046875 0.078125 0.078125

0.0625 0.10938 0.17188
0.125 0.28125 0.14063
0.078125 0.40625 0.09375
0.046875 0.03125 0.046875

N=50 0.046875 0.10938 0.078125
0.125 0.3125 0.078125
0.10938 0.34375 0.09375
0.10938 0.70313 0.125
0.20313 0.42188 0.1875

N=150 36.313 0.67188 3.2188
45.516 1.125 3.6406
44.344 2.4219 3.625
46.453 5.5938 3.6719

Table 6.17: Execution time per time step size for KSS with and without adaptive time
stepping without the high/low frequency split for starting time step sizes4t = 0.04, 0.02,
0.01, 0.005, 0.0024 seconds.

77



Figure 6.28: A logarithmically scaled (log10) comparison of starting time step size and
relative error between ATS including a minimum step size, ATS2 including a minimum step
size, ATS, KSS2, and ATS2

78



Figure 6.29: A logarithmically scaled (log10) comparison of execution time and relative
error between ATS including a minimum step size, ATS2 including a minimum step size,
ATS, KSS2, and ATS2

79



6.8 Krylov Subspace Spectral Methods with Adaptive Time Stepping Case 2: 2-D
Linear Systems of Equations

In this section we consider a linearized version of the Brusselator problem:

ut = 1+uv2−4u+αO2u, x,yε[0,1], tε[0, .1], (6.13)

vt = 3u−u2v+αO2u, (6.14)

with α = 0.2 and homogeneous Dirichlet boundary conditions. The initial data is

u0 = sin(5πx)sin(3πy) (6.15)

v0 = sin(7πx)sin(4πy). (6.16)

We begin by examining the computed solution of the linearized Brusselator system using the
time step sizes specified in the first plot in Figure 6.33. Figure 6.30 are plots of the solution
u (labeled component 1) and Figure 6.31 are plots of the solution v (labeled component
2). Since the Brusselator system of equations is a reaction diffusion type of problem (as
is the linearized version) the solutions for both components become less oscillatory over
time. Like the case with the linearized Allen Cahn equation discussed in the last section, a
diffusive problem implies that an effective step size controller would decrease the time step
size for the first few time steps then slowly allow the time step sizes to grow larger as the
solutions become less oscillatory. This is the case, as seen in Figures 6.32, 6.33, 6.35 and
6.37. Figures 6.32 and 6.37 depict the final time after each time step for the grid resolution
sizes N = 50 and N = 150 using KSS with and without adaptive time stepping. In both
figures, between t = 0.05 and t = 0.06 seconds, the slope of the curve becomes steeper
(athough it is more pronounced in Figure 6.32 due to the lower count of time steps). This
indicates that the solution smooths out enough for the error estimation to be low enough to
increase the time step by a large amount.

Similar to the linearized Allen Cahn equation, when the resolution of the problem
increases from N = 50 to N = 150, adaptive time stepping becomes less efficient due to
the need of smaller time steps but in this case this effect is not as impactful. By comparing
figures 6.33 and 6.35, we can see that for N = 50 as the starting time step size changes from
4t = 0.01 to 4t = 0.000625 the number of time steps taken are 32, 42, 37, 45, and 61 .
When N = 150 points per dimension, the number of time steps taken are 39, 67, 91, 194,
and 270 (see table 6.18 ). Although there is a significant increase between the number of
time steps required on the lower resolution grid and a higher resolution grid, this increase is
not as pronounced as it was for the linearized Allen Cahn problem.

80



Figure 6.30: The first component of the solution to the Brusselator system of equations with
N = 50 points per dimension.

Figure 6.31: The second component of the solution to the Brusselator system of equations
with N = 50 points per dimension.

81



Figure 6.32: A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The starting time
step for both is4t = 0.0025 and there are N = 50 points per dimension.

Starting Time Step Size N = 50 N = 150
.01 32 39

Linearized .005 42 67
Brusselator .0025 37 91

.00125 45 194

.000625 61 270

.04 6 12
Linearized .02 6 66
Allen Cahn .01 8 253

.005 8 253

.0025 10 253

Table 6.18: Total number of time steps taken for the grid sizes N = 50 and N = 150 for both
the linearized Allen Cahn problem and the linearized Brusselator problem

82



Figure 6.33: Time step size (4t) for each time step for using KSS with adaptive time
stepping with N = 50 points per dimension on the linearized Brusselator system of
equations. From first figure (top left) to last (bottom right) the starting time steps are
4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds.

83



Figure 6.34: Time step size (4t) for each time step for using KSS without adaptive
time stepping with N = 50 points per dimension on the linearized Brusselator system
of equations. From first figure (top left) to last (bottom right) the time step sizes are
4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds.

84



Figure 6.35: Time step size (4t) for each time step for using KSS with adaptive time
stepping with N = 150 points per dimension on the linearized Brusselator system of
equations. From first figure (top left) to last (bottom right) the starting time steps are
4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds.

85



Figure 6.36: Time step size (4t) for each time step for using KSS without adaptive
time stepping with N = 150 points per dimension on the linearized Brusselator system
of equations. From first figure (top left) to last (bottom right) the time step sizes are
4t = 0.01,0.005,0.0025,0.00125,0.000625 seconds.

86



Figure 6.37: A comparison of the final time after each time step for KSS with adaptive time
stepping on the left and KSS without adaptive time stepping on the right. The starting time
step for both is4t = 0.0025 and there are N = 150 points per dimension.

87



6.9 Adaptive Time Stepping Case 2: Comparison of Residuals

Similar to the linearized Allen Cahn problem, we can define the residual for the linearized
Brusselator problem to be

R = yt−Ly (6.17)

where L is a matrix of differential operators and y is the matrix containing the solutions u

and v.
Tables 6.19, 6.20 contain error estimates for grid resolution N = 50 points per dimension

obtained from equations (6.9) through (6.12). At the bottom of each table, the average error
estimate for each column is calculated using the following formula

Avg =
∑

n
j=1 err j

n
(6.18)

where Avg is the average, err j is the error estimate of the jth time step, and n is the total
number of time steps. By comparing the average low frequency error and average relative
error, we observe that when using either KSS with or without adaptive time stepping these
values are the same. This is due to the use of Krylov Projection on the low frequencies.
Since the low frequency error is much larger than the high frequency error (which the error
obtained by using KSS on high frequencies), the low frequency error term influences the
residual size the most. This implies that the adaptive step sizes are most influenced by
the error obtained on the low frequencies. From Tables 6.19 and 6.20, we can also see
that although the average high frequency error for KSS without adaptive time stepping is
smaller than with adaptive time stepping, the average low frequency error for KSS without
adaptive time stepping is much higher. This is due to the fact that the low frequency error
is the dominating error in the error approximation that is used for the step size controller.
Therefore the adaptive time stepping algorithm for KSS is essentially minimizing the low
frequency error.

Tables 6.21, 6.22 contain error estimates for grid resolution N = 150 points per dimension
obtained from equations equations (6.9) through (6.12). Similar to when N = 50, we can
observe from Tables 6.21 and 6.22 that the low error for low frequencies is much higher
than the error for high frequencies. Therefore, even on a grid with higher resolution, the low
frequency error dominates the error approximation for the step size controller. Therefore
the step size for adaptive time stepping increases or decreases the time step based on low
frequency error.

88



Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.005383 0.005 0 8.0216e-05 8.0216e-05 8.014e-05
2 0.0024354 0.0063457 1.7143e-08 2.4087e-05 2.4086e-05 1.6872e-05
3 0.0027282 0.0087811 2.3591e-09 0.00011163 0.00011163 7.1133e-05
4 0.0031773 0.011509 1.1061e-09 0.00011794 0.00011794 6.3306e-05
5 0.0036657 0.014687 9.9021e-10 0.00014704 0.00014704 6.512e-05
6 0.0030715 0.01652 2.6907e-09 6.0029e-05 6.0029e-05 2.1248e-05
7 0.0016577 0.018055 4.4567e-10 0.00025566 0.00025566 7.9515e-05
8 0.0011923 0.018884 4.7895e-09 0.00012038 0.00012038 3.3595e-05
9 0.0037236 0.020077 9.5342e-11 1.2473e-05 1.2473e-05 3.2831e-06

10 0.0033127 0.021938 1.8653e-10 7.3367e-05 7.3367e-05 1.7752e-05
11 0.0019387 0.023595 2.1215e-09 0.00029393 0.00029393 6.2359e-05
12 0.0015348 0.024564 1.6773e-10 0.00013349 0.00013349 2.5195e-05
13 0.004028 0.026099 7.1555e-10 3.1389e-05 3.1389e-05 5.5323e-06
14 0.0027929 0.028113 2.0886e-10 0.00023711 0.00023711 3.7497e-05
15 0.0019239 0.029509 3.3973e-09 0.00027876 0.00027876 3.8239e-05
16 0.0027467 0.031433 3.3298e-10 0.00027652 0.00027652 3.4369e-05
17 0.002139 0.032807 3.6342e-09 0.00024394 0.00024394 2.6467e-05
18 0.0031928 0.034946 2.7279e-10 0.00030535 0.00030535 3.0068e-05
19 0.0024669 0.036542 3.8284e-09 0.00032008 0.00032008 2.7099e-05
20 0.0032407 0.039009 1.9433e-10 0.00058317 0.00058317 4.4109e-05
21 0.0034114 0.04225 6.273e-10 0.0013491 0.0013491 8.5731e-05
22 0.0036482 0.045661 1.6483e-10 0.0016176 0.0016176 8.1766e-05
23 0.0040052 0.049309 1.0675e-10 0.001902 0.001902 7.5568e-05
24 0.0042689 0.053314 1.2645e-10 0.0026893 0.0026893 8.2592e-05
25 0.0047453 0.057583 1.0304e-10 0.0031448 0.0031448 7.2803e-05
26 0.0050494 0.062329 9.1454e-11 0.0048451 0.0048451 8.3002e-05
27 0.0055872 0.067378 7.0785e-11 0.0060208 0.0060208 7.3811e-05
28 0.0062184 0.072965 5.7828e-11 0.0084456 0.0084456 7.2535e-05
29 0.0072213 0.079184 7.6489e-13 0.01102 0.01102 6.3856e-05
30 0.007987 0.086405 4.9475e-13 0.019759 0.019759 7.3908e-05
31 0.032902 0.094392 6.6318e-13 0.00063548 0.00063548 1.4305e-06
32 0.033467 0.1 7.8963e-11 0.0003662 0.0003662 4.7051e-07

Average .005464 0.039349 1.44e-09 0.002047 0.002047 4.84e-05

Table 6.19: Estimates of local error for the linearized Brusselator system of equations with
N = 50 points per dimension computed using the adaptive time stepping algorithm. The
starting timestep size estimate used was4t = 0.01 seconds.

89



Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.01 0.01 0 0.00069523 0.00069523 0.00069457
2 0.01 0.02 3.664e-11 0.0020302 0.0020302 0.0010001
3 0.01 0.03 1.6405e-12 0.016124 0.016124 0.0039226
4 0.01 0.04 1.7709e-12 0.013857 0.013857 0.0016635
5 0.01 0.05 1.9582e-12 0.010965 0.010965 0.00064962
6 0.01 0.06 4.9312e-13 0.013701 0.013701 0.00040069
7 0.01 0.07 9.8791e-13 0.022048 0.022048 0.00031847
8 0.01 0.08 9.085e-13 0.013962 0.013962 9.9669e-05
9 0.01 0.09 1.9351e-12 0.031082 0.031082 0.00010974

10 0.01 0.1 3.9761e-13 0.0017904 0.0017904 3.1296e-06
Average 0.01 0.055 4.67e-12 0.012625 0.012625 0.000886

Table 6.20: Estimates of local error for the linearized Brusselator system of equations with
N = 50 points per dimension computed without using the adaptive time stepping algorithm.
The starting time step size used was4t = 0.01 seconds.

Figure 6.38: A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next figure is for 1/4
of initial starting step size, and the last figure is for 1/16 of the initial starting step size.

90



Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.0013443 0.00125 0 8.0398e-05 8.0398e-05 8.0389e-05
2 0.0014235 0.0025943 6.8483e-08 9.1958e-05 9.2003e-05 8.4223e-05
3 0.0015094 0.0040179 6.5758e-08 0.00010072 0.00010077 8.3887e-05
4 0.0016074 0.0055273 5.7363e-08 0.00010996 0.00010999 8.28e-05
5 0.0017167 0.0071347 4.8535e-08 0.00012131 0.00012134 8.2087e-05
6 0.0018415 0.0088514 4.0426e-08 0.00013416 0.00013419 8.1014e-05
7 0.0019814 0.010693 3.2845e-08 0.0001502 0.00015018 8.0289e-05
8 0.0021082 0.012674 2.5149e-08 0.00017691 0.00017692 8.3012e-05
9 0.00095752 0.013201 1.0743e-06 4.0913e-05 4.0906e-05 1.6677e-05

10 0.0022806 0.014159 3.3472e-08 1.8855e-05 1.8844e-05 7.4007e-06
11 0.0023693 0.01644 3.0028e-09 0.00024306 0.00024306 8.9188e-05
12 0.00095649 0.017032 3.2404e-06 7.6162e-05 7.6089e-05 2.3749e-05
13 0.0020911 0.017988 2.3762e-08 3.198e-05 3.1978e-05 9.5699e-06
14 0.0015892 0.019034 2.5842e-08 0.00010184 0.00010183 2.8476e-05
15 0.0012156 0.019829 1.3932e-07 0.00010759 0.00010758 2.7931e-05
16 0.0016646 0.021044 7.8131e-09 0.00015872 0.00015872 3.8948e-05
17 0.0012413 0.021876 1.1394e-07 0.00013392 0.00013391 3.0143e-05
18 0.0021271 0.023118 5.4357e-09 9.3663e-05 9.3663e-05 1.9873e-05
19 0.0014277 0.024181 4.8448e-08 0.00021278 0.00021277 4.1337e-05
20 0.0016817 0.025609 4.6353e-09 0.00033969 0.00033969 6.1194e-05
21 0.0017363 0.027291 5.5063e-09 0.00055812 0.00055812 9.0851e-05
22 0.0019159 0.029027 8.6356e-10 0.00051527 0.00051527 7.4434e-05
23 0.0020636 0.030943 1.0179e-09 0.00062673 0.00062673 8.0033e-05
24 0.0022956 0.033006 1.9073e-10 0.00065175 0.00065175 7.2641e-05
25 0.0025205 0.035302 1.8753e-10 0.00078475 0.00078475 7.5542e-05
26 0.002778 0.037823 3.6824e-10 0.00091325 0.00091325 7.4689e-05
27 0.0030787 0.040601 3.0659e-10 0.0010744 0.0010744 7.3471e-05
28 0.0033835 0.043679 2.5472e-10 0.0013418 0.0013418 7.5334e-05
29 0.0037222 0.047063 1.8128e-10 0.0016647 0.0016647 7.5112e-05
30 0.0040696 0.050785 1.2232e-10 0.0021561 0.0021561 7.6518e-05
31 0.004465 0.054855 7.6271e-11 0.0027784 0.0027784 7.5713e-05
32 0.0048601 0.05932 4.4177e-11 0.0037977 0.0037977 7.7541e-05
33 0.0053129 0.06418 2.5283e-11 0.0051457 0.0051457 7.6549e-05
34 0.0058181 0.069493 1.3122e-11 0.0072239 0.0072239 7.6148e-05
35 0.006353 0.075311 6.2264e-12 0.010617 0.010617 7.6809e-05
36 0.0071789 0.081664 3.1576e-12 0.014462 0.014462 6.9303e-05
37 0.0078128 0.088843 1.1634e-12 0.025376 0.025376 7.7581e-05
38 0.00793 0.092749 1.4126e-09 0.0064936 0.0064936 1.1954e-05
39 0.0095199 0.1 3.3383e-12 0.031623 0.031623 4.4185e-05

Average 0.0030706 0.034569 1.3e-07 0.003085 0.003085 6.17e-05

Table 6.21: Estimates of local error for the linearized Brusselator system of equations with
N = 150 points per dimension computed using the adaptive time stepping algorithm. The
starting timestep size estimate used was4t = 0.01 seconds.91



Number of 4t t High Low Relative Residual
Time Steps Frequency Frequency Residual

Error Error
1 0.01 0.01 0 0.047307 0.047307 0.047302
2 0.01 0.02 1.4129e-13 0.040492 0.040492 0.019955
3 0.01 0.03 3.5218e-14 0.014575 0.014575 0.003533
4 0.01 0.04 1.2402e-13 0.02552 0.02552 0.0030411
5 0.01 0.05 5.0207e-14 0.040526 0.040526 0.0023741
6 0.01 0.06 7.1807e-14 0.012181 0.012181 0.00035093
7 0.01 0.07 2.7325e-14 0.023805 0.023805 0.00033741
8 0.01 0.08 7.8023e-14 0.071964 0.071964 0.00050214
9 0.01 0.09 7.3612e-14 0.099621 0.099621 0.00034249

10 0.01 0.1 4.9479e-14 0.27109 0.27109 0.00045967
Average 0.01 .055 6.5e-14 0.064708 0.064708 0.00782

Table 6.22: Estimates of local error for the linearized Brusselator system of equations with
N = 150 points per dimension computed without using the adaptive time stepping algorithm.
The starting timestep size estimate used was4t = 0.01 seconds.

Figure 6.39: A comparison of execution time (t) and the size of the residual at that time. The
top left figure contains the residual for the initial starting step size, the next figure is for 1/4
of initial starting step size, and the last figure is for 1/16 of the initial starting step size.

92



6.10 Adaptive Time Stepping Case 2: Performance

In this section, we will compare the performance of KSS and KSS-ATS with Krylov
Projection (KP) as described in [1] and Leja interpolation (LEJA). Figure 6.40 shows the
relative error for different starting time step sizes. The first time step size was4t = .01 and
then was decreased by a factor of 1

2 four times. In terms of accuracy, KSS-ATS was the
most accurate method at larger time steps for both of the coarser grid resolutions (N = 25
and N = 50) and the most accurate at every time step size for the highest resolution. From
Figure 6.40 we can see that as the grid size resolution gets higher, KSS-ATS becomes the
most appealing method accuracy wise. Figure 6.41 shows the relative error of each method
versus the execution time of the method for each time step size. Here we see that at the
lowest resolutions, the execution time for Krylov Projection was, in general, smaller than for
other methods while Leja interpolation had the largest execution times. At N = 25 points per
dimension, KSS and KSS-ATS has very similar execution times but at N = 50 and N = 150
KSS-ATS had slightly larger execution times. This is most likely due to the fact that when
decreasing a time step size there is some repetition of computation that adds to KSS-ATS’s
computational expense.

Table 6.10 contains the average number of arnoldi iterations for each method. Leja
interpolation used by far the most Arnoldi iterations while KSS and KSS-ATS used the least
on average. This is especially true at high grid size resolution (N = 150).

KSS-ATS KSS KP LEJA
0.00023845 0.00093887 0.0011416 2.9889

N = 50 1.7004e-05 8.4691e-05 0.00032831 0.093217
1.1607e-06 2.2402e-06 7.1968e-05 0.0042728
5.6335e-08 4.0861e-08 1.6787e-05 0.0022783
6.3369e-09 1.1379e-09 6.6769e-08 0.00030902
0.0003207 0.0010772 0.001791 20.401

N = 150 1.7503e-05 0.0001113 0.00036163 4.3314
9.023e-07 3.7286e-06 9.4574e-05 0.1001
6.2342e-08 4.5857e-07 2.4945e-05 0.0066592
1.4338e-08 4.0675e-08 6.5058e-06 0.00049425

Table 6.23: Relative error for linearized Brusselator equation for starting time step size
4t = 0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625

93



Figure 6.40: Relative error (logarithmically scaled) for varying starting time step sizes for
the Linearized Brusselator Equation with N=25, N=50, then N=150 points per dimension.

KSS-ATS KSS KP LEJA
1.9063 0.67188 0.14063 0.82813

N = 50 2.1094 0.89063 0.23438 1.2188
2.25 1.0938 0.51563 2.2813
3.8125 2.2188 0.6875 4.9531
4.0469 4.4063 1.3906 9.7031
12.781 3.6094 4.6406 1.7031

N = 150 22.125 7.3594 6.0625 2.7969
27.141 14 8.5625 5.4844
67.547 28.25 11.719 11.859
75.125 43.281 17.609 20.547

Table 6.24: Times for linearized Brusselator equation for starting time step sizes4t = 0.02,
0.01, 0.005, 0.0025, 0.00125, 0.000625.

94



Figure 6.41: Relative error (logarithmically scaled) and the execution time for the Linearized
Brusselator Equation with N=25, N=50, then N=150 points per dimension.

KSS-ATS KSS KP LEJA
4.2444 5.9 6.4 11

N = 50 4.2787 5.7 5.55 11.45
5.2459 5.05 4.925 10.425
5.5333 5 4.375 9.35
5.77 5 4.3625 9.5813
4.2353 6.2 15.4 35.5

N = 150 4.1667 6.55 13.5 23
4.5288 5.775 10.425 23.725
4.6654 5 7.8625 21.05
5.0253 5 6.025 17.281

Table 6.25: Number of iterations for linearized Brusselator equation for starting time step
sizes4t = 0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625.

95



6.11 Adaptive Time Stepping Case 2: Inclusion of a Minimum Step Size

In the previous experiments, no minimum step size was included for adaptive time stepping.
The purpose of not including a minimum step size was to analyze the step size controller’s
effectiveness on the problem and to ensure that a specific error tolerance was reached. Here
we will consider minimum step sizes hmin =0.02, 0.01, and 0.05.

Figures 6.42, 6.43, and 6.44 display a comparison of KSS-ATS with and without a
minimum time step (ATS hmin and ATS respectively). Although the error is slightly higher
when a minimum step size is used, the execution time is less. This is due to the fact that
once a step size is deemed too small by the algorithm, a "small enough" step size is used.
This eliminates the possibility of too much repetitive computation in the algorithm.

Figure 6.42: Comparison of the relative error of KSS (logarithmically scaled with and
without adaptive time stepping with and without the minimum step size with respect to
each starting time step size. hmin = 0.01 has a minimum step size of .01, hmin = 0.02 has a
minimum step size of .02 and hmin = 0.005 has a minimum step size of .005.

96



Figure 6.43: Comparison of the execution times of KSS with and without adaptive time
stepping with and without the minimum step size with respect to each starting time step size.
hmin = 0.01 has a minimum step size of .01, hmin = 0.02 has a minimum step size of .02 and
hmin = 0.005 has a minimum step size of .005.

97



Figure 6.44: Comparison of the execution times versus the relative error of KSS with and
without adaptive time stepping with and without the minimum step size with respect to
each starting time step size. hmin = 0.01 has a minimum step size of .01, hmin = 0.02 has a
minimum step size of .02 and hmin = 0.005 has a minimum step size of .005.

98



Chapter 7

Conclusion

When solving time dependent variable coefficient partial differential equations Krylov Sub-
space Spectral Methods are extremely effective, especially on high frequency components
of the solution. This dissertation focused on eliminating error caused by the low frequency
components of the solution. These two approaches concentrate on the use of the residual
as a local error approximation to improve the accuracy of the method and each has its own
advantages and disadvantages.

It has been shown that the implementation of coarse grid residual correction along with
KSS is both effective and efficient. The effectiveness of KSS at eliminating high frequency
error combined with the effectiveness of coarse grid residual correction to eliminate low
frequency error makes KSS-CGRC far superior to other similar methods. In addition to this,
KSS-CGRC retains KSS methods scalability and so as grid size increases, the benefits of
using KSS-CGRC increase.

It has also been shown that the addition of adaptive time stepping is effective at ensuring
the accuracy of KSS when the starting step size of the method is chosen arbitrarily. When
a step size is chosen that is too large, adaptive time stepping will shrink that step size to
ensure accuracy. Although KSS with adaptive time (KSS-ATS) stepping is not as scalable
as KSS-CGRC, the inclusion of a minimum step size does decrease computational expense.

Future work on this topic may include expanding these methods to solve a wider variety
of problems, developing a threshold to judge when to use adaptive time stepping or coarse
grid residual correction, and using these methods to solve problems on non-rectangular
domains.

99



BIBLIOGRAPHY

[1] J. V. Lambers A. Cibotarica and E. M. Palchak. Solution of nonlinear time-dependent pde
through componentwise approximation of matrix functions. Journal of Computational Physics,
2016.

[2] K. Atkinson. An Introduction to Numerical Analysis. Wiley, 1989.

[3] H. Dozier and J. V. Lambers. Krylov subspace spectral methods with coarse-grid residual
correction for solving time-dependent, variable-coefficient pdes. In Proceedings, International
Conference on Spectral and High Order Methods, 2016.

[4] Haley Dozier. Krylov subspace spectral method with multigrid for a time-dependent, variable-
coefficient partial differential equation, 2016.

[5] A. Cibotarica E. M. Palchak and J. V. Lambers. Solution of time-dependent pde through rapid
estimation of block gaussian quadrature nodes. Linear Algebra and its Applications, 2015.

[6] Stanley J. Farlow. Partial DIfferential Equations for Scientists and Engineers,.

[7] Gene H. Golub and Gerard Meurant. Matrices, Moments and Quadrature with Applications.
Princeton University Press, 2010.

[8] B. Gustafsson, H.O. Kreiss, and J. Oliger. Time-Dependent Problems and Difference Methods.
Wiley, New York, 1995.

[9] Marlis Hochbruck and Christian Lubich. Approximations to the matrix exponential operator.
Numer. Anal., 34:1911–1925, 1996.

[10] Marlis Hochbruck and Christian Lubich. A gautschi-type method for oscillatory second-order
differential equations. Numerische Mathematik, 83:403–426, 1999.

[11] J. V. Lambers. Krylov Subspace Methods for Variable-Coefficient Initial-Boundary Value
Problems. PhD thesis, Stanford University, 2003.

[12] J. V. Lambers. Derivation of high-order spectral methods for time-dependent pde using modified
moments. Electronic Transactions on Numerical Analysis, 28:114–135, 2008.

[13] J. V. Lambers. Enhancement of krylov subspace spectral methods by block lanczos iteration.
Electronic Transactions on Numerical Analysis, 2008.

[14] J. V. Lambers. An explicit, stable, high-order spectral method for the wave equation based on
block gaussian quadrature. IAENG Journal of Applied Mathematics, 38, 2008.

[15] J. V. Lambers. A spectral time-domain method for computational electrodynamics. Adv. Appl.
Math. Mech., 1:781–798, 2009.

[16] James V. Lambers and Amber C. Sumner. Explorations in Numerical Analysis. World Scientific,
2018.

100



[17] K. Solna P. Guidotti, J. V. Lambers. Analysis of 1-d wave propagation in inhomogeneous
media. Numerical Functional Analysis and Optimization, 27, 2006.

[18] Endre Suli and David Meyers. An Introduction to Numerical Analysis. Cambridge University
Press, 2003.

[19] M. Tokaman. A new class of exponential propagation iterative methods of runge-kutta type
(epirk). Journal of Computational Physics, 230, 2011.

[20] user147263. Decay of a convolution. Mathematics Stack Exchange.
URL:https://math.stackexchange.com/q/813127 (version: 2014-05-28).

[21] Van Emden Henson William Briggs and Steve F. McCormick. A Multigrid Tutorial,.

101


	Enhancement of Krylov Subspace Spectral Methods Through the Use of the Residual
	Recommended Citation

	tmp.1554741648.pdf.KAsU2

