
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Spring 5-1-2015

GAL: A Stepwise Model for Automated Cloud Shadow Detection in GAL: A Stepwise Model for Automated Cloud Shadow Detection in

HICO Oceanic Imagery Utilizing Guided Filter, Pixel Assignment, HICO Oceanic Imagery Utilizing Guided Filter, Pixel Assignment,

and Geometric Linking and Geometric Linking

Jennerpher Renee Meyers
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Computer Sciences Commons, and the Other Physical Sciences and Mathematics

Commons

Recommended Citation Recommended Citation
Meyers, Jennerpher Renee, "GAL: A Stepwise Model for Automated Cloud Shadow Detection in HICO
Oceanic Imagery Utilizing Guided Filter, Pixel Assignment, and Geometric Linking" (2015). Dissertations.
13.
https://aquila.usm.edu/dissertations/13

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fdissertations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/216?utm_source=aquila.usm.edu%2Fdissertations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/216?utm_source=aquila.usm.edu%2Fdissertations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/13?utm_source=aquila.usm.edu%2Fdissertations%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

May 2015

The University of Southern Mississippi

GAL: A STEPWISE MODEL FOR AUTOMATED CLOUD SHADOW DETECTION

IN HICO OCEANIC IMAGERY UTILIZING GUIDED FILTER,

PIXEL ASSIGNMENT, AND GEOMETRIC LINKING

by

Jennerpher Renee Meyers

Abstract of a Dissertation

Submitted to the Graduate School

of The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

ii

ABSTRACT

GAL: A STEPWISE MODEL FOR AUTOMATED CLOUD SHADOW DETECTION

IN HICO OCEANIC IMAGERY UTILIZING GUIDED FILTER,

PIXEL ASSIGNMENT, AND GEOMETRIC LINKING

by Jennerpher Renee Meyers

May 2015

Detection of cloud shadow pixels is an important step in image processing in

several remote sensing ocean-color application domains, such as obtaining chlorophyll

content. While shadow detection algorithms do exist, the vast majority are for over land

which leaves few options for detection over water.

 The detection of cloud shadow over water in HICO imagery is a unique problem.

As its name implies, HICO (Hyperspectral Imager for the Coastal Ocean) imagery is

produced for coastal and oceanic regions. Since land based algorithms remove water

before processing, these approaches would not be applicable. The only currently

published HICO shadow pixel detection algorithm [1] produces good results for

predominantly homogeneous regions. It also involves hand-tuning of the parameters,

which is not suitable for automation.

 GAL is a fully automated stepwise model that starts by using satellite imagery

and navigational data. The next step is applying the guided filter algorithm proposed by

He, Sun, and Tang [2] to these images in order to filter and enhance the images before

shadow detection. The third step classifies pixels into water, land, and clouds. The fourth

iii

step uses cloud shadow geometry to indicate possible shadow pixels. The final step is to

reduce the amount of possible shadow pixels to the most probable shadow pixels.

 This research combines the past techniques of cloud shadow geometry, edge

detection, and thresholding, along with the new techniques of guided image filtering, in

such a way that has never been done before. GAL works best with well-defined cloud

shadows that contain a large contrast between water and shadow. Water type, coastal or

deep ocean, does not affect GAL. Shadows with a large gradient may be under-detected.

GAL can be applied to HICO data immediately, with the potential of being applied to all

global high resolution ocean-color satellite imagery.

COPYRIGHT BY

JENNERPHER RENEE MEYERS

2015

 May 2015

The University of Southern Mississippi

GAL: A STEPWISE MODEL FOR AUTOMATED CLOUD SHADOW DETECTION

IN HICO OCEANIC IMAGERY UTILIZING GUIDED FILTER,

PIXEL ASSIGNMENT, AND GEOMETRIC LINKING

by

Jennerpher Renee Meyers

A Dissertation

Submitted to the Graduate School

of The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

 Approved:

Dr. Beddhu Murali

 Committee Chair

Dr. Dia Ali

Dr. Chaoyang Zhang

Dr. Ras Pandey

Dr. Sean McCarthy

Dr. Karen Coats

 Dean of the Graduate School

iv

DEDICATION

To my daughter Alexandria, Mommy is finally finished.

v

ACKNOWLEDGMENTS

Special thanks go to my committee chair, Dr. Beddhu Murali, for his immense

patience, guidance, and advice. I could not have asked for a better major professor. I

would like to thank Dr. Sean McCarthy for bringing this research to my attention, for

talking me down from ledges, and for always being supportive. My thanks go to Dr. Dia

Ali for patiently sitting through my presentation over and over again, for giving pages of

notes until I was truly ready, for giving me a cubicle to hide in, and for always being

there when I needed an ear. I also thank Dr. Joe Zhang, and Dr. Ras Pandey for their time

serving on my committee, making sure I was well-rounded as a candidate.

 I would also like to thank Dr. Tim Rehner and Dr. Daniel Bond for being the best

bosses a graduate student could ever have. Thanks for the support, the encouragement,

and the time off. Thanks to Dr. Glenn Bond for his support and encouragement, another

ear that was truly needed and appreciated. Thanks to Dr. Ray Seyfarth, who allowed me

to bother him incessantly, even though he is retired. Good professors never quit teaching.

 To the office staff of both the School of Computing and the School of Social

Work along with my family and friends, thank you for everything you do every day.

Without you none of this could have been done.

vi

TABLE OF CONTENTS

ABSTRACT .. ii

DEDICATION ... ivv

ACKNOWLEDGMENTS .. v

LIST OF TABLES .. vii

LIST OF ILLUSTRATIONS ... viii

LIST OF ABBREVIATIONS ... x

CHAPTER

I. BACKGROUND .. 1

 Satellite Image Processing
 HICO and NRL

 Previous Shadow Detection

II. RESEARCH ALGORITHM ... 11

 Introduction
 Step 1: Input Image: Image and Data Processing Tools

 Step 2: Guided Filter
 Step 3: Pixel Assignment
 Step 4: Geometric Linking

 Step 5: Reduction

III. CONCLUSION .. 42

 Results
 Future Work

APPENDIX ... 52

REFERENCES ... 83

vii

LIST OF TABLES

Table

1. Image Statistics ... 49

viii

LIST OF ILLUSTRATIONS

Figure

1. HICO on ISS [3] ... 1

2. Chlorophyll Content of Hong Kong on February 2, 2011 2

3. Visual Representation of Albedo: It should be noted that land reflects sunlight

 similarly to ice and snow shown in this illustration. [13] 4

4. Hong Kong Raw Image .. 6

5. IV: The integrated radiance values from bands 400 nm to 600 nm. [1] 7

6. CSDI: IV of the selected pixel divided by the mean of the IVs of the ASB. [1] 7

7. Results Optical Algorithm for Cloud Shadow [1] .. 9

8. Hong Kong Raw Image 2009 ... 11

9. Guam Raw Image 2009 .. 11

10. N. Mariana Pagan Raw Image 2009 ... 12

11. Stepwise Algorithm .. 12

12. GAL produced Hong Kong Enhanced r = 2 𝜖 = . 42. Bottom: Hong Kong

Enhanced r = 16 𝜖 = . 42. .. 17

13. Hong Kong Image Created from Radiance Values... 18

14. Hong Kong GF applied to 87 bands then processed ... 18

15. Hong Kong Land Masked ... 19

16. Hong Kong Identified Clouds Recolored in Pink ... 19

17. Hong Kong All Pixels Assigned ... 20

18. Google Earth UTM Grid [17] ... 22

19. Basic Shadow Geometry [18] ... 23

20. Simpson’s Sun Cloud Satellite Geometry [19] ... 23

ix

21. Geometry of Finding Pixel Indices from Projected Shadow Space 27

22. Directional Cosines Triangle .. 27

23. GAL produced Hong Kong Full Height Range Geometric Shadow Paths 28

24. Lisianski Full Geometric Shadow Paths ... 29

25. Hong Kong Reduction Top: Average Water Threshold Bottom: Minimum Value

Edge Neighbor Threshold ... 36

26. Hong Kong Shadow Paths Isolated... 37

27. Persian Gulf Final Shadow Detection ... 41

28. Amin’s cropped Virgin Islands results blown up ... 43

29. Amin’s results layered together with 40 – 60% opacity in the shadow identified

image ... 43

30. GAL results using the same area of Virgin Islands as in Amin's research 44

31. GAL Virgin Islands results layered using 40 – 60% opacity in the shadow

detected image .. 44

32. Hong Kong layered image. Shows cloud shadow not detected due to gradient

shadow and cloud detection. ... 45

33. Key Largo with layered image. Shows well defined shadow detection with

possible false positives. ... 46

34. N. Mariana Pagan layered image. Shows best case shadow detection. 47

35. Sevastopol Crimea layered image. Shows worst case, many shadow not detected.

 …………………………………………………………………………………...47

x

LIST OF ABBREVIATIONS

APS Automated Processing System

ASB Adaptive Sliding Box

AVHRR Advanced Very High Resolution Radiometer

CSDI Cloud Shadow Detection Index

GF Guided Filter

HICO Hyperspectral Imager for the Coastal Ocean

ISS International Space Station

IV Integrated Value

MODIS Moderate Resolution Imaging Spectroradiometer

NRL Naval Research Laboratory

UTM Universal Transverse Mercator

1

CHAPTER I

BACKGROUND

Satellite Image Processing

Since the late 1950’s there have been thousands of satellites sent into space. The

roles and research of each of these satellites can differ greatly. Satellite images can be

used for research in agriculture, geology, forestry, landscape, education, intelligence, and

warfare, to name a few. The satellite imagery used in this research is from the

Hyperspectral Imager for the Coastal Ocean, which has many earthly applications.

Figure 1. HICO on ISS [3].

Entities such as the U.S. Navy and U.S. Marine Corps, as well as the EPA and

other civilian researchers can utilize HICO data to determine end products such as water

visibility, the ocean’s depth and floor, and chlorophyll content, among others. These end

products are useful when there is a need to test for water visibility for moving troops or to

test for pollution through monitoring water quality. [4]

2

Figure 2. Chlorophyll Content of Hong Kong on February 2, 2011.

 The information gained from each satellite through its sensors is tailored to the

specific goals of each satellite. These sensors retrieve data along certain wavebands or

range of wavebands of wavelengths, sometimes labeled as channels. Some satellite

sensors have fewer channels and/or different wavelengths than HICO. One such sensor

Moderate Resolution Imaging Spectroradiometer (MODIS) is located on both satellites

Terra and Aqua. The data obtained from MODIS on these two satellites “will improve

our understanding of global dynamics and processes occurring on the land, in the oceans,

and in the lower atmosphere. MODIS is playing a vital role in the development of

validated, global, interactive Earth system models able to predict global change

accurately enough to assist policy makers in making sound decisions concerning the

protection of our environment.” [5] MODIS has 36 channels covering wavelengths from

400 nm to 14,400 nm where HICO has 127 covering 400 nm to 1080 nm. Other satellites

may also retrieve data that HICO was not designed to retrieve. Advanced Very High

Resolution Radiometer (AVHRR), is used mainly for cloud detection and surface

temperatures, HICO does not include surface temperatures. Although HICO is

maintained by NRL, MODIS by NASA, and AVHRR by NOAA, many different sectors

of the U.S. Government utilize the data from the satellites. [5] [6] Even within one

3

entity, the diverse data collected from many different satellites can be used to obtain

many similar, yet very different goals.

 With the large difference in the type and amount of data received and processed

by each sensor, at least one thing is common: clouds. If clouds are present in an image,

there is always a possibility of cloud shadow within that image as well. Cloud shadows

may hinder or help in end products. They may hinder by skewing end products; shadow

can produce errors of 30% – 40% over land. It is expected that similar errors would

happen over water as well, even though there has been no published research to date. [7]

On the other hand, a recently published article by Amin et al. [8] states that shadow

detection can aid in atmospheric correction algorithms in HICO. Identifying the clouds

and their corresponding shadows is imperative when using satellite imagery and data in

any research.

HICO and NRL

HICO was built by the Naval Research Laboratory (NRL), which is “the

corporate research laboratory for the Navy and Marine Corps and conducts a broad

program of scientific research, technology and advanced development.” [10] HICO is

located on the International Space Station (ISS). NRL is also responsible for maintaining,

operating, and processing data retrieved from the HICO sensor. [9] Members of the Bio-

Optical/Physical Processes and Remote Sensing Section of NRL are responsible for

creating and maintaining the Automated Processing System (APS). This system contains

the algorithms for calibrations and atmospheric corrections applicable to HICO data. It

also contains the algorithms for processing the raw level 1 data, top-of-atmosphere

satellite radiances, into the geo-referenced level 3 downstream optical properties. [11]

4

 HICO was created to combat difficult constraints on retrieving useful sensor data

of coastal areas. According to Corson et al. [12], to accomplish the goals of bathymetry,

bottom type, chlorophyll content, and water inherent optical properties, a sensor must be

hyperspectral and well-calibrated. The need for a hyperspectral sensor comes from the

fact that the albedo, the portion of light or radiation reflected by a surface, is only a few

percent. The low albedo is due to water being more absorbent of sunlight than land,

snow, or ice as seen in Figure 3 below.

Figure 3. Visual Representation of Albedo: It should be noted that land reflects sunlight

similarly to ice and snow shown in this illustration. [13].

 HICO was designed and calibrated to handle the issue of the atmosphere being

significantly brighter than the water surface. HICO data is processed through APS to

adjust for any remaining atmospheric distortions. APS has and is continually updated

with code to handle atmospheric corrections, among other transformations and end

products. One addition APS could greatly benefit from is a fully automated shadow

detection algorithm that works over coastal and homogenous water.

5

Previous Shadow Detection

The available literature on shadow pixel detection can be divided into two

categories: detecting shadows over land or over water. While shadow detection

algorithms do exist, the vast majority are for land. For example, in [14], a thresholding

technique is used to identify shadow, as well as water in the image must be identified and

separated from shadow scenes. This algorithm uses the small variance of water in their

images to identify the difference between shadow and water. Once the water is identified

it is removed from the scene. Another algorithm designed to detect and remove cloud

shadow over land was designed for AVHRR data. [7] This algorithm uses shadow

geometry with an iterative tile projection. Simpson states that all water pixels should be

removed before inputting the image, which, again, means it cannot be applied to HICO.

Most of the available literature applies either one or more algorithms that include

geometry, thresholding, and/or classification techniques. [14] [15] [7] These algorithms

do not apply to HICO data because these algorithms, like most land algorithms, remove

water before applying the algorithm or as in [14] treat water in such a way that is not

conducive with coastal regions.

 One of two cloud shadow detection over water algorithms was published by Jiang

and Wang. [16] This algorithm is not on HICO data but on MODIS – Aqua and

SeaWiFS. Although this algorithm will not be applicable to HICO in its current form, it

is important to mention it. The intent of Jiang was to extend the cloud shadow detection

algorithm already contained in IDPS, a program similar to NRL’s APS. They use a static

size box to identify pixels around a cloud. Their box size is about 25x25 pixels around

the cloud itself. This value was chosen by incorporating shadow geometry. Due to the

6

resolution size of MODIS it was calculated that the shadow path would be about 12

pixels. This would be very different for HICO where shadow paths can be up to 100

pixels. They use the shadow geometry to identify the direction in which to test for

shadow pixels. Once the direction was calculated, they could determine if the pixels

were shadows or not by using radiance values from the wavelength 551. HICO does not

have this wavelength; however, it does have wavelengths 547 and 553.

 The only algorithm currently published addressing HICO imagery shadow

detection is “Optical Algorithm for Cloud Shadow Detection Over Water” by Ruhul

Amin et al. [1] The algorithm that is presented uses a constant threshold by normalizing

the integrated value of radiance data of the blue and green spectra of a chosen pixel by

the mean of the integrated values of the pixels in an Adaptive Sliding Box (ASB). Static

boxes have been used prior to Amin’s et al. work. The chosen pixel lies in the center of

the box. The algorithm works well but has some restrictions. First, the box size must be

chosen, so the box is larger than the shadow area. The next constraint is that the water

must be homogenous. The difficulty with heterogeneous waters, which are quite often

the case of coastal waters, is that shadow over a light section of water may be lighter than

a darker area in another part of the image.

Figure 4. Hong Kong Raw Image.

7

Figure 4 is a perfect example of this situation. Note that some of the shadow on

the right side of the image is much lighter than some of the dark water on the left of the

image. This is the reason a threshold over the entire image will not work.

 The algorithm designed in [1], starts by using the raw data from HICO. Each

pixel has 127 radiance values. Amin et al. utilizes the radiance values from the bands

that range 400 nm to 600 nm. These 35 bands represent the values contained within the

blue and green spectrum. He represents this as the parameter IV. Amin et al. states that

although the IV can visually show a difference between shadowed and non-shadowed

regions, it is not strong enough for a constant threshold to be applied to the image.

𝐼𝑉 = ∫ 𝐿𝑡(𝜆)𝑑𝜆
600 𝑛𝑚

400 𝑛𝑚

Figure 5. IV: The integrated radiance values from bands 400 nm to 600 nm. [1]

Once the radiance values are extracted, the ASB is selected. This box is used to

select pixels around the pixel in question. The size is arbitrary and is chosen so that both

sunlit and shadow pixels are included. One of the drawbacks of this algorithm is the user

interaction needed to complete this step of the algorithm. Once the ASB has been chosen

(32x32 to 128x128), the IV of the ASB must be calculated. This allows for the CSDI, or

cloud shadow detection index, to be calculated. The CSDI, as seen in the figure below, is

used with a threshold to identify cloud shadow pixels.

𝐶𝑆𝐷𝐼 =
𝐼𝑉𝑐

〈𝐼𝑉𝐴𝑆𝐵〉

Figure 6. CSDI: IV of the selected pixel divided by the mean of the IVs of the ASB. [1]

Amin et al. states that this index may break down in coastal waters. This

breakdown is the reason for the specification of homogenous waters, which is another

8

drawback for this method. Once the CSDI has been calculated, the threshold is applied.

Amin states that through a visual inspection CSDI <= 0.95 is too low to detect relatively

thin parts of the shadows while CSDI => 0.97 is a little high and gives a false signal.

This leads to the threshold being <=0.96. The figure below is the results of [1].

9

Figure 7. Results Optical Algorithm for Cloud Shadow [1].

10

 As stated before, Amin’s et al. algorithm seems to yield decent results in

homogenous water with arbitrary parameters set by a user. The method contained in this

research will be able to handle both types of water and be fully automated, which should

not only improve previous research, but will also extend that research into new areas.

 These two algorithms show that research in this area is being done, and automated

cloud shadow detections over water are in great demand. This highlights an area of

research that needs further expansion. GAL does just that. It takes the methods that have

shown to work in previous research and combines them with new techniques in a unique

way to produce a model of cloud shadow detection over water that does not exist.

Because of the potential to work with any satellite data and full automation, GAL is a

contribution that is sorely needed.

11

CHAPTER II

RESEARCH ALGORITHM

Introduction

The algorithm designed for this research was constructed for use with HICO data.

Although HICO data was the initial intent, the algorithm has the potential to work with

any satellite data as long as an image and navigational data is available. Using three

images for the development phase seen in Figure 8, Figure 9, and Figure 10, GAL was

designed to take a stepwise approach to detecting cloud shadow.

Figure 8. Hong Kong Raw Image 2009.

Figure 9. Guam Raw Image 2009.

12

Figure 10. N. Mariana Pagan Raw Image 2009.

The algorithm flowchart is shown in Figure 11. This algorithm takes a true color

image of any format and applies Guided Filter; .png file format was used. The enhanced

image is processed for a categorization of land, water, and cloud pixels. Once cloud

pixels are identified, cloud geometry is applied to find geometrically possible shadow

pixels. These possible shadow pixels are reduced to the most likely shadow pixels

through utilizing an edge neighbor minimum value threshold.

Figure 11. Stepwise Algorithm.

13

Step 1: Input Image: Image and Data Processing Tools

The data obtained from NRL for the purposes of this research includes a true

color image in .png file format and a file of raw data in .hdf file format from different

available locations and times. The .hdf file contains all the raw data obtained by HICO,

which includes but is not limited to radiance values, navigational data, flags, and a header

file. The information extracted and used in this research from the .hdf file is the

navigational information: each pixel’s latitude, longitude, sensor zenith and azimuth, and

solar zenith and azimuth. Due to the file formats, Matlab was chosen to be the best

environment to create the code for this research. Matlab is able to handle image reading,

writing, and manipulation along with reading .hdf files easily. The navigational data was

extracted from the .h5 file using the following code:

 solar_zenith = h5read(input, '/navigation/solar_zenith');

 solar_zenith = permute(solar_zenith,[2 1]);

 rad_solar_zen = deg2rad(solar_zenith);

 solar_azimuth = h5read(input, '/navigation/solar_azimuth');

 solar_azimuth = permute(solar_azimuth,[2 1]);

 rad_solar_az = deg2rad(solar_azimuth);

 sensor_zenith = h5read(input, '/navigation/sensor_zenith');

 sensor_zenith = permute(sensor_zenith,[2 1]);

 rad_sensor_zen = deg2rad(sensor_zenith);

 sensor_azimuth = h5read(input, '/navigation/sensor_azimuth');

 sensor_azimuth = permute(sensor_azimuth,[2 1]);

 rad_sensor_az = deg2rad(sensor_azimuth);

 longitudes = h5read(input, '/navigation/longitudes');

 longitudes = permute(longitudes,[2 1]);

 latitudes = h5read(input, '/navigation/latitudes');

 latitudes = permute(latitudes,[2 1]);

All of the data was converted into radians for consistency and Matlab function

compatibility. Some of the data also had to be rearranged into the right direction for

Matlab to correlate the data with the image direction.

14

 The image was prepared by NRL through APS. It was sent in a .png file that was

read into Matlab using the image toolbox commands:

 img_info = imfinfo(['Images_Raw/' d(i).name]);

 img_raw = imread(['Images_Raw/' d(i).name]);

 width = img_info.Width;

 height = img_info.Height;

The image was then stored as a matrix and used in that structure for the rest of the code.

Matlab built in toolboxes were used for all instances of file/image handling. Execution

times of each step, cumulative through that step, and a full run were displayed in the

output for each image. This was done through the code:

ttotal = 0;

 tstart = cputime;

 timage = cputime;

tend = cputime;

 telapsed = tend - tstart;

 minutes = floor(telapsed/60);

 hours = floor(minutes/60);

 minutes = rem(minutes,60);

disp(['Reading time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '

num2str(rem(telapsed,60)) ' seconds']);

 ttotal = ttotal + telapsed;

 minutes = floor(ttotal/60);

 hours = floor(minutes/60);

 minutes = rem(minutes,60);

 disp(['Total time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '

 num2str(rem(ttotal,60)) ' seconds']);

timageend = cputime - timage;

 minutes = floor(timageend/60);

 hours = floor(minutes/60);

 minutes = rem(minutes,60);

 disp(['Image Total time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '

num2str(rem(timageend,60)) ' seconds']);

 ttotal = ttotal + telapsed;

 minutes = floor(ttotal/60);

 hours = floor(minutes/60);

 minutes = rem(minutes,60);

 disp(['Total time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '

num2str(rem(ttotal,60)) ' seconds']);

15

Step 2: Guided Filter

The guided filter created by He et al. is capable of many applications: noise

reduction, smoothing/enhancement, feathering and haze removal, to name a few. [2] It is

proposed that applying this Guided Filter, or GF, to the HICO images before attempting

to identify shadow will improve the final results.

 The guided filter requires a guided image (I), an input image (p), and will produce

an output image (q). Both the guided image and input image can be the same image.

This flexibility is one of the reasons guided filter was chosen for this research. There is

no guarantee that there will be more than one image for any location in HICO imagery;

therefore, a filter with this flexibility was needed. The output for the guided filter at pixel

(i, j) can be expressed as a weighted average with the equation of:

𝑞𝑖 = ∑ 𝑊𝑖𝑗(𝐼)𝑝𝑗

𝑗

Wij is the filter part of the equation. This filter is a function of I, independent of and

linear with respect to p.

 He states that the guided filter has the key assumption that there is a local linear

model between I and q. By assuming that q is a linear transform of I in a window of wk

centered at the pixel k, where (ak, bk) are some linear coefficients assumed to be constant

in wk, the following equation is defined:

𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘, ∀𝑖 ∈ 𝑤𝑘

The filter uses a square window of pixels of radius r. Because this is a linear model, q

has an edge if and only if I has an edge, shown by ∇𝑞 = 𝑎∇𝐼. To define the coefficients,

He et al. minimizes the following cost function within the window:

16

𝐸(𝑎𝑘, 𝑏𝑘) = ∑ ((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖)
2 + 𝜖𝑎𝑘

2)𝑖∈𝑤𝑘
.

In this equation, 𝜖 is a regularization parameter used to keep 𝑎𝑘 from being too large.

After using linear regression to find a solution to the equation above, the linear model is

applied to all local windows in the entire image. The filter output for all patches in the

image becomes:

𝑞𝑖 = �̅�𝑖𝐼𝑖 + �̅�𝑖.

Because of the modification of the coefficients varying spatially, ∇𝑞 is no longer a

scaling of ∇𝐼. He et al. also states, that “since (ak, bk) are the output of an average filter,

their gradients should be much smaller than that of I near strong edges.” [2] This allows

for abrupt intensity changes in I to be mostly maintained in q.

 Although the guided filter is capable of many applications, only the enhancement

option was used in this research. The guided filter is similar to the bilateral filter used in

detail enhancement and HDR compression. The process can be simplified into the

following: Given an input signal, its edge-preserving smoothed output is used as a base

layer. The difference between the original and base layer becomes the detail layer. This

layer is then magnified to boost the details. This enhanced signal is a combination of the

boosted detail layer and the base layer. This implementation can be seen through the

program call used in the example code of the guided filter and this research:

 I_enhanced = (I - q) * 5 + q;

The guided filter, along with the input and guiding images, requires the input of two

additional parameters. These parameters are the window size r which should be a square

and 𝜖 which is the regularization parameter. This value should be either . 12, . 22, or . 42.

For this research, the sizes tested for the window were 2, 4, 8, and 16. Each window size

17

was used with each regularization parameter to decide which enhanced image would be

the most useful. It was found that the error values showed little to no difference in the

output, so a value of . 42 was used. The r sizes that yielded the best end results were 2

and 16.

Figure 12. GAL produced Hong Kong Enhanced r = 2 𝜖 = . 42. Bottom: Hong Kong

Enhanced r = 16 𝜖 = . 42.

 It should be noted that although the finished algorithm applied GF to the blue

channel of the enhanced image, the guided filter was manipulated and applied in different

ways to ascertain in which way it would be most useful. The first idea was to apply GF

to the radiance values in the HICO data. This would allow for enhancement at the very

base level. This was done by using the RGB bands in HICO and running GF with those

bands. It was also applied using an average of the bands that cover RGB spectrums. The

final attempt was to alter GF itself to make calculations using all 87 accurate bands of

HICO data. This theory did not yield any output that was useable. The radiance values

18

in the level 1 data files do not have any atmospheric corrections made. This can be seen

in Figure 13.

Figure 13. Hong Kong Image Created from Radiance Values.

There is a heavy blue tint over the entire image. This tinting caused skewing

when GF is applied. Modifying and applying GF to all 87 bands did make a slight

different in the enhancement of the image, but until the radiance values can be obtained

with atmospheric corrections, this path was not further pursued.

Figure 14. Hong Kong GF applied to 87 bands then processed.

At this point, the guided filter for colored images was used to enhance the

provided raw image. Eventually, the guided filter for grayscale images was used on an

image created using only the blue channel of the original RGB image. From previous

research, the green and blue bands of water were used in the analysis of cloud shadow.

During the beginning stages of this research, both green and blue bands were used as

well. Better results were obtained when only the blue channel was used.

19

Step 3: Pixel Assignment

This research makes the assumption that all clouds, land, and water are identified

before an image is processed. For the purposes of this research, land was identified by

eye and masked using Paint .Net. The saved image was then loaded into Matlab to use for

pixel assignment purposes.

Figure 15. Hong Kong Land Masked.

Clouds were identified by masking any pixels in the enhanced image that had a

value greater than 180. Anything not masked as cloud or land was assigned to water.

Figure 16. Hong Kong Identified Clouds Recolored in Pink.

A matrix is created to hold the pixel assignment values. As values are changed in

the algorithm they are updated in this matrix:

 pcm = cell(height, width, 1);

 for row = 1:height

 for col = 1:width

 pcm{row, col} = 'W';

 end

 end

20

 %Map Cloud Pixels

 for row = 1:height

 for col = 1:width

 pix_val = double(img_raw(row, col,3));

 if pix_val > 180

 pcm{row, col} = 'C';

 end

 end

 end

 %Map Land Pixels

 landimg = imread(['Images_Masked/' d(i).name]);

 for row = 1:height

 for col = 1:width

 if double(landimg(row, col, 1)) > 225 &&

 double(landimg(row, col, 3)) <100

 && double(landimg(row, col, 2)) < 100

 pcm{row, col} = 'L';

 end

 end

 end

Figure 17. Hong Kong All Pixels Assigned.

Step 4: Geometric Linking

As discussed earlier, the navigational data was extracted from the .h5 file. All of

these variables were imported, permuted in shape and converted from degrees to radians.

The permutation of the data was necessary to match the direction of the image. Radians

were needed as they are the default format for the Matlab geometric functions used in the

21

cloud geometry. The area in an image can vary due to altitude and angle, defined by

HICO specs, so a width and height measurement in meters was calculated for the image.

 mwidth = (deg2km(distance(latitudes(1,1), longitudes(1,1), latitudes(1,width),

 longitudes(1,width))*1000))/width;

 mlength = (deg2km(distance(latitudes(1,1), longitudes(1,1), latitudes(height,1),

 longitudes(height,1))*1000))/height;

To also prepare for the geometry section of the algorithm, the data was converted to be

used in a UTM struct.

 Universal Transverse Mercator (UTM) coordinates are useful when distances are

needed on media such as maps or images of Earth. UTM is a 2- dimensional projected

coordinate system. Some of the advantages of using UTM are no negative numbers,

measurements are decimal based and in meters, and it allows for easier mathematics. A

UTM grid system is applied to the earth. The image’s location in the grid determines the

projected coordinates. There are 60 zones in the grid of 6 degrees each. It should be

noted that UTM is not used in the polar regions. Since HICO does not take images of

polar regions, UTM was the only system used. The algorithm can be easily modified in

the geometry to cover both regions. Each zone also includes bands of 8 degrees of

latitude difference. Each of these bands is labeled C to X excluding I and O to reduce

possible confusion and error. The measurements (Eastings and Northings) are

constructed, so there are never negative numbers. Grid values increase left to right and

bottom to top. Because this is the most accepted way of measuring distance for

geographical means and because of the advantages listed above, UTM was utilized in

preparing for the cloud shadow geometry.

22

Figure 18. Google Earth UTM Grid [17].

Matlab has a built in UTM library. The data was prepared using the following

code:

vlat = latitudes(:);

vlong = longitudes(:);

utmlatlong = [vlat vlong];

zone = utmzone(utmlatlong);

utmstruct = defaultm('utm');

utmstruct.zone = zone;

utmstruct.geoid = wgs84Ellipsoid('meters');

utmstruct = defaultm(utmstruct);

Matlab’s UTM code allows for data to fall into more than one zone, though it

automatically adjusts the data to fit in one zone. Once the data has been converted to

UTM coordinates, the cloud shadow geometry can be applied.

23

 A visual representation of basic shadow geometry can be seen in Figure 19.

Figure 19. Basic Shadow Geometry [18].

In this research, a slightly more involved shadow geometry is used. It can be

visualized in Figure 20.

Figure 20. Simpson’s Sun Cloud Satellite Geometry [19].

24

Given the positions of the Sun, the satellite, and clouds, the cloud shadow

locations can be explicitly determined [20]. In Luo’s article, simplified equations for

cloud shadow geometry are provided. These equations are used in this research. The

basis for these equations and more detailed geometry can be found in Simpson’s article

[19].

Before the equations can be applied to the clouds in the image, the lack of cloud

height values has to be addressed. HICO does not obtain any information on cloud height

or information that can lead to approximating cloud height. This lead to an opportunity

of creating a cloud shadow detection algorithm over water that is accurate using only an

image and navigational data. Although the cloud height is unknown, it can be bound to a

range based on atmospheric restrictions. Following previous research of Luo [20], cloud

height can be limited to .5 to 16 km. The cloud ranges can be broken down into three

categories; .5–8km (low latitudes 30º S to 30º N), .5–12km (mid latitudes 30–60º N or S),

and .5–16km (high latitudes 60–90º N or S). The following code shows how this was

accomplished:

 %8 for 30S to 30N (-30 to 30)

 %12 for 30 to 60N or S (-30 to -60 and 30 to 60)

 %16 for 60 to 90N or S (-60 to -90 and 60 - 90)

 %No need for Polar regions...HICO only goes 90 to 90

 latmax = max(latitudes(:));

 latmin = min(latitudes(:));

 if abs(latmax) < abs(latmin)

 latmax = abs(latmin);

 else

 latmax = abs(latmax);

 end

 if latmax < 30

 hgtmax = 8000;

 elseif latmax < 60

 hgtmax = 12000;

 else

25

 hgtmax = 16000;

 end

An interval of .5 km was used in the iterative range of previous research. For this

research, the interval was altered to fit the difference in resolution of HICO images. The

following code was used to derive the interval:

 mean_zenith = mean(solar_zenith(:));

 iteration = tan(deg2rad(mean_zenith)) * mwidth;

The solar zenith is given for each pixel, but experimentation revealed that there is slight

to no difference in geometry if a mean zenith is used. In fact, this reduces the number of

computations necessary by calculating only one iteration value for all geometric

calculations instead of recalculating for each cloud pixel.

 Once the height range is determined, the geometry is straightforward. In this

research, the simplified equations found in [20] and [21] are applied. The following

equations derive the pixel coordinates for the cloud projection on the ground, given that

(𝑥𝑖𝑚𝑔, 𝑦𝑖𝑚𝑔) is a cloud pixel:

 𝑥𝑛𝑎𝑑𝑖𝑟 = 𝑥𝑖𝑚𝑔 + ℎ𝑐 tan 𝜃𝜈 sin(𝜙𝜈 + 𝛾)

 𝑦𝑛𝑎𝑑𝑖𝑟 = 𝑦𝑖𝑚𝑔 + ℎ𝑐 tan 𝜃𝜈 cos(𝜙𝜈 + 𝛾)

Those values can then be substituted into the following equations which then calculate

the subsequent possible shadow projected onto the ground:

 𝑥𝑠ℎ𝑎𝑑𝑜𝑤 = 𝑥𝑛𝑎𝑑𝑖𝑟 − ℎ𝑐 tan 𝜃𝑠 sin(𝜙𝑠 + 𝛾)

 𝑦𝑠ℎ𝑎𝑑𝑜𝑤 = 𝑦𝑛𝑎𝑑𝑖𝑟 + ℎ𝑐 tan 𝜃𝑠 cos(𝜙𝑠 + 𝛾)

In these equations, ℎ𝑐 is the height of the cloud, 𝜃𝜈 represents the satellite zenith angle, 𝜃𝑠

represents the solar zenith angle, 𝜙𝜈 represents the satellite azimuth angles, and 𝜙𝑠

represents the solar azimuth angles. γ is the azimuth angle of true north from the y-axis,

representing the shift in image to align with a projected xy plane. As stated earlier, the

26

image has been converted to the UTM system. This allows for the γ portion of the

equation to be dropped. The image is not rotated to fit a projected xy plane in the UTM

system. The following code was created to satisfy these equations:

 [x,y] = mfwdtran(utmstruct,latitudes(row,col), longitudes(row,col));

 xn = x + h*tan(rad_sensor_zen(row, col))*sin(rad_sensor_az(row, col));

 yn = y + h*tan(rad_sensor_zen(row, col))*cos(rad_sensor_az(row, col));

 xs = xn - h*tan(rad_solar_zen(row, col))*sin(rad_solar_az(row, col));

 ys = yn - h*tan(rad_solar_zen(row, col))*cos(rad_solar_az(row, col));

This code converts the navigational data of the cloud pixel into UTM coordinates.

It then proceeds to find the cloud projected on the ground, then the cloud shadow

projected onto the ground. This is not to be confused with the image pixel coordinates.

This creates a projected space. At this point, geometry is used to take the projected space

and find the closest coordinating pixel indices within the image. Figure 21 is a visual

representation of the geometry applied to find the pixel indices from the projected

shadow space.

27

Figure 21. Geometry of Finding Pixel Indices from Projected Shadow Space.

From Figure 21 we can extrapolate the following triangle. The triangle in Figure

22 allows for the use of Directional Cosines to find the values dX and dY.

Figure 22. Directional Cosines Triangle.

These values were calculated in the following code:

 r = sqrt(((xs - x)^2)+((ys - y)^2));

 theta = atan((ys - y)/(xs - x));

28

 if (xs - x) < 0

 theta = theta + acos(-1);

 end

 beta = theta - alpha;

 drow = r*cos(beta);

 dcol = r*sin(beta);

 ys_adj = row + round((drow)/mlength);

 xs_adj = col + round((dcol)/mwidth);

These values represent where the shadow would be in reference to the rows and columns

of the image. These projected values allow for shadows that fall outside the realm of the

image. Any values of this type are ignored. The pixels that are valid within the image

space and assigned as water are marked as “P” in the assignment matrix. The lists of

pixel indices that make a shadow path for a cloud pixel are also stored for later use.

 When the cloud geometry section of the algorithm is finished, it yields all possible

shadow pixels produced through cloud shadow geometry.

Figure 23. GAL produced Hong Kong Full Height Range Geometric Shadow Paths.

Figure 23 shows how important accurate cloud detection is. In the left side of the image

there are possible shadow paths calculated for light colored water or land edges that

where masked as cloud with the 180 threshold. This increases execution time and can

lead to identifying false shadows.

 Depending on how many clouds and how much of the image space the clouds

cover, the possible shadow pixels may cover a substantial portion of the image, see

29

Figure 24. Because clouds truly only have one height, using a height range in geometry

that covers all possible heights, the resulting shadow paths will always have pixels

marked as shadow that are not shadow. Whether the image is greatly covered or whether

extra heights are included, both situations lead to non-shadow marked as shadow. This

would eliminate possible good values for end products. Given this knowledge, the next

step in the algorithm is to reduce the possible shadow pixels down to a minimum.

Figure 24. Lisianski Full Geometric Shadow Paths.

Step 5: Reduction

The reduction section starts with combining possible shadow pixels into shadow

paths. This is completed by first making cloud blobs out of the cloud pixels. Using a

connected components algorithm [22], the cloud blobs were connected if they resided

within five pixels of another cloud pixel. The code is as follows:

 cloudblobs = -1*ones(height, width);

 %Map Cloud Pixels

 for row = 1:height

 for col = 1:width

 if pcmnav{row,col} == 'C'

 cloudblobs(row, col) = 1;

 end

 end

 end

 pcmp = padarray(cloudblobs, [5 5], -1);

 blobs = connect_components(pcmp);

30

 [blobsc, blobcount] = count_blobs(blobs);

 blobsc = reshape(blobsc, [width+10 height+10])';

 cloudlabels = blobsc;

 cloudlabels(:, 1:5) = [];

 cloudlabels(:, end-4:end) = [];

 cloudlabels(1:5, :) = [];

 cloudlabels(end-4:end, :) = [];

A Boolean matrix of cloud pixels is created. That matrix is then padded by five

rows and columns around the matrix. This padding allows for the testing of all indices

without worrying about a border. A padding of 5x5 pixels is an effective means of

reducing the amount of clouds to process. This padding can also be done with immediate

neighbors or a large padding of pixels. It should be noted that padding assumes the cloud

pixels linked together have a similar or equal height. With this assumption the padding

of the cloud pixels should not be too large. A call to the function connect_components,

sends the cloud pixel matrix into the function and reshapes it into a vector. This function

creates a vector of parents for each pixel, initialized at -1. This vector value of -1

represents that, at this stage, every pixel is its own parent. This can be seen in the

following code:

width = size(clouds,2);

 cloudsv = reshape((clouds)', 1, []);

 parents = -1 * ones(size(cloudsv));

 for y = 1:length(cloudsv)

 if (cloudsv(y) == 1)

 %left 4 pixels

 if (cloudsv(y-1) == 1)

 parents = unionB(parents, y-1, y);

 end

 if (cloudsv(y-2) == 1)

 parents = unionB(parents, y-2, y);

 end

 if (cloudsv(y-3) == 1)

 parents = unionB(parents, y-3, y);

 end

31

 if (cloudsv(y-4) == 1)

 parents = unionB(parents, y-4, y);

 end

 %upper 1 left 4 pixels

 %upper pixel

 if (cloudsv(y-width) == 1)

 parents = unionB(parents, y-width, y);

 end

 if (cloudsv(y-width-1) == 1)

 parents = unionB(parents, y-width-1, y);

 end

 if (cloudsv(y-width-2) == 1)

 parents = unionB(parents, y-width-2, y);

 end

 if (cloudsv(y-width-3) == 1)

 parents = unionB(parents, y-width-3, y);

 end

 if (cloudsv(y-width-4) == 1)

 parents = unionB(parents, y-width-4, y);

 end

 %upper 2 left 4 pixels

 %upper pixel

 if (cloudsv(y-(width*2)) == 1)

 parents = unionB(parents, y-(width*2), y);

 end

 if (cloudsv(y-(width*2)-1) == 1)

 parents = unionB(parents, y-(width*2)-1, y);

 end

 if (cloudsv(y-(width*2)-2) == 1)

 parents = unionB(parents, y-(width*2)-2, y);

 end

 if (cloudsv(y-(width*2)-3) == 1)

 parents = unionB(parents, y-(width*2)-3, y);

 end

 if (cloudsv(y-(width*2)-4) == 1)

 parents = unionB(parents, y-(width*2)-4, y);

 end

 %upper 3 left 4 pixels

 %upper pixel

 if (cloudsv(y-(width*3)) == 1)

 parents = unionB(parents, y-(width*3), y);

 end

 if (cloudsv(y-(width*3)-1) == 1)

32

 parents = unionB(parents, y-(width*3)-1, y);

 end

 if (cloudsv(y-(width*3)-2) == 1)

 parents = unionB(parents, y-(width*3)-2, y);

 end

 if (cloudsv(y-(width*3)-3) == 1)

 parents = unionB(parents, y-(width*3)-3, y);

 end

 if (cloudsv(y-(width*3)-4) == 1)

 parents = unionB(parents, y-(width*3)-4, y);

 end

 %upper 4 left 4 pixels

 %upper pixel

 if (cloudsv(y-(width*4)) == 1)

 parents = unionB(parents, y-(width*4), y);

 end

 if (cloudsv(y-(width*4)-1) == 1)

 parents = unionB(parents, y-(width*4)-1, y);

 end

 if (cloudsv(y-(width*4)-2) == 1)

 parents = unionB(parents, y-(width*4)-2, y);

 end

 if (cloudsv(y-(width*4)-3) == 1)

 parents = unionB(parents, y-width-3, y);

 end

 if (cloudsv(y-(width*4)-4) == 1)

 parents = unionB(parents, y-(width*4)-4, y);

 end

 end

 end

The center pixel, the vector of parents, and the neighbor pixel are then sent to the

function unionB. This is completed for every neighboring pixel that is a cloud pixel in

the 5x5 square around the center pixel, repeated for every cloud pixel seen in the code

below:

 [parents, a] = find_set(parents, a);

 [parents, b] = find_set(parents, b);

 if (a ~= b)

 size = parents(a) + parents(b);

 if (parents(a) <= parents(b))

 parents(b) = a;

33

 parents(a) = size;

 else

 parents(a) = b;

 parents(b) = size;

 end

 end

This function first calls find_set for both the center pixel and the neighbor pixel. The

find_set function returns the root for each of the pixels. If they are not equal, the two

trees become one, and the parent vector is updated. This can be seen here:

 r = index;

 while (parents(r) >= 0)

 r = parents(r);

 end

 i = index;

 while (parents(i) >= 0)

 index = parents(i);

 parents(i)= r;

 i = index;

 end

This is continued until all clouds blobs have been connected. Once the cloud blobs have

been connected they are counted and then each cloud pixel is relabeled according to the

cloud blob id number. This is done through the code:

count = 0;

 blobsc = zeros(size(blobs));

 %number roots

 for y = 1:length(blobs)

 if blobs(y) < -1

 %see how many roots we have

 count=count+1;

 end

 end

 disp(['Number of clouds: ' num2str(count)]);

 %loop through tree until root is found

 for x = 1:length(blobs)

 if blobs(x) ~= -1

 [blobs,root] = find_set(blobs, x);

 blobsc(x) = root;

34

 end

 end

 count = 0;

 for z = 1:length(blobs)

 if blobsc(z) > 0

 root = blobsc(z);

 if root > count

 count = count + 1;

 blobsc(blobsc == root) = count;

 end

 end

 end

This vector is reshaped back into the image matrix shape and de-padded. The completion

of this section allows for the combining of single pixel shadow paths to cloud blob

shadow paths.

 The shadow pixel paths for each cloud pixel in a now defined cloud blob are

combined and unique values are stored using the following code:

 A = zeros(1,2);

 for row = 1:height

 for col = 1:width

 if cloudlabels(row, col) == clouds

 A = [A; pcms{row, col}];

 end

 end

 end

 A = unique(A,'rows');

This code takes each vector path for each pixel within a cloud blob and combines them

into one large vector. The Matlab function called unique, removes all the pixels that are

redundant in the vector. This yields the shadow path for the entire cloud blob. The

resulting image is the same as Figure 23.

 Once a cloud shadow path can be determined, the pixels within that path need to

be reduced as much as possible. The ocean water may be coastal or deep ocean in this

35

imagery, which can yield either homogeneous or heterogeneous waters. It was thought

that these two types of water would yield different results, and two thresholds were

created to handle the issue.

 Image variances were calculated and recorded. All images were run on both the

average water threshold and the minimum value edge neighbor threshold. The average

water threshold was created by calculating the mean value of all water pixels that were

not already assigned to possible shadow paths. A comparison of the results revealed that

the minimum value edge neighbor threshold worked the best on almost all images. At

this point, the average water threshold was removed. It should be noted that the Hong

Kong image, one of three images obtained as the test image sample, was one of two

images from the final sample batch that performed better in areas with the average water

threshold. As can be seen in Figure 25, the average water threshold identifies more

shadow in some areas but seems to over identify in others. The edge threshold reduces

better in some areas but under identifies in the rest. This is not the case for the majority

of the test images.

36

Figure 25. Hong Kong Reduction Top: Average Water Threshold Bottom: Minimum

Value Edge Neighbor Threshold.

 For the final reduction section of the algorithm, a minimum value edge neighbor

threshold was used for all images. In this threshold, the edge function in Matlab was

used. The edge function requires an input of an intensity or black/white matrix; the

grayscale enhanced image works fine. When extracting the values from the shadow path,

it is imperative that the path retain its shape so that edges are undisturbed. The shape of

the path is most likely not along rows and columns, which means the path cannot be

converted into an edge input matrix without distorting the edges. Figure 26 illustrates

that the paths are not in a rectangular shape, so they cannot be directly entered into the

function.

37

Figure 26. Hong Kong Shadow Paths Isolated.

The path was inserted into a matrix, and empty matrix values were filled with an

unrelated value. Using these values did not work because edge detected only the edge of

the path and no edges within the path. This limitation led to the use of the actual image

values by creating a rectangle around the shadow path. This rectangle is obtained by

identifying the minimum and maximum row and column values, shown by the code

below where A is the shadow path vector:

 min_row = min(A(:,1));

 min_col = min(A(:,2));

 max_row = max(A(:,1));

 max_col = max(A(:,2));

These values are then used to extract the rectangle of pixels, which include the shadow

path. The rectangle of pixels extracted was taken from the intensity image I_enhanced.

As stated earlier, this image is the enhanced blue channel of the raw image. The edge

function allows for choice of method for edge detection. Through trial and error, the

canny method yielded the best results. Matlab states that the Canny method “finds edges

by looking for local maxima of the gradient of I. The gradient is calculated using the

derivative of a Gaussian filter. The method uses two thresholds, to detect strong and weak

edges, and includes the weak edges in the output only if they are connected to strong

edges. This method is therefore less likely than the others to be fooled by noise, and more

38

likely to detect true weak edges.” [23] Although Canny had the best results, most of the

weak edges it identified were not shadow but color variance in the water. This issue was

resolved by modifying the threshold to which canny uses to identify weak edges. There

was no option to choose only strong edges, so the weak edge threshold was calculated to

be as close to the strong threshold as possible within the canny parameter restrictions.

 test = I_enhanced(min_row:max_row, min_col:max_col);

 [th, tw] = size(test);

 [e1, thresh] = edge(test, 'canny');

 if thresh(1, 2) < 1

 dthresh = thresh(1,2) - thresh(1,1);

 dthresh = dthresh/100;

 thresh = [thresh(1,2) - dthresh, thresh(1,2)];

 e1 = edge(test, 'canny', thresh);

 end

The edge function returns a black and white matrix the size of the input where the values

are 0 if not an edge, 1 if an edge.

 At this point in the algorithm, the edge detection in the path has identified both

shadow edges and water variance edges. For each pixel identified as an edge, the pixels

around it were examined. This is done using the code:

[e1_height, e1_width] = size(e1);

 min_e1 = 255;

 for erow = 1:e1_height

 for ecol = 1:e1_width

 if e1(erow ,ecol) == 1

 if pcmnav{erow + min_row - 1, ecol + min_col - 1} == 'P'

 %tl

 if pcmnav{erow + min_row - 2, ecol + min_col - 2}

== 'P'

 e_tl = I_enhanced(erow + min_row - 2, ecol

+ min_col - 2);

 if e_tl < min_e1

 min_e1 = e_tl;

 end

 end

 %tc

39

 if pcmnav{erow + min_row - 2, ecol + min_col - 1}

== 'P'

 e_tc = I_enhanced(erow + min_row - 2, ecol

+ min_col - 1);

 if e_tc < min_e1

 min_e1 = e_tc;

 end

 end

 %tr

 if pcmnav{erow + min_row - 2, ecol + min_col} ==

'P'

 e_tr = I_enhanced(erow + min_row - 2, ecol

+ min_col);

 if e_tr < min_e1

 min_e1 = e_tr;

 end

 end

 %l

 if pcmnav{erow + min_row - 1, ecol + min_col - 2}

== 'P'

 e_l = I_enhanced(erow + min_row - 1, ecol

+ min_col - 2);

 if e_l < min_e1

 min_e1 = e_l;

 end

 end

 %r

 if pcmnav{erow + min_row - 1, ecol + min_col} ==

'P'

 e_r = I_enhanced(erow + min_row - 1, ecol

+ min_col);

 if e_r < min_e1

 min_e1 = e_r;

 end

 end

 %bl

 if pcmnav{erow + min_row, ecol + min_col - 2} ==

'P'

 e_bl = I_enhanced(erow + min_row, ecol +

min_col - 2);

 if e_bl < min_e1

 min_e1 = e_bl;

 end

 end

 %bc

 if pcmnav{erow + min_row, ecol + min_col - 1} ==

40

'P'

 e_bc = I_enhanced(erow + min_row, ecol +

min_col - 1);

 if e_bc < min_e1

 min_e1 = e_bc;

 end

 end

 %br

 if pcmnav{erow + min_row, ecol + min_col} == 'P'

 e_br = I_enhanced(erow + min_row, ecol +

min_col);

 if e_br < min_e1

 min_e1 = e_br;

 end

 end

 %center

 if I_enhanced(erow + min_row - 1, ecol + min_col -

1) < min_e1

 min_e1 = I_enhanced(erow + min_row - 1,

ecol + min_col - 1);

 end

 end

 end

 end

If the pixel was in the shadow path and not an edge itself, the value was stored. The

minimum value of all of these pixels was calculated. This value was used as the

threshold for shadow detection. The assumption is that if the edge is a shadow edge there

will be a dark pixel next to it. Using the darkest near edge pixel will identify most of the

shadow. With the deep enhancement that is obtained through GF it allows edge to better

detect the shadow edges. This seems to break down only when the images are extremely

light in color intensity and/or contrast, such as in Figure 27.

41

Figure 27. Persian Gulf Final Shadow Detection.

42

CHAPTER III

CONCLUSION

Results

Three images were used during the development phase of this research. The

finalized model was applied to a total sample size of 31 images. Of these 31 images, two

were removed for possible data inaccuracies. This leaves a complete sample of 29

images. These images range in dates from 2009 to 2014, with the majority from 2014.

All but four images were of unique location, scattered around the globe. Although these

four images are of the same area, none of them cover the exact same latitudes and

longitudes. All 31 raw images, with their process through GAL, are included in the

Appendix.

 The results show the model works very well for images of great contrast with dark

well-defined cloud shadows. The type of water, homogeneous or heterogeneous, does

not affect the outcome of the model. The images that have cloud shadows that have a

large gradient result in partially identified shadows. The images that have the worst

results are those that have extremely light values and very little water to shadow contrast.

 When examining the results, it can be difficult to judge what is shadow and what

is not shadow. This leads to all final results being visually interpreted. The method used

to measure GAL’s final results was identified by two tasks. The first task was to identify

obvious cloud shadows. The second task was to work as well or better than the previous

research. As stated above, GAL identifies most obvious cloud shadows with only a few

exceptions. When examining previous research, Figure 29 was created by layering the

43

two images from Figure 28 using a 40–60% opacity on the shadow detected image. This

image visually shows how well the shadow pixels are detected in Amin’s et al. results.

Figure 28. Amin’s et al. cropped Virgin Islands results blown up.

Figure 29. Amin’s et al. results layered together with 40 – 60% opacity in the shadow

identified image.

The pixels around the shadow detected image visually appear to be part of the

shadow edge. This would support Amin’s statement of having some issues with shadow

44

edge detection. The same image combining technique was applied to GAL results of the

same area. This can be seen in Figure 30 and Figure 31.

Figure 30. GAL results using the same area of Virgin Islands as in Amin’s et al. research.

Figure 31. GAL Virgin Islands results layered using 40–60% opacity in the shadow

detected image.

45

It can be seen that GAL identified the cloud shadow pixels just as Amin’s algorithm did

plus some. It should be noted that there is some distortion from the original image from

Amin’s publication of his image results, as well as the pixels identified as cloud are

obviously different from GAL’s cloud detection. Some of the shadow pixels identified

by GAL are identified as cloud in Amin’s results. The images also show that the shadow

edges are well detected when using GAL. Although these edges are detected, it should

be noted that GAL appears to over-identify the cloud shadow in some areas. This could

be a loss of good data. It could be argued that due to resolution and computing the

accuracy by eye, some of these outer edge pixels could be contaminated with shadow. In

the case of those outer pixels, it would be better to over-identify than not to identify them

as shadow at all. More images of GAL’s results with the layered technique are below.

Figure 32. Hong Kong layered image. Shows cloud shadow not detected due to gradient

shadow and cloud detection.

46

Figure 33. Key Largo with layered image. Shows well defined shadow detection with

possible false positives.

47

Figure 34. N. Mariana Pagan layered image. Shows best case shadow detection.

Figure 35. Sevastopol Crimea layered image. Shows worst case, many shadow not

detected.

48

 The results shown above and of the entire sample in the appendix show that GAL

works well. The area of image processing is a very hot area of research. With the

increasing amount of data stored and obtained daily through new and old satellite images,

cloud shadow detection is an important need. GAL was created to fill this need. GAL

takes previous research along with new techniques to create a novel, fully automated,

stepwise cloud shadow detection algorithm for over water. This research combines the

past techniques of cloud shadow geometry, edge detection, and thresholding with the new

techniques of guided image filtering in such a way as never has been done before. Not

only is it a model that can be applied to HICO data immediately, it has the potential of

being applied to all satellite imagery worldwide.

Future Work

One of the main drawbacks to this research is the execution time of the cloud

shadow geometry. The geometry was responsible for an average of 88% of the execution

time. This large chunk of execution time is directly correlated to the number of times the

image completes the shadow geometry for loop. This for loop varies in count due to the

iteration value, cloud pixel count, and the height range maximum. This correlation is

shown in Table 1. This table was created to calculate the average execution time

attributed to the cloud shadow geometry and to find any other useful correlations about

execution times.

49

Table 1

Image Statistics

Note. Times are in unit of minutes. Height and iteration are in meters.

Another correlation this table identifies is that the large time differences seem to

be related to the number of clouds processed after geometry. This affects the amount of

times the edge detection and threshold code is applied. These statistics support the claim

stated in previous publications that the shadow geometry is time consuming. Although it

is time consuming, the shadow geometry is the only finite way to identify the path of

cloud shadow. Since it is so important, it cannot be removed, but perhaps the shadow

geometry could be parallelized. Because the cloud pixels are independent, it provides a

good case for splitting up the input. It is also possible to use shadow geometry after the

cloud pixels are blobbed. This allows for shadow geometry to be applied to cloud edges,

50

and anything in between would also be flagged as possible shadow. Either option allows

for a dramatic reduction in geometry execution time. Execution time of shadow

geometry aside, the rest of the execution takes very little time.

 If shadow geometry execution time was reduced, the next issue to be addressed is

to improve the results. There are two major concerns when looking at the current results.

First, the results do not work well in light or low contrast images, such as the image of

the Persian Gulf seen in Figure 27. This could be fixed by exploring more into the GF.

If the GF was able to increase the contrast between water and shadow more, the edge

detection algorithm would recognize the shadow edges better. This could be done

through either a more extensive experimentation of the parameters entered or possibly by

extending the original algorithm for better enhancement. The second concern is when the

shadows are under-identified. Some of these images have shadow with high gradients

within the shadow like in the Hong Kong image in Figure 4 that caused the problem. The

edge detection algorithm recognizes the full shadow edge when using the default

threshold values with the true shadow edge as a weak edge. When the thresholds are

altered to retain only strong edges, the weaker edges are no longer detected. A better

lower threshold may yield better results. It may be useful to explore the values

recognized as weak edges to yield a better threshold for these images. Another problem

that occurs, leaving some shadow pixels unidentified, is that stronger edges are found in

the rectangle around the shadow path. This happens often when clouds and cloud

shadows are close to each other and may be in the rectangle around the path or in the path

itself. One possible way to combat this is to revisit the filling of the matrix empty values

around the path with an arbitrary number. Possibly identifying a water pixel around the

51

path that is light, giving the assumption it is water, might be a better fit for the matrix

filler. This would then eliminate all edges outside the path but should make the shadow

path edge closer to the actual values, so the edge function does not identify it as an edge.

 As well as the drawbacks, there are always additions that could improve

performance. For GAL, one addition, in particular, is already apparent. All images have

borders. Shadows in the border areas of the image where clouds would be outside of the

imaged area are a major problem for shadow detection. Without a cloud to associate with

the shadow, there is no guarantee that it is a shadow. Quite often though, these

questionable areas give every indication of being cloud shadow by their shape, color,

and/or closeness to other clouds and their shadows. In these situations it is the same as

other cloud shadows; the pixels will skew end products. To avoid including possibly

contaminated data, these pixels should be masked. A border shadow detection should be

included for better shadow detection. A possible area to explore is to use the values of

cloud shadows within close proximity of that questionable border area to identify

possible cloud shadows.

 Although not an addition, future work would also include applying GAL to

different satellite data in hopes of proving that GAL is not limited to HICO. If GAL was

proven to work with any satellite data, given the parameters of an image and navigational

data, the contribution to the field would increase greatly. At the moment most satellites

have shadow detection based on what their satellite offers. GAL would be universal and

would also apply to images that may no longer have full satellite data available.

52

APPENDIX

Complete Sample Results

Figure. Arabian Sea 2014 GAL step progression.

53

Figure. BLZ 2013 GAL step progression.

54

Figure. Guam 2010 GAL step progression.

55

Figure. Hong Kong 2009 GAL step progression.

56

Figure. Iquique Chile 2014 GAL step progression.

57

Figure. Key Largo 2013 GAL step progression.

58

Figure. Lake Idku 2014 GAL step progression.

59

Figure. Lake Victoria 2014 GAL step progression.

60

Figure. Lisianski 2014 GAL step progression.

61

Figure. Lucinda Jetty 2014 GAL step progression.

62

Figure. MOBY 2014 GAL step progression.

63

Figure. MOBY-2 2014 GAL step progression.

64

Figure. MVCO 2014 GAL step progression.

65

Figure. N. Mariana Pagan 2010 GAL step progression.

66

Figure. Noumea New Caledonia 2014 GAL step progression.

67

Figure. Noumea New Caledonia-2 2014 GAL step progression.

68

Figure. Noumea New Caledonia-3 2014 GAL step progression.

69

Figure. OC Pac 2014 GAL step progression.

70

Figure. Palau 2014 GAL step progression.

71

Figure. Persian Gulf 2014 GAL step progression.

72

Figure. Port au Prince 2014 GAL step progression.

73

Figure. Puerto Rico 2014 GAL step progression.

74

Figure. Red Sea Straits 2014 GAL step progression.

75

Figure. Sevastopol Crimea 2014 GAL step progression.

76

Figure. Swan River Estuary 2014 GAL step progression.

77

Figure. Tasmania 2013 GAL step progression.

78

Figure. Tasmania-2 2013 GAL step progression.

79

Figure. Virgin Islands 2009 GAL step progression.

80

Figure. Wake Atoll 2014 GAL step progression.

81

Figure. W. Samoa 2010 GAL step progression.

82

Figure. ZAF St. Helena Bay 2014 GAL step progression

83

REFERENCES

[1] R. Amin, R. Gould, W. Hou, R. Arnone and Z. Lee, “Optical Algorithm for Cloud

Shadow Detection Over Water,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 51, no. 2, pp. 732-741, 2013.

[2] K. He, J. Sun and X. Tang, “Guided Image Filtering,” in Computer Vision - ECCV

2010, Heraklion, Crete, 2010.

[3] J. Nahomiak, “HICO - Hyperspectral Imager for the Coastal Ocean,” Oregon State

University, 2009. [Online]. Available: http://hico.coas.oregonstate.edu/. [Accessed

2013].

[4] “International Space Station Fact Sheet,” NASA, [Online]. Available:

http://www.nasa.gov/mission_pages/station/research/experiments/689.html.

[Accessed 2013].

[5] “http://modis.gsfc.nasa.gov/about/,” [Online].

[6] NOAA, “http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html,” [Online]. Available:

http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html.

[7] J. J. Simpson and J. R. Stitt, “A procedure for the detection and removal of cloud

shadow from AVHRR data over land,” IEEE Transactions of Geoscience & Remote

Sensing, vol. 36, no. 3, pp. 880-897, 1998.

[8] R. Amin, D. Lewis, R. W. Gould, W. Hou, A. Lawson, M. Ondrusek and R. Arnone,

“Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on

HICO,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5, pp.

2646-2653, 2014.

84

[9] M. D. Lewis, R. W. Gould, R. A. Arnone, P. E. Lyon, P. Maritnolich, R. Vaughan,

A. Lawson, T. Scardino, W. Hou, W. Snyder, R. Lucke, M. Corson, M. Montes and

C. Davis, “The hyperspectral imager for the coastal ocean (HICO): sensor and data

processing overview,” in IEEE, Biloxi, 2009.

[10] NRL, “U.S. Naval Research Laboratory (NRL),” [Online]. Available:

http://www.nrl.navy.mil. [Accessed 2013].

[11] NRL, “United States Naval Research Laboratory - Bio-Optical/Physical Processes

and Remote Sensing Section,” [Online]. Available: http://www7333.nrlssc.navy.mil.

[Accessed 2013].

[12] M. R. Corson, D. R. Korwan, R. L. Lucke, W. A. Snyder and C. O. Davis, “The

hyperspectral imager for the coastal ocean (HICO) on the international space

station,” in IEEE International Geoscience and Remote Sensing Symposium, Boston,

2008.

[13] ESR, “Earth & Space Research,” [Online]. Available:

http://www.esr.org/outreach/glossary/albedo.html. [Accessed 2013].

[14] P. M. Dare, “Shadow Analysis in High-Resolution Satellite Imagery o Urban

Areas,” Photogrammetric Engineering & Remote Sensing, vol. 71, no. 2, pp. 169-

177, 2005.

[15] K. V. Khlopenkov and A. P. Trishchenko, “SPARC: New Cloud, Snow and Cloud

Shadow Detection Scheme for Historical 1-km AVHHR Data over Canada,” Journal

of Atmospheric and Oceanic Technology, vol. 24, pp. 322-343, 2006.

[16] L. Jiang and M. Wang, “Identification of pixels with stay light and cloud shadow

85

contaminations in the satellite ocean color data processing,” Applied Optics, vol. 52,

no. 27, pp. 6757 - 6770, 2013.

[17] Google Inc., Google Earth 7.1.2.2041, 2013.

[18] NOAA, “NOAA Earth System Research Laboratory,” [Online]. Available:

http://www.esrl.noaa.gov/gmd/grad/solcalc/azelzen.gif. [Accessed 2012].

[19] J. J. Simpson and Z. Jin, “Cloud Shadow Detection Under Arbitrary Viewing and

Illumination Conditions,” IEEE Transactions on Geoscience & Remote Sensing, vol.

38, no. 2, pp. 972-976, 2000.

[20] Y. Luo, A. P. Trishchenko and K. V. Khlopenkov, “Developing clear-sky, cloud and

cloud shadow mask for producing clear-sky composites at 250-meter spatial

resolution for the seven MODIS land bands over Canada and North America,”

Remote Sensing of Environment, vol. 112, pp. 4167-4185, 2008.

[21] R. Zhang, D. Sun, S. Li and Y. Yu, “A stepwise cloud shadow detection approach

combining geometry determination and SVM classification for MODIS data,”

International Journal of Remote Sensing, vol. 34, no. 1, pp. 211-226, 2013.

[22] R. Seyfarth, USM Lecture Notes: Disjoint Set Union/Find, Hattiesburg, Ms, 2006.

[23] The MathWorks, Inc., “Matlab Documentation,” [Online]. Available:

http://www.mathworks.com/help/index.html.

[24] B.-C. Gao, M. J. Montes, Z. Ahmad and C. O. Davis, “Atmospheric correction

algorithm for hyperspectral remote sensing of ocean color from space,” Applied

Optics, vol. 39, no. 6, pp. 887-896, 2000.

[25] X. He, D. Pan, Y. Bai, Q. Zhu and F. Gong, “Evaluation fo the aerosol models for

86

SeaWiFS and MODIS by AERONET data over open oceans,” Applied Optics, vol.

50, no. 22, pp. 4353-4364, 2011.

[26] P. N. Reinersman, K. L. Carder and F. I. Chen, “Satellite-sensor calibration

verification with the cloud-shadow method,” Applied Optics, vol. 37, no. 24, pp.

5541-5549, 1998.

[27] V. Shettigara and G. Sumerling, “Height Determination of Extended Objects Using

Shadows in SPOT Images,” Photgrammetric Engineering & Remote Sensing, vol.

64, no. 1, pp. 35-44, 1998.

	GAL: A Stepwise Model for Automated Cloud Shadow Detection in HICO Oceanic Imagery Utilizing Guided Filter, Pixel Assignment, and Geometric Linking
	Recommended Citation

	tmp.1420824895.pdf.hEzRh

