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ABSTRACT 

GAL: A STEPWISE MODEL FOR AUTOMATED CLOUD SHADOW DETECTION  

 

IN HICO OCEANIC IMAGERY UTILIZING GUIDED FILTER,  

 

PIXEL ASSIGNMENT, AND GEOMETRIC LINKING 

 

by Jennerpher Renee Meyers 

May 2015 

Detection of cloud shadow pixels is an important step in image processing in 

several remote sensing ocean-color application domains, such as obtaining chlorophyll 

content.  While shadow detection algorithms do exist, the vast majority are for over land 

which leaves few options for detection over water. 

 The detection of cloud shadow over water in HICO imagery is a unique problem.  

As its name implies, HICO (Hyperspectral Imager for the Coastal Ocean) imagery is 

produced for coastal and oceanic regions.  Since land based algorithms remove water 

before processing, these approaches would not be applicable.  The only currently 

published HICO shadow pixel detection algorithm [1] produces good results for 

predominantly homogeneous regions.  It also involves hand-tuning of the parameters, 

which is not suitable for automation.   

 GAL is a fully automated stepwise model that starts by using satellite imagery 

and navigational data.  The next step is applying the guided filter algorithm proposed by 

He, Sun, and Tang [2] to these images in order to filter and enhance the images before 

shadow detection. The third step classifies pixels into water, land, and clouds.  The fourth 
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step uses cloud shadow geometry to indicate possible shadow pixels.  The final step is to 

reduce the amount of possible shadow pixels to the most probable shadow pixels. 

 This research combines the past techniques of cloud shadow geometry, edge 

detection, and thresholding, along with the new techniques of guided image filtering, in 

such a way that has never been done before.  GAL works best with well-defined cloud 

shadows that contain a large contrast between water and shadow.  Water type, coastal or 

deep ocean, does not affect GAL.  Shadows with a large gradient may be under-detected.  

GAL can be applied to HICO data immediately, with the potential of being applied to all 

global high resolution ocean-color satellite imagery. 
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CHAPTER I 

 

BACKGROUND 

 

Satellite Image Processing 

 

Since the late 1950’s there have been thousands of satellites sent into space.  The 

roles and research of each of these satellites can differ greatly.   Satellite images can be 

used for research in agriculture, geology, forestry, landscape, education, intelligence, and 

warfare, to name a few.  The satellite imagery used in this research is from the 

Hyperspectral Imager for the Coastal Ocean, which has many earthly applications.   

 

Figure 1. HICO on ISS [3]. 

Entities such as the U.S. Navy and U.S. Marine Corps, as well as the EPA and 

other civilian researchers can utilize HICO data to determine end products such as water 

visibility, the ocean’s depth and floor, and chlorophyll content, among others. These end 

products are useful when there is a need to test for water visibility for moving troops or to 

test for pollution through monitoring water quality. [4]  
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Figure 2. Chlorophyll Content of Hong Kong on February 2, 2011. 

 The information gained from each satellite through its sensors is tailored to the 

specific goals of each satellite.  These sensors retrieve data along certain wavebands or 

range of wavebands of wavelengths, sometimes labeled as channels.  Some satellite 

sensors have fewer channels and/or different wavelengths than HICO.  One such sensor 

Moderate Resolution Imaging Spectroradiometer (MODIS) is located on both satellites 

Terra and Aqua. The data obtained from MODIS on these two satellites “will improve 

our understanding of global dynamics and processes occurring on the land, in the oceans, 

and in the lower atmosphere. MODIS is playing a vital role in the development of 

validated, global, interactive Earth system models able to predict global change 

accurately enough to assist policy makers in making sound decisions concerning the 

protection of our environment.” [5] MODIS has 36 channels covering wavelengths from 

400 nm to 14,400 nm where HICO has 127 covering 400 nm to 1080 nm.  Other satellites 

may also retrieve data that HICO was not designed to retrieve.  Advanced Very High 

Resolution Radiometer (AVHRR), is used mainly for cloud detection and surface 

temperatures, HICO does not include surface temperatures.  Although HICO is 

maintained by NRL, MODIS by NASA, and AVHRR by NOAA, many different sectors 

of the U.S. Government utilize the data from the satellites. [5] [6]  Even within one 
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entity, the diverse data collected from many different satellites can be used to obtain 

many similar, yet very different goals.   

 With the large difference in the type and amount of data received and processed 

by each sensor, at least one thing is common: clouds.  If clouds are present in an image, 

there is always a possibility of cloud shadow within that image as well. Cloud shadows 

may hinder or help in end products.  They may hinder by skewing end products; shadow 

can produce errors of 30% – 40% over land.  It is expected that similar errors would 

happen over water as well, even though there has been no published research to date. [7]  

On the other hand, a recently published article by Amin et al. [8] states that shadow 

detection can aid in atmospheric correction algorithms in HICO.  Identifying the clouds 

and their corresponding shadows is imperative when using satellite imagery and data in 

any research. 

HICO and NRL 

HICO was built by the Naval Research Laboratory (NRL), which is “the 

corporate research laboratory for the Navy and Marine Corps and conducts a broad 

program of scientific research, technology and advanced development.” [10] HICO is 

located on the International Space Station (ISS). NRL is also responsible for maintaining, 

operating, and processing data retrieved from the HICO sensor. [9]  Members of the Bio-

Optical/Physical Processes and Remote Sensing Section of NRL are responsible for 

creating and maintaining the Automated Processing System (APS). This system contains 

the algorithms for calibrations and atmospheric corrections applicable to HICO data.  It 

also contains the algorithms for processing the raw level 1 data, top-of-atmosphere 

satellite radiances, into the geo-referenced level 3 downstream optical properties. [11] 
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 HICO was created to combat difficult constraints on retrieving useful sensor data 

of coastal areas.  According to Corson et al. [12], to accomplish the goals of bathymetry, 

bottom type, chlorophyll content, and water inherent optical properties, a sensor must be 

hyperspectral and well-calibrated.  The need for a hyperspectral sensor comes from the 

fact that the albedo, the portion of light or radiation reflected by a surface, is only a few 

percent.  The low albedo is due to water being more absorbent of sunlight than land, 

snow, or ice as seen in Figure 3 below.   

 

Figure 3. Visual Representation of Albedo: It should be noted that land reflects sunlight 

similarly to ice and snow shown in this illustration. [13]. 

 HICO was designed and calibrated to handle the issue of the atmosphere being 

significantly brighter than the water surface.  HICO data is processed through APS to 

adjust for any remaining atmospheric distortions.  APS has and is continually updated 

with code to handle atmospheric corrections, among other transformations and end 

products.  One addition APS could greatly benefit from is a fully automated shadow 

detection algorithm that works over coastal and homogenous water. 
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Previous Shadow Detection 

The available literature on shadow pixel detection can be divided into two 

categories: detecting shadows over land or over water.   While shadow detection 

algorithms do exist, the vast majority are for land.  For example, in [14], a thresholding 

technique is used to identify shadow, as well as water in the image must be identified and 

separated from shadow scenes.  This algorithm uses the small variance of water in their 

images to identify the difference between shadow and water.  Once the water is identified 

it is removed from the scene.  Another algorithm designed to detect and remove cloud 

shadow over land was designed for AVHRR data. [7]  This algorithm uses shadow 

geometry with an iterative tile projection.  Simpson states that all water pixels should be 

removed before inputting the image, which, again, means it cannot be applied to HICO.  

Most of the available literature applies either one or more algorithms that include 

geometry, thresholding, and/or classification techniques. [14] [15] [7]  These algorithms 

do not apply to HICO data because these algorithms, like most land algorithms, remove 

water before applying the algorithm or as in [14] treat water in such a way that is not 

conducive with coastal regions. 

 One of two cloud shadow detection over water algorithms was published by Jiang 

and Wang. [16]  This algorithm is not on HICO data but on MODIS – Aqua and 

SeaWiFS.  Although this algorithm will not be applicable to HICO in its current form, it 

is important to mention it.  The intent of Jiang was to extend the cloud shadow detection 

algorithm already contained in IDPS, a program similar to NRL’s APS.  They use a static 

size box to identify pixels around a cloud.  Their box size is about 25x25 pixels around 

the cloud itself.  This value was chosen by incorporating shadow geometry.  Due to the 
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resolution size of MODIS it was calculated that the shadow path would be about 12 

pixels.  This would be very different for HICO where shadow paths can be up to 100 

pixels.  They use the shadow geometry to identify the direction in which to test for 

shadow pixels.  Once the direction was calculated, they could determine if the pixels 

were shadows or not by using radiance values from the wavelength 551.  HICO does not 

have this wavelength; however, it does have wavelengths 547 and 553. 

 The only algorithm currently published addressing HICO imagery shadow 

detection is “Optical Algorithm for Cloud Shadow Detection Over Water” by Ruhul 

Amin et al. [1]  The algorithm that is presented uses a constant threshold by normalizing 

the integrated value of radiance data of the blue and green spectra of a chosen pixel by 

the mean of the integrated values of the pixels in an Adaptive Sliding Box (ASB).  Static 

boxes have been used prior to Amin’s et al. work.  The chosen pixel lies in the center of 

the box.  The algorithm works well but has some restrictions.  First, the box size must be 

chosen, so the box is larger than the shadow area.  The next constraint is that the water 

must be homogenous.  The difficulty with heterogeneous waters, which are quite often 

the case of coastal waters, is that shadow over a light section of water may be lighter than 

a darker area in another part of the image. 

 

Figure 4.  Hong Kong Raw Image. 
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Figure 4 is a perfect example of this situation.  Note that some of the shadow on 

the right side of the image is much lighter than some of the dark water on the left of the 

image.  This is the reason a threshold over the entire image will not work. 

 The algorithm designed in [1], starts by using the raw data from HICO.  Each 

pixel has 127 radiance values.  Amin et al. utilizes the radiance values from the bands 

that range 400 nm to 600 nm.  These 35 bands represent the values contained within the 

blue and green spectrum.   He represents this as the parameter IV. Amin et al. states that 

although the IV can visually show a difference between shadowed and non-shadowed 

regions, it is not strong enough for a constant threshold to be applied to the image.   

𝐼𝑉 =  ∫ 𝐿𝑡(𝜆)𝑑𝜆
600 𝑛𝑚

400 𝑛𝑚

 

Figure 5. IV: The integrated radiance values from bands 400 nm to 600 nm. [1] 

Once the radiance values are extracted, the ASB is selected.  This box is used to 

select pixels around the pixel in question.  The size is arbitrary and is chosen so that both 

sunlit and shadow pixels are included.  One of the drawbacks of this algorithm is the user 

interaction needed to complete this step of the algorithm.  Once the ASB has been chosen 

(32x32 to 128x128), the IV of the ASB must be calculated.  This allows for the CSDI, or 

cloud shadow detection index, to be calculated.  The CSDI, as seen in the figure below, is 

used with a threshold to identify cloud shadow pixels. 

𝐶𝑆𝐷𝐼 =  
𝐼𝑉𝑐

〈𝐼𝑉𝐴𝑆𝐵〉
 

Figure 6. CSDI: IV of the selected pixel divided by the mean of the IVs of the ASB. [1] 

Amin et al. states that this index may break down in coastal waters. This 

breakdown is the reason for the specification of homogenous waters, which is another 
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drawback for this method.  Once the CSDI has been calculated, the threshold is applied.  

Amin states that through a visual inspection CSDI <= 0.95 is too low to detect relatively 

thin parts of the shadows while CSDI => 0.97 is a little high and gives a false signal.  

This leads to the threshold being <=0.96.  The figure below is the results of [1]. 
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Figure 7. Results Optical Algorithm for Cloud Shadow [1]. 
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 As stated before, Amin’s et al. algorithm seems to yield decent results in 

homogenous water with arbitrary parameters set by a user.  The method contained in this 

research will be able to handle both types of water and be fully automated, which should 

not only improve previous research, but will also extend that research into new areas. 

 These two algorithms show that research in this area is being done, and automated 

cloud shadow detections over water are in great demand.  This highlights an area of 

research that needs further expansion.  GAL does just that.  It takes the methods that have 

shown to work in previous research and combines them with new techniques in a unique 

way to produce a model of cloud shadow detection over water that does not exist.  

Because of the potential to work with any satellite data and full automation, GAL is a 

contribution that is sorely needed. 
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CHAPTER II 

RESEARCH ALGORITHM 

Introduction 

The algorithm designed for this research was constructed for use with HICO data.  

Although HICO data was the initial intent, the algorithm has the potential to work with 

any satellite data as long as an image and navigational data is available.  Using three 

images for the development phase seen in Figure 8, Figure 9, and Figure 10, GAL was 

designed to take a stepwise approach to detecting cloud shadow.   

 

Figure 8.  Hong Kong Raw Image 2009. 

 

Figure 9.  Guam Raw Image 2009. 
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Figure 10.  N. Mariana Pagan Raw Image 2009. 

The algorithm flowchart is shown in Figure 11.  This algorithm takes a true color 

image of any format and applies Guided Filter; .png file format was used.  The enhanced 

image is processed for a categorization of land, water, and cloud pixels. Once cloud 

pixels are identified, cloud geometry is applied to find geometrically possible shadow 

pixels.  These possible shadow pixels are reduced to the most likely shadow pixels 

through utilizing an edge neighbor minimum value threshold. 

 

Figure 11. Stepwise Algorithm. 

 

 



13 

 

 

 

Step 1: Input Image: Image and Data Processing Tools 

The data obtained from NRL for the purposes of this research includes a true 

color image in .png file format and a file of raw data in .hdf file format from different 

available locations and times.  The .hdf file contains all the raw data obtained by HICO, 

which includes but is not limited to radiance values, navigational data, flags, and a header 

file.   The information extracted and used in this research from the .hdf file is the 

navigational information: each pixel’s latitude, longitude, sensor zenith and azimuth, and 

solar zenith and azimuth.  Due to the file formats, Matlab was chosen to be the best 

environment to create the code for this research.  Matlab is able to handle image reading, 

writing, and manipulation along with reading .hdf files easily.   The navigational data was 

extracted from the .h5 file using the following code: 

 solar_zenith = h5read(input, '/navigation/solar_zenith'); 

     solar_zenith = permute(solar_zenith,[2 1]); 

     rad_solar_zen = deg2rad(solar_zenith); 

     solar_azimuth = h5read(input, '/navigation/solar_azimuth'); 

     solar_azimuth = permute(solar_azimuth,[2 1]); 

    rad_solar_az = deg2rad(solar_azimuth); 

    sensor_zenith = h5read(input, '/navigation/sensor_zenith'); 

     sensor_zenith = permute(sensor_zenith,[2 1]); 

     rad_sensor_zen = deg2rad(sensor_zenith); 

     sensor_azimuth = h5read(input, '/navigation/sensor_azimuth'); 

     sensor_azimuth = permute(sensor_azimuth,[2 1]); 

     rad_sensor_az = deg2rad(sensor_azimuth); 

     longitudes = h5read(input, '/navigation/longitudes'); 

     longitudes = permute(longitudes,[2 1]); 

     latitudes = h5read(input, '/navigation/latitudes'); 

     latitudes = permute(latitudes,[2 1]); 

 

All of the data was converted into radians for consistency and Matlab function 

compatibility.  Some of the data also had to be rearranged into the right direction for 

Matlab to correlate the data with the image direction.   
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 The image was prepared by NRL through APS.  It was sent in a .png file that was 

read into Matlab using the image toolbox commands: 

 img_info = imfinfo(['Images_Raw/' d(i).name]); 

         img_raw = imread(['Images_Raw/' d(i).name]); 

 width = img_info.Width; 

         height = img_info.Height; 

 

The image was then stored as a matrix and used in that structure for the rest of the code.  

Matlab built in toolboxes were used for all instances of file/image handling. Execution 

times of each step, cumulative through that step, and a full run were displayed in the 

output for each image.  This was done through the code: 

ttotal = 0;     

            tstart = cputime; 

        timage = cputime; 

tend = cputime; 

        telapsed = tend - tstart; 

         minutes = floor(telapsed/60); 

         hours = floor(minutes/60); 

         minutes = rem(minutes,60); 

disp(['Reading time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '  

num2str(rem(telapsed,60)) ' seconds']); 

         ttotal = ttotal + telapsed; 

         minutes = floor(ttotal/60); 

         hours = floor(minutes/60); 

         minutes = rem(minutes,60); 

         disp(['Total time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '  

 num2str(rem(ttotal,60)) ' seconds']); 

timageend = cputime - timage; 

         minutes = floor(timageend/60); 

         hours = floor(minutes/60); 

         minutes = rem(minutes,60); 

         disp(['Image Total time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '  

num2str(rem(timageend,60)) ' seconds']); 

         ttotal = ttotal + telapsed; 

         minutes = floor(ttotal/60); 

         hours = floor(minutes/60); 

         minutes = rem(minutes,60); 

         disp(['Total time: ' num2str(hours) ' hours ' num2str(minutes) ' minutes '  

num2str(rem(ttotal,60)) ' seconds']); 
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Step 2: Guided Filter 

The guided filter created by He et al. is capable of many applications:  noise 

reduction, smoothing/enhancement, feathering and haze removal, to name a few. [2]  It is 

proposed that applying this Guided Filter, or GF, to the HICO images before attempting 

to identify shadow will improve the final results. 

 The guided filter requires a guided image (I), an input image (p), and will produce 

an output image (q).  Both the guided image and input image can be the same image.  

This flexibility is one of the reasons guided filter was chosen for this research.  There is 

no guarantee that there will be more than one image for any location in HICO imagery; 

therefore, a filter with this flexibility was needed.  The output for the guided filter at pixel 

(i, j) can be expressed as a weighted average with the equation of: 

𝑞𝑖 = ∑ 𝑊𝑖𝑗(𝐼)𝑝𝑗

𝑗

 

Wij is the filter part of the equation.  This filter is a function of I, independent of and 

linear with respect to p.   

 He states that the guided filter has the key assumption that there is a local linear 

model between I and q.  By assuming that q is a linear transform of I in a window of wk 

centered at the pixel k, where (ak, bk) are some linear coefficients assumed to be constant 

in wk, the following equation is defined: 

𝑞𝑖 =  𝑎𝑘𝐼𝑖 +  𝑏𝑘, ∀𝑖 ∈ 𝑤𝑘 

The filter uses a square window of pixels of radius r.  Because this is a linear model, q 

has an edge if and only if I has an edge, shown by ∇𝑞 = 𝑎∇𝐼. To define the coefficients, 

He et al. minimizes the following cost function within the window: 
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𝐸(𝑎𝑘, 𝑏𝑘) =  ∑ ((𝑎𝑘𝐼𝑖 +  𝑏𝑘 −  𝑝𝑖)
2 +  𝜖𝑎𝑘

2)𝑖∈𝑤𝑘
. 

In this equation, 𝜖 is a regularization parameter used to keep 𝑎𝑘 from being too large.  

After using linear regression to find a solution to the equation above, the linear model is 

applied to all local windows in the entire image.  The filter output for all patches in the 

image becomes: 

𝑞𝑖 =  �̅�𝑖𝐼𝑖 +  �̅�𝑖. 

Because of the modification of the coefficients varying spatially, ∇𝑞 is no longer a 

scaling of ∇𝐼.  He et al. also states, that “since (ak, bk) are the output of an average filter, 

their gradients should be much smaller than that of I near strong edges.” [2]  This allows 

for abrupt intensity changes in I to be mostly maintained in q. 

 Although the guided filter is capable of many applications, only the enhancement 

option was used in this research.  The guided filter is similar to the bilateral filter used in 

detail enhancement and HDR compression.  The process can be simplified into the 

following: Given an input signal, its edge-preserving smoothed output is used as a base 

layer. The difference between the original and base layer becomes the detail layer.  This 

layer is then magnified to boost the details. This enhanced signal is a combination of the 

boosted detail layer and the base layer.   This implementation can be seen through the 

program call used in the example code of the guided filter and this research: 

 I_enhanced = (I - q) * 5 + q; 

 

The guided filter, along with the input and guiding images, requires the input of two 

additional parameters.  These parameters are the window size r which should be a square 

and 𝜖 which is the regularization parameter. This value should be either . 12, . 22, or . 42.  

For this research, the sizes tested for the window were 2, 4, 8, and 16.  Each window size 
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was used with each regularization parameter to decide which enhanced image would be 

the most useful.  It was found that the error values showed little to no difference in the 

output, so a value of . 42 was used.  The r sizes that yielded the best end results were 2 

and 16.   

 

Figure 12. GAL produced Hong Kong Enhanced r = 2 𝜖 = . 42.  Bottom: Hong Kong 

Enhanced r = 16 𝜖 = . 42. 

 It should be noted that although the finished algorithm applied GF to the blue 

channel of the enhanced image, the guided filter was manipulated and applied in different 

ways to ascertain in which way it would be most useful.  The first idea was to apply GF 

to the radiance values in the HICO data.  This would allow for enhancement at the very 

base level.   This was done by using the RGB bands in HICO and running GF with those 

bands.  It was also applied using an average of the bands that cover RGB spectrums.  The 

final attempt was to alter GF itself to make calculations using all 87 accurate bands of 

HICO data.  This theory did not yield any output that was useable.  The radiance values 
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in the level 1 data files do not have any atmospheric corrections made.  This can be seen 

in Figure 13. 

 

Figure 13. Hong Kong Image Created from Radiance Values. 

There is a heavy blue tint over the entire image.  This tinting caused skewing 

when GF is applied.  Modifying and applying GF to all 87 bands did make a slight 

different in the enhancement of the image, but until the radiance values can be obtained 

with atmospheric corrections, this path was not further pursued.   

 

Figure 14. Hong Kong GF applied to 87 bands then processed. 

At this point, the guided filter for colored images was used to enhance the 

provided raw image.  Eventually, the guided filter for grayscale images was used on an 

image created using only the blue channel of the original RGB image.  From previous 

research, the green and blue bands of water were used in the analysis of cloud shadow.  

During the beginning stages of this research, both green and blue bands were used as 

well.  Better results were obtained when only the blue channel was used.  
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Step 3: Pixel Assignment 

This research makes the assumption that all clouds, land, and water are identified 

before an image is processed.  For the purposes of this research, land was identified by 

eye and masked using Paint .Net. The saved image was then loaded into Matlab to use for 

pixel assignment purposes. 

 

Figure 15. Hong Kong Land Masked. 

Clouds were identified by masking any pixels in the enhanced image that had a 

value greater than 180.  Anything not masked as cloud or land was assigned to water.   

 

Figure 16. Hong Kong Identified Clouds Recolored in Pink. 

A matrix is created to hold the pixel assignment values.  As values are changed in 

the algorithm they are updated in this matrix: 

        pcm = cell(height, width, 1); 

        for row = 1:height 

            for col = 1:width 

                pcm{row, col} = 'W'; 

            end 

        end 
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        %Map Cloud Pixels 

        for row = 1:height 

            for col = 1:width 

                pix_val = double(img_raw(row, col,3)); 

                if  pix_val > 180 

                    pcm{row, col} = 'C'; 

                end 

            end 

        end 

         

        %Map Land Pixels 

        landimg = imread(['Images_Masked/' d(i).name]); 

         for row = 1:height 

            for col = 1:width 

                if double(landimg(row, col, 1)) > 225 &&  

  double(landimg(row, col, 3)) <100  

  && double(landimg(row, col, 2)) < 100 

                    pcm{row, col} = 'L'; 

                end 

            end 

         end 

 

 

Figure 17. Hong Kong All Pixels Assigned. 

Step 4: Geometric Linking 

As discussed earlier, the navigational data was extracted from the .h5 file.  All of 

these variables were imported, permuted in shape and converted from degrees to radians.  

The permutation of the data was necessary to match the direction of the image.  Radians 

were needed as they are the default format for the Matlab geometric functions used in the 
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cloud geometry.  The area in an image can vary due to altitude and angle, defined by 

HICO specs, so a width and height measurement in meters was calculated for the image. 

 mwidth = (deg2km(distance(latitudes(1,1), longitudes(1,1), latitudes(1,width),  

  longitudes(1,width))*1000))/width; 

     mlength = (deg2km(distance(latitudes(1,1), longitudes(1,1), latitudes(height,1),  

  longitudes(height,1))*1000))/height; 

 

To also prepare for the geometry section of the algorithm, the data was converted to be 

used in a UTM struct. 

 Universal Transverse Mercator (UTM) coordinates are useful when distances are 

needed on media such as maps or images of Earth.  UTM is a 2- dimensional projected 

coordinate system.  Some of the advantages of using UTM are no negative numbers, 

measurements are decimal based and in meters, and it allows for easier mathematics.  A 

UTM grid system is applied to the earth. The image’s location in the grid determines the 

projected coordinates.  There are 60 zones in the grid of 6 degrees each. It should be 

noted that UTM is not used in the polar regions.  Since HICO does not take images of 

polar regions, UTM was the only system used.  The algorithm can be easily modified in 

the geometry to cover both regions.  Each zone also includes bands of 8 degrees of 

latitude difference.  Each of these bands is labeled C to X excluding I and O to reduce 

possible confusion and error.  The measurements (Eastings and Northings) are 

constructed, so there are never negative numbers.  Grid values increase left to right and 

bottom to top.  Because this is the most accepted way of measuring distance for 

geographical means and because of the advantages listed above, UTM was utilized in 

preparing for the cloud shadow geometry.   
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Figure 18. Google Earth UTM Grid [17]. 

Matlab has a built in UTM library. The data was prepared using the following 

code: 

vlat = latitudes(:); 

vlong = longitudes(:); 

utmlatlong = [vlat vlong]; 

zone = utmzone(utmlatlong); 

utmstruct = defaultm('utm');  

utmstruct.zone = zone;  

utmstruct.geoid = wgs84Ellipsoid('meters'); 

utmstruct = defaultm(utmstruct); 

 

Matlab’s UTM code allows for data to fall into more than one zone, though it 

automatically adjusts the data to fit in one zone.  Once the data has been converted to 

UTM coordinates, the cloud shadow geometry can be applied. 
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 A visual representation of basic shadow geometry can be seen in Figure 19. 

     

Figure 19. Basic Shadow Geometry [18]. 

In this research, a slightly more involved shadow geometry is used.  It can be 

visualized in Figure 20. 

 

Figure 20. Simpson’s Sun Cloud Satellite Geometry [19]. 
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Given the positions of the Sun, the satellite, and clouds, the cloud shadow 

locations can be explicitly determined [20].  In Luo’s article, simplified equations for 

cloud shadow geometry are provided.  These equations are used in this research.  The 

basis for these equations and more detailed geometry can be found in Simpson’s article 

[19].   

Before the equations can be applied to the clouds in the image, the lack of cloud 

height values has to be addressed.  HICO does not obtain any information on cloud height 

or information that can lead to approximating cloud height.  This lead to an opportunity 

of creating a cloud shadow detection algorithm over water that is accurate using only an 

image and navigational data.  Although the cloud height is unknown, it can be bound to a 

range based on atmospheric restrictions.  Following previous research of Luo [20], cloud 

height can be limited to .5 to 16 km.  The cloud ranges can be broken down into three 

categories; .5–8km (low latitudes 30º S to 30º N), .5–12km (mid latitudes 30–60º N or S), 

and .5–16km (high latitudes 60–90º N or S).  The following code shows how this was 

accomplished: 

 %8 for 30S to 30N (-30 to 30) 

    %12 for 30 to 60N or S (-30 to -60 and 30 to 60) 

     %16 for 60 to 90N or S (-60 to -90 and 60 - 90) 

     %No need for Polar regions...HICO only goes 90 to 90 

    latmax = max(latitudes(:)); 

     latmin = min(latitudes(:)); 

     if abs(latmax) < abs(latmin) 

          latmax = abs(latmin); 

     else 

          latmax = abs(latmax); 

     end 

     if latmax < 30  

          hgtmax = 8000; 

     elseif latmax < 60 

          hgtmax = 12000; 

     else 
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          hgtmax = 16000; 

     end 

 

An interval of .5 km was used in the iterative range of previous research.  For this 

research, the interval was altered to fit the difference in resolution of HICO images.  The 

following code was used to derive the interval: 

 mean_zenith = mean(solar_zenith(:)); 

     iteration = tan(deg2rad(mean_zenith)) * mwidth; 

 

The solar zenith is given for each pixel, but experimentation revealed that there is slight 

to no difference in geometry if a mean zenith is used.  In fact, this reduces the number of 

computations necessary by calculating only one iteration value for all geometric 

calculations instead of recalculating for each cloud pixel. 

 Once the height range is determined, the geometry is straightforward.  In this 

research, the simplified equations found in [20] and [21] are applied.  The following 

equations derive the pixel coordinates for the cloud projection on the ground, given that 

(𝑥𝑖𝑚𝑔, 𝑦𝑖𝑚𝑔) is a cloud pixel: 

 𝑥𝑛𝑎𝑑𝑖𝑟 =  𝑥𝑖𝑚𝑔 +  ℎ𝑐 tan 𝜃𝜈 sin(𝜙𝜈 +  𝛾) 

 𝑦𝑛𝑎𝑑𝑖𝑟 =  𝑦𝑖𝑚𝑔 +  ℎ𝑐 tan 𝜃𝜈 cos(𝜙𝜈 +  𝛾) 

 

Those values can then be substituted into the following equations which then calculate 

the subsequent possible shadow projected onto the ground: 

 𝑥𝑠ℎ𝑎𝑑𝑜𝑤 =  𝑥𝑛𝑎𝑑𝑖𝑟 − ℎ𝑐 tan 𝜃𝑠 sin(𝜙𝑠 +  𝛾) 

 𝑦𝑠ℎ𝑎𝑑𝑜𝑤 =  𝑦𝑛𝑎𝑑𝑖𝑟 +  ℎ𝑐 tan 𝜃𝑠 cos(𝜙𝑠 +  𝛾) 
 

In these equations, ℎ𝑐 is the height of the cloud, 𝜃𝜈 represents the satellite zenith angle, 𝜃𝑠 

represents the solar zenith angle, 𝜙𝜈 represents the satellite azimuth angles, and 𝜙𝑠 

represents the solar azimuth angles.  γ is the azimuth angle of true north from the y-axis, 

representing the shift in image to align with a projected xy plane.  As stated earlier, the 
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image has been converted to the UTM system.  This allows for the γ portion of the 

equation to be dropped.  The image is not rotated to fit a projected xy plane in the UTM 

system.  The following code was created to satisfy these equations: 

 [x,y] = mfwdtran(utmstruct,latitudes(row,col), longitudes(row,col)); 

            xn = x + h*tan(rad_sensor_zen(row, col))*sin(rad_sensor_az(row, col)); 

            yn = y + h*tan(rad_sensor_zen(row, col))*cos(rad_sensor_az(row, col)); 

            xs = xn - h*tan(rad_solar_zen(row, col))*sin(rad_solar_az(row, col)); 

            ys = yn - h*tan(rad_solar_zen(row, col))*cos(rad_solar_az(row, col)); 

 

This code converts the navigational data of the cloud pixel into UTM coordinates.  

It then proceeds to find the cloud projected on the ground, then the cloud shadow 

projected onto the ground.  This is not to be confused with the image pixel coordinates.  

This creates a projected space.  At this point, geometry is used to take the projected space 

and find the closest coordinating pixel indices within the image.  Figure 21 is a visual 

representation of the geometry applied to find the pixel indices from the projected 

shadow space. 
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Figure 21. Geometry of Finding Pixel Indices from Projected Shadow Space. 

From Figure 21 we can extrapolate the following triangle.  The triangle in Figure 

22 allows for the use of Directional Cosines to find the values dX and dY.   

 

Figure 22. Directional Cosines Triangle. 

These values were calculated in the following code: 

 r = sqrt(((xs - x)^2)+((ys - y)^2)); 

            theta = atan((ys - y)/(xs - x)); 
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            if (xs - x) < 0  

             theta = theta + acos(-1); 

            end 

            beta = theta - alpha; 

            drow = r*cos(beta); 

            dcol = r*sin(beta); 

            ys_adj = row + round((drow)/mlength); 

            xs_adj = col + round((dcol)/mwidth); 

 

These values represent where the shadow would be in reference to the rows and columns 

of the image.  These projected values allow for shadows that fall outside the realm of the 

image.  Any values of this type are ignored.  The pixels that are valid within the image 

space and assigned as water are marked as “P” in the assignment matrix.  The lists of 

pixel indices that make a shadow path for a cloud pixel are also stored for later use. 

 When the cloud geometry section of the algorithm is finished, it yields all possible 

shadow pixels produced through cloud shadow geometry.   

 

Figure 23.  GAL produced Hong Kong Full Height Range Geometric Shadow Paths. 

Figure 23 shows how important accurate cloud detection is.  In the left side of the image 

there are possible shadow paths calculated for light colored water or land edges that 

where masked as cloud with the 180 threshold.  This increases execution time and can 

lead to identifying false shadows.   

 Depending on how many clouds and how much of the image space the clouds 

cover, the possible shadow pixels may cover a substantial portion of the image, see 
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Figure 24.  Because clouds truly only have one height, using a height range in geometry 

that covers all possible heights, the resulting shadow paths will always have pixels 

marked as shadow that are not shadow.  Whether the image is greatly covered or whether 

extra heights are included, both situations lead to non-shadow marked as shadow.  This 

would eliminate possible good values for end products.  Given this knowledge, the next 

step in the algorithm is to reduce the possible shadow pixels down to a minimum.   

 

Figure 24. Lisianski Full Geometric Shadow Paths. 

Step 5: Reduction 

The reduction section starts with combining possible shadow pixels into shadow 

paths.  This is completed by first making cloud blobs out of the cloud pixels.  Using a 

connected components algorithm [22], the cloud blobs were connected if they resided 

within five pixels of another cloud pixel.  The code is as follows: 

 cloudblobs = -1*ones(height, width); 

 

         %Map Cloud Pixels 

         for row = 1:height 

             for col = 1:width 

                  if pcmnav{row,col} == 'C' 

                       cloudblobs(row, col) = 1; 

                  end 

             end 

         end 

 

         pcmp = padarray(cloudblobs, [5 5], -1); 

         blobs = connect_components(pcmp); 
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         [blobsc, blobcount] = count_blobs(blobs); 

        blobsc = reshape(blobsc, [width+10 height+10])'; 

         cloudlabels = blobsc; 

         cloudlabels(:, 1:5) = []; 

         cloudlabels(:, end-4:end) = []; 

         cloudlabels(1:5, :) = []; 

         cloudlabels(end-4:end, :) = []; 

 

A Boolean matrix of cloud pixels is created.  That matrix is then padded by five 

rows and columns around the matrix.  This padding allows for the testing of all indices 

without worrying about a border.  A padding of 5x5 pixels is an effective means of 

reducing the amount of clouds to process.  This padding can also be done with immediate 

neighbors or a large padding of pixels.  It should be noted that padding assumes the cloud 

pixels linked together have a similar or equal height.  With this assumption the padding 

of the cloud pixels should not be too large.  A call to the function connect_components, 

sends the cloud pixel matrix into the function and reshapes it into a vector.  This function 

creates a vector of parents for each pixel, initialized at -1.  This vector value of -1 

represents that, at this stage, every pixel is its own parent.  This can be seen in the 

following code: 

width = size(clouds,2); 

    cloudsv = reshape((clouds)', 1, []); 

     parents =  -1 * ones(size(cloudsv)); 

     

     for y = 1:length(cloudsv) 

          if (cloudsv(y) == 1) 

             %left 4 pixels 

              if (cloudsv(y-1) == 1) 

                   parents = unionB(parents, y-1, y); 

              end 

              if (cloudsv(y-2) == 1) 

                  parents = unionB(parents, y-2, y); 

              end 

              if (cloudsv(y-3) == 1) 

                   parents = unionB(parents, y-3, y); 

              end 
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              if (cloudsv(y-4) == 1) 

                   parents = unionB(parents, y-4, y); 

              end 

 

              %upper 1 left 4 pixels 

              %upper pixel 

              if (cloudsv(y-width) == 1) 

                   parents = unionB(parents, y-width, y); 

              end 

              if (cloudsv(y-width-1) == 1) 

                   parents = unionB(parents, y-width-1, y); 

              end 

              if (cloudsv(y-width-2) == 1) 

                   parents = unionB(parents, y-width-2, y); 

              end 

              if (cloudsv(y-width-3) == 1) 

                   parents = unionB(parents, y-width-3, y); 

              end 

              if (cloudsv(y-width-4) == 1) 

                   parents = unionB(parents, y-width-4, y); 

              end 

 

              %upper 2 left 4 pixels 

              %upper pixel 

              if (cloudsv(y-(width*2)) == 1) 

                   parents = unionB(parents, y-(width*2), y); 

              end 

              if (cloudsv(y-(width*2)-1) == 1) 

                   parents = unionB(parents, y-(width*2)-1, y); 

              end 

              if (cloudsv(y-(width*2)-2) == 1) 

                   parents = unionB(parents, y-(width*2)-2, y); 

              end 

              if (cloudsv(y-(width*2)-3) == 1) 

                   parents = unionB(parents, y-(width*2)-3, y); 

              end 

              if (cloudsv(y-(width*2)-4) == 1) 

                   parents = unionB(parents, y-(width*2)-4, y); 

              end 

             

              %upper 3 left 4 pixels 

              %upper pixel 

              if (cloudsv(y-(width*3)) == 1) 

                   parents = unionB(parents, y-(width*3), y); 

              end 

              if (cloudsv(y-(width*3)-1) == 1) 
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                   parents = unionB(parents, y-(width*3)-1, y); 

              end 

              if (cloudsv(y-(width*3)-2) == 1) 

                   parents = unionB(parents, y-(width*3)-2, y); 

              end 

              if (cloudsv(y-(width*3)-3) == 1) 

                   parents = unionB(parents, y-(width*3)-3, y); 

              end 

              if (cloudsv(y-(width*3)-4) == 1) 

                   parents = unionB(parents, y-(width*3)-4, y); 

              end 

             

              %upper 4 left 4 pixels 

              %upper pixel 

              if (cloudsv(y-(width*4)) == 1) 

                   parents = unionB(parents, y-(width*4), y); 

              end 

              if (cloudsv(y-(width*4)-1) == 1) 

                   parents = unionB(parents, y-(width*4)-1, y); 

              end 

              if (cloudsv(y-(width*4)-2) == 1) 

                   parents = unionB(parents, y-(width*4)-2, y); 

              end 

              if (cloudsv(y-(width*4)-3) == 1) 

                   parents = unionB(parents, y-width-3, y); 

              end 

              if (cloudsv(y-(width*4)-4) == 1) 

                   parents = unionB(parents, y-(width*4)-4, y); 

              end 

          end 

     end 

 

The center pixel, the vector of parents, and the neighbor pixel are then sent to the 

function unionB.  This is completed for every neighboring pixel that is a cloud pixel in 

the 5x5 square around the center pixel, repeated for every cloud pixel seen in the code 

below: 

     [parents, a] = find_set(parents, a); 

     [parents, b] = find_set(parents, b); 

     if (a ~= b)  

          size = parents(a) + parents(b); 

          if (parents(a) <= parents(b)) 

              parents(b) = a; 
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              parents(a) = size; 

          else 

              parents(a) = b; 

              parents(b) = size; 

          end 

     end 

 

This function first calls find_set for both the center pixel and the neighbor pixel.  The 

find_set function returns the root for each of the pixels.  If they are not equal, the two 

trees become one, and the parent vector is updated.  This can be seen here: 

     r = index; 

     while (parents(r) >= 0)    

          r = parents(r); 

     end 

     i = index; 

     while (parents(i) >= 0) 

          index = parents(i); 

          parents(i)= r; 

          i = index; 

     end 

 

This is continued until all clouds blobs have been connected.  Once the cloud blobs have 

been connected they are counted and then each cloud pixel is relabeled according to the 

cloud blob id number.  This is done through the code: 

count = 0; 

     blobsc = zeros(size(blobs)); 

     %number roots 

     for y = 1:length(blobs) 

          if blobs(y) < -1 

              %see how many roots we have 

              count=count+1; 

          end 

     end 

     disp(['Number of clouds: ' num2str(count)]); 

     %loop through tree until root is found 

     for x = 1:length(blobs) 

          if blobs(x) ~= -1  

              [blobs,root] = find_set(blobs, x); 

              blobsc(x) = root;  
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          end 

     end 

     count = 0; 

     for z = 1:length(blobs) 

          if blobsc(z) > 0 

              root = blobsc(z); 

              if root > count 

                   count = count + 1; 

                   blobsc(blobsc == root) = count;     

              end 

          end 

     end 

 

This vector is reshaped back into the image matrix shape and de-padded.  The completion 

of this section allows for the combining of single pixel shadow paths to cloud blob 

shadow paths. 

 The shadow pixel paths for each cloud pixel in a now defined cloud blob are 

combined and unique values are stored using the following code:  

 A = zeros(1,2); 

             for row = 1:height 

                  for col = 1:width 

                       if cloudlabels(row, col) == clouds 

                           A = [A; pcms{row, col}];                     

                       end 

                  end 

             end 

            A = unique(A,'rows'); 

 

This code takes each vector path for each pixel within a cloud blob and combines them 

into one large vector.  The Matlab function called unique, removes all the pixels that are 

redundant in the vector.  This yields the shadow path for the entire cloud blob.  The 

resulting image is the same as Figure 23. 

 Once a cloud shadow path can be determined, the pixels within that path need to 

be reduced as much as possible.  The ocean water may be coastal or deep ocean in this 
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imagery, which can yield either homogeneous or heterogeneous waters.  It was thought 

that these two types of water would yield different results, and two thresholds were 

created to handle the issue. 

 Image variances were calculated and recorded. All images were run on both the 

average water threshold and the minimum value edge neighbor threshold.  The average 

water threshold was created by calculating the mean value of all water pixels that were 

not already assigned to possible shadow paths.  A comparison of the results revealed that 

the minimum value edge neighbor threshold worked the best on almost all images.  At 

this point, the average water threshold was removed.  It should be noted that the Hong 

Kong image, one of three images obtained as the test image sample, was one of two 

images from the final sample batch that performed better in areas with the average water 

threshold.  As can be seen in Figure 25, the average water threshold identifies more 

shadow in some areas but seems to over identify in others.  The edge threshold reduces 

better in some areas but under identifies in the rest.  This is not the case for the majority 

of the test images.   
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Figure 25. Hong Kong Reduction Top: Average Water Threshold  Bottom: Minimum 

Value Edge Neighbor Threshold. 

 For the final reduction section of the algorithm, a minimum value edge neighbor 

threshold was used for all images.  In this threshold, the edge function in Matlab was 

used.  The edge function requires an input of an intensity or black/white matrix; the 

grayscale enhanced image works fine.  When extracting the values from the shadow path, 

it is imperative that the path retain its shape so that edges are undisturbed. The shape of 

the path is most likely not along rows and columns, which means the path cannot be 

converted into an edge input matrix without distorting the edges.   Figure 26 illustrates 

that the paths are not in a rectangular shape, so they cannot be directly entered into the 

function. 
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Figure 26. Hong Kong Shadow Paths Isolated. 

The path was inserted into a matrix, and empty matrix values were filled with an 

unrelated value.  Using these values did not work because edge detected only the edge of 

the path and no edges within the path.  This limitation led to the use of the actual image 

values by creating a rectangle around the shadow path.  This rectangle is obtained by 

identifying the minimum and maximum row and column values, shown by the code 

below where A is the shadow path vector:   

 min_row = min(A(:,1)); 

            min_col = min(A(:,2)); 

            max_row = max(A(:,1)); 

            max_col = max(A(:,2)); 

 

These values are then used to extract the rectangle of pixels, which include the shadow 

path.  The rectangle of pixels extracted was taken from the intensity image I_enhanced.  

As stated earlier, this image is the enhanced blue channel of the raw image.  The edge 

function allows for choice of method for edge detection.  Through trial and error, the 

canny method yielded the best results. Matlab states that the Canny method “finds edges 

by looking for local maxima of the gradient of I. The gradient is calculated using the 

derivative of a Gaussian filter. The method uses two thresholds, to detect strong and weak 

edges, and includes the weak edges in the output only if they are connected to strong 

edges. This method is therefore less likely than the others to be fooled by noise, and more 
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likely to detect true weak edges.” [23]  Although Canny had the best results, most of the 

weak edges it identified were not shadow but color variance in the water.  This issue was 

resolved by modifying the threshold to which canny uses to identify weak edges.  There 

was no option to choose only strong edges, so the weak edge threshold was calculated to 

be as close to the strong threshold as possible within the canny parameter restrictions. 

 test = I_enhanced(min_row:max_row, min_col:max_col); 

            [th, tw] = size(test); 

            [e1, thresh] = edge(test, 'canny'); 

            if thresh(1, 2) < 1 

             dthresh = thresh(1,2) - thresh(1,1); 

                        dthresh = dthresh/100; 

                        thresh = [thresh(1,2) - dthresh, thresh(1,2)]; 

                        e1 = edge(test, 'canny', thresh); 

            end 

 

The edge function returns a black and white matrix the size of the input where the values 

are 0 if not an edge, 1 if an edge.   

 At this point in the algorithm, the edge detection in the path has identified both 

shadow edges and water variance edges.  For each pixel identified as an edge, the pixels 

around it were examined.  This is done using the code: 

[e1_height, e1_width] = size(e1); 

            min_e1 = 255; 

            for erow = 1:e1_height 

             for ecol = 1:e1_width 

                         if e1(erow ,ecol) == 1 

                              if pcmnav{erow + min_row - 1, ecol + min_col - 1} == 'P' 

                                  %tl 

                                   if pcmnav{erow + min_row - 2, ecol + min_col - 2}  

== 'P' 

                                       e_tl = I_enhanced(erow + min_row - 2, ecol  

+ min_col - 2); 

                                       if e_tl < min_e1 

                                            min_e1 = e_tl; 

                                       end 

                                   end 

                                  %tc 
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                                   if pcmnav{erow + min_row - 2, ecol + min_col - 1}  

== 'P' 

                                       e_tc = I_enhanced(erow + min_row - 2, ecol  

+ min_col - 1); 

                                       if e_tc < min_e1 

                                            min_e1 = e_tc; 

                                       end 

                                   end 

                                  %tr 

                                   if pcmnav{erow + min_row - 2, ecol + min_col} ==  

'P' 

                                       e_tr = I_enhanced(erow + min_row - 2, ecol  

+ min_col); 

                                       if e_tr < min_e1 

                                            min_e1 = e_tr; 

                                       end 

                                   end 

                                  %l 

                                   if pcmnav{erow + min_row - 1, ecol + min_col - 2}  

== 'P' 

                                       e_l = I_enhanced(erow + min_row - 1, ecol  

+ min_col - 2); 

                                       if e_l < min_e1 

                                            min_e1 = e_l; 

                                       end 

                                   end 

                                  %r 

                                   if pcmnav{erow + min_row - 1, ecol + min_col} ==  

'P' 

                                       e_r = I_enhanced(erow + min_row - 1, ecol  

+ min_col); 

                                       if e_r < min_e1 

                                            min_e1 = e_r; 

                                       end 

                                   end 

                                  %bl 

                                   if pcmnav{erow + min_row, ecol + min_col - 2} ==  

'P' 

                                       e_bl = I_enhanced(erow + min_row, ecol +  

min_col - 2); 

                                       if e_bl < min_e1 

                                            min_e1 = e_bl; 

                                       end 

                                  end 

                                  %bc   

                                   if pcmnav{erow + min_row, ecol + min_col - 1} ==  
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'P' 

                                       e_bc = I_enhanced(erow + min_row, ecol +  

min_col - 1); 

                                       if e_bc < min_e1 

                                            min_e1 = e_bc; 

                                       end 

                                   end 

                                  %br 

                                   if pcmnav{erow + min_row, ecol + min_col} == 'P' 

                                       e_br = I_enhanced(erow + min_row, ecol +  

min_col); 

                                       if e_br < min_e1 

                                            min_e1 = e_br; 

                                       end 

                                   end 

                                  %center 

                                   if I_enhanced(erow + min_row - 1, ecol + min_col -  

1) < min_e1 

                                       min_e1 = I_enhanced(erow + min_row - 1,  

ecol + min_col - 1);     

                                   end 

                              end 

                         end 

                    end 

 

If the pixel was in the shadow path and not an edge itself, the value was stored.  The 

minimum value of all of these pixels was calculated.  This value was used as the 

threshold for shadow detection.  The assumption is that if the edge is a shadow edge there 

will be a dark pixel next to it.  Using the darkest near edge pixel will identify most of the 

shadow.  With the deep enhancement that is obtained through GF it allows edge to better 

detect the shadow edges.  This seems to break down only when the images are extremely 

light in color intensity and/or contrast, such as in Figure 27.  
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Figure 27.  Persian Gulf Final Shadow Detection. 
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CHAPTER III 

CONCLUSION 

Results 

Three images were used during the development phase of this research.  The 

finalized model was applied to a total sample size of 31 images.  Of these 31 images, two 

were removed for possible data inaccuracies.  This leaves a complete sample of 29 

images.  These images range in dates from 2009 to 2014, with the majority from 2014.  

All but four images were of unique location, scattered around the globe. Although these 

four images are of the same area, none of them cover the exact same latitudes and 

longitudes.  All 31 raw images, with their process through GAL, are included in the 

Appendix. 

 The results show the model works very well for images of great contrast with dark 

well-defined cloud shadows.  The type of water, homogeneous or heterogeneous, does 

not affect the outcome of the model.  The images that have cloud shadows that have a 

large gradient result in partially identified shadows.  The images that have the worst 

results are those that have extremely light values and very little water to shadow contrast. 

 When examining the results, it can be difficult to judge what is shadow and what 

is not shadow.  This leads to all final results being visually interpreted.  The method used 

to measure GAL’s final results was identified by two tasks.  The first task was to identify 

obvious cloud shadows.  The second task was to work as well or better than the previous 

research.  As stated above, GAL identifies most obvious cloud shadows with only a few 

exceptions.  When examining previous research, Figure 29 was created by layering the 



43 

 

 

 

two images from Figure 28 using a 40–60% opacity on the shadow detected image.  This 

image visually shows how well the shadow pixels are detected in Amin’s et al. results. 

 

Figure 28. Amin’s et al. cropped Virgin Islands results blown up. 

 

Figure 29. Amin’s et al. results layered together with 40 – 60% opacity in the shadow 

identified image. 

The pixels around the shadow detected image visually appear to be part of the 

shadow edge.  This would support Amin’s statement of having some issues with shadow 
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edge detection.  The same image combining technique was applied to GAL results of the 

same area.  This can be seen in Figure 30 and Figure 31. 

 

Figure 30. GAL results using the same area of Virgin Islands as in Amin’s et al. research. 

 

Figure 31.  GAL Virgin Islands results layered using 40–60% opacity in the shadow 

detected image. 
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It can be seen that GAL identified the cloud shadow pixels just as Amin’s algorithm did 

plus some.  It should be noted that there is some distortion from the original image from 

Amin’s publication of his image results, as well as the pixels identified as cloud are 

obviously different from GAL’s cloud detection.  Some of the shadow pixels identified 

by GAL are identified as cloud in Amin’s results.  The images also show that the shadow 

edges are well detected when using GAL.  Although these edges are detected, it should 

be noted that GAL appears to over-identify the cloud shadow in some areas.  This could 

be a loss of good data.  It could be argued that due to resolution and computing the 

accuracy by eye, some of these outer edge pixels could be contaminated with shadow.  In 

the case of those outer pixels, it would be better to over-identify than not to identify them 

as shadow at all. More images of GAL’s results with the layered technique are below. 

 

Figure 32.  Hong Kong layered image.  Shows cloud shadow not detected due to gradient 

shadow and cloud detection. 
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Figure 33.  Key Largo with layered image.  Shows well defined shadow detection with 

possible false positives. 
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Figure 34.  N. Mariana Pagan layered image.  Shows best case shadow detection. 

 

Figure 35. Sevastopol Crimea layered image.  Shows worst case, many shadow not 

detected. 
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 The results shown above and of the entire sample in the appendix show that GAL 

works well. The area of image processing is a very hot area of research.  With the 

increasing amount of data stored and obtained daily through new and old satellite images, 

cloud shadow detection is an important need.  GAL was created to fill this need.  GAL 

takes previous research along with new techniques to create a novel, fully automated, 

stepwise cloud shadow detection algorithm for over water.  This research combines the 

past techniques of cloud shadow geometry, edge detection, and thresholding with the new 

techniques of guided image filtering in such a way as never has been done before.  Not 

only is it a model that can be applied to HICO data immediately, it has the potential of 

being applied to all satellite imagery worldwide. 

Future Work 

One of the main drawbacks to this research is the execution time of the cloud 

shadow geometry.  The geometry was responsible for an average of 88% of the execution 

time. This large chunk of execution time is directly correlated to the number of times the 

image completes the shadow geometry for loop.  This for loop varies in count due to the 

iteration value, cloud pixel count, and the height range maximum.  This correlation is 

shown in Table 1.  This table was created to calculate the average execution time 

attributed to the cloud shadow geometry and to find any other useful correlations about 

execution times. 
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Table 1  

 

Image Statistics 

 
 

Note. Times are in unit of minutes. Height and iteration are in meters. 

 

Another correlation this table identifies is that the large time differences seem to 

be related to the number of clouds processed after geometry.  This affects the amount of 

times the edge detection and threshold code is applied.  These statistics support the claim 

stated in previous publications that the shadow geometry is time consuming.  Although it 

is time consuming, the shadow geometry is the only finite way to identify the path of 

cloud shadow.  Since it is so important, it cannot be removed, but perhaps the shadow 

geometry could be parallelized.  Because the cloud pixels are independent, it provides a 

good case for splitting up the input.  It is also possible to use shadow geometry after the 

cloud pixels are blobbed.  This allows for shadow geometry to be applied to cloud edges, 
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and anything in between would also be flagged as possible shadow.  Either option allows 

for a dramatic reduction in geometry execution time.  Execution time of shadow 

geometry aside, the rest of the execution takes very little time.   

 If shadow geometry execution time was reduced, the next issue to be addressed is 

to improve the results.  There are two major concerns when looking at the current results.  

First, the results do not work well in light or low contrast images, such as the image of 

the Persian Gulf seen in Figure 27.  This could be fixed by exploring more into the GF.  

If the GF was able to increase the contrast between water and shadow more, the edge 

detection algorithm would recognize the shadow edges better.  This could be done 

through either a more extensive experimentation of the parameters entered or possibly by 

extending the original algorithm for better enhancement.  The second concern is when the 

shadows are under-identified.  Some of these images have shadow with high gradients 

within the shadow like in the Hong Kong image in Figure 4 that caused the problem.  The 

edge detection algorithm recognizes the full shadow edge when using the default 

threshold values with the true shadow edge as a weak edge.  When the thresholds are 

altered to retain only strong edges, the weaker edges are no longer detected.  A better 

lower threshold may yield better results.  It may be useful to explore the values 

recognized as weak edges to yield a better threshold for these images.  Another problem 

that occurs, leaving some shadow pixels unidentified, is that stronger edges are found in 

the rectangle around the shadow path.  This happens often when clouds and cloud 

shadows are close to each other and may be in the rectangle around the path or in the path 

itself.  One possible way to combat this is to revisit the filling of the matrix empty values 

around the path with an arbitrary number.  Possibly identifying a water pixel around the 
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path that is light, giving the assumption it is water, might be a better fit for the matrix 

filler.  This would then eliminate all edges outside the path but should make the shadow 

path edge closer to the actual values, so the edge function does not identify it as an edge. 

 As well as the drawbacks, there are always additions that could improve 

performance.  For GAL, one addition, in particular, is already apparent.  All images have 

borders.  Shadows in the border areas of the image where clouds would be outside of the 

imaged area are a major problem for shadow detection.  Without a cloud to associate with 

the shadow, there is no guarantee that it is a shadow.  Quite often though, these 

questionable areas give every indication of being cloud shadow by their shape, color, 

and/or closeness to other clouds and their shadows.  In these situations it is the same as 

other cloud shadows; the pixels will skew end products.  To avoid including possibly 

contaminated data, these pixels should be masked.  A border shadow detection should be 

included for better shadow detection.  A possible area to explore is to use the values of 

cloud shadows within close proximity of that questionable border area to identify 

possible cloud shadows. 

 Although not an addition, future work would also include applying GAL to 

different satellite data in hopes of proving that GAL is not limited to HICO.  If GAL was 

proven to work with any satellite data, given the parameters of an image and navigational 

data, the contribution to the field would increase greatly.  At the moment most satellites 

have shadow detection based on what their satellite offers.  GAL would be universal and 

would also apply to images that may no longer have full satellite data available. 
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APPENDIX 

Complete Sample Results

 

Figure.  Arabian Sea 2014 GAL step progression. 
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Figure.  BLZ 2013 GAL step progression. 
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Figure.  Guam 2010 GAL step progression. 
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Figure.  Hong Kong 2009 GAL step progression. 
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Figure.  Iquique Chile 2014 GAL step progression. 
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Figure.  Key Largo 2013 GAL step progression. 



58 

 

 

 

 

Figure.  Lake Idku 2014 GAL step progression. 
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Figure.  Lake Victoria 2014 GAL step progression. 
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Figure.  Lisianski 2014 GAL step progression. 
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Figure.  Lucinda Jetty 2014 GAL step progression. 
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Figure.  MOBY 2014 GAL step progression. 
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Figure.  MOBY-2 2014 GAL step progression. 
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Figure.  MVCO 2014 GAL step progression. 
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Figure.  N. Mariana Pagan 2010 GAL step progression. 
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Figure.  Noumea New Caledonia 2014 GAL step progression. 



67 

 

 

 

 

Figure.  Noumea New Caledonia-2 2014 GAL step progression. 
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Figure.  Noumea New Caledonia-3 2014 GAL step progression. 
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Figure.  OC Pac 2014 GAL step progression. 



70 

 

 

 

 

Figure.  Palau 2014 GAL step progression. 
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Figure.  Persian Gulf 2014 GAL step progression. 
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Figure.  Port au Prince 2014 GAL step progression. 
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Figure.  Puerto Rico 2014 GAL step progression. 
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Figure.  Red Sea Straits 2014 GAL step progression. 
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Figure.  Sevastopol Crimea 2014 GAL step progression. 
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Figure.  Swan River Estuary 2014 GAL step progression. 
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Figure.  Tasmania 2013 GAL step progression. 
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Figure.  Tasmania-2 2013 GAL step progression. 
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Figure.  Virgin Islands 2009 GAL step progression. 
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Figure.  Wake Atoll 2014 GAL step progression. 
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Figure.  W. Samoa 2010 GAL step progression. 
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Figure.  ZAF St. Helena Bay 2014 GAL step progression
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