
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Summer 8-2013

Iterative Solvers for Large, Dense Matrices Iterative Solvers for Large, Dense Matrices

Eowyn Wilhelmina Cenek
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Cenek, Eowyn Wilhelmina, "Iterative Solvers for Large, Dense Matrices" (2013). Dissertations. 165.
https://aquila.usm.edu/dissertations/165

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=aquila.usm.edu%2Fdissertations%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/165?utm_source=aquila.usm.edu%2Fdissertations%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

The University of Southern Mississippi

ITERATIVE SOLVERS FOR LARGE, DENSE MATRICES

by

Eowyn Wilhelmina Čenek

Abstract of a Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

August 2013

ABSTRACT

ITERATIVE SOLVERS FOR LARGE, DENSE MATRICES

by Eowyn Wilhelmina Čenek

August 2013

Stochastic Interpolation (SI) uses a continuous, centrally symmetric probability distribu-

tion function to interpolate a given set of data points, and splits the interpolation operator

into a discrete deconvolution followed by a discrete convolution of the data. The method

is particularly effective for large data sets, as it does not suffer from the problem of over-

sampling, where too many data points cause the interpolating function to oscillate wildly.

Rather, the interpolation improves every time more data points are added. The method relies

on the inversion of relatively large, dense matrices to solve Annx = b for x. Based on the

probability distribution function chosen, the matrix Ann may have specific properties that

make the problem of solving for x tractable.

The iterative Shulz Jones Mayer (SJM) method relies on an initial guess, which is iterated

to approximate A−1
nn . We present initial guesses that are guaranteed to converge quadratically

for several classes of matrices, including diagonally and tri-diagonally dominant matrices

and the structured matrices we encounter in the implementation of SI. We improve the

method, creating the Polynomial Shulz Jones Mayer method, and take advantage of the

more efficient matrix operations possible for Toeplitz matrices. We calculate error bounds

and use those to improve the method’s accuracy, resulting in a method requiring O(n logn)

operations that returns x with double precision. The use of SI and PSJM is illustrated in

interpolating functions and images in grey scale and color.

iii

COPYRIGHT BY

EOWYN WILHELMINA ČENEK

2013

The University of Southern Mississippi

ITERATIVE SOLVERS FOR LARGE, DENSE MATRICES

by

Eowyn Wilhelmina Čenek

A Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved:

Director

Dean of the Graduate School

James Lambers

Joseph Kolibal

Jeremy Lyle

Sung Lee

Susan A. Siltanen

August 2013

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Joseph Kolibal, for his support and guidance, as he

guided me through the process of writing a dissertation. Without his help, this dissertation

would not have been written. I am deeply grateful for the many hours he spent encouraging,

advising, and editing my work. My committee members – Dr Sung Lee, Dr James Lambers,

and Dr Jeremy Lyle – have kindly donated time reviewing and editing my work, which has

been greatly appreciated.

I would also lik e to thank Dr C. S. Chen, who encouraged me to pursue scholarships that

provided financial support, including the USM Doctoral Assistantship and the NASA/Mis-

sissippi Space Grant Consortium Fellowship, the latter of which was renewed twice, and I

would like to thank both the University of Southern Mississippi and the NASA/Mississippi

Space Grant Consortium for the financial support they provided.

I made many friends in the mathematics graduate program at the University of Southern

Mississippi; the time spent together was much appreciated. Susan Howell and Mary Ross,

you listened kindly when I had questions about students and teaching the undergraduate

courses. Deanna Leggett, Jason (Leihsin) Kuo, and Alex Cibotarica, I appreciated the times

we spent working together. And Guangming Yao, who graduated when I was started the

writing process, and who shared freely of her time and experiences.

This dissertation would not have been possible without the encouragement of Dr Lorna

Stewart, at the University of Alberta, who encouraged me all these years ago to pursue

graduate school. She supervised my M. Sc. in Computer Science, and introduced me to the

beauty of a clean, efficient algorithm.

Lastly, I would like to thank my husband, Staff Sergeant Hollis M. Turnage, who

has supported me throughout my studies at the University of Southern Mississippi; he

encouraged me to apply, he encouraged me to see it through, and he offered support and

comfort while serving his country in Afghanistan. My life would have taken a different path

without him.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xi

NOTATION . 1

1 Introduction . 1
1.1 Operation Counts, Complexity, and O(·) Notation 1
1.2 Structuring Memory 2
1.3 Accuracy Requirements and Implementations 3
1.4 Summary of Accomplishments 3

2 Stochastic Interpolation . 5
2.1 Motivation 5
2.2 The Art of Interpolation 5
2.3 Constructing the Discrete Deconvolution and Convolution Operators 8
2.4 The Ann Matrix 10
2.5 Considering Other Probability Density Functions 12
2.6 Summary and Assumptions 13

3 Solving Toeplitz Matrices . 14
3.1 Motivation 14
3.2 Using Toeplitz Matrices 14
3.3 Toeplitz Solvers 17
3.4 Summary 20

4 The Schulz-Jones-Mayer Algorithm . 22
4.1 The SJM Approach 22
4.2 Initial Guesses for a Variety of Classes of Matrices 25
4.3 Summary 35

5 The Polynomial Schulz-Jones-Mayer Algorithm 36
5.1 Extending SJM – The PSJM Algorithm 36
5.2 Run-time Complexity 38

vi

5.3 Error Analysis 40
5.4 PSJM with Iterative Error Correction 42
5.5 Experimental Results 43
5.6 Summary 53

6 Applications . 56
6.1 Overview 56
6.2 Complexity of Stochastic Interpolation 56
6.3 Multi-variable Stochastic Interpolation 59
6.4 Using the Laplace Probability Distribution Function 60
6.5 Blending Interpolations 61
6.6 Interpolating Images 63

7 Conclusion and Future Work . 78
7.1 Conclusion 78
7.2 Future Work 79

APPENDIXES . 80

A Matlab Code . 81
A.1 Initializing Matrices 81
A.2 Calculating PSJM 83
A.3 Interpolating an Image 84

BIBLIOGRAPHY . 86

vii

LIST OF ILLUSTRATIONS

Figure

1.1 Storing a matrix in memory . 2

2.1 Interpolating the step function using Lagrange polynomials. 7
2.2 Interpolating the step function using Stochastic Interpolation. 7
2.3 Interpolating the Runge function using Lagrange polynomials. 8
2.4 Interpolating the Runge function using Stochastic Interpolation. 8

4.1 Computation error of D−1
3 for random tridiagonal matrices D3. 31

5.1 The error ‖xl− xk‖2 for random diagonally dominant Toeplitz matrices. 46
5.2 Timing results for random diagonally dominant Toeplitz matrices. 47
5.3 The error ‖xl− xk‖2 for random diagonally dominant Toeplitz matrices, after

one iterative error correction. 47
5.4 The error ‖xl− xk‖2 for random diagonally dominant Toeplitz matrices, after

two iterative error corrections. 48
5.5 The accuracy ‖I−X0A‖2 of the initial guess for tridiagonal matrices. 49
5.6 The error ‖xl− xk‖2 for random tridiagonally dominant matrices after 5 iterations. 51
5.7 The error ‖xl− xk‖2 for random tridiagonally dominant matrices after 5 itera-

tions, with iterative corection applied 3 times. 51
5.8 The error ‖xk− xl‖2 for random gaussian matrices, with varying random vector b. 52
5.9 The error ‖xl− xk‖2 for random gaussian matrices, with varying random vector

b, after 2 iterative error corrections. 53
5.10 The error ‖xk− xl‖2 for random Toeplitz Gaussian matrices, with varying ran-

dom vector b, after 2 iterative error corrections. 54
5.11 The time t in seconds required to calculate xk by PSJM with 2 iterative corrections. 54
5.12 The time t in seconds required to calculate xk by PSJM with 2 iterative corrections. 55

6.1 Interpolating a one-dimensional set of data points 57
6.2 Two dimensional interpolation . 58
6.3 The Gaussian and Laplacian probability distibution functions 61
6.4 Blending the Laplacian and Gaussian Matrices, for the step function 63
6.5 Blending the Laplacian and Gaussian Matrices, for the step function 64
6.6 Blending the Laplacian and Gaussian Matrices, for the step function 65
6.7 Blending the Laplacian and Gaussian Matrices for the Runge function. 66
6.8 Blending the Laplacian and Gaussian Matrices for the Runge function. 67
6.9 Blending the Laplacian and Gaussian Matrices for the Runge function. 68
6.10 Interpolating a one-dimensional set of data points using multiple pdfs. 68
6.11 Source Image . 70
6.12 Timing image interpolation in Matlab . 70
6.13 Interpolating an image, and modifying αL. 71

viii

6.14 Interpolating an image, and modifying αG. 72
6.15 Interpolating an image, and modifying αG′ . 73
6.16 Interpolating an image, and modifying αG′ . 74
6.17 Zooming on an eye . 76
6.18 Zooming on an eye . 77

ix

LIST OF TABLES

Table

2.1 The relationship between P(x) and Φ in various interpolation schemes. 6

5.1 (5.1) written as a matrix multiplication, with coefficients αk,i for the first three
iterations. 37

5.2 The degree and maximum coefficient max |αk,i| of the monic polynomial used
to calculate xk, using PSJM. 41

5.3 Timing comparisons for PSJM with and without error correction for diagonally
dominant Toeplitz matrices. 48

5.4 Number of iterations required for quadratic convergence. 50

x

LIST OF ABBREVIATIONS

CDF - Cumulative Density Function

erf(x) - Error function erf(x) =
2√
π

∫ x
0 e−t2

dt

G(x) - Gaussian or normal probability distribution function
g(α) - modifying function g(α) = 2

√
α/n

PDF - Probability distribution function
PSJM - Polynomial Shulz-Jones-Mayer

PSJMwIEC - Polynomial Shulz Jones Mayer with Iterative Error Correction
SI - Stochastic Interpolation

SJM - Shulz-Jones-Mayer

xi

NOTATION

General Usage and Terminology

Notation used in this dissertation represents fairly standard mathematical and computational
usage. These fields tend to use different preferred notations; these different notations have
been reconciled whenever possible.

We use capital letters A, B · · · , to denote matrices, lower case letters such as x and y to
denote vectors, and denote functions as f (x). We use indices to indicate the position in a
vector, so that xi is the i-th element in the vector, or the i-th vector in a set of vectors, and
differentiate based on context. Matrix elements are denoted using the lower case rather than
capital letter, so that a jk is the element in the j-th row and k-th column of the matrix A.

Norms are typeset using double pairs of lines so that ‖A‖ is the norm of A, ‖A‖
∞

is the
∞-norm of A, and ‖x‖ is the norm of vector x. The absolute value of numbers is denoted
using single lines, so that |−2|= 2. The floor y = bxc of x is the largest integer y such that
y≤ x.

xii

1

Chapter 1

Introduction

Simply speaking, interpolation is the process of obtaining a function p(x) that fits given
data points so that p(xi) = f (xi) for the known data points {(xi, f (xi))}; the quality of
the function is measured as ‖ f (x)− p(x)‖ [4]. A related process of approximation finds
a function p(x) that minimizes ‖ f (x)− p(x)‖ without the requirement that p(xi) = f (xi).
Stochastic interpolation, introduced by Howard and Kolibal [17, 18], uses an n× n row
stochastic matrix Ann to interpolate the data at m discrete points, where usually m� n,
by evaluating AmnA−1

nn b, where b = [f (x1), f (x2), . . . , f (xn)]. The efficiency of this method
relies on the ability to calculate A−1

nn b quickly and accurately, regardless of the size n.
In this dissertation we will concentrate on the computational problem of inverting

Ann quickly, and accurately. Of particular interest are the constraints that working in
software require; unlike theoretical mathematics, we assume, unless stated otherwise, that
all arithmetic is calculated using double precision arithmetic. Our ultimate goal is to
calculate AmnA−1

nn b both quickly and accurately.

1.1 Operation Counts, Complexity, and O(·) Notation

We will be studying algorithms operating on m× n matrices; we will be discussing both
the correctness and the complexity of the algorithms. The complexity refers to the number
of steps the algorithms must perform and depends on the size of the input, whether it be
matrix, vector, or both. In the study of mathematics this is usually called the operations
count, whereas in the study of computing science this count is usually referred to as the
run-time complexity. Specifically in this dissertation, we will be counting the number of
arithmetic operations performed, and will assume that addition and multiplication each
take a single unitary step. Moreover, even when dealing with large matrices, we will also
be assuming that all matrices and vectors can be stored wholly in memory, so that we do
not account for page swapping in and out of memory, and that each number is stored in
a location of unitary size. These latter assumptions are grounded on the fact that a single
double precision number can be represented using only 8 bytes; hence a 10,000×10,000
matrix requires only 8×108 bytes, or 763 Megabytes. Since the precision we are working

2

with is fixed; we do not need to account for the space required to store different values, and
thus the operations count will be equivalent to the run-time complexity.

The operations count, or run-time complexity, will be calculated using O(·) notation,
which characterizes functions according to their growth rates[7]. An algorithm that requires
O(n2) operations, or runs in O(n2) time, will require at most an2 operations, where a, b,
and c are constants. While an O(n3) algorithm may be faster for small n than an O(n2)

algorithm, since each algorithm has its own associated constants, as n grows sufficiently
large the quadratic O(n2) algorithm will run faster and perform fewer operations than the
cubic O(n3) algorithm. Thus we say that an algorithm F with operation count O(f (n)) is
preferable over an algorithm G with operation count O(g(n)) if there exists some integer N

such that f (n)< g(n) for all n > N.

1.2 Structuring Memory

Array based

1 2 3 4 5
1 a 0 b 0 0
2 0 0 0 c 0
3 0 d 0 0 0
4 0 e 0 0 0
5 f 0 0 0 g

vs List based

Row values
1 (1,a), (3,b)
2 (4,c)
3 (2,d)
4 (2,e)
5 (1,f), (5,g)

Figure 1.1: Storing a matrix in memory; the array versus the list approach.

One other aspect we should consider is the storage of matrices and vectors in memory.
Generally speaking there are two ways to store a matrix M in memory; the first is to store it
as a two-dimensional array of values, the second is to store the matrix as a list of columns
or rows, each of which contains a list of only those values that are non-zero. There are
advantages to each approach. The two dimensional array will require the full n2 memory
slots, and we can recover the value of Mi j in one step. However, when multiplying Mx we
have to check each value of each row of M, resulting in O(n2) operations. In contrast, if
M contains at most k non-zero values in every row (or column), then we can calculate Mx

using only O(kn) operations, since we only have to consider the non-zero values in each
row, but finding the value of Mi j will require O(k) comparisons, since we need to check
each item in the list to see if it is the entry we are searching for, and we must check every
entry in that row before we can conclude that Mi j is zero. We can improve this count by
using a heap rather than an ordered list, but that still requires log comparisons.

3

1.3 Accuracy Requirements and Implementations

The algorithms implemented in this dissertation are implemented using fixed precision
arithmetic, although in some cases the precision is manipulated to explore the effects of
the fixed precision on the results. One concern is the difference between fixed precision
arithmetic, as implemented on the computer, and the perfect precision arithmetic used in
abstract mathematical proofs. As we will see, the limits of fixed precision arithmetic will
affect both our results, and the path we can take to reach those results.

Algorithms have been implemented on three platforms: Maple, Matlab, and C using the
lapack[19], gnuscl[15], and fftw[12] libraries. There are advantages and disadvantages to
using each of the three platforms. The Maple software allows the programmer to define the
precision, in terms of number of digits stored and used, but trades computational speed for
accuracy since each arithmetic operation has to be computed explicitly in software rather
than in hardware. Matlab and the C libraries are both written using double precision accuracy,
so that the precision is fixed but the arithmetic operations are performed in hardware. Matlab
is an excellent package for prototyping, but when dealing with the large matrices, where
n = 10,000 and beyond, programming in C allowed us to conserve memory and improve
the time required by the software. In general, Matlab has a powerful interface which hides
much of the processing work; by programming and optimizing the operations directly, it
is possible to implement the same algorithms with the same accuracy using less time (but
more lines of code) by programming in C.

All software is executed on a departmental machine, which is an 8-CPU machine, each
an Intel Xeon E5410 processor with a 12Mb cache, with 16 Gb of memory installed, running
Ubuntu 10.04, and Linux kernel 2.6.32-46-generic. The installed software includes Maple
15 and Matlab 2013a, gcc version 4.4.3, fftw 3.2.2, and gnuscl 1.15.

1.4 Summary of Accomplishments

The effort to develop methods for solving large dense matrices has received considerable
attention in the last few decades, primarily because of the large number of problems which
arise in this setting. The research in this dissertation was motivated by the study of stochastic
interpolation which is one such problem requiring the solving of large, dense matrices, and
our desire to improve the efficiency of this interpolation method by solving these structured
matrix problems quickly. We provide background in Chapters 2 and 3, introducing stochastic
interpolation and Toeplitz matrices respectively, and provide a brief survey of known results.

We introduce the Shulz-Jones-Mayer algorithm which will be used to invert Ann in

4

Chapter 4, this is a key step in implementing stochastic interpolation. The Shulz-Jones-
Mayer algorithm uses an initial guess X0 and an iterative process to converge A−1

nn under
certain circumstances. We provide a sufficient condition for a good initial guess X0 and
a way to calculate X0 for a variety of classes of matrices, proving that with these initial
guesses the algorithm will in fact converge quadratically. Unfortunately, when implemented
this method is slower than the lapack library function.

We overcome this limitation in Chapter 5, where we improve on the Shulz-Jones-Mayer
algorithm by observing that since we are actually interested in xk ≈ A−1

nn b, we can calculate
xk directly as a polynomial function, as opposed to calculating Xk ≈ A−1

nn and then xk = Xkb.
We analyze both the complexity in terms of the operations count required and the amount
of expected error, and provide an iterative extension of the method which allows us to
reduce the size of the error. Thus the Polynomial Shulz-Jones-Mayer algorithm allows us
to calculate xk using O(n logn) operations for Toeplitz matrices Ann, whereas super fast
Toeplitz solvers require O(n log2 n) operations. In contrast to Chapter 4, this is a solid
improvement.

The underlying motivation in developing a fast matrix solver is the desire to solve
stochastic interpolations. These problems require the solution of large, full, and structured
matrices, and the structure of the matrix depends on the probability distribution function
used in the stochastic interpolation. To illustrate the usefulness of the solver in solving these
stochastic interpolation problems, we discuss the interpolation of single variable functions,
multivariable functions, and graphical images, both gray scale and color, in Chapter 6.
For each of the three types of problems, we include a clear algorithm, and a proof of the
complexity, or number of operations required, for each algorithm, based on the size of the
input which are the data points over which we interpolate.

5

Chapter 2

Stochastic Interpolation

2.1 Motivation

In this dissertation we develop a fast solver for matrix problems where the matrix is
both dense and structured. This fast solver is used to improve the speed of stochastic
interpolation, which relies on large, dense, structured matrices. In this chapter we introduce
stochastic interpolation itself, explaining the method, and specifically the class of matrices
that stochastic interpolation uses. These matrices have a very specific structure, as we
discuss in Sec. 2.4, which can be tweaked to produce Toeplitz matrices. It is this structure
that is crucial; the solver we develop in Chapters 4 and 5 are particularly effective for the
matrices that occur in stochastic interpolation problems. We will discuss known solvers for
one such set of matrices, the set of Toeplitz matrices, in Chapter 3, before discussing the
solvers we have studied and improved.

2.2 The Art of Interpolation

Interpolation is the art of reconstructing a function f (x) given only a finite number of
discrete data points {(xi, f (xi)}. We call the reconstructed function P(x), and require that

P(xi) = f (xi), i = 0 . . .n.

A given set of data points allows for many interpolating functions; to test how well a given
P(x) interpolates a known f (x) we consider the error

f (x)−P(x),

where x 6= xi. If f (x) is not known, we can sometimes estimate the error by using a subset of
the known data points to calculate P(x), and using the remaining points to estimate the error.
Some interpolation methods, including polynomial interpolation, will increase in error as
too many points are used; in these cases choosing the subset carefully is very important. We
can see in both Fig. 2.1 and 2.3 that successive interpolations of the function using Lagrange
polynomials and increasing the number of data points results in increasing oscillations. The
error can be bounded, for smooth functions, using the result from Stoer and Bulirsch[26]:

6

linear: P(x) = a0Φ0(x)+a1Φ1(x)+ · · ·+anΦn(x)

polynomial: P(x) = a0 +a1x+a2x2 + · · ·+anxn

trigonometric: P(x) = a0 +a1exi +a2e2xi + · · ·+ enxi
n

rational: P(x) =
a0 +a1x+a2x2 + · · ·+anxn

b0 +b1x+b2x2 + · · ·+bmxm

where Φ is defined using both n+ 1 ai’s and m+ 1 b j’s as
parameters.

exponential: P(x) = a0eλ0x +a1eλ1x +a2eλ2x + · · ·+aneλnx

where Φ is defined using n+1 ai’s and λi’s as parameters.

Table 2.1: The relationship between P(x) and Φ in various interpolation schemes.

Theorem 2.2.1. If the function f has an (n+1)st derivative, then for every argument x̄ there

exists a number ξ in the smallest interval I[x0, . . . ,xn, x̄] which contains x̄ and all locations

xi, satisfying

f (x̄)−P(x̄) =
ω(x̄) f (n+1)(ξ)

(n+1)!

where

ω(x) =
n

∏
i=0

(x− xi).

This result implies that if f is smooth the error can be bounded, although it maybe
bounded by ∞. Runge proved, in 1901, that using polynomial interpolation and equally
spaced points, the error in interpolating the Runge function of Fig. 2.3 will grow to ∞ near
the endpoints ±−5 [29], which we can see begin to develop as the number of data points
grows from 3 to 9 in Fig. 2.3.

Polynomial interpolation is straightforward to calculate, and to analyze, but as we can
see from the above examples, there are some definite weaknesses. Further interpolation
schemes have been devised, including trigonometric, rational, and exponential interpolation
[4]. Consider a family of single variable functions Φ(x;a0, . . .an), whose values ai are
determined so that f (xi) = P(xi), and P(x) is defined in terms of Φ(x;a0, . . .an), based on
the interpolation method used. Table 2.1 lists some commonly used interpolation schemes.

Kolibal and Howard introduce stochastic interpolation in [17, 18]; this is an interpo-
lation scheme that relies on a probabilistic weighting of the data combined with discrete
deconvolution and convolution operators. A strong advantage of stochastic interpolation is

7

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

Figure 2.1: The function f (x) = 1−H(x− 1/2), x ∈ [0,1], interpolated using Lagrange
polynomials, showing the effect of using 3, 4, 5, or 7 data points.

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

Figure 2.2: The step function f (x) = 1−H(x−1/2), x ∈ [0,1], interpolated using stochastic
interpolation, showing the effect of using 3, 5, 7, 9, or 19 data points.

that it does not suffer from the excessive oscillation resulting from over-sampling that we
see in Fig. 2.1 and 2.3. When using stochastic interpolation, increasing the number of data
points, as seen in Fig. 2.2 and 2.4, improves the quality of the interpolating function P(x).
Stochastic interpolation is a deconvolution-convolution process, that can be calculated using
two finitely sized matrices Amn and Ann. We provide a brief overview of the method in the
next section.

8

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Figure 2.3: The Runge function f (x) = 1/(1+ 25x2), x ∈ [−5,5], interpolated using La-
grange polynomials, showing the effect of using 3, 5, 7, or 9 data points.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Figure 2.4: The Runge function f (x) = 1/(1+25x2), x∈ [−5,5], interpolated using stochas-
tic interpolation, showing the effect of using 3, 5, 7, or 9 data points.

2.3 Constructing the Discrete Deconvolution and Convolution Operators

For a function f that we wish to approximate, we have a set of n sampling points {(xk, f (xk))},
k = 1, . . . ,n. We use these points to construct the function Kn(x; f ;α) using the set of n+1

9

points {(yk, f (xk))}, where

yk =

−∞ k = 0

xk + xk+1

2
k ∈ {1, . . . ,n−1}

∞ k = n

. (2.1)

To do so we assume that f is piece wise constant over the intervals (yk−1,yk), and that
f (x) = f (x0) for all x < x0, and likewise f (x) = f (xn) for all x > xn. Then Kn(x; f ;α) is
an extension of the Bernstein polynomials by changing the distribution from a binomial
distribution to the Gaussian probability density function G(x) so that

Kn(x; f ;α) =
n

∑
k=1

fk

2

[
G
(

yk+1− x j

2g(α)

)
+G

(
yk− x j

2g(α)

)]
(2.2)

where fk = f (xk) and g(α) is a smoothing function such that g(α(x))> 0 for all x. Typi-
cally g(α) = 2

√
α/n with 0 < α ≤ 0.5 being a constant, although this parameter may be

modified depending on the problem domain. Note that Kn approaches the standard Bern-
stein polynomial as n→ ∞ for g(α) =

√
x(1− x) if G is the Gaussian probability density

function [20].
We can view this approximation Kn as a linear, discrete operator acting on the data

vector f = (f1, f2, . . . , fn) and can recast this as a matrix vector multiplication. Let {x j}, for
j = 1, . . . ,m be the set of points at which we want to evaluate Kn. Then we can define the
matrix Amn as

a jk =

[
G
(

yk+1− x j

2g(α)

)
−G

(
yk− x j

2g(α)

)]
(2.3)

and Km(x; f ;α) = Amn f . Observe that row i uses the Gaussian, or normal, distribution
centered at xi, as the xi is fixed for each row i, and aii is the midpoint of the distribution so
that ∑

i−1
k=1 aik < 0.5, ∑

n
k=i+1 aik < 0.5, and aii depends on the height of the distribution curve,

which in turn is controlled by the variance g(α).
We can extend this approximation using a deconvolution-convolution process, where

Kn constitutes a discrete convolution of the data {(xk, fk)}. To construct the deconvolution
operator, we create the pre-image p = (p1, p2, . . . , pn) of the data so that Ann p = f . Hence
the pre-image {(xk, pk)} is the set of points that when approximated using Kn convolve to
our original data {(xk, fk)}, and we use this pre-image to construct our interpolating function
Km(x; p). Note that Kn = Ann f implies that A−1

nn Kn = A−1
nn Ann f = f so that p = A−1

nn f , and
hence

Km(x; f ;α) = Amn p (2.4)

= AmnA−1
nn f .

10

2.4 The Ann Matrix

Interestingly, Ann depends solely on the original sampling points and can be reused for any
interpolation that uses the same number and spacing of data points, leading us to consider the
goal of inverting Ann quickly and efficiently. Thus, when the goal is to calculate AmnA−1

nn f

quickly, the key calculation is the calculation of p = A−1
nn f . To calculate p and Amn p quickly

we can take advantage of the structure of the matrices involved.

2.4.1 Centrosymmetric Matrices

We define the counter-identity matrix J as the square matrix whose entries are all zero, with
the exception of the entries on the counter-diagonal, which are all 1. Then multiplying a
matrix on the left by J results in reserving the rows of A, and multiplying by J on the right
results in reversing the columns of A. A matrix A is centrosymmetric if JAJ = A, i.e.

JAJ =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

a b c d
e f g h
h g f e
d c b a

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

=

a b c d
e f g h
h g f e
d c b a

= A.

If the data points used to construct Ann are evenly spaced, and the probability distribution
function used is centrally symmetric, then the resulting row stochastic matrix is centrosym-
metric. Hence if we consider solving Annx = b, we should first consider solving centrosym-
metric matrices. Andrew [1] presents an algorithm which takes advantage of the structure of
Ann; by reducing the problem in size, a centrosymmetric matrix C can be decomposed so
that

C =

[
A BP

PB PAP

]
,

where P is the matrix with ones only on the secondary diagonal, and zeroes elsewhere. Thus
P2 = I and we can solve Cx = y as

Cx =
[

A BP
PB PAP

][
x1
x2

]
=

[
y1
y2

]
,

where the problem is reduced to solving

(A+B)z1 = y1 +Py2

(A−B)z2 = y1−Py2,

11

and then set x1 = (z1+z2)/2 and x2 = P(z1−z2)/2. This algorithm still relies on some other
algorithm, whether it be Gaussian elimination or some faster algorithm taking advantage
of the structure of A and B, to solve the n/2× n/2 sub matrices. Hence the major speed
improvement is found in either solving the sub matrices faster or speeding up the matrix-
vector multiplications, as in Melman [21] and Fassbender and Ikramov [11]. Still, the
bottleneck of solving (A+B)z1 = y1 +Py2 and (A−B)z2 = y1−Py2 remains.

2.4.2 Toeplitz and Near Toeplitz Matrices

Toeplitz matrices are discussed in Chapter 3; essentially a Toeplitz matrix is constant along
its diagonals. Consider the matrices

T =

0.5 0.4 0.3 0.2 0.1
0.4 0.5 0.4 0.3 0.2
0.3 0.4 0.5 0.4 0.3
0.2 0.3 0.4 0.5 0.4
0.1 0.2 0.3 0.4 0.5

 , M =

0.25 0.24 0.23 0.22 0.21
0.4 0.5 0.4 0.3 0.2
0.3 0.4 0.5 0.4 0.3
0.2 0.3 0.4 0.5 0.4

0.21 0.22 0.23 0.24 0.25

 .
T is a Toeplitz matrix but M is merely near-Toeplitz; the first and last row do not match
the rest of the pattern because the values differ from those along the diagonals between
them. If Ann is initialized using evenly spaced xi and the yk values defined in (2.1), then the
resulting matrix will be near-Toeplitz and row-stochastic. Consider for instance A6,6 with
g(α) =

√
0.2;

A6,6 =

0.785 0.215 8.85e−03 3.86e−05 1.57e−08 5.59e−13
0.206 0.571 0.206 8.81e−03 3.86e−05 1.57e−08

8.81e−03 0.206 0.571 0.206 8.81e−03 3.86e−05
3.86e−05 8.81e−03 0.206 0.571 0.206 8.81e−03
1.57e−08 3.86e−05 8.81e−03 0.206 0.571 0.206
5.59e−13 1.57e−08 3.86e−05 8.85e−03 0.215 0.785

 .

we observe that A6,6 is a positive, near-Toeplitz, row-stochastic, diagonally dominant matrix
where the values are constant along the diagonal except in the first and last row, and where
each row sums up to one. These properties will hold for any matrix Ann; the difference in
the first and last row is caused by the definition of y0 =−∞ and yn = ∞, which introduces a
non-even spacing of yk values. Consider the probability distribution curve; using the current
spacing of y-values as defined in (2.1), we effectively use a histogram where all columns
except the first and last have constant width, but the first and last columns spread to a width
of −∞ and ∞ respectively, and the area under the total curve is guaranteed to be one.

If we redefine y0 = x1− (x2− x1)/2 and yn = xn +(xn− xn−1)/2, the values of yn are
all evenly spaced, and a j,k = a j−1,k−1 in (2.3), so that Ann will be a Toeplitz matrix but will

12

no longer be row-stochastic, since now the sum of each row represents the area under the
curve of only a portion of the distribution, and as the xi shift from left to right, the area
considered will no longer be entirely centered. The effect of modifying Ann thus is negligible,
particularly if n is large. Considering that we are trying to solve Kn = A−1

nn f , modifying Ann

before inversion will not affect the condition that Kn(x) = f (x) for all original data points
(x, f (x)).

Next, consider the diagonal structure of Ann. The matrix Ann depends on g(α) which
in turn controls the narrowness of the distribution curve. Therefore the matrix Ann will not
always be diagonally dominant. However, if g(α) is a constant function, then the main
diagonal {aii} will always contain the largest value of all the diagonals, and the magnitude
of the diagonal can be manipulated by varying the value of g(α); as g(α)→ 0, the diagonal
value aii→ 1. Using fixed precision arithmetic, this implies that as aii→ 1, fewer of the sub-
and super-diagonals will have non-zero values. Using perfect precision, all entries in the
matrix would be positive and non-zero, but as |i− j| grows, and we consider values further
away from the main diagonal, ai j and a ji will both shrink to zero. Thus the value of g(α)

may affect the domain of influence of adjacent points when using fixed precision arithmetic;
as g(α)→ 1, more diagonals will have non-zero values, but the magnitude of the main
diagonal will decrease, and conversely, as g(α)→ 0, the magnitude of the main diagonal
will increase but the number of non-zero entries in the matrix will decrease. In short; the
more centrally peaked the distribution, i.e. as α becomes small, the fewer adjacent points
we use in the interpolation and the flatter the curve, as α grows larger, the more adjacent
points we use, but each is weighted less heavily.

2.5 Considering Other Probability Density Functions

The Gaussian probability density function is a symmetric probability density function,
defined by its midpoint µ and variance α2. The advantage of stochastic interpolation is
precisely that it only requires a stochastic matrix, which means that any suitable probability
density function can be utilized to generate the row-stochastic matrix. Other useful probabil-
ity functions that are useful include the Laplace and Cauchy probability distributions. The
Laplace probability density function has the advantage of being very narrowly distributed
around µ , allowing greater control of the shape of the interpolant when working with rough
data. Moreover, the advantage of the stochastic framework is that any combination of
probability density functions, properly normalized, is also a probability density function and
can also be used. Typically probability functions that are considered are continuous.

13

2.6 Summary and Assumptions

Matrices produced by the method of stochastic interpolation are large, dense, and very
specifically structured, and can be tweaked to be Toeplitz matrices if the data consists of
evenly spaced data points and the probability density function is centrally symmetric, as it is
for both the Guassian and Laplacian probability density functions. Stochastic interpolation
can be applied in many fields, and we are specifically interested in applying it to the problem
of interpolating images.

For purposes of examining the Polynomial Shulz-Jones-Mayer method in the context of
stochastic interpolation, we will use the Gaussian and Laplacian probability density function.
We will assume that data points are evenly spaced, so that we can take advantage of the
structural properties of Ann. The main application that we consider is the interpolation of
images. Images are typically sampled on a fixed grid, either in gray scale or in color, so that
our assumption of evenly spaced data points is plausible. We also assume that the interpolant
Km has more points than the original data set, so that m > n.

14

Chapter 3

Solving Toeplitz Matrices

3.1 Motivation

In this chapter we discuss a specific class of matrices which is the set of Toeplitz matrices.
These matrices occur in a large set of problems, and are correspondingly well-studied,
and we provide a brief survey of known results of the problem of solving Toeplitz matrix
problems. One of the advantages of using circulant matrices is that the matrix vector
multiplication operator can be performed relatively quickly and efficiently, and we describe
how to do so in Sec. 3.2.1. Since Toeplitz matrices can be embedded in circulant matrices,
we can use this quick FFT-based method of multiplying matrices and vectors for our own
improved solver, as discussed in Chapter 5.

3.2 Using Toeplitz Matrices

General solvers that solve Ax = b for x, where A is an arbitrary matrix, can be improved
if A is a matrix of a particular class. In this chapter we briefly discuss Toeplitz matrices,
including both their properties and known results about solving Ax = b for x when A is a
Toeplitz matrix.

An n×n matrix T is a Toeplitz matrix if it is constant along its diagonals, i.e.

Tn =

t0 t−1 . . . t2−n t1−n
t1 t0 . . . t3−n t2−n
...

...
...

tn−2 tn−3 . . . t0 t−1
tn−1 tn−2 . . . t1 t0

 ,

and can be defined by the vector t = [tn−1, tn−2, . . . , t−1, t0, t1, . . . , t2−n, t1−n], which has length
2n−1. A circulant matrix is a Toeplitz matrix such that t j = t j−n, so that

Cn =

v0 vn−1 . . . v2 vn
v1 v0 . . . v3 v2
...

...
...

vn−2 vn−3 . . . v0 vn−1
vn−1 vn−2 . . . v1 v0

 ,

15

can be defined by the vector v = [v0,v1, . . . ,vn−1], which has length n. We can denote Cn by
Cn(v), where v is the generating vector. A banded Toeplitz matrix is a Toeplitz matrix where
only the diagonal and the the first r super- and sub-diagonals are non-zero. Generally r� n,
so that the matrix is effectively sparse.

Toeplitz matrices occur in a large range of applications, including signals and image
processing, the numerical solutions of partial differential and integral equations, and queuing
networks. Depending on the application, the matrix may be more restricted; it may be
required to be symmetric, or positive definite, or generated by real or complex generating
functions. Gray, in his review of Toeplitz and circulant matrices [14], applies the known
solvers he describes to the study of discrete random time processes. Signal processing is a
huge field, and many textbooks have been written about the topic. Typically, one section
is devoted to the study of Toeplitz matrices and the Fast Fourier Transform, while the rest
of the book covers the manipulation of the data and interpretation of the results. Examples
include both Dietrich’s [10] review of signal processing for wireless communications, as
well as Benesty, Sondhi, and Huang’s [2] Handbook of Speech Processing (Springer), as
well as many others.

One algorithm which is consistently covered, given its ability to speed up the signal
processing applications, is the Fast Fourier Transform, and we will briefly describe how the
FFT can be used to improve the efficiency of matrix vector multiplications if the matrix is
Toeplitz or circulant.

3.2.1 Matrix Vector Multiplies and Fourier Transforms

Circulant matrices have a specific property, fast matrix vector multiplication, as described in
[13] where it is shown that

C(v) = F−1
n diag(Fnv)Fn, (3.1)

where C(v) is the circulant matrix of size n×n defined by v, and Fn is the discrete Fourier
transform (DFT) matrix of order n. Fn is defined by

Fn = [f jk], f jk = ω
jk

n ,

where

ωn = e−2πi/n = cos(2π/n)− isin(2π/n),

so that ωn is an n-th root of unity as ωn
n = 1.

16

Thus the discrete Fourier transform of a vector b would be the vector Fnb. Generally,
matrix-vector multiplications require O(n2) operations. However, the structure of Fn is such
that the matrix-vector multiplications Fnb and F−1

n b can be performed recursively, requiring
the far fewer O(n logn) operations. Thus, the product y =C(v)x can be calculated using the
following four steps

x̃ = Fnx

ṽ = Fnv

z = x̃.∗ ṽ

y = F−1
n z,

where z = x̃.∗ ṽ is calculated piece-wise, so that zi = x̃iṽi. Thus calculating z requires O(n)
operations, and calculating each of the other three steps requires O(n logn) operations,
resulting in O(n logn) operations overall.

We can use this result to calculate y = T (t)x, by augmenting the vector x to create
the vector x′ of length 2n− 1, by setting x′i = xi if 0 ≤ i < n and x′i = 0 if i ≥ n, and then
embedding the n×n Toeplitz matrix T in a 2n−1×2n−1 circulant matrix C(v) by setting
v = [t0, t1, . . . , tn−1, t1−n, t2−n, . . . t−1]. Then y′ =C(v)x′, and y = [y′0,y

′
1, . . . ,y

′
n−1].

As an example, consider the 3×3 matrix T , and its embedding in the 5×5 matrix C

T =

1 5 4
2 1 5
3 2 1

 C =

1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
5 4 3 2 1

so that

y =

1 5 4
2 1 5
3 2 1

x0
x1
x2

=

x0 +5x1 +4x2
2x0 + x1 +5x2
3x0 +2x1 + x2

and

y′ =

1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
5 4 3 2 1

x0
x1
x2
0
0

=

x0 +5x1 +4x2
2x0 + x1 +5x2
3x0 +2x1 + x2
4x0 +3x1 +2x2
5x0 +4x1 +3x2

 .
Calculating y′ will require O((2n−1) log(2n−1)) = O(n logn) operations.

17

3.3 Toeplitz Solvers

In developing a Toeplitz solver, which solves T x = b for x, there are two main approaches.
The direct solver attempts to solve x directly, by inverting T and calculating x = T−1b. The
indirect case, in contrast, typically uses pre-conditioners to modify T and make the problem
more malleable. Here we present a brief survey of some known solvers; this is a very mature
field.

Recursive Algorithms

Recursive methods for solving Toeplitz matrices have been known for quite some time; one
early paper was published in 1964 by Trench [27] which provided an algorithm for solving
Hermitian Toeplitz matrices. The algorithm was expanded by Zohar [31, 32], who showed
that it could be used to solve any non-Hermitian Toeplitz matrices as long as the principal
sub-matrices were all non-singular.

Trench’s recursive method, which relied on solving subsets of the problem using principal
sub-matrices, was adapted in what are known as Levinson-type algorithms. As discussed
by Rost and Heinig in [16], these can be used to solve Tnx = b for strongly non-singular
matrices; Tn is strongly non-singular when both the matrix and all its principal sub-matrices
are non-singular. If Tk = [vi− j]

k
i, j=1, then Tk will occur twice as a substructure of Tk+1 since

Tk+1 =

[
Tk ∗
∗ ∗

]
=

[
∗ ∗
∗ Tk

]
.

Consider the two equations Tkx−k = e1 and Tkx+k = ek. Then x−k and x+k are the first and last
columns of T−1

k . Moreover

Tk+1

[
x−k 0
0 x+k

]
=

[
e1 γ

−
k

γ
+
k ek

]
where γ

−
k = [v−1, . . . ,v−k]x+k and γ

+
k = [vk, . . . ,v1]x−k . This allows us to introduce the 2×2

matrix

Γk =

[
1 γ

−
k

γ
+
k 1

]
which is both non-singular and easily invertible. This results in the following recursive
result:

Theorem 3.3.1. For k = 1,2, . . . ,n−1, the vectors x±k satisfy the recursion[
x−k+1 x+k+1

]
=

[
x−k 0
0 x+k

]
Γ
−1
k .

18

This recursion can be started with x±1 =
1
v0

.

While the number of operations required for each step in the recursion is linear, there are
n recursions total, resulting in an algorithm requiring O(n2) operations. If the matrix Tn is
symmetric or Hermitian, it is possible by dint of careful calculation to reduce the constants
in the operation count, but the resulting algorithm remains O(n2), as it is limited by the
fact that the full n recursions need to be considered, and that every step involves vector
operations, each of which require O(n) operations.

In contrast, the Schur algorithm solves Toeplitz matrices, among its many applications,
by producing an LU decomposition of Tn. Once that decomposition is calculated, calculating
T−1

n b is straightforward but still requires O(n2) operations. The advantage of the Schur
algorithm over the Levinson algorithm is that it lends itself very well to parallel computation,
resulting in linear parallel complexity. The Schur algorithm uses three sub-matrices; Tk as
defined above, as well as the the two (n− k+1)× k Toeplitz matrices

T−k =

vk−n . . . v1−n
...

...
v0 . . . v1−k

 and T+
k =

vk−1 . . . v0
...

...
vn−1 . . . vn−k

 .
We define x±k as before, so that[

T−k
T+

k

][
x−k x+k

]
=

[
s−−k s−+k
s+−k s++

k

]
where s+±i,k =

[
vk+i−2 . . . ai−1

]
x±k and s−±i,k =

[
vk+i−1−n . . . ai−n

]
x±k , and these are

called the residual vectors. Since x+k is a vector containing k elements, we can augment

each vector x+
′

k =

[
x+k
0

]
to have length n, and then construct the upper diagonal matrix V =[

x+
′

1 x+
′

2 . . . x+n
]
. Given this V , L = TnV is a lower triangular matrix. If s++′

k =

[
0

s++
k

]
is

the augmented residual vector of length n for each k, then L =
[
s++′

1 s++′
2 . . . s++

n

]
, and

Tn = LV−1 is a triangular factorization of Tn. L and V are calculated recursively. The Schur
algorithm can be used to speed the Levinson algorithm up, but ultimately both algorithms
require O(n2) operations.

Böttcher and Grudsky [3] give a precise definition of T−1b, if T is a banded Toeplitz
matrix and b is a Laurent polynomial, so that

b(t) =
s

∑
j=−r

b jt j

19

where t ∈ {C : |t| = 1}. Expanding out the precise definition requires O(rn) operations
where r is the number of non-zero diagonals.

Codevico, Heinig, and van Barel [6] introduce a super-fast O(n log2 n) direct solver,
which uses real trigonometric transformations, rather than the Fast Fourier Transform. Their
solver works for symmetric Toeplitz matrices. Since a symmetric Toeplitz matrix is also
centrosymmetric, Tn = JnTnJn where Jn is a matrix with ones on the anti-diagonal and zeroes
elsewhere, and the problem Tnx = b can be reduced to two symmetric systems, each of
which can be interpreted in terms of Chebyshev polynomials, which means they can be
calculated using cosine transforms. However, due to some instability problems, they needed
to include an iterative refinement which slowed the algorithm down, in part because deciding
when to perform the refinement was non-trivial.

Chandrasekaran, Gu, Sun, Xia, and Zhu [5] utilize the FFT to transform the Toeplitz
matrix into a Cauchy-like matrix, and then exploit the low rank property of Cauchy-like
matrices; to whit that each off-diagonal block has low numerical rank. The Cauchy-like
matrix is then approximated using a low-rank matrix called the sequentially semi-separable
(SSS) matrix. If the matrix is in compact SSS form, it can be solved using O(p2N) operations,
where p is the complexity of the semi-separable matrices. The challenge thus is computing
the compact SSS matrices. Their algorithm requires O(n logn+ p2n) operations, and does
not require the Toeplitz matrix to be either symmetric or positive definite.

Indirect Solvers

Indirect solvers work somewhat differently; they rely on a choice of suitable preconditioner
and the use of the Preconditioned Conjugate Gradient method, and are often used for
Toeplitz matrices generated by some function f (x) over a domain [a,b], so that the vector
v = [f (xn−1 . . . f (x0) . . . f (x1−n)] determines the Toeplitz matrix Tn; the function is typically
determined by the problem domain. Thus the efficacy of the method depends on the choice of
preconditioner; Wen, Ching, and Ng [30] propose approximate inverse-free preconditioners,
whose construction is based on the Gohberg-Semencul formula. If the Toeplitz matrix is
generated by a positive bounded function and the matrix has the off-diagonal decay property,
then these preconditioners work well. In contrast, Ng and Pan [23] consider the solution of
(T +D)x = b where T is a Toeplitz matrix and D is diagonal and positive. Their requirement
is that the entries for T decay exponentially from the main diagonals. Chan and Yeung [5]
discuss circulant preconditioners, where Cn is the circulant matrix that minimizes ‖Bn−Tn‖
over all circulant matrices Bn. They consider Toeplitz matrices whose generating function is
complex-valued rather than real.

20

Ng, Sun, and Jin [24] combine the recursive approach of the direct solvers and the
indirect approach of the Preconditioned Conjugate Method. Preconditioners for Tm are
calculated using T−1

m/2 and the Gohberg-Semencul formula. Unlike the previous papers
they do not rely on knowing the generating function f of Tn explicitly; as long as f is a
non-negative, bounded, piecewise continuous even function with a finite number of zeros
of even order, the conjugate gradient method is guaranteed to converge in O(logn) steps,
leading to an overall complexity of O(n log2 n).

Diagonally Dominant Matrices

Pan [25] specifically addresses diagonally dominant Toeplitz matrices, and proves that
if the diagonally dominant matrix is both Toeplitz, Hermitian, and well-conditioned, so
that log(cond(A)) = O(logn), there exists a numerically stable parallel fast algorithm to
invert the matrix. The complexity, or operations count, of parallel algorithms is consid-
ered both in terms of the number of arithmetic operations and the number of processors
required, and Pan’s algorithm requires O(log2 n log logn) parallel arithmetic operations, and
n log2 n/ log logn processors. Parallel algorithms can be modified to become sequential algo-
rithms, most easily by using a round robin scheme in which each of the parallel operations
is performed in turn. To calculate the sequential complexity, we consider both the number of
arithmetic steps and the number of processors, and we can bound the sequential complexity
from above by multiplying the two; we note that this is strictly an upper bound since altering
the algorithm to become sequential removes the need to worry about load balancing or
message passing between the processors that are executing in parallel. Thus Pan’s algorithm
requires O((log2 n log logn)(n log2 n/ log logn)) = O(n log4 n) arithmetic operations.

3.4 Summary

In summary, known solvers take advantage of the highly structured form of a Toeplitz matrix
to solve the problem recursively using O(n2) operations. These methods were improved
upon by Codevico, Heinig and van Barel to result in a “super-fast" O(n log2 n) solver using
real trigonometric transformations rather than the FFT, but only for symmetric Toeplitz
matrices. Chandrasekharan et al use the FFT to transform the Toeplitz matrix, resulting in
an O(n logn+ p2n) algorithm, where p is the complexity of the semi-separable matrices.
Methods using the Preconditioned Conjugate Gradient Method require at least O(n log2 n)

operations, and in some cases calculating the preconditioner requires more work than that.
Lastly, Pan shows that he can explicitly solve diagonally dominant Hermitian matrices
quickly, using parallel processors.

21

In Chapters 4 and 5 we will develop algorithms that approximately solve Ax = b for
x, where A is a Toeplitz matrix, using O(n logn) operations. Specifically, we will consider
diagonally and more generally dominant matrices, as well as the matrices generated by
stochastic interpolation. We will also present an upper bound on the error.

22

Chapter 4

The Schulz-Jones-Mayer Algorithm

4.1 The SJM Approach

In this chapter we will discuss the Shulz-Jones-Mayer algorithm, including estimating
the algorithm’s error bounds when using fixed precision computation, and the run-time
complexity. We also discuss the choice of good initial starting states for a variety of
matrix classes. This chapter is primarily theoretical; the algorithm relies heavily on matrix-
matrix multiplications, which are slow and cumbersome. In Chapter 5 we will modify the
algorithm so as to replace the matrix-matrix multiplications with a summation of matrix-
vector multiplications.

The Shulz-Jones-Mayer (or SJM) algorithm mentioned obliquely by Crandall [8, 9]
relies on a suitable guess to iteratively calculate the inverse of a matrix A. Motivated by
the Newton iteration method, SJM requires an initial matrix X0 and calculates successive
approximations of A−1 using the rule

Xi+1 = 2Xi−XiAXi. (4.1)

If the initial guess X0 is well-chosen, then the successive Xi will satisfy the condition that

lim
k→∞

Xk = A−1. (4.2)

The following theorem shows that there is a sufficient condition on X0, although there are
cases where the limit converges without satisfying the theorem.

Theorem 4.1.1. Let A be an invertible matrix. Then the Shulz-Jones-Mayer method con-

verges quadratically when ‖I−X0A‖< 1 for some initial guess X0.

Proof. Note that ‖I−XkA‖ =
∥∥(A−1−Xk)A

∥∥ ≤ ∥∥A−1−Xk
∥∥‖A‖, which can be rewritten

as

‖I−XkA‖
‖A‖

≤
∥∥A−1−Xk

∥∥ . (4.3)

23

Since ‖A‖ is fixed, it suffices to consider the relative error, ek, of the k-th iteration. Then

ek = ‖I−XkA‖

= ‖I− (2Xk−1−Xk−1AXk−1)A‖= ‖I−2Xk−1A+(Xk−1A)2‖

= ‖(I−Xk−1A)(I−Xk−1A)‖

≤ ‖I−Xk−1A‖2 = e2
k−1, (4.4)

and we have convergence if limk→∞ ek/e2
k−1→ 0. When the sequence converges,

ek ≤ e2
k−1 ≤ (e2

k−2)
2 ≤ ((e2

k−3)
2)2 ≤ ·· · ≤ e2k

0 (4.5)

and 0≤ ek ≤ e2k

0 . Convergence is assured, and quadratic, if ‖I−X0A‖= e0 < 1, since then
‖I−XkA‖ ≤ e2k

0 , with e2k
0 → 0 as k→ ∞.

Theorem 4.1.1 assumes that the precision used in calculations is exact; for numerical
implementations it is important that ‖I−X0A‖< δ � 1, for some δ > 0, so that numerical
errors will not overwhelm the computation. Specifically, when e0 is close to 1, convergence
typically requires many iterations; in a numerical implementation the convergence may stall
due to round off errors.

4.1.1 Error Analysis

Consider the accuracy of SJM in a numerical implementation; we can bound the magnitude
of the computational errors, assuming that X0 satisfies Theorem 4.1.1. Using the notation
and error analysis of matrix and vector operations by Mikhlin[22], we define δ (X) as the
computational error, given a calculated matrix X , so that X̂ = X + δ (X) is the computed
result and ‖δ (X)‖ is the magnitude of the computational error. The machine precision
is represented by ε . The SJM algorithm is a recursive algorithm, so each step relies on
the previous calculation rather than the initial state. Thus, using Mikhlin’s bounds on the
error of matrix addition and multiplication, each iteration the error is compounded by 2
matrix-matrix multiplications, a matrix scaling, and a matrix addition, resulting in an error
estimate

‖δ (Xk+1)‖ ≤ ε
√

n
(

2
∥∥X̂k
∥∥+∥∥X̂k

∥∥2 ‖A‖
)
. (4.6)

Calculating this error estimate for the (k+1)-th iteration relies on actually computing the
first k iterations, which is far from ideal. Ideally we can bound the error before calculating
the iterations, relying only on the initial states, so that we can use the error bound as a
predictive value to fine-tune expectations. We will show in Chapter 5 that it is possible to

24

adapt SJM, in the process achieving a more useful computational error estimate. When using
the SJM algorithm for stochastic interpolation, we are specifically interested in solving the
related problem Ax = b for x; if we use the method explicitly we calculate x = A−1b which
is approximated as xk ≈ Xkb, with an error estimate of

‖δ (xk)‖ ≤ ε
√

n
(

2
∥∥X̂k
∥∥+∥∥X̂k

∥∥2 ‖A‖
)
‖b‖

= ‖δ (Xk+1)‖‖b‖ . (4.7)

4.1.2 Complexity

The basic Shulz-Jones-Mayer algorithm, as stated, is not generally a speedy algorithm. In
certain cases we can take advantage of the structure of the initial matrix A and initial guess
X0 to improve the number of operations required. The analysis below considers the general
case only, although the proof can be modified for specific types of matrices. Since most
classes of matrices are not closed under multiplication, the special cases arise only rarely.
Given the quadratic convergence of the algorithm, note that the number of recursive steps k

is usually a relatively small number, and as n grows, becomes simply a constant. We present
a faster implementation in Chapter 5, and include this analysis for comparison’s sake.

Lemma 4.1.2. Given any n× n invertible matrix A and initial guess X0 which satisfy

Theorem 4.1.1, SJM will require O(kn3) operations to complete k iterations.

Proof. Each iteration of (4.1) requires two matrix-matrix multiplications, 1 matrix scaling,
and 1 matrix subtraction. In general, a matrix-matrix operation requires O(n3) operations[13].
Matrix scaling and subtraction can both be completed using n2 operations each, so that the
matrix-matrix multiplications are the limiting factor. Obviously, given k iterations, SJM will
require O(kn3) operations.

Generally the number of iterations is often much smaller than the size of the matrix A,
so that the factor k is negligible. However, if we can show that, for instance, A and every
Xi are Toeplitz matrices, then we can take advantage of the matrix structure to speed the
matrix-matrix multiplication up and require only O(n2) operations[13] since each matrix can
be represented by a 2n−1 element vector. However, Toeplitz matrices are not closed under
multiplication, and hence there is no guarantee that successive Xi will be Toeplitz matrices.
Consider, for example, the following two 3×3 Toeplitz matrices, and their product:

A =

3 2 1
4 3 2
5 4 3

 , B =

3 4 5
2 3 4
1 2 3,

 , AB =

14 20 26
20 29 38
26 38 50

 ,

25

and it is clear to see that the set of Toeplitz matrices is not closed under multiplication. We
demonstrate in Chapter 5 that with some care we can nonetheless take advantage of the
Toeplitz structure to solve Ax = b for x using fewer operations.

4.2 Initial Guesses for a Variety of Classes of Matrices

Clearly, the effectiveness of the Shulz-Jones-Mayer algorithm depends on the initial guess
X0; if the initial guess is insufficiently close to the actual inverse of A so that Theorem 4.1.1
is not satisfied, then there is no guarantee that SJM will converge. We consider several
different classes, including matrices exhibiting diagonal dominance, extended diagonal
dominance, tridiagonal dominance, and lastly the matrices generated when using stochastic
interpolation as described in Chapter 2 and present initial guesses X0 for each of these
classes of matrices.

4.2.1 Diagonally Dominant Matrices

Consider first matrices exhibiting diagonal dominance; a matrix A is diagonally dominant if
for every row i, i = 1, . . . ,n, the following inequality holds:

|ai,i| ≤
n

∑
j=1, j 6=i

|ai, j|. (4.8)

We can scale any diagonally dominant matrix so that the values along the diagonal of the
scaled matrix all lie in [0,1]. This scaling can be done with a simple diagonal matrix, and
that scaling matrix X0 will satisfy the condition ‖I−X0A‖< 1, as we show below. We first
used D−1, where D is the diagonal submatrix of A, but found that on average results improve
drastically if we instead use the maximum diagonal value as a scaling factor. Note that
ai,i 6= 0 for all i = 1,2, . . . ,n, since A is diagonally dominant, and hence if ai,i = 0, the entire
row would contain only zeroes, resulting in a non-invertible matrix.

Theorem 4.2.1. Given any n× n invertible diagonally dominant matrix A, define m =

maxi=1..n |ai,i|, and the diagonal matrix X0 = [xi, j] such that xi,i = sgn(ai,i)/m and xi, j = 0
for i 6= j.

Then ‖I−X0A‖
∞
< 1 and SJM converges.

Proof. Since xi,i = sgn(ai,i)/m, it follows that X0 scales each column of A by ±1/m, and
changes the signs of the diagonal values so that all are positive. The resulting matrix will
remain diagonally dominant, with diagonal values (XA)i,i ∈ (0,1].

26

Now define

σ(A)i =
n

∑
i= j
|ai, j|, (4.9)

which is the sum of the i-th row of A. Then σ(X0A)i = σ(A)i/m. Given that A is diagonally
dominant, and 0≤ (X0A)i,i ≤ 1, it follows that σ(X0A)i < 2(X0A)i,i. Hence

σ(I−X0A)i = (1−X0A)i,i +∑
j 6=i
|(X0A)i, j|< 1 (4.10)

and thus

‖I−X0A‖
∞
= max

i
σ(I−X0A)i < 1, (4.11)

and by Theorem 4.1.1, SJM will converge given A with this initial guess X0.

4.2.2 Extended Diagonal Dominance

We next extend the result in Theorem 4.2.1 to extended diagonal dominance, where a matrix
A has extended diagonal dominance if cyclically shifting all the columns would result in a
diagonally dominant matrix. Consider the following matrix which is clearly not diagonally
dominant,

A =

1 1 1 5 1
1 1 1 1 5
5 1 1 1 1
1 5 1 1 1
1 1 5 1 1

 (4.12)

but has an extended diagonal that begins in column 4 on row 1, and wraps around after two
rows. Then when A is multiplied by the shifting matrix

S =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 , (4.13)

the resulting matrix SA is diagonally dominant. We can generalize this further, as extended
dominance, by allowing the shifted columns to be in any order, as long as there is only one
row-dominant value in every column. This is a variation of the Rook’s problem in chess,
where the rooks are placed on a square board so that no two rooks share a row or column,
but we replace the rooks with the dominant values in every row. Thus for a given matrix

27

A we can construct a permutation matrix αS that will reorder, and scale, the columns to
result in a diagonally dominant matrix with values on the diagonal all in [0,1]. Since the
permutation matrix S is orthogonal, as the rows and columns are orthogonal unit vectors,
it follows that ST = S−1, and (αS)−1 = (1/α)ST . Thus once A has been modified we can
solve αSAx = b as x = (αSA)−1b = A−1(1/α)ST b.

Consider the example

A =

1 5 1 1 1
1 1 1 5 1
5 1 1 1 1
1 1 1 1 5
1 1 5 1 1

 , (4.14)

where the dominant values are stored in positions {(1,2),(2,4),(3,1),(4,5),(5,3)}. Let
A′ be the modified matrix containing only the dominant values, with zeroes for all other
positions. Then the permutation matrix S = (1/m)(A′)T , where m = maxi, j |ai, j|. So for this
example

S =

0 0 0.2 0 0

0.2 0 0 0 0
0 0 0 0 0.2
0 0.2 0 0 0
0 0 0 0.2 0

 , (4.15)

and

SA =

0 0 0.2 0 0

0.2 0 0 0 0
0 0 0 0 0.2
0 0.2 0 0 0
0 0 0 0.2 0

1 5 1 1 1
1 1 1 5 1
5 1 1 1 1
1 1 1 1 5
1 1 5 1 1

=

1 0.2 0.2 0.2 0.2

0.2 1 0.2 0.2 0.2
0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 1 0.2
0.2 0.2 0.2 0.2 1

 (4.16)

Theorem 4.2.2. Given any invertible n×n matrix A, with extended dominance, let A′ be

the modified matrix containing only the dominant values of A, let m = maxi, j |ai, j|, and let

S = (1/m)(A′)T . Then SJM will converge if X0 = S.

Proof. For each row i in A, let (i, j) be the position of the maximum value max j |ai, j|. Then
set (A′)i, j =−1(sgn(ai, j)), and all other values zero. Then A′ will contain exactly one non-
zero value in each row and column, since A has extended dominance. Let m = maxi, j |ai, j|,
and set S = (1/m)(A′)T . Thus S will simultaneously scale A and reorder the columns of A,
resulting in a diagonally dominant matrix, with all values on the diagonal lying in [0,1].

Hence, by the same argument as used in Theorem 4.2.1, it follows that ‖I−SA‖< 1 and
SJM will converge using X0 = S as the initial guess.

28

4.2.3 Tri-Diagonally Dominant Matrices

Further expanding the concept of dominance leads us to consider tridiagonal dominance.
Whereas a matrix A is diagonally dominant if the absolute value of the diagonal is greater
than the sum of the absolute values of the non-diagonal entries on each row, the matrix A is
tri-diagonally dominant if the sum in each row of the absolute values of the diagonal and
super- and sub-diagonal values is greater than the sum of the remaining entries. In short, A

is tri-diagonally dominant if

i+1,k≤n

∑
k=i−1,k>0

|aik|>
i−2

∑
k=1
|aik|+

n

∑
k=i+2

|aik| (4.17)

holds for row i of matrix A, i = 1 . . .n. We can decompose the matrix A = D3 +M, where
D3 consists of the three diagonals, including the sub- and super diagonal. Then, assuming
D3 is non-singular, the inverse D−1

3 is known and can be calculated using the elegant and
concise formulation described by Usmani [28].

Consider the tridiagonal matrix

D3 =

a1 b1
c1 a2 b2

c2
.
. bn−1

cn−1 an

 . (4.18)

Then D−1
3 is defined as

(D−1
3)i j =

{
(−1)i+ jbi . . .b j−1θi−1φ j+1/θn, if i≤ j
(−1)i+ jc j . . .ci−1θ j−1φi+1/θn, if i > j

(4.19)

where

θ0 = 1

θ1 = a1

θi = aiθi−1−bi−1ci−1θi−2, for i = 2, . . . ,n

and

φn+1 = 1

φn = an

φi = aiφi+1−biciφi+2, for i = n−1, . . . ,1.

We can calculate D−1
3 explicitly using Algorithm 1; by pre-calculating the values we can

calculate the inverse D−1
3 using only O(n2) operations.

29

Algorithm 1 Calculate D−1
3

Require: The n×n matrix D3 is invertible
1: θ0 = 1, θ1 = a1
2: for i = 2 to n do
3: θi = aiθi−1−bi−1ci−1θi−2
4: end for
5: φn+1 = 1, φn = an
6: for i = n−1 down to 1 do
7: φi = aiφi+1−biciφi+2
8: end for
9: . Now we construct the matrix B such that

10: . Bi, j = bibi+1 · · ·b j, for i≤ j, and C likewise
11: B1,1 = b1, C1,1 = c1
12: for i = 2 to n−1 do
13: B1,i = biB1,i−1, C1,i = ciC1,i−1
14: end for
15: for i = 2 to n−1 do
16: Bi,i = bi, Ci,i = ci
17: for j = i+1 to n−1 do
18: Bi, j = b jBi, j−1, Ci, j = c jCi, j−1
19: end for
20: end for
21: . Final Step: Calculating D−1

3
22: for i = 1 to n do
23: for j = 1 to n do
24: if i≤ j then
25: D−1

3i, j
= (−1)i+ jBi, j−1θi−1φ j+1/θn

26: else
27: D−1

3i, j
= (−1)i+ jC j,i−1θ j−1φi+1/θn

28: end if
29: end for
30: end for
31: return D−1

3

Lemma 4.2.3. Let D3 be a tri-diagonal matrix defined by the three vectors a=
[
a1 a2 . . .an

]
,

b =
[
b1 b2 . . .bn−1

]
, and c =

[
c1 c2 . . .cn−1

]
, as described in (4.18). Then the inverse

D−1
3 can be calculated using O(n2) operations.

Proof. Consider Algorithm 1, which calculates D−1
3 . Lines 3 and 7 both require 4 operations,

and are called n−1 times, resulting in 8(n−1) = 8n−8 operations. The algorithm uses
two additional matrices, B and C to store the results of multiplying subsets of {bi} and
{ci} together; in (4.19) the products of multiple consecutive values are used. Hence

30

Bi, j is initialized so that Bi, j = bibi+1 . . .b j, where i ≤ j, and C is set up similarly. By
building these two matrices row by row, we can rely on previous calculations, so that
the total number of operations required is 2(n− 2) for the loop in lines 11 to 13, and

∑
n−1
i=2 ∑

n−1
j=i+1 2 = ∑

n−1
i=2 2n−2i−2 = n2−5n+6 for the nested for loops in lines 14 to 19.

At this point all the pre-calculations have been completed, and D−1 can be calculated
directly. Note that (−1)i+ j does not have to be calculated directly, but can be replaced with
an if statement, so that (−1)i+ j =−1 if i+ j is odd, and 1 otherwise. Hence the sign can be
calculated with a single operation, and the total number of operations required in lines 24
and 26 is 4, and on each iteration of the for loops either line 24 or line 26 will be used, but
not both. Thus the total number of operations in lines 21 to 29 is

n

∑
i=1

n

∑
j=1

4 = 4n2. (4.20)

Combining all these results, the total number of operations required is O(n2) since
(8n−8)+2(n−2)+(n2−5n+6)+(4n2) = 5n2 +5n−4.

Naturally, calculating D3 using fixed, finite precision will result in some computational
error, which depends in part on the size of the matrix. To illustrate the effect of the matrix
size on the computational error, at various levels of precision, we generated random tri-
diagonal matrices of various sizes such that ai,bi,ci ∈ [0,1] and then measured the distance
between the identity matrix and the calculated inverse matrix multiplied by the original
matrix. In short, we calculated

∥∥I−D3D−1
3

∥∥. Using perfect precision,
∥∥I−D3D−1

3

∥∥= 0.
By implementing Algorithm 1 in Maple, we were able to calculate the matrices using both
perfect precision and controlled single, double, and quadruple precision. Fig. 4.1 illustrates
the accuracy achievable; for small matrices the accuracy of the inverse primarily depends on
the precision used. However, as matrices grow larger, we can see the effect of multiplying
many floating point numbers together, so that when n = 1000 there is a significant degrading
in accuracy. Hence when implementing SJM, in Theorem 4.2.4, where the initial guess is
X = D−1

3 , it is important to distinguish between the inverse calculated with perfect precision,
and the inverse calculated with computer precision; it is the latter we need in the condition
that ‖XM‖< 1−

∥∥I−D3D−1
3

∥∥.

Theorem 4.2.4. Given a tridiagonally dominant matrix A=D3+M, where D3 is tridiagonal

and invertible, SJM will converge if ‖X0M‖< 1, with initial guess X0 = D−1
3 .

Proof. Let A be a tridiagonally dominant matrix, such that A = D3 +M, and D3 is both
tri-diagonal and invertible. Then by Theorem 4.1.1, SJM will converge if ‖I−X0A‖ < 1.

31

∥ ∥ I−
D

3D
−

1
3

∥ ∥
single precision

double precision

quadruple precision

n
10-30

10-25

10-20

10-15

10-10

10-5

100

 1x101 1x102 1x103

Figure 4.1: Computation error
∥∥I−D3D−1

3

∥∥ for random tridiagonal matrices, with ai,bi,ci ∈
[0,1] with size n varying from 10 to 2000, implemented using single, double and quadruple
precision in Maple.

Consider

‖I−X0A‖= ‖I−X0(D3 +M)‖

= ‖I−X0D3−X0M‖

=
∥∥I−D−1

3 D3−X0M
∥∥

= ‖X0M‖ .

Hence ‖I−X0A‖< 1 if and only if ‖X0M‖< 1.

We can further generalize this result, since the proof relies only on being able to calculate
the inverse of D3; in general, if we can decompose A = B+C into two matrices, and B has a
known inverse B−1, then B−1 will make a sufficient guess if

∥∥B−1C
∥∥< 1.

Corollary 4.2.5. Let A be an invertible matrix such that A = B+C and B−1 is known. Then

SJM will converge, with B−1 as initial guess X0, if
∥∥B−1C

∥∥< 1.

Proof. Let A be an invertible matrix, such that A=B+C and B−1 is known, and et X0 =B−1.

32

Then by Theorem 4.1.1, SJM will converge if ‖I−X0A‖< 1. Consider

‖I−X0A‖= ‖I−X0(B+C)‖

= ‖I−X0B−X0C‖

=
∥∥I−B−1B−X0C

∥∥
= ‖X0C‖ .

Hence ‖I−X0A‖< 1 if and only if ‖X0M‖< 1.

4.2.4 Gaussian Matrices

Consider the matrix A as defined in (2.3), in Sec. 2.3, using a Gaussian distribution so that

a jk =
1
2

[
erf
(

yk+1− x j

2
√

α/n

)
− erf

(
yk− x j

2
√

α/n

)]
. (4.21)

The resultant matrix is row stochastic. Assuming that the initial data points {xk, fk}k=1...n

were evenly spaced, the matrix will be near Toeplitz, with only the first and last row differing.
Consider the matrix X0 defined by

x jk =
1
2

[
1/erf

(
yk+1− x j

2
√

α/n

)
−1/erf

(
yk− x j

2
√

α/n

)]
. (4.22)

Then the product X0A will depend on the size and spacing of the original inputs xk, as well
as the mollifier α , and does not depend on the { fk}, so that the same matrix can be used for
many problems. If the points are evenly spaced, then X0A can easily be calculated explicitly,
and we can show that X0 is a valid initial guess for carefully chosen α .

Theorem 4.2.6. Given a matrix A constructed using (4.21) where the data points consist

of n even spaced points, and initial guess X0 constructed using (4.22), using a sufficiently

small α so that (X0A)i,i < 1, SJM will converge.

Proof. First, from (2.1) and the fact that the x j are evenly spaced between 0 and 1, so that
x j = j/n, we have

yk− x j =

−∞ if k = 0

2k+1
2n
− 2 j

2n
if 0 < k < n

∞ if k = n

(4.23)

33

and hence

(X0A)i, j =
n

∑
k=1

(X0)i,kAk, j

=
n

∑
k=1

1
4

[
1/erf

(
yk+1− xi

2
√

α/n

)
−1/erf

(
yk− xi

2
√

α/n

)][
erf
(

y j+1− xk

2
√

α/n

)
− erf

(
y j− xk

2
√

α/n

)]
=

1
4

n

∑
k=1

[
1/erf

(
2k+3−2i

4
√

α

)
−1/erf

(
2k+1−2i

4
√

α

)]
[

erf
(

2 j+3−2k
4
√

α

)
− erf

(
2 j+1−2k

4
√

α

)]
(4.24)

using (4.23). For the sake of clarity, let

f (a,b) = erf
(

2a+3−2b
4
√

α

)
(4.25)

using (4.23), and we can rewrite (4.24) as

(X0A)i, j =
1
4

n

∑
k=1

[
1

f (k, i)
− 1

f (k−1, i)

]
[f (j,k)− f (j−1,k)]

=
1
4

n

∑
k=1

[
f (j,k)− f (j−1,k)

f (k, i)
− f (j,k)− f (j−1,k)

f (k−1, i)

]
. (4.26)

Now to show that ‖I−X0A‖< 1, it suffices to show that the following conditions hold:

(X0A)i,i >
n

∑
j=1, j 6=i

|(X0A)i, j|, (4.27)

‖(X0A)‖< 2. (4.28)

Using substitution and (4.24), we see that

(X0A)i,i =
1
4

n

∑
k=1

[
f (i,k)− f (i−1,k)

f (k, i)
− f (i,k)− f (i−1,k)

f (k−1, i)

]
. (4.29)

Consider Ak, j; since y j+1−xk > y j−xk, it follows that erf
(

y j+1− xk

2
√

α/n

)
> erf

(
y j− xk

2
√

α/n

)
and hence Ak, j > 0. Conversely, (X0)i,k < 0, if i 6= k. Hence |(X0A)i, j|< 0 when i 6= j. Thus
we can consider

n

∑
j=1
|(X0A)i, j|=

n

∑
j=1, j 6=i

∣∣∣∣∣14 n

∑
k=1

[
f (j,k)− f (j−1,k)

f (k, i)
− f (j,k)− f (j−1,k)

f (k−1, i)

]∣∣∣∣∣
=−1

4

n

∑
j=1, j 6=i

n

∑
k=1

[
f (j,k)− f (j−1,k)

f (k, i)
− f (j,k)− f (j−1,k)

f (k−1, i)

]
=−1

4

n

∑
k=1

n

∑
j=1, j 6=i

[
f (j,k)− f (j−1,k)

f (k, i)
− f (j,k)− f (j−1,k)

f (k−1, i)

]

34

and we can simplify the resulting equation by reordering and canceling terms, resulting in

n

∑
j=1
|(X0A)i, j|=−

1
4

n

∑
k=1

[
f (i−1,k)− f (0,k)+ f (n,k)− f (i,k)

f (k, i)
−

f (i−1,k)− f (0,k)+ f (n,k)− f (i,k)
f (k−1, i)

]

=
1
4

n

∑
k=1

[
(f (i,k)− f (i−1,k))− (f (n,k)− f (0,k))

f (k, i)
−

(f (i,k)− f (i−1,k))− (f (n,k)− f (0,k))
f (k−1, i)

]

= (X0A)i,i−
1
4

n

∑
k=1

[
(f (n,k)− f (0,k))

f (k, i)
− (f (n,k)− f (0,k))

f (k−1, i)

]
. (4.30)

Then, assuming ‖X0A‖< 2, it follows that

‖I−X0A‖= max
i=1,...,n

1− (X0A)i,i +
n

∑
j=1, j 6=i

|(X0A)i, j|

< max
i=1,...,n

1− (X0A)i,i +(X0A)i,i

< 1. (4.31)

The structure of A = Ann is discussed in Sec. 2.4, and A is near-Toeplitz. We can modify
A slightly, to make it Toeplitz, by modifying (4.23) so that

yk− x j =

− 1
2n

if k = 0

2k+1−2 j
2n

if 0 < k < n

2n+1
2n

if k = n

(4.32)

and the resulting matrices A and X0, as defined by (4.21) and (4.22) will both be Toeplitz
matrices. We can still use the modified A and X0 for stochastic interpolation, as we will in
Chapter 6, but the structure of Toeplitz matrices allows for improvement in the number of
operations required to add and multiply matrices, since the entire n×n matrix is reduced to
a vector of length 2n−1.

35

4.3 Summary

The SJM algorithm is easy to implement, and to understand, but suffers from computational
complexity. The matrix-matrix multiplications require a relatively large number of opera-
tions, and estimating error has to be done iteratively. In Chapter 5 we will present solutions
to both of those challenges, resulting in a faster, more flexible algorithm, whose errors can
be estimated using only the magnitude of the original matrix A and initial guess X0. We have
also presented valid initial guesses for a variety of graph classes, and these initial guesses
will guarantee convergence of both SJM, and the modified SJM presented in Chapter 5.

36

Chapter 5

The Polynomial Schulz-Jones-Mayer Algorithm

5.1 Extending SJM – The PSJM Algorithm

Whilst the Shulz-Jones-Mayer algorithm is known to converge, for certain classes of matrices,
the algorithm, requiring O(kn3) operations, is no faster than traditional methods such as
Gaussian elimination. By reframing the original problem from inversion to solving for x, we
are able to adapt the SJM algorithm which results in a much faster algorithm for the solution
we actually seek to compute. Our considerations in this chapter are two-fold; to improve the
operations count and error estimation for SJM, and to experimentally verify the efficacy of
the initial guesses presented for a variety of cases of matrices in Sec. 4.2.

Using SJM, the solution x for the problem Ax = b can be approximated by xk = Xkb, for
some sufficiently large k and good initial guess X0. If the desired value is x, however, it is
not necessary to calculate Xk explicitly; consider that

Xk+1 = 2Xk−XkAXk

= 2(2Xk−1−Xk−1AXk−1)− (2Xk−1−Xk−1AXk−1)A(2Xk−1−Xk−1AXk−1)

= (4I−6(Xk−1A)+4(Xk−1A)2− (Xk−1A)3)Xk−1.

We can continue continue rewriting Xk in terms of previous xk− j until we reach the initial
guess, X0, allowing us to rewrite Xk as

Xk =

(
2k−1

∑
i=0

αk,i(X0A)i

)
X0, (5.1)

and

xk =

(
2k−1

∑
i=0

αk,i(X0A)i

)
X0b, (5.2)

where Xk ≈ A−1 for sufficiently large k when the iteration converges, and the coefficients
αk,i are constants that do not rely on the initial matrix. Table 5.1 illustrates the coefficients
for the first three iterations. Note that the number of coefficients doubles at each iteration,
and can be calculated using dynamic programming, starting with the case where k = 0 and

37

1
2 −1
4 −6 4 −1
8 −28 56 −70 56 −28 8 −1

1
(X0A)
(X0A)2

(X0A)3

(X0A)4

(X0A)5

(X0A)6

(X0A)7

=

X0
X1
X2
X3

Table 5.1: (5.1) written as a matrix multiplication, with coefficients αk,i for the first three
iterations.

working up to any level chosen. Notation-wise, αk,i represents the coefficient, in the k-th
iteration, of the term with with variable X0A and exponent i.

Clearly coefficients at each iteration rely on the previous iteration, and we can use a
recurrence relation to calculate them.

Lemma 5.1.1. To calculate Xk =
(

∑
2k−1
i=0 αk,i(X0A)i

)
X0, the αi, j are defined as follows:

α0,0 = 1, (5.3)

αi,0 = 2αi−1,0, (5.4)

αi, j = 2αi−1, j−
j−1

∑
k=0

αi−1, j−k−1 αi−1,k, for j = 1, . . . ,2i−1, (5.5)

αi−1, j = 0 if j ≥ 2i−1 (5.6)

Proof. Consider first that X0 = (X0A)0X0, so α0,0 = 1. Similarly, X1 = 2X0−X0AX0 =

(2− (X0A)1)X0, so that α1,0 = 2 and α1,1 = −1. Now assume that the lemma holds for
all j ≤ k, and consider the j-th coefficient of Xk+1 = 2Xk−XkAXk. The j-th coefficient of
2Xk = 2αk, j, but

XkAXk =

(
2k−1

∑
i=0

αk,i(X0A)i

)
X0A

(
2k−1

∑
i=0

αk,i(X0A)i

)
X0

=

(
2k−1

∑
i=0

αk,i(X0A)i+1

)(
2k−1

∑
i=0

αk,i(X0A)i

)
X0

so that by combining all the terms with degree j, the j-th coefficient of XkAXk =∑
j−1
i=0 αk, j−i−1αk, j.

Thus

αk+1, j = 2αk, j−
j−1

∑
i=0

αk, j−i−1αk,i, (5.7)

38

which after rewriting with appropriate variables is (5.6).

5.2 Run-time Complexity

When considering the number of operations required for k iterations of PSJM, we have to
consider two calculations; first the calculation of the coefficients {αk,i}, and secondly the
sum (5.1). The coefficients are constant, and do not rely on the size or values of the matrix
A and can be calculated once, stored, and thenceforward retrieved as needed. That one-time
calculation, to depth k will require O(2k+2) calculations, but will result in calculating all the
coefficients for iterations 1, . . .k. As such, we will not consider the complexity of calculating
{αk,i} when considering the number of operations required to calculate xk.

Lemma 5.2.1. Calculating the coefficients αi, j for the first k iterations will require O(2k+2)

operations.

Proof. We will first consider the number of operations required to calculate the coefficients
for a given iteration i. If i = 0 then no calculations are required. Now, assuming i > 0 there
are two counts we need to consider.

Recall that

αi,0 = 2αi−1,0,

αi, j = 2αi−1, j−
j−1

∑
k=0

αi−1, j−k−1 αi−1,k, for j = 1, . . . ,2i−1.

Thus the first coefficient requires 1 operation. Each of the other 2i−1 coefficients will
require one multiplication and one subtraction, plus the number of operations required to
complete the summation. Each term in the summation requires one multiplication and one
addition to increase the cumulative total. Thus for coefficient j the number of operations
required is 2 + 2 j = 2(j + 1) operations. Then for each iteration the total number of
operations can be bounded as

1+
2i−1

∑
j=1

2(j+1)≤ 2i+1, (5.8)

and the total number of operations can be bounded by
k

∑
n=1

2n+1 ≤ 2k+2.

Furthermore, storing the coefficients will require O(2k+1) memory locations, although the
magnitude of the coefficients grows quite rapidly.

39

Clearly, calculating the coefficients {αk,i} does not depend on the actual input, but is
independent. In contrast, (5.1) depends on the initial n×n matrix A, initial guess X0, and
vector b, and the number of operations required depends primarily on n, the size of A.
Assuming the conditions of Theorem 4.1.1 are satisfied, PSJM calculates, after k iterations,
xk = Xkb≈ A−1b which is an approximation of the correct answer.

Lemma 5.2.2. Calculating xk =
(

∑
2k−1
i=0 αk,i(X0A)i

)
X0b requires at most 2k matrix vector

multiplies and 2k vector additions.

Proof. We prove this by induction. First consider the base case: if k = 0 then x0 = X0b,
which requires exactly one matrix vector multiply.

Now assume the lemma holds for all k < n, and let bi = (X0A)iX0b. Note that bi

can be calculated using 2i+1 matrix-vector multiplies, by performing the multiplications
from right to left; any other order of operations results in matrix-matrix multiplies, which
are operationally more expensive, and thus to be avoided. However, if we calculate the bi

dynamically, storing the intermediate values, then calculating bi+1 will require only 2 matrix-
vector multiplies more than those required for bi. Hence the total number of matrix-vector
multiplies required to calculate the vectors b0,b1, . . . ,bi is 1+2i.

Consider the case where k = n. At this stage, the vectors bi such that i < 2n−1 have
already been calculated, but we need to calculate the additional bi such that 2n−1 ≤ i < 2n,
or 2n−1 additional vectors. Each successive bi can be calculated using two matrix-vector
multiplies and the already calculated bi−1, resulting in an additional 2×2n−1 = 2n matrix
vector multiplies. Hence the total number of matrix-vector multiplies required is 2k−1, or
O(2k).

Once the various intermediate vectors have been calculated, the sum xk = ∑
2k−1
i=0 αk,ibi

requires the addition of 2k vectors, each multiplied by a non-zero coefficient.

Actually calculating xk can be done with less memory than this proof suggests, by
maintaining at every step of the summation the current vector b j, j = 0 . . .2k−1, as well as
the current approximation ∑

j
i=0 αk,ibi. This allows us to save on space, but still requires the

same number of matrix-vector multiplications and additions.
We can use Lemma 5.2.2 when counting the number of operations, specifically additions

and multiplications, required to calculate xk. The actual operations count will differ based
on the structure of both X0 and A. For instance, if X0 is a simple scaling matrix consisting of
a diagonal matrix with non-zero values on the diagonal, then every matrix-vector multiplica-
tion of X0b′, where b′ is an intermediate vector, would only require n operations. Similarly,
if A and X0 are Toeplitz, we can take advantage of a speedier matrix-vector multiplication
using the FFT technique.

40

Lemma 5.2.3. Given any n×n invertible matrix, an initial guess X0 which satisfies Theo-

rem 4.1.1, and a vector b, PSJM will require O(2kn2) operations to calculate xk.

Proof. Matrix-vector multiplies, calculated explicitly, require O(n2) operations. Calculating
vector-vector additions, on the other hand, requires only O(n) operations. Lemma 5.2.2
shows that calculating xk will require at most 2k matrix vector multiplies and 2k vector
additions. Hence, PSJM will require O(2kn2 +2kn) = O(2kn2) operations.

Using a fixed precision platform, the number or iterations used is usually at most 5, so
that 2k = 32 becomes a constant resulting in a method requiring O(n2) operations since
O(·) notation does not include constants. The crucial factor in determining how much work,
or how many operations, are required by the algorithm depends strictly on the number of
operations required to perform each matrix-vector multiplication.

5.2.1 Matrix Vector Multiplication in O(n logn) time

Now consider the case when X0 and A are both Toeplitz matrices; we can take advantage of
the scheme described in Sec. 3.2.1 that embeds the matrix in a circulant matrix, and then
uses the FFT to calculate to calculate the matrix-vector multiplication. This produces a
matrix-vector multiply that only requires O(n logn) operations.

Lemma 5.2.4. Given any n× n invertible Toeplitz matrix, an initial guess X0 which is a

Toeplitz matrix and satisfies Theorem 4.1.1, and a vector b, PSJM will require O(2kn logn)

operations to calculate xk.

Proof. Since A and X0 are Toeplitz matrices, we can take advantage of the FFT based matrix-
vector multiplication method which requires O(n logn) operations. From Lemma 5.2.2 we
know that calculating xk will require at most 2k matrix vector multiplies and vector additions.
The additions can be completed using O(n) operations, and the matrix vector multiplies
now only require O(n logn) operations, as described in Sec. 3.2.1. Hence PSJM will require
O(2kn logn) operations.

5.3 Error Analysis

To analyze the possible sources of error in PSJM, we must look both at the initial matrices
A and X0 and vector b, and their manipulation, as well as the coefficients αk,i. For the
convergence of xk→ x, we require perfect computational accuracy which is naturally not
possible on a computational platform using only a limited amount of precision. Standard
packages such as Matlab and lapack are implemented using double precision arithmetic.

41

Depth k Degree n max |αk,i|
1 1 = 21−1 2
2 3 = 22−1 6
3 7 = 23−1 70
4 15 = 24−1 12870
5 31 = 25−1 601080390
6 63 = 26−1 1832624140942590534

Table 5.2: The degree and maximum coefficient max |αk,i| of the monic polynomial used to
calculate xk, using PSJM.

A number stored as a double precision floating point number is stored as (−1)s× c×bq,
where s is a one-bit sign signifier, c is the significant and q is the exponent. The exponent
b is typically 2. Hence the number 12345 would be stored as (−1)0× 1.2345× 104 as a
decimal number or (−1)0× 1.1000000111001× 21101. Since we have room to store 52
binary digits for the significant, the number 12345 can be represented without rounding but
any integer larger than 252 = 4503599627370496 cannot be represented accurately, since
there are insufficient digits available in the significant. Thus, even when working with
integers, as the coefficients αk,i are, we must still worry about rounding.

Thus one possible source of error are the coefficients αk,i as k becomes larger; as we
can see from Table 5.2, the size of the maximum coefficient grows at such a rapid pace that
computation using double precision becomes flawed at the sixth iteration. Consider that
double precision can represent 252 = 4503599627370496 integers accurately, allowing for
52 digits accuracy in binary representation, but only approximately 16 digits in decimal
documentation. Thus the number 1832624140942590534, which is the maximum coefficient
for the sixth iteration and requires 19 digits in decimal form or 61 digits in binary form,
cannot be represented in memory without significant rounding. This source of error is
wholly unrelated to the actual values of the initial data, but is the reason why we bound
k ≤ 5.

The other source of error comes from the computational errors that compound as
(5.2) is calculated and result from computational errors in the addition, subtraction, and
multiplication of matrices. These errors were studied by Mikhlin[22], and yield useful
analytical estimates, and a possible way to improve the accuracy of the method, when
applied to PSJM. As in Sec. 4.1.1, given a matrix X , let δ (X) be the computational error, so
that X̂ = X +δ (X) is the computed result and ‖δ (X)‖ is the size of the computational error.
The PSJM algorithm relies only on the initial matrices. Thus the approximate solution is

42

calculated as xk = Xkb, and it follows that the error is

‖δ (xk)‖ ≤ ε
√

n

[
2k−1

∑
i=0
|αk,i|(‖X0‖‖A‖)i

]
‖X0‖‖b‖

= ε
√

n
2k−1

∑
i=0
|αk,i|‖X0‖i+1 ‖A‖i ‖b‖ . (5.9)

We can simplify this error bound even further when A is diagonally dominant and X0 is a
diagonal matrix; in this case, since ‖I−X0A‖< 1, it follows that ‖X0‖‖A‖ ≤ 2, resulting in

‖δ (xk)‖ ≤ ε
√

n

[
2k−1

∑
i=0
|αk,i|2i

]
‖X0‖‖b‖

= ε
√

n α (22k
−1)‖X0‖‖b‖ , (5.10)

where α = maxi |αk,i|. Thus we can estimate the error based only on the size of the initial
guess X0 and vector b, which leads us to a way to improve the algorithm further.

5.4 PSJM with Iterative Error Correction

To improve the accuracy of PSJM, so that double precision arithmetic yields double precision
results, we can rely on the error estimate (5.10); while we cannot modify the initial guess, we
can iteratively modify the size of the vector b, by repeatedly solving Axi = bi for diminishing
vectors bi. By combining the resulting solutions xi, we obtain a solution for Ax = b. We call
this refinement of the method PSJM with Iterative Error Correction, or PSJMwIEC.

Algorithm 2 Calculating xk iteratively
Require: A, X0, b, k and the number of iterative corrections m

1: x = 0, b′ = b
2: for i = 1 . . .m do
3: xi

k = PSJM(A,X0,b′,k)
4: x = x+ xi

k
5: b′ = b′−Axi

k
6: end for
7: return x

Lemma 5.4.1. Given a square matrix A, an initial guess X0 such that ‖I−X0A‖< 1, and

a vector b, we can improve the result of the PSJM algorithm by solving Axk = b and

Ax′ = b−Axk, and returning xk + x′k.

43

Proof. Given that ‖I−X0A‖ < 1, we know from Theorem 4.1.1 that Xk will converge to
A−1. Since xk = Xkb and A−1b = x, this implies that Axk = AXkb converges to AA−1b = b.
Hence ‖b−Axk‖ → 0, as k grows large, so ‖b−Axk‖ < ‖b‖. Let k be fixed, and use the
PSJM algorithm to solve Ax′ = b−Axk for x′k, so that Ax′k = b−Axk−Ax′k = b−A(xk +x′k).

Now consider
∥∥A[x− (xk + x′k)]

∥∥= ∥∥b−A(xk + x′k)
∥∥= ∥∥(b−Axk)−Ax′k

∥∥< ‖b−Axk‖;
since

∥∥b−A(xk + x′k)
∥∥< ‖b−Axk‖, it follows that

∥∥x− (xk + x′k)
∥∥< ‖x− xk‖.

Algorithm 2 will require at most m(2k+1) matrix vector multiplies and m(2k+2) vector
additions, as a result of running PSJM, at a depth of k iterations m times. If k is relatively
small and bounded, we can conclude from Lemma 5.2.3 that the total number of operations
required is O(mn2) in the general case, or using Lemma 5.2.4 O(mn logn) when A and X0

are Toeplitz matrices.

5.5 Experimental Results

In this section we will discuss the experimental results; after briefly describing the method-
ology of our experiments, we will consider three distinct cases. Since this research was
motivated by the use of stochastic interpolation, which requires the use of near diagonally
dominant Toeplitz matrices, we first consider the diagonally dominant matrices, specifically
diagonally dominant Toeplitz matrices. Next we consider tri-diagonally dominant matrices,
which extends the range of matrices we can cover, and lastly we discuss Gaussian matri-
ces, which are the actual matrices used in stochastic interpolation. Gaussian matrices are
typically Toeplitz or row stochastic, and positive. While we discuss several variations of
diagonal dominance in Sec. 4.2, especially the concept of extended diagonal dominance in
Theorem 4.2.2, we will focus strictly on diagonally dominant matrices as the extensions
all rely on reordering the rows of A (and values of b) to create a matrix that is diagonally
dominant. Depending on the method used to store the matrix in memory, whether array
based or list based, this reordering will require O(n2) memory operations if the matrix is
stored as an array or O(n) memory operations if the array is stored as a list of lists. When
counting the number of operations, however, we generally explicitly consider only arithmetic
operations so that these memory operations that occur as values are moved and swapped
around in memory are left uncounted. These memory operations are uncounted because they
are, relatively speaking, much faster than the arithmetic operations and thus the arithmetic
operations form the bottleneck when studying the speed or complexity of an algorithm.

44

5.5.1 Methodology

We implemented our testing software in C, using the Gnu Scientific Library (gnuscl) [15],
the lapack [19] library, and, in the cases where we were dealing with Toeplitz matrices, the
fftw library subroutine [12]. The code is implemented in double precision; gnuscl supports
greater precision for the basic matrix and vector manipulations, including initialization,
addition and scalar multiplication, but relies on lapack for optimized matrix-matrix and
matrix-vector multiplication. The lapack package was first written in Fortran 77, but later
upgraded to Fortran 90 in 2008. The programming language Fortran is widely used, suited
as it is to numeric computation, but Fortran 90 offers only single and double precision, thus
limiting the precision of the libraries. Like Fortran, C is also an imperative programming
language with similar memory management routines; the choice to use C rather than Fortran
for the front end allowed us to structure the code in a way that simplified adding test cases
by using function pointers.

The testing software is designed in a modular fashion. There are separate routines for
the creation of random matrices A under a variety of parameters that include the type of
matrix A should be, such as diagonally dominant and tridiagonally dominant matrices and
the Gaussian matrices used for stochastic interpolation. Secondly, there are separate routines
to create the initial guess X , based on the matrix A; for a diagonally dominant matrix A, X

consists of a scaling matrix, whereas for a tridiagonally dominant matrix X is initialized as
the inverse of D3, where D3 is the matrix including the diagonal and super and sub diagonals
of A. The specific calculation of the initial guesses is described in Sec. 4.2. Thirdly, there
are separate routines to calculate the PSJM results, based on the structure of A. For instance,
if A is diagonally dominant, then X is simply a scaling matrix, and each matrix vector
multiply involving X can be replaced with a simple vector scaling, resulting in an optimized
number of operations. In contrast, if A and X are both Toeplitz matrices, then the matrix
vector multiply can use the FFT method, resulting in a reduction from O(n2) to O(n logn)

operations per matrix-vector multiply. Sec. 3.2.1 explains how the matrix-vector multiply
can be performed faster, using an embedding of the Toeplitz matrices in circulant matrices.

For each test run three main values are recorded; the difference between the lapack and
PSJM solution, the residual error, and the amount of time required. Thus we define the error
as ‖xl− xk‖∞

, where xl is the solution generated by the lapack libraries and xk is the solution
generated by PSJM after k iterations. The residual error is calculated as ‖b−Axk‖∞

. The
time required is calculated using the system clock, by recording when PSJM starts and stops,
and returning the difference between the two times.

Generally, the SJM method is not tested, since it is much slower even than the lapack

45

library routine; for k = 3,4, both SJM and PSJM yield exactly the same results using
double precision, while PSJM provides an upper bound for the error when k = 5. The slight
divergence is due to larger number of matrix operations required for PSJM. As discussed in
Sec. 5.3, PSJM is not reliable for k = 6 when using double precision due to the inability to
store the coefficients αk, j accurately.

5.5.2 Implementing PSJM

Recall, when implementing PSJM, that the goal is to calculate (5.2), which is

xk =

(
2k−1

∑
i=0

αk,i(X0A)i

)
X0b.

To do so, the implementation maintains two vectors simultaneously; XAXb = (XA) jXb,
for j = 0 . . .2k−1, and xk =

(
∑

j
i=0 αk,i(X0A)i

)
X0b, for j = 0 . . .2k−1. The intermediate

vectors are calculated using Algorithm 3, which minimizes the number of calculations
required by never recalculating a value. Even so, it is possible to improve the number
of calculations required by implementing faster matrix-vector multiplies in lines 4 and 5,
depending on the structure of A and X . Brute-forcing the matrix vector multiplications
requires the use of O(n2) calculations; if either matrix is Toeplitz, however, this step can
be implemented in O(n logn) calculations, and if X is sufficiently simple, line 5 can be
subsumed in line 4 or line 6.

Algorithm 3 Calculating xk
Require: A and X are n×n matrices, b is a vector of size n
Require: The coefficients α(k, i) are known.

1: XA jXb = X .b . The variable XA jXb stores the intermediate vector (XA) jXb
2: xk = α(k,0)×XA jXb . The variable xk stores the partial vector

(
∑

j
i=0 αk,i(X0A)i

)
X0b

3: for j = 1 . . .2k−1 do
4: XA jXb = A.XA jXb
5: XA jXb = X .XA jXb
6: xk = xk+α(k, j)×XA jXb
7: end for
8: return xk

5.5.3 Diagonally Dominant Matrices

When the matrix A is diagonally dominant, the initial guess X is a scaling matrix. Using
Theorem 4.2.1, we initialize X so that, if m = maxi=1...n |A[i, i]|, then X [i, i] = sgn(A[i, i])/m,

46

with all other entries 0. If A has no negative values on the diagonal, we can simplify X further,
by setting X [i, i] = 1/m, so that X simply scales A. Then the calculations in lines 4 and 5
can be combined, using the gnuscl routine gsl_blas_dgemv, which takes as parameters
the matrix and vector that will be multiplied together, as well as scalar coefficients, so
that gsl_blas_dgemv(CblasNoTrans,1/m,A,b,0,c) calculates c = (1/m)Ab+0c. This
allows us to reduce the amount of calculations significantly. We see the effects of these
choices in Figures 5.1 through 5.4 and Table 5.3.

‖ x
k
−

x l
‖ 2

k = 3

k = 4

k = 5

n
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 1x101 1x102 1x103 1x104

Figure 5.1: The error ‖xl− xk‖2, where xk is computed using PSJM and xl is the solution
computed by the lapack library, as the size of the matrix is varied from n = 10 to n = 10,000
and the depth of recursion varies from 3 to 5, averaged over 50 diagonally dominant Toeplitz
matrices at each size.

To generate the results in Fig. 5.1, we used random diagonally dominant matrices that
were also Toeplitz matrices. Thus we can use the method described in Sec. 3.2.1 to perform
the matrix vector multiplication in O(n logn) time, calculating the result xk rapidly, as we
can see in Fig. 5.2. Note from the slope of the curves and the comparison n logn slope,
that we are achieving the O(n logn) timing we expect, using CPU time as a proxy for the
number of arithmetic operations. We can improve the accuracy by applying the iterative
error correction, as described in Sec. 5.4, as in Figures 5.3 and 5.4, where we see that
applying the iterative error correction allows us to improve the error dramatically; after only
one round of iterative error correction the error is halved, and a second round of iterative
correction decreases the error further. This allows us to take advantage of the quadratic
convergence of the technique, while overcoming the challenge of overly large coefficients

47

t
(s

ec
)

k = 5 k = 4

k = 3

cn logn

n
10-4

10-3

10-2

10-1

100

 1x101 1x102 1x103 1x104

Figure 5.2: The amount of time required, in seconds, to calculate xk for matrices whose size
ranges from n = 10 to n = 10,000, averaged over 50 random diagonally dominant matrices
at each size. Also included is the line y = n logn, downshifted c units, as a comparison.

‖ x
k
−

x l
‖ 2

k = 3

k = 4

k = 5

n
10-18

10-16

10-14

10-12

10-10

10-8

10-6

 1x101 1x102 1x103 1x104

Figure 5.3: The error ‖xl− xk‖2, where xk is computed using PSJM with one iterative error
correction and xl is the solution computed by the lapack library, as the size of the matrix is
varied from n = 10 to n = 10,000 and the depth of recursion varies from 3 to 5, averaged
over 50 diagonally dominant Toeplitz matrices at each size.

α(k, i) that cannot be stored in fixed precision memory.

48

‖ x
k
−

x l
‖ 2

k = 3

k = 4

k = 5

n
10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

 1x101 1x102 1x103 1x104

Figure 5.4: The error ‖xl− xk‖2, where xk is computed using PSJM with two iterative error
corrections and xl is the solution computed by the lapack library, as the size of the matrix is
varied from n = 10 to n = 10,000 and the depth of recursion varies from 3 to 5, averaged
over 50 diagonally dominant Toeplitz matrices at each size.

n k Number of Iterative Corrections Time (seconds) ‖xk− xl‖2

0 0.001881647 3.89×10−06

1000 3 1 0.006025781 6.87×10−10

2 0.009785614 1.23×10−13

0 0.003716688 6.87×10−10

1000 4 1 0.009754291 3.15×10−17

2 0.015440168 2.17×10−17

0 0.007422156 8.94×10−12

1000 5 1 0.017100935 2.17×10−17

2 0.026493812 2.17×10−17

Table 5.3: A comparison of the time required to calculate xk using PSJM, with and without
iterative error corrections, as the depth of the recursion varies from 3 to 5, averaged over 50
diagonally dominant Toeplitz matrices of size 1000×1000.

5.5.4 Tri-Diagonally Dominant Matrices

If a matrix A is diagonally dominant, it is guaranteed by Theorem 4.2.1, to have a known,
and easily computable, initial guess X . In contrast, not every tridiagonally dominant matrix

49

‖ I
−

X 0
A
‖ 2

n

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1x101 1x102 1x103 1x104

Figure 5.5: The minimum, maximum, and average values for the accuracy of the initial
guess, calculated as ‖1−X0A‖2, over 20 tridiagonally dominant matrices at each size.

is invertible. Consider, for instance, the matrix

A =

0 2 0 . . . 0

2 0 2

0 2 0
... 2
0 . . . 0 2 0

is clearly tridiagonally dominant but not invertible; if A were invertible, its inverse could be
calculated using (4.19), and the zeroes on the diagonal would result in a division by zero
error. Thus we turn our attention to matrices whose tridiagonal sub-matrix is invertible, as
well as dominant, and we further consider the requirement that, if A = D3 +M, the initial
guess X = D−1

3 must also satisfy ‖XM‖< 1, as in Theorem 4.2.4. Thus we need to consider
invertible tridiagonally dominant matrices who also satisfy ‖XM‖< 1. Furthermore, even if
A is a Toeplitz matrix, the initial X will not be Toeplitz, so that we cannot take advantage of
the faster matrix-vector multiplication. This leaves us with an algorithm requiring O(n2)

operations per matrix-vector multiplication. Figures 5.5 through 5.7 and Table 5.4 illustrate
the results of studying tridiagonally dominant matrices.

Before we can consider the effectiveness of the algorithm, we must first consider the
effectiveness of the initial guess. Table 5.4 considers the number of iterations required
before reaching an answer with single precision when 0.9 ≤ ‖I−X0A‖ < 1. We can see
that if ‖I−X0A‖= 0.99, eleven iterations will be required before reaching single precision

50

‖I−X0A‖ k ‖I−X0A‖k ‖I−X0A‖5

0.99 11 1.15×10−09 7.25×10−01

0.98 10 1.04×10−09 5.24×10−01

0.97 10 2.85×10−14 3.77×10−01

0.96 9 8.37×10−10 2.71×10−01

0.95 9 3.93×10−12 1.94×10−01

0.94 9 1.74×10−14 1.38×10−01

0.93 8 8.54×10−09 9.81×10−02

0.92 8 5.37×10−10 6.94×10−02

0.91 8 3.27×10−11 4.89×10−02

0.90 8 1.93×10−12 3.43×10−02

Table 5.4: Number of iterations k required before ‖I−XkA‖< 10−14, given ‖I−X0A‖ and
quadratic convergence, as well as the bound on the error after 5 iterations.

accuracy, and after five iterations, the effective limit of PSJM when using double precision,
will reach an accuracy bounded by 0.725, a handicap we can overcome by using iterative
error correction as required. To consider the range of ‖I−X0A‖ we can expect, we generated
20 matrices at each size n, where n varied from 10 to 10,000, and calculated the minimum,
maximum, and mean of ‖I−X0A‖ for all matrices at that size. Fig. 5.5 shows that there is
some variation when n, the size of A, is small, but that the minimum, mean, and maximum
grow close to 1 as n grows large. Experimentally, we see that the results are not quite as
dire as the worst-case scenario suggests, and Fig. 5.6 shows the measured error after 5
iterations. Furthermore, iterative error correction allows for further improvements as we can
see in Fig. 5.7, and continuing iterative corrections would result in further convergence to a
reasonable precision, even as n grows large.

5.5.5 Gaussian Matrices

Gaussian matrices are initialized using (4.21); if the spacing is even, then the matrix A is
determined by its size n and the mollifier α , and the initial guess X is defined by (4.22).
Thus Xk = 2Xk−1−Xk−1AXk−1 is considered constant for any set of n equally spaced data
points, but xk will vary, depending on the value of b. Figures 5.8 through 5.12 illustrate the
effects of varying b, and the time required to calculate xk.

Since b is randomly populated with uniformly distributed values between 0 and 1, the
expected value for each entry is 0.5, and ‖b‖ → 0.5n as n grows large. Thus, in Fig. 5.8,
which shows the minimum, mean, and maximum error for 20 random vectors b of each
size n, the minimum and maximum errors come very close together. As we can see in

51

‖ x
k
−

x l
‖ 2

n
10-6

10-5

10-4

10-3

10-2

 1x101 1x102 1x103 1x104

Figure 5.6: The minimum, maximum, and average error ‖xl− xk‖2, where xk is computed
using PSJM and xl is the solution computed by the lapack library, as the size of the matrix
is varied from n = 10 to n = 10,000 and the depth of recursion is 5, averaged over 20
tridiagonally dominant matrices at each size.

‖ x
k
−

x l
‖ 2

No iterative correction

After 3 iterative corrections

n

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 1x101 1x102 1x103 1x104

Figure 5.7: The minimum, maximum, and average error ‖xl− xk‖2, where x5 is computed
using PSJMwIEC and 3 iterative corrections, and xl is the solution computed by the lapack
library, as the size of the matrix is varied from n = 10 to n = 10,000, averaged over 20
tridiagonally dominant matrices at each size. The average ‖xl− xk‖ without iterative error
correction is included for comparison.

52

‖ x
k
−

x l
‖ 2

k = 3

k = 4

k = 5

n
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1x101 1x102 1x103 1x104

Figure 5.8: The error ‖xk− xl‖2, where xk is computed using PSJM and xl is the solution
computed by the lapack library, as the size of the matrix is varied from n = 10 to n = 10,000
and the depth of recursion varies from 3 to 5, using the Gaussian matrix for evenly spaced
data points, and averaged over 20 random vector b. For each depth of recursion, the
minimum, maximum, and average errors are shown.

Fig. 5.9 which illustrates the error after applying three iterative error corrections, iterative
error correction is particularly effective for Gaussian matrices, even for large n. Contrast
this with tridiagonally dominant matrices in Fig. 5.7, where it is clear that as n grows large,
many more iterative corrections will be required.

By modifying A and X0 slightly, using (4.23) to evaluate (4.21) and (4.22), we are left
with two Toeplitz matrices A and X0 which differ from the original matrices only in the
first and last row. Taking advantage of the Toeplitz structure, the number of operations
required by PSJM can be reduced significantly to O(n logn), as per Lemma 5.2.4. There
is a secondary cost in initializing A and X0 and setting up the FFT routines, and for small
n, the O(n2) implementation returns results more rapidly. Where Fig. 5.11 shows the time
required for the non-Toeplitz version, after 2 iterative corrections, Fig. 5.12 shows the time
required for the Toeplitz version using the FFT library. As we can see from Fig. 5.9 and
5.10, the error is equivalent for both implementations, leaving time as the deciding factor.
Fig. 5.12 particularly shows the difference, as the dotted line shows the amount of time used
to solve the simplest case, where k = 3, for the O(n2) implementation, where the colored
lines show the time required using the Toeplitz matrix and the FFT library.

53

‖ x
k
−

x l
‖ 2

k = 3

k = 4

k = 5

n
10-16

10-14

10-12

10-10

10-8

10-6

10-4

 1x101 1x102 1x103 1x104

Figure 5.9: The error ‖xl− xk‖2, where xk is computed using PSJM with 3 iterative error
corrections and xl is the solution computed by the lapack library, as the size of the matrix is
varied from n = 10 to n = 10,000 and the depth of recursion varies from 3 to 5, using the
Gaussian matrix for evenly spaced data points, and averaged over 20 random vector b. For
each depth of recursion, the minimum, maximum, and average errors are shown.

5.6 Summary

As we can see from the experimental results using diagonally dominant, tridiagonally
dominant, and Gaussian matrices, the PSJM algorithm offers several definite advantages over
the SJM algorithm: PSJM runs faster, by removing the need for matrix-matrix multiplications
and replacing them with matrix-vector multiplications. As long as n > 2k, even one matrix
matrix multiplication, requiring 2n3 operations, will require more work than 2k matrix vector
multiplications, each requiring 2n2 operations. Granted, when the matrix is centrosymmetric
or Toeplitz we can reduce the number of operations the matrix-matrix multiplication requires,
but considering we will still need to perform 2 matrix matrix multiplications and one matrix
sum at every iteration, SJM will be faster only if n� 2k, which makes for very small values
of n.

However, when implementing PSJM using fixed precision computation, the number of
possible iterations is small due to the rapid growth of the coefficients. Specifically, using
double precision, we can use at most 5 iterations. This weakness implies that the initial
guess X0 has to be very good, so that ‖I−X0A‖� 1. We overcome this weakness by using
the error bounds established in (5.9) and observing that the error bound depends only on
‖A‖, ‖X0‖, and ‖b‖; thus iterative error correction as introduced in Sec. 5.4 reduces the

54

‖ x
k
−

x l
‖ 2

k = 3

k = 4

k = 5

n
10-16

10-14

10-12

10-10

10-8

10-6

10-4

 1x101 1x102 1x103 1x104

Figure 5.10: The error ‖xk− xl‖2, where xk is computed using PSJM with 2 iterative error
corrections and xl is the solution computed by the lapack library, as the size of the matrix is
varied from n = 10 to n = 10,000 and the depth of recursion varies from 3 to 5, using the
Toeplitz Gaussian matrix for evenly spaced data points, and averaged over 20 random vector
b. For each depth of recursion, the minimum, maximum, and average errors are shown.

t

tl

t5
t4

t3

n
10-5

10-4

10-3

10-2

10-1

100

101

102

 1x101 1x102 1x103 1x104

Figure 5.11: Time tk required to calculate xk by PSJM with 2 iterative corrections, as the
size of the matrix is varied from n = 10 to n = 10,000 and the depth of recursion varies
from 3 to 5, using the Gaussian matrix for evenly spaced data points, and averaged over 20
random vector b. Also the time tl required by the lapack library to calculate xl .

55

t

tg

t5

t4
t3

n
10-5

10-4

10-3

10-2

10-1

100

101

102

 1x101 1x102 1x103 1x104

Figure 5.12: Time tk required to calculate xk by PSJM with 2 iterative corrections, as the size
of the matrix is varied from n = 10 to n = 10,000 and the depth of recursion varies from 3
to 5, using the Toeplitz Gaussian matrix for evenly spaced data points, and averaged over
20 random vector b. Also the time tg required to calculate x3 for a non-Toeplitz Gaussian
matrix.

error by solving for consecutively smaller vectors b, resulting in the improving quality of xk.
Experimentally we see that the iterative error correction will allow PSJMwIEC to

continue converging after the first 5 iterations, even in cases like the tridiagonally dominant
matrices where the initial guess is not particularly good, and typically 1−ε < ‖I−X0A‖< 1
for some small ε . In these cases the iterative error correction will eventually converge to
single, or even double, precision accuracy, but it may require multiple iterative corrections.
Considering the Gaussian matrices, we see that varying the vector b from case to case does
not particularly affect the accuracy, but that using the Toeplitz version of A and X0 provides
faster results.

56

Chapter 6

Applications

6.1 Overview

In this chapter we will illustrate how to use PSJM to perform the stochastic interpolation
described in Chapter 2, both for the simple single variable functions described in Chapter 2,
and multivariable functions, as well as interpolating entire images. We saw in Fig. 2.2 and 2.4
that adding more data points added to the accuracy of the interpolating function, allowing us
to improve our interpolation by further sampling. We can also manipulate the interpolation
by varying the value of the mollifier α; for small values of α the interpolation becomes
almost a step function, whereas the interpolation becomes more smooth and rounded as α

grows. We can see this effect in Fig. 6.1, where α varies from 0.01 to 0.20. We note that
the result of stochastic interpolation is a vector of the interpolated points between the data
points; as such the number of operations required will depend on both the number of data
points n as well as the number of interpolated points m. Therefore, we will also consider the
number of operations required for the various types of stochastic interpolation; the single
variable function, the multi-variable function, and the image.

6.2 Complexity of Stochastic Interpolation

Algorithm 4 Calculating stochastic interpolation of {x, f (x)} with m output points.
Require: The vector f = f (x) of size n
Require: x consists of evenly spaced points from a to a+b

1: Scale x so that x1 = 0 and xn = 1, by shifting a and multiplying by factor b.
2: Initialize Ann and X0 using (4.21) and (4.22), where the yk are initialized using (4.32).
3: Calculate xk = PSJM_wIEC(Ann,X0, f ,5,3) using Algorithm 2
4: . xk ≈ A−1

nn f , using X0 as initial guess, f as the vector, a recursive depth of 5, and 3
iterations.

5: Initialize Amn using (4.21), where the yk are initialized using (4.32).
6: f ′ = Amnxk
7: x′i = b/(n−1)+a for i = 1 . . .m
8: return {x′, f ′}

57

f(
x)

x

-50

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

Figure 6.1: Interpolating a one-dimensional set of 100 data points {x, f (x)} (red), which
consist of a snapshot of one row of an image. The interpolation uses a Gaussian matrix with
α = 0.01 (green), 0.1 (blue), 0.20 (violet) and interpolates over 1000 output points.

The first case we consider is the single variable function, where the input consists
of the evenly spaced data points {x, f (x)}, and the stochastic interpolation algorithm is
implemented as in Algorithm 4. Then the number of operations required will depend on the
size n of the input and the size m of the output. Fig. 6.1 is an example of such an interpolation,
where n = 100 and m = 1000, giving us a ten-fold zoom. As we see from Lemma 6.2.1, this
will require O(mn+m logm) operations, but since logm < n, the complexity will effectively
be O(mn) as the work required is dominated by the initialization of Amn; we could thus
improve the algorithm in situations where we need to calculate similar problem sets by
precalculating and storing Amn, so that the majority of the work required lies in calculating
xk and multiplying Amnxk.

Lemma 6.2.1. Given input consisting of n evenly spaced data points {x, f (x)}, and a

desired output of m evenly spaced output points {x′, f ′(x′)} where x1 = x′1, xn = x′m, and

f (xi) = f ′(xi) for all input xi, Algorithm 4 requires O((mn)+m logm) operations.

Proof. We can assume that m > n. The scaling performed in lines 1 and 7 require 2n and 2m

operations respectively. Initializing Ann and X0 requires O(n2) operations, and initializing
Amn will require O(mn) operations.

Since both Ann and Amn are Toeplitz, and hence can be embedded in circulant matrices of

58

y(
t)

x(t)

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Figure 6.2: Interpolating the function f (t) = (x(t),y(t)) = (−1/2sin t −
2cos(2t/3),(−1/2cos t − 2cos(2t/3)), over the region t = [0,33/5π]. The data
points are marked in red; the points (0,2.5) and (−0.147,1.093) are used twice.

size (2n−1)×(2n−1) and (m+n−1)×(m+n−1) respectively and since m+n−1< 2m,
it is possible to perform matrix vector multiplications in O(n logn) and O(m logm) time so
that line 6 requires O(m logm) time. Since both the depth of the recursion, and the number
of iterations, is bounded and constant, line 3 requires O(n logn) operations by Lemma 5.2.4.

Hence, depending on whether n > logm, Algorithm 4 requires either O(mn) operations
if n > logm or O(m logm) operation if n < logm.

In general, stochastic interpolation can be performed with any centrally symmetric
probability density function, and we consider a second probability distribution function in
Sec. 6.4. We note that if the resulting matrices A and X0 are not Toeplitz but have some other
structured form, the algorithm will require O(mn+ f (m,n)) operations, where O(f (m,n))

is the number of operations required to perform matrix vector multiplications for that other
structured form. Thus, if the resulting matrix is centrosymmetric in general, f (m,n) = cmn,
and the overall number of operations required is O(mn).

59

6.3 Multi-variable Stochastic Interpolation

It is possible to perform stochastic interpolation over multiple dimensions. For example, a
function f (t) = (x(t),y(t)) can be interpolated by interpolating both x(t) and y(t) separately,
and in general f (t) = (y1(t),y2(t), . . . ,yp(t)) can be interpolated by interpolating each of the
p individual functions. As an example of a two-dimensional case, consider Fig. 6.2, where
the data consists of a set of points {(xi,yi)}, and we interpolate x(t) and y(t) separately to
form the final image. In this instance we have chosen to extend the domain past one full
rotation: using the domain [0,6π] would have resulted in an interpolation whose leftmost
point at (0,−2.5) would be a sharp point rather than a smoothed one.

Complexity for these multiple interpolations then becomes O(mn+ pm logm), since we
can amend Algorithm 4 to calculate a separate xk for each of the {yi}p

i=1; thus lines 3 and 6
will each be called p times. Since the matrices Ann, X0 and Amn only need to be calculated
once, the cost of initialization will not increase, but the cost of calculating each xk and each
f ′(x) will, resulting in a cost of O(mn+ p(n2 +m logm)). Again, if the matrices are not
Toeplitz, the cost will simplify to O(pmn). If p is small, calculating multiple interpolations
can best be done independently. However, if p > n, it is possible to rewrite Algorithm 4
to improve its efficiency by solving for the unit vectors first and then assembling the final
interpolations.

Algorithm 5 Calculating stochastic interpolation of multiple functions simultaneously.
Require: The vectors x and { fi}p

i=1 = { fi(x)}p
i=1 of size n

1: Scale x so that x1 = 0 and xn = 1, by shifting a and multiplying by factor b.
2: Initialize Ann and X0 using (2.3) and (4.22), where the yk are initialized using (4.32).
3: Initialize the n unit vectors e1,e2, . . . ,en.
4: for j = 1 to n do
5: xk, j = PSJM_wIEC(Ann,X0,e j,5,3)
6: end for
7: Initialize Amn using (4.21), where the yk are initialized using (4.32).
8: for i = 1 to p do
9: xi = ∑

n
j=1 fi(x j)xk, j

10: f ′i = Amnxi
11: end for
12: x′ = b/(n−1)+a for i = 1 . . .m
13: return {x′,{ f ′i }}

Lemma 6.3.1. Given input consisting of p sets of n evenly spaced data points {x, f (x)}p
i=1,

and a desired output of m evenly spaced output points {x′, f ′(x′)}p
i=1 where p > n, x1 = x′1,

60

xn = x′m, and f (xi) = f ′(xi) for all input xi, Algorithm 5 requires O(mn+ p(n2 +m logm))

operations.

Proof. As in the proof for Lemma 6.2.1, we assume that m > n. Again, the initialization of x

and the yk require O(n) operations, while the initialization of x′ will require O(m) operations.
Similarly, initializing the matrices Ann and X0 will require O(n2) operations, initializing Amn

requires O(mn) operations, and initializing the n unit vectors will require O(n2) operations.
Now consider line 5, which executes n times. Each iteration of the loop requires

O(n logn) operations by Lemma 5.2.4, and the entire loop requires O(n2 logn) operations.
Consider also the loop in lines 8 to 11; this loop will iterate p times, and on each iteration
will perform a sum over n vectors, requiring O(n2) operations and a matrix vector operation
requiring O(m logm) operations. Hence the loop will require O(p(n2+m logm)) operations.

Given that we only know that p > n and m > n, the total number of operations will be
dominated either by the initialization of Amn, and hence be O(mn), or by the calculation of
the xi and f ′i . Thus the total number of operations required is O(mn+ p(n2 +m logm)).

And as, after Lemma 6.2.1, we use a non-Toeplitz matrix for Ann, X0, and Amn, the
complexity simplifies to O(pmn), since the matrix vector multiplication will require O(mn)

operations, which is the bottleneck.

6.4 Using the Laplace Probability Distribution Function

The Gaussian probability distribution function is not the only centrally symmetric pdf we can
use; another easily implemented pdf is the Laplace pdf, which is also centrally symmetric
but, as we see in Fig. 6.3, much sharper. Loosely speaking, this is important because
stochastic interpolation includes around each point xi those neighbors whose pdf is greater
than machine zero for the pdf centred at xi. Thus the sharper the pdf, the fewer points are
considered, and the wider the pdf, the more neighbors we take into consideration at every
point. To use the Laplace probability distribution function we must modify the definition of
Ann from (4.21) so that

a jk = Ψ(yk+1,x j,α)−Ψ(yk,x j,α) (6.1)

where

Ψ(y,x,α) =

1
2

e(y−x)/α if y < x

1− 1
2

e(x−y)/α if y≥ x

which is the cumulative distribution function for the Laplace pdf. If α � 1, the resultant

61

y

x
-1 -0.5 0 0.5 1

Figure 6.3: The Gaussian and Laplacian probability functions, with αG = 0.01 (red), αG =
0.10 (green), αL = 0.01 (blue) and αL = 0.10 (violet).

matrix Ann will be diagonally dominant and row stochastic, and near-Toeplitz but not fully
Toeplitz. Unlike the Gaussian matrix, there is no easy resetting of the endpoints y0 and yn to
guarantee a Toeplitz matrix, so generally speaking using the Laplace matrix we will require
O(n2) operations for both matrix vector multiplications and as the cost of using PSJM, with
and without iterative correction. Since the Laplace probability distribution function is so
sharp, however, the fixed precision matrix will be diagonally dominant and will contain
only a limited number of sub- and super diagonals, depending on the value of αL. Thus,
the complexity of the matrix vector multiplication can be reduced to O(tn), where t is the
maximum number of non-zero values on a single row. Also, since the matrix is diagonally
dominant, we can use as initial guess X0 the scaling matrix whose diagonal is the reciprocal
of the diagonals of Ann, as in Theorem 4.2.1.

6.5 Blending Interpolations

It is possible to blend the Gaussian and Laplacian matrices, so that if AG is the Gaussian
matrix with α = αG, and AL the Laplacian matrix with α = αL, then AB = (gAG + lAl),
assuming that g+ l = 1. This blended interpolation allows for three different parameters
given the same set of data points which affect the interpolation: αg will affect the Gaussian
interpolation, αl the Laplacian interpolation, and g and 1−g will affect the weighting of

62

the two matrices. Therefore, for the same value of α , the Gaussian will include more
neighbors, weighted more heavily, than the Laplacian will consider, and the blending allows
us to emphasize closest neighbors when interpolating. We see the results of blending and
modifying the α values in Figures 6.4 through 6.9, which illustrate using a simple single
variable how the varying αG and αL affect the interpolation as both matrices are used equally.

First we consider the interpolation of the step function f (x) = bxc; in Fig. 6.4 we use a
50/50 blend of the Gaussian and Laplacian matrix, with equal values for α = 0.2. Similar
values of α reveal similar curves, although the Laplace curve is measurably flatter than the
Gaussian curve. Regardless of blending, however, the interpolating functions do not closely
follow the curve. Changing the Laplacian matrix so that αL = 0.01 results in Fig. 6.5 results
in an interpolation that looks like a step function, but is somewhat offset, since the steep
increases occur at the midpoint between data points. This latter deficit can be overcome by
using more datapoints, as in Fig. 6.6. Thus the Laplace matrix allows us to capture the steep
increases with fewer data points, whereas the Gaussian matrix results in a smooth curving
function.

In terms of the number of operations required though, whereas the Gaussian matrix is
Toeplitz and requires O(n logn) operations for each matrix vector multiplication, and the
Laplace matrix is sparse and requires only O(tn) operations where t is the maximum number
of non-zero values in a single row, the blended matrix is neither Toeplitz nor sparse, and
hence requires O(n2) operations.

Obviously, interpolating a step function can be done best using the Laplace probability
distribution function, but not every function is a step function. Next we consider the
interpolation of the Runge function, which is a very smoothly curved function. In Fig. 6.7
both the Gaussian and Laplacian curves suffer from a lack of data points; adding even
two more data points results in Fig. 6.8, which is a much better interpolation. We note
that any set of data points which does not include (0, f (0)) results in an interpolation that
does not reach the extremum at (0, f (0)) = (0,1), but it is here in Fig. 6.9 that we see that
the Gaussian matrix captures more of the extremum, illustrating that the Gaussian matrix
succeeds better at approximating extremum that are not included in the data set.

We conclude that the Laplacian and Gaussian matrix each have their use, but recognize
that both the step and the Runge function are carefully contrived test cases. The data in
Fig. 6.1 is a snapshot of one line of a grayscale image. where each data point represents
one pixel, and f (x) is the shading of that pixel, and the interpolation in that figure uses only
a Gaussian matrix. In Fig. 6.10 which uses the same source data, we can see the effect of
adding the Laplacian matrix and blending the two functions using exaggerated values for
the mollifiers to emphasize the effect, so that here we use αG = 0.50 and αL = 0.01. We

63

f(
x)

x

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 1 1.5 2 2.5 3 3.5

Gaussian

Laplace

Blended

Figure 6.4: Interpolation of f (x) = bxc based on a blended Gaussian/Laplacian, utilizing
50% of the Gaussian matrix and 50% of the Laplacian matrix with α = 0.2 for the Gaussian
matrix, and α = 0.2 for the Laplacian, and using 9 datapoints.

can see that the Laplacian matrix is helpful in flattening out the curves of the Gaussian in
the flat regions, and sharpening the points.

6.6 Interpolating Images

Having considered single and multiple variable functions, we now turn our attention to
images. A grayscale n×m pixel image is stored as an n×m array of integers, each holding
a value between 0 and 255, where 0 indicates black and 255 indicates white, and a colour
image stored in RGB consists of 3 different n×m arrays, each representing one of the colour
channels and containing values between 0 and 255. We can consider each row and column
of these matrices as a function, and interpolate between them to create enlarged images. For
instance, interpolating each row of the image would result in an image that was stretched
horizontally, as the number of horizontal points increased. Similarly, interpolating each
row would stretch the image vertically as the number of rows increased. Trying to stretch
both the rows and columns of the same image simultaneously would result in an image with
many pixels missing. As such, it is important to stretch in one direction first, and then use
this modified image as the source to stretch in the other direction, resulting ultimately in an
expanded image.

64

f(
x)

x

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 1 1.5 2 2.5 3 3.5

Gaussian

Laplace

Blended

Figure 6.5: Interpolation of f (x) = bxc based on a blended Gaussian/Laplacian, utilizing
50% of the Gaussian matrix and 50% of the Laplacian matrix with α = 0.2 for the Gaussian
matrix, and α = 0.01 for the Laplacian, and using 9 datapoints.

Consider the different ways in which we can modify this expansion. First, naturally, we
can vary the factor to which we expand the image, whether it be doubling in size, tripling
in size, or growing even larger. The advantage of using interpolation is that we can add
more than one interstitial pixel at a time. Secondly, we can vary the values of the mollifiers,
and the relative weights of the Gaussian and Laplacian matrices, depending on the source
picture. To create the expanded image, we use Algorithm 6, which is itself an extension
of Algorithm 5, and interpolates the image by first expanding each row, resulting in an
image with the same number of rows but many more columns, followed by expanding each
column. Thus an n×m image becomes an zn× zm image, where z is the expansion, or
zoom, factor. We also note that, given the structure of an RGB based colour image, we can
expand a colour image by expanding each of the three arrays representing the red, green, and
blue channels separately. We will see an example of colour expansion in Fig. 6.18. Hence,
expanding the colour image will require only three times as many operations as expanding
the grayscale image, and to analyse the complexity we need only consider the grayscale
image. In analysing the number of operations required for Algorithm 6, we will consider the
three parameters z, n and m, where z is the expansion factor, and n and m are the dimensions
of the original picture. We note, however, that z is usually a fairly small integer.

65

f(
x)

x

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 1 1.5 2 2.5 3 3.5

Gaussian

Laplace

Blended

Figure 6.6: Interpolation of f (x) = bxc based on a blended Gaussian/Laplacian, utilizing
50% of the Gaussian matrix and 50% of the Laplacian matrix with α = 0.2 for the Gaussian
matrix, and α = 0.01 for the Laplacian, and using 16 datapoints.

Lemma 6.6.1. Given an n×m grayscale image and an integer zoom factor z, Algorithm 6

will calculate the expanded zn× zm image using O(zm3 + znm2) operations.

Proof. We assume without loss of generality that n≤ m. We also assume that the various
matrices are not necessarily Toeplitz; if Apq and X0 are Toeplitz we can speed up the matrix
vector multiplications, but the loops requiring the matrix vector multiplications will still be
dominated by the vector addition, and adding together p vectors of length q will require
O(pq) operations. Also, initializing the various Apq and X0 will require O(pq) operations,
so that initializing the unit vectors and the matrices will require O(zm2) operations, since
the largest marix created will be Azm,m.

Let us first consider the number of operations required to expand the number of rows
from n to zn, which is completed in steps 3 through 13. Examining it closely, we observe
that this is an iteration of Algorithm 5 but that, since we are using a blended matrix which is
non-Toeplitz, the cost of each iteration of step 6 will be O(n2), resulting in a cost for that
loop of O(n3). The loop from step 9 to step 12 will iterate m times, and each iteration will
require the summation of n vectors of length n, and the multiplication of an zn×n matrix
and an n element vector. The former will require O(n2) operations, while the latter will
require O(zn2) operations, and thus the entire loop will require O(zn2m) operations, and at

66

f(
x)

x

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Gaussian

Laplace

Blended

Figure 6.7: Interpolation of the Runge function f (x) = 1/(1+25x2) based on a blended
Gaussian/Laplacian, utilizing 50% of the Gaussian matrix and 50% of the Laplacian matrix
with α = 0.2 for both matrices, using 7 data points.

step 13 the image will now be an zn×m pixel image.
It remains only to expand number of columns in turn, in steps 14 through 23. The cost of

each iteration of step 17 will be O(m2), resulting in a cost for that loop of O(m3). The loop
from step 20 to 23 will iterate zn times, and each iteration will require the summation of m

vectors of length m, and the multiplication of an zm×m matrix and an m element vector. The
former will require O(m2) operations and the latter will require O(zn(zm2)) = O(z2nm2).

We can conclude that the overall number of operations is bounded by O(zm3 + z2nm2);
if zn < m then this simplifies to O(zm3), and otherwise it simplifies to O(z2nm2).

To illustrate this algorithm we zoom in on a small 50× 50 pixel patch of Fig. 6.11,
and using a zoom factor of 4, which results in a 200× 200 pixel image. The results of
Algorithm 6 depend on the values used for the mollifiers αG and αL, and it is also possible
to modify the αG′ used for steps 11 and 22. Although the matrix in these steps is blended,
modifying the value of αL′ had no visible effect. Figures 6.13 through 6.16 show the effects
of modifying the various mollifiers; the blended weighting is exaggerated so that 99% of the
result is due to the relevant mollifier, and in each figure the original image is included. To
make the comparison easier, the original image is scaled so that each original pixel is now a
4×4 block. We can see from Fig. 6.13, where the value of αL is varied, that using a very

67

f(
x)

x

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Gaussian

Laplace

Blended

Figure 6.8: Interpolation of the Runge function f (x) = 1/(1+ 25x2) based on a blended
Gaussian/Laplacian, utilizing 50% of the Gaussian matrix and 50% of the Laplacian matrix
with α = 0.2 for both matrices, using 9 data points.

small αL = 0.05 results in a heavily pixelated image, but that for αL = 0.20 the edges are
reasonably distinct, an effect that would be enhanced if we utilized more of the Gaussian
matrix. Varying αG, as we do in Fig. 6.14, we see that using a very small αG values leads
to excessive blurriness, where edges are almost entirely lost. On the other hand, when
αG 6= αG′ , and especially when the difference is pronounced, the result is an interesting
moire effect. Fig. 6.15 shows the effect of modifying αG′; there is again a moire effect
when αG′ � αG, but when αG′ � αG, the result is a blurred, smoothed image. In contrast,
Fig. 6.16 illustrates the effect of using a far less reasonable value for αG, resulting in a
strong checker board effect.

6.6.1 Timing

The interpolations in this chapter were implemented in Matlab, using the code Appendix A.
Random square snapshots of the image in Fig. 6.11 were used for the timing tests, ranging
in size from 50×50 to 500×500 pixels, and expanding them with expansion factors of 2,
3, 4, and 8. At each size and expansion factor 10 random snapshots were used, and the time
recorded and averaged. The results, as we can see in Fig. 6.12, exceed our expectations,
as the best fit power regression f (x) = cnt results in values for t of 1.86 < t < 1.9 for each

68

f(
x)

x

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Gaussian

Laplace

Blended

Figure 6.9: Interpolation of the Runge function f (x) = 1/(1+ 25x2) based on a blended
Gaussian/Laplacian, utilizing 50% of the Gaussian matrix and 50% of the Laplacian matrix
with α = 0.2 for both matrices, using 12 data points.

f(
x)

x

-50

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

Figure 6.10: Interpolating a one-dimensional set of 100 data points {x, f f (x)} (red), which
consist of a snapshot of one row of an image. The interpolation uses a Gaussian matrix with
α = 0.50 (blue), a Laplacian matrix with α = 0.01, (green) and a blended Gaussian/Lapla-
cian matrix using 50% of each (violet), all interpolated over 1000 output points.

69

Algorithm 6 Expanding an image using blended stochastic interpolation.
Require: Image Ξ and integer zoom factor z
Require: The convolution and deconvolution factors αG, αL, and αG′ and the percentage

pG representing the degree to which the Gaussian matrix is used. (pL = 1− pG)
1: Let r,c be the dimensions of Ξ.
2: . Zoom the image Ξ in 2 steps: first increase the number of rows, and then the number

of columns
3: Initialize Ar,r and X0 using a blend of Gaussian and Laplacian matrices.
4: Initialize the r unit vectors e1,e2, . . . ,er.
5: for j = 1 to r do
6: xk, j = PSJM_wIEC(Ar,r,X0,e j,5,3)
7: end for
8: Initialize Azr,r using a blend of Gaussian and Laplacian matrices.
9: for i = 1 to c do

10: xi = ∑
r
j=1 Ξ(i, j)(x j)xk, j

11: Ξ′(:, i) = Azr,rxi
12: end for . Ξ′ now has zr rows, but still c columns.
13: Ξ = Ξ′

14: Initialize Ac,c and X0 using a blend of Gaussian and Laplacian matrices.
15: Initialize the r unit vectors e1,e2, . . . ,er.
16: for j = 1 to c do
17: xk, j = PSJM_wIEC(Ac,c,X0,e j,5,3)
18: end for
19: Initialize Azc,c using a blend of Gaussian and Laplacian matrices.
20: for i = 1 to zr do
21: xi = ∑

c
j=1 Ξ(i, j)(x j)xk, j

22: Ξ′(:, i) = Azc,cxi
23: end for . Ξ′ is now an zr× zc image.
24: return Zoomed Image Ξ′

of the four expansions. These results are explained by the fact that Matlab’s matrix vector
operations are heavily optimized, and takes advantage of multiple cpus, when available,
to parallelize the calculations. Since there are 8 cpus available, this provides a significant
speed improvement. The C code, in Chapter 5, is not parallelized to take advantage of
the multiple CPUs, and hence requires time more proportional as proxy to the number of
expected operations.

6.6.2 Zooming In On An Eye - Expanding a Colour Image

Lastly we consider an image which contains many edges and definitions, in the form of
a picture of an eye. The original image is 69× 100 pixels in size. We first converted
it to grayscale, using gimp, and expanded the image fourfold, yielding Fig. 6.17. The

70

Figure 6.11: Source image for the image interpolation; a grayscale image that is 1347×1422
pixels in size.

t

n
10-1

100

101

102

103

 100 200 300 400 500

Figure 6.12: Average time required to interpolate an n×n image, over 10 iterations per size,
of random snapshots from the image in Fig. 6.11. Images are expanded up to 2 (red), 3
(green), 4 (blue), or 8 (violet) times their original size.

scaled original image, for comparison, is drawn with each pixel expanded to a 4×4 block,
illustrating the source data. We can see that rounded edges, such as the border of the iris

71

a) Scaled Original Image b) αL = 0.05

c) αL = 0.20 d) αL = 0.40

Figure 6.13: Zooming in on a 50×50 region of Fig. 6.11 to create a 200×200 pixel image,
using blended interpolation utilizing 1% of the Gaussian and 99% of the Laplacian matrices.
The convolution factor αG = 0.20 and deconvolution factor αG′ = 0.20 are constant, but the
convolution factor αL varies.

and the edges of the eye lids, expand nicely. However, the sharp lines of the eyelashes and
eyebrow hair do not sharpen up as well; the source data is too pixelated. After expanding
the grayscale version, we expanded the original RGB colour image by expanding each of

72

a) Scaled Original Image b) αG = 0.05

c) αG = 0.20 d) αG = 0.50

Figure 6.14: Zooming in on a 50×50 region of Fig. 6.11 to create a 200×200 pixel image,
using blended interpolation utilizing 99% of the Gaussian and 1% of the Laplacian matrices.
The convolution factor αL = 0.10 and deconvolution factor αG′ = 0.20 are constant, but the
convolution factor αG varies.

the red, green, and blue image sub-arrays separately, as can be seen in Fig. 6.18. Again
rounded edges expand nicely, but there are the same issues with the hairs, although they are
easier to see because with colour the contrast between hair and skin is greater.

73

a) Scaled Original Image b) αG′ = 0.05

c) αG′ = 0.20 d) αG′ = 0.50

Figure 6.15: Zooming in on a 50×50 region of Fig. 6.11 to create a 200×200 pixel image,
using blended interpolation utilizing 99% of both Gaussian and 1% of the Laplacian matrices.
The convolution factors αG = 0.20 and αL = 0.10 are constant, but the deconvolution factor
αG′ varies.

6.6.3 Summary

PSJM is applied to the problem of stochastic interpolation, with emphasis on the interpo-
lation, or expansion, of images. Stochastic interpolation relies on the use of a probability

74

a) Scaled Original Image b) αG′ = 0.05

c) αG′ = 0.20 d) αG′ = 0.50

Figure 6.16: Zooming in on a 50×50 region of Fig. 6.11 to create a 200×200 pixel image,
using blended interpolation utilizing 99% of both Gaussian and 1% of the Laplacian matrices.
The convolution factors αG = 0.50 and αL = 0.10 are constant, but the deconvolution factor
αG′ varies.

distribution function (pdf) to weight the neighbors of each data point, centering the pdf
at that data point and weighting each neighbor with a probability based on their distance
from the data point. While SI is originally introduced using the Gaussian pdf, the use of

75

the Laplace pdf is also examined. Like the Gaussian pdf, the Laplace pdf is a centrally
symmetric pdf, but unlike the Gaussian, the Laplace pdf produces far sharper interpolants
so that in essence fewer neighbors are considered and weighted more heavily. Both pdfs
produce row stochastic matrices, but given the same mollifier value, the representation of
these will result in a far greater number of zeroes due to underflows to zero for the matrix
generated using the Laplace pdf than the one generated using the Gaussian pdf.

The advantage of using both pdfs in the same interpolation lies in the ability to blend
these matrices, and to modify the mollifier of each matrix separately, expanding the number
of possible adjustable parameters. However, the resulting blended matrix is no longer
Toeplitz, and so our solver PSJM will require O(n2) rather than O(n logn) operations. Since
the resulting matrix is, for good choices of α , a diagonally dominant matrix, we can take
advantage of Theorem 4.2.1 to generate a good initial guess X0.

76

Scaled Original Image

Interpolated Image

Figure 6.17: The original 69× 100 pixel image of an eye is interpolated, creating an
276× 400 pixel image. This interpolation uses 75% of the Gaussian matrix, 25% of the
Laplacian matrix, and factors αG = αG′ = 0.2 and αL = 0.10.

77

Scaled Original Image

Interpolated Image

Figure 6.18: The original 69× 100 pixel image of an eye is interpolated, creating an
276× 400 pixel image. This interpolation uses 75% of the Gaussian matrix, 25% of the
Laplacian matrix, and factors αG = αG′ = 0.2 and αL = 0.10, and interpolated each of the
three RGB channels separately.

78

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation we were motivated by the desire to interpolate large images to study the
problems of calculating A−1, given a structured, dense matrix A, and solving for x, given
Ax = b, using fixed precision arithmetic. Specifically, our goal was to produce a more
efficient solver for stochastic interpolation problems.

We studied the Shulz-Jones-Mayer (SJM) algorithm, which converges to A−1 given
a suitable initial guess X0, and developed suitable choices for X0 for a variety of classes.
We modified the algorithm and improved its efficiency to create the Polynomial Shulz-
Jones-Mayer (PSJM) algorithm, and applied iterative error correction to overcome the
errors induced by using fixed precision arithmetic. Lastly, we applied the algorithm in
implementing Stochastic Interpolation (SI), demonstrating the ability to interpolate single
variable and multivariable functions and further demonstrating that SI techniques can be
used to expand images in both gray-scale and RGB color.

7.1.1 The SJM algorithm

The first method, SJM, is very simple to state and converges quadratically, but is sadly
not terribly efficient because it is hampered by the need to repeatedly multiply matrices
which is generally an expensive operation, requiring O(n3) operations for an n×n matrix.
We study SJM in terms of the rate of convergence and the developing of a litmus test for
possible initial guesses. Moreover, we apply that litmus test to prove that our proposed
initial guesses for a variety of matrix classes will lead to convergence assuming perfect
precision. Specifically we study diagonally dominant matrices, including matrices with that
will be diagonally dominant if the columns or rows are permuted, tridiagonally dominant
matrices where the three main diagonals dominate the matrix, and the Gaussian matrices
used by stochastic interpolation.

7.1.2 The PSJM algorithm

Often solving Ax = b by first calculating A−1 and then calculating x = A−1b is inefficient
and prone to extra computational errors, requiring more work than actually necessary.

79

The improved method, PSJM, takes advantage of the iterative structure of SJM to create a
polynomial whose variable is (X0A). By careful ordering of the evaluation of the polynomial,
it is possible to avoid the matrix matrix multiplications that hamstring SJM and replace them
with matrix vector multiplications. The latter are much more efficient, requiring only O(n2)

operations in the general case, or O(n logn) or even O(n) in certain cases.
Since PSJM calculates using only the initial matrices A and X0 and the initial vector

b to calculate xk, where SJM calculates and then uses intermediate Xi, it is possible to
bound the error when using PSJM. Careful consideration shows that the error depends
on n, the size of the matrix, the norms of both A and X0, and the norm of b. Of these
parameters, the vector b is amenable to manipulation which allows iterative error correction
by successively applying PSJM to problems with shrinking b vectors and combining the
results. The iterative error correction is particularly useful; where SJM can continue iterating
using fixed point precision, PSJM is typically limited to a small number of iterations because
the coefficients of the polynomial outstrip the ability of the fixed precision arithmetic to
store the coefficients without rounding. Hence the iterative error correction allows us to
reset the iterations and continue converging, resulting in an algorithm that produces double
precision answers given double precision input. When considering the number of operations
O(f (n)) required by PSJM, with and without iterative error correction, f (n) is essentially
the cost of performing matrix vector multiplications, albeit with large constants. Thus this
technique shines for large problems and matrices for which fast matrix vector multiplication
methods are possible.

Other solvers for Toeplitz matrix problems require at least O(n log2 n) operations, when
the structure of the Toeplitz matrix is restricted, or O(n2) operations for the general case.
In the case of PSJM, we have shown that the method converges quadratically, and that,
for those sets of Toeplitz matrices where a good initial guess is known, only O(n logn)

operations are required. As such, PSJM is has a substantially lower operation count than
the known Toeplitz solvers and as such, has contributed significantly if incrementally to the
toolbox of solving Toeplitz matrix-based problems.

7.2 Future Work

One way to expand our solver PSJM is to expand the set of matrix classes for which valid
initial guesses are known. The results for the tridiagonally dominant matrices suggest that
we should consider other classes of matrices that can be decomposed so that A = B+C,
where B has a known inverse and

∥∥B−1C
∥∥< 1. In those cases, B−1 will be a valid initial

guess.

80

When performing stochastic interpolation on data sets where n is large, the resulting
Gaussian or Laplacian matrices become banded; only the main diagonal and a relatively
small number of sub- and super diagonals are non-zero when using fixed precision arithmetic,
due to the inability to represent numbers smaller than the fixed precision allows. In these
cases, the analysis and the code should be modified to take advantage of the fact that the
matrix vector multiplications require only O(tn) operations, where t is the maximum number
of non-zero values on any row. This coincidentally explains the results in Chapter 6 where
Matlab’s timing results imply faster computation than the analysis of the required number
of computations suggests, as Matlab optimizes these operations based on the structure and
values stored in matrices and vectors. One consideration for future work would be to bound
t in terms of the mollifier α and the spacing of the data points, since the size of t will vary
inversely with the maximum distance between data points.

81

Appendix A

Matlab Code

A.1 Initializing Matrices

This first collection of functions creates both the matrix Amn used for stochastic interpolation,
and the initial guess X0 used when calculating xk = Xkb. GaussMatrix produces the row-
stochastic centrosymmetric matrix Amn, based on (4.21). The value of ±∞ is approximated
as ±10120.
function [Amn , X0]= GaussMatrix(n,m,alpha)
% Creates an mxn matrix based on Gaussian interpolation
% as well as initial guess X0
% alpha is used as a mollifying agent
s1=0:1/m:1;
s2= -1/(2*n):1/n:(2*n+1)/(2*n);
s2 (1)= -10^120;
s2(n+2)=10^120;
Amn=zeros(m+1,n+1);
X0=zeros(m+1,n+1);
for i=1:m+1

for j=1:n+1
v1 = erf((s2(j+1)-s1(i))/(2* sqrt(alpha)/n));
v2 = erf((s2(j)-s1(i))/(2* sqrt(alpha)/n));
Amn(i,j) = (1/2)*(v1 -v2);
X0(i,j) = (1/2) * (1/v1 -1/v2);

end;
end;

The function GaussToepMatrix produces a Toeplitz matrix, created by setting
y0 =−1/2n and yn = (2n+1)/2n, rather than ±∞.
function [Amn , X0]= GaussToepMatrix(n,m,alpha)
% Creates an mxn matrix based on Gaussian interpolation
% as well as initial guess X0
% alpha is used as a mollifying agent
s1=0:1/m:1;
s2= -1/(2*n):1/n:(2*n+1)/(2*n);
Amn=zeros(m+1,n+1);
X0=zeros(m+1,n+1);
for i=1:m+1

for j=1:n+1
v1 = erf((s2(j+1)-s1(i))/(2* sqrt(alpha)/n));
v2 = erf((s2(j)-s1(i))/(2* sqrt(alpha)/n));
Amn(i,j) = (1/2)*(v1 -v2);
X0(i,j) = (1/2) * (1/v1 -1/v2);

end;
end;

82

The function laplace_cdf calculates the Laplace cumulative density function, and is used
by LaplaceMatrix in generating the Laplacian Amn, which is row stochastic and diagonally
dominant if α is sufficiently small. Hence the initial guess X0 is initialized so that all
off-diagonal entries are 0 and (X0)ii = 1/(Amn)ii.
function [cx] = laplace_cdf(x,y,b);
% x is the center of the distribution
% y is the value whose probability we ’ re calculating
% b is related to the variance (variance is 2 b ^2)
cx=0;
if (y < x)

cx = (1/2) * exp((y-x)/b);
else

cx= 1 - (1/2) * exp(-1*(y-x)/b);
end;

function [Amn , X0]= LaplaceMatrix(n,m,alpha)
% Creates an mxn matrix based on Laplace interpolation
% as well as initial guess X0
% alpha is used as a mollifying agent
s1=0:1/m:1; % Evenly spaced data points
s2= -1/(2*n):1/n:(2*n+1)/(2*n); % midpoints between data points

s2 (1)= -10^120;
s2(n+2)=10^120;

% s2 =-1/ n :1/(n):1;
Amn=zeros(m+1,n+1);
X0=eye(m+1,n+1);

for i=1:m+1
for j=1:n+1

v1 =2* laplace_cdf(s1(i),s2(j+1) ,2*(alpha/n));
v2 =2* laplace_cdf(s1(i),s2(j),2*(alpha/n));

Amn(i,j) = 1/2*(v1 -v2);
% X0 (i , j) = 1/ Amn (i , j);

end;
end;
X0=(1/(Amn (1 ,1)))*X0;
% if (n == m) X0 = inv (Amn); end ;

83

The blended matrix is created by creating a Gaussian matrix Ag and Laplacian matrix
AL, each with their respective initial guesses XG and XL. Then the blended matrix and initial
guess are a weighted sum of the matrices and initial guesses, respectively.
function [A,X] = BlendedMatrix(n,m,...

alphag , alphal , ...
fracg , fracl);

% Creates the row stochastic matrix A and initial guess X
% A is mxn matrix , calculated as
% A = (fracg * Ag + fracl * Al)/(fracg + fracl)

[Ag ,Xg]= GaussMatrix(n,m,alphag);
[Al ,Xl]= Laplace(n,m,alphal);
A=(fracg*Ag+fracl*Al)/(fracg+fracl);
X=(fracg*Xg+fracl*Xl)/(fracg+fracl);

A.2 Calculating PSJM

These three functions do the actual work of implementing the PSJM algorithm. The first
calculates the coefficients required for a recursion at depth k, returning the coefficients as a
vector coe f f , where coe f fi = αk,i−1.

function [coeff] = calc_PSJM_coeff(depth)
% Calculates the coefficients needed by PSJM for k recursions
depth=depth +1; % fx for zero vs 1 indexing
co=zeros (2^(depth),depth);
co(1 ,1)=1;
for j=2: depth

for i=1:(2^(j))
co(i,j)=2*co(i,j-1);

end;
for i=1:(2^(j))

for k=1:2^(j)
cc=co(i,j-1)*co(k,j-1);
p=k+i;
if cc~=0

co(p,j)=co(p,j)-cc;
end;

end;
end;

end;
coeff=co (1:2^(depth -1),depth);

This next function uses the initial matrix Ann, initial guess X0, and the vector b to calculate
xk = Xkb =≈ A−1b. It calls the function calc_PSJM_coeff to calculate the coefficients;
this is one place where the code can eventually be sped up by storing those coefficients
explicitly rather than recalculating.
function [xk] = calc_PSJM(A,X,b,k)
% Calculates PSJM with matrix A , vector b ,
% initial guess X , and k recursive steps .
coeff=calc_PSJM_coeff(k);
x2=X*b;

84

xk=coeff (1)*x2;
for i=2:2^k

x1=A*x2;
x2=X*x1;
xk=xk+coeff(i)*x2;

end;

This last function performs the iterative error correction described in Algorithm 2, by
repeatedly calling calc_PSJM r times.
function [xk]= calc_PSJM_wIEC(A,X,b,k,r)
% Performs PSJM with iterative error correction
b1=b;
xk=calc_PSJM(A,X,b,k);
for i=1:r

b1=b-A*xk;
xkk=calc_PSJM(A,X,b1 ,k);
xk=xk+xkk;

end;

A.3 Interpolating an Image

The function BlendInterpol interpolates the image OrigIm, expanding it using a blended
Gaussian and Laplacian stochastic interpolation. Note that the image is assumed to be a
single two-dimensional array; if the image is in color – and stored as a three dimensional
array or as three two-dimensional arrays – this function will be called three times, once for
each color.
function [FinalIm] = BlendInterpol(OrigIm , grow ,...

alphag , alphal ,...
fracg , fracl ,...
alphagout);

% OrigIm stores the original image
% grow stores factor by which we are increasing
% resolution . Is assumed to be a positive integer .

OrigIm=double(OrigIm);
[rows , cols]=size(OrigIm);

% Expand image by increasing rows by a factor of grow .
[Ann ,X]= BlendedMatrix(rows -1,rows -1 ,...

alphag , alphal , fracg , fracl);
Emat=eye(rows ,rows);
Xmat=zeros(rows ,rows);
for i=1: rows

Xmat(:,i)= calc_PSJM_wIEC(Ann ,X,Emat(:,i),5,5);
end;
Amn=BlendedMatrix(rows -1,grow*rows -1,...

alphagout , alphal , fracg , fracl);
RowIm=zeros(grow*rows ,cols);
for i=1: cols

b=zeros(rows ,1);
for j=1: rows

85

b=b+OrigIm(j,i)*Xmat(:,j);
end;
RowIm(:,i)=Amn*b;

end;

% Expand image again , this time columnwise
[Ann ,X]= BlendedMatrix(cols -1,cols -1 ,...

alphag , alphal , fracg , fracl);
Emat=eye(cols ,cols);
Xmat=zeros(cols ,cols);
for i=1: cols

Xmat(:,i)= calc_PSJM_wIEC(Ann ,X,Emat(:,i),5,5);
end;

Amn=BlendedMatrix(cols -1,grow*cols -1,...
alphagout , alphal , fracg , fracl);

FinalIm=zeros(grow*rows ,grow*cols);
for i=1:(grow*rows)

b=zeros(cols ,1);
for j=1: cols

b=b+RowIm(i,j)*Xmat(:,j);
end;
FinalIm(i,:)= transpose(Amn*b);

end;

FinalIm=uint8(FinalIm);
OrigIm=uint8(OrigIm);

86

BIBLIOGRAPHY

[1] A. L. Andrew. Solution of equations involving centrosymmetric matrices. Technometrics,
15(2):pp. 405–407, 1973.

[2] Jacob Benesty, M. Mohan Sondhi, and Yiteng (Arden) Huang. Springer Handbook of Speech
Processing. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[3] Albrecht Böttcher and Seigei M. Grudsky. Spectral Properties of Banded Toeplitz Matrices.
SIAM, 2005.

[4] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Thomson; Brooks/Cole, 8th
edition, 2005.

[5] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu. A superfast algorithm for Toeplitz
systems of linear equations. SIAM J. Matrix Anal. Appl., 29(4):1247–1266, 2007.

[6] G. Codevico, G. Heinig, and M. Van Barel. A superfast solver for real symmetric Toeplitz
systems using real trigonometric transformations. Numerical Linear Algebra with Applications,
12(8):699–713, 2005.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[8] R. Crandall and J. Klivinton. Fast matrix algebra on apple g4. Technical report, Apple Computer
inc., 2004. http://images.apple.com/acg/pdf/g4_matrix072804.pdf.

[9] Richard E. Crandall. Topics in advanced scientific computation. Springer, 1996.

[10] F. Dietrich. Robust Signal Processing for Wireless Communications. Foundations in Signal
Processing, Communications and Networking. Springer, 2010.

[11] Heike Fassbender and Khakim D. Ikramov. Computing matrix-vector products with centrosym-
metric and centrohermitian matrices. Linear Algebra and its Applications, 364(0):235 – 241,
2003.

[12] Matteo Frigo and Steven G. Johnson. Fftw. http://www.fftw.org/. A C subroutine library
for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary
input size, and of both real and complex data.

[13] Gene H. Golub and Charles F. van Van Loan. Matrix computations. In Johns Hopkins Studies
in Mathematical Sciences. The Johns Hopkins University Press, 3rd edition, October 1996.

[14] Robert Gray. Toeplitz and Circulant Matrices; A Review, volume 2 of Foundations and Trends
in Communications and Information Theory. Now Publishers Inc, 2005.

[15] Gnu scientific library. http://www.gnu.org/software/gsl/. A numerical library for C
and C++ programmers, released under the GNU General Public License.

87

[16] Georg Heinig and Karla Rost. Fast algorithms for Toeplitz and Hankel matrices. Linear Algebra
and its Applications, February 2011.

[17] Joseph Kolibal and Daniel Howard. The Novel Stochastic Bernstein Method of Functional
Approximation. In Adaptive Hardware and Systems, pages 97–100, 2006.

[18] Joseph Kolibal and Daniel Howard. Stochastic Interpolation: A Probabilistic View. In Bio-
inspired, Learning, and Intelligent Systems for Security, pages 129–135, 2008.

[19] LAPACK - Linear Algebra PACKage. http://www.netlib.org/lapack/. A numerical
library written in Fortran 77, designed to solve common linear algebra problems on higher-
performance machines.

[20] G. G. Lorentz. Bernstein polynomials. Chelsea Publishing Co., New York, 2nd edition, 1986.

[21] Andrew Melman. Symmetric centrosymmetric matrix-vector multiplication. Linear Algebra
and its Applications, 320(1-3):193 – 198, 2000.

[22] S. G. Mikhlin. Error Analysis in Numerical Processes. John Wiley & Sons, 1991. translation
of: Fehler in numerischen Prozessen.

[23] Michael K. Ng and Jianyu Pan. Approximate inverse circulant-plus-diagonal preconditioners
for Toeplitz-plus-Diagonal matrices. SIAM J. Sci. Comput., 32(3):1442–1464, May 2010.

[24] Michael K. Ng, Hai-Wei Sun, and Xiao-Qing Jin. Recursive-based PCG methods for Toeplitz
systems with nonnegative generating functions. SIAM J. Sci. Comput., 24(5):1507–1529, May
2002.

[25] Victor Pan. Fast and efficient parallel inversion of Toeplitz and block Toeplitz matrices. In
H. Dym, S. Goldberg, M.A. Kaashoek, and P. Lancaster, editors, The Gohberg Anniversary
Collection, volume 40/41 of Operator Theory: Advances and Applications, pages 359–389.
Birkhäuser Basel, 1989.

[26] J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, and C. Witzgall. Introduction to Numerical
Analysis. Texts in Applied Mathematics. Springer, 2002.

[27] William F. Trench. An algorithm for the inversion of finite Toeplitz matrices. J. Soc. Indust.
Appl. Math., 12:515–522, 1964.

[28] R. A. Usmani. Inversion of Jacobi’s tridiagonal matrix. Comput. Math. Appl., 27(8):59–66,
1994.

[29] C. von Runge. Über empirische funktionene und die interpolation zwischen äquidistanten
ordinaten. Zeitschrift für Mathematik und Physik, 46:224–243, 1901.

[30] You-Wei Wen, Wai-Ki Ching, and Michael Ng. Approximate inverse-free preconditioners for
Toeplitz matrices. Applied Mathematics and Computation, 217(16):6856 – 6867, 2011.

[31] Shalhav Zohar. Toeplitz matrix inversion: The algoritm of W. F. Trench. J. Assoc. Comput.
Mach., 16:592–601, 1969.

[32] Shalhav Zohar. The solution of a Toeplitz set of linear equations. J. Assoc. Comput. Mach.,
21:272–276, 1974.

	Iterative Solvers for Large, Dense Matrices
	Recommended Citation

	tmp.1443189789.pdf.SckXB

