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ABSTRACT 

A COMPREHENSIVE UNCERTAINTY ANALYSIS AND METHOD OF 

GEOMETRIC CALIBRATION FOR A CIRCULAR SCANNING AIRBORNE LIDAR 

by Michael Oliver Gonsalves 

December 2010 

This dissertation describes an automated technique for ascertaining the values of 

the geometric calibration parameters of an airborne lidar.  A least squares approach is 

employed that adjusts the point cloud to a single planar surface which could be either a 

narrow airport runway or a dynamic sea surface.  Going beyond the customary three 

boresight angles, the proposed adjustment can determine up to eleven calibration 

parameters to a precision that renders a negligible contribution to the point cloud’s 

positional uncertainty.   

Presently under development is the Coastal Zone Mapping and Imaging Lidar 

(CZMIL), which, unlike most contemporary systems that use oscillating mirrors to reflect 

the beam, will use a circular spinning prism to refract the laser in the desired direction. 

This departure from the traditional scanner presents the potential for internal geometric 

misalignments not previously experienced.  Rather than relying on past calibration 

practices (like requiring data be acquired over a pitched-roof), a more robust method of 

calibration is established which does not depend on the presence of any cultural features. 

To develop this new method of calibration, the laser point positioning equation 

for this lidar was developed first. The system was then simulated in the MATLAB 

environment.  Using these artificial datasets, the behavior of each geometric parameter 



 

 

iii  

was systematically manipulated, understood and calibrated, while an optimal flight 

strategy for the calibration acquisition was simultaneously developed.  Finally, the total 

propagated uncertainty (TPU) of the point cloud was determined using a propagation of 

variances.  Using this TPU module, the strength of the calibration solution was assessed.  

For example, four flight lines each of 20 seconds in duration contained sufficient 

information to determine the calibration parameters to such a degree of confidence that 

their contribution to the final point cloud uncertainty was only 0.012m in the horizontal 

and 0.002m in the vertical (1σ). 
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CHAPTER I 

INTRODUCTION 

 
Figure 1. Chapter I outline.  
 

1.1 – Problem Statement 

1.1.1 – Overview and Motivation 

This dissertation seeks to develop the acquisition procedures and data processing 

algorithms which are necessary for the determination of the angular misalignments and 

other geometric parameters associated with a bathymetric lidar; specifically, for the 

Coastal Zone Mapping and Imaging Lidar (CZMIL) system presently under development 

by Optech International, in collaboration with The University of Southern Mississippi, 

for the U.S. Army Corps of Engineers (USACE) in Kiln, MS (Tuell, Barbor & 

Wozencraft, 2010).  More concisely, this dissertation will present a geometric calibrator 

for the CZMIL system.  With a well-defined geometric calibration routine internal 

inconsistencies of the solutions to the laser location equation can be minimized, 

horizontal and vertical uncertainties of the laser footprints can be quantified and 

propagated into derived products, and a sensitivity analysis can be performed to 

understand what factors are the largest contributors to error in the sensor.  Future work 
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could include incorporating results of the sensitivity analysis into a refined design of the 

CZMIL scanner. 

This dissertation, to paraphrase Schenk (2001), proposes to close the gap between 

the accuracy potential and the actual accuracy achieved by today’s airborne lidar systems.  

This can only be achieved through the development of a rigorous error model and a 

rigorous calibration procedure.  A poor error model that does not sufficiently explain the 

measured discrepancies can lead to a lack of confidence in the system, which can be as 

damaging to the perceived value of a lidar than the magnitude of any actual errors. 

In general terms, a bathymetric lidar (sometimes written “LiDAR” for Light 

Detection and Ranging) fires a laser pulse from an airborne platform, while a detector 

then measures the diffusely reflected energy from both the sea surface and the sea floor.  

Based upon the known speed of light in air and water and a finely measured two-way 

travel time of the laser pulse, the distances among the aircraft, the water’s surface and the 

seafloor can be determined.  Differencing the surface and bottom then yield a depth for a 

given location (Figure 2). 

  
Figure 2. The path of a laser as it travels between the vehicle and the ground.  Every ray 
shown in blue is traversed in both directions.  Should the laser encounter the water, it is 
refracted and follows a new path.  
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One of the principle challenges of a bathymetric lidar (or, for that matter, a 

topographic lidar which measures elevations rather than depths) is accurately determining 

the three-dimensional position of this laser spot on the surface of the earth.  To collect a 

swath of data coverage, the laser pulse itself must be constantly redirected across the 

ground in the form of some scan pattern (rectilinear, circular arc) through the use of a 

scanning device (e.g. precisely-synchronized mirrors or a rotating prism) (Figure 3). 

 

 
Figure 3. A lidar system with some of its many components, each with its own reference 
frame and displacement vector. 

 

The aircraft from which the lidar is deployed is a dynamic environment that is 

subject to pitch, roll and yaw.  Additional sensors, such as an Inertial Measurement Unit 

(IMU) and Global Positioning System (GPS) antenna are needed to determine the 

position and orientation of the aircraft.  In a perfectly aligned system, one in which the 

reference frame of the laser is coincident with the reference frames of the scanner, IMU 

and aircraft, changes in orientation of the aircraft (and sensors) will be precisely 
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determined by the IMU and directly converted to changes in the laser’s orientation.  Thus 

these orientation parameters must be measured and accounted for in the geometric 

problem of tracing the laser pulse to the ground.  More likely, the various reference 

frames will be slightly out of alignment.  In an exaggerated case, if a laser system were to 

be incorrectly mounted with a 90o rotation, then any aircraft pitch measured by the IMU 

would actually be interpreted as a systematic roll bias in the laser, and vice versa.  The 

misalignments between laser and IMU (the boresight angles) must be determined so the 

proper orientation parameters measured in the IMU’s reference frame can be propagated 

to the laser.   

Lastly, the precise position of these aircraft-fixed reference frames must be known 

with respect to the eventual charting reference frame.  It does no good to know the depth 

directly below the aircraft if, in turn, one does not know where the aircraft is.  Further, 

because the laser and the GPS antenna will be at different physical locations on the 

aircraft, offsets between the two instruments must be measured (likely in the IMU’s 

reference frame).  In this way, the position of the antenna can then be translated to the 

laser. 

 It is only through an exact determination of the scanning device’s pointing 

vector; the alignment of the laser with respect to the IMU; the offsets among the laser, 

scanner, GPS antenna, and IMU; and the orientation/position of the IMU with respect to a 

reference datum that one can compute a precise location of the laser footprint.  The 

greater the uncertainty in any of the preceding input parameters, the greater the 

uncertainty (and induced error) in the location of the ultimate laser footprint.  The 
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preceding parameters can only be estimated through a rigorous geometric calibration 

routine, which is the goal of this study.   

1.1.2 – Constraints and Challenges 

The development of a geometric calibrator must take the following constraints 

and challenges into consideration: 

1. The scanner design:  The proposed CZMIL scanner, a fixed-elevation, circular-

spinning scanner is a departure from designs employed in previous systems developed by 

Optech (SHOALS and CHARTS with their forward-looking fixed-arc scanners).  While 

earlier generation commercial bathymetric lidars have employed servo-based scanners to 

direct the beam, CZMIL employs a constantly rotating Fresnel prism that will refract the 

laser pulses to a constant off-nadir angle (Figure 4) (Fuchs & Mathur, 2010; Fuchs & 

Tuell, 2010).  The continuous uni-directional movement has an advantage over other 

scanner designs because it is thought to be a more mechanically stable system and 

permits a faster scanning rate.  While used in the military for the detection of power lines, 

they are not routinely used in airborne surveying (Wehr, 2009).  Due to this dearth of 

operational deployment, one of the largest potential contributions of this research is a full 

parameterization of the movement of such a scanner.  This could include such attributes 

as the angles of refraction, potential misalignment between the prism and the scanner’s 

axis of rotation, and identifying time latencies with regard to the prism’s radial 

orientation. 

2. Optical path alignment: The orientation of the laser/scanner assembly with 

respect to the IMU, and any biases/misalignments must be established.  Further, there 

may be misalignments between the laser and scanner (i.e., the laser is not fired 
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orthogonal to the prism or the laser is not centered on the prism) (Figure 3).  It is 

conceivable these internal misalignments between laser and scanner may have to be 

determined during a factory calibration (where the proposed geometric calibrator can 

estimate the uncertainties of these parameters).  Some may have concerns about the 

alignment of the optical receptors as well, but this dissertation is geared only towards 

aligning the outgoing signal.  As will be discussed, the top of the prism is considered the 

origin of this particular lidar, and in that respect, the optical paths of both the transmitted 

and received pulses are equivalent.  Any further misalignments of the receiving optics 

will result in no waveforms being detected (a situation that will hopefully be quickly 

recognized while still in the hands of Optech). 

 
Figure 4. Rather than relying on reflective surfaces, the CZMIL system will use a Fresnel 
prism to steer the laser beam via refraction.  

 

3. Discrete sampling pattern:  Lidar yields a discrete sample of postings from a 

continuous world.  Even were the same area to be flown several times, it is unlikely a 

laser spot will strike the exact same footprint a second time.  This irregular spatial 

distribution must be overcome if one hopes to compare one dataset to another in an 
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attempt to extract calibration parameters.  Herein, we adopt an approach to this 

correspondence problem based on the fitting of the lidar point cloud to planar surfaces. 

4. Non-uniform scanning pattern:  The circular scanner employed on the CZMIL 

system will result in a helical scan pattern on the ground (Figure 5).  This non-uniform 

data will result in a relative abundance of laser strikes to either side of the aircraft as 

opposed to directly ahead or behind.  Further, unique to a circular scanner is that it is a 

multi-look system; that is, some areas will be illuminated more than once on a single 

pass.  This non-uniform scanning pattern will present both challenges and opportunities 

with respect to a geometric calibrator. 

 
Figure 5.  Basic scan pattern of present generation lidar system (SHOALS) and proposed 
CZMIL scanner (direction of flight is from bottom to top). 
 

5. Working in a simulated environment:  The first flights of the CZMIL system 

are scheduled for the spring of 2011.  Therefore, the calibrator developed in this work has 

been based on data generated with a geometric simulator of the CZMIL scan pattern.  

Through dialog with the engineers building the system, every effort has been made to 
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assure the accuracy and validity of the point cloud simulator.  It is based on these 

simulated datasets that the calibration routines and algorithms have been developed.  It 

must be examined to what extent the artificial errors introduced in such a controlled 

environment will accurately reflect the uncertainties that will be experienced in the field.  

On the other hand, there are advantages to working with a digital model.  In theory, a 

complete calibration flight-plan can be designed, acquired and processed without an 

actual aircraft ever leaving the ground.  Analyzing this virtual data set will provide an 

estimate on the confidence in the extracted parameters.  Additionally, any fault (from a 

geometric standpoint) can be simulated to establish the impacts on the point cloud (with 

the intent of constructing a catalog for real-world failures).  “Point cloud” being a generic 

term to describe the collection of (x,y,z) laser spots located in space. 

Finally, a complete production model of the CZMIL system is not necessary to 

examine the behavior of the individual components.  As modules of the CZMIL system 

are constructed (particularly the scanner), the simulated errors can be tested and refined 

against the actual components. 

1.2 – Proposed Approach 

 This research is divided into three principal components:  a simulation of the 

point cloud, the development of a calibration algorithm, and an assessment of the 

uncertainty in both the calibrated parameters and the resulting point cloud.  Through the 

development of the equation, a sensitivity analysis is then performed on each parameter 

to assess how small changes in a given parameter manifest themselves as changes to the 

point cloud.  In the execution of the calibration algorithm, various flight characteristics 
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are then examined to assess how unidentified system misalignments manifest themselves 

in the biased point cloud via signature analysis plots. 

1.2.1 – The Calibration Routine 

 The adjustment is based upon a least-squares model similar to one employed by 

Freiss (2006), with an observation equation given as: 

 ( , ) ( )OBS Pf x n x x  
      (1.1) 

the observations (laser range, scanner azimuth, etc.)

adjusting parameters of planar surface and laser
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coordinates of laser point

coordinates of refe
OBS

P

x

n

x

x















rence point on planar surface

 

In words, the model performs an adjustment that minimizes the perpendicular distance 

between a collective set of data points and the planar surface which they describe.  The 

advantage is this model allows for a simultaneous adjustment in determining the 

parameters of the planar surface as well as the calibration values of the lidar system. 

 Through linearization, the observation equation takes the form: 

 0w A B r      (1.2) 

the misclosure of 

the first-order design matrix for , the parameters

vector of correctors (adjustments) to 
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w f
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


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
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


iduals) to 



 

 

A modification to the traditional least-squares will be employed using the 

weighted constraint normal equations (Wells, 1999): 
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the a priori covariance matrix of the observations, 

the a priori covariance matrix of the parameters, x

C

C x








  

 

The difference between this model and the one employed by Freiss (2006) is the 

Bayesian inference applied through the weighting of the initial estimates of the 

parameters, the .  Using Bayesian decision theory, by making some a priori 

assumptions about the uncertainties of the estimated parameters, the model can be 

“steered” to an appropriate solution (Martin, 1967).  Through judicious monitoring of the 

weights on the parameters to be estimated, singularities that could arise in solving for 

xC

 can be averted.  In this way, the Hough Transform used by some authors (Freiss 2006; 

Lee & Schenk, 2001; Vosselman & Dijkman, 2001) can be circumvented.  The 

disadvantage of the traditional implementation of the Hough transform is that the 

performance deteriorates as the planar surfaces approach vertical; with weighted 

constraints, it is believed both horizontal and vertical planes can be captured.  This would 

imply that the sides of buildings can be captured in addition to just the roofs, relaxing the 

requirements that are placed on field units with regard to the type of cultural features 

required to be in a survey area to perform a successful calibration.  Further, linear feature 

extraction could be achieved through the intersection of a building’s wall and roof 

(alleviating the necessity of gabled roofs). 

A future planned modification to the least-squares model is to pursue a sequential 

strategy.  Data points will be processed in clusters, in which the estimated parameters 
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from the first cluster will be used as the initial estimate for the second cluster, and so on 

until the entire data set is processed.  Such an approach will reduce the computational 

load at any given step, particularly with regard to the necessary matrix inversions, and 

facilitate the processing of extremely dense datasets. 

1.2.2 – Uncertainty and Analysis 

 The uncertainty analysis begins with the results of the calibration routine.  The 

uncertainty analysis of this project will begin with the statistical confidence that can be 

placed in the values of the calibrated parameters.  An advantage to using a least-squares 

approach for the calibration is that the output yields both calibration values and a 

variance-covariance matrix of the same parameters.  Examination of the covariance 

matrix will yield both the estimated uncertainties of the parameters, and an indication of 

any cross-correlations (which will aid in identifying whether the calibration routine is 

properly isolating all the parameters of interest).  After repeated executions of the 

calibration routine on a variety of datasets, the estimated calibration parameters and their 

associated estimated uncertainties can be examined to determine whether they are 

statistically compatible with the “known” calibration values. 

 From there, the reported uncertainties of the calibration parameters can be 

coupled with the uncertainties of the observed parameters to determine the net 

uncertainty in the point cloud positions.  This will be performed via the general law of the 

propagation of variances.  

1.3 – Dissertation Contributions 

  The ultimate goal of this dissertation is to deliver the framework of a geometric 

calibrator for the CZMIL system.  This framework includes guidelines on an optimized 
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flight plan to be used during acquisition to collect the needed calibration data and a set of 

software tools that can be used to extract the calibration parameters (boresight 

misalignments, laser/navigation timing, a parameterization of the prism and its axis of 

rotation, lever arm offsets, and inconsistencies in the IMU and GPS).  An ancillary 

product of the calibration routine are the uncertainty estimates in each of these geometric 

parameters.  These uncertainties can be used to feed an uncertainty analysis model 

derived from a propagation of variances, yielding both a horizontal and vertical 

uncertainty of each laser footprint.  Finally, a sensitivity analysis for the CZMIL system 

is presented.  With this information, the coupling of the uncertainties are better 

understood and more informed decisions can be made with regard to any future system 

refinements with the aim of minimizing the uncertainties of the laser footprint locations, 

and improving the efficiencies of the calibration process as a whole. 

 1.3.1 – Further Deliverables 

In addition to addressing the preceding considerations, the following items are 

natural requirements and products of a geometric calibrator:  

1. Efficient field calibration:  This calibration routine should be designed in such a 

way that it can easily be performed by a technician in the field with minimal acquisition 

time invested. 

2. Patch test analog:  In the world of acoustic sonar, the determination of offset 

and orientation parameters is done through a calibration routine called a ‘patch test’.  In a 

patch test, a series of data strips (oriented in a predetermined way, sometimes involving 

the use of special geometric targets) are collected and then compared to one another to 

assess the magnitude of the internal biases.  This dissertation seeks to find a calibration 
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line plan for the CZMIL system that can (ideally) be performed in as generic a landscape 

as possible (i.e. requiring gabled roofs = bad; flat runways = better).   

3. Sensitivity analysis:  With a fully-developed set of uncertainty propagation 

equations, a sensitivity analysis can then be performed to establish which input 

parameters have the greatest effect on the final horizontal and vertical uncertainties of the 

laser footprints.  In an ideal world, this analysis would be performed early enough in the 

CZMIL development cycle that resources could be appropriately invested to address the 

more egregious parameters.  For example, should more effort be expended making sure 

the prism spins at a uniform rate, or that the prism is well-aligned with the scanner? 

1.4 – Outline of Dissertation 

The overall structure of this dissertation is as follows:   

 Chapter II is a literature review that seeks to summarize the key work others have 

done as related to this dissertation.  This literature review not only touches on how these 

previous works are important to this current research, but establish how this particular 

dissertation is unique to the scholarly works that have preceded it.   

 Chapter III presents the laser location equation.  It spells out in full detail how to 

take all of the lidar’s input parameters and create a geometrically correct point cloud.   

 With the laser equation developed, Chapter IV encodes the equation within 

MATLAB to permit the simulation of a point cloud.  A simulation is the only means of 

generating datasets for use in testing the calibrator given the lidar itself has not yet been 

constructed.  Other advantages to having a point cloud simulator are discussed in Chapter 

IV.   
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 Chapter V presents the theoretical framework for the development of a least 

squares adjustment.  The method of least squares is derived from first principles and then 

applied to an observation equation that will result in fitting the lidar point cloud to a 

single planar surface.   

 Where Chapter V is theoretical, Chapter VI is practical.  Chapter VI examines all 

of the input parameters of the laser equation developed in Chapter III and examines how 

they impact the point cloud.  Particular attention is given to what flight characteristics are 

necessary to calibrate any given parameter.  Then the least squares algorithms developed 

in Chapter V are applied to the system calibration under a variety of calibration 

conditions (including over narrow runways and a dynamic sea surface).  The confidence 

of the solution of the calibration algorithm will also be discussed.  Chapter VI will 

describe the precise recommendations for conducting an in-field calibration exercise. 

 Chapter VII then takes the uncertainties of the calibration parameters and parlays 

them into a full total propagated uncertainty model for the point cloud.  Using a general 

law for the propagation of variances, the predicted confidence in the positioning of the 

laser points can be assessed.  The relative contributions of uncertainty by the 

manufactured components and the calibration module; the effects of ground control; and 

the effects of flight characteristics will all be considered.  

 Finally, Chapter VIII contains a summary of all key findings from previous 

chapters.  Additionally, Chapter IX presents recommendations for future work, which 

would include both refinements of the present techniques and an expansion towards other 

bathymetric systems.   
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Each chapter begins with a short summary outlining the material that follows, and 

each chapter will end with a summary statement that encapsulates the most important 

take-home messages from the preceding material. 
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CHAPTER II 

REVIEW OF PREVIOUS WORK 

 
Figure 6. Chapter II outline.  
 

2.1 – Introduction 

Before rushing headlong into the development of a geometric calibration tool, a 

brief summary of some of the related literature on airborne calibration is presented.  The 

methods include manually adjusting adjacent strips of data until the two datasets appear 

internally consistent (Section 2.2); extracting linear or planar features from the point 

clouds, which are then adjusted to one another (Section 2.3) – this adjustment may be 

performed through a least squares algorithm (Section 2.4.1); fitting the points of each 

swath to each other via an iterated closest point algorithm (Section 2.4.2); deriving 

gridded surfaces from the data (Section 2.4.3); or setting targets of known location 

through the survey area (Section 2.4.4).  In addition to calibration, articles were also 

consulted on the present techniques for computing the uncertainty of a point cloud 

(Sections 2.5 & 2.6).  Finally, all of the previous techniques are objectively assessed for 
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their applicability to this study as a decision to employ a least squares adjustment is made 

(Section 2.7). 

2.2 – Strip Adjustment 

 Lidar data acquisition is typically done from an airborne platform that flies back 

and forth over a given survey area, acquiring alternating swaths, or strips, of data.  A 

“strip adjustment” is a generic term that refers to a technique used to identify and reduce 

(or eliminate) any positional discrepancies in the lidar point cloud as observed between 

adjacent strips of lidar data (Habib, Kersting, Ruifang, Al-Durgham, Kim & Lee, 2008b).  

This is achieved by improving the compatibility among neighboring strips.  The 

technique is similar, in principle, to the Block Adjustment of Independent Models 

(BAIM) developed for use in photogrammetry.   

An adjustment in photogrammetry largely depends on the identification of 

prominent control points in overlapping photographs.  These control points can then be 

used to estimate the mounting parameters (offset and orientation) of the camera with 

respect to the aircraft’s reference frame.  Kilian, Haala, & Englich (1996) were the first to 

describe a procedure openly modeled after the photogrammetric strip adjustment that was 

designed to determine the systematic errors in the GPS and INS sensors of a “laser 

scanner system.”  With lidar, however, due to the sparse nature of the lidar footprints, 

even were one to survey a given area several times, it is unlikely two laser footprints will 

be exactly coincident on the surface scanned (Freiss, 2006).  This suggests that a 

calibration routine based on point-to-point comparisons of overlapping swaths may be 

difficult to implement.   
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To overcome the challenge to the correspondence problem presented by matching 

individual points, photogrammetrists have adopted object-based matching techniques, 

wherein spatial objects were extracted from the imagery or point clouds.  The most 

frequently extracted features are either planar patches (Freiss, 2006; Lee & Schenk, 2001; 

Vosselman & Dijkman, 2001) or linear features (Habib et al., 2008b).  The extracted 

planes and lines will then act as a proxies for the control points in the BAIM of 

photogrammetry.  On some occasions, digital terrain models (DTMs) of the point clouds 

are constructed, then corresponding areas within DTMs are compared (Kilian et al., 

1996).  Working with DTMs, however, presents the same problem as working with the 

point data, it is difficult to truly determine what areas are conjugate; moreover, the 

original data set is altered in the DTM through the interpolation that must occur in the 

conversion to a grid (Gross & Thoennessen, 2006). 

It must be noted that some strip adjustments, particularly when performed in the 

context of lidar, only have the stated goal of making sure the point clouds from each strip 

are consistent with each other.  Not only must the data be internally consistent, this 

dissertation has the added requirement that the final point cloud must be consistent with 

the real-world (i.e., though the lidar point cloud may look good on its own, it must also 

be consistent when compared to an outside data source, like another survey).  Further, the 

goal is to solve for physically-meaningful calibration parameters associated with a well-

designed sensor model; not to just make the data from overlappings swaths “fit.” 
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2.3 – Feature Extraction 

2.3.1 – Planar Patches 

 Vosselman and Dijkman (2001) wrote, “due to the overwhelming evidence 

provided by the large number of points, the detection of planar roof faces is quite 

reliable” (p. 37).  The extraction of planar patches from laser scanner data has been used 

extensively for urban planning, the construction of 3D city models and to promote 

enhanced navigation (Gross & Thoennessen, 2006).  One method employed for the planar 

extraction is the Hough transform (extended into three dimensions).  The advantage of 

the Hough transform is that it does not require the computation of a normal vector to the 

plane, which can be noisy with laser data (Vosselman & Dijkman, 2001).  With the 

Hough transform, each laser point in real space corresponds to a plane in a parameter 

space (these being the parameters of a potential plane in real space).  Any laser points 

that are coplanar in real space will have planes in the parameter space that intersect at a 

point (the coordinates of this point being the planar parameters). 

 Lee and Schenk (2001) found the Hough transform to be lacking because it did 

not account for the spatial relationship of the laser points.  That is, a collection of points 

that happen to occupy the same plane may not necessarily be part of the same physical 

space (consider separate roofs of adjacent buildings).  Thus Lee and Schenk offered a 

refined approach to the Hough transform based on the concept of surface growing.  For 

each laser strike, a small patch is constructed from neighboring points based on the 

spanning tree of a Delaunay triangulation network.  A plane is fitted to each patch (using 

a least-squares approach) and the patches are then sorted by a fitting error associated with 

each plane.  Each patch then acts as a seed as one-by-one, adjacent laser points are tested 
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whether they also fit the associated plane (to a prescribed tolerance).  With a successful 

fit, the point is added to the patch and the parameters of the best-fit plane are recomputed.  

This modified version of the Hough transform is commonly used for extracting planar 

surfaces from lidar data (Freiss, 2006) 

While determining the orientation and altitude of the planar patches is a relatively 

easy matter, the sparse laser footprints makes determining the perimeter of the planes 

more difficult. To augment their extraction algorithms, some researchers (Kilian et al., 

1996; Vosselman & Dijkman, 2001) would consult the ground plans of the buildings 

surveyed.  These plans would reveal the precise locations of all building walls and the 

extents of roof faces.  Additionally, ground plans would reveal any elaborate features 

(e.g. gables) that could be difficult to discern from the point data. 

2.3.2 – Linear Features 

 2.3.2.1 – Intersection of planes.  While planar patches are the most prominent 

feature to be found in the surveyed terrain (Freiss, 2006), linear features also bear 

investigation.  Vosselman and Dijkman (2001) used linear features as a supplement to 

their extracted planar patches.  All of the (non-parallel) planes were extended until they 

intersected in a line object.  It was argued that these detected ridge lines in the roofs 

would have a “very high” (p. 40) accuracy as they are derived from two planes which are 

both determined though many lidar points (Vosselman & Dijkman, 2001).  The larger 

source planes would incorporate more laser footprints and thus be less susceptible to 

point cloud noise (Habib et al., 2008b). 

 Habib et al. (2008b) also used the intersection of extracted planar surfaces for the 

purposes of identifying linear features in the dataset.  The intersections of neighboring 
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planes will produce a theoretically infinite line; endpoints to the line segments are 

determined based upon the dimensions of the planar patches and user-defined buffers.  

These endpoints are then used for the purposes of performing the adjustment in later steps 

(see “Least-Squares Adjustment” in next section).  Conjugate linear features from 

different swaths are then identified based upon the normal distance between lines, the 

degree of parallelism and the percentage of overlap. 

 2.3.2.2 – Covariance of points.  An alternative method of extracting linear 

features from point data (that does not depend on the intersection of planes) instead 

focuses on the neighborhood of each laser point (Gross & Thoennessen, 2006).  A sphere 

is circumscribed around each laser footprint (the radius of the sphere being a function of 

the lidar spot spacing).  For each sphere, a covariance matrix is constructed based upon 

the centralized moments of the enclosed points.  Finally, the eigenvalues and 

eigenvectors of the covariance matrices are computed.  Based on the ratios of the 

eigenvalues, the object characteristics of the point can be deduced with respect to its 

neighbors (i.e., whether the point lies on a edge, corner, plane, etc.). 

 After every point is categorized into its appropriate “situation type” (Gross & 

Thoennessen, 2006), all the points that lie on an edge are collected and examined.  For a 

point on a line, the eigenvector associated with the largest eigenvalues is oriented in the 

direction of the line.  The inner product of eigenvectors of points within a given 

proximity of this line are then computed with respect to the original eigenvector (with a 

given threshold) to determine whether they lie on the same line.  Finally, there is some 

deconfliction of line segments based on a prescribed minimum gap in the data (to 

separate features like collinear edges of different buildings in a row). 
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 In implementations of the covariance method, datasets were derived from 

terrestrial laser scanners, not airborne lidar systems.  The data density exhibited in Gross 

and Thoennessen (2006) is nearly two orders of magnitude larger than any presently 

available airborne system.  The extraction algorithms may not be robust enough to work 

on a single swath of data collected from an airborne platform. 

2.4 – Adjustment Procedures 

2.4.1 – Feature Adjustment 

 Be it points, lines or planes, once the desired features have been parameterized, an 

adjustment method is needed to determine the calibration parameters that lead to an 

optimal alignment of the extracted features.  Whether deriving a calibration routine or 

performing an adjustment for some other purpose, the literature is abound with variations 

of the least-squares adjustment (LSA) (Bang, Kersting, Habib & Lee, 2009; Habib et al., 

2008b; May, 2009; Vosselman & Dijkman, 2001).  In some cases (Freiss, 2006), several 

least-squares adjustments are performed within a single study; for example, in a strip 

adjustment, one adjustment would be necessary for the extraction of the planar patches 

within each strip, and a second adjustment would be needed to align the patches from 

strip to strip. 

The most robust LSA model, particularly with regard to what this dissertation is 

proposing, is the model employed by Freiss (2006).  Freiss, who was using conjugate 

planar patches as his seed, developed a model that adjusted for the planar patch’s normal 

vector, a correction factor for the laser range, a single scan angle scaling and offset 

correction, a set of corrections for the GPS antenna to laser scanner offset and orientation 
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corrections.  The input parameters are the laser range and angle, the GPS antenna position 

and the IMU attitude (pitch, roll, heading).   

 There are several advantages to the use of a LSA in this application.  Not only 

will the adjustment identify any systematic errors for removal, producing a 

geometrically-correct point cloud, but analysis of the covariance matrix will provide 

estimates of the random uncertainty of each input parameter (Freiss, 2006).  What is 

more, through manipulation of the weights in the covariance matrix the degree to which a 

given observation affects the final calibration parameters can be estimated – this is the 

essence of sensitivity analysis.  Finally, the uncertainty of the point cloud positioning can 

be determined through error propagation, by substituting the uncertainties derived 

through the covariance matrices. 

 A potential alternative to using planar patches as a seed in the LSA is instead 

using linear features (which are typically, but not always, derived from the intersection of 

the neighboring planes).  Both Habib et al. (2008b) and Bang et al. (2009) used extracted 

line segments in their adjustment; however, because of the sparse nature of the data, the 

endpoints of these line segments could not be expected to coincide from swath to swath.  

To compensate for non-conjugate end points, a new coordinate system was defined with 

one axis oriented along the line segment.  Then, as the adjustment is performed, a 

suitably large variance is introduced along this axis to permit the end points to “wander.” 

2.4.2 – Point-Set Registration 

 There are several disadvantages in trying to adjust a lidar point cloud based upon 

using extracted features.  For one, it is computationally non-trivial to extract and 

coregister objects from different swaths.  In working with extracted planar patches and 
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line segments, one isn’t working with the actual observables, thus the uncertainties of the 

adjustment are compounded.  Finally, making lines and planes a prerequisite for a 

calibration routine will fundamentally limit the number of areas where a calibration can 

be performed:  buildings and structures may not be present in a survey area and adequate 

ground control may not be established near the airport.  Thus, an ideal registration might 

be performed with several overlapping data sets collected over a generic surface by 

adjusting the laser footprints themselves. 

 In Besl and McKay (1992), one of the earliest descriptions of the registration of 

point sets is presented.  It was presented as a computer visualization problem in which a 

model, existing in its own model space, has a 3D representation of data points 

(presumably collected in some separate sensor space).  The problem was to determine the 

optimum rotation, translation and scaling that would align the model and geographic 

spaces and thus minimize the distances between the two data sets.  The optimization 

method used was the Iterated Closest Point (ICP) algorithm. 

 The ICP is robust enough to work on point sets, line segments, curves, faceted 

surfaces, and others (thus it could be utilized on the extracted features described in the 

previous section).  Further, no derivatives or finite elements are needed.  Requiring an 

initial guess of the 6-parameter transformation (three rotations, three translations, no 

scaling), an LSA is performed, adjusting for the sum of the minimum distances from one 

point set to the other.  The registration from the LSA is applied to one of the data sets and 

the process is repeated, monotonically converging on an optimal solution.  When multiple 

scans of the same area were available, Gross and Thoennessen (2006) used an ICP 

algorithm to resolve discrepancies between datasets. 
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 There are two drawbacks to the ICP.  First, the algorithm is highly susceptible to 

outliers.  The ICP was not developed with lidar data sets in mind, thus a filtering 

procedure would need to be placed on the front end of the data.  Second, while the 

algorithm converges rapidly at first, it is very slow in converging to a final optimal 

solution.  Both of these short-comings are addressed in a modified version of the ICP 

called the Levenberg-Marquardt ICP (Fitzgibbon, 2003). 

 The Levenberg-Marquardt ICP, replaces the LSA in the traditional ICP approach 

with a non-linear 2nd order series expansion of the point-to-point uncertainties.  The 

technique is still iterative, following a Gauss-Newton approximation model, but an extra 

parameter is added to the iteration step.  This extra parameter can be used to fine-tune the 

convergence rate of the algorithm.  In this way, Fitzgibbon (2003) was able to overcome 

the relative slow convergence near the optimal registration and created a technique less 

dependent on the quality of the initial guess.   

2.4.3 – Grid Surface Matching 

May (2008) also recognized the difficulties in trying to establish correspondence 

between objects acquired in overlapping strips.  To overcome this, she would construct 

an interpolated grid of each swath.  Then choosing an appropriate patch (avoiding forests 

or densely built-up areas), the distances from all the laser points in one swath would be 

compared to a collection of virtual points on the interpolated grid of the other swath.    

These distances would be the observations to be minimized via a LSA based on a Gauss-

Markov model.  Intensity information would also sometimes be used to augment the 

identification of segments. 
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In this way, using only two to three overlapping flight lines, May (2008) was able 

to estimate the three boresight misalignments.  Patches were chosen for comparison such 

that they were as far from nadir as possible – outer swaths being preferable because 

boresight misalignments would be most magnified there.  The proposed flight pattern had 

two flights flown in opposite directions, overlapping along their outerbeams, and one 

crossline flown perpendicular to the other two.  This proposed flight pattern is very 

similar to the acquisition lines suggested by NOAA when performing a multibeam 

calibration (NOAA, 2008). 

Bang et al. (2009) performed a similar point-to-virtual point matching.  Rather 

than comparing laser points from one swath to the interpolated grid of another, they 

compared the points of one swath to the extracted planar patches of the other (and vice 

versa).  This maintained a level of integrity with respect to working directly with the 

original observations. 

2.4.4 – Calibration Targets 

  An alternative to having to develop algorithms designed to extract planar patches 

or linear features from (often) irregular objects that exist in the real world is to instead 

import some mobile lidar targets. In Csanyi, Toth, Grejner-Brzezinska and Ray (2005), a 

study was conducted to determine what characteristics would make for the best ground-

based deployable lidar target.  It was found a circular disk (circular, to be directionally 

independent), raised from the ground (so it could be identified from the elevation data), 

with two concentric circles of contrasting reflectance.  By using the highly contrasting 

colors, the targets can be identified with an automated algorithm that uses a histogram-

based adaptive threshold based on the intensity of the returns. 
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 When deployed, the targets are leveled, thus when the targets are identified in the 

point cloud, a horizontal plane is fitted to the data.  This fitted plane can then be one of 

the observations in the calibration adjustment.  Further, the center of each target can be 

surveyed in using precise ground control, which will aid in shifting the lidar data into the 

proper mapping frame.  The horizontal adjustment is aided by the Hough transform.  The 

center of the target is estimated in the lidar data based upon the known radius of target.  

A locus of all the possible locations of the center is determined, and then the center is 

assumed to be at the centroid of this region. 

 Using the targets and procedures described above, reported discrepancies of as 

little as 2-3 cm in the horizontal and 1.3 cm in the vertical were detected.  The accuracy is 

highly dependent on the density of the postings, with the previous accuracy being quoted 

at a data density of 16 points/m2.  This could be an instance where CZMIL could take 

advantage of its circular scanner design, which is anticipated to have a high density of 

points at the outer edges of each swath. 

The advantage to using the lidar targets is it provides the closest analog to the 

photogrammetric control points used in the BAIM.  Without control points, the surveyor 

is depending on the local geography of the survey area to provide features (buildings, 

roads, broad flat patches) that can be used for registration.  One disadvantage is the size 

of the targets.  The optimal size was found to have a radius of 1 meter.  Unless a 

collapsible alternative is constructed, these targets may prove difficult for field crews to 

transport from project to project.  Another major drawback is requiring the presence of a 

field survey crew to support operations on the ground. 
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2.5 – Uncertainty Analysis 

 A point cloud simulator provides a simple tool for a preliminary sensitivity 

analysis.  Most authors (Freiss, 2006; Habib et al., 2008b; Schenk, 2001) who developed 

a simulator took advantage of their encoded lidar equations to assess the impacts of 

systematic biases in the lidar location equation.  They would begin with a defined set of 

trajectories, scan angles, position and orientation information to be used as a reference.  

Biases would then be systematically added to each parameter and the impact between the 

bias-contaminated and the true coordinates of the laser footprints would be assessed.  In 

this way, Habib et al. (2008b) confirmed any biases between adjacent lidar strips could be 

modeled with a six-parameter rigid-body transformation (three translations and three 

rotations); and Freiss (2006) could derive a correlation between vertical uncertainty and 

scan angle. 

 There have been several comprehensive approaches to uncertainty analysis of 

lidar data, two of which originated within The Ohio State University, Schenk (2001) and 

May (2008).  Both studies consider a vertical lidar scanner, though Schenk does briefly 

touch on a circular scanner.  Schenk is meticulous in his derivation of a pristine (error-

free) lidar positioning equation and equally thorough in developing a positioning 

equation that contains each conceivable type of error source.   

Both authors, once their error sources have been identified, proceed with 

considering the individual impact of each input parameter on the final point positioning 

accuracy.  By working with one parameter at a time, it was easier to assess the individual 

effect of each input parameter under various conditions (different altitudes, scan angles, 

or magnitudes of random error).  May (2008) subdivides the uncertainty analysis into 
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both systematic bias and random errors which are both considered through a propagation 

of variances based on a first-order Taylor series expansion; whereas Schenk (2001) uses 

geometric arguments to derive explicit expressions for the error model.   

In addition to examining individual errors, May (2008) performed a 

comprehensive accuracy assessment through the analytic derivation of the error formulas 

from a rigorous error propagation of the lidar location equation.  This error propagation 

only considered random errors and thus had assumed a proper calibration routine had 

already been performed to remove (or at least quantify) any systematic bias. 

 Through the derived error equations, May (2008) was also able to perform a 

sensitivity analysis by examining how multiplying the uncertainty of a given input 

parameter would propagate through to final accuracy of the point positioning.  These 

calculations could be used to determine the dominant error source under various flight 

conditions (altitude, ground speed, etc.). 

2.6 – Over-Constrained Systems 

 Schenk (2001), with his rigorous derivation of a lidar observation equation with 

error terms, took a different approach to a calibration routine.  He considered a 

calibration routine to be a two-phase problem:  first derive an error model, then proceed 

with a methodology for parameter recovery.  Schenk considered the error model key, 

finding it “impossible to correct errors from analyzing individual error vectors without an 

error model” (2001, p.1).  Through a tight scrutiny of the derived error equation, direct 

recovery of systematic errors, either individually or in groups (if errors are not separable), 

could be achieved using a specific flight pattern.  It is worth emphasizing that no 

adjustments are necessary in this technique, just a measurement of the planimetric 
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elevation differences of chosen primitives.  As far as what objects to use as a reference 

between swaths, Schenk suggests the usual suspects of extracted planar surfaces and their 

lines of intersection, referred to as an “abstract edge” (p.34).  

By measuring nothing more than elevation differences, Schenk proposed a 

methodology that determines the systematic biases in the INS, the lateral scan angle, the 

ranging bias and the mounting offset vector between the laser and GPS.  Additionally, it 

determines some coupled errors like the boresight misalignments and the laser mounting 

parameters.  These biases can be determined through the observation that if flight lines 

are conducted in a certain configuration, then it can be arranged that all but one error 

term would result in being canceled.  The drawback to this method is that it assumed any 

planimetric offsets are due to the systematic biases, while there is likely to also be a 

random error component.  To isolate the bias, it is likely that several trials would need to 

be conducted (or several primitives identified). 

Bang et al. (2009) conducted a study similar to Schenk (2001) with regard to 

extracting boresight misalignments through the measurement of primitive offsets in 

overlapping swaths.  They even proposed a basic flight plan that could yield the boresight 

misalignments plus the planimetric offsets (two flights in opposite directions with 100% 

overlap repeated at two different heights).  Their primitives, planar patches and line 

segments, were extracted using the technique identical to Habib et al. (2008b).  However, 

Bang et al.’s lidar error equation was highly simplified and assumed no uncertainties in 

either the laser range or scan angle measurements.  Introducing these extra error sources 

makes it that much harder to attempt to decouple errors through just a few flight lines. 
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Schenk (2001) also observes that most errors within the input parameters will lead 

to a non-linear distortion of the surveyed area, thus one cannot hope to reconstruct the 

true surface from a collection of observed points through a similarity transformation. 

2.7 – Summary 

 Creating an artificial data set for the purposes of developing and testing 

calibration algorithms for a lidar system has proven successful in the past (Freiss, 2006; 

Gross & Thoennessen, 2006; Habib et al., 2008b).  One fundamental difference between 

this dissertation and all previous simulations is the construction of a different sensor 

model due to the different scanner design being implemented in CZMIL.  CZMIL’s 

circular scanner requires parameterization of the rotational bias in the prism, in addition 

to the prism’s axis of rotation and refractive angles. 

 In performing the adjustment, techniques are available to work directly with the 

point data (Besl & McKay, 1992; Fitzgibbon, 2003), rather than extracted features.  

However, the literature review thus far has only revealed studies where one data set is 

held as the “truth” and the second set is registered to the first.  No guidance was found 

with regard to adjusting several data sets simultaneously, nor to distributing the 

uncertainty.  The Levenberg-Marquardt ICP could be used as an analog for a strip 

adjustment (where one strip is held fixed and adjacent strips are adjusted to this 

reference); but, without further research, a point-set registration will not be the best suited 

technique for deriving a geometric calibrator.  A post-calibration point-wise adjustment 

might prove to be useful as a QC tool. 

 In Vosselman and Dijkman (2001), referring to the ground plans of the structures 

surveyed provided a clever method of extracting extra constraints for their least squares 
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problem.  However, no mention was made to how data extracted from a set of structural 

plans can be translated into the point cloud’s reference frame.  Further, having to track 

down ground plans of any structure illuminated during a calibration survey (a) may not 

be possible and (b) puts an excessive burden on the field crew.  Thus, the inclusion of 

ground plans will not be further considered in this work. 

 Deriving linear features from the point cloud does have some advantages.  While 

there are the same number of parameters that determine a line and a plane (both requiring 

a point and a vector), a line creates a more distinct locus in space.  However, most 

implementations (Habib et al, 2008b; Vosselman & Dijkman, 2001) call for the 

construction of lines through a set of extracted planar patches.  Given there is an 

uncertainty in the orientation of the planar patches, it is expected this uncertainty will 

then propagate to any derived objects.  Further, the adjustment technique of Habib et al. 

(2008b) introduces an artificially large variance along the axis that contains the line 

segment (to accommodate the non-conjugate end points).  This large variance will also 

propagate through to the final point cloud.  Linear features will be secondary to planar 

patches as a method of determining calibration coefficients, and will unlikely be used for 

the uncertainty analysis.  The covariance of points used by Gross and Thoennessen 

(2006) for the extraction of linear features is untested on less-dense airborne data.  

However, because the line segments are derived in such a unique way (i.e. without a 

dependency on a LSA), they may prove to be useful as a QC tool of the final adjusted 

point cloud. 

 As compared to linear features, algorithms for the extraction of planar patches 

appear more robust and have been used with greater frequency with regard to lidar data.  

 



33 

The modified Hough algorithm with the connectivity model and surface growing 

algorithm (Lee & Schenk, 2001) could be further explored as a method of distinguishing 

multiple planar patches within one scene, but is not further investigated in this 

dissertation given the use of only a single planar calibration surface. 

 An ancillary product of the point cloud simulator, is a simple tool for evaluating 

the sensitivity of the input parameters.  By starting with a control dataset, both systematic 

biases and random uncertainties can be introduced into the alignment of the laser, the 

pointing vector, the position or orientation of the aircraft.  In so doing, the introduced 

horizontal and vertical errors can be assessed on a pulse-by-pulse basis.  This simple 

form of error propagation (which is available early in the synthesis of this dissertation) 

can be used to provide a preliminary assessment of the impact of input uncertainties on 

the final point cloud.  Further, a simulated swath can be used to check the results of a 

more robust uncertainty model upon completion of the project.  

 The more robust propagation of variances employed by May (2008) and the 

explicit error formulae derived by Schenk (2001) will be an ancillary step for this 

dissertation.  A rigorous understanding of the geometric influence of each parameter in 

the laser geolocation equation must be pursued in order to design a flight line plan that 

will properly isolate each variable.  While the mathematical procedure is the same, May 

and Schenk focused on a vertical laser scanner (which had issues of a scan angle bias and 

varying beam footprints).  The circular scanner design will have a constant scan angle 

and beam footprint (over level ground), thus avoiding some of their complications; but 

instead this dissertation has incorporated a model for the rate of the prism’s spin and its 

axis of rotation.  These changes at the origin of the lidar observation equation will yield 
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an entirely different set of error formulas.  A different set of error equations may make 

Schenk’s method of the recovery of systematic errors inapplicable.  

Freiss’ (2006) generic least-squares adjustment model appears to be the best point 

of origin for this research.  The model simultaneously addresses the issues of calibration, 

uncertainty analysis and sensitivity analysis.  However, as promising as this model is, 

results of Freiss’ subsequent work had not been made publically available.  This 

dissertation will build upon Freiss’ work by determining a set of calibration parameters 

for a simulated data set. 

While May (2008) did develop an automated calibration routine, it only adjusted 

for the three boresight misalignments.  Scan angle and GPS-IMU-laser lever arms were 

considered to be addressed in separate tests.  The inclusion of special purpose lidar 

targets appeared to greatly improve the quality of the calibration, while simultaneously 

providing a ready feature to be identified in overlapping swaths.  While the results 

(horizontal accuracy: 5-10cm, vertical accuracy 2.5 cm with 4 points/m2 spot density) 

associated with the lidar targets are hard to deny, there are logistical considerations with 

respect to hauling around a 1m radius disc (particularly given CZMIL will spend roughly 

50% of its time outside the contiguous U.S.).  A lidar target may be considered to be part 

of an initial (factory) QC check, but would preferably not be a requirement for the 

geometric calibrator. 

The technique of determining systematic uncertainties by directly measuring the 

offsets of conjugate primitives flown in the same or opposite directions (Bang et al., 

2009; Schenk, 2001) appears promising.  However, both authors neglected the impact of 

the random errors in the measurement when measuring their offsets, suggesting the need 
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for several flights.  Bang et al. overcomes this need by acquiring data over a region that 

contains many features to extract (21 lines and 34 planes); however, this level of 

civilization may not be available at a typical survey site.   

One parameter that has been missing from most contemporary lidar uncertainty 

models, but was included in early models (Kilian et al., 1996), is the concept of a linear 

drift model for the calibration parameters.  Likely, the linear drift was dropped due to 

improvements over the past decade in hardware (GPS, INS), but some parameters in the 

circular scanner (an encoder bias) may benefit from the inclusion of a linear drift 

parameter. 
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CHAPTER III 

THE LASER LOCATION EQUATION 

 
Figure 7. Chapter III outline.  
 

Before any discussion of calibration can begin, one must first endeavor to 

understand the process that is being calibrated.  If a given parameter in a process is not 

allocated proper consideration, the calibration routine may produce nonsensical results or, 

worse yet, produce an erroneous result with a high degree of confidence.   

As an example from hydrography, consider someone who is designing a prototype 

sound speed profiler which measures the water column’s temperature and salinity and 

then computes a predicted speed of sound.  A (seemingly) meticulous calibration can be 

performed in a laboratory setting by immersing the instrument in water and then 

calculating the sound speed under innumerable salinity and temperature regimes.  What 

the designer does not realize is that the device will not perform as intended as soon as it is 

deployed at any depth (other than that of the calibration tank), because sound speed is 

also a function of pressure, which was not controlled for in the calibration routine.  There 

are two lessons to extrapolate from this example: 
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 A sensor calibration may be valid only so long as the sensor is deployed under 

conditions identical to those under which the calibration was performed (thus 

the calibration routine must be performed under as varied a set of acquisition 

conditions as possible). 

 Without a rigorous (and correct) mathematical model of the sensor, any 

attempt at sensor calibration may prove fruitless. 

It is upon the second bullet item that this chapter focuses:  seeking to determine 

what parameters affect the positioning of a laser point on the ground.  Once identified, a 

calibration routine can be developed. 

3.1 – Component Analysis 

A cursory review of the relevant literature will reveal an abundance of examples 

of generic laser point equations (Freiss, 2006; Habib, 2008a; Skaloud & Schaer, 2007).  

Most equations take the form: 

  IRF LRF LRF IRF
G ECEF IRF LRF IRF ECEFx      x x

     
 (3.1) 

where: 

coordinates of laser point on ground in ECEF reference frame

rotation matrix from INS reference frame (IRF) to Earth-centered Earth-fixed

  reference frame (ECEF) (i.e. vessel pitch, roll a

G

IRF
ECEF

x 






nd yaw)

rotation matrix from laser reference frame (LRF) to IRF (i.e. laser boresight

  misalignments)

rotation matrix from nadir-looking to laser reference frame (i.e. laser azimuth

 and ele

LRF
IRF

LRF








vation angles)

laser range

offset vector from LRF to IRF

offset vector from IRF to ECEF

LRF
IRF

IRF
ECEF

x

x

 








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While the terms of (3.1) hold true for nearly all lidar systems, this general lidar equation 

can be made specific to a particular lidar system through the inclusion of the appropriate 

sensor model describing the ranging and scanning strategy. 

Figure 8 shows a simplified sketch of the CZMIL system design, highlighting the 

components that relate to the system’s geometric calibration which will be examined in 

this study.  The Fresnel prism refracts the laser beam from nadir; the scanner motor 

rotates the Fresnel prism and generates the scan pattern on the ground; the INS measures 

the sensor’s orientation and position information (note:  the GPS antennas are considered 

to be bundled within the INS for the purposes of this study); and the vehicle reference 

frame (VRF) provides a framework to orient the previous components.  Each component, 

and their relationship to one another, will be discussed in the following sections. 

 

 
Figure 8. Components of the CZMIL system to be incorporated into the laser location 
equation for a geometric calibrator. 
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For the purposes of convention, this dissertation will use a right-handed, forward-

starboard-down coordinate system (Figure 9) and the zero angle for the scanner azimuth 

will direct the laser forward (+x direction).  The reference point of the laser-prism-

scanner assembly (the point from which all measurements will be computed) will be 

located on the upper face of the prism, where the outgoing laser beam strikes the Fresnel 

prism.  For the purposes of ray tracing, all refraction will be reduced to this reference 

point; that is, the prism will be thought of as infinitely thin.  This assumption will lead to 

a very minor (approximately 0.001m) horizontal bias in the laser point.  

 

Figure 9. The laser-prism-scanner assembly, showing the laser reference point which is 
the point of origin for computations within this dissertation (left), shown along with the 
scanner’s right-handed forward-starboard-down coordinate system (right). 
 

3.1.1 – Snell’s Law:  Two-dimensional and Vector Versions 

 3.1.1.1 – Two-dimensional and vector versions.  Before discussing the behavior of 

the prism slope, an understanding of vector version of Snell’s Law is required.  Snell’s 

Law describes the path light (or other types of waves) will take as it passes between two 
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different media.  Of interest to this study is understanding the path the laser will take as it 

travels through the Fresnel prism, composed of fused silica, and the behavior of the laser 

pulse when it strikes the water surface. 

Classically stated, Snell’s Law gives (see Figure 10): 

 1

2 1

sin

sin
2 

 
  (3.2) 

 
where: 

1

2

1

2

refractive index of upper medium (dimensionless)

refractive index of lower medium (dimensionless)

angle of incidence

angle of refraction











 

 

 
Figure 10. Tracking a laser pulse as it moves from one medium to another, showing the 
angles of incidence and refraction 2 1( )  . 

 

where the indices of refraction are a function of the light’s wavelength.  Glassner (1989) 

offers a vector version of Snell’s Law: 

 1cos P L 1  
 

 (3.3) 

 1

2

2 2
2cos 1 ( ) sin

 1    (3.4) 
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1 1

2 2

1 1

2 2

2 1 1 2 1

2 1 1 2 1

( ) ( cos cos ) ,  if ( ) 0

( ) ( cos cos ) ,  if ( ) 0

L L P P L

L L P P L

 
 

 
 

 

 

     

     

    

      (3.5) 

where: 

1

2

incident light ray (unit vector)

refracted light ray (unit vector)

normal vector of interface between media (unit vector)

L

L

P












 

 
 By inspection of Figure 10 (considering down and right to be positive): 

 1 1
ˆ( sin ) (cos )L i 1 ĵ   


 (3.6) 

 2 2
ˆ( sin ) (cos )L i    2 ĵ


 (3.7) 

 ˆ0 1P i ĵ 


 (3.8) 

which can be used to verify equations (3.3) through (3.5).  Substituting (3.6) and (3.8) 

into (3.3) yields: 

 
1 1

1

1

cos 0, 1 sin ,cos

(0 cos )

cos

1  




    

  


 (3.9) 

Solving (3.2) for 1sin and substituting into (3.4) yields: 

 

1

2

1 2

2 1

2 2
2 1

2 2
2

2 2
2 2

cos 1 ( ) (sin )

1 ( ) ( sin )

1 (sin ) cos cos




 
 

 



2  

 

 

   

 (3.10) 

Lastly, substituting (3.6) and (3.8) into (3.5) yields: 

 

1 1

2 2

2 2

1 1

2 1 2 1

1 1

2 1 1 1 2

sin sin
1 1 1 2sin sin

sin cos sin cos
2 2sin sin

2 2

( ) sin ,cos ( cos cos ) 0, 1

( ) sin ,cos ( cos cos ) 0, 1

sin , 0, cos

sin ,cos

L  
 

 
 

   
 

   

   

 

 

     

     

    

 



 (3.11) 
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which agrees with (3.7).  Thus the vector version of Snell’s Law agrees with the simpler 

stated case.   

3.1.1.2 – Prism slope and the laser elevation angle.  Depending on the user’s 

perspective, there are two angles that are of interest with respect to the Fresnel prism.  

The hardware team needs to know the slope of the prism’s refracting surface ( 1  in 

Figure 11); whereas, the software team will need to know the angle at which the laser 

pulse is exiting the prism ( 4  in Figure 11). 

 
Figure 11. Tracking a laser pulse as it moves from one medium to another, showing the 
angles of incidence and refraction.  Note:  1 is also the Fresnel prism slope. 

 

From Figure 11, the angular relationship 1 2 3     is observed (an external 

angle of a triangle is equal in measure to the sum of its two interior angles), which can be 

substituted into (3.2) (as applied at the upper facet in Figure 11) 
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 1 1sin sin( )s

a
3

  


   (3.12) 

where: 
refractive index of air

refractive index of fused silica
a

s







 

 
Applying an angle summation formula and simplifying: 

 1 1 3 1sin sin cos cos sins

a

3

    


   (3.13) 

 1 1 3 1sin sin cos cos sins s

a a
3

    
 

     (3.14) 

 1 3 1sin (1 cos ) cos sins s

a a
3

   
 

     (3.15) 

 31

1 3

sinsin

cos 1 cos

s

a

s

a







 





 (3.16) 

 3
1

3

sin
tan

cos
s

a s

 
  





 (3.17) 

From (3.2) applied to the lower facet in Figure 11: 

 3sin sina

s
4

 


  (3.18) 

A reverse trigonometric substitution can then be performed using (3.18), to define 3cos , 

from (3.17), in terms of 4 . 
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Figure 12. Trigonometric relation of 3  and 4 . 

 

From Figure 12, an expression for 3cos  can be derived: 

 
2 2 2

4
3

sin
cos s a

s

  





  (3.19) 

Substituting (3.19) and (3.18) into (3.17) and again simplifying: 

 
4

1 2 2 2
4

( sin )

tan
sin

( )

a
s

s

s a
a s

s

 

  

 








 (3.20) 

 4
1 2 2 2

4

( sin )
tan

sin
a

a s a

 
   




 
 (3.21) 

Using (3.21), the slope of the prism can be determined for a given desired laser elevation 

angle.  For example, a laser elevation angle of 20° implies a prism slope of 39.16°.  

Aside:  the refractive indices used are air 1.0003   (Feynman, 1963), silica 1.461   (532 

nm wavelength) (Del Mar Ventures, 2007).   
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Conversely, if the prism slope is known and the laser elevation angle is desired, 

again, referring to (3.18) and observing 1 2 3     yields: 

 4 1sin sin( )s

a
2

  


   (3.22) 

But, from (3.2): 

 2 arcsin( sin )a

s
1

 


  (3.23) 

Substituting (3.23) into (3.22) and simplifying: 

 4 1sin sin arcsin( sin )s a

a s

 
1 

 
 

 
 

   (3.24) 

 
2 2 2

1
4 1 1

sin
sin sin cos s a

a

  
  



 
  

 




 (3.25) 

3.1.1.3 – Path of a laser pulse through the Fresnel prism.  Finally, combining the 

vector version of Snell’s Law (3.3) to (3.5) with the shape of the Fresnel prism (Figure 

13) the path of the laser can be traced through the Fresnel prism.  Given: 

1

2

0

1

2

normal vector of upper facet of prism

normal vector of lower facet of prism

direction of laser entering prism

direction of laser within prism

direction of laser exiting prism

P

P

L

L

L




















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Figure 13. Tracking the laser pulses’ path in, through and out of the Fresnel prism. 
 

From (3.5) and (3.4): 

 1 0 1 2cos cosa a

s s

L L
   
 


  

 
1P




  
 (3.26) 

 2 2
2cos 1 ( ) sina

s


 1    (3.27) 

Substituting (3.27) into (3.26) and simplifying: 

 
2

2
1 0 1 1cos 1 sina a a

s s s

L L
  
  

          

 
1P 




 (3.28) 

 
2

2
1 0 1 1cos 1 (1 cos )a a a

s s s

L L
  
  

          

 
1P 




 (3.29) 

Substituting for 1cos  from (3.3) into (3.29) 

     
2

2

1 0 1 0 1 0 11 1a a a

s s s

L L P L P L P
  
  

              

      
 (3.30) 
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Applying (3.3) through (3.5) to the lower face of the prism: 

 3 2cos P L 1  
 

 (3.31) 

 
2

2
4cos 1 sins

a


3 


 

   
 

 (3.32) 

 2 1 3 4cos coss s

a a

L L
   
 

 
  

 

 
2P


 (3.33) 

Finally, substituting (3.31) and (3.32) into (3.33) yields an expression for the laser pulse 

exiting the prism (where  is defined as in 1L


(3.30)): 

     
2

2

2 1 2 1 2 1 21 1s s s

a a a

L L P L P L
  
  

              

      
P  (3.34) 

3.1.2 – Prism Slope 

As shown in the previous section the slope of the Fresnel prism, FR , dictates the 

elevation angle of the outgoing laser shot, 4  (Figure 14).  As the slope of the prism 

increases, so too does the laser elevation angle and the radius of circular ground scan 

pattern (Figure 15).  Under anticipated CZMIL acquisition parameters (altitude = 400 

meters, laser elevation angle = 20°), the prism slope will be 39.2° with a scanning swath 

width of 300 meters (Tuell et al., 2010), as computed using (3.21).  

The slope of the Fresnel prism is not expected to change through the operating life 

of the instrument, unlike the boresight calibration values which will change with each 

installation.  Without relying on the Fresnel prism fabricator to know the precise milling 

of the prism slope, the prudent lidar operator should know how to determine this value to 

a high degree of accuracy.   
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The prism slope will be simulated through the declaration of the two surface 

normal vectors for the upper and lower facets of the Fresnel prism, , which in 

the scanner reference frame are: 

1  and P
 

2P

  1 sin 0 cos
T

FR FRP    


 (3.35) 

 2 [0 0 1]TP  


 (3.36) 

where: 

FR  slope of the Fresnel prism upper facet. 

The definition of  will be the seeds for the Snell’s Law refraction computation. 1  and P
 

2P

 
Figure 14. The Fresnel prism’s slope, FR , is the angle of incidence, 1 , for the Snell’s 

Law refraction problem. 
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Figure 15. CZMIL scan patterns for various Fresnel prism slopes.  The system is being 
designed with a 39.2FR   . All units shown in meters. 

 

3.1.3 – Laser-Prism-Scanner Assembly 

 3.1.3.1 – Prism-scanner alignment.  In a well-aligned system, the scanner’s axis 

of rotation, sz , will be orthogonal to the lower face of the prism (and therefore parallel to 

), see 2P


Figure 16.  If the prism is not properly set in the scanner, rather than spinning 

flat (like a turn table), the prism will nutate (like a spinning coin).  Such a behavior could 

be caused by a faulty ball bearing in the scanner (random error) or a poor mounting of the 

prism (systematic bias).  Conceivably, the prism could also jostle within the scanner, but 

any translation of the prism will have an equivalent translation on the point cloud.  It is 

not anticipated the prism will translate more than a millimeter – the greater concern are 

angular rotations of the prism which will have a magnified effect on the computed ground 

coordinates. 
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Figure 16. A well-aligned prism-scanner assembly in which the scanner’s axis of 

rotation, sz , is parallel to the prism base’s normal vector, 2P


. 

 

In the case of a systematic bias, there are three possible rotations which the prism 

can undergo:  rotations about the scanner’s x, y and z-axes ( ,  and s s sx y z ) by angles 

respectively called ,  and x yPS PS PS z    (Figure 17).  The misalignments 

 and x yPS PS   will be mathematically accounted for as rotational matrices as applied to 

the normal vectors , affecting the solution to Snell’s Law.  The rotational 

matrices will have the form:  

1 2 and P P
 

 

1 0 0

0 cos sin

0 sin cos
xPS x

x x

PS PS

PS PS
 x 

 

 
   
  

  (3.37) 

 

cos 0 sin

0 1 0

sin 0 cos
y

y y

PS

y y

PS PS

PS PS


 

 

 
   
  

  (3.38) 
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In the case of  and x yPS PS  , the ultimate effect on the ground scan pattern will be to 

enlarge the radius of the circular trace (Figure 18). 

 
Figure 17. The effects of rotating the Fresnel prism about the scanner’s y-axis (top) and 
x-axis (bottom). 
 

 

 
Figure 18. Rotating the Fresnel prism about the scanner’s y-axis, sy , by angle yPS , 

increases the radius of the circular scan pattern (blue trace).  Similar effects are observed 
with a rotation about sx  (though not as large an increase in radius). 

 

 



52 

Because the scanner rotates the prism about its z-axis, sz , any misalignment of 

the Fresnel prism about sz  would be interpreted as a bias in the scanner’s azimuth 

measurement, zs .  Algebraically: 

 

cos sin 0

sin cos 0

0 0
z

z z

PS z z

PS PS

PS PS

 
 



1

 
   
  

  (3.39) 

 

cos sin 0

sin cos 0

0 0
zs

zs zs

zs zs

 
 



1

 
   
  

  (3.40) 

and when multiplied together: 

 

   
   

cos sin 0

sin cos 0

0 0
zs z

zs z zs z

PS zs z zs z

PS PS

PS PS 

   
   

1

   
     
  

   (3.41) 

confirming zPS  is merely a bias in zs  (so long as this order of multiplication is 

preserved). 

As discussed in the Appendix, the Tait-Bryan convention will be followed when 

multiplying several rotation matrices.  Thus, the prism normal vectors, from (3.35) and 

(3.36), as applied to Snell’s Law, (3.30) and (3.34), will have the form: 

 
1

2 2

zs z y x

zs z y x

PS PS PS

PS PS PS

P P

P P

   

   

 1    

     

 
   

 
   

 (3.42) 

where: 

1

2

1

2

normal vector of upper face of prism (before rotation)

normal vector of lower face of prism (before rotation)

normal vector of upper face of prism (after rotation)

normal vector of lowe

P

P

P

P





 

 








r face of prism (after rotation)
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 3.1.3.2 – Laser-scanner alignment.  With the orientation of the prism determined 

with respect to the scanner, the laser can be incorporated.  Figure 19 shows the laser in 

the scanner’s reference frame.  In a well-aligned system, the laser beam will be pointed 

orthogonal to the scanner; that is, 0L


will be parallel to sz  (shown in Figure 19, and also 

parallel to the prism’s lower face’s normal vector, 2P


, shown in Figure 16).  

 
Figure 19. Orienting the laser to the scanner’s reference frame through spherical 
coordinates. 
 

If the laser and scanner are not so oriented, the laser-to-scanner vector, , is 

parameterized using the angles: 

0L


zenith angle measured from scanner's  axis (0 )

azimuth angle measured from scanner's  axis in clockwise direction ( )
LS s LS

LS s LS

z

x

  
   

   
    

 

The formulation of 0L


 can be expressed in terms of rotational matrices: 
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  (3.43) 

0

cos sin 0 cos 0 sin 0

sin cos 0 0 1 0 0

0 0 1 sin 0 cos

cos sin

sin sin

cos

LS LS LS LS

LS LS

LS LS

LS LS

LS LS

LS

L

   
 

 

 
 



  
     
    
 
   
  



1

  
    
    

Notice the z-component of should always be positive to indicate that the laser is firing 

down, into the Fresnel prism.  Two advantages of parameterizing 

0L


0L


0L

 in this fashion 

(versus a form like ) are that:  first, it guarantees 
T

zL L L x y 


 will take the form of 

a unit vector, which is necessary for the refractive equations (3.30) and (3.34); and 

second, using two variables instead of three is computationally more efficient. 

Equation (3.43) is equivalent to the spherical-to-Cartesian coordinate 

transformation equations, ( , , ) ( , , )x y z     (Anton, Bivens & Davis, 2002), where 

1  .  This is not a coincidence. 

 Altering the laser-to-scanner vector has the effect of producing a teardrop-like 

scan pattern (Figure 20).  The larger the value of LS , the more elongated the teardrop.  

The drop will point in the direction opposite LS .  For example, if 0LS   , then the laser 

will be located in the +x direction (forward of) the scanner and the beam pattern will be 

pointing in the -x direction (backwards). 

Figure 21 offers a pictorial demonstration of why tilting the laser with respect to 

the scanner leads to the teardrop-shaped scan pattern.  By either increasing or decreasing 

the angle of incidence of the prism’s upper face (depending on the orientation of the 

prism), the exiting angle either decreases or increases, respectively.  By way of 

comparison, Figure 22 shows the effect of rotating the prism and holding the laser and 
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scanner fixed.  As depicted in the figure, the angle of incidence increases with the 

rotation of the prism, which (as in Figure 21) leads to a decrease in the angle between the 

prism and the exiting laser.  Interestingly, this decrease is less in magnitude than the 

amount by which the prism was rotated, thus there is a net increase in the angle with 

respect to nadir.  The end result is a circular scan pattern with a larger radius than 

previous (as depicted in Figure 18).  If the prism is rotated in the opposite direction than 

depicted in Figure 22, the scan pattern will have a smaller radius.  

 

 
Figure 20. Tilting the laser from vertical (increasing LS ) will alter the scan pattern from 

its intended circular scan pattern (shown in blue) to produce a teardrop-shaped pattern.  
Changing values for LS  will result in rotating this pattern about nadir (shown in red). 
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Figure 21. The rotating prism shown in its forward and backward position along with a 
“well-aligned” laser (red).  By tilting the laser forward (shown in blue) the laser exiting 
the prism will be directed further aft than before, regardless of prism orientation. 
 

 
Figure 22. By rotating the prism (but holding the laser fixed with respect to the scanner 
reference frame), the laser’s exit angle, 4 , actually decreases with respect to the lower 

face of the prism, but (including the rotation of the prism) the exit angle actually 
increases with respect to nadir. 
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3.1.4 – Vehicle Reference Frame, INS and Laser-Prism-Scanner Assembly 

 3.1.4.1 – INS reference frame and laser-prism-scanner alignment.  The preceding 

sections on the laser-prism-scanner (LPS) assembly, when coupled with the discussion of 

the vector version of Snell’s Law are sufficient to determine the direction of the laser as it 

exits the scanner reference frame (SRF).  The next step is to convert this vector from the 

SRF into the INS Reference Frame (IRF).  Once in the IRF, it is a matter of applying the 

appropriate geodetic equations to reproject the vector in the user’s preferred Earth-fixed 

coordinate system. 

 For the moment, let us assume that the INS has been mounted in such a way that 

the vehicle reference frame (VRF) and IRF are co-located and co-aligned.  In and of 

itself, this is not an unreasonable assumption in the world of multibeam sonar if one 

follows the techniques of Hughes Clark (2003) or de Hilster (2008).  It is unclear if these 

methods have been applied to aircraft.  The topic of the subtle difference between the 

VRF and IRF will be addressed in the following section.  For the purposes of this section 

the VRF and IRF will be considered to be coincident. 

A six parameter transformation (three rotations and three translations) is required 

to convert the laser pointing vector from the SRF to the IRF (Figure 23).  The rotations 

are the angles commonly referred to as the boresight misalignments:  the roll bias 

( xBS ), the pitch bias ( yBS ), and the heading/yaw bias ( zBS ).  As with the previous 

sets of rotations, the Tait-Bryan convention will be followed. 
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Figure 23. The relationship between the SRF and the IRF, showing the boresight 
misalignments, ,  and x y zBS BS BS   , and the SRF to IRF offset vector, 

 IL IL ILx y z   

 

 The rotation matrices for Tait-Bryan are given in (9.12): 

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

cos cos cos sin sin cos sin sin sin cos cos sin

sin cos cos cos sin sin sin sin cos co

z y x

   
   

   

           
        

     
               
          

  
   

  

s sin sin

sin sin cos cos cos

  
    

 
 
 
  

 (3.44) 

where: 

the vessel roll ( )

the vessel pitch ( )

the vessel yaw ( )

x

y

z

BS

BS

BS

 
 

 






 

 Unlike the slope of the Fresnel prism or the prism-to-scanner misalignments, 

(which yield a vertical bias in their associated point clouds), a bias in the roll or pitch 

boresight alignment (  or x yBS BS  ) produces a variable vertical error.  Referring to 
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Figure 24, a vehicle with a positive pitch bias will have a negative vertical bias for the 

forward portion of the swath and a positive vertical bias for the aft portion (for a level 

flight).  Similar results are observed with respect to a roll boresight misalignment. 

 For a level flight over level ground, a yaw boresight misalignment will not lead to 

any vertical discrepancies from the “true” ground; though there will clearly be a 

horizontal shift (Figure 25, left).  If the aircraft experiences any change in attitude (a 

vehicle pitch or roll), or if the ground is no longer flat, an error in the vertical position of 

the laser points will become apparent (Figure 25, right). 

 Each misalignment discussed so far has been addressed through a rotational 

matrix, which at first glance appears to perform identical manipulations.  Figure 26 offers 

a quick visual dictionary that illustrates how the different parameters affect the final point 

cloud.  Perturbing the laser-to-scanner alignments results in an almost teardrop-shaped 

scan pattern (Figure 26, left); changing the boresight angles yield an elliptical scan 

pattern (Figure 26, center); and altering the prism-to-scanner angles, or the Fresnel prism 

slope will produce concentric circular scan patterns (Figure 26, right).  That each 

parameter affects the point cloud differently (i.e., has a different “signature”) will play an 

important role when attempting to decouple the effects of two different parameters on the 

point cloud.   Conversely, should two parameters affect the point cloud in an identical 

way, the parameters will be linearly dependent on one another and only one will be 

capable of being ascertained through calibration. 
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Figure 24. A pair of laser scans with a known (red) and unknown (black) pitch boresight 
misalignment.  
 

  

 
Figure 25. Two flight lines with a misalignment in the yaw boresight angle:  the left is 
from a level flight, while the right is from a flight line in which the plane had a 10° pitch. 
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Figure 26. Three different sets of scan patterns (looking from above) induced by rotating 
different system components with respect to one another.  Teardrop (left), elliptical 
(center) or circular (right) scan patterns are all possible.  
 

The second-half of the six parameter transformation mentioned earlier is the 

translation of the laser pointing vector by the SRF to the IRF (Figure 23).  This lever arm 

can be manually measured in the field with equipment as simple as a tape measure and 

plumb bob.  Such a low-tech solution may prove more accurate than attempting to 

determine the vector,  IL IL ILx y z   , by examining the point cloud.  To best 

estimate the SRF to IRF vector, a full vehicle survey using a total station and adjustment 

software package should be pursued. 

By convention, a SRF to IRF vector with all positive values 

 IL IL ILx y z    implies that the reference point of the LPS assembly (located on 

the upper facet of the Fresnel prism, shown in Figure 9) is forward, to starboard and 

below the INS reference point. 
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 3.1.4.2 – INS reference frame and vehicle reference frame alignment.  With the 

laser pointing vector expressed with respect to IRF, the vehicle’s attitude data (vehicle 

roll - , pitch -  , and yaw -  ) and INS-reported positions can be applied to reduce the 

system to a locally-level reference frame.  While the Tait-Bryan convention was 

previously chosen for convenience, it must be followed in rectifying the vehicle 

orientation because T-B is the convention followed by the INS manufacturer employed in 

CZMIL (Applanix Corporation, 2007). 

 Collecting all the terms discussed so far, the generic laser equation given in (3.1) 

can now be written out more adapted to CZMIL: 

  IRF LRF LRF IRF
G ECEF IRF LRF IRF ECEFx x      x

    
 

Becoming: 

  2G V BS IL ECEFx L x      x
   

 (3.45) 

where: 

2

coordinates of laser point on ground in ECEF reference frame

rotation matrix for vessel orientation

rotation matrix for boresight misalignments

direction of laser exiting LPS assembly (u

G

V

BS

x

L













nit vector)

laser range (scalar quantity)

INS-to-laser offset vector

Earth-centered Earth-fixed position
IL

ECEF

x

x

 






 

 

A few final modifications can now be made to (3.45) by revisiting the concept of 

the vehicle reference frame (VRF).  The VRF is simply a reference frame that is 

associated with the aircraft, rather than any other sensor.  To simplify the problem (and to 

minimize the number of reference frames used), the VRF should be defined to be 

coincident with another reference frame, the IRF.   
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The IRF already has a convenient reference point (usually marked on the surface 

of the INS), which can also serve as the reference point of the VRF.  Lastly, the VRF 

must be oriented to the IRF.  Local gravity will serve to align the respective z-axes of the 

two coordinate systems, leaving only the problem of aligning the respective x-y planes.  

The concern is that a heading misalignment between the VRF and IRF, VI  in Figure 27, 

would lead to cross talk in the INS’s sensed-pitch and roll.   

 
Figure 27. An illustration of a potential heading misalignment between the vehicle 
reference frame and the INS reference frame.  
 

For example, consider a plane with a laser mounted one meter forward of the INS.  

In this case, the term “forward” is ambiguous as it does not identify which reference 

frame is being used.  It is assumed that when individuals make offset measurements in a 

given vehicle, they are doing so with respect to the vehicle’s reference frame (e.g., 

measuring forward-aft distances relative to an aircraft’s centerline or lateral port-
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starboard distances relative to a ship’s frame).  Survey vehicles can have convenient 

reference points, with long baselines, surveyed into vehicles frame; whereas, an INS is 

small box with arrows painted on it indicating forward (Figure 28).  

 
Figure 28. An Applanix POS AV Ver. 5 indicates which way should be pointed 
“forward.”  Sketch modified from Applanix (2007).  
 

 Returning to the example, a plane has a laser mounted one meter forward (with 

respect to the VRF) of the IMU (Figure 29 - #1).  Assuming the INS sticker was not 

consulted during mounting, so there is a slight offset between the VRF and IRF headings.  

Now, if this vehicle were to strictly pitch, then the laser head would pivot up towards the 

INS (Figure 29 - #2).  However, because the INS is misaligned, while the plane is 

pitching, the INS is sensing that it is mostly pitching along with a slight roll (Figure 29 - 

#3).  This sensed data is recorded and later applied when the plane’s trajectory is 

computed.  By applying these incorrect rotations to the laser head it (a) is computed to be 

in the wrong spot and (b) will have an incorrectly computed orientation (Figure 29 - #4). 
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Figure 29. The effects of crosstalk in a poorly mounted INS. Incorrect rotations are 
applied to the lever arms resulting in both translational shifts and angular biases. 
 

 These induced errors are relatively minor and until recently, with system noise 

and poor GPS resolution have been considered inconsequential (Hughes Clark, 2003).  

With improved positioning techniques (real-time kinematic), which can achieve 

positional accuracies on the order of centimeters, these errors are rising above the noise.  

This leaves the surveyor with the conundrum of how to solve for a misalignment when all 

the conventional calibration routines do not address alignments between the VRF and any 

sensors (de Hilster, 2008, Hughes Clark, 2003). 

 Recent attempts in the marine environment to solve for VI  include using multiple 

GPS antennas to survey extra marks into the deck of the ship and then incrementally tilt 

the vehicle while it is tied up alongside a pier, called the “Dutch Method” in the literature 
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(yielding an accuracy of 0.03°; de Hilster, 2008).  Unfortunately, an airplane on the 

ground cannot be manipulated in the same way as a boat alongside a pier.  Further an 

airplane’s fuselage does not afford as many points to install extra GPS antennas as a ship.   

An attempt to identify and remove the artifact caused by a heading misalignment 

between the vehicle reference frame and the INS reference frame will also be addressed 

in this dissertation. 

3.1.5 – Laser Range and Scale Factor 

 The final pair of calibration values refer to the algorithms that are used to 

compute the laser range based on the intensity of the returning waveform (Figure 30).  

This is largely a radiometric problem and may be beyond the scope of this dissertation. 

 
Figure 30. A radiometric bias or a linear scale factor in the laser range computation 
would create a geometric bias in the point cloud that would not be identified if these 
parameters were not included in the calibration. 
 

 These two parameters are a laser range bias, 0 , and a laser range scale factor, 

1 .  A laser range bias could manifest in something as simple as an encoder timing error.  

For all its advanced technology, a lidar is still computing two-way travel times; if there is 

a bias in these times, then there will be an associated bias in the range measurement. 
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 Different surfaces that may be interrogated by the lidar (a metal roof, a shingled-

roof, a paved road, a dirt road, the water’s surface) will have different reflective 

properties (depending on surface roughness, albedo, etc.).  In a poorly trained lidar 

waveform analysis program, an object with high reflectivity will be erroneously 

identified as being slightly closer than a second, less reflective object that is an equivalent 

distance away.  Incorporating a laser range scale factor in the list of considered 

parameters will help mitigate these radiometric issues.  In the end, the operator can 

always choose to not include these values in the calibration procedure. 
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3.1.6 – The Laser Location Equation 

 To summarize the previous sections, the following is a list of the lidar observables 

(values which CZMIL will measure on its own): 

laser range (m)

scanner azimuth (deg)

vehicle roll (deg)

vehicle pitch (deg)

vehicle heading (deg)

INS position, x-coordinate (m)

INS position, y-coordinate (m)

INS position, z-coordinat

zs

I

I

I

x

y

z














 e (m)

 

 The parameters that will be considered in the lidar point positioning equation (and 

later incorporated into the geometric calibrator are as follows: 

Fresnel element slope

Prism-to-scanner alignment (x-axis)

Prism-to-scanner alignment (y-axis)

Prism-to-scanner alignment (z-axis)

Laser-to-scanner phi-angle

Laser-to-scanner thet

FR

x

y

z

LS

LS

PS

PS

PS















 a-angle

Boresight alignment (x-axis)

Boresight alignment (y-axis)

Boresight alignment (z-axis)

INS-to-LPS offset (x-axis)

INS-to-LPS offset (y-axis)

INS-to-LPS offset (z-axis)

x

y

z

IL

IL

IL

BS

BS

BS

x

y

z












 
 
 

0

1

Vehicle-to-INS heading alignment

Laser range bias

Laser range scale factor

VI







  
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Finally, we are in a position to write out the full laser location for the CZMIL 

system.  From (3.45): 

 0
2

1
G V VI BS IL ECEFx L x

 


  
          

    x
 

x

  (3.46) 

where: 

Vehicle yaw Vehicle pitch

coordinates of laser point on ground in ECEF reference frame
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sin cos 0 0 1 0 0 cos sin
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   

   
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       





 
Vehicle roll
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Further, the laser vector exiting the LPS assembly, 2L


, is defined in terms of the laser 

vector entering the LPS assembly ( 0L


), the laser vector within the Fresnel prism ( 1L


), 

the slope of the Fresnel prism ( FR ), the orientation of the vectors normal to the upper 
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and lower faces of the Fresnel prism ( 1 and P 2P
 

), and the refractive coefficients for both 

air and fused silica (  and a s 
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 (3.48) 

3.2 – Preliminary Sensitivity Analysis 

Having identified the CZMIL parameters that will be investigated in this 

dissertation, it is necessary to establish an association of these parameters to each other.  

A simple comparison of how a small bias in each parameter will affect the location of the 
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laser point cloud will reveal which are the more “sensitive.”  Parameters with a high 

sensitivity could potentially lead to large biases in the final point cloud, and thus warrant 

the closest scrutiny in a calibration procedure. 

For example:  if the prism slope were smaller than the manufacturer advertised, 

then the scan pattern would have a slightly smaller radius than anticipated (red points in 

Figure 31).  The result of this narrower swath would be a set of laser ranges that would be 

shorter than expected resulting in a vertical bias to the data.  Under anticipated CZMIL 

acquisition parameters (altitude = 400 meters, prism slope 39.2°), an error of 1 mrad 

(0.06°) in the prism slope would cause a 9 cm vertical bias and a 25 cm horizontal offset 

in the final point cloud (for a level flight).  Armed with the foreknowledge of a user’s 

desired laser point accuracy, the Fresnel prism’s surface slope can be monitored for the 

appropriate accuracy during fabrication. 

 
Figure 31. The Fresnel prism’s slope, FR , is the angle of incidence, 1 , for the Snell’s 

law refraction problem. 
 

The magnitude of the induced bias in the final point cloud caused by a 

miscalculation of  or x yPS PS   will not be as large in comparison to a comparable error 
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in the Fresnel slope.  As described earlier, a 1 mrad bias in FR  leads to a 25 cm 

horizontal error and 9 cm vertical bias of the laser point computations (for a level flight).  

A 1 mrad bias in xPS  would lead to a 3 cm horizontal error and a vertical bias of less 

than 1 cm; a similar bias in yPS  would lead to horizontal and vertical errors of 4 cm and 

2 cm, respectively.   

The preceding comparison between the Fresnel slope and the prism-to-scanner 

misalignments demonstrates a simplified sensitivity analysis.  In the case of the Fresnel 

slope, because equivalent changes in the calibration parameters led to a much larger 

effect on the final point cloud, the system could be thought to be more “sensitive” to the 

Fresnel slope.  This implies that greater attention should be paid to the slope of the 

Fresnel prism in the development of CZMIL (as compared to the prism-to-scanner 

alignments) if the manufacturer seeks to minimize positional errors in the point cloud.  A 

second, though less intuitive implication is that because the system is not as sensitive to 

the prism-to-scanner alignments, these parameters will be more difficult to determine in 

any calibration procedure.  This point will be revisited in the calibration chapter, but it is 

worth noting that parameters with the greatest effect on the point cloud will be the easiest 

to ascertain in the calibration routine and vice versa. 

A sample list of biases induced by uncertainties in all the discussed laser 

parameters is provided in Figure 32.  The parameters that have the greatest impact on the 

final point cloud are the pitch and roll boresight angles,  and x yBS BS  .  These values 

have historically been determined through some calibration routine and will be done so in 

this study as well. 
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Figure 32. Table of laser point biases induced by a 1 mrad (0.06°) and 1° bias in each 
calibration parameter, where z  vertical bias and ( , )x y  horizontal displacement.  
Data based upon a 400m altitude and 20° laser elevation angle with no other biases 
(unless noted).  
 

After the boresight angles, the laser-to-scanner vector is the next most critical 

value to be accurately determined.  Specifically, LS  is of greater consequence since the 

entries in Figure 32 for LS  assume misalignments in both the laser-to-scanner 

parameters (and the magnitude of the point cloud biases do not appreciably worsen by the 

addition of a LS  misalignment).  The LS  angle must be carefully measured on the 

system itself and included in a geometric calibration routine. 

 Caution must be used when interpreting the biases induced by the heading 

misalignment between the vehicle and the INS, VI .  While it is true changing VI  by 1 

mrad will induce a 1 meter horizontal offset in the final point cloud, such a scenario is 
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unlikely to exist after any calibration routine.  This is because there is a correlation 

among the different parameters.  If the vehicle-to-INS heading misalignment was held 

fixed (at 0°, which is often the assumption), the other calibration parameters could be 

adjusted in an attempt to compensate for this error.  “Compensate,” but not eliminate.  It 

is a mathematical case of several wrongs (incorrect calibration values) trying to make a 

right (a coherent point cloud).  A more detailed discussion of the correlation and linear 

dependence of parameters is presented in Chapter VI. 

 As a final observation from Figure 32, the least sensitive parameters (the ones that 

least affect the laser point accuracy) are the three prism-to-scanner alignment angles.  

This suggests fewer resources need to be expended to determine these angles.  

Nevertheless, the angles ,  and x yPS PS PS z    will be included in the calibrator 

development (and the operator will be given the option whether to include these 

parameters in their own calibration). 

3.3 – Summary of Key Results 

 This chapter endeavored to take the eight observed quantities (laser range, scanner 

azimuth, GPS position and vehicle orientation) and the five CZMIL system components 

(laser, prism, scanner, INS, vehicle) along with their respective reference frames and fuse 

them into a single equation which described the location of a laser point on the ground.  

That equation culminated in the development of (3.46). 

In addition to the eight aforementioned observed quantities, thirteen calibration 

parameters were identified to describe the alignments among the system components (3 

boresight angles, the prism slope, the VRF/IRF heading bias, the 3 components of the 

offset vector between the IRF and SRF, 2 angles to describe the laser-to-scanner 
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alignment, and 3 angles to describe the prism-to-scanner alignment.  Additionally, two 

radiometric parameters were added to correct for any errors that may exist within the 

laser range computation (both a bias and scaling factor), bringing the total number of 

inputs for any point in the laser equation to 23. 

To understand the propagation of the laser through the Fresnel prism, the vector 

version of Snell’s Law was investigated (Sections 3.1.1 through 3.1.1.3). 

Throughout, renderings of the point cloud were provided to demonstrate how each 

of the proposed calibration parameters affect the final point cloud (Sections 3.1.2 through 

3.1.4.1).  A preliminary sensitivity analysis was also presented for all of the angular 

parameters to demonstrate how large of a change there would be in the point cloud 

positions were there to be a change in one of the calibration values (Section 3.2).  The 

roll and pitch boresight angles, along with the laser-to-scanner Φ-angle, induced the 

largest changes in the point cloud.  The prism-to-scanner alignments yielded the least 

change in the point cloud.  The concept of a small change in a calibration parameter 

leading to a large change in the point cloud will be revisited in Chapter VI (where it will 

be demonstrated such parameters will be calibrated to a higher degree of confidence than 

those who produce only minimal changes in the point cloud).  
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CHAPTER IV 

THE LIDAR SIMULATION MODULE 

 
Figure 33. Chapter IV outline.  
 

 The previous chapter was devoted to deriving the laser location equation using all 

the inputs, both static (calibration values) and dynamic (quantities like the laser range), of 

the lidar to generate a geometrically-correct point cloud.  While having the laser equation 

is sufficient to immediately proceed with the development of the calibration routine, 

without a working lidar, any calibrator utility will have to sit idle and untested until the 

system’s delivery and actual test flights are flown.  Instead, the laser equation is encoded 

in Matlab and affixed to a virtual aircraft to generate data streams equivalent to those that 

would be created during an actual flight.  

 Along with theory and experimentation, simulation has been characterized as a 

third avenue of scientific pursuit.  Simulations can be used to garner insights, validate 

models, support statistical analysis, predict potential outcomes, test and evaluate new 

systems, and support what-if analyses (Reynolds, 2009).  Here, if the laser equation of 
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Chapter III is taken to be correct, the simulation will allow us to gain insight into the 

behavior of the scan pattern, as well as the performance of the calibrator. 

In addition to being able to test and validate the calibrator sooner, there are 

several other advantages to constructing an independent point cloud simulator.  Through 

simulation, the flight characteristics can be precisely controlled to test vehicle 

maneuvering impacts on both the calibration’s performance and the point cloud’s 

propagated uncertainty – flights can be rerun without any cost to staffing, fuel or 

hardware fatigue.  Different flight patterns can be tested to determine which best 

decouples the calibration parameters.  Basic lidar coverage maps (both topographic and 

bathymetric) can be generated should the flight crew wish to alter the vehicle’s speed or 

altitude.  Different sea states or long period swell can be introduced to assess the impacts 

of beam steering.  Datasets can be cropped to evaluate the impacts on the calibration 

routine for runways of differing sizes.  What makes a lidar point cloud simulator most 

beneficial to a lidar point cloud calibrator is that the calibration parameters used to 

generate the point cloud will be exactly known, so there will be no doubt whether the 

proposed values of the calibrator are correct or not. 

The principle drawback to any simulation is that it may not accurately represent 

the system being modeled.  In such a case, the user must not rely too heavily on the 

model’s conclusions until the simulation can be verified to be accurately reflect reality. 

4.1 – Module Overview 

4.1.1 – The Intersection of Lines and Planes 

 The construction of a lidar simulator comes down to the simple problem of 

determining the point at which a line (a laser beam) intersects a plane (the ground).  The 
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laser beam will be defined from Chapter III, while the ground will be defined in the 

context of the simulator.  First consider the purely geometric problem. 

 

 A line in 3D space is defined parametrically as:  
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 (4.1) 

where: 
 , ,  3D Cartesian coordinates

, ,  3D coordinates of an arbitrary point on line

, ,  vector parallel to line
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A plane is defined as: 

 P P Pa x b y c z d    (4.2) 

where: 
 , ,  3D Cartesian coordinates

, ,  vector normal to plane

 constant.
P P P

x y z

a b c

d







 

If the plane is defined in such a way that it passes through the point , ,P P Px y z , then we 

can solve for d.  Substituting into (4.2): 

 .P P P P P Pa x b y c z d    (4.3) 

So any point ( , , )x y z that satisfies the equation: 

 ,P P P P P P P Pa x b y c z a x b y c zP      (4.4) 

lies on the plane (see Figure 34).  Specifically, we wish to find a value of t in (4.1), if it 

exists, that will produce such an ( , , ).x y z  
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Figure 34. Solving for the parameter, t, where a line intersects a plane. 
 

 Substituting the parameterized coordinates of the line (4.1) into the equation for 

the plane (4.4) yield: 

      0 0 0 .P L L P L L P L L P P P P P Pa x a t b y b t c z c t a x b y c z         (4.5) 

 Then, solving for  0 :t
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 (4.6) 

 
 

0 .P P P P P P P L P L P L

P L P L P L

a x b y c z a x b y c z
t

a a b b c c

    


 
 (4.7) 

Rewriting (4.7) in terms of dot products yields: 

 0

, , , , , , , ,
.

, , , ,
P P P P P P P P P L L L

P P P L L L

a b c x y z a b c x y z
t

a b c a b c


  (4.8) 

Substituting  into 0t (4.1) will then give the ( , , )x y z coordinates of the line-plane 

intersection. 
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 In the context of a laser striking the ground, (4.8) becomes: 

 0

ground_norm nadir_pt ground_norm laser_node_pt

ground_norm laser_unit
t


  (4.9) 

where: 
ground_norm  vector normal to the ground

nadir_pt  point on the ground (taken as point directly below aircraft)

laser_node_pt  origin of laser (taken as point on top of prism)

laser_unit  direction of la




 ser as it departs vessel.

 

The ground normal, represented in spherical coordinates with angles ( ,  ),GR GR   will be 

defined as: 

 

sin cos
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 (4.10) 

When the simulated vehicle begins its trajectory, the point at nadir is defined as the origin 

of the coordinate system.  That is: 

 

0

nadir_pt 0 .
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 (4.11) 

Equation (3.46) gives a generic laser equation: 

 0
2

1
G V VI BS IL ECEFx L x

 


  
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x
    

 

The preceding equation can be split into two components to find both the origin of the 

laser and its direction (the requisite point and vector needed to define a line).  The top of 

the prism is defined as: 

 laser_node_pt ,V VI IL ECEFx x   
    (4.12) 
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and the direction of the laser as it departs the vehicle is given by: 

 2laser_unit .V VI BS L   


    (4.13) 

Should the operator wish to simulate a laser striking a surface other than the ground (a 

building roof, a runway, a sloping sea surface, etc.), it would only be necessary to define 

this new surface’s normal vector and an included point. 

 Once the coordinates of where the laser strikes the ground are known, ,Gx


 the 

distance formula can be applied to this point and the laser’s origin, laser_node_pt, to 

calculate the laser range of the lidar. 

4.1.2 – Adjusting Acquisition and System Parameters 

 A rendering of the overall lidar simulation module interface is shown in Figure 35 

(along with more detailed views shown in Figure 36, Figure 37 and Figure 38).   

 
Figure 35. The lidar simulator interface.  Close up views of the left, middle and right 
portions are shown in the following figures. 
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Figure 36. A closer view of the left panel of the lidar simulator.  The flight and lidar 
parameters are highlighted in yellow; the orientation of the ground is in green; controls 
for the ocean surface are in blue; and the GUI’s control panel is in red. 
 

 
Figure 37. A closer view of the center panel of the lidar simulator.  The panel is 
dominated by a plot of the point cloud (shown with two flight lines surveying across the 
land-sea boundary), but the buttons for launching the uncertainty and calibration modules 
are also present (highlighted in red). 
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Figure 38. A closer view of the right panel of the lidar simulator.  Sensor misalignments 
can be introduced to the point cloud (orange); the vehicle’s attitude can be varied during 

To simulate a lidar flight, more information is needed than just the geometric 

alignm s 

elength 

tion 

y 

flight (yellow); a tidal model can be introduced (blue) and a subset of the data can be 
highlighted for further analysis (red) 
 

ents (boresight angles, IMU-to-laser offset, etc.) of the lidar.  The characteristic

of the laser/scanner assembly and the trajectory of the aircraft must also be fully 

described.  For the laser/scanner, the user must specify values for:  the laser’s wav

(needed for determining the refractive coefficients) and pulse repetition rate, the prism’s 

rate of rotation and starting azimuth, and the number of revolutions to plot (Figure 36 – 

yellow).  For the vehicle, the user must specify:  the acquisition altitude, the starting 

position, and the vehicle’s speed and base course.  A fixed set in the vehicle’s orienta

can also be added (for example, if the airplane is heeling with the nose up at a constant 

10°) (Figure 36 – yellow).  In addition, the vehicle’s attitude can be adjusted dynamicall
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to simulate a vehicle pitching, rolling or yawing during flight (Figure 38 – yellow).  

Examples of both a static and dynamic change in roll are shown in Figure 39.  The 

dynamic attitude is based only on a sinusoidal curve, that is, the vehicle’s roll at any

is defined by (terms in red can be specified in simulator): 

 time 

 
TOTA

0
L

2 t


 ( ) sin ,A Nt
t 


 
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 (4.14) 

where: 

0

TOTAL

( )  vessel roll at time 

 static vessel roll 

A  amplitude of dynamic vessel roll

 time of observation

 elapsed time of entire rolling flight line

N  number of rolls experienced.

t t

t

t






 








 

Though this model is simplistic, the goal is not to recreate an actual vehicle’s flight 

characteristics, but to provide a “dynamic-enough” dataset to test the calibration module.  

Dynamic heave can also be simulated with the above model.  Once all acquisition and 

system parameters are specified, the “Render” button (Figure 36 – red) will synthesize 

the point cloud. 

 
Figure 39. Examples of flights in which the vehicle experiences static (left) and dynamic 
(right) changes in attitude. 
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4.1.3 – Navigation Time Error 

The simulator not only renders the point cloud, but also creates an output file 

contain

p, 

ed 

e 

y different 

r 

. 

e 

reported positions are not modified. 

ing the eight raw measurements used to create each point:  the laser range, the 

scanner azimuth, the three-dimensional location of the IMU and the three angles that 

describe the vehicle’s attitude.  These eight measurements and the laser equation are 

sufficient information to recreate the point cloud.  A ninth measurement, the time stam

is also output with each point for organizational purposes, with the first point in the 

simulation given a time tag of zero.  The inclusion of dynamic vehicle motion, coupl

with time stamping, means a navigation timing error can also be modeled. 

 A navigation timing error, also referred to as a “time delay” or “tim

synchronization error,” results when measurements simultaneously recorded b

acquisition systems (e.g., the INS, the laser encoder) are associated with differing time 

stamps.  Calder and McLeod (2007) discuss methods of preventing such an error from 

ever manifesting during acquisition; however, the lidar simulator still provides a field fo

editing this time delay (Figure 36 – yellow).  For example, a one millisecond delay in the 

vehicle’s attitude, applied to a 20 second flight line that experiences one roll oscillation 

of 10°, will have up to 1cm of vertical error on the reconstructed point cloud (Figure 40)

 Entering a positive value for the time latency within the simulation implies that 

the laser encoder is receiving “old” information from the INS (i.e., the laser is ahead in 

time).  A negative value can also be entered, thereby making the INS the master clock 

and instead retarding the laser.  In the module’s present implementation, editing the tim

delay only affects the time stamps associated with the attitude information; the INS-
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Figure 40. A rolling vehicle with a delay in the attitude time stamping will result a 
potentially incoherent point cloud (black). 
 

s 

eady pulse repetition rate each laser point is temporally separated from its neighbors by 

 fixed

en 

e is a 

 

ttitude 

 The output file of the simulator is indexed by shot number.  Due to the laser’

st

a  increment of time.  If a one kilohertz laser is simulated, then each shot will be 

separated by a one millisecond time stamp, and the vehicle attitude will be logged 

accordingly.  Should there be an integer number of milliseconds time delay applied, th

the attitude data is read from the appropriate field in the array.  For example, if ther

two millisecond delay, then the laser range associated with time t = 5 seconds would use 

the attitude information associated with the laser point time stamped t = 5.002 seconds.  

However, if the time delay results in the needed information being situated 

chronologically between two laser shots, then a linear interpolation is used to estimate the

attitude.  For example, if the previous example has a 2.3ms delay, then the a
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associated with the laser range at time t = 5 would be between the attitude measured

and 3ms ago: 

 

 2ms 

5 5.002 5.0030.7* 0.3* .attitude attitude attitude   (4.15) 

.1.4 – Simulation Display Options 

 a right-handed forward-starboard-down coordinate 

ystem

tion 

 (Figure 

on of the ground plane is controlled by editing the orientation of its 

ormal

4

 The point cloud is oriented in

s .  Once rendered, there are a number of plot features that may be toggled to aid 

with the interpretation of the data (Figure 36 – red).  At the user’s discretion, the laser 

beams, the vehicle and the ground plane can be displayed or hidden.  By default, the 

point cloud is rendered over a 2km×2km ground plane with the vehicle’s starting posi

for reference (Figure 41 – upper-left).  By toggling on the laser beams a better 

representation of the vehicle’s trajectory is seen, here shown with a large heave

41 – upper-right).  Also the rendering of the vehicle (Figure 41 – lower-left) and ground 

(Figure 41 – lower-right) can be suppressed to exaggerate the vertical and horizontal 

scales respectively. 

 The orientati

n  vector (Figure 36 – green).  The user can specify the grade of the ground, ,GR  as

well as which direction is “down-hill,” ,GR

 

  (both expressed in spherical coordinates), 

see (4.10). 

 Subtle changes in the execution of the laser equation can produce the scan pattern 

 

 the 

of several other lidar sensors.  Preliminary rendering of point clouds from three types of 

scanners are shown in Figure 42.  These different patterns can be selected from the “Scan

Pattern” drop down menu (Figure 36 – yellow).  It must be emphasized that these 

visualizations are only preliminary in nature, and the simulator does not yet model
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full laser equations of any lidar other than CZMIL.  Proposed future work should includ

a further investigation of these alternative laser equations.  These equations will not only 

permit the rendering of synthetic point clouds, but expand the use of the calibration, 

covariance and uncertainty modules presented in this dissertation to the larger suite o

laser scanners presently deployed. 

e 

f 

 
Figure 41. The same point cloud with variance display options:  the default (upper-left), 
with the laser beams displayed (upper-right), suppressing the vehicle (lower-left) and 
suppressing the ground (lower-right). 
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Figure 42. Simulations of various lidar scan patterns:  the circular scanning CZMIL, the 
rectangular grid producing LADS, and the forward arcing SHOALS. 
 

4.1.5 – Displaying Point Cloud Biases 

 There have already been several examples in this document of what a point cloud 

would look like were there an undetected misalignment within the lidar (e.g. Figure 24, 

Figure 25, Figure 31 and Figure 40).  All these figures were created using controls 

available within the simulator.  The left side of the simulator (Figure 36) can be thought 

of as the “truth”.  Given the provided system parameters, the program will determine the 

point where the laser strikes the ground and correctly report the laser range.  The right 

side of the simulator (Figure 38 – orange) can then be interpreted as the “perceived 

truth.”  The user may take the correct laser ranges and then re-render the point cloud 

using a laser equation that is filled with incorrect system parameters. 

 An example of how this bias visualization tool performs is shown in Figure 43.  

On the left are two revolutions of a circular scanning lidar with no boresight 

misalignments (i.e., all beams are angled 20° from nadir).  In such a case, the forward, 

aft, port and starboard-looking beams will all have the same computed range.  Should the 
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lidar have a positive boresight misalignment of 10° in the pitch angle (Figure 43), then 

the forward-oriented beams will have a relatively longer range and the aft-oriented beams 

will have a shorter range.  Should the lidar operator incorrectly believe there to be no 

pitch boresight misalignment (i.e., possess the geometry of Figure 43 – left), then the 

longer forward beams will lead the operator to believe the laser pulses are located below 

the actual ground plane and the shorter aft beams are located above the ground (Figure 43 

– right).  Within the simulator, the pitch boresight angle was entered as 10° while the 

pitch boresight bias was entered as 0°.  The rendering of the biases can be toggled on by 

selecting the “Bias?” switch (Figure 36 – red). 

 
Figure 43. Two revolutions of a lidar with no geometric misalignments (left) and the 
same point cloud with an unknown 10° forward (i.e., towards the nose) pitch boresight 
bias (right).  The actual laser footprints are shown in red and the miscalculated point 
clouds are shown in black. 
 

 The ability to preview a geometrically-biased point cloud has several advantages.  

First, an easily visualized sensitivity analysis can be performed (as shown in Figure 32) 

to assess how any error in a calibration parameter will translate to an error in the reported 

positions of the laser points.  Second, the ability to view biased point clouds lays the 

ground work for a signature analysis utility to assess potential misalignments within a 
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point cloud just by examining the clouds geometric characteristics (presently proposed as 

future work).  Finally, from a calibration perspective, different flight line strategies can 

be simulated to establish what maneuvers must be performed to decouple the many 

calibration parameters.  The topic of how the flight lines characteristics relate to the 

ability to determine the calibration parameters is further discussed in Chapter VI. 

4.2 – Advanced Simulation Controls 

4.2.1 – Appending and Subsetting the Point Cloud  

 The lidar simulation program is not meant to be a stand-alone package.  Rather, it 

was created to generate test datasets for other modules, in particular the calibration 

module but also the total propagated uncertainty (TPU) module.  Provided a point cloud 

has been created, both the calibrator and TPU modules can be immediately launched 

from within the simulator (Figure 37 – red).  Launching the calibrator will only cause the 

output of the nine observed quantities associated with each laser spot (the laser range, the 

scanner azimuth, etc.).  No information regarding the position of the laser points or the 

system parameters used to create the point cloud is passed to the calibrator.  In contrast, 

all the parameters (both observables and system alignments) are passed to the TPU 

module.  Further details of the calibration module are presented in Chapter 6, while the 

TPU module is discussed in Chapter VII. 

 Each time the “Render” button within the simulator is pushed one flight line is 

synthesized; however, these auxiliary modules are not limited to working with only a 

single line of data.  By toggling on the “Append” feature (Figure 36 – red), a user may 

simulate an entire day’s worth of flights.  This means that several flights acquired at 

different altitudes, orientations or sampling densities can all be used simultaneously in 
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the calibration procedure.  One could also use this feature to assess data coverage rates 

between overlapping swaths.  The append tool has already been demonstrated repeatedly 

within this dissertation including in Figure 43 which illustrated the appending of two 

flights, each consisting of a single revolution of the scanner. 

 Note that each time a new flight line is appended to the point cloud, the time 

stamp of the first laser pulse is advanced six minutes from the time of the last pulse on 

the previous flight line.  This time lag was added to approximate the time necessary to 

turn the vehicle and line up for the next pass.  These steps in time will be of consequence 

later in this chapter when we introduce wave and tidal models into the point cloud. 

 While the append feature allows the user to increase the size of the point cloud, 

the subset feature (Figure 38 – red) allows the user to narrow the points sent to the 

calibration and TPU modules.  Pressing the subset button will turn the user’s cursor into a 

lasso tool to highlight only a portion of the data for further analysis.  Figure 44 shows an 

example where three flight lines are simulated over a sloping surface.  Imagine the user is 

only interested in the center flight and the downslope portion of all three lines (perhaps 

representing the intersection of two paved surfaces).  Using the lasso tool twice, the two 

areas of interest are highlighted (left) and exported to other modules (right).  This subset 

tool will be critical when trying to assess the viability of performing a calibration on land 

using only the narrow strip of data that would be available over an airport runway. 
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Figure 44. Three survey lines are simulated and two regions are selected by the subset 
editor (left).  Only the selected points are exported to other modules. 
 

4.2.2 – Simulating the Interaction of the Laser and the Water Surface  

 Given that this dissertation is dedicated towards the calibration of a bathymetric 

lidar, incorporating a water surface into the simulation is a crucial step.  Figure 45 

highlights some of the challenges that must be confronted when surveying across a 

virtual shoreline:  the intersection of the land-water boundary must be defined; the laser 

pulses must be recorded from both the water surface and the seafloor; and the physical 

properties of the water mass must be simulated to determine the laser’s refraction.  This 

dissertation proposes to use the water surface as a potential calibration site.  Because tidal 

and sea swell may affect the feasibility of such a choice, both tides and waves and their 

associated impact on the laser must also be considered. 

 Note that this dissertation is not unique in the use of a sea surface return as part of 

the calibration routine.  Conversations with Eric Yang of Optech have revealed the 

SHOALS system has long employed a sea surface detection strategy as a part of their 

calibration methodology.  This dissertation is unique in proposing to use the sea surface 

return exclusively for the calibration routine.  The methodology employed for SHOALS 
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also requires additional flight lines over airport runways and buildings with particular 

sloped roofs.   

 The remainder of this chapter will focus on the preceding list of challenges 

associated with the water surface.  Some topics (like the rendering of the water boundary) 

present algorithmic challenges that should be understood by anyone trying to modify the 

program.  Such topics, however, have little impact on the ultimate calibration routine.  

Those strictly interested in material of relevance to the calibrator may wish to skip to the 

final two sections of this chapter regarding the inclusion of waves and tide. 

 
Figure 45. A simulation of a lidar survey across the land-water boundary. 
 

 4.2.2.1 – Rendering the land-water interface.  The aquatic features are toggled on 

or off via the control panel (shown in red in Figure 36) and interacted with the fields 

shown in blue.  Should the seafloor be horizontal, then the water surface will fill the 

entire plot area.  If, however, the seafloor is sloping, a decision tree must be employed to 
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determine whether a given (x,y) location is over land or water (see Figure 46 for a visual 

representation of the algorithm). 

 
Figure 46. Pseudocode (left) and visual decision tree (right) used for rendering the 
perimeter of the water surface in the presence of a sloping seafloor.  See discussion in 
text. 
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 A polygon representing the water surface must be solved for algorithmically to 

determine whether the laser will strike land, or strike the water, refract through the water 

column and then strike the seafloor.  For one corner of the area of interest (node 1 in 

Figure 46), the elevation of the ground plane is compared to that of sea level.  If the z-

value is below sea level, then node 1 becomes the first vertex of the water surface 

polygon.  If node 1 is underwater, node 3 is then checked.  Should node 3 also be 

underwater, then the edge comprised of nodes 1 and 3 is an edge in the water surface 

polygon, (I) in Figure 46.  On the other hand, if node 3 is above sea level, then there must 

be some point (node 2) between nodes 1 and 3 where the ground plane and water surface 

intersect.  Solving for this point is a simple matter and yields an edge in the water surface 

polygon spanning from node 1 to node 2, (III) in Figure 46.  The process is repeated 

around the perimeter of the area of interest until the full water surface polygon is defined.  

A sample water surface and its associated nodes are shown in Figure 47. 

 
Figure 47. A sample water surface polygon along with the associated nodes needed for 
its derivation.  Vertical edges and lines along the seafloor have been added for clarity. 
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With the water surface polygon defined, the point of intersection between the 

laser and the ground plane is computed.  If the (x,y) projection of this point onto the water 

plane is not contained within the water surface polygon, then the point is logged as a 

strike on dry land and the algorithm concludes.  Conversely, should the point’s projection 

be within the water surface polygon, then the first calculated point is discarded as 

erroneous (because it neglected refraction at the air-water interface) and instead the 

intersection of the laser and the water surface is computed (yielding the coordinates of the 

laser spot on the water surface).  The next section discusses how the laser is then 

propagated through the water column to get the coordinates of the laser strike on the 

seafloor. 

 4.2.2.2 – Propagating the laser through the water column.  The physics of a laser 

pulse as it propagates through the water column are complicated; particularly if one 

considers that the laser will not be a point, but a spot 3m in diameter at the sea surface 

(Fuchs & Mathur, 2010).  For the purposes of tracking the theoretical center of the laser 

spot on the seafloor, the laser beam is assumed to be a low divergence beam entering a 

homogenous water mass. 

 In its simplified form, the problem is again one of determining the intersection of 

a line and a plane, which can be solved using (4.7) and (4.1).  In this case, the plane is the 

same ground plane as before, leaving the line, which is the laser beam traveling through 

the water column to be determined.  Again, a line is defined by a contained point and a 

parallel vector.  The point was found in the previous section where the laser struck the 

water surface, leaving only the direction of the laser within the water column.  To 
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determine the direction of the laser within the water column, we return to the vector 

version of Snell’s Law, specifically (3.30): 
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where: 
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If the water surface is horizontal, the normal vector is simply: 

 [0 0 1].w  


 (4.17) 

Neglecting atmospheric refraction, the direction of the laser pulse entering the water 

column is equivalent to the direction of the laser pulse exiting the aircraft.  From (4.13): 

 2.a V VI BSL L   
 

    

An atmospheric index of refraction of 1.0003a   is used from Feynman (1963).  The 

refractive index for the water column is slightly more complicated, being a function of 

the laser’s wavelength, the absolute temperature of the water and the water’s density 

(where density is further a function of the water’s salinity).  The equation used for 

calculating the refractive index was provided by the International Association for the 

Properties of Water and Steam (1997).  Refractive indices for the green laser (assuming a 

water temperature of 20°C) were computed for three water types:  fresh (0 psu), brackish 

(10 psu) and oceanic (35 psu).  For fresh, brackish and oceanic waters, the refractive 

indices are computed to be 1.3354, 1.3387 and 1.3468 respectively.  Putting these 

 



99 

refractive indices in perspective, should the incoming laser pulse have an incidence angle 

of 20°, then the refracted angle will range between 14.84° (fresh) and 14.72° (oceanic).  

Referencing back to Figure 45, one can see the subtle bending of the laser beams towards 

the water surface normal as it enters the water surface. 

 To summarize, using Snell’s Law will give the direction of laser pulse within the 

water column.  When this vector is combined with the coordinates of the laser point on 

the water surface (found from the intersection of the laser exiting the vehicle and the 

water surface), the intersection of the laser within the water column and the seafloor can 

be computed. 

 4.2.2.3 – Simulating surface waves and swell.  Sea waves and long period swell 

may adversely affect the point cloud in a number of ways.  From the perspective of 

rendering the point cloud, the changing slope of the sea surface may lead to unanticipated 

beam steering at the air-water interface.  From the perspective of the calibration, the 

changing sea surface height might make the water too poor a proxy for a flat surface to be 

used as a reference for calibration.  Further, the variation in the sea height for any given 

location will lead to a variation in the measured laser range for that same location.  This 

uncertainty will have to be accounted for and propagated within the calibration module.  

But before we can examine the impacts of waves on calibration or beam steering, we 

must first simulate it. 

 It should be emphasized that we are not attempting to construct a model of the sea 

surface that will satisfy the most exacting of physical oceanographers.  Instead, we are 

just trying to distill some of the key behaviors of the sea surface that will affect a lidar 

and its calibration.  In the context of this dissertation, “sea waves” will be used to model 
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the small amplitude, high frequency waves that lead to a checkerboard-like confused sea 

surface (Figure 48 – upper-left).  In contrast, “sea swell” will be used to model the larger 

amplitude, long period linear wave fronts (Figure 48 – lower-left).  The two phenomena 

will then be added together to produce the net “sea state” (Figure 48 – right).  To enable 

the wave model within the simulator, check the “Waves?” button (Figure 36 – red). 

 
Figure 48. A combination of low-amplitude, high-frequency waves and high-amplitude, 
low-frequency swell are used to create an idealized sea surface. 
 

 For both the waves, W, and swell, S, the user may specify the wavelength, λ, the 

peak-to-peak wave height, h, and the direction of propagation, θ (Figure 36 – blue).  With 

the previous parameters defined, the wave’s speed, c, will be given by (Pond & Pickard, 

2000): 
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where: 
2 acceleration due to gravity (9.8 m/s )

 water depth.

g

D




 

Making the assumption that the water depth is greater than half the wave length, (4.18) 

simplifies to: 

 ,
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g
c


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  (4.19) 

 with an associated wave period, T, of: 

 / .T c  (4.20) 

So, a point (x,y) at time t will have sea surface height due to the sea waves, zW, defined 

as: 
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Similarly, the sea surface height due to swell, zS, is defined as: 
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Notice the convention of the above two definitions preclude the possibility of the 

wavelength being set to zero.  It should also be stated that (4.21) and (4.22) are not 

advertised to be the formal solutions to the two-dimensional wave equation.  Instead they 

were simply constructed to produce the behavior that is demonstrated in Figure 48 

Should a user wish to remove either the sea waves or swell from the model, the 

associated height should be set to zero.   

 Programmatically the simulator determines the z-value for the waves and/or swell 

which shifts the entire water plane by the appropriate amount.  This shifted surface is 

then used in the calculation of the intersection of the laser beam and the water plane. 
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Rather than getting entrenched in the details of (4.21) and (4.22), the reader may 

content themselves with the fact that the preceding equations were used to generate the 

surfaces shown in Figure 48.  Recall the goal is not to create a perfect physical model of 

the sea surface, but a surface that exhibits the general behavior of the sea surface (which 

is demonstrated in Figure 48).  Referring to Figure 49, we see that the introduction of a 

dynamic sea surface has an effect that looks like noise in the vertical component of the 

point cloud.  This noise is the precise phenomenon we wish to understand as it later 

relates to the calibration module. 

 
Figure 49. A view of a point cloud acquired over a calm sea surface (top) and the effects 
when a swell is added (bottom). 
 

 4.2.2.4 – Wave-induced uncertainty in the laser range.  A laser directed at the 

same spot on a dynamic sea surface, can yield a large variation in the reported laser range 

(Figure 50).  A geometric relationship is required to describe how the uncertainty is 
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propagated from wave to laser.  For a wave with a peak-to-peak height of h, the standard 

deviation in the height is given by (Smith, 1997): 

 .
2 2

h

h   (4.23) 

Studying Figure 50, should the laser make a 20° angle with the mean sea surface normal, 

then the uncertainty in the wave height, ,h  will be related to the contributed uncertainty 

to the laser range, 
h

  by: 

 sec 20
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Finally, substituting from (4.23) yields: 
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If the calibration adjustment is performed over the water surface, (4.27) will be used to 

describe the variability of the laser range. 
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Figure 50. Relating the height of a wave with the induced uncertainty in the laser range 
measurement. 
 

 4.2.2.5 – A dynamic ocean surface and beam steering.  In reality, the large spot 

size of the laser (estimated at a 3m diameter for CZMIL) will serve to dampen the effects 

of any waves or swell that are present.  So long as the wavelength of the sea waves is less 

than the diameter of the laser spot, the effects of the dynamic sea surface will average out 

(Figure 51 – left).  Problems may arise however in the presence of sufficiently long 

period swell (Figure 51 – right).  If the period is long enough, then the entire laser spot 

may be focused on just the crest or the trough of the wave.  This will cause variability in 

the vertical position of the point on the sea surface, but may also change the average sea 

slope causing the laser beam to refract further or nearer than anticipated from (4.16).   

Because the simulator treats the laser as an infinitely narrow beam, high 

frequency waves will never be averaged out (as shown in Figure 49).  This implies the 

simulator will represent a worst-case scenario as far as generating datasets for the 

calibrator.  If the calibrator can work with datasets with no spot averaging, then it should 
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perform better on an actual data.  The problem of beam refraction induced by long period 

swell will now be investigated further. 

 
Figure 51. When a sea wave’s wavelength is much smaller than the lidar spot size (left), 
the dynamics of the wave height are averaged out.  In the presence of long period swell 
(right), a lidar’s entire spot may be focused on the wave’s crest or trough, resulting in 
different estimates of the sea surface height from shot-to-shot. 
 

 As discussed earlier in the chapter, the path the laser takes when entering the 

water column is subject to Snell’s law and is a function of the normal vector of the sea 

surface.  Previously, this vector was assumed to be vertical, see (4.17), but with long 

period swell, this will not necessarily be the case.  For an arbitrary function, f(x,y), the 

surface normal vector,  is given by: ,w


 1 .
f f

w
x y

  
    

T


 (4.28) 

Thus, the surface normal vector at any point on the sea surface can be found by applying 

(4.28) to the equations for the wave and swell height, (4.21) and (4.22).  This normal 

vector is then substituted into the equation representing Snell’s Law, (4.16), and the 

location of the laser spot on the seafloor is then solved for as before. 

 To enable or disable the beam steering due to the dynamic sea surface slope, the 

user may toggle the “Refract?” button (Figure 36 – red).  Examples are shown below of 

the behavior a lidar pulse both with and without beam steering.  In Figure 52, a laser is 

repeatedly fired at the same location as the sea surface moves up and down.  The upper 
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portion of the figure assumes the sea surface normal is vertical, and thus neglects beam 

steering, applying a constant angle of refraction once the laser enters the water.  Notice 

that when beam steering is neglected, all the theoretical paths of the laser are parallel.  

Figure 52 (bottom) shows what happens to the laser should the changing slope of the sea 

surface be included; the result is a larger distribution of points on the seafloor.  Note the 

maximum refraction occurs when the wave height is near zero (i.e., where the wave has 

maximum slope). 

 A top-down view of a point cloud collected from a stationary vehicle is shown in 

Figure 53.  Data are repeatedly collected from the same locations as the sea surface is 

free to change beneath it.  In this case, only a swell front is present moving from the top 

of the image to the bottom.  Beams oriented directly into the swell (at the top of the 

image) only have their points on the seafloor slide forward and back.  However, as the 

angle the laser makes with the direction of the wave front increases, there is a larger 

spread in the distribution of points.  One such cluster of points, highlighted with a blue 

rectangle in Figure 53, is shown in Figure 54.  Given a water column depth of 10m, the 

points on the seafloor demonstrate a distribution of 2m in the fore-aft direction and 1m 

laterally.  Again, in reality, the laser will be subject to beam spreading throughout the 

water column:  Figure 54 just demonstrates how large the distribution of the center of that 

spreading beam will be. 
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Figure 52. The behavior of a laser pulse as it crosses the air-water interface in the 
presence of surface waves.  Examples are shown both without (top) and with (bottom) the 
inclusion of beam steering caused by a sloping sea surface. 
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Figure 53. Top-down view of distribution of lidar points on the seafloor acquired in the 
presence of surface swell.  Swell traveling from top to bottom of image.  Right panel is a 
close-up view of left panel.  The blue rectangle is shown in Figure 54. 
 

 
Figure 54. Distribution of one cluster of laser strikes on the seafloor in the presence of a 
1m swell with a 50m wavelength, as highlighted in Figure 53.  Acquisition altitude was 
400m while the water depth was 10m.  Theoretical footprint shown in red.  All units in 
meters. 
 

 4.2.2.6 – A simulated tidal model.  The last feature contained within the point 

cloud simulation is the ability to introduce a tidal model to the water surface (Figure 38 – 

blue).  There are four different options given with respect to tides:  no tides, a linear tidal 
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model, a sinusoidal tidal model, or incorporating tides from a file.  The tidal option 

chosen will dictate the form of the tidal interface (Figure 55). 

 
Figure 55. The different tidal interfaces within the simulator. 
 

 As was the case with simulating sea waves and sea swell, the goal of the simulator 

is not to produce a perfect tidal model complete with all the principal tidal constituents.  

The simulator will only attempt to replicate the possible effects on the point cloud that 

may occur over the course of a single survey mission. 

 The simulator merely determines the z-value for the tides at the time the laser is 

fired and then shifts the water plane up or down appropriately.  This shifted surface is 

used in the calculation of the intersection of the laser beam and water plane.  Selecting 

“no tides” merely removes any tidal artifacts that were previously introduced.  The linear 

tide model is provided as a trouble-shooting tool for the calibrator, which has the ability 

to approximate the changing tides with a linear model (this topic will be further discussed 

in Chapter VI).  The models of greatest relevance are the last two options:  the sinusoidal 

tide model and reading the tides from an external file. 

 As the name suggests, the sinusoidal tide model permits the user to apply a simple 

sinusoidal tide curve to the point cloud.  Specifying the peak-to-peak tidal range, R, the 

tidal period, T, and the present phase of the tides, φ, the tide value, z, at time t is given by: 
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2

( ) sin .
2

R
z t t

T

  
 

   (4.29) 

Setting a phase of 0° will assure the tide is changing at the maximum rate at the 

beginning of survey; however, this can be set to any value.  A sinusoidal model is good 

enough for the purposes of simulating the behavior of tides through an entire sortie of 

flight lines.  How the calibrator will handle this model is discussed in later chapters. 

 The final tidal option is the ability to read the tide values from an external file.  

Either spreadsheet or text formats are acceptable and require only two columns of data:  

the time tags in seconds and the tide values in meters.  Through a separate file, the user 

may create as complicated (or as simple) a tidal model as they desire (bearing in mind the 

simulator time tags its first laser point as t = 0).  Thinking ahead with regard to using the 

sea surface for a calibrator, a predicted tide file could be downloaded from NOAA and be 

used to remove the tidal signal, leaving only the mean water surface.  For illustrative 

purposes, examples of a flight line acquired over (very exaggerated) tidal regimes are 

shown in Figure 56. 

 
Figure 56. Side views of a point cloud with four different tidal models applied:  no tides 
(upper-left), a linear tidal model (upper-right), a sinusoidal tidal model (lower-right) and 
loading a user-defined tide from a file (lower-left) . 
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4.3 – Summary of Key Results 

 This chapter was devoted entirely to the lidar simulation module.  The following 

is a bulleted list of the key aspects of the simulation.  When possible, the relevant 

section(s) that offer a more detailed explanation are indicated. 

 The module provides the ability to visualize any biases in the point cloud based 

on an incorrect assumption about one of the lidar’s calibration values (Section 4.1.5).  

The ability to visualize biases is key in conducting a sensitivity analysis as all the biases 

displayed in Figure 32 were generated using this feature. 

 The simulation is based on the intersection of a line (the laser beam) and a plane, 

the ground, water surface or sea floor (Sections 4.1.1, 4.2.2.1 & 4.2.2.2).  

 For each flight line, up to 22 parameters can be specified to describe the lidar 

configuration, in addition to the ability to have the vehicle experience dynamic changes 

in altitude and attitude mid-flight (Section 4.1.2). 

 The module provides the ability to select just a subset of the data for further 

analysis (Section 4.2.1):  a tool that will be useful in Section 6.4.1 – Calibration on a 

narrow runway. 

 A water interface has been added to the simulation which includes the ability to 

generate sea waves and tidal effects (Sections 4.2.2.3 & 4.2.2.6):  a tool that will be 

useful in Section 6.4.2 – Calibration on a dynamic sea surface.  In addition surface 

refraction and swell-induced beam steering has been implemented to visualize the scan 

pattern on the seafloor (Sections 4.2.2.2 & 4.2.2.5). 

 



112 

Having now constructed this robust lidar point cloud simulator, we may now turn 

our attention to the thrust of this dissertation, a method of determining the lidar’s system 

parameters which produced the aforementioned point clouds. 
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CHAPTER V 

THE ADJUSTMENT ALGORITHM 

 
Figure 57. Chapter V outline.  
 

 Now that the frame work for synthesizing a point cloud is complete, the focus can 

shift to the methodology for calibrating said point cloud.  The discussion of calibration is 

divided into two chapters:  this chapter is more theoretical in nature, developing the 

theory necessary for the development of a calibration module; whereas the following 

chapter then takes said module and performs the adjustment.  There are three key goals to 

this chapter: 

 To provide the mathematical framework and derivation for the type of adjustment 

model (a weighted constraint, linearized least squares model solved through matrix 

partitioning) used in this dissertation (Section 5.1) 

 To present the equation used to calibrate the point cloud – fitting the data to a 

single planar surface (Section 5.2.1). 

 To provide both simplified and advanced examples of how a theoretical 

adjustment model can be applied to a lidar calibration (Sections 5.2.2 & 5.2.2.1). 
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As its name implies, the first section of this chapter is focused on the theory of 

least squares adjustments.  This material is provided both for completeness and for the 

benefit of the uninitiated with regard to adjustment algorithms.  This information will be 

valuable to anyone seeking either to modify the proposed algorithms or to develop an 

adjustment algorithm unique to their own lidar.  Those already possessing a firm 

understanding of the principles of the least squares may wish to skip ahead to Section 5.2 

which presents the proposed adjustment equation for the CZMIL system. 

5.1 – Theory of a Least Squares Adjustment 

5.1.1 – Sample System of Linear Equations 

Before discussing the details of the least squares model, first a simplified problem 

is presented.  Note:  for a more complete discussion of the least squares adjustment than 

what is presented in this paper, the reader is directed to either Ghilani & Wolf (2006) or 

Wells (1999), who were heavily referenced in the development of this chapter. 

Consider an error-free system of linear equations: 

 1 2

1 2

2

0

x x

x x

 
 

 (5.1) 

which is of the form: 

 11 1 12 2 1

21 1 22 2 2

a x a x

a x a x

 
 




 (5.2) 

where: 
 constants

 unknowns

 observations.

ii

i

i

a

x





 

The equations represented in (5.1) are simple and straight-forward to solve, 

yielding the unknowns as 1 2=1 and 1.x x    As an aside, so long as the number of 
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equations matches the number of unknowns, a unique solution exists (assuming the linear 

independence of the equations).  Any additional equation would be necessarily redundant 

(linearly dependent) and contain no new information (for example: ). 1 22 2x x  4

.2

 A better analog for the real world is found if we permit there to be some 

uncertainty in the observations.  Take the system of equations: 

 
1 2

1 2

1 2

1.9

0.1

2 3

x x

x x

x x

 
 
 

 (5.3) 

which are of the form: 

 
11 1 12 2 1 1

21 1 22 2 2 2

31 1 32 2 3 3

a x a x r

a x a x r

a x a x r

  
  
  





 (5.4) 

where   are the residuals or misclosures of .i ir 

The determination of 1 and 2x x  is no longer so obvious (and impossible if the 

residuals are not acknowledged).  The first two equations of (5.3) suggest 

; whereas the last two equations present an inconsistent solution of 

.  In the presence of uncertainty, the problem must be redefined:  rather 

than finding the unique solution set, instead the unknowns must be selected in such a way 

so as to minimize the misclosures of the observation equations.  Rewriting 

1 2=1 and 0.9x x 

1 2=1.1 and 1x x 

(5.3) as:  

 
1 2 1

1 2

1 2

1.9

0.1

2 3.2
2

3

x x r

x x r

x x r

  
  
  

 (5.5) 

the goal is to choose 1  and 2x x

3r

 that “best fit” the equations of (5.5).  We would like to 

minimize  (the L1 norm).  However, to avoid the trivial case created by 1 2r r 
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allowing the residuals to grow unbounded towards negative infinity, we shall instead 

minimize the sum of the squares of the residual (the L2 norm).  That is, minimize: 

 2 2 2
1 2 1 2 3( , ) .x x r r r     (5.6) 

 From calculus, a potential minimum is identified by taking the first-derivative and 

equating it to zero.  In the case of (5.5): 

        2 2

1 2 1 2 1 2 1 2, 1.9 0.1 2 3.2x x x x x x x x          2
 (5.7) 

has partial derivatives: 

 

      

     

1 2 1 2 1 2
1

1 2 1 2 1 2
2

2 1.9 2 0.1 2 2 3.2 2 0

2 1.9 2 0.1 1 2 2 3.2 0

x x x x x x
x

x x x x x x
x








         




          


 (5.8) 

which simplifies to the normal equations: 

 1 2

1 2

12 4 16.8 0

4 6 10 0

x x

x x .

  
  

 (5.9) 

The linear system given in (5.9) has a solution of 1 21.0857 and 0.9429x x  .  The 

preceding solution then has associated residuals given by (5.5) of 

, which when substituted into 1 2 30.129, 0.043, 0.086r r r   

x

(5.6) yields a sum of 

squares of 0.026.  Contrast that with the residuals associated with the somewhat 

capriciously chosen solution 1 2=1 and 1x  , which has a larger sum of squares total of 

0.06.  The solution to (5.9) represents the best possible choice for 1 2 and x x  that yields 

the least sum of the residuals’ squares. 
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5.1.2 – General System of Linear Equations 

In a more general case, we have: 

 

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x r

a x a x a x r

a x a x a x rm

    
    

    

 
 


 

 (5.10) 

where we wish to minimize the function: 

   2 2
1 2 1 2, , , n

2
mx x x r r r     
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 (5.11) 
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 

  (5.12) 

The minimum is again found through computing the partial derivatives and equating each 

to zero. 
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Multiplying and collecting like terms: 

  (5.14) 

 
 
 
 
 
 

11 11 21 21 1 1 1

12 11 22 21 2 1 2

1 11 2 21 1 11 1 21 2 1

11 12 21 22 1 2 1

12 12 22 22 2 2 2

1 12 2 22 2 12 1 22 2 2

11 1

m m

m m

n n mn m n m

m m

m m

n n mn m n m

a a a a a a x

a a a a a a x

a a a a a a x a a a

a a a a a a x

a a a a a a x

a a a a a a x a a a

a a

   

    

     

   

    

     

 

  

   

 

  

  

 
 
 

21 2 1 1

12 1 22 2 2 2

1 1 2 2 1 1 1 2

n n m mn

n n m mn

n n n n mn mn n n n mn m

a a a a x

a a a a a a x

a a a a a a x a a a

   

    

     

 

  

  

m

m



 

 

1

1



i

 
 
 
 
 
 

L

or in sigma notation: 
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However, if we let: 
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then the original problem stated in (5.10) becomes: 

 Ax L  (5.17) 

and (5.15) can be rewritten as: 

 TA Ax A LT  (5.18) 
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which has the solution: 

   1
.


 T Tx A A A L  (5.19) 

5.1.3 – A Weighted Constraint Least Squares Model 

The sum of the residuals’ squares, 

 2 2 2
1 2 3 mr r r r 2      (5.20) 

can be expressed in matrix form: 

  (5.21)   Tr r

where: 

 1 2 3 mr r r rr   

But not all observations are necessarily of equal merit, and there may be less confidence 

in some measurements; therefore, these observations should be allocated less weight in 

the adjustment.  If each observation, , were to have a known variance of i
2

i
  , then a 

covariance matrix is constructed as: 
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Note:  in the case of (5.22), all the cross-covariances are assumed to be zero and only the 

variances are included.  Given  is a diagonal matrix, its inverse is the reciprocal of the 

diagonal elements.  The reciprocals are defined as: 
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 (5.23) 
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where i  represents the desired weighting for each observation.  Under this scheme, an 

observation with a large variance will have an appropriately small weight and vice-versa.  

So the weighting matrix is given by: 
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21
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0 0 m








 
 
 
 
 
 

C




   


 (5.24) 

 and the new function to be minimized is: 

  (5.25) 2 2 2
1 1 2 2 3 3 m mr r r r         2

or: 

  (5.26) 1 .  Tr C r

 There may not only be misclosures in the observations,  , (written as r); there 

may also be misclosures in the adjusting parameters, x, which are denoted by .  These 

misclosures in the adjusting parameters should also be minimized in the adjustment.  

Further, these misclosures, , can also be weighted with an a priori knowledge of their 

uncertainties, 

δ

δ

1
x
C  (defined in a similar manner to that shown in (5.22) through (5.24)), 

yielding: 

  (5.27) 1 .x  T Tr C r δ C δ
1

 The inclusion of the a priori weighting of the adjusting parameters, also referred 

to as a Bayesian inference (Martin, 1967), offers several advantages.  By manipulating 

the weights, the operator can dictate which parameters have the greatest amount of 

flexibility in the adjustment.  For example, if parameter X has a high confidence (low 

standard deviation) and parameter Y has a low confidence (high standard deviation), then 
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the user would want any misclosures in the observations to be more heavily attributed to 

parameter Y.  The 1
x
C  matrix provides the means of having the least squares 

preferentially adjust the parameters with the lesser confidences. 

 Secondly, a weighting of the adjusting parameters will aid in the prevention of the 

least squares algorithm iterating off towards infinite values or converging towards 

physically nonsensical values.  For example, if the actual pitch bias were to be 10o, then, 

while 370o, 730o or 1090o are also mathematically valid answers, they are unpalatable 

answers from the perspective of the system operator.  Also, if too much freedom is given 

to the system parameters, the virtual components might start flipping upside down or 

aligning themselves in ways not physically possible.  Through a sufficiently small a priori 

weighting on a given parameter, the operator can prevent the least squares algorithm from 

wildly iterating; instead, keeping each parameter in the neighborhood of the initial 

guesses. 

 5.1.3.1 – Adjusting a non-linear equation.  Equation (5.17) can be rewritten as: 

  Ax L 0  (5.28) 

which is of the form: 

 ( , ) 0f x   (5.29) 

where   represent the measured quantities and x represent the unknowns. 

Should the function shown in (5.29) be non-linear, then a Taylor Series expansion is 

performed.  The expanded model is given by: 
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  
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(5.30) 

which, when truncated yields a first-order linear approximation: 
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, ,

( , ) ( ) ( )( , ) 0
x x x x

g

f f
f x x xf x

x   

    
 

r δD A

   

  
   

  (5.31) 

where: 
 initial approximation of model

 corrections to the measured quantities,  (residuals)

 corrections to the unknowns  (adjustments)

 design matrix with respect to observations

 design matrix wit

g

x







r

δ

D

A



h respect to adjusting parameters.

 

Thus: 

 .f g   Dr Aδ 0  (5.32) 

 5.1.3.2 – The Lagrange correlate.  Using the above-stated linearized model, the 

equation to be optimized (5.27) can be visited one more time as: 

    1, 2 xg     T T Tr δ r C r k Dr Aδ δ C δ
1 .  (5.33) 

Notice the term in parenthesis in (5.33) is the expression from (5.32), which is equal to 

zero.  Thus, mathematically, the expression for   has not changed.  The extra term, , is 

called a Lagrange correlate and aids in steering the overall convergence of the least 

squares algorithm.  The Lagrange correlate can be thought of as a weighting for each 

entire observation equation (versus the individual observations,   weighted through C , 

or the adjusting parameters, 

k



x  weighted through xC ).  For further information on the 

Lagrange correlate, the reader is referred to Wells (1999).  What follows is a 

demonstration of how the Lagrange correlate is used in practice. 

 As before, (5.33) can be optimized by setting its first-partial derivatives equal to 

zero. 

  12 2
 
  


T Tr C k D 0 0

r    (5.34) 
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   12 2 x

 
  


T T0 k A δ C

δ
 0  (5.35) 

which are both valid, provided: 

 g   Dr Aδ 0  (5.36) 

 The above three equations can then be condensed into a single matrix equation: 

 

1

1
x

g





       
               
             

T

T

C D 0 r 0 0

D 0 A k 0

0 A C δ 0 0



 (5.37) 

As an aside, Equation (5.37) can be checked as follows, multiplying through the first row 

of the 3×3 matrix yields: 

     

1

1 1

1

(where  is symmetric)



 



 

 

 

T

T TT T

T T

C r D k 0

C r D k 0 C

r C k D 0



 



which matches (5.34).  Multiplying out the second row yields: 

 g  Dr Aδ 0  

which matches (5.36); and checking the third row yields: 

     

1

1 1

1

(where  is symmetric)

x

x x

x



 



 

 

 

T

T TT T

T T

A k C δ 0

A k C δ 0 C

k A δ C 0

which matches (5.35).   

5.1.4 – Solving a Linear System Through Matrix Partitioning 

We are now in a position to begin solving (5.37), bearing in mind the goal is to 

solve for δ ; that is, to determine how far off are the adjusting parameters from the initial 
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estimates.  To solve this linear system, the matrix will be partitioned in the manner 

discussed in Wells (1999) to isolate .  First, consider the simpler linear system: δ

N N

N N
 11 12 1 1

21 22 2 2

0

0

y u

y u

       
        

      
 (5.38) 

1 and for which the goal is to solve for 2y y .  Multiplying out the matrix equation yields: 

11N y1 12 2 1 0N y u    (5.39)  

21 1N y 22 2 2 0.N y u    (5.40)  

Assuming  is non-singular, 11N (5.39) can be solved for 1y  

  1
1 11 12 2 1y N N y u   (5.41)  

Substituting  y1 into (5.40) yields: 

  1
21 11 2 2 1 22 2 2 0.N N N y u N y u 1      (5.42) 

Simplifying and solving for 2y  yields: 

 
11

2 2 12 22 21 11 1 2 ,1
1 11y N N N N N N u u

           (5.43) 

and back-substituting (5.43) into (5.41) gives an expression for 1y : 

  11 1 1
1 11 12 1 11 12 22 21 11 1 2 1 .2y N N N N N N N u u u

             
N   (5.44) 

 Returning to (5.37), the system can be partitioned as follows: 

 

1

1
x

g





       
               
             

C D 0 r 0 0

A k 0

C δ 0 0


T

T

D 0

0 A

 (5.45) 

where:   in equations 1 2 and y y
 

   
 

k
r

δ
(5.44) and (5.43), respectively.  Applying (5.43) 

yields: 
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1

1

1

1

1

1
.

x

x

x

g

g

g













                                      

       
       
      

    
    

  

T
T

T

T

T

T

0 Ak D D
C D 0 C 0

A Cδ 0 0

0 ADC D 0

A C 00 0

DC D A

0A C

 





0

 (5.46) 

The terms of the preceding equation are then rearranged to match the form of (5.38), 

whose solution was previously identified: 

 
1

x

g


       
        

      

T

T

k 0DC D A

δ 0 0A C
  (5.47) 

where .  Thus, a second application of *
1 2 and y y k δ* 

1 


(5.43) yields: 

  (5.48)    
11 1 .x g
            

T T T Tδ A DC D A C A DC D 0 

    11
x g

     
T T T Tδ C A DC D A A DC D 

1
 (5.49) 

Equation (5.49) is the key iterative equation that will be used in the least squares 

adjustment.  To find the residuals of the observations,  , (helpful in the identification of 

data outliers), one must first solve for k.  Applying (5.41) to (5.47) yields: 

 

 

  

   

1
11 12 2 1

1

1
.

N N y u

g

g







  

   

 

T

T

k

DC D Aδ

DC D Aδ





 (5.50) 

Back-substituting a second time by applying (5.41) to (5.45) yields: 
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 (5.51) 

 

   

   

     

     

1
11 12 2 1

11

1

1 11

1 11 .

x

x

N N y u

g

g g

g







 

 

  

           
 

  

              
          

T

T

T T

T T T T T T

T T T T T T

r

k
C D 0 0

δ

C D k

C D DC D Aδ

C D DC D A C A DC D A A DC D

C D DC D I A C A DC D A A DC D





 

   

   

1

1





The preceding equation can be simplified computationally if the following identity is 

observed: 

 

   
   

      
      

       

 

-1 -1T T -1 T -1 -1 T

-1 -1T T -1 T -1 -1 T

-1 -1-1 T T -1 T T -1 T -1 -1 T -1 T -1 T

-1 -1-1 T T -1 T T -1 T -1 -1 T -1 T -1 T

-1 -1 -1 -T T -1 -1 T -1 T

S + A RA A R = S A R + AS A

I S + A RA A R = S A R + AS A I

S A (A ) S S + A RA A R = S A R + AS A R (A ) A R

S A (A ) S S + A RA A R = S A R + AS A R (A ) A R

A S S + A RA = R + AS A R A

       
   

1 1

1

1 1

1

.

 



 



   
      



  

  


1

-1 -1 -1 -1T T -1 -1 T -1 T

T T T -1 -1 T

T T T T -1 T -1 T

T T T T T -1 T

A S S + A RA = R + AS A R A

S + A RA S A A R R + AS A

SS A A RAS A A RR A RAS A

IA A RAS A A I A RAS A

I I

(5.52) 

As applied to (5.51), 

  (5.53)          1 11 .x g
 
  
           T T

T T T T T T

S AR RA A

r C D DC D I A C A DC D A A DC D    
1

     1 1
,x x g

 
   T T T T Tr C D DC D I AC A DC D AC A    (5.54) 
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the misclosures of the observations. 

 Finally, an updated variance-covariance matrix can be computed for the 

calibration parameters: 

    11
.x


 T TC A DC D A  (5.55) 

This matrix will be instrumental in assessing the quality of a proposed calibration 

solution (Section 6.2.1.3), the linear dependence of the calibration variables (6.2.2) and 

the total propagated uncertainty of the point cloud (Chapter VII). 

5.2 – The Adjustment Model 

 The adjustment model employed in this dissertation seeks to fit the laser point 

cloud to a single planar surface.  This represents a divergence from such adjustment 

procedures of Alharthy and Bethel (2004) or Vosselman and Dijkman (2001) who use 

several planar surfaces (i.e., building roofs) in their calculations.  To mathematically 

derive the plane that best fits the point cloud, the same equation as employed by Freiss 

(2006) is used: 

  OBS PLANEf n x x  
  

 (5.56) 

where: 
 normal vector of the planar surface

 3D coordinates of the laser observations being fit to the plane.

 3D coordinates of an arbitrary point located on the planar surface.
OBS

PLANE

n

x

x









 

Referring to Figure 58,  describes the vector from point  OBS PLANEx x
   PLANEx


 to point 

OBSx


 (highlighted in blue). 

 One definition of the dot product is given by: 

 cosa b a b    (5.57) 
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where a and b are arbitrary vectors and   is the included angle between the two.  

Assuming both a and b to be non-zero vectors, then the dot product (5.57) can only be 

zero if cos 0.    Or, in other words, if 90 .     In the case of the vectors n and 

, should their included angle equal 90  then that would imply the vector 

 lies within the plane, and thus, the point 

 PLANEx x
 

 PLANEx x
 





OBS

OBS

,

OBSx


 also lies within the plane.  

In this way, every laser point observation which is given by the laser location equation 

(3.46) is substituted into (5.56).  Each equation, once linearized, then forms a single 

observation in the system of linear equations discussed in (5.10). 

 
Figure 58. Determining the equation of a plane that best fits a collection of laser 
observations. 
 

 Should an ideal plane be found that fits all of the laser points, then each equation 

would be of the form (5.10) with all misclosures, , being zero.  However, if no plane 

fits perfectly, then each equation will have a non-zero misclosure.  As discussed 

previously, the least squares adjustment will be used to minimize the collective sum of 

the squares of these misclosures.  It should be emphasized that not only will the 

parameters of the planar surface be adjusted (i.e. n and 

r

PLANEx


), but also the parameters 
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within the laser location equation.  In this way, rather than stating that the planar surface 

is being fitted to the laser point cloud, it is more accurate to state that both the plane and 

the point cloud are being adjusted to each other. 

5.2.1 – Parameterizing the Planar Surface 

 There are two over-arching objects that must be parameterized with respect to the 

planar surface (each of which has three components):  the normal vector, n, and the 

included point, PLANEx


.  Unfortunately, from the perspective of the least squares method 

which seeks the one optimal solution, both the vector and point have an infinite number 

of solutions.  As such, care must be taken in the representation of these parameters to 

facilitate the convergence of the least squares (versus an infinite oscillation among 

several suboptimal solutions). 

 In general, a plane can be represented by the equation: 

       0x P y P z Pn x x n y y n z z       (5.58) 

where: 

 
 planar normal vector

 point contained in plane.

x y z

PLANE P P P

n n n n

x x y z

   
 



  

In this form, the least squares algorithm must solve for 6 parameters.  Vosselman and 

Dijkman (2001) propose a modified three-dimensional Hough transform to describe the 

plane: 

 x yz n x n y zP    (5.59) 

where (as defined above in (5.58)): 
 slope of plane in -direction

 slope of plane in -direction

 vertical distance of plane to origin.

x

y

P

n x

n y

z





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Effectively, Vosselman & Dijkman acknowledge there are an infinite number of ways to 

parameterize a single plane.  So long as the plane in question is not vertical, they state 

that there must be some point that passes above/below the origin (i.e., ).  

Further, by setting , the normal vector is prohibited from scaling (i.e. if 

0 and 0P Px y 

1zn  1 1 2  

is a correct normal vector, so is any constant multiple, like     1 1
2 22 2 4  or 1  ). 

Regarding the least squares algorithm, the advantage to the Hough transform is 

that the planar surface can be represented with three parameters (rather than the full six), 

which is computationally more efficient.  The disadvantage is that it prevents the 

inclusion of any vertical planar surfaces, which may be of interest in the case modeling 

the sides of buildings.  In the interest of keeping the adjustment algorithm as general as 

possible, the Hough transform will not be used in this document.  Instead, as discussed 

earlier in this chapter, an a priori weighted least squares adjustment will be performed 

(here the emphasis is on the a priori weighting).  None of the planar parameters will be 

fixed (as is done with Hough); rather the observations that 0,  0 and 1P P zx y n    will 

be used as the initialization of the least squares.  So long as the planar surface is not 

thought to be vertical, the above three guesses will be given large weights (small standard 

deviations) through the xC  matrix in (5.33).  Should a vertical plane need to be modeled, 

the weights and initial guesses will need to be adjusted accordingly (such adjustments 

must be viewed on a case-by-case basis, depending on the orientation of the plane). 

If the scale of the planar normal vector is not fixed, then the algorithm risks 

convergence to a trivial solution.  Examining (5.56): 

  OBS PLANEf n x x  
  
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where the goal is to make f = 0 for all observations, choosing a planar normal vector, 

 0 0 0n  , will result in a trivial solution; since every dot product will be zero; this is 

clearly a minimum in the eyes of the least squares.  Without hard coding the planar 

parameters (as is done in the case of Hough), there are three methods for preventing the 

normal vector from scaling to zero: 

 Using an appropriate weighting in the covariance matrix, xC .  The weighting on 

zn  could be set prohibitively large to prevent its elements from converging to zero.  

However, so long as zn  remains a stochastic variable, the least squares will slowly 

increment the normal vector to zero.  Placing a large weight on any element of the normal 

vector is just a round-about method of recreating the Hough transform and should not be 

used. 

 Defining the normal vector as a unit vector.  Rather than having a three parameter 

normal vector of the form shown in (5.58), instead, n, can be defined as: 

 
2 2 2 2 2 2 2 2 2

.yx z

x y z x y z x y z

nn n
n

n n n n n n n n n

 
 
       

 (5.60) 

Here, by scaling the normal vector, the magnitude is forced to of unit length, and thus 

prevents n from scaling to zero.  While having a unit vector does have its appeals (for 

example:  the vector version of Snell’s Law used in this document demands that all 

vectors be of unit length), the above definition can be computationally cumbersome.  

Both the fractions and square roots introduce potential domain concerns that could derail 

the least squares algorithm.  Further, the square roots make for awkward partial 

derivatives that are computationally expensive.  Having a unit vector without the square 

roots brings us to our third option. 
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 Defining the normal vector in spherical coordinates.  The classic equations for the  

transformation from rectangular to spherical coordinates is given as: 

 

cos sin

sin sin

cos

x

y

z

  
  
 





 (5.61) 

where: 
 radial distance of vector

 azimuth angle, measured from 

 zenith angle, measured from .

x

z






 
 

 

For the planar normal vector, a slight modification is made to the spherical 

transformation listed above, Figure 59.  The length of the vector,  , is set to 1, and the 

z-component is reversed to account for a positive-down nomenclature.  This leaves a 

proposed representation of the normal vector as: 

 

cos sin

sin sin .

cos

P P

P P

P

n

 
 



 
   
  

 (5.62) 

This representation has several advantages:  it guarantees the vector is of unit length, it 

has none of the domain or differentiability concerns of (5.60), and it reduces the number 

of adjustment parameters from three to two. 
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Figure 59. A modified spherical coordinate representation of the planar normal vector 
(pink) referenced to a locally level plane (grey).  
 

5.2.2 – A Simplified Adjustment Example 

A fully-developed transcription of the least squares adjustment is prohibitively 

large to include in this document (the MATLAB code is over 4,000 lines).  For the 

purposes of illustrating the form of the least squares (other than through the generic 

equations offered to this point), a simplified laser scanner is presented.  Consider a 

stationary platform housing a laser scanner with two degrees of freedom:  a nadir angle, 

 , and an azimuth angle,  , Figure 60.  

 In this simplified case of fitting the point cloud to a plane, there are three 

observables:  the laser range, nadir angle and azimuth angle ( ,  ,  and  respectively)   ; 

and there are five unknowns:  the five parameters associated with the ground plane 

 , , , , P P P P Px y z  .  Writing out (5.56) for this particular system, the observation 

equation becomes: 

  (5.63) 

cos sin cos sin

sin sin sin sin 0.

cos cos

P P P

P P P

P P

x

f

z

    
    

  

      
            
            

y
 
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Figure 60. A simplified laser scanner with three observables:  the laser range, ,  the 
laser nadir angle, ,  and the laser azimuth angle, .   
 

Recalling the nomenclature of the linearization presented in (5.31): 

 
0 0 0 0

0 0 0 0
, ,

( , ) ( ) ( )( , ) 0
x x x x

g

f f
f x x xf x

x   

    
 

r δD A

   

  
   



0






 

where: 
 initial approximation of model

 corrections to the observations (residuals)

 corrections to the unknowns (adjustments)

 design matrix with respect to observations

 design matrix with respect to

g 





r

δ

D

A adjusting parameters.

 

The initialization of the model will simply be: 

  (5.64) 
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

cos sin cos sin

sin sin sin sin .

cos cos

P P P

P P P

P P

x

g y

z

    
    

  

     
          
          
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Given n observations, the design matrix,  will have the form: ,D

 

1 1 1 1 1 1 1 1 1

1 1 1 2 2 2

2 2 2 2 2 2 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

.

n n n

n n n

n n n n n n n n n

n n n

f f f f f f f f f

f f f f f f f f f
f

f f f f f f f f f

        

        

        

         
          
         

             
 
          
          

D






   



 (5.65) 

Assuming each laser shot is independent of the others, each element in the above matrix 

will be zero provided the indices of a given fraction are unequal.  For example, 1 2f    

is a measure of how the first laser strike observation changes with respect to the second 

measured laser range.  Again, if we assume independence from shot-to-shot, the first 

observation will not vary with respect to a parameter from the second observation; thus 

1 2 0.f      So, (5.65) can be simplified to the more sparse 

 

1 1 1

1 1 1

2 2 2

2 2 2

0 0 0 0 0 0

0 0 0 0 0 0
.

0 0 0 0 0 0 n n n

n n n

f f f

f f f
f

f f f

  

  

  

   
    

   
       

 
    
    

D






   



 (5.66) 

In turn, the ith partial derivatives are populated as follows: 

 

cos sin cos sin

sin sin sin sin

cos cos

Pi Pi i i

i
Pi Pi i i

i
Pi i

f
   
  


 


   

        
      

 (5.67) 

 

cos sin cos cos

sin sin sin cos

cos sin

Pi Pi i i i

i
Pi Pi i i i

i
Pi i i

f
    
    


  

   
        

       

 (5.68) 
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cos sin sin sin

sin sin cos sin .

cos 0

Pi Pi i i i

i
Pi Pi i i i

i
Pi

f
    
    




   
        

      

 (5.69) 

The residual vector will have the form: 

  (5.70) 
1 1 1 2 2 2 n n n

r r r r r r r r r           
T

r 

and the covariance matrix (again assuming no cross-correlation among observations) will 

be the sparse diagonal matrix: 

  (5.71) 

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

n

n

n





































 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

C



0

The second design matrix,  is given by: ,A

 

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2 ,

P P P P P

P P P P P

n n n n n

Pn Pn Pn Pn Pn

f f f f f

x y z

f f f f f
f

x y z
x

f f f f f

x y z

 

 

 

     
      
     

         
 
      
      

A

    
 (5.72) 

 

 

 

 



137 

which is populated with the following partial derivatives: 

 

cos cos cos sin

sin cos sin sin

sin cos

Pi Pi i i i Pi

i
Pi Pi i i i Pi

Pi
Pi i i Pi

x
f

y

z

    
    


  

     
                      




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 (5.73) 
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i
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x
f

y

z

    
    


 

    
                  

 
 
 

  

 (5.74) 

 cos sini
Pi

Pi

f

x Pi 
 


 (5.75) 

 sin sini
Pi

Pi

f

y Pi 
 


 (5.76) 

 cos .i
Pi

Pi

f

z





 (5.77) 

The adjustment vector is given by: 

 
P P P P Px y z        

T
δ  (5.78) 

with an associated covariance matrix (assuming no cross-correlation among parameters) 

of: 

 

2

2

2

2

2

0 0 0 0

0 0 0

0 0 0 0 .

0 0 0 0

0 0 0 0

P

P

P

P

P

xx

y

z















0

 
 
 
   
 
 
  

C  (5.79) 

 Piecing together all the components between (5.63) and (5.79), the solution to the 

least squares problem is given by (5.49): 

     1 11 .x g
      

T T T Tδ C A DC D A A DC D 
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 5.2.2.1 – The full-form partial derivatives.  Returning to the observation equation, 

(5.56), with the full laser location equation, (3.46), we have: 

 0
2

1

.V VI BS IL ECEF PLANEf n L x x x
 


                      

        (5.80) 

The scope of the ensuing partial derivatives needed for the least squares are largely a 

function of whether or not 2 ,L


 the laser vector exiting the prism, is a function of a 

particular variable.  An example of a partial derivative of a variable that is independent of 

: 2L


 2
1

1 0
.V VI BS

f
n L

 

                       
0 0 0


     (5.81) 

To compute the partial derivatives of a variable on which 2L


 is dependent 

( ,  ,  ,  ,  ,  ,  and ),x y z zs LS LS FRPS PS PS        one must navigate the chain rule, Figure 

61.   
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Figure 61. The chain tree showing the variables on which the laser vector exiting the 

prism, 2 ,L


 is dependent (and their associated inter-dependencies). 

 
Where, as a reminder (see Figure 13): 
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To illustrate, the partial derivative (and the many sub-derivatives) are shown with respect 

to the scanner angle, zs .  From (3.48): 

 1

sin cos 0 sin

cos sin 0 0

0 0 0 cos

ZS ZS FR

ZS ZS PS
ZS

FR

P


  
 




    
        

    









 (5.82) 

 0

0

and 0 ,

0ZS

L



 
    

  


 (5.83) 

from (3.3) (terms equaling zero marked in red): 
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
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            

 
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 





   

 
 



 (5.84) 

from (3.4): 

 

    
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2
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  
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 
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from the chain rule: 

 2 2 1

1

,
ZS ZS

  
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
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 (5.86) 

from (3.48): 
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and, finally, recalling (3.26) which states: 

    1 0 1 2cos cos ,A A
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we have (terms equaling zero marked in red): 
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

(5.88) 

)

where the partials given in (5.84), (5.86) and (5.82) are substituted where needed. 

 As an alternative to (5.88), a version of (3.26) that circumvents the internal angles 

1 4(   can be used, namely, (3.48), which states: 

     
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Computing the partial derivative of (5.89) yields (terms equaling zero marked in red): 
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 






  
                    

 
  
        

  
  

 

   

(5.90) 
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By removing the internal angles, the previous equation eliminates the need for (5.84) 

through (5.86) and replaces (5.88). 

 The internal angles will be skipped for the computation of 2 ZSL  


.  Similar to 

(5.89): 

     
2

2

2 1 2 1 2 1 21 1s s s

a a a

L L P L P L
  
  

              

      
.P  (5.91) 

So: 

 

 

    

    
      

2 1

2
2 1

2 1 1 2

2 1
1 2 2

2 2

2 1

2 2
2

2 1 2 1

2

2 1 1

1 1 .

S

A

S

A

S

A

S

A

S S

A A

ZS ZS

ZS ZS

ZS ZS

ZS

L L

P L
P L L P

P L
L P P

P L

P
P L P L













 
 

 

 
 



 
 

 

   
                          

 
  
        

 


    
   

 

   

 (5.92) 

Thus,  

 02

1
V VI BS

ZS ZS

Lf
n

 
  

                        
0 0 0


    (5.93) 

where 2 ZSL  


 (5.92), 1 ZSL  


 (5.90), 2 ZSP  


 (5.87) and 1 ZSP  


 (5.82) are 

substituted in order.  The process is then repeated for the other six stated variables on 

which 2L


 is dependent. 

5.3 – Improving Memory Usage for the Least Squares Algorithm 

Inspecting the simplified adjustment procedure shown in (5.63), one can 

appreciate the magnitude of the memory that must be allocated for the different matrices 
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needed in the adjustment, Figure 62.  Of primary concern is any matrix that grows by a 

factor of the square of the number of observations, specifically   To mitigate 

the drain on the computer’s memory, the matrix algebra will be redefined in a way to take 

advantage of the sparse nature of the involved matrices. 

and .D C

 

 
Figure 62. Table of number of entries contained within the four primary matrices that are 
declared during the least squares adjustment (assuming five adjusting parameters and 
three observables).  
 

 Revisiting the iterative least squares formula, (5.49), the sizes of the respective 

matrices are indicated: 

  (5.94) 

 
  


 


 


   
  


 


 


 

1 11

3 3 3 33 3 3 3

5 5

.x

n n n nn n n n n n n n

n nn n n n

g


    

  

     
    

    
  

TT Tδ C D C D A D C DA A

 


T



)

The above is written with the assumption that only five adjusting parameters, three 

observables  and n-observations are given (equivalent to the simplified adjustment given 

earlier).  For perspective, the proposed least squares adjustment will have 20 adjusting 

parameters and eight observables.  In (5.94), not only must all matrices which contain n 

elements in both their rows and columns be avoided (e.g.,  but so too must 

any intermediate matrices that result from the products of these matrices.  By seeking a 

definition for  without declaring the individual matrices, the resulting 

and ),D C

1( T TA DC D
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matrix will only be 5 × n, which is no more than a linear problem with respect to 

memory. 

 

 First,  must be redefined as  according to their sparse nature.    and D C
* and D C

*

 

1 1 1

1 1 1

2 2 2

2 2 1

* 1 1 1 2 2 2

1 1 1 2 2 1

0 0 0 0 0 0

0 0 0 0 0 0
 becomes

0 0 0 0 0 0 n n n

n n n

n n n

n n n

f f f

f f f

f f f

f f ff f f f f f

  

  

  

        

   
    

   
     
 
    
    
        

           

D

D





   





 (5.95) 

and  

  (5.96) 

1

1

1

2

2

2

1 1 1 2 2

2

2

2

2

2

2

2

2

2

* 2 2 2 2 2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
 becomes

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

n

n

n



















     



















     

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  



C

C







2

2 2 2 2 .
n n n      

Notice, D has gone from an n × 3n matrix to a 1 × 3n matrix; and similarly,  has been 

reduced from n × n to 1 × n – both now linear in size with respect to the number of 

C
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observations.  Conceivably,  could be further rewritten as a 1 × 3 matrix if 

uncertainties in the observables are assumed to be the same from shot to shot.  That is: 

*C

 ** 2 2 2 .       C  (5.97) 

For now, however, each observation will be assumed to be independent of all other 

observations (including their associated uncertainties). 

 The next task is to compute 1( )T TA DC D  (a 5 × n matrix) by encoding the 

matrix multiplication without allowing the individual matrices to be declared in memory. 

First, we compute : DC

1

1

1

2

2

2

1 1 1

2 2

2 2

2

0 0

f f



 



2

21 1 1

21 1 1

2 2

1
2

2

2 21 1 1

1 1 1

0 0 0 0 0 0

0 0 0 0 0 00

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0

f f f

f

f f f













 




  








 
  



 
                                 
 
 

  
 



DC 












 

2 2 2

2 2 22 2 2

2 2 1

0 0 0

0 0 ,
f f f

    
  

 
 
 

   
    
 
 
 





  

0 (5.98) 

which is then collapsed from (n × 3n) to the (1 × 3n): 

1 1 1 2

* 2 2 2 2 2 2 21 1 1 2

1 1 1 2

.
n n n

n n

n n

n

n

f f ff f f   f
            

      
   

         
DC  (5.99) 
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Continuing the multiplication, : TDC D

1 1 1

2 2 2

2 2 21 1 1

1 1 1

2 2 22 2 2

2 2 2

2 2

1

1

1

1

1

1

2

2

2

2

2

1

...

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
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n n

n n

n n

n

n

f f f

f f f

f f

f

f

f

f

f

f

f

  

  

 

  
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  
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 
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















   
    

   
     
 
   
   
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






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



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


   







   

,
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n

n

n

n

f

f





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
  



 (5.100) 
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yielding an (n × n) diagonal matrix with diagonal entries given by: 

 

1 1

2 2

2 2

1 1 1

1 1 1

2 2

2 2 2

2 2 2

2 2

(1,1)

(2,2)

( , ) .
n n

n n n

n n n

f f f

f f f

f f f
n n

  

 

 

  
  

  
  

  
  

       
              

      
            

       
              



1

2

2

2

2

n







  (5.101) 

Thus: 

1 1 1

2 2 2

2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

0

0 ,

f f f

f f f

  

  

  
  

  
  



                       
 

                       
 
 
  

TDC D 





  

 (5.102) 

which can again be condensed to:  

 

1 1 1

2 2 2

2 2

1 1 1

1 1 1

2 2

2 2 2
*

2 2 2

2 2
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n n n

n n n

n n n

f f f

f f f

f f f
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  

  

  
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  
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  
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2

2
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                       
 
                        
 
 
        

               

T

TDC D



 (5.103) 
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Because  is a square diagonal matrix, its inverse is also a square diagonal matrix, 

given by the relationship: 

TDC D

 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

a a

b

c c

 .b

   
     
   
     

X X





 (5.104) 

So,  is simply given by the reciprocal of the individual diagonal elements of 

.  Here we have:

 

 1TDC D

TD

 

DC

1 1 1

2 2 2

1

12 2 2

1 1 1

1 1 1

12 2 2

2 2 2

2 2 2

...

0

0

f f f

f f f

  

  

  
  

  
  



















TDC D

                           
                           






  
 (5.105) 

which is condensed to: 

  
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2 2 2
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Finally, we can write an expression for   1T TA DC D :
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Which can be simplified to: 
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While (5.108) is cumbersome to behold, it is worth observing that   1T TA DC D  has 

dimension of (5 × n); thus it only grows linearly with respect to the number of 

observations.  Thus, the above matrix will be computed directly, using the indicated 

entries, and substituted into (5.49) as indicated below: 

    11

Substitute here Substitute here

x g
    

 

T T T Tδ C A DC D A A DC D 
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 (5.109) 

Prior to implementing the improved memory management strategy, any dataset 

over approximately 1,200 observations would cause the author’s computer to experience 

a memory failure and subsequently crash.  Since implementation, datasets over one 

hundred times as large have been processed without incident.  In addition to the ability to 

process larger datasets, the redefinition of the matrices also leads to a faster executing 

algorithm.  In the case of processing 750 observations, the computation time dropped 
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from 3 minutes 48 seconds to nine-and-a-half seconds – an improvement in processing 

speed of over 24 times. 

5.4 – Summary of Key Results 

 The following is a bulleted list of the key results, concepts and contributions 

presented within this chapter.  When possible, the relevant section(s) that offer a more 

detailed explanation are indicated. 

 A weighted constraint least squares model was identified as the method pursued 

for the calibration algorithm (Section 5.1.3).  In addition, the basic theory of a least 

squares adjustment was presented (Section 5.1.2), along with how to linearized the model 

(Section 5.1.3.1) and solve the systems through matrix partitioning (Section 5.1.4). 

 Geometrically, the adjustment model is based upon fitting the lidar point cloud to 

a single planar surface (Section 5.2). 

 The planar surface will be represented by 5 parameters:  three for a point 

contained within the plane and two to describe the plane’s normal vector in spherical 

coordinates.  Spherical coordinates reduced the number of parameters included in the 

adjustment, prevented the vector from scaling to zero (leading to a trivial solution to the 

LSA), and allowed for the possibility of vertical surfaces to be used in the adjustment 

(Section 5.2.1). 

 Both simplified and full lidar models were included as examples to demonstrate 

the structure of the least squares (Sections 5.2.2 & 5.2.2.1).  Using these as a starting 

point, a reader should be able to develop an adjustment model particular to their own 

systems. 
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 Finally a method was presented to make the adjustment algorithm more efficient 

in both memory requirements and processing time.  By taking advantage of the sparse 

nature of the design matrices, portions of the iterative formula for computing the 

corrections to the calibration parameters can be manually determined without performing 

the full series of matrix multiplications and inverses.  By circumventing portions of the 

matrix algebra, both memory and processing time became linear functions of the number 

of datapoints being adjusted.  On the main laptop used for testing, the end result was 

datasets over 100 times as large could be processed, and any given dataset could be 

processed in 1/24th the time.   
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CHAPTER VI 

THE LIDAR CALIBRATION MODULE 

 
Figure 63. Chapter VI outline.  
 

 While the previous chapter outlined the theory of a least squares adjustment, this 

chapter discusses the precise methods used to put the theory into practice, in the form of a 

LSA calibration module.  There are three key goals to this chapter: 

 To offer an intuitive explanation of what the LSA is geometrically doing and to 

explain the flight characteristics necessary to determine each calibration parameter 

through signature analysis plots (Sections 6.1 & 6.3). 
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 To present a “user’s guide” for the calibration module and to explain the 

flexibility the user has in how the LSA is implemented with regard to uncertainty 

propagation (Section 6.2). 

 To propose various flight plans to assess which best determines the system’s 

calibration parameters and to show how the performance is affected by conditions at the 

survey site:  narrow runways (Section 6.4.1), wavy water surfaces (Section 6.4.2.1) or in 

the presence of tides (Section 6.4.2.2).  

 In Chapter III, 15 lidar calibration parameters were presented:  the three scanner-

to-INS (boresight) angles (Section 3.1.4.1), the prism slope (Section 3.1.2), the two laser-

to-scanner angles (Section 3.1.3.2), the vehicle-to-INS heading alignment (Section 

3.1.4.2), the three scanner-to-INS offset measurements (Section 3.1.4.1), the three prism-

to-scanner angles (Section 3.1.3.1), and the laser range bias and scale factor (Section 

3.1.5).  Each parameter and how it affects the point cloud will be discussed in turn.   

First, only the three boresight angles will be examined to establish a foundational 

relationship among the types of system misalignments, the maneuvering of the vehicle, 

and the structure of the biased point cloud.   After establishing a flight plan that contains 

the geometric information necessary for a successful execution of the adjustment 

algorithm, the calibration module is presented, offering a brief tutorial on how the 

software works and how to interpret the results (e.g., the variance-covariance matrix and 

correlation coefficients).  The discussion will then return to the remaining 12 calibration 

parameters and how their incremental inclusion in the adjustment model affects both the 

design of acquisition flight plan and the performance of the LSA.  Finally, this chapter 

will conclude by examining different calibration scenarios, varying both the flight plan 
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and the survey site selection (choosing among narrow airstrips or the dynamic ocean 

surface). 

6.1 – Geometric Impacts of Boresight Misalignments and Signature Analysis 

The key to the calibration routine is as follows:  any sensor misalignment (when 

coupled with an appropriate vehicle maneuver) that results in a non-coplanar point cloud 

(when acquired over a planar surface) can be determined through the proposed calibration 

routine.  Thus, for every parameter we must consider what flight characteristic (heaving, 

pitching, rolling or changing of direction) leads to the “least coplanar” point cloud.  In 

this way, the maneuver that produces the least coherent point cloud becomes a page in the 

signature analysis handbook – geared towards designing a flight plan that best determines 

any given parameter (i.e., if the laser range bias produces the greatest signature when the 

vehicle pitches, then the vehicle should be intentionally pitched to determine the laser 

range bias).  

For this first group of parameters, the boresight angles, a geometric argument is 

presented to elucidate this dissertation’s central claim that all the sensor misalignments 

can be assessed from a flat and featureless planar surface.   

6.1.1 – The Boresight Angles – Pitch Axis 

 Before launching into the full suite of signature analysis plots, consider just two 

separate scans of a lidar with an unknown boresight misalignment in the pitch axis 

(Figure 64).  On the left is a perfectly-oriented lidar (free of boresight misalignments) in 

which the scanning axis is normal to the ground plane.  Under such an orientation, the 

forward, aft, port and starboard-oriented beams will all have the same computed range.  

Should the lidar have a positive boresight misalignment in the pitch angle, then the 
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forward-oriented beams will have a relatively longer range and the aft-oriented beams 

will have a shorter range.  Should the lidar operator incorrectly believe there to be no 

pitch boresight misalignment (i.e., possess the geometry of Figure 64 – left), then the 

longer forward beams will lead the operator to believe these points are located below the 

ground plane and the shorter aft beams are located above the ground (Figure 64 – right).   

The key point is that what was a coplanar dataset is no longer so.  The calibration 

module, in fitting the data to a planar surface, will thus be able to determine this pitch 

bias. 

 

 
Figure 64. Two revolutions of the laser scanner with no boresight misalignments – notice 
both circular traces are coplanar (left).  With a 10° forward (i.e. towards the nose) pitch 
boresight bias, two revolutions are shown with both the actual laser footprints (shown in 
red) along with the miscalculated point cloud (shown in black).  Notice the biased points 
are no longer coplanar.  
 

 It should be apparent from Figure 64 (right) that no maneuvering of the vehicle 

beyond moving forward is necessary to yield a non-coplanar point cloud.  To expand 

upon the previous plot, several hundred revolutions are shown in Figure 65 (top).  The 

upper two plots show the same point cloud from two different perspectives in which there 
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is an unidentified 1° pitch boresight misalignment.  The biased point cloud is rendered as 

a helical pattern with an equal distribution above and below the actual ground plane.   

To further investigate how the point cloud behaves in the presence of a more 

dynamic vehicle trajectory, plots of the biased cloud are rendered in the presence of 

vehicle heave, roll, pitch and yaw.  While the level flight yields a cylindrical point cloud, 

increasing the vehicle’s altitude by heaving steadily increases the diameter of this 

cylinder (Figure 65 – bottom).  Because the points now exhibit a larger spatial 

distribution, the point cloud less resembles a planar surface.  This implies that increasing 

the acquisition altitude will make it easier to determine the pitch boresight misalignment 

(i.e., yield more confident results). 

Figure 66 shows what happens as the vehicle’s attitude is permitted to go from a 

level flight to a more extreme orientation.  The upper plot incrementally increases the 

vehicle’s roll from 0° to 30°.  Much like increasing the altitude, a spreading of the biased 

points is observed; however, the spreading is not as pronounced as it is with the 

increasing altitude.  Further, even if the spread between the altitude and roll plots was 

equal, one must consider which is a more feasible acquisition scenario:  asking the pilot 

to ascend 100m or to roll the vehicle by 30°.  In this case, increasing the altitude is a 

better method for increasing the confidence in the calibration value for the pitch boresight 

angle. 

In contrast to both heaving and rolling, inducing a pitch has a large pronounced 

effect on the point cloud (Figure 66 – middle).  Not only does the spread of the point 

cloud become more pronounced with increased vehicle pitch, but the calculated z-values 

of the points become lower and lower.  Of all the renderings in Figure 65 and Figure 66, 
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the one with the pitching vehicle exhibits the greatest dispersion of its points.  

Alternatively stated, the pitch boresight angle is most sensitive to the vehicle’s pitch.  The 

surveyors should induce a change in vehicle pitch to ensure the highest confidence in the 

calculated value for the pitch boresight misalignment.  

 
Figure 65. Visualization of a point cloud generated from a lidar with an unidentified 1° 
pitch boresight misalignment (top), and a point cloud from the same system as it 
experiences an increase in altitude (bottom).  The red points indicate the true laser strikes, 
while the black are the miscalculated biased points.  All units in meters.  
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Figure 66. Signature analysis plots for a lidar with a 1° pitch boresight misalignment in 
the presence of a rolling (top), pitching (middle) and yawing (bottom) vehicle.  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
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The renderings in (Figure 65 and Figure 66) are referred to as signature analysis 

plots as they can be used to assess whether a point cloud has a particular misalignment 

based solely on general structure, or signature, of the point cloud.  For example, the 

middle plots of Figure 66 suggest that, in the presence of a pitch boresight misalignment, 

an increase in the vehicle’s pitch leads to a decrease in the calculated z-values of the lidar 

points.  Thus, as a quality control measure, each day a subset of the acquired bathy flight 

lines can have their points’ associated vehicle pitch compared with their computed z 

coordinate for the sea surface height.  If there is either a positive or negative correlation 

between the pich and z-coordinate (as shown in Figure 67), then there is potentially a bias 

in the pitch boresight angle.  The development of automated tools for performing such 

signature analyses is reserved as future work. 

 
Figure 67. A sample signature analysis plot that compares each laser point’s associated 
pitch with their calculated z-coordinate.  The negative correlation between pitch and 
z-coordinate suggests a potential undetected pitch boresight misalignment in the lidar. 
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 While increasing the altitude, vehicle roll or vehicle pitch will cause a biased 

point cloud to have a larger dispersion (and thus be easier to calibrate), the fact remains 

that no extraneous motion beyond the vehicle simply advancing in a straight line is 

necessary to determine the pitch boresight angle.  A single flight line contains enough 

geometric information to determine the pitch boresight angle.  As will be seen in the 

subsequent sections, the other calibration parameters are not so easily found.  

6.1.2 – The Boresight Angles – Roll Axis 

 A misalignment in the roll boresight angle presents a unique problem with regard 

to this dissertation’s proposed calibration strategy.  The biased point cloud resulting from 

an unidentified error in the roll boresight angle will still be coplanar (Figure 69 – top).  

By introducing a roll bias, the entire point cloud, as acquired over a planar surface, is also 

rolled en masse.  This implies it will be impossible to calibrate the roll boresight angle 

from a single, level flight line.  Further, neither increasing the altitude (Figure 71 – 

bottom) nor permitting the vehicle to roll (Figure 69 – top) is a sufficient maneuver to 

make the biased points non-coplanar. 

 Allowing the vehicle to pitch does produce a very slight deviation from a coplanar 

point cloud (Figure 69 – middle).  This minor deflection from coplanar implies that it 

may be possible to determine the roll boresight angle strictly with a flight line that 

exhibits a change in pitch; however, with system noise, the calibration routine is unlikely 

to produce a confident result.  In this case, the roll boresight angle is said to be insensitive 

to the vehicle’s pitch. 

 The only appreciable method of producing a non-coplanar point cloud is exhibited 

by allowing the vehicle to experience a change in heading (Figure 69 – middle).  The 
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greater the change in heading, the less coplanar the point cloud becomes.  While even a 

single flight line with a change in heading is sufficient, geometrically speaking, the 

strongest configuration for the calibration routine is provided by survey lines flown in 

opposing directions (Figure 70). 

 
Figure 68. Visualization of a point cloud generated from a lidar with an unidentified 1° 
roll boresight misalignment (top), and a point cloud from the same system as it 
experiences an increase in altitude (bottom).  The red points indicate the true laser strikes, 
while the black are the miscalculated biased points.  All units in meters.  
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Figure 69. Signature analysis plots for a lidar with a 1° roll boresight misalignment in the 
presence of a rolling (top), pitching (middle) and yawing (bottom) vehicle.  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
 

 



164 

 
Figure 70. With a misalignment in the roll boresight angle, the best flight configuration 
for calibration is produced by flight lines in opposing directions.  The red points indicate 
the true laser strikes, while the black are the miscalculated biased points.  All units in 
meters.  
 

 As an aside, while permitting the vehicle to roll (Figure 69 – top) does not provide 

the geometric purchase to successfully implement the calibration LSA, one can again 

observe the principles of signature analysis.  Much like the example in the previous 

section where a misalignment in the pitch boresight angle led to a strong correlation 

between the vehicle pitch and point cloud’s z-coordinate; with a roll boresight 

misalignment, there appears to be a strong correlation between the vehicle roll and point 

cloud’s z-coordinate.  Further research is required to establish whether the magnitude of 

the roll boresight misalignment can be determined from such a signature analysis alone. 

6.1.3 – The Boresight Angles – Yaw Axis 

Similar to a misalignment in the boresight roll angle, a bias in the boresight yaw 

angle will still yield a coplanar point cloud.  In contrast, however, the biased point cloud 

will lie within the correct ground plane (Figure 71 – top).  Changing the vehicle’s altitude 
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will also have little effect on the biased point cloud’s coplanar status (Figure 71 – 

bottom).  It should be mentioned that while the actual laser strikes and the biased points 

appear to be coincident in Figure 71, there is actually a horizontal shift among the points.  

The magnitude of this shift is a function of (among other things) the vehicle’s altitude – 

higher altitudes leading to larger displacements (Figure 72). 

 

 
Figure 71. Visualization of a point cloud generated from a lidar with an unidentified 1° 
yaw boresight misalignment (top), and a point cloud from the same system as it 
experiences an increase in altitude (bottom).  The red points indicate the true laser strikes, 
while the black are the miscalculated biased points.  All units in meters.  
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Figure 72. Top-down view of a point cloud (red) and its biased counterpart which 
contains an unidentified boresight yaw misalignment (black).  All units in meters.  
 

 The key to determining the yaw boresight misalignment lies in having the vehicle 

either roll or pitch (Figure 73 – top and middle, respectively).  Both changes in attitude 

lead to pronounced effects on the laser points, producing non-coplanar point clouds; thus, 

either is a candidate for inclusion in the design of a calibration flight configuration. 

 There is a distinct signature for the yaw boresight misalignment associated with 

the vehicle pitching (Figure 73 – middle).  In a pitching vehicle, one side of the swath 

consistently has a large z-coordinate than the other side.  A similar trend would also be 

seen were there a roll boresight misalignment (Figure 69 – middle); however, in the case 

of the yaw misalignment, this pattern is not exhibited in the presence of a rolling vehicle 

(in contrast to the roll misalignment).  To summarize, if one side of the swath has a 

higher elevation than the other when the vehicle pitches, but not when the vehicle rolls, 

then the lidar may have a misalignment in the yaw boresight angle. 
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Figure 73. Signature analysis plots for a lidar with a 1° yaw boresight misalignment in 
the presence of a rolling (top), pitching (middle) and yawing (bottom) vehicle.  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
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 It may seem counterintuitive that it is possible to determine a yaw misalignment 

from a flat, featureless surface.  In fact, so long as the vehicle has no change in attitude, it 

is not possible to determine a yaw misalignment; the key lies in changing the vehicle’s 

attitude. As depicted in Figure 74, if a vehicle is pitching nose up, with no boresight 

misalignments, the greatest measured laser range will be produced from the forward-most 

beam (indicated in red).  Were this same vehicle to have a yaw boresight misalignment, 

then the range from the forward-most beam would be erroneously assigned to an azimuth 

rotated about the scanner’s central axis (indicated in orange) by the yaw angle from the 

forward direction (indicated in black).  The end result would be a biased cloud that is 

sometimes below and sometimes above the actual ground plane.  Again, the resulting 

non-coplanar nature of the point cloud is what permits the calibration by the least squares 

model. 

 
Figure 74. A vehicle pitching nose-up will measure the longest slant range in its 
forward-most beam (red arrow).  If this same vehicle instead has a yaw misalignment, 
then the range previously associated with the forward-most beam will be rotated by the 
yaw angle bias (black arrow).  
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 To summarize the calibration requirements for just the boresight angles:  the pitch 

bias can be found simply by advancing the vehicle forward, the roll bias can be found 

with a change in vehicle heading, and the yaw bias can be found with a change in the 

vehicle’s pitch or roll.  Conceivably, all three parameters could be determined from a 

single flight line that exhibits both a dynamic roll and a change in heading.  The greater 

the magnitude of the vehicle roll and the greater the change in the heading, the better the 

calibration routine will perform. 

6.2 – The Calibration Module 

 Now that a basic acquisition strategy has been developed for the boresight angles, 

we will take a break from the signature analysis of the calibration parameters and instead 

introduce the calibration module.  By considering the simplified calibration routine of 

only the three boresight angles, insights can be gained in how to interpret the algorithm’s 

outputs; understanding topics like covariance, correlation, or the impacts of data density 

and vehicle dynamics.  These lessons can then be applied to the incrementally more 

complicated calibration routine as a greater number of parameters are adjusted. 

6.2.1 – Calibration Module Interface 

 6.2.1.1 – Defining the LSA inputs.  The full graphical user interface for the 

calibration module is shown in Figure 75 (with close-up views shown in Figure 76 and 

Figure 77).  Recall from Chapter V, the iterative formula for the least squares adjustment 

is given by (5.49): 
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where: 

0

iteration in calibration solution vector

initial estimate of uncertainties in adjusted (calibration) parameters 

uncertainties in observed (measured) parameters

design matrix with respect to o

x







δ

C

C

A


bserved parameters

design matrix with respect to adjusted parameters

initial guess for adjusted (calibration) parameters.g




D

 

The three primary terms that must be specified by the user each time a calibration routine 

is executed are the two variance-covariance matrices 
0

and xC C  and the model 

initialization, g.  A and D are populated by the partial derivatives of the laser location 

equation with respect to the observations and calibration parameters respectively, and one 

should expect to have to modify these terms; however, it will be shown the user also has 

a role in the construction of matrices.  Each term’s corresponding control within the 

calibration interface will be illustrated in turn.  

 
Figure 75. The lidar calibration interface.  Close up views of the left and right portions 
are shown in the following figures.  
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Figure 76. A closer view of the left panel of the lidar calibrator.  The calibration 
parameters are highlighted in yellow; the planar parameters are in green; and the GUI’s 
control panel is in red.  The tide control panel (shown in blue) will only appear if the user 
wishes to estimate the tide rate.  
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Figure 77. A closer view of the right panel of the lidar calibrator.  Information about the 
point cloud size is highlighted in purple; input for the sea state (used for uncertainty 
calculations) is in blue; the uncertainty in the observables is shown in orange; the number 
of iterations performed by the least squares is in red; and the pre- and post-calibration 
point cloud is plotted in white.  
 

 The uncertainties in the measured quantities (laser range, scanner azimuth, etc.), 

used to populate the diagonal matrix  are modified under the “Std. dev.” fields for 

each observable (

,C

Figure 77 – orange).  These values will largely be populated by the 

manufacturers’ specifications for the various components.  As far as the calibration 
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routine is concerned, the greater the uncertainty of the input variables, the greater the 

uncertainty in the calibration solution.  While the framework does exist for a different 

uncertainty for every single laser shot (e.g., the navigation software is capable of 

associating an uncertainty to each computed vehicle attitude measurement), this feature 

has not been implemented in the current calibration module and is recommended for 

future work. 

 The uncertainties in the observables also serve a secondary purpose within the 

calibrator.  Because the calibration module was first designed to work with data 

generated by the simulation module, and because the simulator produces “error-free” 

datasets, a method was needed to test the calibrator’s performance on noisy datasets – 

given any dataset collected in the field will inherently contain some noise.  By selecting 

the “Noise on?” switch, a normal distribution of noise is added to each of the observed 

parameters of the simulated point cloud (Figure 77 – orange).  Not only can the user 

select the standard deviation of this normal distribution, but also the mean (in this way 

simulating the effects of biases in the system measurements).  The user also has control 

over which parameters have noise applied by selecting the checkboxes to the left of each 

observable.  Finally, the user may apply a new set of random values by selecting the 

“Refresh noise” button. 

 The initial guesses and the associated uncertainties for the calibration values and 

planar parameters are all set in the left hand side of the calibration window (Figure 76 – 

yellow and green, respectively).  A close-up view of a single parameter is shown in 

Figure 78.  The two white fields at the top labeled “Initial guess” and “Std. Dev.” will 

respectively be used to populate 
0

and .xg C   Below these fields are the “Adjusted value 
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& Std. Dev.” fields which display the results of the calibration.  If the user wishes to see 

these values updated with every iteration of the LSA, then they should toggle the “Real 

time updates?” switch (Figure 76 – red).  

 
Figure 78. A closer view of the interface for a single parameter within the calibration 
module.  An adjusted value highlighted in green indicates a convergence of the LSA to 
within the user-specified tolerance.  
 

 Because the LSA is an iterative process, it could theoretically be executed without 

end.  The “tolerance” fields (Figure 78) are provided for the user to guide when the 

algorithm terminates.  When successive iterations of the LSA produces a change in the 

adjusted calibration value that is less than the user-specified tolerance, the proposed 

calibration value will change from a red to green highlight.  It is important to note that the 

LSA will not terminate its execution when all the calibration values are within tolerance; 

instead, it will iterate a fixed number of times as specified by the user (Figure 77 – red).  

A fixed number of iterations is included for two reasons:  first, it prevents a poorly 

constructed LSA from entering an infinite loop; second, it puts the onus of interpretation 

of the LSA results on the user – not an algorithm.  For example, consider the adjustment 

shown in Figure 76 in which the ground normal theta angle failed to converge to within 

the indicated tolerance.  A human should observe that the ground normal phi angle is 
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nearly zero implying (in spherical coordinates) the theta angle is arbitrary, thus the LSA 

may be terminated, and the proposed calibration values accepted. 

 Should the LSA fail to converge after the first batch of iterations, the last iterated 

solution vector should be used as the initial guess for subsequent iterations.  To quickly 

copy the outputs from the previous iteration, simply press the “Copy Values” button 

(Figure 76 – red).  In a similar manner, the variances from the previous iteration can also 

be used to weight the confidence of these new initial guesses (the “Copy Std. Dev.” 

button). 

 6.2.1.2 – Coping with non-adjusted calibration parameters.  Each parameter also 

has an associated checkbox which the operator may use to determine whether a given 

calibration parameter is included in the adjustment; however, there is a philosophical 

problem of what to do with the non-adjusting calibration parameters.  For example, the 

calibration routine is capable of determining the slope of the Fresnel prism, but this slope 

may already be known by the prism manufacturer to a higher precision than the 

calibration routine is capable of estimating.  Rather than wasting the computational 

resources on a “known” parameter, the user may wish to treat the slope as a constant and 

omit it entirely from the adjustment.  Schmid & Schmid (1965) observe, however, that no 

measurement in and of itself is flawless and must therefore be included in the adjustment 

in such a way that the measurement’s uncertainty can contribute to the accuracy of the 

final result.  Schmid and Schmid go on to propose that there are neither fixed variables 

nor free variables; there are merely variables with appropriate weights.  If a user wishes 

to treat a variable as a constant, they should just affix an appropriately large weight to the 

variable.  Similarly, there are not adjusted parameters and observed parameters, there are 
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merely “observations.”  If a user wishes to treat a measurement as absolute, then they 

should again affix an appropriately large weight.  What Schmid and Schmid neglect in 

their reckoning is the non-trivial cost to both the computer’s memory and processing time 

associated with retaining variables that might be considered nearly constant. 

If a user does not wish to adjust one of the calibration parameters (because the 

value is presumably known from elsewhere), there are four methods for coping with the 

resulting non-adjusted calibration parameter.  All four methods are possible to implement 

within the calibration module, but only the latter three are correct: 

 Option A – Treat the non-adjusted calibration parameter as a constant, setting both 

the covariance terms and partial derivatives in 
0

and xC A  to zero. 

To implement:  Select the parameter in question and enter a standard deviation of 

zero. 

Advantages:  The “known” value will not change. 

Disadvantages:  Having a zero column in the design matrix, A, will lead to a singular 

matrix within the adjustment equation which will cause the LSA to fail. 

Overall assessment:  This method should not be employed. 

 Option B – Treat the non-adjusted calibration parameter as a constant and remove it 

from both the covariance and design matrices, 
0

and .  xC A

To implement:  Deselect the parameter in question and deselect the “Include cal. 

uncertainties?” switch (Figure 76 – red).  The latter switch has the effect of setting all 

unselected parameters to constants. 

Advantages:  The “known” value will not change.  Computationally, it is the fastest 

method given no extraneous entries within  
0

and .xC A
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Disadvantages:  The uncertainties of the “known” values are not carried forward. 

Overall assessment:  The LSA solution for the calibration parameters is unaffected by 

the uncertainty of non-adjusted calibration parameters (unlike the reported solution’s 

confidence).  If the user only wishes the calibration values, but has no interest in the 

uncertainty, then this option is the fastest method. 

 Option C – Leave the non-adjusted calibration parameters as calibration parameters 

and affix them with very large weights (small standard deviations). 

To implement:  Select the parameter in question and enter a very small (but non-zero) 

standard deviation. 

Advantages:  Uncertainties in the “known” values will be propagated forward. 

Disadvantages:  Because the values are being adjusted, they may wander from their 

“known” values.  The algorithm will perform slower than Option B given the 

extraneous entries in  
0

and .xC A

Overall assessment:  Statistically speaking, this is one of the most valid approaches 

and provides the best estimate of the calculated uncertainties of the adjusted 

parameters. 

 Option D – Redefine the non-adjusted calibration parameters as observed parameters 

and move their associated covariance and partial derivatives to  and  .C D

To implement:  Deselect the parameter in question, input the parameter’s standard 

deviation, and select the “Include cal. uncertainties?” switch (Figure 76 – red). 

Advantages:  Uncertainties in the “known” values will be propagated forward.  The 

“known” values themselves will not change. 
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Disadvantages:  The algorithm will perform slower than Option B given the 

extraneous entries in   and .C D

Overall assessment:  This option is as statistically sound as Option C, the only 

difference between the two options being whether you want to allow the “known” 

values to also be adjusted. 

 By default, the calibrator uses both Options C and D (propagates the uncertainty 

of the “known” values) in its adjustment, depending on whether a given parameter is 

selected or not.  Option B can also be achieved through Option D (i.e., some non-adjusted 

calibration parameters can be held constant while the uncertainties of the other non-

adjusted calibration parameters are propagated forward); provided the “Include cal. 

uncertainties?” switch is selected and the non-adjusted calibration parameter is de-

selected, then a standard deviation of zero may be input.   

This roundabout method of Option B is mentioned because it illustrates the vast 

differences in the behavior of the user-defined standard deviations whether they are 

applied to an adjusted or non-adjusted calibration parameter.  In short, the user wants to 

apply small uncertainties to the all the observed and non-adjusted calibration parameters 

(to associate a small uncertainty with the adjusted solution); however, the user wants to 

apply large uncertainties to the adjusted calibration parameters (to facilitate the rapid 

convergence of the LSA).  In the extreme case, a standard deviation of zero can be 

applied to a non-adjusted calibration parameter which will treat the parameter like a 

constant.  In contrast, a standard deviation of zero applied to an adjusted calibration 

parameter will cause the LSA to fail to converge (as in Option A).  The uncertainties of 

all the calibration parameters (both those being adjusted and otherwise) can be quickly 
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toggled between “large” and “small” from the “Variances” dropdown menu (Figure 76 – 

red).  “Large” and “small”, of course, are relative terms and set based on experience with 

the calibrator.  For example, a “large” angular uncertainty would be 10°, while a “small” 

uncertainty would be 0.1°. 

 There is one final note regarding the handling of non-adjusted calibration 

parameters.  It will later be shown (Sections 6.3.3.2 & 6.3.4.2) that some of the 15 

proposed calibration parameters are linearly dependent upon each other.  A full 

discussion here is unnecessary; let it be sufficient to say that if two parameters are 

linearly dependent upon each other, then only one may be calibrated (the other being a 

free parameter).  Attempting to calibrate both will produce infinitely large values in the 

variance-covariance matrix.  In such a case, Option C (holding the “known” values fixed 

by applying a large weight) will not work, since both of the alleged linearly dependent 

variables are being calibrated.  Instead, the user must deselect one of the parameters in 

question (Option D) to allow the LSA to work. 

 6.2.1.3 – Boresight calibration examples and improving the output’s confidence.  

In Section 6.1, a basic acquisition strategy was presented for the calibration of boresight 

angles based upon examination of the biased on the analysis of the signature analysis 

plots shown in Figure 65 through Figure 73.  In short, a change in heading is necessary 

for the roll boresight angle, a change in vehicle pitch or roll is necessary for the yaw 

boresight angle, and only forward vehicle progress is needed for the pitch boresight 

angle.  To test this calibration strategy a lidar was simulated at the anticipated acquisition 

speed (140kts with scanner at 1600rpms) and altitude (400m) with boresight 

misalignments of 5° in the pitch, roll and yaw axis and a 1m offset between the INS and 
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the laser reference frame in the fore-aft, port-starboard and up-down axes.  The simulated 

laser was set to a pulse repetition rate of 51Hz (51 rather than 50 to mitigate aliasing of 

the scan pattern).  The simulated flight lasted approximately 20 seconds (500 scanner 

revolutions or ~1000 laser points) and during the flight there was a dynamic change in 

the vehicle’s heading and attitude; the vehicle experienced a roll oscillation, tilting from a 

level attitude to 5° to starboard to 5° to port and back to level (a similar ±5° sway in 

heading was also simulated).  Finally, noise was added to all of the measured quantities 

using the uncertainties shown in Figure 77 (orange).  An overview of the flight line is 

shown in Figure 79. 

 

 
Figure 79. Proposed flight pattern for simplified (boresight) calibration.  Scan pattern 
demonstrates both a 5° roll and 5° heading oscillation.  All units in meters.  
 

 When performing the calibration of just the three boresight angles, the remaining 

12 calibration parameters not being adjusted were converted to observations (Option D of 

Section 6.2.1.2).  That is their uncertainties were propagated forward, but their values 
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were not allowed to change.  The uncertainties used for these dozen parameters are as 

shown in Figure 76 (yellow) – 0.05° (1σ) for the angular measurements and 0.01m (1σ) 

for the range measurements.  The results of the successful execution of the calibration are 

shown in Figure 80 (“successful” because the uncalibrated point cloud was correctly fit to 

the original planar surface shown in Figure 79 and the three boresight angles were 

properly identified to within their predicted tolerances).  Given the acquisition plan and 

the input uncertainties, the boresight roll angle can be determined to within 0.025°, the 

pitch angle to within 0.004°, and the yaw angle to within 0.061° (all uncertainties 

reported as 1σ).   

 

 
Figure 80. Output of calibration module:  the boresight angles were recovered and the 
point cloud was successfully fit to the planar surface shown in Figure 79.  All units in 
meters. 
 

 In the previous example, the pitch boresight angle had the highest confidence 

(smallest standard deviation), which should be expected after analysis of the signature 
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analysis plots – without any change in vehicle attitude, the pitch angle could be found 

while the other two require some dynamic change in vehicle orientation.  Having 

demonstrated that the calibration routine does work, the next logical question becomes 

how to improve upon the confidence of the calibrator’s output.  Four basic strategies are 

proposed: 

A. Maintain the flight plan, but increase the data density. 

B. Increase the magnitude of the changes in vehicle attitude/heading. 

C. Add a second flight line with an opposing heading. 

D. Add a second flight line parallel, but separate, from the first flight line (to better 

describe the planar surface). 

The results of all the proposed strategies are shown in Figure 81 and are discussed below. 

 

 
Figure 81. Table of results of boresight calibration trials under a number of different 
acquisition scenarios:  increasing data density (A), increasing vehicle attitude (B), adding 
a reciprocal flight line (C) and adding a geographically separated line (D).  All 
uncertainties are reported as a percentage of the baseline flight shown in Figure 80.  
 
 

 Strategy A – The baseline flight was simulated at 51Hz, while the hydro laser of 

CZMIL will be operating at 10KHz.  This extra data density should help mitigate the 
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random noise associated with the sample measurements.  Considering just flight “A1,” 

which had double the data density, the uncertainty of all three boresight angles was 

reduced to 70% of the previous levels.  As the data density is increased (flights “A1” 

through “A6”) the confidence of the calibration values continually improves, culminating 

with a reduction in the baseline uncertainties by 93% at the operational speed of 10KHz.  

It is unequivocal; increasing the data density will improve the calibrator’s performance.  

The trade off to this performance in accuracy is the processing speed.  All adjustments 

were terminated after 5 iterations.  Line “A1” was processed in 20 seconds, while line 

“A6” took 32 minutes (and consumed over 1.3GB of the test computer’s RAM).  In both 

cases, taking a ratio of the number of data points to the processing time reveals the 

algorithm can process one iteration of the LSA on 1,000 points in 2 seconds.      

 Strategy B – For flight “B1” the amplitude of the vehicle’s roll oscillation was 

increased from 5° to 10°.  Under such flight conditions, there was no change in the 

reported confidence of the pitch and roll boresight angles; however the uncertainty in the 

yaw boresight was halved.  None of these results should be surprising when taken in the 

context of the signature analysis plots of Section 6.1.  Figure 73 (top) showed that the 

greater the change in the vehicle’s roll, the greater the dispersion of the biased point 

cloud in the presence of a yaw boresight misalignment (where a large dispersion implies 

a less coplanar state which implies an improved calibration performance).  Conversely, 

Figure 66 (top) and Figure 69 (top) show that the biased point cloud changes very little 

with regard to vehicle roll in the presence of (respectively) pitch and roll boresight 

misalignments. 
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 In the context of the signature analysis plots one should be able to anticipate the 

effect of increasing the amplitude of the vehicle’s yaw oscillation (as is the case with 

flight “B2”) on the boresight misalignments.  Increasing the yaw has very little effect on 

a point cloud with a pitch or yaw bias (Figure 66 – bottom and Figure 73 – bottom, 

respectively); however, the biased point cloud displays a great deal of dispersion in the 

presence of a roll boresight misalignment as the vehicle experiences a larger change in 

heading (Figure 69 – bottom).  Looking at the “B2” row of Figure 81 shows that the 

reported confidence in the pitch and yaw boresight angles are largely unaffected by 

vehicle yaw (there is a slight improvement in the pitch angle), while confidence in the 

roll misalignment is doubled (reduced to 51% of the baseline value).  Inducing more 

dynamic changes in the vehicle’s orientation will lead to a better determination of both 

the roll and yaw boresight angles. 

 Strategy C – Noting the marked improvement in the calibrator’s performance 

when the attitude of the aircraft is changed, still greater changes in the vehicle’s 

orientation can be attempted.  There is a physical limit on how much a vehicle can pitch 

or roll (barrel rolls and loop-de-loops notwithstanding), but there is no such restriction on 

the vehicle heading.  To test these “extreme” changes in heading, two flight lines are 

simulated over the same stretch of ground, but with opposite headings (Figure 81 – line 

“C”).  Two flight lines imply twice the data coverage, so the results of this flight plan 

would be best compared to flight “A1” which had double the data coverage.  Most 

notable is that the roll boresight angle has improved by a full order of magnitude over the 

baseline levels.  Again, roll was expected to improve given how sensitive it is to the 

vehicle heading.  The pitch boresight improves to 58.3% of the baseline level (compared 
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to 70.6% for flight “A1”), so the reversal of vehicle heading has also paid dividends with 

regard to pitch.  The yaw boresight shows a slight improvement considering that twice 

the data of the baseline flight was acquired.  This slight improvement is interesting given 

the yaw boresight angle is indiscriminate to changes in heading.  This enhanced yaw 

boresight angle is possibly due to a transitive effect among the other variables; that is, 

because the calibrator is that much more confident in the roll boresight angle’s 

contribution to the misalignments there is less “doubt” with regard to the yaw boresight 

angle’s contribution. 

 Strategy D – For the final strategy, recall that the adjustment algorithm is fitting 

the point cloud to a planar surface.  From a geometric perspective, a plane is best defined 

by a broad dispersion of points.  For example, were all the points to lie along a single 

line, then there are an infinite number of planes that contain these points.  As a less 

extreme case, a planar surface would be better defined when provided with a pair of 

parallel lines of data rather than just a single strip.  To test the effects of “spreading” the 

laser points across the ground plane, two parallel flights were simulated with an 800m 

separation.  Both flight lines still exhibited the 5° oscillation in roll and heading, but it 

should be emphasized that the base course for both flights were the same.  That is, they 

were not flown in opposite directions as was the case with flight “C.”  Once again, the 

confidence in the roll boresight angle has improved by an order of magnitude (9.0% of 

the baseline flight), which shows the roll boresight angle responds equally well to 

changes in heading or geographic distribution of points.  The pitch and yaw boresight 

angles show slight improvements as well (about 90% of the reported confidences of the 

flight line with the double data density). 
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 To summarize, all four proposed strategies showed improvements in the 

performance of the calibrator.  Increasing the data density improved the confidence for all 

three boresight angles.  In general, every time the number of data points is doubled, the 

standard deviations of the boresight angles are reduced by 29%.  Increasing the vehicle’s 

roll improved detection of the yaw boresight misalignment; whereas, increasing the 

vehicle’s change in heading improved the confidence of the roll boresight misalignment 

(taking this concept to the extreme and allowing the vehicle to reverse direction led the 

greatest improvement of all).  Finally, surveying over a broader area also improved all the 

boresight confidences (the roll value more than the others).  Of course, the field crew is 

not limited to using only one of these proposed strategies.  For a boresight calibration, the 

pilots should make an effort to create as dynamic a flight as possible acquiring at least 

two lines of data in opposite directions separated by some horizontal distance.  Naturally, 

the full 10KHz data set should be used in the calibration (provided the computing 

resources exist). 

 An example of an idealized flight plan is shown in Figure 82.  In anticipation of 

the 12 calibration parameters that have yet to be addressed, two additional flight lines 

have been added.  Additionally, rather than require the vehicle to roll and yaw 

simultaneously (as in the previous example), each flight line focuses on a single 

maneuvering characteristics:  heave, roll, pitch and yaw. 

When the calibration routine is applied to the lidar from the previous example (5° 

boresight misalignments, 20 second flight lines, 51Hz pulse repetition rate, etc.) and is 

simulated navigating the cloverleaf pattern shown in Figure 82, the calibration results are 
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shown in Figure 83.  Note the baseline flight has oscillations of 5° on the pitch, roll and 

yaw lines and a heave amplitude of 25m on the respective lines indicated in Figure 82. 

As compared to the single flight line model “A2” of Figure 81 (which has the 

same number of data points as those in Figure 83), this more elaborate flight plan has a 

confidence in the roll boresight angle of 0.0015° (12% of “A2”) and 0.0017° in the pitch 

boresight angle (82% of “A2”).  These improvements make sense given the cloverleaf 

pattern has flight lines with 4 different azimuths (and we know the roll boresight angle is 

very sensitive to a changing azimuth, pitch less so).  Interestingly, the uncertainty in the 

yaw boresight misalignment is 19% larger than “A2.”  It is unclear why the cloverleaf 

flight plan is so much worse for determining yaw.  The most likely explanation is that 

line “A2” simultaneously rolled and yawed, creating a more extreme vehicle orientation 

with the cloverleaf pattern only one change in orientation occurs at a time. 

 

 
Figure 82. Overhead view of the cloverleaf acquisition flight plan designed to best 
determine the boresight misalignments.  Each flight line has a different heading and a 
different dynamic vehicle characteristic. 
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Figure 83. Table of results of boresight calibration trials along the cloverleaf flight 
pattern.  All uncertainties are reported as a percentage of the baseline flight shown in 
Figure 82.  

 
 Once again, some additional maneuvers were considered to see if the reported 

confidence in the cloverleaf flight pattern could be improved upon.  As in all the previous 

examples, doubling the data density reduced the uncertainty by 70%.  Doubling the 

amplitude of the vehicle heave had no effect on improving the calibration routine (which 

makes sense in the context of the signature analysis plots which showed no response to 

heave).  Doubling the magnitude of both the vehicle pitch or vehicle roll did lead to a 

marked improvement in the determination of the yaw boresight misalignment, which only 

serves to reinforce that the yaw misalignment is best served through large changes in 

vehicle attitude.  Doubling the dynamic yaw had no effect on the boresight angles.  This 

lack of impact due to vehicle yaw makes sense given the four flight lines already have 

varied headings spanning the four cardinal directions; an extra sway in heading isn’t 

going to add anything, geometrically-speaking, to the solution. 

 All the flight patterns shown in Figure 81 and Figure 83 will be revisited when 

assessing the best method of determining the other calibration parameters.  

6.2.2 – Covariance and Correlation Coefficients 

 Previously, when assessing the quality of a calibration solution resulting from a 

proposed flight plan, only the reported standard deviation of the proposed calibration 

 



189 

parameters was discussed: the logic being that the smaller the standard deviations, the 

better the calibration.  This is only half of the uncertainty equation, as one must also 

consider the covariance entries of the variance-covariance matrix produced by the LSA.  

Of further importance in interpreting a flight plan are the correlation coefficients.  The 

correlation is a measure of the dependence between two variables, x and y, and is defined 

by: 

 ,
, 2 2

x y
x y

x y




 
  (6.1) 

where: 

,

,

2

2

correlation between  and 

covariance between  and 

variance of 

variance of .

x y

x y

x

y

x y

x y

x

y

















 

All the quantities needed to compute the correlation are provided in the variance-

covariance matrix xC  (5.55).  By nature of its definition, the correlation coefficient must 

assume a value between -1 and 1, where the closer the absolute value of ,x y  is to 1, the 

greater the correlation among the parameters.  In the context of the calibration, should 

variables have a large (positive or negative) correlation, then the calibration module was 

not given enough information to determine which calibration parameter to adjust to fit the 

point cloud to the planar surface.  It should be noted that this does not imply the 

calibration routine was unsuccessful in fitting the point cloud to a plane, just that there 

was, potentially, more than one set of calibration values that would produce a coplanar 

point cloud.   
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 To demonstrate how the covariance and correlation coefficient can be used in 

assessing the calibration, first consider the rolling/yawing line shown in Figure 80.  The 

reported confidence in the calibration parameters, shown in Figure 81, were 0.025°, 

0.004° and 0.061° (1σ) for the roll, pitch and yaw boresight angles, respectively.  When 

the “Covariance” button (Figure 76 – red) is pressed, it launches the 

covariance/correlation coefficient visualization module.  The default display for the 

module is the covariance (Figure 84).   

 

 
Figure 84. Variance-covariance visualization module.  Variances indicated by stars and 
covariances by red symbols.  Logarithmic scale is used. 
 

A few notes about the covariance module:  it plots the variances (not the standard 

deviations), all angular measurements are reported in radians (not degrees), and the 

vertical scale is logarithmic.  The variances are indicated by stars.  From the plot, we can 
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see the pitch boresight (BStheY) has the highest confidence (smallest variance) and the 

yaw boresight (BStheZ) has the least confidence (largest variance).  The covariance terms 

are indicated by the different colored symbols.  Because the yaw boresight had the largest 

variance, it is to be expected that the corresponding covariances with the other parameters 

will also be the largest (marked by the red squares).  Similarly, the parameter with the 

smallest variance has the smallest associated covariances (marked by the red triangles).  

The correlation coefficient is used to normalize these covariances and see how the 

parameters are related.  To toggle the plot to the correlation coefficient mode, select 

“Correlation” from the dropdown menu in the lower left and then press “Plot” to execute 

(Figure 85). 

 

 
Figure 85. Correlation coefficient visualization module.  No correlation had an absolute 
value larger than 0.5 indicating independence of the calibration values. 
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 Interpretation of the correlation coefficients can be a subjective affair.  A 

correlation of ±1 indicates a dependence between the parameters, and a correlation of 0 

indicates an independence of parameters.  However, the cut-off between “weak” and 

“strong” correlations is not so well defined.  That being written, such a black-and-white 

labeling of the correlations is not entirely necessary.  For example, the correlations shown 

in Figure 85 seldom rise larger than 0.5; interpreted in conjunction with the covariances 

we can assess that the calibrator was confident in fitting the points to a plane (covariance 

plot) and there was no other combination of calibration parameters that could produce a 

planar surface (correlation plot).  As an example of a poorly designed flight, consider the 

covariance and correlation plots shown in Figure 86 and Figure 87, respectively. 

 

 
Figure 86. Variance-covariance visualization module for a poorly designed flight.  
Logarithmic scale is used. 
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Figure 87. Correlation coefficient visualization module for a poorly designed flight.  
Note the positive correlation between the roll (red circle) and yaw (red square) boresight 
angles, and the negative correlation between the pitch boresight angle (red triangle) and 
both other calibration parameters. 
 

 To generate the above plots the baseline flight of Figure 81 was again simulated, 

only this time, rather than both rolling and yawing, the vehicle only experienced a pitch 

oscillation of ±5°.  Recall from the signature analysis plots that a pitching vehicle 

contains sufficient information to determine the pitch and yaw boresight angles (Figure 

66 – middle and Figure 73 – middle); but will barely provide enough information for the 

roll boresight angle (Figure 69 – middle). 

 Our signature plots are confirmed in Figure 86 as the roll boresight angle has a 

covariance that is two orders of magnitude larger than the other two calibration 

parameters.  Turning next to the correlation coefficients, Figure 87, we see the solution to 

every calibration parameter is linearly dependent on the other parameters (i.e., every 

parameter has a perfect positive or negative correlation).  To see a correlation coefficient 
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of ±1 implies that the point cloud was not geometrically “interesting enough” to reliably 

determine the calibration parameters involved.  This could be because the vehicle’s 

motion was not dynamic enough (as in the previous case), because a group of parameters 

produce near identical effects on the point cloud (see Section 6.3.4.1), or, in the extreme 

case, a group of parameters are linearly dependent on each other (Section 6.3.3.2).  

 It is again emphasized that just because a set of calibration parameters have large 

covariances and high correlations among each other does not necessarily imply a “bad” 

calibration.  While the goal of the calibrator is, naturally, to determine the lidar’s 

calibration parameters, the true purpose is to produce a geometrically correct point cloud 

with a small total propagated uncertainty.  A collection of parameters with large 

variances, but also with large negative covariances, may still yield a point cloud with a 

relatively high confidence in the laser points’ positions (the ultimate measure of success 

for the lidar’s calibration).  Such a claim, however, cannot be fully explained until topics 

like the point cloud total propagated uncertainty and covariance are addressed – see 

Section 7.2.2.2.   

6.3 – Signature Analysis of the Remaining Calibration Parameters 

 The remaining 12 calibration parameters will now be systematically analyzed for 

their sensitivity to the vehicle heave, roll, pitch and yaw. 

6.3.1 – The Prism Slope 

 As more non-zero misalignments are introduced in the lidar’s configuration, there 

will be a greater chance for interaction among the parameters.  We will first consider a 

lidar with no misalignments other than a bias in the prism slope (i.e., all boresight angles 

will be 0°), to get a sense of the impact the prism slope alone.  Afterwards, some 
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non-zero boresight angles will be included to show how/if they interact with the prism 

slope. 

 The anticipated prism slope is 39.18°, based on a desired laser nadir angle of 20° 

(from [3.21]).  To test the structure of the biased point cloud, a misalignment of 0.1° is 

introduced to the prism slope (Figure 88 – top).  The biased cloud does experience a 

vertical shift; however the point cloud itself is still coplanar, suggesting some vehicle 

maneuvering will be required to calibrate the prism slope. 

 Introducing a vehicle heave does succeed in making the point cloud non-coplanar 

(Figure 88 – bottom).  Further a useful signature is seen with regard to a changing vehicle 

altitude.  In the presence of an unidentified bias in the prism slope, the calculated z-values 

of the point cloud get successively lower. 

 Signature plots for the prism slope as the vehicle rolls, pitches and changes 

heading are shown in Figure 89 (top, middle and bottom, respectively).  Changes in either 

the vehicle’s roll or pitch attitude lead to pronounced changes in the biased point cloud.  

In both cases, the clouds are distinctly non-coplanar suggesting either maneuver is a 

viable method for determining the prism slope.  Changing the vehicle heading, on the 

other hand, is unsuccessful in creating a non-coplanar point cloud and is of no use in 

calibrating the prism slope. 
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Figure 88. Visualization of a point cloud generated from a lidar with an unidentified 0.1° 
prism slope misalignment(top), and a point cloud from the same system as it experiences 
an increase in altitude (bottom).  The red points indicate the true laser strikes, while the 
black are the miscalculated biased points.  All units in meters.  
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Figure 89. Signature analysis plots for a lidar with a 0.1° prism slope misalignment in the 
presence of a rolling (top), pitching (middle) and yawing (bottom) vehicle.  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
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 If one were to consider only the above signature analysis plots, then one would 

think the only way to calibrate the prism slope is through a heaving, rolling or pitching 

vehicle.  However, the previous plots were rendered based upon the assumption that the 

lidar had an unknown bias in the prism slope, but no other system misalignments (known 

or unknown).  Figure 90 recreates the level flight shown in Figure 88 (top), this time 

adding some non-zero boresight angles.  It should be emphasized the boresight angles in 

this simulation are known, therefore the miscalculated positions of the lidar points can be 

attributed exclusively to the unknown bias in the prism slope.  Through the addition of 

the non-zero boresight angles, even a level flight contains enough geometric information 

to calibrate the prism slope (notice the non-coplanar biased point cloud in Figure 90).  

Much like a change in the vehicle’s attitude, the more extreme the geometry of the lidar’s 

boresight angles, the easier it is to calibrate both the prism slope and the boresight angles 

themselves. 

 

 
Figure 90. Visualization of a point cloud generated from a lidar with known non-zero 
boresight angles and an unidentified 0.1° prism slope misalignment.  The red points 
indicate the true laser strikes, while the black are the miscalculated biased points.  All 
units in meters.  
 

 



199 

 As a baseline, when the single, straight flight shown in Figure 90 was calibrated 

exclusively for its prism slope, the reported confidence was 0.022° (1σ).  In all previous 

boresight calibration trials, when the point cloud data density was doubled the reported 

uncertainties were reduced by approximately 30%.  Doubling the data density also leads 

to a 30% reduction in the uncertainty for the prism slope (Figure 91 – Line “A”). 

 Based on the signature analysis plots in Figure 88 and Figure 89, we should 

anticipate a slight improvement in the prism slope calibration in the presence of vehicle 

heave, a large improvement in the presence of vehicle pitch or roll, and no improvement 

when presented with a change in heading (based on the dispersion of the point clouds).  

All four of these suppositions are correct (Figure 91 – Lines “B1” through “B4”). 

 The final technique for improving the calibration performance is adding a second 

set of data points geographically separated from the first, to better define the ground 

plane.  Increasing the distribution of the data points across the ground has a greater 

contribution to improving the calibration routine than any of the previous suggestions 

(Figure 91 – Line “C”). 

 

 
Figure 91. Table of results of prism slope calibration trials under a number of different 
acquisition scenarios:  increasing data density (A), increasing the vehicle’s dynamic 
motion (B), and adding a geographically separated line (C).  All uncertainties are 
reported as a percentage of the baseline flight shown in Figure 90.  
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 To demonstrate how the prism slope interacts with the boresight angles within the 

calibrator, the baseline flight in Figure 81 (a single line with ±5° roll and yaw oscillation) 

is revisited.  This time, the three boresight angles and the prism slope will be calibrated 

simultaneously.  Interestingly, although the vehicle experiences a dynamic change in roll 

(something that should improve the confidence in the prism slope), the prism slope 

uncertainty actually grows by 4%.  This is an example of a distributed uncertainty – the 

more parameters that are being adjusted, the greater the number of options the LSA has in 

fitting the point cloud to a planar surface, and the less confident it can be in any one 

solution. 

 Figure 92 shows the correlation among the four parameters.  In this case, there is 

a large negative correlation between the boresight pitch angle and the prism slope.  When 

there is a large correlation between parameters, the calibration algorithm can have 

difficulty distinguishing which parameter is the true culprit for the non-coplanar status of 

the point cloud.  To put it another way, suppose a particular calibration parameter is not 

adjusted in the LSA and held to a fixed, but incorrect, value.  Should this parameter have 

a large correlation with another parameter that is being adjusted, then this second 

parameter can compensate for the erroneous value of the first parameter.  It is similar to 

determining the length and width of a rectangle of known area; if the length is recorded 

incorrectly, the width can compensate to assure that the area is correct.  In the case of the 

calibration, we are not computing areas of rectangles, but fitting points to a planar 

surface; if one parameter (say the prism slope) is recorded incorrectly, then other 

parameters with high correlations can compensate to make sure the points will still fit to 

the planar surface. 
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Figure 92. Correlation coefficients from a single flight line (shown in Figure 80) in 
which the three boresight angles and prism slope are adjusted.  Note the large negative 
correlation between the pitch boresight (red triangle) and prism slope (yellow circle). 
 

 To illustrate the concept of compensation in the presence of correlation, consider 

Figure 93, which shows the results of two attempted calibrations.  In both cases, the point 

cloud used to generate Figure 92 was employed.  Also in both cases, only a single 

parameter was calibrated:  the pitch boresight angle (in red) and the yaw boresight angle 

(in black).  The boresight angles that were not being calibrated were fixed at their correct 

simulated values, while the prism slope was fixed at a value that was intentionally 0.1° 

smaller than its actual value.  The question is then whether either the pitch or yaw 

boresight angles overcome this incorrect input.  In Figure 93, notice that the point cloud 

in which the pitch boresight angle was adjusted (shown in red), both better described a 

planar surface (having a smaller dispersion about the proposed plane) and described a 

planar surface closer to the true horizontal surface.  This is directly related to the fact that 
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pitch boresight angle had the larger correlation with the prism slope.  Note also that 

because the two parameters were negatively correlated, holding the prism slope at a value 

smaller than its actual value, the pitch boresight compensated by being larger than its 

actual value. 

 

 
Figure 93. Two attempts at calibrated point clouds produced when the prism slope was 
held fixed at an incorrect value and only the pitch boresight angle (red) and yaw 
boresight angle (black) were adjusted.  Note the pitch point cloud is slightly more 
coplanar and describes a plane closer to horizontal. 
 

The ramifications for the end user are that if they ever want to withhold a 

parameter from the calibration routine (believing the value to be “known”), and if there is 

any chance the value they input for this parameter is incorrect, then they will best be 

served if this parameter has a high correlation with some other parameter which can 

compensate for the incorrect value.  Conversely, parameters with high correlation 

coefficients can be set in advance with less risk to producing a poor calibration result.  
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Taken to the extreme, parameters with a perfect correlation (i.e., those that are linearly 

dependent on other parameters) can and should be removed from the calibration with no 

penalty to the quality of the calibration solution – even if the user sets these parameters to 

an incorrect value, the LSA will compensate.  The concept of one parameter 

compensating for another will be revisited when discussing the VRF-to-INS heading 

misalignment (Section 6.3.3.1).  The moral, however, should be to permit the calibration 

algorithm to determine all of the calibration parameters (rather than risking the input of 

an incorrect value). 

6.3.2 – Laser-to-Scanner Alignments 

 The laser-to-scanner alignments describe the two angles ( LS LS and   ) in spherical 

coordinates used to describe the direction in which the laser is entering the prism-scanner 

assembly (see Figure 19).  We begin with the customary signature analysis plots given an 

unidentified misalignment of 1° in the LS  and no other non-zero calibration parameters.  

What is most interesting with regard to the LS  signature plots (Figure 94 and Figure 95) 

is they are mirror images (reflected about the z-plane) of the pitch boresight signature 

plots (Figure 65 and Figure 66).  The plots would be nearly identical were a -1° LS  angle 

to be plotted instead.  This similarity in signature plots suggest that the pitch boresight 

angle and laser-to-scanner phi-angle are going to be difficult to decouple (i.e. will have a 

large correlation). 

 All conclusions to be drawn about the signature of LS  are equivalent to those for 

the pitch boresight angle.  Even for a level flight, the point cloud is largely non-coplanar, 

suggesting the parameter will be easy to calibrate without any excessive maneuvering of 

the survey vehicle.  Vehicle pitch appears to create the largest dispersion in the point 

 



204 

cloud (Figure 95 – middle) and is thus the change in vehicle attitude that will most 

benefit the calibration of LS.  

 

 
Figure 94. Visualization of a point cloud generated from a lidar with an unidentified 1° 
laser-to-scanner phi-angle misalignment (top), and a point cloud from the same system as 
it experiences an increase in altitude (bottom).  The red points indicate the true laser 
strikes, while the black are the miscalculated biased points.  All units in meters.  
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Figure 95. Signature analysis plots for a lidar with a 1° laser-to-scanner phi-angle 
misalignment in the presence of a rolling (top), pitching (middle) and yawing (bottom) 
vehicle.  The red points indicate the true laser strikes, while the black are the 
miscalculated biased points.  All units in meters.  
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 The laser-to-scanner theta-angle, LS,  is unique compared to the other calibration 

parameters.  During construction of the lidar, most of the calibration parameters will be 

designed to be zero.  That is, the system design will call for the prism to be perfectly set 

within the scanner (i.e. 0x y zPS PS PS    

LS

); the scanner will not be mounted on an 

incline (i.e., the pitch and roll boresight angles will equal zero); and assuming the laser is 

oriented normal to the scanner,   will equal zero.  However, if the laser is tilted just 

slightly away from the scanner normal, then it is equally probable to be tilted forward 

( LS 0   ), to starboard ( LS 90   180), aft ( LS   ), or to port ( LS 270   ).  If the laser 

is assumed to be tilted forward, but is actually tilted in some other direction, then the 

signature plots will have a different structure depending on the actual direction of tilt. 

 For example, suppose there is a known LS  = 1°, which is misidentified to be 

tilted in the forward direction (i.e. LS 0  

LS

).  Figure 96 shows what the biased point 

clouds would look like were the   to have a number of different values.  In the upper 

plots, where the assumed value for LS  is only off by 1° in either direction, the biased 

point clouds appear to be very coplanar.  Further, there is very little vertical dispersion in 

the point cloud (only 0.08m).  At first glance, this would imply that the laser-to-scanner 

theta-angle will be difficult to calibrate.  However, when the assumed value for LS  is off 

by 90° (Figure 96 – middle), the biased point cloud is no longer coplanar looking and has 

a large vertical dispersion, implying the calibration routine will quickly recognize a gross 

error in LS.   Conversely, the LSA will have difficulty recognizing small errors in LS.   

Note by the non-unique nature of spherical coordinates 1  and 0      is equivalent to 

1 180 , and       thus Figure 96 (bottom) is equivalent to Figure 94 (top). 
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Figure 96. Signature analysis plots for a lidar with a ±1°, ±90° and 180° laser-to-scanner 
theta-angle misalignment for a level flight.  Notice the bottom plot is equivalent to a lidar 
with laser-to-scanner theta-angle of 0° and phi-angle of -1° (see Figure 94 – top).  The 
red points indicate the true laser strikes, while the black are the miscalculated biased 
points.  All units in meters.  
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The issue of the LSA recognizing gross, but not minor, errors in the calibration 

parameters raises an important philosophical point with regard to calibration.  Suppose an 

error in parameter X causes what would otherwise be a flat, coplanar point cloud to 

suddenly have a vertical dispersion between ±0.005m along a 1000m survey line.  On the 

one hand, the point cloud is still nearly coplanar and thus the calibration routine is 

unlikely to identify the error in parameter X.  On the other hand, the point cloud is still 

nearly coplanar; the data integrity is likely still good enough for most applications.  In 

short, the parameters that are the hardest to calibrate are the ones that cause the least 

change to the point cloud and, thus, are the ones that matter least to the surveyor.  The 

end goal is not to determine the precise value of all the calibration parameters (though 

that would be nice) – the goal is to produce a geometrically correct and consistent point 

cloud. 

Though LS  could conceivably come from any direction, for the purposes of the 

sensitivity plots it will be assumed to be coming from 0°, while it is actually coming from 

an unknown 1° (Figure 96 – upper-left).  This should represent the most difficult case 

with regard to attempting to calibrate LS .  Naturally, any value for LS  would be 

meaningless if LS  were to equal zero.  So, LS  will be assumed to have a known value of 

1° (“known” implying that all misalignments in the biased point clouds can be attributed 

exclusively to the unknown error in LS ).  Using a larger value for LS  would only 

vertically amplify the signature plots.   

The LS  signature plots are shown in Figure 97 and Figure 98.  Most remarkable 

about the plots is their extreme resemblance to the signature plots for the roll boresight 

angle (Figure 68 and Figure 69).  As was the case with the roll boresight angle, neither a 
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single level flight, nor one with a change in altitude provides sufficient geometric 

information to calibrate LS , as the biased cloud is still coplanar.  Similarly, were the 

vehicle to experience a dynamic change in either its pitch or roll (Figure 98 – top and 

middle) the biased point cloud would only experience minor deflections from its coplanar 

status, suggesting neither of these maneuvers will reliably help to determine LS .  The 

maneuver that shows the most promise is an oscillation in heading (Figure 98 – bottom), 

which is the change in attitude that results in a distinctly non-coplanar point cloud. 

 
Figure 97. Visualization of a point cloud generated from a lidar with an unidentified 180° 
laser-to-scanner theta-angle misalignment (top), and a point cloud from the same system 
as it experiences an increase in altitude (bottom).  The red points indicate the true laser 
strikes, while the black are the miscalculated biased points.  All units in meters.  
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Figure 98. Signature analysis plots for a lidar with a 180° laser-to-scanner theta-angle 
misalignment in the presence of a rolling (top), pitching (middle) and yawing (bottom) 
vehicle.  The red points indicate the true laser strikes, while the black are the 
miscalculated biased points.  All units in meters.  
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 Executing successively more complicated calibrations, the baseline flight in 

Figure 81 (the single line with ±5° roll and yaw oscillation) is revisited yet again, where 

the six parameters discussed thus far (the three boresight angles, prism slope and two 

laser-to-scanner angles) are calibrated simultaneously.  The results of the calibration are 

labeled as the baseline flight in Figure 99.  Looking at only the baseline flight, one should 

immediately notice the uncertainty for LS  is two orders of magnitude larger than any of 

the other calibration parameters.  This large uncertainty for LS  was anticipated given the 

minimal dispersion of points shown in the signature analysis plots (Figure 97 and Figure 

98).  This large uncertainty should not be viewed with too critical an eye given that 

“close enough” is “good enough” regarding the point cloud positioning is concerned with 

the laser-to-scanner theta-angle. 

 

 
Figure 99. Table of results of six-parameter calibration trials under a number of different 
acquisition scenarios:  increasing data density (A), increasing vehicle attitude (B), adding 
a reciprocal and parallel flight lines (C) adopting a cloverleaf pattern (D) and crossing 
pattern (E).  All uncertainties are reported as a percentage of the baseline flight (shown in 
Figure 80) with the same number of data points.  

 
 

 Interestingly, when only the three boresight angles were calibrated, the pitch 

angle was the most confident, while the yaw angle was the least confident.  The 

magnitudes of the uncertainty for the pitch and yaw boresight angles have reversed 
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during this six parameter calibration.  To understand this shift in uncertainty, the 

parameters’ correlation coefficients must be considered (Figure 100).  As was discussed 

while viewing the signature analysis plots of the two laser-to-scanner angles, LS  

produced a biased point cloud that was very similar to those associated with the pitch 

boresight angle.  Similarly, LS  and the roll boresight angle had similar-looking biased 

point clouds.  These similarities have manifested themselves in the calibration routine 

producing near perfect correlations among the parameters.  A high correlation implies the 

calibrator cannot determine which of the two parameters to adjust when fitting the points 

to the planar surface.  This “indecision” causes the uncertainty of both parameters in 

question to be larger than they would be were the correlation not present.  Specific to the 

baseline flight, the large correlation associated with the pitch boresight angle caused the 

uncertainty to grow compared to when only the three boresight angles were calibrated 

(from 0.004° to 0.070°).  Meanwhile, the yaw boresight angle was not correlated with 

any other parameter in the 6-parameter calibration, and it saw its uncertainty improved as 

compared to the 3-parameter calibration (from 0.061° to 0.047°).  Note if the 

correlation/covariance plots ever get too busy, then the user can choose to display only 

the parameters of interest by deselecting the nuisance parameters from the left side of the 

interface (Figure 100). 

Again, striving to improve the baseline confidences of the 6-parameter calibration 

reported in Figure 99, the acquisition conditions are modified to see if a better flight 

configuration exists.  Of equal interest is to uncover a flight pattern that will help 

decouple the parameters with the large correlations.  Increasing the data density once 

again proves to be the guaranteed method of improving the calibrator’s performance 
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(lines “A1” and “A2”).  As before, doubling the data density reduces the uncertainty for 

all the parameters by about 30%.  Put another way, quadrupling the data density will 

halve the uncertainty. 

 

 
Figure 100. Correlation coefficients from a single flight line (shown in Figure 80) of a six 
parameter adjustment (boresight angles, prism slope and laser/scanner alignment).  
Notice the large correlations between the pitch boresight (red triangle) and LS  (purple 

circle) as well as between the roll boresight (red circle) and LS  (purple square).  

 

 The baseline flight experienced an oscillation in roll and heading of ±5°, lines 

“B1” and “B2” of Figure 99 show the effect of doubling the magnitude of each of these 

oscillations.  All of the calibration parameters benefit from an increase in the vehicle’s 

roll (reducing the uncertainty by at least 20%), but in particular, the prism slope’s 

uncertainty is halved (as is the uncertainty in the yaw boresight angle, but the relationship 
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between the yaw angle and vehicle roll has already been established).  When the vehicle 

experiences a greater change in heading, the parameters as a group do not experience as 

large an improvement as the increased roll.  The increased yaw does lead, however, to a 

much improved confidence in LS  (reducing the uncertainty by 59%).  The roll boresight 

angle also has a similar improvement in confidence, but the relationship between the roll 

angle and the vehicle heading has also already been established. 

 It has been established that acquiring additional data will lead to improved 

calibration results; therefore all the entries in Figure 99 have been normalized to 

whichever baseline flight has the equivalent number of data points.  For example, flight 

“C1” includes two survey lines acquired over the same area with a different vehicle 

heading.  Two lines imply twice the number of postings, so its performance is assessed 

against flight “A1” which has twice the laser repetition rate.  Interestingly, having a 

single flight line with a ±10° change in heading (“B2”) yields better calibration results 

than the two flights from opposite directions (“C1”).  Also, flying two parallel lines offset 

by a horizontal distance offers little benefit (“C2”).  From a confidence in the calibration 

perspective, the surveyor would be better served by just a single flight with a greater 

change in attitude, than by acquiring multiple flight lines (they would also save on fuel). 

 Speaking towards acquiring multiple survey lines, the cloverleaf pattern shown in 

Figure 82 was also simulated for comparison to the other flight schemes (“D1”).  

Amazingly, acquiring the four survey lines over the broader geometric area, while 

systematically varying the vehicle’s altitude, roll, pitch and yaw leads to a worse 

calibration than the simultaneously rolling/yawing flight line (“A2”).  On a point-for-

point basis, a surveyor would benefit more from investing in a denser dataset than 
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embarking on the full cloverleaf flight.  Of course, the best of all possibilities would 

result from a dense dataset over the cloverleaf pattern. 

 One flaw with the cloverleaf pattern as it was originally proposed was that only a 

single change in the vehicle aspect was simulated per flight line; that is, the vehicle 

would just roll on one flight line (all other things being the same), and then it would 

change its pitch in another, etc.  In reality, were an airplane to roll, it would also begin to 

bank and experience a corresponding change in heading.  Similarly, were an airplane to 

pitch nose up, it would likely gain altitude.  So a more realistic simulation would have a 

vehicle both roll and yaw simultaneously, as well as coupling any changes in pitch with 

heave.  Simulating the cloverleaf again, only this time having two consecutive lines 

experience a coupled vehicle roll/yaw (with the remaining two lines experiencing a 

coupled pitch/heave), the calibration results are shown in Figure 99 (“D2”).  Unlike the 

previous cloverleaf calibration, this flight strategy does produce slightly more confident 

calibration results than can be attributed to the increased data density alone, reducing the 

uncertainty by up to 9% (“A2”). 

 Morin (2002) also gave consideration to the design of a flight plan that would 

optimize the determination of the calibration parameters (though the calibration 

parameters under investigation were slightly different).  Rather than a cloverleaf, Morin 

proposed two sets of survey lines, acquired at different altitudes, that would intersect at a 

common point (Figure 101).  To modify Morin’s strategy, the dynamic changes in the 

vehicle’s orientation (simultaneous heave/pitch and roll/yaw) are still retained.  The 

results of this plus-shaped flight plan are shown in Figure 99 (“E”).  This crossing 

strategy acquired at different acquisition heights does in fact provide the best calibration 
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results seen so far.  In particular, the uncertainty in the prism slope drops by 45%, while 

the other five parameters improve between 9% and 19%. 

 
Figure 101. Proposed crossing flight plan which features survey lines at two different 
acquisition altitudes and the intersection of all lines over a common point (adapted from 
Morin 2002).  
 

 While the many previous flight strategies (increased data density, changing 

attitude, changing heading) did have some results in improving the confidence of one 

calibration parameter or another, none of them affected the correlation between the pitch 

boresight angle and LS  nor the roll boresight angle and LS.   Even with the cloverleaf 

and crossing flight plan the correlations could not be removed.  Again, large correlations 

do not necessarily make for a poor calibration, they just imply that the reported 

uncertainties for some of the calibration parameters will be larger than the user may 

desire; the final point cloud will, however appear geometrically correct. 

 In summary, the laser-to-scanner angles, LS LSand ,   are almost defined by their 

similarities to the pitch and roll boresight angles respectively.  LS  is easily determined 
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and requires no special maneuvering beyond the forward advancement of the vehicle.  

LS  on the other hand, is most sensitive to changes in the vehicle heading.  However, 

even with a change in heading this theta-angle is difficult to determine to a high precision 

because the point cloud is not particularly sensitive to small changes in this parameter.  

This has the duel implication that (a) it will not be possible to determine the value of LS  

to as precise a degree as the other calibration parameters and (b) it does not need to be 

determined to as precise a degree as the other parameters.  A corollary to any 

misalignment that produces only slight changes in the point cloud is that the associated 

parameter will be very slow to converge if included in the LSA (unless an appropriately 

small weight – large uncertainty is placed on the parameter).  

6.3.3 – The Vehicle Reference Frame (VRF) 

 There are two sets of calibration parameters that are directly related to the 

definition of the vehicle reference frame:  the VRF and IRF heading misalignment and 

the offset vector between the IRF and the scanner.  Each will be discussed in turn.  These 

parameters, more so than the previous six, will drive home the potential impacts of the 

correlation along parameters and provide the first example of a group of parameters that 

are completely linearly dependent on one another. 

 6.3.3.1 – Vehicle-to-INS heading alignment.  The VRF-to-IRF heading alignment, 

VI ,  is depicted in Figure 27.  A non-zero value for VI  will result in cross-talk between 

the INS-sensed pitch and roll values, which must be corrected.  For this set of signature 

analysis plots, we shall assume the lidar has 5° pitch, roll and yaw boresight angles and a 

1m offset between the SRF and the VRF origins in the fore-aft, port-starboard and up-
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down axes – all of these non-zero calibration parameters will be known in the signature 

plots implying only the error in VI  will be responsible for the biased point clouds. 

 The signature analysis plots for VI  (shown in Figure 102 and Figure 103) bear a 

striking resemblance to the signature plots for the yaw boresight angle (Figure 71 and 

Figure 73).  Based on the discussion of previous calibration parameters, we can surmise 

there will likely be a high correlation between the VRF/IRF heading misalignment and 

the yaw boresight angle when both variables are included in the calibration routine. 

 
Figure 102. Visualization of a point cloud generated from a lidar with an unidentified 1° 
VRF/IRF heading misalignment (top), and a point cloud from the same system as it 
experiences an increase in altitude (bottom).  The red points indicate the true laser strikes, 
while the black are the miscalculated biased points.  All units in meters.  
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Figure 103. Signature analysis plots for a lidar with a 1° VRF/IRF heading misalignment 
in the presence of a rolling (top), pitching (middle) and yawing (bottom) vehicle.  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
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 Even with non-zero boresight angles and non-zero laser-to-scanner alignment 

angles, a lidar with an unidentified bias in VI  will still yield a biased point cloud that is 

coplanar.  Further, a change in the vehicle altitude will do nothing to disturb the biased 

coplanar cloud (Figure 102 – bottom).  This is not to imply that the true laser points and 

the biased points are equivalent; the biased points do experience a horizontal shift similar 

to that exhibited in the yaw boresight signature plot (Figure 72).  The problem, from the 

calibrator’s point of view is that the point cloud is coplanar and thus VI  cannot be 

determined from the information given.  To calibrate VI  requires the vehicle to either 

roll or pitch (Figure 103 – top and middle, respectively).  The greater the change in 

attitude, the greater the vertical dispersion of the point cloud will be, which leads to a 

greater confidence in the calibrator’s ability to determine the misalignments. 

 The reported confidences for several calibration attempts of some 7-parameter 

calibrations are shown in Figure 104.  The first thing to notice is that the reported 

uncertainty of both VI  and the yaw boresight angle are nearly 4° (1σ).  For a dataset of 

this size, this is the largest uncertainty seen in this document thus far.  To come to terms 

with what these large uncertainties mean, we must first examine the correlations (Figure 

105). 

 As speculated when examining the signature analysis plots, the yaw boresight 

angle and the VRF/IRF heading misalignment have a near perfect correlation.  Recall 

from Section 6.3.1 (Figure 93) that the geometric interpretation of two parameters that 

are highly correlated is that the error in one parameter can be compensated for by a 

complementary error in the other parameter.  It turns out the biases in a point cloud 
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caused by a misalignment in the VRF/IRF heading can be almost completely eliminated 

by applying a correction to the yaw boresight angle.   

 

 
Figure 104. Table of results of seven-parameter calibration trials.  Trials with increased 
data density (A), over the cloverleaf pattern (B) and crossing pattern (C) are shown.  All 
uncertainties are reported as a percentage of the baseline flight (shown in Figure 80).  
 
 

 
Figure 105. Correlation coefficients from a single flight line (shown in Figure 80) of a 
seven-parameter adjustment (only boresight angles, VRF/IRF alignment shown). 
 

 Figure 106 and Figure 107 show a second rendering of the biased point clouds 

resulting from a 1° bias in VI  (where the value of VI  is incorrectly assumed to be 0°).  
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The biased clouds are plotted, however, after intentionally setting the yaw boresight angle 

to an incorrect value of 4° (recall, the actual yaw boresight misalignment in this 

simulation is 5°).  First notice that the biased point clouds resulting from the level, 

heaving and yawing flight lines are still coplanar; thus introducing the incorrect value for 

the yaw boresight angle hasn’t made the problem worse when compared to Figure 102 

and Figure 103.  The critical observation is in the biased point clouds when the vehicle 

rolls and pitches (Figure 107 – top and middle).  Previously, when there was only a bias 

in VI  such a change in vehicle attitude resulted in a vertical displacement of the point 

cloud by 3m to 4m (Figure 103 – top and middle).  Now, with the yaw boresight angle 

acting as a corrector, the vertical displacement of the point cloud is on the order of 

0.009m.  That is, from one end of a 2,000m flight line to the other, the point cloud 

deviates only 9 millimeters from the true ground plane.  When measurement noise is 

included, this deviation will be undetectable.   

 To summarize, if there is an unknown error in the value for the VRF/IRF heading 

alignment, a complementary error can be introduced into the true value of the yaw 

boresight angle.  This complementary error will not completely remove the artifacts 

induced in the point cloud by the misidentified VI  angle, but it will reduce them to 

undetectable levels.  It is not a case of two “wrongs” making a “right,” but two “wrongs” 

making a “right enough.”  

 In this way, surveyors for years might have been incorrectly mounting their IMUs 

to the vehicle frames.  Later, when it came time to calibrate the system, the resulting 

biases in the point cloud resulting from the cross-talk in the IMU-sensed pitch and roll 

was mistakenly interpreted as a yaw boresight misalignment.  Subsequently adjusting this 
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boresight angle would nearly remove the point cloud’s artifacts to a level that would not 

be detectable within the system noise.  The magnitude of the remaining artifact is a 

function of three things:  the magnitude of the vehicle’s pitch/roll, the length of the 

horizontal lever arm between the VRF and IRF, and the magnitude of VI.   Sample plots 

of biased clouds varying all three of the preceding items is shown in Figure 108.  For the 

CZMIL system, a basic rule of thumb is as follows:  for every 1° of VI  that is 

compensated by the yaw boresight angle, for every 10° of vehicle roll, for every 1m the 

VRF is forward of the IMU, a 0.003m vertical bias will be introduced.  For example, if 

there is a 3° VRF/IRF misalignment with a 0.5m offset vector and 20° of roll, then there 

will be a vertical bias in the point cloud of 3*0.5*2*0.003 = 0.009m.  This bias is 

completely independent of acquisition altitude or other calibration values. 
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Figure 106. Visualization of a point cloud generated from a lidar with an 1° VRF/IRF 
heading misalignment that is misidentified as a -1°  yaw boresight angle (top), and a 
point cloud from the same system as it experiences an increase in altitude (bottom). 
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Figure 107. Signature analysis plots for a lidar with a 1° VRF/IRF heading misalignment 
that is misidentified as a -1° yaw boresight angle in the presence of a rolling (top), 
pitching (middle) and yawing (bottom) vehicle.  The red points indicate the true laser 
strikes, while the black are the miscalculated biased points.  All units in meters.  Note the 
vertical scales are 10-3m.  
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Figure 108. When a VRF/IRF heading misalignment is incorrectly identified as a yaw 
boresight misalignment, a vertical bias in the point cloud will result.  This bias will grow 
by 0.003m for every 10° of vehicle roll, 1m of forward-aft offset between the INS and 
VRF, and 1° of VI  that is attributed to the yaw boresight. 

 

 One final point must be made with regard to VRF/IRF heading misalignment.  

Recall from Figure 104 that the (1σ) confidence of VI  (and the yaw boresight angle) was 

nearly 4°.  If the goal of the surveyor were merely to determine the system calibration 

values as precisely as possible, then one might be considered to label the previous 

calibration attempt a failure (given the inordinate uncertainty in the calibration values).  

However, if the goal of the surveyor is to produce a geometrically correct point cloud 

with a high confidence in the positions of the laser points, then the previous calibration 
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should not be dismissed so quickly.  We have already established that the point cloud will 

be geometrically correct (to within a few millimeters).  To see the impact of the 

seemingly large uncertainties of these calibration parameters on the total propagated 

uncertainty of the point cloud, refer to Section 7.2.2.2 where this calibration run is 

revisited.  Not to discourage the reader from looking ahead, but the impacts of the large 

parameter uncertainties are very small on the propagated uncertainty. 

 6.3.3.2 – Scanner-to-INS horizontal offset measurement.  The offset vector from 

the laser-prism-scanner assembly to the INS should be performed in the INS’ reference 

frame (IRF).  The problem is that it is difficult to judge relative positions in the IRF; 

whereas, it is easier to work in the vehicle’s reference frame (VRF).  The VRF is 

arbitrary, but is typically defined in such a way that lateral measurements are intuitive to 

perform – given a person has an innate appreciation for which direction is forward/aft and 

port/starboard when looking at a vehicle.  Assuming the INS is well-mounted (i.e., 

VI 0),   then the VRF will coincide with the IRF and the offset measurements taken in 

the VRF can be used in the IRF.  When there is a misalignment between the VRF and 

IRF, this offset vector must be rotated accordingly.  The dependence of this horizontal 

offset measurement on an arbitrary coordinate system will prove problematic when the 

time comes for calibration. 

 First consider the horizontal bias between the two coordinate systems (denoting 

the forward-aft offset, ILx , and the port-starboard offset, ILy ).  A horizontal shift in the 

offset vector will typically just result in a horizontal shift in the point cloud (Figure 109).  

Such a horizontal shift still produces a coplanar point cloud and is insufficient for 

calibration. 
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Figure 109. Top-down view of a point cloud (red) and its biased counterpart which 
contains an unidentified forward ILx (black).  All units in meters. 

 

 Nearly all of the signature plots for the horizontal biases in the offset vector 

produce a horizontal, coplanar biased point cloud.  As such only the signature plots 

yielding a non-coplanar biased point cloud are shown below.  To expose a bias in ILy , 

the vehicle must experience a change in its roll aspect (Figure 110 – top).  A ILx  bias 

requires a vehicle to pitch (Figure 110 – bottom).  ILx  and ILy  are unique as 

calibration parameters in that having a vehicle pitch or roll is a sufficient condition for 

calibration.  In the case of these horizontal offsets, only one change in attitude works, 

while the other is ineffective.  Note the previous statement is not entirely true if the 

ground plane is tilted, but for now we will assume a horizontal planar surface. 

 While the signature plots shown for ILx  and ILy  do not bear an immediate 

resemblance to the plots of any of the preceding calibration parameters, they do look very 

similar to the biased point clouds resulting from misinterpreting a VHF/IHF heading bias 
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as a yaw boresight angle.  With the exception of the vertical scale, Figure 110 appears 

identical to Figure 107.  This suggests that ILx  and ILy  will have a high correlation 

with both VI  and zBS   in the calibration routine. 

 
Figure 110. Signature analysis plots for a lidar with a 1m starboard IMU offset bias in the 
presence of a vehicle rolling (top), and a lidar with a 1m forward IMU offset bias in the 
presence of a vehicle pitching (bottom).  The red points indicate the true laser strikes, 
while the black are the miscalculated biased points.  All units in meters.  
 

 The crossing pattern shown in Figure 101 was simulated with non-zero values for 

the boresight angles, prism slope, INS offset vector and laser-to-scanner angles and 

subsequently calibrated.  The VRF/IRF heading misalignment was set to zero, but 

included in the calibration.  To get baseline uncertainties, the calibration was first 
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performed on all 9 of the preceding parameters with the exception of the INS offset 

vector (Figure 111 – “A”).  As usual, LS  has a large uncertainty (1.939°) because this 

parameter is difficult to precisely calibrate (though the point cloud does not require 

precise calibration).  zBS  and VI  also have large uncertainties (2.513° and 2.514°, 

respectively) due to their high correlation with each other. 

 

 
Figure 111. Table of results of different combinations of a 9-parameter calibration where 
the INS offset vector was held constant (A), no parameters were held constant (B) and 
only ILy  was held constant (C).  The crossing pattern shown in Figure 101 was used to 

generate the data.  All uncertainties are reported as 1-sigma.  
 

 
 When the INS offset vector is introduced into the calibration, the uncertainties 

grow unbounded (Figure 111 – “B”).   and IL ILx y   have uncertainties over 10 

kilometers, while VI  and zBS   have uncertainties of nearly 600,000°.  The magnitude 

and causes of the errors are better understood by examining the covariance (Figure 112) 

and correlation plots (Figure 113).  The covariance plot shows that the spikes in 

uncertainty are limited to only four parameters in question:  the rest of the calibration 

performed as well as normal.  Turning to the correlation plot, we see that the four 

parameters are hopelessly entangled with each other (all having correlations of 1 or -1). 

 In the previous section, we saw that the large correlation between VI  and zBS   

led to their respective increases in uncertainty.  However, the extreme levels of 
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uncertainty here are an indication of more than just correlation – they are an indication of 

linear dependence. 

 
Figure 112. Covariances from a 9-parameter adjustment (boresight angles, prism slope, 
VRF/IRF heading alignment, INS offset vector  and laser/scanner alignment).  Note the 
logarithmic scale. 
 

 
Figure 113. Correlation coefficients from a 9-parameter adjustment (only the boresight 
angles, prism slope, VRF/IRF heading alignment and INS offset vector are shown).  
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 There is actually a fundamental connection among the parameters VI ,  ,zBS  

ILx  and ILy  which is revealed by returning to the laser location equation.  Recall from 

(3.46) the ground coordinates of the point cloud are given by: 

 0
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in which the terms of particular importance are defined in (3.47): 
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It is important to note that the boresight angles are not a transformation from the laser 

scanner reference frame (SRF) to the INS reference frame, though they are often assumed 

to be due to the common practice of neglecting VI .  The boresight angles (just like ILx


) 

are a transformation from the SRF to the VRF. The rotation matrix associated with VI  

then completes the transformation from the VRF to the IRF. 

Substituting (6.3) into (6.2), and temporarily disregarding the laser range bias and 

scale factor ( 0  and 1  ), as well as the GPS position, ,ECEFx


 we have: 
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The vehicle attitude ( ) and V VI  rotation matrix can then be distributed inside the 

parenthesis: 
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Multiplying out the two VI  rotation matrices and applying some angle summation 

formulas then yield: 

 

   
    2

cos sin 0

sin cos 0

0 0 1

cos sin

cos sin .

z VI z VI

G V z VI z VI BS y BS x

IL VI IL VI

V IL VI IL VI

IL

BS BS

x BS BS L

x y

y x

z

 

   
    

 
 

   
    
  
   
    
  

  



 

 (6.6) 

The preceding equation can now be put back into the form of (6.2) if we define new 

calibration parameters ( VI*,  *,zBS  *ILx  and *ILy ) in terms of the old parameters 

such that: 

 (6.7) 
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where: 
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In this way, the VRF/IRF heading misalignment is algebraically eliminated from the laser 

equation provided the value is deducted from the yaw boresight angle and the IMU offset 

vector is rotated.  A graphical depiction of this process is shown in Figure 114. 

 

 
Figure 114. Two valid definitions of a vehicle reference frame:  one oriented at an angle 
(left) and the other oriented towards the nose of the aircraft (right).  Once the VRF is 
established, VI ,  ,   and z IL ILBS x y     are fixed accordingly.  The laser scanner reference 

frame is indicated in green and the INS reference frame is indicated in magenta.   
 

 Suppose during a vehicle’s static survey (when the offsets among the system 

components are measured), the surveyor capriciously decides the laser is located directly 

 



235 

“to the right” of the INS and proceeds to measure the distance between the two 

components, that is  (0m and 1.414mIL ILx y    Figure 114 – left).  So orienting the 

vehicle reference frame, the angular offsets between the IRF and VRF (i.e., VI ) and 

between the SRF and IRF (i.e., zBS ) would then be measured as 45° and 50°, 

respectively.  This choice of coordinate systems is not arbitrary, given it only requires the 

field crew to perform a single horizontal measurement (with no consideration to any 

angles).  Within the calibrator, the INS offset vector would be set at (0,1.414) and held 

constant, then it will successfully determine the values for VI  and .zBS  

 Alternatively, and more likely, the surveyor would measure the horizontal offsets 

with respect to the airplane itself, using the vehicle’s centerline as a reference azimuth.  

By defining the airplane nose as “forward,” the VRF is accordingly defined and the 

forward and lateral offsets can be measured ( 1m and 1mIL ILx y     in this example).  

With these offsets input into the calibrator, it would then output the adjusted values for 

VI  and zBS  as 0° and 5°, respectively.  Observe that both (0m, 1.414m, 45°, 50°) and 

(1m, 1m, 0°, 5°) will properly convert the point cloud into the INS’ reference frame and 

yield an identical point cloud.  

 To summarize:  the four parameters VI ,  ,zBS  ILx  and ILy  are linearly 

dependent on each other and cannot be simultaneously adjusted within the calibrator.  At 

least one parameter must be fixed by the user in advance.  Which of the four parameters 

to fix does not actually matter.  Further, the value itself doesn’t matter either!  The whole 

point is that we are defining an arbitrary vehicle reference frame to aid us in the 

measurement of the offset vector.  This VRF is only temporary as no sooner are the 
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offsets made in the VRF that they are converted to the IRF.  So, absolutely any angle can 

be input for VI ,  and because the parameters are linearly dependent, absolutely any value 

can be used for one of the other parameters ,zBS  ILx  or ILy  as well.  The only caveat 

is that neither component of the INS offset vector can be set to a value larger than the 

horizontal distance between the laser scanner and the INS.  For example, if the two 

components are physically separated by 2m on a horizontal plane, then any number 

between +2 and -2 can be used as a fixed value for .ILx   Once ILx  is set (the thus the 

VRF defined), the other three parameters will align themselves accordingly.   

Of course, just because something can be arbitrary doesn’t mean it has to be.  

Surveyors can continue to declare VI 0 ,    but in so choosing they should not input the 

INS offset vector (at the risk of creating a sub-optimal calibration).  Instead, the 

calibration routine should be permitted to solve for this offset vector.  A more practical 

strategy, and what this dissertation recommends, is the surveyor continue to define the 

VRF in the intuitive manner of “forward” equals “towards the airplane’s nose.”  From 

there, both the forward and lateral offsets can be measured, but only one should be 

entered into the calibrator.  The other value can be held aside as a quality control check 

on the calibration.  The results of a sample calibration, where one horizontal component 

of the INS offset vector is held fixed and the other is adjusted, are shown in Figure 111 

(“C”).  A user might have disparaging opinions about the reported uncertainty in the 

forward/aft INS offset of 0.112m (feeling they could measure this value more accurately 

by hand).  There are two responses to that opinion: 

1.  Do not overlook the correlations – the large covariances not shown in Figure 111 

that are associated with ILx  will ensure the TPU of the final point cloud is small.  The 
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goal is not low uncertainties in the calibration parameters, but low uncertainties in the 

point cloud positioning. 

2.  The data in Figure 111 was from a simulated lidar operating at 51Hz:  when the 

data is acquired at a full 10000Hz the expected uncertainty will be reduced from 0.112m 

to 0.009m (1σ). 

 6.3.3.2 – Scanner-to-INS vertical offset measurement.  As with the horizontal 

biases in the INS offset vector, the presence of an unidentified vertical offset between the 

laser scanner and INS, will result in a translation of the point cloud.  Typically the 

biased point cloud will be shifted vertically by a measure equal to the magnitude of the 

unknown vertical offset (

,ILz

Figure 115 – top).  Neither a change in altitude or a change in 

vehicle heading will produce a non-coplanar biased point cloud.  The detection of a bias 

in  is predicated on the vehicle either rolling (ILz Figure 115 – middle) or pitching 

(Figure 115 – bottom).  In both cases, the greater the magnitude of the vehicle’s departure 

from a level flight, the greater the dispersion of the biased points, and the better the 

calibrator will perform. 

 The vertical INS offset is included in the calibration along with the boresight 

angles, prism slope, VRF/IRF heading alignment, laser/scanner angles and the INS 

forward offset (the INS lateral offset is held constant for reasons discussed in the 

previous section).  Results for this 9-paramaeter calibration are shown in Figure 116 

(“A”).  As before, the usual suspects of VI LS,   and zBS    have relatively larger 

uncertainties, though none are of particular concern for the point cloud because of the 

large associated covariances discussed earlier.  The newest parameter,  also has a 

large uncertainty of 1.886m (1σ) which could be problematic for the final point cloud. 

,ILz
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Figure 115. Signature analysis plots for a lidar with a 1m vertical IMU offset bias (top), 
in the presence of a rolling vehicle (middle), and pitching vehicle (bottom).  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
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Figure 116. Table of results of a 9-parameter calibration (including the vertical INS 
offset) both without (A) and with (B) ground control. The vertical propagated uncertainty 
of the point cloud is included for reference.  The crossing pattern shown in Figure 101 
was used to generate the data.  All uncertainties are reported as 1-sigma.  

 
 
 Though not shown in Figure 116, the z-coordinate of the point used to define the 

planar surface in the adjustment, see (5.56), also has a large uncertainty (2.354m – 1σ) 

and a large correlation with   As will be discussed in the Chapter VII, only the 

variance-covariance information associated with the lidar calibration parameters are 

passed to the total propagated uncertainty module.  The uncertainty information as it 

pertains to the five planar surface parameters is not retained, which is a detriment to any 

calibration parameter with a high correlation to the planar parameters.  For the present 

calibration, this implies the large variance of 

.ILz

ILz  will be carried forward to the 

uncertainty module, but the large covariance of ILz  with the z-planar coordinate will 

not.  The end result is the total vertical uncertainty (TVU) of the point cloud will be on 

the order of 1.88m, implying the variance of ILz  accounts for nearly 100% of the 

vertical uncertainty in the point cloud (see Section 7.3 for a discussion of the relative 

contributions to point cloud uncertainty).  A nearly 2m vertical uncertainty in the point 

cloud is unacceptably large for most surveying applications.  To control this error, two 

simple options exist:  introduce a ground control point or measure the vertical INS offset 

by hand and treat it as a measured parameter in the LSA.  Both options will be discussed. 

 To define the planar surface to which the point cloud is fit, five parameters are 

required (two for the planar normal vector and three for a point on the plane).  All five of 

 



240 

these planar parameters are adjusted within the calibration routine.  However, if the 

coordinates of any point on the planar surface are already known, three of the parameters 

can be removed from the adjustment.  This could be achieved by performing the 

calibration flight in the vicinity of a known benchmark or by conducting a static GPS 

survey.  Note, the lidar data does not have to include the reference point; that is, the lidar 

survey can be conducted in one spot and the reference point can be from another area (so 

long as both regions are coplanar with each other). 

  Figure 116 (“B”) shows the results of a 9-parameter calibration in which the 

point on the adjusted planar surface is held fixed.  By adding the one ground control 

point, the uncertainty in the  drops from 1.886m to 0.010m (1σ).  Likewise, the 

uncertainty of vertical propagated uncertainty of the point cloud drops from 1.88m to a 

much more acceptable 0.11m (1σ).  Of note is the confidence of the other 8 calibration 

parameters unaffected by the inclusion of ground control. 

ILz

 The other option available to the surveyor is to measure vertical INS offset 

manually and declare the  as an “observed” rather than a “calibrated” parameter in 

the LSA (while the five planar parameters are again adjusted).  Under such a scheme, 

both the confidence of the remaining eight calibration parameters and the propagated 

uncertainty of the final point cloud are equivalent to the calibration with the ground 

control. 

ILz

 To summarize, the vertical INS offset cannot be added to calibration algorithm 

(along with the other eight calibration parameters and five planar parameters) without 

inducing a large uncertainty in the positions of the final point cloud.  To cope with this 

uncertainty, either a ground control point should be included or ILz  should be measured 
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directly by the surveyors and removed from the adjustment.  Given the surveyors are 

already measuring the two horizontal components of the INS offset vector (of which one 

is required to be held fixed in the LSA), measuring the vertical offset as well does not 

require much additional effort.  Measuring ILz  is also particularly simple in contrast to 

the level of effort required to survey a ground control point to the same accuracy of this 

vertical offset.  However, by removing the planar coordinate from the adjustment, any 

associated covariances that would otherwise be associated with these points are 

eliminated (a desired feature with regard to the propagated uncertainty of the point 

cloud). 

6.3.4 – Prism-to-Scanner Alignments 

 As more parameters are included in the calibration routine, the least squares 

adjustment has more “options” with regard to fitting the point cloud to a planar surface.  

Altering one combination of parameters can produce a point cloud that is similar (or 

identical, as was seen in with VI ) to the effect achieved by changing another parameter.  

Thus, as more parameters are piled on the calibrator, the expected confidences in their 

solution will become less and less. 

 The next-to-last group of calibration parameters to discuss is the prism-to-scanner 

angular alignments.  There are three rotations to consider:  the roll-like rotation of prism 

about the scanner’s about its x-axis ( xPS ) and pitch-like rotation about the scanner’s y-

axis ( yPS ), both shown in Figure 17, and the bias in the scanner’s azimuth angle 

( zPS ).  The first pair of misalignments (which display a similar behavior) will be 

discussed in tandem in one section with the third parameter to follow in a separate 

section. 
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 6.3.4.1 – Prism “pitch” and “roll” biases.  For a lidar with no non-zero 

geometric alignments (i.e. boresight angles, laser/scanner angles and VRF/IRF heading 

are equal to 0° θ), a rotation of the prism with respect to either the scanner’s x or y-axis 

will just produce a larger circular scan pattern than what would otherwise be present (see 

Figure 18).  This is the same effect that can be achieved were the prism slope to be 

increased (see Figure 15).  The similarities in these plots suggest there will be a high 

degree of correlation both between the two parameters xPS  and yPS , and with the 

prism slope FR . 

 To confirm the connections among FR  and the prism/scanner angles, consider 

the signature plots for yPS  shown in Figure 117 and Figure 118.  The trends of the 

biased point clouds are all nearly identical to those shown for FR  (Figure 88 and Figure 

89).  Since each parameter produces such a similar effect on the point cloud, they will be 

very difficult to decouple in the calibration process.  However, they will not be 

impossible to decouple, as yPS  cannot be algebraically eliminated from the laser 

equation as VI  was in (6.7). 

Signature plots for xPS  (not shown) are also near equivalents to those for yPS  

with two slight differences:  the behavior for a rolling and pitching vehicle are reversed, 

and the vertical scale of the biased cloud is different.  The disparity in scales between 

xPS  and yPS  is shown in Figure 119.  An unknown bias of 1° in xPS  will lead to a 

vertical shift in the point cloud of 0.005m; whereas a similar bias in yPS  will lead to a 

0.309m shift.  This magnification effects on the biased point clouds implies that yPS  

will be the easier parameter to determine during the calibration.  For reference, a bias of 
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1° in the prism slope leads to a 1.54m shift (implying it will be easier to calibrate than 

both of the preceding parameters).  The fact that an equal change in FR  and xPS  has an 

almost 300 fold difference in how it is manifested has a secondary consequence:  if both 

parameters are calibrated, the uncertainty in xPS  is going to be much larger. 

 

 
Figure 117. Visualization of a point cloud generated from a lidar with an unidentified 1° 

yPS  misalignment(top), and a point cloud from the same system as it experiences an 

increase in altitude (bottom).  The red points indicate the true laser strikes, while the 
black are the miscalculated biased points.  All units in meters.  
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Figure 118. Signature analysis plots for a lidar with a 1° yPS  misalignment in the 

presence of a rolling (top), pitching (middle) and yawing (bottom) vehicle.  The red 
points indicate the true laser strikes, while the black are the miscalculated biased points.  
All units in meters.  
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Figure 119. Comparison of signature plots for two level flight lines with an unidentified 
rotation of 1° between the prism and scanner about two different axes, xPS  (left) and 

yPS  (right). The red points indicate the true laser strikes, while the black are the 

miscalculated biased points.  All units in meters.  
 

 It should be noted that the previous signature plots for the prism/scanner 

alignments were all generated with the assumption that no other non-zero system 

alignments are present.  In the actual system, it is unlikely that every component will be 

so perfectly situated.  Figure 120 shows what the biased point cloud would look like were 

there an unknown 1° bias in xPS  (a re-rendering of Figure 119 – left, from a different 

perspective) as well as that same bias in the presence of a geometrically more 

complicated system.  Moving from left to right, new known misalignments are introduced 

until Figure 120 – 4 which displays a biased point cloud containing non-zero values for 

the pitch and roll boresight angles in addition to the laser/scanner alignments.  Note, only 

the bias in xPS  is unknown, and is thus the only cause of the miscalculated positions of 

the point cloud.  As the orientation of the system grows in complexity, the misalignment 

in xPS  induces a larger vertical displacement on the biased point cloud.  Should the 
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vehicle experience any change in aspect (pitch or roll), then these vertical displacements 

are further amplified. 

 
Figure 120. Comparison of signature plots for a level flight with an unidentified rotation 
of 1° prism/scanner x-axis alignment (1) and same incrementally more complicated point 
cloud, introducing known biases to the roll boresight (2), pitch boresight (3) and 
laser/scanner alignments (4). The red points indicate the true laser strikes, while the black 
are the miscalculated biased points.  All units in meters.  
 

 The usual flight pattern of Figure 101 was simulated at 51Hz (3,800 data points) 

with an additional misalignment in  and x yPS PS 

yPS

.  Before processing a full 

11-parameter calibration (ground control was simulated, permitting the adjustment of 

 a 9-parameter calibration was first simulated to provide a baseline confidence 

(

),ILz

Figure 121 – Trial 1).  Trial 2 includes   in the adjustment while Trial 3 includes 

xPS .  In both cases, the uncertainty for the two parameters is large (8 216° and 7.974°, 

respectively).  Further all the calibration parameters (pitch and roll boresight, prism 

slope, and the two laser/scanner angles) with correlations of ±1 with these two parameters 
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also wind up with inordinately large uncertainties (highlighted in bold in Figure 121).  

For example, when yPS  is included in the calibration, the uncertainty in the prism slope 

increases by over 40,000%, to 1.634° (1σ).  This leap in uncertainty validates the  

supposition from the signature plots whose similarities suggested the two parameters 

would be difficult to decouple.   

 
Figure 121. Table of results of an 11-parameter calibration trial with ground control (1σ 
uncertainties shown). Parameters marked by a ‘-‘ were not included in a given calibration 
trial.  Trial 1 provides a baseline calibration without PSθx and PSθy. The remaining trials 
report the parameter uncertainties as a percentage of this baseline.  Parameters with ±1 
correlations to PSθx  or PSθy  are highlighted in bold.  The maximum contribution to the 
propagated uncertainty of the point cloud is included for reference.  The crossing pattern 
shown in Figure 101 was used to generate the data.  

 
 

 Since the inclusion of VI  in the calibration routine (Section 6.3.3.1), the 

uncertainties in BS ,z   VI  and LS  have had large uncertainties (see Figure 104).  In 

spite of these large uncertainties, their covariances worked towards keeping the 

contribution to the propagated uncertainty in the point cloud positions relatively small.  

For example, the previous baseline flight contributed only 0.009m to the point cloud 
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vertical TPU and 0.100m  to the horizontal TPU (Figure 121 – Trial 1).  The addition of 

 and x yPS PS   to the calibration however are too much for the point cloud to bear.  The 

large uncertainties of these two parameters (along with the much larger uncertainties of 

all the correlated parameters) causes the vertical and horizontal point cloud TPU to swell 

to 37.5m and 23.1m (1σ) respectively.  In this case, one would be justified in saying the 

calibration failed as both the proposed solution for the calibration parameters and the 

location of the laser points have poor confidences.  Even a calibration of just the two 

prism/scanner angles yields a point cloud that would not satisfy an IHO Order 1 survey 

(0.889m – 1σ vertical TPU versus the depth requirement of 0.5m).  Note:  see Section 7.3 

for a breakdown of the relative contributions to the TPU by the calibration parameters. 

 It is reasonable to wonder why the point cloud uncertainties are so large when 

previous examples (see Figure 116) have shown the point cloud is capable of absorbing 

large calibration parameter uncertainties.  One must understand that the confidences 

reported by the LSA are merely the confidence in the choice of the calibration values that 

lead to the best possible fit to a planar surface.  A high confidence in the calibration 

values does not necessarily imply a high confidence in the point cloud position.  Recall 

when the adjustment of the vertical INS offset was first introduced, the calibrator was 

successful in fitting the points to a planar surface, but the large uncertainty in  

implied the calibrator was not confident in the vertical position of said planar surface 

(

ILz

Figure 116 – A).  In short, the vertical position of the planar surface is the vertical TPU 

of the point cloud. 

 To summarize, the surveyor has two options with regard to determining the values 

of  and .x yPS PS    First, the data density can be increased.  As with the other calibration 
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parameters, quadrupling the data density will halve the calibration uncertainties.  Further, 

quadrupling the data density will also halve the horizontal and vertical point cloud TPU 

(see Section 7.3).  So, if enough data are included in problem, the calibration parameters 

can eventually be determined to any desired degree (theoretically).  The second option is 

to forgo the inclusion of these two parameters in the adjustment.  Lacking a large enough 

dataset, the calibrator cannot determine their values to a high degree of accuracy, and 

their inclusion degrades the reported accuracy of the boresight angles, prism slope and 

laser/scanner angles.   

A recommendation for future work is to instead express the alignments between 

the prism and scanner in spherical coordinates (similar to how the alignment between the 

laser and scanner was done).  Such a model will remove the large correlation between 

xPS  and yPS  and may lead to an improved model confidence.   

 6.3.4.2 – Scanner azimuth bias.  Forgoing the signature plots that have been a 

constant presence throughout this chapter, let it be said up front that a bias in the scanner 

azimuth ( zPS ) is linearly dependent on the calibration parameters that have already 

been discussed.  Like VI  with ,   and IL IL zx y BS  , zPS  can be held fixed at any value 

and other parameters can organize themselves to still reconstruct the correct point cloud. 

 Consider a lidar with 5° misalignments for the three boresight angles, a 1m 

forward-starboard-down INS offset, a 1° misalignment in both laser/scanner angles 

LS LS( , )   as well as the two prism/scanner angles ( , )x yPS PS  , and a 0° misalignment 

in both the VRF/IRF heading bias and the scanner azimuth bias.  zPS  is then held fixed 

at 0° in the calibrator while the remaining 11 parameters are adjusted in the calibrator 

(Figure 122).  The calibration module is successful in recovering the planar surface.  The 

 



250 

11-parameter calibration is then executed a second time, this time holding zPS  fixed at 

10°.  The calibration routine is again successful in recovering the planar surface (Figure 

123).  To compensate for the change in ,zPS  LS  also rotates by 10° and the boresight 

angles reorient themselves, most notably zBS  nearly counter-rotates by 10°. 

 
Figure 122. An 11-parameter calibration in which the scanner azimuth bias is held fixed 
at 0°.  All units in meters.  
 

 
Figure 123. A second attempt at an 11-parameter calibration of the same point cloud as in 
Figure 122, this time holding the scanner azimuth bias fixed at 10°.  
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 That the point cloud can be correctly reconstructed in more than one way is the 

epitome of an adjusted point cloud containing a linearly dependent variable.  In this case, 

zPS is dependent on LS  and the three boresight angles.  To algebraically demonstrate 

the dependence is not as straight forward a matter as it was for VI ,  as the parameters are 

entwined deep within the laser equation. 

 Consider again the following simplified excerpts of the laser equation (3.46): 

  (6.8) 2G V VI BS IL ECEFx L x
 
      
 
 

    x
 

Here, we only want to focus on the part of the equation highlighted by the under braces.  

Loosely speaking, 2L


 is of the form: 

  2 1 0 2 1 3L L P 2P    
   

3

 (6.9) 

where the terms 1 2,  ,  and     are constants that are not of consequence for this 

discussion and 
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 (6.10) 

where each  represents a rotational matrix for the parameter indicated in the subscript.  

For each equation in 



z

(6.10), notice the left-most matrix is a rotation about a z-axis.  

Should PS  and LS  happen to be the same angle, then all three terms in (6.9) would 
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have a common term that would represent the rotation of 2L


 about a z-axis.  If desired, 

both zPS  and LS  could be intentionally shifted in tandem in either direction to induce a 

further rotation in 2L


 that isn’t actually present (this would be the algebraic equivalent of 

holding zPS  fixed at an incorrect value in the LSA).  Call this now incorrectly rotated 

vector .  Then, back in the laser equation we have: *
2L


  *
2 .G V VI BS IL ECEFx L x    
    x

 
 (6.11) 

With a now incorrect value for *
2L


, to still produce the geometrically correct point cloud 

requires a method of un-rotating *
2L


 about the z-axis.  Recall from (3.47) the  

represents the three boresight angle rotations defined by: 
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(6.12) 

Bwhich contains a rotation about a z-axis in the form of zS .  Should the pitch and roll 

boresight angles happen to be zero, then their associated rotational matrices would be 

identity matrices and drop from the equation, at which point, the yaw boresight angle 

could be shifted in the opposite direction that zPS  and LS  were first misrotated.  If the 

pitch and roll boresight angles are non-zero, then one must solve for the three Tait-Bryan 

angles that will restore the system to its original geometry.  Depending on the magnitude 

of the original bias in ,zPS  xBS  and yBS  will only be altered slightly while zBS  

will very nearly be rotated in the opposite direction. 
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 In the example shown in Figure 123, when the value for zPS  was erroneously 

rotated by 10°, the calibrated value for LS  also rotated by that same angle, going from 1° 

to 11°.  Meanwhile, the boresight angles also reorganized themselves, among them, 

zBS  nearly counter-rotated by 10°, going from 5° to -5.0132°.  The other seven 

parameters included in the calibration were unaffected. 

Previously, the reasons for the linear dependence of the VRF/IRF heading bias 

came down to a matter of reference frame.  The vehicle reference frame is abstract in 

design and can be oriented in any direction.  Similarly, the scanner’s reference frame, 

from the laser-prism-scanner assemblage, is also arbitrarily designated.  Ideally, the 

scanner should be oriented in a manner that is meaningful, for example declaring the 0° 

azimuth to be directed towards the nose of the aircraft.  However any direction can be 

declared the 0° angle for the scanner.  Once that decision is made, that will dictate the 

z-axis rotation (called LS ) needed to align the laser to the scanner.  Further, the boresight 

angles will also then be decided given these angles represent a transformation from the 

scanner’s reference frame to the vehicle’s. 

The take home message for the surveyor is they have a choice of which parameter 

between the scanner azimuth bias and the laser/scanner θ-angle that they want to include 

in the calibration (since including both is not possible).  By fixing LS  at 0°, the 

implication becomes that the “forward” direction of the scanner is the incoming direction 

of the laser.  Such a decision is a bit capricious given the ideal system geometry will have 

the laser pointing normal to the scanner (i.e. LS 0),   which would render LS  

meaningless.  The alternative is to set 0,zPS   which would imply that the scanner has 
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no encoding bias.  Whichever direction the scanner declares to be “forward” will be 

“forward,” and the laser and vehicle reference frames will be rotated accordingly.  

Calibration trials were consecutively executed in which first LS  and then zPS  were 

held fixed.  In each case the confidence in the adjusted parameters were comparable, 

respectively 1.240° and 1.221° (1σ).  The difference, however, comes in the calibration 

parameters contribution to the point cloud propagated uncertainty.  When the scanner 

azimuth bias is adjusted, the maximum calibration parameters’ contribution to the TVU is 

1.14m (1σ); but when the laser/scanner θ-angle is adjusted, the maximum TVU drops to 

0.009m (1σ) – see Section 7.3 for further details.  For this reason, zPS  should be held 

fixed while LS  is included in the calibration. 

6.3.5 – Laser Range Bias and Scale Factor 

 The final two parameters to discuss are more radiometric in nature, having to do 

with how the signal from the returning laser emission is interpreted as a range.  

Nevertheless, the presence of either a laser range bias, 0 ,  or scale factor, 1  (pictured in 

Figure 30) would result in a geometric misalignment of the point cloud, which this 

dissertation is seeking to address.  They are briefly discussed here, but the surveyor 

should give due consideration to whether attempting to determine these two corrective 

factors via this calibrator rather than seeking to better understand the signal processing 

algorithms used to derive the laser range is the best course of action.  The calibrator 

provides the option to disable these parameters.   

 For a level flight, with no other non-zero misalignments (boresight angles, 

laser/scanner angles, etc.), errors in either 0 or 1   will lead to a biased point cloud that 

is still coplanar and vertically shifted from the true values.  To cause the point cloud to 
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diverge from this planar structure, and thus make calibration possible, different 

maneuvers are required for each of the parameters.  For the laser range scale factor, the 

vehicle must experience a change in acquisition altitude (Figure 124).  The greater the 

change in altitude, the better the ability of the calibrator to determine the value of this 

parameter.  It should be noted a vehicle roll or pitch will produce a very slight vertical 

dispersion of the biased point cloud, but this dispersion is about four orders of magnitude 

less than that induced by a change of altitude.  To determine the laser range bias, the 

vehicle must undergo some change in aspect, either pitch or roll (Figure 125). 

 The heaving signature plot for 1  looks very similar to the plots for both FR  

(Figure 88) and  (ILz Figure 89), suggesting there may be some correlation.  Likewise, 

the signature plots for 0  resemble those for FR  (Figure 115).  The relationship among 

these variables should be intuitive since a bias in all four of the parameters results in a 

vertical shift of the biased point cloud. 
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Figure 124. Visualization of a point cloud generated from a lidar with an unidentified 
laser range scale factor of 1.01 (top), and a point cloud from the same system as it 
experiences an increase in altitude (bottom).  The red points indicate the true laser strikes, 
while the black are the miscalculated biased points.  All units in meters.  
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Figure 125. Signature analysis plots for a lidar with a 1m laser range bias for a level 
flight (top) and in the presence of a rolling (middle) and pitching (bottom) vehicle.  The 
red points indicate the true laser strikes, while the black are the miscalculated biased 
points.  All units in meters.  
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 Calibration results including either one, the other, or both of the radiometric 

parameters 0  and 1   are shown in Figure 126, with a baseline trial including neither 

parameter shown in column 1.  Note that the uncertainty in the prism slope increases 

whenever the range scale factor is included in the calculation (column 1 vs. columns 2 

and 4).  The uncertainty in the vertical offset of the INS vector increases only slightly 

with the inclusion of the laser range scale factor (column 1 vs. column 2), but much 

shows a large jump in uncertainty when the laser range bias is adjusted (column 1 vs. 

columns 3 and 4).  This increase in the uncertainties of FR and ILz   confirms the 

correlation among these parameters with 0 1and .   

 

 
Figure 126. Table of confidences of an 11-parameter calibration trial including the laser 
range bias and scale factor (1σ uncertainties shown).  Parameters marked by a ‘-‘ were 
not included in a given calibration trial.  The maximum contribution to the propagated 
uncertainty of the point cloud is included for reference.  The crossing pattern shown in 
Figure 101 was used to generate the data at 51Hz (with the exception of the final 
column).  
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 Given the final goal is the uncertainty of the point cloud (not the uncertainty of 

the calibration parameters), the last two rows of Figure 126 are of great interest.  The 

baseline flight had a horizontal uncertainty (1σ) of 0.100m; the inclusion of the two 

radiometric parameters increased this uncertainty to 0.166m.  However, the more critical 

parameter (from a hydrographic perspective) is the vertical uncertainty.  Including 0  

and 1  increases the calibration parameters’ contribution to the point cloud uncertainty 

from 0.009m to 0.026m.  As usual, these uncertainties can be improved by increasing the 

data volume included in the calibration.  For example, if the preceding 11-parameter 

calibration were conducted with a laser operating at 10KHz (rather than 51Hz), the THU 

would drop to 0.012m and the TVU to a paltry 0.002m (1σ). 

 It is interesting to note that the uncertainty of the vertical INS offset vector is 

0.28m in the full 11-parameter calibration, but this vertical uncertainty does not translate 

to the point cloud TPU.  This is another example of covariance working in the surveyor’s 

favor.  The relatively large uncertainty in ILz  is coupled with relatively large 

uncertainties in the prism slope and laser range bias.  The large covariances simply imply 

the calibration module is unsure which of the three parameters to adjust to produce the 

geometrically correct point cloud.  The calibrator is confident, however, in the 

positioning of the point cloud. 

 The correlations for the proposed acquisition pattern (Figure 101) for the final 

proposed 11-parameter calibration are shown in Figure 127.  While the figure appears 

very busy with many correlations several groups of parameters can be clustered together: 

 As just discussed, 0 1 FR,  ,   and ILz    have a high correlation because they all 

induce a vertical translation in the biased point cloud. 
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 VI IL,  ,  zBS x    have high correlations as demonstrated when they become linearly 

dependent with the inclusion of .ILy  

 If LS  should be approximately 0°, there will be a high correlation among 

yLS  and BS   and among LS and .xBS    However, if LS  is closer to 90° or 270° (i.e. 

oriented towards port or starboard), then the pairings will swap ( LS  with xBS   and 

h ).LS  wit yBS   

The above correlations will exist regardless of the amount of data acquired and 

represent a best case scenario as far as flight strategies are concerned.  That is, if the 

calibration flights experienced no vehicle roll, then the correlations would be worse.  

These large correlations should not concern the surveyor.  They only serve to illustrate 

the reasons behind some of the larger uncertainties of the calibration parameters.  It is 

thanks to these large correlations that the point cloud positions do not also have large 

uncertainties. 
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Figure 127. Correlation coefficients of the final 11-parameter calibration using the 
crossing flight pattern of Figure 101.  
 

6.3.6 – Advice on Setting Weights within the LSA 

 This discussion of the calibration algorithm closes with some advice on setting up 

the initial settings for the least squares:  the initial guesses and the initial uncertainties.  It 

should go without saying that the closer the initial guesses are to the actual calibration 

values, the better the calibration will perform.  “Better” being used in the context of the 

calibration routine will converge to the correct values.  It is entirely possible that even 

with a properly acquired dataset, the LSA will fail to converge.  Either the algorithm will 

iterate off to an infinite solution, or it may converge to values the surveyor finds to be 

inconvenient (e.g., a boresight angle being reported as -2874° versus 6° – though both are 

equally correct answers). 
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 In addition to providing good initial estimates for the parameters, one should also 

make sure the uncertainty of the observations are suitably small.  If the user claims the 

uncertainty in the scanner azimuth is 90°, then the calibrator will have little hope for 

success.  

 The final and possibly trickiest values to initialize are the estimates of the 

uncertainties for the calibration parameters.  Presumably, since the parameters are being 

calibrated, the user doesn’t know their value, so associating an uncertainty on an 

unknown quantity may seem a strange exercise.  The best practice is to start with 

relatively small uncertainties (say 0.1° for the angles and 0.1m for the distances).  Small 

uncertainties will prevent any one calibration value from wildly iterating to compensate 

for a poor initial guess.  Other than testing the user’s patience, small weights will never 

cause the algorithm to crash.  After three to five iterations, the calibration parameters 

should begin to properly “align” themselves, not necessarily achieving their correct 

values, but achieving an approximately coplanar point cloud.  At this point it is safe to 

increase the uncertainty (decrease the weight) on the parameters that are iterating slowly.  

One can look at the output uncertainties of the LSA to determine which weights need to 

be relaxed.   

Typically, the parameters that represent rotations about a vertical axis present the 

most trouble:  VI LS,   and .zBS     These parameters in particular require the closest 

monitoring of their weights.  If any parameter is ever converging too slowly then the 

weights can always be decreased (increase the standard deviations).  While no input 

uncertainty can be too small (for a successful convergence of the LSA), it is possible to 
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input an uncertainty that is too large.  Should that parameter start to iterate to absurd 

values, then the calibration should be rerun with a smaller uncertainty. 

Selecting the best combination of weights and initial guesses is a quasi-art form 

that is the nemesis of anyone who seeks a “one button solution” for the calibration.  

Again, the calibrator was intentionally designed without an automatic termination 

statement.  It will iterate a fixed number of times and then stop.  The onus is on the user 

to stop with the calibrator and interpret the results and assess whether the calibrator is on 

the right track (i.e., do the values appear to be converging).  It may be necessary to hold 

some values fixed to erroneous values just so the calibrator can focus on refining the 

initial estimates of the other parameters.  As those parameters start to converge, the 

previously fixed parameters can be allowed to iterate as well.  Every attempt has been 

made to make the calibration interface as intuitive as possible, but it is still just a tool.  

Much like a hammer and saw can be used to build a bird house, simply setting the tools 

on a pile of lumber will not achieve anything.  Likewise, one cannot expect to dump a 

few million soundings on the calibrator and expect it to magically produce a set of 

calibration values.  The “one button solution” does exist, provided a skillful choice of the 

initial estimates and uncertainties are entered; otherwise, the surveyor must settle for a 

“four-or-five button solution.”  Likely, for each user, and the collection of users as a 

whole, there will be an initial learning curve while they collectively come to understand 

which parameters have the greatest effect on the point cloud and which can be fixed with 

some flexibility.  With experience a set of routine values to be used for initial estimates 

will likely reveal themselves. 
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6.4 – Impacts of Survey Site Selection on the Calibration Module 

 A potential hitch to the aforementioned calibration is the need for a flat piece of 

real estate of suitable size (the crossing pattern requires at least 2km×2km).  Short of 

surveying next to a dried lake bed, such a location can be difficult to locate.  This section 

presents two options for a planar surface which are likely to be available for all airborne 

platforms which perform a bathymetric survey:  the airport runway and the sea surface.  

Each has its own merits and limitations which will be discussed in the following sections. 

6.4.1 – Calibration on a Narrow Runway 

One planar surface that is likely available to all airborne platforms is the airport 

runway.  The drawback is that the average runway is only 50m wide.  The CZMIL 

system has a swath width of 300m, thus relying on so narrow a calibration surface will 

greatly reduce the number of points that can be used in the adjustment. 

With the reduction in point density associated with a 50m-wide runway, one must 

ask how the confidence in the calibration values will be affected.  In terms of the raw 

number of data points, the full crossing pattern dataset acquired at 51Hz has 3,800 

observations; depending on the how the runway is oriented, only 200-300 points will lie 

within a narrow swath (Figure 128).   

Even with this diminished dataset, a successful calibration is still possible (Figure 

129); however, the uncertainties of the calibration parameters will get worse (larger) 

compared to the full dataset.  Likewise, the point cloud TPU is also expected to grow.  

Results of the calibration over a runway are summarized in Figure 130.  For reference, 

the uncertainty of the 11-parameter calibration for the full crossing flight pattern dataset 

(Figure 126 – column 4) is included as Trial 1.  
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Figure 128. From the crossing flight pattern, a swath of data 50m wide, to simulate an 
airport runway, is extracted using the simulator’s subset tool.  
 

 
Figure 129. Both the uncalibrated (black) and calibrated point cloud (green) based on the 
data limited to the width of an airport runway.  All units in meters.  
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Figure 130. Table of confidences of an 11-parameter calibration trial over a 50m runway 
with ground control (1σ uncertainties shown).  The maximum contribution to the 
propagated uncertainty of the point cloud is included for reference.  Percent changes are 
references to the full dataset.  

 
 

 As expected, the reduction in data volume associated with the narrow runway has 

reduced the confidence in the calibration values.  Every calibration parameters’ 

uncertainty has increased by four to seven times, the largest uncertainties being 

associated with the yaw boresight angle and VRF/IRF heading bias (both exceeding 18° – 

1σ).  In spite of these large uncertainties, one cannot cast aspersions on the results of the 

calibration without also considering the induced uncertainty of the point cloud position.  

The horizontal TPU increases by over 400%, as compared to using the full dataset, to a 

value of 0.739m (1σ).  Larger horizontal TPU is typical when there are large uncertainties 

in the calibration parameters that involve rotations about a vertical axis VI LS( ,  ,  zBS ).     

The calibration parameters’ contribution to the point cloud vertical TPU increases by 
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over 300%.  That said, the vertical TPU is only 0.088m (1σ).  One must remember this 

uncertainty is based on a point cloud of only 300 data points.  When the system is 

simulated at a full 10KHz, the added data density brings the point cloud THU and TVU 

down to 0.052m and 0.007m, respectively (Figure 130 – Trial 3).  The vertical 

uncertainty is only a small fraction of that induced by the GPS positioning alone and is 

likely good enough for most applications. 

There is a simpler way of increasing the data density without increasing the 

number of flight lines, rather than having the two flight lines flying perpendicular to the 

runway, they could instead be rotated by 45°.  This will increase the number of points on 

the runway without too greatly sacrificing the necessary geometry to determine the 

calibration values.  

 In summary, limiting the point cloud to a narrow runway will yield a set of 

calibration values with a larger uncertainty (and an associated point cloud with a larger 

TPU) as compared to having the full dataset available.  But even with the four basic flight 

lines of the crossing pattern at a full sampling rate of 10KHz, this limited dataset is good 

enough to yield a high confidence in the point cloud positions.  Thus an airport runway is 

a feasible calibration site.  

6.4.2 – Calibration on a Dynamic Sea Surface 

 In some cases, an airport runway may not an available option for calibration:  the 

survey site may be far removed from where the aircraft is staged; clearance may be 

difficult to obtain to repeatedly occupy the airspace immediately over the runways; or a 

surveyor may just be dissatisfied with such a small percentage of the acquired data going 
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to the calibration.  There is, however, another option for a planar surface:  the ocean 

surface itself. 

The nature of a bathymetric survey means ample access to an ocean, sea or lake.  

Further, most bathymetric lidars already have the technology and algorithms in place to 

log the position where the laser pulse strikes the water surface.  However, when 

proposing to use the ocean’s surface as a proxy for a flat planar surface, the “flatness” of 

the ocean must be considered.  For a given location, an instantaneous measurement of the 

ocean surface is subject to both wave and tidal influence.  Meteorological considerations 

aside, even mean sea level (as a geopotential surface) will track with the undulations of 

the local geoid.  Provided the calibration area is confined to a small region (less than 

10km×10km), the relief of the geoid can be assumed to be flat (Zilkowski, 1990); 

however the waves and tidal effects are not so easily controlled.  The potential impacts of 

using the dynamic ocean surface as a planar surface for the purposes of a geometric 

calibration require further investigation. 

 6.4.2.1 – Wave effects on calibration uncertainty.  The casual observer will 

remark that the ocean is not flat.  The sea surface is a dynamic landscape of waves and 

sea swell.  Fortunately, a lidar’s laser footprint is intentionally expanded to a diameter of 

several meters at the water surface in order to satisfy eye safety requirements (while still 

maintaining a satisfactory pulse energy to provide reasonable signal-to-noise ratios; 

Guenther, 2007).  Recall from Section 4.2.2.5, the relatively large laser footprint means 

any high frequency waves (Figure 51, left) will be removed in the averaging that occurs 

across the system’s field-of-view.  Conversely, long period swell and shorter period 

gravity waves (Figure 51, right) will lead to an aliasing of the measured sea surface 
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height.  From shot-to-shot, adjacent footprints will report differing heights.  This 

inconsistent vertical component to the point cloud coordinates suggests the ocean surface 

may not be ideal for representing a single, constant planar surface.  However, in much the 

same way that high frequency waves are averaged out within a single footprint, the 

vertical deviations exhibited by the laser points during long period swell may be averaged 

out with a sufficiently large temporal and spatial sampling.  For the calibration algorithm 

to work, it is not necessary that every point be coplanar; instead, the points must just 

describe a planar surface.   

 To generate a test dataset, the simulator introduced a 1m swell (50m wavelength) 

beneath the crossing flight plan, using (4.21) and (4.22).  With the weighted least squares 

adjustment, a priori estimates of the uncertainties of all the measured quantities (laser 

range, scanner azimuth, etc.) must be provided.  The inclusion of waves will adversely 

affect the previously used value for the estimated uncertainty of the measured laser range, 

thus far limited to just the manufacturer’s specifications of the hardware (0.01m).  Since 

the adjustment model is fitting points to a planar surface, the uncertainties must report the 

confidence in the points describing that planar surface.  That is, even with an error-free 

range measurement, the oscillating waves will prevent the laser points from ever laying 

on the theoretical mean sea surface (at least, it is unlikely). 

To account for the changing height of the planar surface (see Figure 50) the 

uncertainties of the laser range were modified using (4.27).  Instead of the customary 

0.01m for  , the new uncertainty is given by: 
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Note, this uncertainty will be calculated automatically by the calibrator, but it requires the 

user to input the estimated wave and swell height (Figure 77 – blue).  In spite of the 

dynamic conditions, the calibration of the point cloud is still achieved (Figure 131).  The 

results of said calibration are shown in Figure 132 where, again, the uncertainty of the 

11-parameter calibration for the full crossing flight pattern dataset in a wave-free 

environment (Figure 126 – column 4) is included as Trial 1. 

 
Figure 131. Calibrated point cloud when acquired over a dynamic sea with a 1m swell 
height.  All units in meters.  
 

The changing values of the laser range induced by the wave action led to an increase in 

the uncertainty of all the calibration parameters, typically increasing by 300% as 

compared to the wave-free surface (Trial 2 vs. Trial 1).  The point cloud uncertainty also 

increased by ~300%, yielding a horizontal TPU of 0.556m and a vertical TPU of 0.089m 

(1σ).  As usual, these uncertainties can be improved through the acquisition of additional 
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data.  To confirm, the repetition rate was quadrupled and, as anticipated, the uncertainties 

of the calibration parameters and point cloud were all reduced by 50% (Trial 3).  If this 

pattern holds true, then the full 10KHz dataset would be suspected to lead to significantly 

smaller values.  This implies that a wavy sea surface does hinder the calibration, but it 

does not prevent it.  Naturally, the smaller the amplitude of the waves, the smaller the 

hindrance. 

 
Figure 132. Table of confidences of an 11-parameter calibration trial over a dynamic sea 
surface (1σ uncertainties shown).  The maximum contribution to the propagated 
uncertainty of the point cloud is included for reference.  Percent changes referenced to 
the swell-free trial.  

 

 For comparative purposes, the calibration accuracies associated with a narrow 

runway are compared to those over a dynamic sea surface (Figure 133).  When 

contrasting a 1m sea swell to a narrow runway, the confidence of all the calibration 

parameters is generally better for the sea surface.  This suggests having a larger amount 

of data spread over a wider area (even if the points themselves have a higher uncertainty) 
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makes for a better calibration than a confined (though with a high confidence) dataset.  

Though looking at the big picture, the induced point cloud vertical TPU is comparable for 

both methods (0.088m – 1σ).  The induced horizontal TPU for the sea surface is better 

than the narrow runway (0.556m as compared to 0.739m).  When the height of the swell 

is increased to 2m, the narrow runway then yields a better estimate of both the calibration 

parameters and the point cloud positions.  Thus for larger sea states exceeding 1m, the 

surveyor desiring to do an 11-parameter calibration would be better served performing it 

on land.  Different results may be achieved if fewer parameters are being calibrated, see 

Gonsalves (2010) for further examples. 

 A drawback to using the ocean surface is the requirement for ground control is 

still present (unless 0 and ILz   are withheld from the calibration).  This implies a GPS 

tide buoy will need to be installed (or some other floating platform) during the calibration 

session. 

 
Figure 133. Table of confidences of an 11-parameter calibration trial over a narrow 
runway versus a dynamic sea surface (1σ uncertainties shown).  The maximum 
contribution to the propagated uncertainty of the point cloud is included for reference.  
Swell entries are highlighted in bold when they are larger than their runway counterparts.  
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 6.4.2.2 – Tidal effects on calibration uncertainty.  In contrast to the relatively high 

frequency sea waves whose deviations from the theoretical planar survey average out 

with sufficient spatial and temporal sampling, the problems introduced by tides increase 

with the duration of the sampling period.  The longer the sampling session continues the 

greater the opportunity for tides to adversely affect the calibration.  There are three 

approaches for contending with the changing tides.  First, the tides may be disregarded.  

If the calibration flights involve a minimal amount of time, then the tidal effects may be 

negligible. Second, over an abbreviated window the change in tides can be viewed as 

nearly linear.  A parameter representing the linear change in tides could then be included 

in the least squares adjustment.  Third, if tidal data are available during the time of the 

calibration (a likely scenario in the case of most surveys intended for nautical charting), 

then the vertical influence may just be subtracted from the laser spot’s coordinates.  With 

the values reduced to a common datum, the adjustment may then proceed without further 

consideration to tides.  Each method of coping with the tides will be further explored. 

 Recall from Section 4.2.2.6 the tides are simulated using equation (4.29): 
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For this simulation, a semi-diurnal tide (T = 12hr) with a tidal range of 4m is considered.  

To experience the tide at its maximum rate of change, the phase of the tides will be set to 

zero.  Recall the simulator is programmed to allow six minutes to elapse between flight 
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lines, so the full crossing flight pattern will last approximately twenty minutes.  During 

this time, the tides will continue to rise.  Because the data is being sampled over such a 

small portion of the tidal signal, a modification to the laser range uncertainty like that 

shown in (6.13) is not necessary.  A view of the four survey lines are shown under the 

effect of tides are shown in Figure 134.  Notice over the course of the survey, there’s a 

net increase in sea level by 0.18m.  The vertical separation of the flight lines are a result 

of the tidal increase during the six minutes that are allocated for the vehicle to set up for 

each subsequent survey line. 

 Results of each calibration attempt in the presence of tides are summarized in 

Figure 135.  In the first case, it is assumed that the tidal values are known during the time 

of acquisition.  In such a case, the vertical offsets due to the tides are removed to reduce 

the points to a single datum.  This represents the best possible scenario, as the results of 

the calibration are now equivalent to surveying on land (Trial 1). 

 
Figure 134. Crossing pattern point cloud in the presence of a tidal effect.  The vertical 
offsets among the lines are a result of the tidal increase during the vehicle turns.  All units 
in meters.  
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Figure 135. Table of confidences of an 11-parameter calibration trial in the presence of 
tides (1σ uncertainties shown).  Three methods are shown:  “Tides Known” implying the 
tide values were known at the time of each sounding and removed; “Tides Ignored” 
assumes there is no tidal effect and attempts to calibrate anyway; and “Linear Tide” adds 
an extra parameter to the adjustment, to estimate the linear rate at which the tide is 
changing.  The maximum contribution to the propagated uncertainty of the point cloud is 
included for reference.  

 

 In the second column, the point cloud is calibrated where the effects due to tides 

are erroneously believed to be zero.  In such a case, the uncertainty of some of the 

calibration parameters will increase; however, the overall uncertainty of the point cloud 

will remain unchanged Figure 135 – Trial 2.  The reason for this lack of increase in point 

cloud TPU can be best understood when the calibrated point cloud is viewed (Figure 

136).  Because the survey lines were evenly distributed over the same spot, the most 

planar-like surface the LSA could produce occurs when each flight line is “flattened” as 

much as possible.  Thus every line is fit to the correct sea surface, only with a vertical 

offset.  If the survey lines were acquired in a more careless manner, say four parallel lines 
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with the same heading northerly heading being collected from east to west, then the tidal 

effect would be misconstrued as a sloping plane (in this example, the water surface would 

slope up from east to west). 

 
Figure 136. Side view of attempts to calibrate a point cloud in the presence of tides in 
which a tidal signature is erroneously believed to not be present.  The biased points are 
shown in black while the calibrated points are shown in green.  All units in meters.  
 

 If tides are acknowledged to exist in the calibration area, but the tidal curve is not 

known, the tides can be approximated using the least squares.  Over a sufficiently short 

interval, the behavior of a tidal curve is approximately linear.  This linear rate of change 

in the water levels can be determined during the adjustment.  An example of 

approximating the sinusoidal tide with the linear model is shown in Figure 137.  Notice in 

contrast to Figure 136 the point cloud was properly reconstructed without any vertical 

offsets among the survey lines by including a tidal parameter in the adjustment.  The 

uncertainties in the calibration parameters were also equivalent to those if the tides were 

known in advance and removed from the point cloud (Figure 135 – Trial 3 vs. Trial 1).  

Again, the uncertainty of the point cloud is equivalent to when the tides are either 

removed or ignored.  This only serves to emphasize that over the short sampling period 
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necessary to acquire data for the calibration, the tidal level is not given the opportunity to 

change appreciably. 

 As a side note, notice that when calibrated the tidal rate was estimated to be 

1.046m/hr.  This value is unsurprising when we consider (6.14) gives the height of the 

tide at any time, so its derivative would give the rate of change of the tide.  That is, 
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Thus the LSA can serve as a linear approximation of a tide gauge over extremely short 

time intervals. 

 
Figure 137. Side view of attempts to calibrate a point cloud in the presence of tides in 
which the tidal signature is approximated with a linear model.  The biased points are 
shown in black while the calibrated points are shown in green.  All units in meters.  
 

6.5 – Summary of Key Results 

 The following is a bulleted list of the key results, concepts and contributions 

presented within this chapter.  When possible, the relevant section(s) that offer a more 

detailed explanation are indicated. 
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 In Chapter III, 15 system parameters, which would require calibration, were 

proposed to describe the laser equation.  Results of the signature analysis for all the 

parameters are summarized in Figure 138 (Sections 6.1.1 through 6.3.5). 

 
Figure 138. Table summary of the 15 proposed calibration parameters:  including the 
vehicle maneuver that yields the most confident result in the calibration, which other 
parameters have a high correlation, identifies the 2 groups of parameters that are linearly 
dependent, and other calibration notes.  

 

 The correlations listed in Figure 138 exist regardless of the flight configuration 

chosen. 

 



279 

 Among the 15 calibration parameters, there are two sets of linearly dependent 

parameters:  LS, , ,  and x y z zBS BS BS PS     ; and ILVI, ,  and z ILBS x y    .  Among 

each group of parameters, one must be withheld from the calibration.  For the first group, 

based upon both the point cloud TPU and the reported confidence of the calibration 

solution, it is recommended zPS  be set to 0° while the other four parameters are 

adjusted (Section 6.3.4.2).  For the second group either  or IL ILx y   should be measured 

manually while the other is included in the adjustment (Section 6.3.3.2).  This brings the 

total number of proposed calibration parameters to 13. 

 Two parameters,  and x yPS PS  , were found to be extremely difficult to 

determine to a high degree of confidence using the proposed calibration methodology.  In 

this case, the high uncertainty of the parameters leads to a high uncertainty of the point 

cloud.  It was discussed that reformulating these rotations in spherical coordinates might 

improve the ability to determine these calibration values, but lacking this development, it 

is recommended these two parameters be withheld from the calibration routine.  This 

brings the final total number of proposed calibration parameters to 11 (Section 6.3.4.1). 

 The confidence of the calibration solution can always be improved by doing one 

of three things:  including a greater number of points in the adjustment, performing more 

dynamic vehicle maneuvers during the calibration acquisition (e.g., roll the vehicle 10° 

rather than 5°), or surveying over a broader region (Section 6.2.1.3).  Generally speaking, 

quadrupling the data density will halve the calibration parameters’ uncertainty (Section 

6.3.2). 

 Through repeated examples, it was demonstrated that large uncertainties in the 

calibration parameters do not necessarily imply a large point cloud TPU, particularly if 
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said parameters have a large correlation coefficient (Section 6.2.2).  This is particularly 

true with regard to parameters that involve a rotation about a vertical axis 

( VI LS,  ,  and zBS    – Sections 6.3.2 & 6.3.3.1), but also with parameters that reflect a 

vertical displacement of the biased point cloud in their signature plots ( 0 and ILz   – 

Sections 6.3.3.3 & 6.3.5). 

 The proposed flight pattern (of those presented in this dissertation) that leads to 

the highest confidence in the calibration parameters is shown in Figure 101.  It requires 

four lines of data, run at two different altitudes.  On two of the lines, the pilots must 

intentionally induce a change in vehicle heading/roll, while for the other two a change in 

vehicle pitch/altitude must be achieved.  The greater the magnitude of the change in the 

vehicle attitude, the better the calibration will be (Section 6.3.2). 

 Were one to erroneously believe the VRF/IRF heading misalignment to be 0°, the 

correct point cloud geometry could almost be recovered by over-correcting the yaw 

boresight angle.  Under such a scheme the laser points would experience a 0.003m 

vertical offset for every 10° of change in vehicle attitude for every 1m of INS offset for 

every 1° of VI  that is ascribed to zBS  (Section 6.3.3.1). 

 A single ground control point is required if the vertical offset of the INS vector, 

,ILz  is to be adjusted.  The inclusion of a ground control point also mitigates the of 

covariance terms between the calibration parameters and the nuisance planar parameters, 

which will lead to an improved point cloud TPU (Section 6.3.3.2). 

 While limiting the calibration site to a narrow runway will diminish its 

performance (as compared to the full dataset), the 11 proposed calibration parameters can 
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still be determined to satisfactory levels.  A narrow runway is an acceptable location for 

calibration (Section 6.4.1). 

 If the sea surface is chosen as a calibration site, the wave action, manifesting itself 

as an uncertainty in the laser range measurement will lead to a less confident solution 

than a wave-free equivalent.  However, in seas up to 1m, the calibration is both valid and 

more successful than the narrow runway equivalent.  As the sea state grows larger, the 

confidence will diminish (Section 6.4.2.1).  Given the calibration works in the presence 

of waves implies the calibrator does not require data be acquired over a flat surface but 

over an approximately flat surface.  This suggests the requirements for the calibration 

may potentially be relaxed further to regions like open fields, or the grassy patches 

sometimes adjacent to runways (though they will naturally not describe as flat a surface 

as a water mass – further testing is required). 

 Due to the short duration of the time required to perform the calibration, tidal 

effects will not hamper the calibration.  Ideally, the stage of the tide should be known 

throughout the calibration exercise and removed from the point cloud.  If the tides are not 

known, then they can be approximated within the calibration by a linear model (Section 

6.4.2.2). 

 Because neither the presence of waves nor tides was sufficient to derail the 

calibration, the water surface is also an acceptable location for a calibration.  Due to the 

sloping geoid, the site over the water should be limited to no larger than a 10km×10km 

region (Section 6.4.2).  

 The final point to stress is that a successful calibration of the point cloud has been 

successfully demonstrated using the least squares approach.  But the user must be 
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cautioned to not focus exclusively on the reported uncertainties (variances) of the 

calibration parameters.  Certainly small variances imply a confident solution which will 

likely lead to a confident point cloud.  The converse is not necessarily true, large 

variances in the calibration parameters do not necessarily imply a large uncertainty in the 

point cloud.  The ultimate goal of the surveyor is not to produce calibration parameters 

with low variances (though that would be nice).  The ultimate goal is to produce a point 

cloud which has a high confidence in its reported positions.  The covariances of the 

calibration parameters must be retained and propagated (along with the variances) to 

determine the total propagated uncertainty (TPU) of the point cloud positions.  It is only 

after assessing the point cloud TPU that one can assess whether the results of the 

attempted calibration were satisfactory. 

This leads to the next chapter where the determination of the point cloud TPU is 

developed. 
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CHAPTER VII 

TOTAL PROPAGATED UNCERTAINTY 

 
Figure 139. Chapter VII outline.  
 

The previous chapter focused  on the methodology for determining the best 

estimate of the calibration parameters’ values.  Since a least squares adjustment was 

performed, uncertainty bounds were also provided for each parameter.  This chapter takes 

the topic of uncertainty management further.  Both the newly-derived calibration 

parameters’ uncertainties coupled with the uncertainties of the raw measurements can be 

combined to assess the uncertainty of the reported positions of the laser points.  The Total 

Propagated Uncertainty (TPU) of the laser points is the ultimate metric in assessing the 

quality of the point cloud. 

This chapter has four key goals: 
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 To provide the mathematical framework of how a total propagated uncertainty 

(TPU) model is constructed (Sections 7.1.1 – 7.1.1.3). 

 To discuss covariance and how it impacts the TPU calculation (Sections 7.1.2, 

7.2.2.1 & 7.2.2.2). 

 To present a “user’s guide” for the TPU visualization module (Section 7.2). 

 To provide a suite of examples to illustrate the behavior of uncertainty in the face 

of a number of scenarios likely to be encountered by the surveyors:  What benefits are to 

be gained from upgrading an IMU (Section 7.2.1.1)?  How does flying at different 

heights affect uncertainty (Section 7.2.1.3)?  How far can the aircraft roll or pitch before 

certain beams have an unacceptable uncertainty (Section 7.2.1.4)?  What return on 

investment will be gained by doubling the accuracy (halving the uncertainty) of the 

measured laser range (Section 7.2.1)?  Do the forward/aft beams have a higher 

confidence than the port/starboard beams (Section 7.2.1.2)?  To improve the confidence 

in my point cloud, should I upgrade my equipment or invest more time in the calibration 

(Section 7.3)? 

The focus of this chapter is on how one determines the total propagated 

uncertainty (TPU) in the calculated position (both horizontal and vertical) of a single 

posting within the point cloud .  Only with such information can a surveyor make 

informed decisions about the data.  Throughout this chapter features of the TPU 

visualization module are demonstrated so the user may understand the interpretive tools 

at their disposal.  A reoccurring theme throughout the chapter is that it is equally 

important to understand both the root causes and the symptoms of uncertainties in the 
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point cloud.  A TPU model for the point cloud is not the end, but the beginning of a 

comprehensive uncertainty management strategy. 

7.1 – Background 

Please note that this background section presents the mathematical derivation of 

the total propagated uncertainty of any function.  Throughout, the principles are 

demonstrated through simple examples (some lidar-related).  This material is provided 

both for completeness and for the benefit of the uninitiated with regard to uncertainty 

modeling.  Those already possessing a firm understanding of propagated error may wish 

to skip ahead to Section 7.2 which returns the focus to the CZMIL system. 

One of the ancillary benefits of using a least squares adjustment for the calibration 

routine is the output of a fully populated variance-covariance matrix for the calibration 

parameters.  The variance-covariance matrix provides an estimate of the confidence in 

each adjusted parameter’s value, as well as the covariance of each parameter pair (i.e., a 

measure of each parameter’s dependence of every other parameter).  When combined 

with the manufacturer reported uncertainties of the system’s components (the laser range, 

the GPS position, etc.), and the laser location equation (3.46), all the ingredients are 

present to derive a shot-by-shot uncertainty model of the final point cloud. 

7.1.1 – The General Law of the Propagation of Variances 

 7.1.1.1 – Derivation.  When a quantity is calculated as a function of some 

observations, it is reasonable to expect that uncertainties, or errors, in the observations 

will percolate through and induce an error in the calculated quantity.  For example the 

area, A, of a circle of radius r is given by: 2.A r   Clearly, if the radius of the circle is 

incorrectly measured, then the area of the circle will be miscalculated.  More specifically, 
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if one were capable of measuring the radius with a one standard deviation (1σ) 

confidence of 0.01 meters; how would one determine the associated 1σ uncertainty for 

the area? 

Such a simple uncertainty propagation can be achieved through a differential 

(Anton, Bivens, & Davis, 2002): 

 

2

2

2

dA
r

dr
dA rdr

A r









r  

 (7.1) 

Studying (7.1), we see the uncertainty in the calculated area cannot be determined given 

only the uncertainty in the measured radius.  Both the uncertainty of the radius and the 

value of the radius itself must be provided. 

But the preceding was a discussion of a single function of one variable.  What is 

needed here is a more robust method of propagating all the uncertainties of all the 

measured or computed values through the laser equation to the final laser spot’s position 

– for every laser shot.  The general law of the propagation of variances does exactly that; 

using an a priori knowledge of the uncertainties of the measured quantities, the estimated 

uncertainties of the calibrated values, and the laser geolocation equation relating all these 

parameters, the predicted uncertainties in the computed positions of the laser points can 

be calculated.  This is achievable by first considering a simple system of linear equations 

and then building from there.  For a further discussion of error propagation of random 

errors, both the works of Fornasini (2008) and Kirkup and Frenkel (2006) are instructive; 

however, the following discussion follows the works of Dieck (2007) and Ghilani and 

Wolf (2006). 
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Begin with two linear equations: 

 1 1 1 2z a x a x2   (7.2) 

 2 1 1 2z b x b x2   (7.3) 

where: 
calculated quantities (like laser point coordinates)

measured quantities (like laser range or azimuth angle)

, constants.

i

i

i i

z

x

a b





 

Suppose several attempts are made to measure each x, but there is some variability in the 

measurements.  If:   

1 1

2 2

1 1

2 2

1 1

2 2
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the true value of 

the i  measured value for 

the i  measured value for 

correction to the i  observation of 
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i th
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i th

i th

x x

x x

x x

x x

x

x
















 

then,  

 1 1
i

T 1
ix x    (7.4) 

 2 2 .i
T 2

ix x    (7.5) 

Defining the true value of  as  respectively, then from 1 2and z z 1 and Tz z 2T (7.2): 

 1 1 1 2 2.T T Tz a x a x   (7.6) 

For each attempt to compute , 1Tz (7.4) is substituted into (7.6): 

 

   
   
   

1 1 1 2 2 2

1 1 1 1 2 2 2

1 1 1 2 2 2

1  Observation

2  Observation

3  Observation.

i i i i st

ii ii ii ii nd
T

iii iii iii iii rd

a x a x

z a x a x

a x a x

 

 

 

    
    


   

 (7.7) 
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Then rearranging terms: 

 

   
  
  

1 1 2 2 1 1 2 2

1 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 .

i i i i

ii ii ii ii
T

iii iii iii iii

a x a x a a

z a x a x a a

a x a x a a

 

 

 

   
   


  




 (7.8) 

Following similar reasoning, from (7.3) and (7.5): 

 

   
  
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1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 .

i i i i

ii ii ii ii
T

iii iii iii iii

b x b x b b

z b x b x b b

b x b x b b

 

 

 

   
   

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


i

 (7.9) 

With each observation, a calculated value for  can be computed. 1z

  (7.10) 

1 1 1 2 2

1 1 1 2 2

1 1 1 2 2

i i

ii ii ii

iii iii iii

z a x a x

z a x a x

z a x a x

 

 

 

Subtracting the calculated values for  given in 1z (7.10) from the true values in (7.8), we 

get the corrections for the calculated values.  That is, True – Observed = Correction: 

 
      
 

1 1 1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 2 2

i i i i i i
T

i i i

z z a x a x a a a x a x

z a a

 

 

      

  

i

i

 (7.11) 

where   So, for 

repeated observations: 

1 1 the correction to the calculated value of  for the  observation.i thz z 

 

 

 

1 1 1 2 2

1 1 1 2 2

1 1 1 2 2

i i i

ii ii ii

iii iii iii

z a a
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 

  
 

  

  

  

 (7.12) 

and  
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 

 

2 1 1 2 2

2 1 1 2 2

2 1 1 2 2

i i i

ii ii ii

iii iii iii

z b b

z b b

z b b

 

 

 

  

  
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  (7.13) 

 Needed now are two definitions from descriptive statistics.  First, the variance of 

a random variable x, written 2
x , is a measure of the variable’s dispersion about some 

mean or true value, .x   For a sufficiently large sample, n, it is defined by: 

  22

1

1 n

x x
j

jx
n

 


   (7.14) 

where jx  are the individual observations of x.  Second, the covariance of two random 

variables x and y, written ,cov( , ) or x yx y  ,  which quantifies how two variables vary 

about their respective means with respect to each other.  That is, if there is some 

correlation between x and y, then should observation jx  deviate far from its mean, then 

jy  would be expected to do the same.  The form of the definition for the covariance is 

similar to that of the variance.  For a sufficiently large sample, n: 

  
1

1
cov( , ) .

n

x j y j
j

x y x
n

 


   y  (7.15) 

The topic of covariance will be revisited later in this chapter; for now we focus on the 

variance. 

Note the quantity within the parentheses of the (7.14) is subtracting an observed 

value from a true value (True – Observed), which from (7.11) is how the correction to z is 

defined (making the assumption that the mean value is a proxy for the true value).  Thus 

(7.14) can be rewritten in variance parlance as: 
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  
1

22
1

1

1
.

n
j

z
j

z
n




   (7.16) 

Writing out the summation and substituting the expressions given in (7.12) and (7.13) 

yield: 
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 (7.17) 

and 

      
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Multiplying out the right-hand side of (7.17): 
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 (7.19) 

and collecting like terms produces: 
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 (7.20) 

Putting the preceding equation back into sigma notation: 
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and, finally, dividing through by n yields: 
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With the assumption that 1  and 2 

1 or 

 are random variable (i.e. there are no systematic 

biases in the measurements of 2x x ), then the bracketed items in (7.22) are (from left 

to right) the definitions of the variance of x1, the covariance of x1 and x2, and the variance 

of x2 – or symbolically: 

 
1 1 1 2

2 2 2 2 2
1 1 2 , 22z x x xa a a a

2
.x     

2
.x

 (7.23) 

Following similar reasoning for z2 produces: 

 
2 1 1 2

2 2 2 2 2
1 1 2 , 22z x x xb b b b       (7.24) 

 The previous two equations can now be combined into a single matrix equation: 
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 (7.25) 

To confirm this, multiply out the right-hand side of (7.25) 
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Which, with further multiplication, is equal to: 
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(7.27) 

Matching up each element of (7.27) with the left-hand side of (7.26), the first row/first 

column gives: 
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which is an exact match of (7.23).  Further (7.24) is produced by matching elements in 

the second row/second column position.  Thus (7.25) is a successful matrix representation 

of the system of variance equations.  As a bonus, the off-diagonal elements yield a 

formula for the covariance among the two variables z1 and z2: 

 
1 2 1 1 2 1 2 2

2
, 1 1 2 1 , 1 2 , 2 2 .z z x x x x x xa b a b a b a b 2         (7.29) 

  If one were to make the simplifying assumption that all the observations are 

independent of one another, then 
1 2, 0.x x    With this assumption of independence, 

(7.23) and (7.24) reduce to a simple sum of squares error formula: 
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2 2 2 2
1 2z xa a

2

2
x     (7.30) 

 
2 1

2 2 2 2 2
1 2 .z xb b

2x     (7.31) 

Depending on the context of the problem, the assumption of independence of variables 

may or may not be valid.  From a lidar perspective, it is reasonable to assume the 

uncertainty in the laser range measurement is independent from the uncertainty in the 

scanner azimuth; however there is a likely a coupling of the INS-sensed pitch and INS-

sensed roll values.  If one were to concede non-zero covariances, the challenge then 

becomes how to calculate their values. 

 Generalizing the discussion to an arbitrary number of variables, consider the 

system of linear equations: 
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 (7.32) 

The covariance matrix of the z variables, , will have the form: z
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  

  
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 
   
 
  






   


 (7.33) 

and will be defined by: 

  (7.34) 

1 1 2 1

2 1 2 2
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   
   
   
   
   
    
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 

          
  








Should the equations in (7.32) be non-linear, then a Taylor series expansion can 

be applied similar to (5.30).  In such a case, the matrix A in (7.34) will take the form of 

the Jacobian: 
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1 2
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n

z z z
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z z z

x x
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   
    
   

     
 
    
    

A





   



 (7.35) 

 7.1.1.2 – A simplified uncertainty propagation example.  Rather than 

overwhelming the reader with the uncertainty model of the fully-developed laser 

equation, a simpler model is presented for the sake of illustrating the implementation of 

the above equations.  In this simplified laser scanner, the vehicle is assumed stationary, 

and the laser has two degrees of freedom:  the azimuth angle, ,  and the nadir angle, ,  

(Figure 140).  With the inclusion of the laser range, ,  the ground coordinate is given by 

the spherical-to-rectangular coordinate transformation: 
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cos sin

sin sin

cos

g

g

g

x

y

z

  

  

 







 (7.36) 

Consider the following measurements with associated 1  uncertainties:  

425 0.01 meters

45 0.12  (0.785 0.002 radians)

20 0.06  (0.349 0.001 radians)





 
   
   

 

where the goal is to determine the uncertainties in x, y, and z. 

 

Figure 140. A simplified laser scanner with only three inputs, a laser range  , azimuth 
angle   and elevation angle  .  
 

With the assumption of the simpler, covariance-free, independent variable model, 

(7.30) can be used. 

 
2 22

2

gx

x x x
    

  
               






 (7.37) 
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Substituting the respective partial derivatives yields: 

         2 2
cos sin 0.01 sin sin 0.002 cos cos 0.001

0.349 meters.
gx           



2

(7.38) 

Similarly,  

         

2 22

2 2
sin sin 0.01 cos sin 0.002 sin cos 0.001

0.349 meters

gy

y y y
     

  

       

                  

  



2
 (7.39) 

and 

        

2 22

2 2
cos 0.01 0 sin 0.001

0.146 meters.

gz

z z z
     

  

  

                  

   



2
 (7.40) 

Working with points in space, uncertainties are not usually deconstructed into separate 

components.  Instead the errors are expressed as a horizontal and vertical uncertainty (or 

fully combined into a radial uncertainty).  From the example above: 

 2 2

2 2 2

Vertical TPU 0.146 meters

Horizontal TPU 0.349 0.349 0.494 meters

Radial TPU 0.349 0.349 0.146 0.515 meters



  

   

 

Alternatively, the uncertainties can be expressed in matrix form: 

 

2 2
, , , ,
2 2

, , , ,
2 2

, , , ,

z x

x x y x z

y x y y z

z x z y z

x x x x y z

y y y x y y

xz y z

    

    

    

          
     

     
     

  

      
          
                               
     

A 
 

y z

 

 
 
 
 
 
 

 
   

TA



 (7.41) 
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where the Jacobian matrix, A, has the form: 

 

cos sin sin sin cos cos

sin sin cos sin sin cos .

cos 0 sin

       
       
 

 
   
  

A


 (7.42) 

From a programming stand-point, putting the uncertainties in a matrix representation 

offers greater flexibility and yields a simpler partial derivative. 

 One final observation can be made of this simplified model.  Revisiting equation 

(7.37): 

 
2 22

2

Azimuth angle induced errorLaser range induced error Nadir angle induced error

gx

x x x
    

  
                   

  (7.43) 

it follows that (assuming independence of the observations) the variance in the x-position 

is a linear sum of the contributions by the individual observations.  In this respect, by 

comparing the magnitudes of the individual components being summed, it is possible to 

determine which parameter is most affecting the final uncertainty. 

 For example, the fraction of the vertical uncertainty in the previous example that 

can be attributed exclusively to the uncertainty of the measured laser nadir angle can be 

found.  That is: 

 
2

2 ?
gz

z
 


 

  
 (7.44) 

In the full laser equation, closed form expressions for x, y, and z as shown in (7.36) are 

not available.  So, for demonstrative purposes, (7.36) is expressed as a series of rotational 

matrices: 
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cos sin 0 cos 0 sin 0

sin cos 0 0 1 0 0 .

0 0 1 sin 0 cos

g

g

g

x

y

z

   
 

  

    
        
       

  
  
  
    

 (7.45) 

When expressed as a product of matrices of one variable, computing the partial 

derivatives is a simple exercise.  In this case, computing the partial with respect to the 

nadir angle yields: 

 

cos sin 0 sin 0 cos 0

sin cos 0 0 0 0 0 .

0 0 1 cos 0 sin

g

g

g

x

y

z


   
 


  



 
                      
 
  

  
  
  
    

 (7.46) 

Next, substituting the measured values for ,   and     gives: 

 

282.4

282.4 .

145.4

g

g

g

x

y

z







 
 

  
       

      

 (7.47) 

To compute the contribution to the total vertical error, from (7.44) we have: 

 

 
 

22

2
2

145.4*0.001

0.146

0.0211
98.99%

0.0213

gz

z
 


 

  

 

 (7.48) 

Roughly 99% of the vertical error can be exclusively attributed to the uncertainty of laser 

nadir angle.  Under this scenario, should the lidar manufacturer wish to improve the total 

vertical uncertainty (TVU) of this posting, their efforts should be focused on refining 

their ability to measure the laser’s nadir angle – the laser range and azimuth are “good 
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enough.”  Then again, the gross error must also be kept in context:  if the survey 

specifications call for 0.500m of vertical confidence, then a 0.146m TVU is small enough 

to proceed without further system modifications. 

 7.1.1.3 – The full-form uncertainty model.  Much like the discussion of the 

computation of the partial derivatives of the full-form laser equation discussed in Chapter 

III, the complexity of the calculation of the contribution to the total uncertainty by a 

given variable is largely a function of whether or not 2 ,L


 the laser vector exiting the 

prism, is a function of a particular variable.  Here, one of the simpler derivatives is 

computed to illustrate the process.  Recalling the laser equation as stated in (3.46): 

 0
2

1

,G V VI BS IL ECEFx L x
 


  
          

x
    

 

the propagated uncertainty associated strictly with the IMU-sensed pitch,  , is found.  A 

study of the definitions of the above symbols (found in [3.47]), shows that the only item 

in the above stated equation that is dependent on the vehicle pitch is .  Thus, V

 0
2

1

.G BS
V VI

x
L

 
  

    
           

0 0



   (7.49) 

Where, given: 

 

Vessel yaw Vessel pitch Vessel roll

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin ,

0 0 1 sin 0 cos 0 sin cos
V

   
   

  

    
          
        



  


 


 (7.50) 

 

cos sin 0 sin 0 cos 1 0 0

sin cos 0 0 0 0 0 cos sin .

0 0 1 cos 0 sin 0 sin cos
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   
  




  

     
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         






 
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 (7.51) 
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7.1.2 – Covariance and its Impact on Propagated Uncertainty 

From a mathematical perspective, dropping the covariance terms from the 

uncertainty propagation model makes for a simpler calculation.  Computing the 

uncertainty of the parameters  goes from: 1 2,  , etc.z z

 

1 1 2 1

2 1 2 2

1 2
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2 1 2 2
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z
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 (7.52) 

to a matrix-free system of equations: 
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      
               

      
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





 x

 (7.53) 

Not only is (7.53) a more straight-forward calculation, but it relieves the modeler of the 

responsibility of estimating the many covariance terms (a non-trivial exercise). 

Covariances can be omitted from an uncertainty calculation, provided a proper 

argument is made for the independence of the respective parameters.  Using a lidar-

related example:  the uncertainty of the laser range measurement is independent of the 

uncertainty of scanner’s encoded azimuth.  The laser and scanner were likely constructed 
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by different manufacturers and the accuracy of one device has nothing to do with the 

other, thus their covariance is zero.  On the other hand, there may be some cross-talk 

within the IMU that leads to a non-zero covariance between the measured pitch and roll 

of the vehicle.  The difficulty is in determining the value of this covariance.  While the 

INS manufacturers are relatively forthcoming with their systems’ capabilities of 

measuring a vehicle’s roll, pitch or yaw (typically reported as a standard deviation or 

variance), the covariances are not so readily advertised.  At the time of this writing, 

representatives of Applanix have been contacted with regard to accessing the covariances 

among their INS’ reported pitch, roll and heading.  Their initial response was that while 

they felt the information to compute the covariances may be available, no such 

information was available to the user. 

With regard to propagated uncertainty, covariances are ignored at the risk of an 

incomplete and inaccurate model.  Depending on the signs of the covariances (and their 

associated partial derivatives), an inclusion of these terms could lead to either larger or 

smaller point cloud uncertainties.  The behavior is application specific, but given the 

casual modeler’s propensity to think in terms of their inputs’ variances, and not their 

covariances, a simple example is provided to demonstrate the effects of covariance on 

propagated uncertainty (and the consequences of overlooking it). 

Consider an unorthodox method of computing the area of a rectangle (Figure 

141).  The area of a rectangle is given by the product of its length and width.  To measure 

the dimensions, a 10-meter measuring tape is affixed to one corner and then wrapped 

along the rectangle’s length and width, terminating at the opposite corner.  The length can 

then be read off of the tape measure, while the width can be determined through 
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subtraction.  For example, if the length is measured as 6 meters, then the width must be 4 

meters.  In the interest of replication, suppose the length is measured two more times, 

yielding 5.9 and 6.1m (with associated computed widths of 4.1 and 3.9m). 

 

Figure 141. Determining the area (and associated uncertainty) of a rectangle whose 
dimensions are determined by wrapping a 10-meter tape measure along the rectangle’s 
half-perimeter.  
 

Determining the dimensions of the rectangle in this way, there is a clear 

(negative) correlation between the measured length and the calculated width of the 

rectangle.  If one estimates the length to be a little larger than the true value by some 

amount, then the calculated width will be smaller than its true value by that same amount. 

Though three data points does not make for a robust dataset, the uncertainty in the 

computed area of the rectangle can still be estimated based on the uncertainties of the two 

inputs.  Given the area of a rectangle is the product of its length and width, the 

uncertainty is given by (7.34): 
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L L,W2

A 2
L,W W

A A A A
L W L W

 


 
              


  (7.54) 

which can be simplified to: 

 
2 2

2 2 2
A L W

A A A A
2

L W L W
                   

L,W.  (7.55) 

The variance and covariance are respectively computed (for small sample sizes) using the 

two equations: 
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 (7.57) 

Using the preceding three data points,  and   2 2
L W 0.01m   2

L,W 0.01m .  

 Assuming an independence of the input variables (i.e. assuming L,W 0)  , then 

(7.55) yields: 
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4 0.01 6 0.01 2 4 6 0
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   


 (7.58) 

So the standard deviation, being the square root of the variance, of the area is equal to 

0.72m2.  However, this is an overly pessimistic view of the uncertainty of the computed 

area.  The area is the product of the rectangle’s length and width. Should the measured 

length be larger than its actual value, the width will necessarily be smaller than its actual 

value (by the nature of how the rectangle’s width is computed).  This balancing of the 

length and width will help temper any variability in the rectangle’s area.  Inclusion of the 

covariance in (7.55) yields: 
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        2 22
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4

4 0.01 6 0.01 2 4 6 0.01

0.04m

    


 (7.59) 

with a standard deviation of 0.2m2.  Thus the inclusion of the covariance term reduced 

the calculated standard deviation of the area by 72% and the calculated variance by 92%. 

 The previous example should serve as a warning to how neglecting the covariance  

can lead to a misinterpretation of a function’s overall uncertainty.  Large uncertainties in 

a function’s input do not necessarily translate to large uncertainty in a function’s output 

(provided there is a negative covariance among the input parameters).  Inversely, should 

there be a positive covariance, the uncertainty of the function’s output may be greater 

than the sum of the individual contributions. 

 Returning to the simplified laser scanner shown in Figure 140, a covariance-free 

model had an uncertainty in the x-coordinate of the point cloud given by (7.37): 
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With the inclusion of the covariances, the full uncertainty of the point cloud becomes: 
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(7.60) 

Even with this simplified lidar having only three measured quantities, it is not so straight-

forward a matter to assess whether or not the inclusion of the covariance terms will 

increase or decrease the uncertainty of the point cloud.  The final contribution is 

dependent on the signs of the covariances, the signs of the partial derivatives and their 

linear combination.  But, regardless of whether the covariance terms help or hurt the 

point cloud’s TPU, if they are known, they must be included in the calculation. 
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 The discussion of covariance will be revisited later in this chapter when the TPU 

module as called by the lidar calibrator is presented.  Generally, the covariances among 

parameters are not known.  When attempting to assess the “success” or “failure” of a 

given flight configuration with regard to how well the calibration parameters can be 

determined, typically the reported uncertainties of the adjusted parameters are considered.  

The logic being large reported uncertainties in the calibration values imply a poorly 

designed flight plan.  However, large uncertainties for the calibration values do not 

necessarily translate to large positional uncertainties in the point cloud.  The calibrator 

may report a pair of parameters to have large standard deviations only because the 

module cannot determine which parameter is the true culprit for the geometric 

misalignments.  In such a case, these parameters will have a relatively large covariance 

which may ultimately lead to a small uncertainty in the point cloud.  Only with a full 

analysis of the variance-covariance matrix can one assess the performance of the 

calibration routine. 

7.2 – Total Propagated Uncertainty Visualization Module 

The final Graphical User Interfaces (GUIs) developed in conjunction with this 

dissertation – the others being the simulation module, the calibration module, and the 

covariances/correlation module – is now presented.  The TPU module is a custom GUI 

developed for the purposes of giving the operator a means of visualizing the estimated 

uncertainties of any point cloud dataset.  This module also provides a means of adjusting 

the uncertainties of the laser equation inputs to understand their influence on the final 

outputs.  Depending on whether the program is called from the simulator or calibrator, it 

will behave slightly differently. 
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7.2.1 – Propagated Uncertainty Called from Simulator 

 A rendering of the overall propagated uncertainty module, as called from the lidar 

simulator, is shown in Figure 142 (along with more detailed views shown in Figure 143, 

Figure 144 and Figure 145).  

 
Figure 142. The total propagated uncertainty interface.  Close up views of the parameter 
list (A), plotting window (B) and control panel (C) are shown in the following figures. 
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Figure 143. A closer view of the parameter select screen within the TPU module.  
Checkboxes determine whether a parameter is included in the uncertainty computation.  
White text boxes allow the user to set the standard deviations of the many parameters, 
and gray boxes display the contribution to the total uncertainty by each individual 
parameter.  The value of the calibration parameters are displayed in the respective name 
fields (e.g., Fresnel prism slope = 39.18°). 
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Figure 144. A closer view of the point cloud spatial view within the TPU module.  Laser 
points are color coded by uncertainty.  
 

 
Figure 145. A closer view of the TPU module’s control panel.  The first column 
determines the uncertainty of any selected laser point, the second column controls the 
display features of the point cloud shown in Figure 144, and the third column generates 
plots of uncertainty versus various acquisition parameters.  
 

 7.2.1.1 – Examining the effects of various IMUs.  When the TPU module is called 

from the simulator, the only uncertainty information immediately available is that 

associated with the system’s observables (laser range, scanner azimuth, GPS position, 
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and vehicle orientation), the first column of Figure 142.  From the simulator, the default 

covariance matrix of all the input parameters, x  in (7.34) will have the form: 

  (7.61) 
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The user is provided the ability to input any standard deviation for these observables (the 

white fields in Figure 142) and then recompute the propagated uncertainty.  As an 

example of this functionality, a flight line was simulated with no installation offsets (no 

boresight misalignments, perfect laser-prism-scanner alignment, etc.), nor any vehicle 

attitude (no pitch, roll or yaw).  Assuming a typical acquisition height of 400 meters, the 

published uncertainties of various Applanix POS AVs were applied to assess the effects 

on the final point cloud.  Standard deviations for the laser range of 0.01m and scanner 

azimuth of 0.002°, based on estimates from Optech International, were also applied, 

producing the results shown in Figure 146. 

 
Figure 146. Table of predicted horizontal (2D) and vertical uncertainties of the CZMIL 
point cloud (1σ) with different models of Applanix POS AV.  Specifications provided by 
Applanix (2009).  Note: the horizontal position uncertainty of 0.1 meters for the POS was 
interpreted to be  a one-dimensional (i.e. north-south and east-west) uncertainty.  
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 Figure 146 reveals several interesting pieces of information.  First, when equipped 

with a POS 410, post processed with POSPac MMS (the present configuration presently 

employed in USACE’s CHARTS system), there is a baseline confidence of 0.174m in the 

horizontal direction and 0.301m in the vertical.  Next, we see upgrading the POS from a 

model 410 to model 610 has minimal impact on the point cloud TPU, particularly the 

vertical uncertainty.  The total horizontal uncertainty (THU) of the lidar points will 

improve from 0.174cm to 0.144m; whereas, the vertical estimated confidence only 

improves from 0.3008m to 0.3002m.  The reason for this nominal reduction in 

uncertainty is best understood when the contribution to the error by each parameter is 

expressed as a percentage of the whole (much as was done in (7.48)).  If independence 

among the measured parameters (i.e. no covariance) is assumed, then the percent 

contribution of an arbitrary parameter P is given by: 
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 (7.62) 

It is important to note that the percent contributions can be viewed in the TPU module by 

toggling the “Show error contribution as:” drop-down from “value” to “percentage” in 

the TPU module’s control panel (first column, Figure 145).  Both the uncertainty values 

and percent contributions are shown for the POS AV 410 in Figure 147.  Upgrading the 

INS does improve the accuracy of the calculated orientation of the vehicle; however, it 

does not affect the accuracy of the vehicle’s calculated position.  Even with values from 

the “poorest” performing POS shown in Figure 146, the 0.30m vertical uncertainty 
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associated with a post-processed GPS position still accounts for ~99.5% of the vertical 

uncertainty.  So, under this scenario, all efforts (and dollars) should be invested in 

improving the GPS solution, not the vehicle orientation.  For the remainder of this 

chapter, unless otherwise stated, the uncertainties associated with the POS AV 410 will 

be used. 

  
Figure 147. The net contribution to the horizontal and vertical TPU, sorted by parameter 
(left) and the percent contribution (right).  The disproportionate contribution to 
uncertainty caused by GPS positioning emphasized in red.  
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 Should the user desire, not all of the observation parameters need to be included 

in the uncertainty calculation.  By deselecting any parameter the associated rows and 

columns are removed from both the covariance matrix and the Jacobian.  While reducing 

the matrices is mathematically equivalent to setting the variance equal to zero, 

computationally, it is more efficient to delete the entries.  Conversely the user may also 

include uncertainties associated with the calibration parameters.  This can be done by 

checking the appropriate parameter and entering the standard deviation in the provided 

fields shown in Figure 142.  All checked parameters will be incorporated into the 

Jacobian and covariance matrix.  For example, in Figure 142, the GPS position is not 

adjusted; whereas, the vehicle boresight angles ( ,  and )x y zBS BS BS    and Fresnel 

prism slope ( )FR  are.  The associated covariance matrix is thus: 

  (7.63) 
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 7.2.1.2 – Further exploration of the plotting tools.  Continuing the discussion of 

the TPU module, the visualization portion of the module is now explored.  In this 

analysis, a perfectly-aligned lidar is considered (e.g., 0° boresight angles).  In addition to 

the uncertainties of the observables, uncertainties (1σ) in the boresight values of 0.4°, 

0.1° and 0.2° about the vehicle’s roll, pitch and yaw axes respectively are assumed.  
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Figure 148 shows two simulated flight lines:  one with a straight and level flight path, and 

a second where the vehicle rolls 10° to starboard, then 10° to port, and finally returns to 

level.  In this case, the points are colored with respect to the horizontal uncertainty. 

  
Figure 148. Point cloud colored by horizontal uncertainty (top).  By adjusting the scale of 
the color bar the user can create a binary palette to show whether a point meets a given 
accuracy criteria (bottom).  
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 Above and below the color bar to the right of the plot, fields are provided to 

rescale the image’s color table.  For example, a user only interested in whether the THU 

of the point cloud is greater or less than 3 meters could set the lower index to 2.999 

meters and the upper index to 3.000 meters (Figure 148 – bottom).  This creates a two-

tone image that is exceedingly easy to interpret.  With respect to the horizontal 

uncertainty, it appears the outer beams coinciding with the maximum roll have the 

maximum uncertainty. 

 Toggling the coloring from horizontal to vertical uncertainty (found under the 

“Display Options”), a different pattern is revealed (Figure 149).  This time, rather than 

just the outer beams coinciding with the maximum vehicle roll having the maximum 

uncertainty, the maximum uncertainty is exhibited from all beams when the vehicle is at 

maximum roll.  Coloring the points by radial uncertainty is also an option (not shown). 

 
Figure 149. The same point cloud in Figure 148, this time colored by TVU.  The 
maximum vertical uncertainty is displayed at all angles (rather than just the outer beams) 
when the vehicle experiences its greatest roll.  
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 In addition to coloring the data points by uncertainty, error bars are an alternative 

method of visualizing the uncertainty.  As shown in Figure 150, interpreting point-by-

point uncertainty through the use of error bars is not as intuitive as the previous color 

coding, but general trends can still be determined.  First, the vertical uncertainty is greater 

on the rolling vehicle than on the level one.  Second, within the higher variability of TVU 

of the rolling flight line, an increase in uncertainty among the outer-most beams is seen.  

The error bars do not show, however, that the full swath has a larger uncertainty when the 

vehicle rolls, as seen in Figure 148.  

 
Figure 150. Dataset viewed from the front (vehicle traveling towards viewer) with 
vertical error bars shown with two standard deviations. 
 

 Horizontal error bars are shown in Figure 151.  Because of the large disparity in 

scale between the lidar points themselves (spanning hundreds of meters across the swath) 

and the THU (on the order of centimeters), the horizontal error bars cannot typically be 
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seen without some amount of exaggeration.  With that in mind, a horizontal error bar 

scaling feature has been implemented.  In the figure below, the horizontal error bars are 

scaled by a factor of 10.  Thus, while y-axis ticks indicate a 100 meter spacing for the 

lidar points, each tick is only 10 meters for the error bars.  Recalling the uncertainty of 

the boresight angle in the roll axis was 0.4°, while the uncertainty in the pitch axis was 

only 0.1°.  We can see the effects of this disparity in confidence depicted in Figure 151.  

The uncertainty in the across-track direction is shown to be larger than that of the along-

track direction; which stands to reason with a larger uncertainty in the roll axis.  

 
Figure 151. Horizontal TPU where horizontal error bars are exaggerated at 10 times the 
scale used for the data points.  Fore/aft and port/starboard axes have same scale – notice 
larger uncertainty in direction of roll. 
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 A last investigative tool provided by the TPU module is the ability to plot the 

horizontal or vertical TPU versus any of the eight observation parameters.  The options 

for configuring this feature are located under the heading “Parameter Plot” in Figure 145.  

To demonstrate the application of this tool in an investigative capacity, plots of several 

parameters are presented below.  Given the vehicle was rolling back and forth during one 

of the two flight lines, there may be an interesting correlation between the vehicle roll 

and the propagated uncertainty; see Figure 152.  With respect to the horizontal, there does 

not appear to be a positive or negative correlation between the roll angle and the THU.  

While the vehicle is level there appears to be a more consistent predicted uncertainty; 

whereas, as the vehicle’s roll increases, there is a greater variability in the uncertainty.  

On the other hand, there is a distinct relationship between the vertical uncertainty and the 

vehicle roll.  A close up of just the vertical uncertainty is shown in Figure 153. 

 
Figure 152. Horizontal (black) and vertical (red) propagated uncertainty (1σ) plotted 
versus the vehicle roll. 
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Figure 153. Vertical propagated uncertainty (1σ) plotted versus vehicle roll. 
 

 As seen above, as the vehicle roll increases, so too does the vertical uncertainty of 

the laser points.  There does appear to be an additional signal in the above curve, which 

suggests there are factors beyond the vehicle roll that are contributing to the TVU.  

Increased TVU with increased roll agrees with the colored point cloud shown in Figure 

149. 

 Next, a comparison of the laser range to both the vertical (Figure 154) and 

horizontal (Figure 155) TPU is made.  Unlike the vehicle roll, it is difficult to see a 

correlation with respect to the TVU and laser range.  A minimum uncertainty is detected 

when the range is 425 meters.  Most likely this minimum value is associated with the fact 

that the range is 425 meters when the vehicle has a 0° roll.  As discussed above, the 

minimum TVU is exhibited when the vehicle has a 0° roll.  So the low point seen in 

Figure 154 is more likely ascribed to vehicle roll, not the range – this confounding of 

inputs is what makes determining the cause of the point cloud uncertainty so difficult. 
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Figure 154. Vertical propagated uncertainty (1σ) plotted versus the laser range. 
 

 
Figure 155. Horizontal propagated uncertainty (1σ) plotted versus the laser range. 
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 The horizontal uncertainty, on the other hand, exhibits a strong correlation with 

the laser range (Figure 155).  As the range increases, so too does the THU of the point 

cloud.  Because the plot is not strictly linear, this suggests that other factors are 

contributing to the uncertainty to some extent as well.  This observation of increased 

horizontal uncertainty with range is consistent with the color plot shown in Figure 148.  

One final parameter/TPU based plot is shown in Figure 156 – this time 

investigating the relationship of the TPU with the scanner azimuth.  Unlike the laser 

range and vehicle roll there does not appear to be a positive or negative correlation 

between the laser azimuth and TPU.  The mean uncertainty at the forward, port, starboard 

and aft scanner angles are all the same (there appears to be a correlation in the variability 

of the uncertainty, but not the uncertainty itself). 

  
Figure 156. Vertical (red) and horizontal (black) point cloud TPU (1σ) plotted versus the 
laser scanner’s azimuth.  (0° = forward, 90° = starboard, etc.) 
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To generalize the previous three observations for this particular flight plan: 

 The TVU is most affected by the vehicle attitude.   

 The THU is most affected by the lidar range measurement.   

 There was no apparent correlation with the scanner azimuth in the previous 

simulation.  This may have been due to the fact that there were no system misalignments 

(boresight, laser-to-scanner, etc.). 

It is equally important to understand both the root causes and the symptoms of 

large uncertainties.  For example, the laser may have an inordinately large ranging error, 

but it only manifests itself in the point cloud should the vehicle roll over 30° – in which 

case the laser ranging error could be considered within tolerance.  As such, all three of 

the previous bullet points will be further investigated in the following sections. 

 7.2.1.3 – Vehicle altitude versus point cloud uncertainty.  To further demonstrate 

the investigative flexibility afforded by the TPU module’s controls, we will explore two 

open-ended questions:  how does the acquisition altitude affect the point cloud 

uncertainty, and how does the vehicle’s attitude affect the uncertainty.  The former 

question will be discussed in this section, while the latter will be presented in the 

following section. 

 Exploring the behavior of uncertainty for different flight altitudes is an important 

endeavor.  Should the surveyors wish to relax their spot spacing and fly at a higher 

altitude, they must first know whether they will exceed their uncertainty budget before 

they begin surveying. 

 To make the simulation less trivial, a few of the calibration parameters were 

shifted from their previous zero values.  For the boresight misalignments, the laser-prism-
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scanner assembly is tilted forward 5° and rolled to port by 5°.  There is also a 10° yaw 

misalignment.  Thus the longest beam will be directed forward and to port (relative 

azimuth of 305°) and the shortest beam will be directed starboard and aft (relative 

azimuth of 125°).  An IMU-to-laser offset vector, in meters, of [0.5, 0.5, 0.5] is also 

included.  When these calibration values were included within the simulation, they were 

considered to be well-determined and error-free.  Six flight lines were then simulated at 

altitudes of 200, 400, 600, 800, 1000, and 1200 meters (note:  400 meters is a typical 

operational altitude); results are shown in Figure 157.  

 
Figure 157. Horizontal (top) and vertical (bottom) point cloud TPU (1σ) plotted for 
various vehicle altitudes (from left-to-right:  1200, 1000, 800, 600, 400 and 200 meters). 
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 By changing altitude, the principle parameter affected in the laser equation is an 

increased laser range.  As discussed in the previous section, increasing the laser range has 

a marked effect on the point cloud’s THU but inconclusive effects on the TVU.  

Examining Figure 157 (top), we see that the trend of an increased laser range leading to 

an increased point cloud THU is repeated.  As the altitude increased from 200 meters to 

1,200 meters, the THU increased from 0.15m to 0.37m.  Given even a Special Order 

hydrographic survey has a horizontal uncertainty allowance of 2 meters (IHO 2008), the 

aforementioned horizontal uncertainties are well within tolerance. 

Examining the TVU (Figure 157 – bottom), changing the altitude has had a nearly 

negligible impact (increasing the uncertainty by only 1 centimeter with an increase in 

altitude of 1000 meters).  The color banding for the TVU plot matches that of the 

horizontal, which suggests that (though diminished) there is also an increase in TVU with 

increased laser range.  As far as survey specifications are concerned, the vehicle altitude 

has an almost negligible contribution to the total vertical uncertainty of the final point 

cloud. 

To further examine the impact of the laser range on the point cloud uncertainty, 

the ranges for all six flight lines are plotted with respect to both horizontal and vertical 

TPU.  Again, both the THU and TVU increase with an increased laser range (the TVU to 

a lesser extent). 

Because the boresight angles are no longer zero (as in previous sections), it is 

reasonable to expect some shot-to-shot variation in the point cloud TPU as the scanner 

rotates around (Figure 158).  Both the THU and TVU exhibited similar behaviors (though 

only the THU is plotted).  The uncertainty curves were sinusoidal with minimums near a 
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scanner azimuth of 130° and maximums near 310°.  Given the boresight misalignments, 

these angles are consistent with the direction of the shortest and longest laser ranges 

respectively.  So, there is a weaker correlation between point cloud uncertainty and 

scanner azimuth than between scanner azimuth and laser range. 

 

 
Figure 158. Horizontal point cloud TPU (1σ) plotted against scanner azimuth for flight 
lines of various altitudes (0° = forward, 90° = starboard, etc.).  Higher altitudes are 
represented by curves with larger uncertainty. 
 

 Another way of visualizing the effects of a changing altitude is to simulate a 

single flight line with a starting altitude of 200 meters that exhibits a steady climb in 

altitude to 600 meters (Figure 159).  As anticipated, uncertainty again increases with 

altitude.  However, we can see that the steady increase in laser range does not form a 

linear relationship with the THU, but instead has a slight curve. 
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Figure 159. Horizontal point cloud TPU (1σ) for a vehicle steadily gaining altitude 
(200m left side to 600m right side). 
 

 7.2.1.4 – Vehicle attitude versus point cloud uncertainty.  While changing the 

vehicle’s altitude has little effect on the point cloud’s propagated uncertainty (particularly 

from a “does it still meet survey specifications?” point-of-view), dynamic changes in the 

vehicle’s attitude are much more likely to be encountered during daily operations.  

Particularly when the suggested calibration strategy is to fly as dynamic a flight line as 

the system, flight crew and vehicle will support.  System parameters will be equivalent to 

those presented in the previous section:  roll/pitch/yaw boresight misalignments of 5°, 5° 

and 10° respectively; and an INS-to-laser offset vector, in meters, of [0.5, 0.5, 0.5].  For 

this example, the acquisition altitude will be limited to the anticipated system acquisition 

altitude of 400 meters.   
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As a baseline comparison, the simulated vehicle will experience no dynamic 

motion (no roll, pitch, yaw or heave).  Both the horizontal and vertical TPU exhibit a 

similar spatial behavior, though the THU has the larger range of values (THU ranging 

between 0.177m and 0.183m, compared to TVU ranging between 0.3011m and 

0.3013m), Figure 160.  

 

 
Figure 160. Horizontal point cloud TPU (1σ) for a vehicle with boresight angles tilting 
the laser scanner forward and to port. 
 

One revolution to the next, the largest uncertainties are associated with the beams 

oriented forward and to port (Figure 161).  The reason for this distribution of 

uncertainties is easily understood when the uncertainty is compared against the laser 

range (Figure 162).  Both the TVU and THU display a linear correlation with the laser 

range, the farther the laser travels, the greater the uncertainty.  Therefore, the peak and 

valley displayed in the laser azimuth versus uncertainty plot of Figure 161 can simply be 
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attributed to the differing laser range resulting from the boresight angles tilting the laser 

forward and to port. 

 
Figure 161. Horizontal point cloud TPU (1σ) compared to laser azimuth (0° = forward, 
90° = starboard, etc.).  Vehicle boresight angles result in tilting the laser forward and to 
port (towards 310°). 
 

 
Figure 162. Horizontal (left) and vertical (right) TPU (1σ) compared to laser range for a 
vehicle experiencing no dynamic roll, pitch or yaw. 
 

 With a baseline established, the effects of changing the vehicle attitude is 

investigated.  The flight line is again flown from an altitude of 400 meters, but this time 

the vehicle starts with a roll of 30° to port (directing the laser to starboard) and 

incrementally rolls to an orientation of 30° to starboard (directing the laser to port).  The 
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THU of this flight line (along with a smaller non-rolling flight line – included for 

reference) is shown in Figure 163.  By adding this rolling aspect to the vehicle’s 

trajectory, the maximum THU increases from 0.183m to 0.262m and the TVU increases 

from 0.301m to 0.306m.  As expected, the maximum horizontal and vertical TPU are 

calculated at the vehicle’s maximum roll angles.  In comparison to the previous section, a 

30° roll induced a THU similar to a flight at 800 meters and a TVU similar to a flight at 

1,000 meters. 

 

 
Figure 163. Horizontal point cloud TPU (1σ) for a vehicle with boresight angles tilting 
the laser scanner forward and to port.  As vehicle proceeds forward, it rolls from 30° to 
port to 30° to starboard.  A non-rolling flight line is shown on the left for reference. 
 

 To examine whether the point cloud uncertainty is again a linear function of laser 

range (as in Figure 162), the THU is again plotted versus the range (Figure 164).  As 

before, increasing the laser range has an associated increase in point cloud uncertainty; 

however, unlike before, for any given laser range, there is some variability.  For 
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reference, the THU from the baseline flight has been added to Figure 164 in red.  

Through comparison to the non-rolling flight, any change in the vehicle attitude is 

revealed to also have an associated increase in point cloud uncertainty beyond that which 

would be strictly attributed to the increased laser range. 

 

 
Figure 164. Total horizontal uncertainty (1σ) for a rolling vehicle (black) plotted versus 
laser range.  Data from the non-rolling vehicle displayed in Figure 162 also shown (red). 
 

 Investigating the uncertainty signature beyond the laser range, the point cloud’s 

horizontal uncertainty versus the vehicle orientation is shown in Figure 165.  For every 

revolution of the laser (the “wiggles” in Figure 165), there is considerable variation in the 

uncertainty.  Recalling that the laser is tilted via the boresight misalignments to aim an 

extra 5° to the port side, one observes that the port side of each revolution has the larger 

uncertainty (likely associated with the slightly longer laser range).  Likewise a roll of X° 

to starboard (thus directing the laser to port) has a greater uncertainty than an equivalent 
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roll of X° to port.  Also, as the magnitude of the vehicle’s roll increases in either 

direction, so too does the uncertainty in the point cloud’s position.  

 
Figure 165. Total horizontal uncertainty (1σ) for a rolling vehicle plotted versus vehicle’s 
attitude.  Vehicle is rolling from 30° port (left) to 30° starboard (right) with a roll 
boresight angle directing the laser towards the port side. 
 

 Given that the laser scanner’s central axis is tilted 5° to port, one might expect the 

minimum point cloud uncertainty to be observed when the vehicle is also oriented with a 

5° roll to port (when the scanner’s central axis is oriented towards nadir), since this will 

yield the shortest of the observed laser ranges.  Examining Figure 165, the minimum 

THU is actually distributed among the vehicle’s orientation between 0 and -5° roll, with 

the lowest observed uncertainties of all between 0 and +5° roll.  This suggest that not 

only does an increased laser range lead to an increased uncertainty (minimized at a 

vehicle roll of -5°), but any vehicle attitude other than perfectly level also contributes to 

an increase of the overall uncertainty of the point cloud’s reported position. 

 



330 

 One final parameter of interest is the laser scanner’s azimuth.  Because of the 

boresight misalignments, the non-rolling vehicle displayed a larger relative uncertainty to 

the port side of the vehicle’s nose (~310° relative azimuth) and a smaller uncertainty off 

the vehicle’s starboard quarter (~140°), see Figure 161.  To follow up for a rolling 

vehicle, the horizontal TPU versus the scanner azimuth is shown in Figure 166.  For the 

rolling vehicle, the average maximum uncertainty has shifted from 310° closer to 270° 

(i.e., oriented towards port).  Most likely, this shift in maximum uncertainty is associated 

with the laser range.  As the vehicle experiences a greater roll, the maximum laser range 

will be increasingly associated with the “outer-most” beams (e.g., regardless of the 

vehicle’s boresight misalignments as the vehicle rolls more and more to starboard, the 

port-most beams will have the longest laser ranges).  Conversely, the same argument can 

be made to describe why the laser azimuth with the smallest uncertainty is directed 

towards starboard (90°). 

 
Figure 166. Total horizontal uncertainty (1σ) for a rolling vehicle plotted versus scanner 
azimuth (0° = forward, 90° = starboard, etc.).  Recalling in a non-rolling vehicle the 
minimum THU was observed near 140° and maximum near 310°. 
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 Though only the horizontal uncertainty was displayed in the previous four figures, 

the vertical TPU exhibited very similar trends.  Earlier in this chapter, after the first 

simulation (Figure 149), it was postulated the THU is more closely associated with laser 

range, the TVU is more closely associated with vehicle attitude, and there is no 

discernible pattern with regard to the scanner azimuth.  With the additional simulations of 

the varying altitudes and attitudes, refinements to these initial observations can be made: 

 Both the horizontal and vertical uncertainty are closely related to the laser range: 

the greater the range, the greater the uncertainty.  The horizontal uncertainty is more 

affected by the laser range than the vertical uncertainty. 

 Changing the vehicle’s attitude will also lead to an increase in point cloud 

uncertainty.  Part of this increase is due to the non-level nature of the vehicle, but mostly 

a change in vehicle attitude will have an associated change in the laser range (which, 

from the previous bullet, leads to a change in uncertainty). 

 The scanner azimuth is related to uncertainty, but only so far as the boresight 

angles steer the scanner’s rotational axis away from nadir.  The larger uncertainty will 

then be in the direction the scanner is oriented (e.g., if the scanner is tilted forward, the 

forward beams will have a longer range and thus a higher uncertainty). 

 Even with 30° of roll, the estimated vertical uncertainty of the point cloud 

increased by less than one centimeter.  Thus, from a geometric point-of-view, no amount 

of dynamic motion likely to be encountered during acquisition will render the point cloud 

unusable from an uncertainty perspective.  There may be radiometric issues associated 

with beam stretching when the laser forms a low incidence angle with the water’s 

surface, but such issues are beyond the scope of this work. 
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7.2.2 – Propagated Uncertainty Called from Calibrator 

 As stated previously, an advantage to using a least squares adjustment in the 

execution of the calibration routine is the output of a fully populated variance-covariance 

matrix.  Unlike the simulator which only uses a priori assumptions about the uncertainties 

of the inputs to the laser equation (e.g. the manufacturer’s specifications for the laser, 

INS, etc.), the calibrator has access to the covariance which describes the interaction 

among the parameters.  The TPU module will have one additional section devoted to 

covariance if called from the calibrator (see Figure 167 and Figure 168). 

 

 
Figure 167. The TPU module’s interface as called from the calibration module.  An 
additional panel devoted to covariance is highlighted in the lower right (with a close-up 
view shown in Figure 168). 
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Figure 168. Covariance panel within the propagated uncertainty interface, allowing the 
user the option of including covariance in uncertainty calculations. 
 

 Recall from (7.33) and (7.34) that the generic formula for computing the variance-

covariance matrix of the point cloud, , , ,x y z  is given by: 
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(7.64) 

where x

.

 is the variance-covariance matrix of the laser equation inputs (both 

observation and calibration parameters).  The uncertainties in the observed quantities 

(laser range, laser azimuth, etc.) are still represented solely by their variances in the 

matrix x   Since a user may only choose to adjust a few of the calibration parameters, 

only those parameters will have both variance and covariance entries in .x   As is the 

case with the simulator version of the TPU module, the user still has the opportunity to 

add uncertainties for the calibration parameters – such an edit will only be performed for 

the parameter’s variance (the user may not edit the covariances).   
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As an example, suppose 5 of the observables ( , , , ),ZS     are included in a 

TPU calculation.  Additionally, suppose the three boresight angles , ,( )x y zBS BS BS    

along with the laser-to-scanner phi-angle ( )LS  angle are adjusted by the calibrator, while 

the user wishes to manually enter an uncertainty for the prism slope ( )FR , which is not 

included in the calibration routine.  Under such a scenario, the variance-covariance 

matrix will have the form: 
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 The capability of toggling the covariance terms on and off (see Figure 168) is 

provided.  Neglecting covariance, (7.65) simplifies to the diagonal matrix: 
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  (7.66) 
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With the covariance de-selected, the modified diagonal matrix shown above is used in 

coloring the point cloud, rendering the error bars, and displaying the uncertainties in the 

parameter plots.   Also, for any given point, the uncertainty attributed exclusively to the 

covariance of the inputs of the point cloud is displayed in the lower-right hand corner of 

the TPU module (Figure 168).   

 It should be emphasized that if the covariance terms are available, they must be 

included in the uncertainty propagation.  To not include them is a statistically invalid 

approach.  Given the difficult nature of quantifying the covariance among physical 

quantities, some may be in the habit of only thinking in terms of (the easily visualized) 

variance (and its related statistic the standard deviation).  Even this author is guilty of 

more often reporting variances than covariances.  The calibration module immediately 

reports the uncertainties in each parameter by displaying their respective standard 

deviations; the covariances are only shown through the separate covariance/correlation-

coefficient module.  The practice of discussing variance over covariance is also a matter 

finding a way to visually represent the data.  If 10 parameters are adjusted, then the user 
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just wants to know the confidence in those 10 parameters; to further report the 45 ways in 

which these parameters interact via their covariances can be overwhelming. 

Reading the preceding paragraph, one may wonder why the ability to remove the 

covariance terms from the uncertainty propagation is provided.  This functionality is 

present to illustrate the impacts of covariance on the final point cloud uncertainty and, by 

extension, the dangers of interpreting the alleged point cloud TPU based only on the 

inputs’ variances.  Two examples are provided below to demonstrate how neglecting the 

covariance can lead to erroneous interpretations of the point cloud TPU. 

 7.2.2.1 – Covariance example #1: Redistributing the uncertainty.  Consider a 

vehicle with boresight misalignments of 5°, 5° and 10° (roll, pitch and yaw respectively) 

with an IMU-to-laser offset vector (measured in meters) of [0.5, 0.5, 0.5].  Two flights 

are performed from an altitude of 400 meters at a speed of 140 knots.  In one flight, the 

vehicle experiences both a roll oscillation of 5° (rolling to starboard, then to port, then 

back to level) and a similar oscillation in the heading of 5°; the second is a reference 

flight in which the vehicle experiences no change in attitude (see Figure 169).  Note:  

such a small dataset is not an ideal flight plan for determining calibration parameters; the 

data is just being used to demonstrate the effects of covariance. 

Four parameters (the three boresight angles and the prism slope) were determined 

within the calibrator, at which point the TPU module was launched (Figure 170).  Two 

quick observations:  within the point cloud, there is a range in the THU from 0.32m to 

0.39m.  The largest uncertainty is associated with the aft pulses and the least uncertainty 

with the forward pulses. 
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Figure 169. Flight plan used to illustrate covariance. 
 

  

 
Figure 170. Horizontal propagated uncertainty (1σ) with covariance included error 
calculation (all units in meters). 
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 For comparison, the point cloud is again plotted, but this time the points are 

colored with respect to their THU as computed without reference to the covariance terms 

(Figure 171).  The range in magnitude of the THU has not changed, still extending 

between 0.32m and 0.39m.  What has changed is the distribution of the uncertainties.  

Neglecting covariance, the points with the largest uncertainty are now located exclusively 

on the port side of the laser swath (a laser azimuth of 270° in Figure 172).  If the 

covariance terms are (mistakenly) not included in the TPU calculation, the surveyor may 

try to design an acquisition scheme that favors the starboard side of the aircraft (thinking 

those to be the laser pulses with the highest confidence).  This would in fact be 

unnecessarily complicating a flight plan for a false gain in point cloud confidence. 

 

 
Figure 171. Horizontal propagated uncertainty (1σ) with covariance not included in error 
calculations (all units in meters). 
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 Further emphasizing the complexity of covariance, notice in Figure 172 that 

including covariance reduces the THU for the forward beams (red arrow), whereas it 

increases the THU for the port beams (blue arrow).  Thus a blanket statement like 

“including the covariances will lead to larger/smaller TPU values” is not possible.  

Instead the statement:  “including the covariances will lead to a more accurate TPU 

model,” better captures the truth of the matter.  

 
Figure 172. Horizontal TPU (1σ) versus scanner azimuth (0° = forward, 90° = starboard, 
etc.) for a point cloud both including (top) and not including (bottom) covariance in the 
computation.  Depending on a points location in the scanner’s swath, including 
covariance can either decrease (red arrow) or increase (blue arrow) the reported TPU. 
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 7.2.2.2 – Covariance example #2: Overestimating the uncertainty.  In this 

example, the same vehicle and flight plan as described in Figure 169 is used.  This time 

however, a fifth parameter (the laser-to-scanner phi-angle) is included in the calibration.  

The reported standard deviations of both this and the previous calibration routine are 

shown in Figure 173.  As expected, the attempt to determine more calibration parameters 

with an equivalent amount of input data results in a less confident solution.  The reported 

confidence in the roll and yaw boresight angles, as well as the prism slope remain 

unchanged.  The pitch boresight angle’s ( )yBS  standard deviation gets 15 times worse, 

and the laser-to-scanner phi angle ( )LS  has an uncertainty of similar magnitude to the 

pitch boresight.  Whether increasing the uncertainty in a parameter by 15 times means the 

reported calibration value is now “bad” still remains to be seen. 

 

 
Figure 173. Table of reported confidences (1σ) from two calibration routines attempting 
to determine 4 (calibration #1) and 5 (calibration #2) parameters.  In addition, the THU 
for each resulting point cloud is compared both with and without the inclusion of the 
covariances.  
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 With the inclusion of this extra calibration parameter, the resulting point cloud 

THU does not change remarkably (Figure 174) from the point cloud with only four 

parameters calibrated (Figure 170).  The net propagated uncertainty does get larger, 

increasing in range from 0.32-0.39m to 0.36-0.42m.  This increase is again expected 

because there is a larger uncertainty in the input parameters.  Also, the structure of the 

uncertainty with respect to a point’s location with respect to the scanner azimuth is also 

the same (smaller uncertainties forward and larger uncertainties aft). It is only at this 

point that an operator should judge whether or not the reported confidence in the 

calibration values are “good enough” for their purposes.   

 If one were now to compute the horizontal TPU based strictly on the uncertainties 

of the input parameters (i.e., ignore the impact of the covariances) a very different picture 

is revealed (Figure 175).  As in the previous example, the points with the larger 

uncertainties have shifted to a new location (now in the forward-portside sector of the 

swath).  However, what is much more startling is the almost quadrupling of the reported 

uncertainties.  The range in THU increases from 0.36-0.42m to 1.44-1.66m.  It is again 

emphasized that the propagated uncertainty as computed from a set of inputs in which 

their covariances are ignored is not mathematically correct. 

 To understand why there is such a large jump in uncertainties with the omission 

of the covariance, one must examine a plot of both the calibration parameter’s variance-

covariance matrix (Figure 176) and correlation coefficients (Figure 177) – both generated 

through the covariance module within the calibrator.  Not only do  and yBS LS   have the 

largest variance of the five parameters, but they also have the largest covariance.  

Between these two parameters, there are three parameters of consequence in the TPU 
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calculation.  For example, the uncertainty in x due just to the two parameters 

 and yBS LS   is given by: 
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Figure 174. Horizontal TPU (1σ), in meters, when a fifth parameter ( LS ) is included in 

the calibration.  Covariance is included in the computation. 
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Figure 175. Horizontal TPU (1σ), in meters, when a fifth parameter ( LS ) is included in 

the calibration.  Covariance is not included in the computation.  Notice the large increase 
in the reported uncertainties. 
 

 

 
Figure 176. Visualization module of the variance-covariance matrix for the five 
parameter calibration run.  Both the largest variances and the largest covariance are 
associated with the pitch boresight angle (‘BStheY’ – red triangle) and the laser-to-
scanner phi-angle (‘LSphi’ – purple circle).  Logarithmic scale is used. 
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Figure 177. Visualization module of the correlation coefficients for the five parameter 
calibration run.  There is a perfect positive correlation between the pitch boresight angle 
(‘BStheY’ – red triangle) and the laser-to-scanner phi-angle (‘LSphi’ – purple circle).  
There is also a negative correlation between the roll boresight angle (‘BStheX’ – red 
circle) and prism slope (‘theFR’ – yellow circle).   
 

Only the red terms in the preceding equation are used in the TPU calculation 

when covariance (the blue term) is neglected.  Because the variances of  and y LBS S   are 

so large, it is unsurprising that the TPU is also large.  In order to reduce the TPU, the 

covariance term must be negative.  Figure 177 shows the two parameters are highly, 

positively correlated (implying the covariance is positive).  Close examination of the 

partial derivatives show the partial derivative with respect to the boresight angle is 

positive; whereas the partial derivative with respect to the laser/scanner angle is negative.  

Thus, as a whole, the blue term in (7.67) is negative and will reduce the final computed 

TPU.  Figure 177 also shows a relatively large negative correlation between the roll 

boresight angle and the prism slope.  In this case, the two corresponding partial 
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derivatives are positive, so their product with the negative covariance will net a negative 

number and also reduce the TPU.   

Generally, the determination of which terms have a large impact on the TPU, can 

be garnered through an examination of the variances and the covariance terms with large 

correlation coefficients.  Assuming the calibration routine yielded a geometrically correct 

point cloud, a large covariance indicates the calibration routine could not decide which of 

two parameters was the true culprit for the system misalignments.  Under such a scenario, 

both the variances and covariance will be relatively large.  They should also be 

complementary and work to cancel each other out in the final uncertainty model.  

However, to determine whether the covariance terms will positively or negatively impact 

the TPU, the signs of the partial derivatives must be calculated. 

No information regarding the five planar parameters adjusted in the calibration 

routine are carried forward to the TPU module.  These are nuisance parameters that have 

no meaning within the lidar.  Unfortunately, this is a detriment to any calibration 

parameter that has a high correlation with a planar parameter (e.g., IMU-to-laser vertical 

offset or the laser range bias) at the time of calibration.  While the large variances for 

these parameters will propagate through to the TPU module, the associated covariances 

will not.  As discussed in Section 6.3.3.3, the use of ground control, will eliminate three 

of the planar parameters from the adjustment.  The remaining two parameters (describing 

the ground normal vector) are seldom correlated with calibration parameters and can be 

mitigated through a well designed flight plan that successfully decouples the lidar’s 

calibration parameters from the planar parameters.   

 



346 

 While this forensic analysis of determining which parameters are the largest 

contributors to the point cloud TPU may only be of interest to some, the take-home 

message is the same for all:  if covariance terms are available, they must be included in 

the TPU calculation.  The previous two examples only serve to reinforce the types of 

misinformation about the point cloud that may be spread if covariance is ignored.  The 

user may either completely misunderstand the distribution of the point cloud uncertainty 

(example #1), or may grossly over (or under) estimate the total uncertainty (example #2).  

We conclude this section by revisiting a calibration trial from Section 6.3.3.1, 

which provides an extreme example of the pitfalls associated with disregarding the 

covariance.  In this example, a 7-parameter calibration was performed (boresight angles, 

prism slope, laser/scanner angles and VRF/IRF heading alignment) in which 6 of the 

parameters had a correlation coefficient of either +1 or -1.  These large correlations led to 

some inordinately large estimated uncertainties the calibration parameters, in particular:  

3.7° (1σ) for both the yaw boresight angle and VRF/IRF heading misalignment and 2.2° 

(1σ) for LS.   In spite of the large parameter uncertainties, the point cloud’s TPU is 

actually relatively small (provided the covariances are included in the computation).  The 

THU both with and without the inclusion of covariance are shown in Figure 178 and 

Figure 179, respectively.  The THU of the point cloud only ranges between 0.17m and 

0.19m.  This point cloud uncertainty is better, in fact, than that of the point cloud shown 

in Figure 174 which had uncertainties in its associated calibration values several times 

(and in some cases several orders of magnitude) smaller than the 7-parameter calibration.  

This is because in spite of the large uncertainties in the calibration parameters, there were 

also large associated covariances.  Such a combination of circumstances implies that 
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while the calibrator was not confident in the calibration values, per se, it was confident 

that a geometrically correct point cloud was produced.  This is reflected in the high 

confidence (low THU) of the final point cloud.  If the covariances are neglected, the THU 

jumps by two orders of magnitude up to a range of 15.7m to 18.1m.  For reference, this 

point cloud had a TVU ranging from 0.104m to 0.107m.  

 
Figure 178. Horizontal TPU (1σ), in meters, for a point cloud which has both large 
uncertainties in its input parameters and large correlations among said parameters.  
Covariance is included in the computation. 
 

 
Figure 179. Horizontal TPU (1σ), in meters, for a point cloud which has both large 
uncertainties in its input parameters and large correlations among said parameters.  
Covariance is not included in the computation.  Notice the large increase in the reported 
uncertainties. 
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 7.2.2.3 – A few more notes on variance and the TPU module.  On the left-hand 

side of the TPU module (Figure 142), every input to the laser equation is listed (both the 

observed and calibrated parameters).  Beneath each parameter are two fields which list 

the purported contribution to the final point cloud THU and TVU on a point-by-point 

basis.  These fields only reflect the contribution due to the variance of the parameters (the 

red terms of [7.67]); the covariances are not included.  Thus the final error of the point 

cloud is no more than a sum of squares of the individual contributions, much like (7.43): 
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Without covariance, this is how the point-by-point uncertainty is determined in the first 

column of Figure 145.  Further, each squared term on the right-hand side of (7.43) is used 

to determine the percent contribution to the laser point’s uncertainty. 

As has been demonstrated, however, the inclusion of covariance may either add to 

or subtract from a particular point’s uncertainty (thus changing the value of the left-hand 

of (7.43)).  In its present state, the TPU module does not include the covariance terms 

when computing the percent contribution.  Given that, the capabilities of displaying the 

percent contribution to the uncertainty has been disabled when the TPU module is called 

from the calibrator. 

The user is also given the capability of modifying the standard deviations for both 

the observed and calibrated parameters.  The user is not, however, given the ability to 

modify the covariances.  This can potentially lead to an undefined TPU calculation for 

the final point cloud.  For example, consider a function of just two variables, A and B, 

whose TPU would be given by: 
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2 2

A B 2
A B A Bx

x x x x                   
A,B .  (7.68) 

The first two terms are being squared and are thus clearly positive.  By changing the 

standard deviations, the user also has the ability to make the first two terms as large or 

small as they desire.  But the third term, the covariance term may be negative, and should 

the user make the first two terms sufficiently small, then the quantity under the radical 

may become negative (and thus imaginary).  Should such a scenario be encountered, the 

TPU module will output a warning message that the user-defined standard deviations are 

too small and cease calculation of the point cloud TPU. 

 One final note on modifying the uncertainties of the system’s observables (the 

laser range, azimuth, etc.):  in the context of the TPU module being called from the 

calibrator, the observable uncertainties are used twice.  As just discussed, the user has the 

capability of manipulating the standard deviations of all the input parameters within the 

TPU module; however, as part of the a priori weighting of the least squares model, those 

uncertainties are also used in determining the confidence of the calibration parameters.  

So, if a user wished to visit a “what-if” scenario and change the confidence in one of the 

measured parameters, they should change the value in the TPU module, but only after 

they rerun the calibration module with the newly proposed confidences. 

 For example, consider the second set of calibration values and TPU assessments 

shown in Figure 173, here repeated in the first column of Figure 180.  Using an initial 

estimate in the vertical positioning of the aircraft of 0.30m, the TVU of the final point 

cloud ranges between 0.304 and 0.311m.  Noting the GPS positioning constitutes such a 

large percentage of the point cloud’s TPU, the system operators may wish to test whether 

an alternate method of determining their vehicle’s position will have improved results.  
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Changing the vertical uncertainty of the GPS to only 0.10m in the TPU module, the point 

cloud’s TVU drops to a range of 0.111m to 0.142m.  The GPS still accounts for a large 

fraction of the TVU, but the values themselves are much smaller than before.  An 

improved GPS solution, however, will also lead to an improved confidence in the 

calibration parameters.  Using a 0.10m vertical uncertainty in the calibration module, the 

standard deviations in the five parameters being calibrated drops between 65 and 70% 

(illustrating the uncertainty in the GPS positioning not only adversely affects the point 

cloud, but also the calibration parameters).  In turn, an improved confidence in the 

calibration parameters leads to an improved confidence in the point cloud positions.  

With the refined calibration solution, the point cloud’s TVU has a further reduction to 

between 0.103m and 0.110m, an improvement of 1 to 3cm over neglecting to rerun the 

calibration routine. 

7.3 – Relative Contributions to TPU of Observed and Calibrated Parameters’ 

Uncertainties 

 In the previous section, observing how much the point cloud’s TPU was reduced 

by improving the confidence in one of the lidar’s measured quantities, one may wonder 

exactly how much of the uncertainty in the point cloud is due to the system components 

and how much is due to the calibration routine.  That is, for a surveyor to improve the 

confidence of their final point cloud, should they invest in better equipment (laser, IMU, 

GPS processing software) or invest more time in acquiring data to be used in their 

calibration procedure.  First, a simpler calibration (two flight lines, five adjusted 

parameters) will be examined, followed by some more robust examples from Chapter VI. 
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Figure 180. Table of changes in point cloud vertical TPU (1σ), in meters, depending on 
when the vertical GPS uncertainty is updated:  in just the TPU module or both the TPU 
and calibration modules.  

 
 

 
7.3.1 – Uncertainty of Simple 5-Parameter Calibration 

 For the simple example, we return to the flight plan shown in Figure 169.  Only 

two small lines were acquired, one with the vehicle rolling and yawing by 5°, the other 

without any change in vehicle attitude.  The reader is reminded of the paltry size of the 

dataset.  As seen in Chapter VI, larger datasets lead to reduced uncertainties in calibration 

parameters (and thus, reduced TPU).  When both the measured and adjusted parameters 

are included in the TPU calculation, the THU ranges 0.165 to 0.191m and the TVU 

between 0.103 and 0.110m. 
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Figure 181. For a point cloud with 8 observed parameters and 5 calibrated parameters (1σ 
uncertainties shown), table of the horizontal and vertical TPU (1σ) of the point cloud is 
presented for a variety of inputs into the TPU module.  For example, total uncertainty (1st 
column), uncertainty due to calibration values (2nd column), uncertainty due to GPS 
positioning (3rd column), etc. Uncertainties for 10KHz laser are also shown (7th and 8th 
columns).  

 
 

Figure 181 summarizes the point cloud uncertainty in which only certain input 

uncertainties are propagated to the point cloud.  Some conclusions to be drawn include: 

 Nearly all of the vertical uncertainty in the point cloud can be attributed to the 

uncertainty in the GPS positioning (column 1 vs. column 3). 

 All of the other input parameters combined do not amount to half of the vertical 

uncertainty induced by GPS (column 6 vs. column 3). 

 At 51Hz, the calibration parameters’ contributions to the point cloud THU are 

roughly equivalent to the contributions by the observed parameters (column 2 vs. column 
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5).  The calibration parameters’ contributions to the TVU are on par with the errors 

induced by the observed parameters when GPS is excluded (column 2 vs. column 4). 

 When the point cloud data density is increased to the anticipated laser repetition 

rate of 10KHz, the uncertainty of the point cloud becomes indistinguishable whether the 

calibration parameters’ uncertainties are included or not (column 5 vs. column 7).  The 

THU that can be ascribed exclusively to the calibration results is less than 1 centimeter, 

while the TVU is roughly 1 millimeter (column 8).  An increase in data density pays 

great dividends towards improving both the confidence in the calibration parameters and 

the point cloud TPU. 

Using robust examples with a greater number of calibration parameters and 

following the recommended flight pattern of Figure 101, consider first the 11-parameter 

calibration trial shown in Figure 121 (Trial 4) which presented a simulation acquired at 

51Hz with ground control; a point cloud size of ~3800 data points.  The adjusted 

parameters (with their associated values shown in parentheses) included the three 

boresight angles (5°, 5° and 5°), the prism slope (39.18°), the VRF/IRF heading bias (0°), 

two components of the INS offset vector (1m and 1m), the two laser/scanner angles (1° 

and 1°) and the two prism/scanner angles (1° and 1°).  The uncertainties of both the 

calibration values and the point cloud are shown in Figure 182 (column 1). 

7.3.2 – Uncertainty of Prism/Scanner Alignments 

In comparison to the 5-parameter calibration shown in Figure 181, the 

uncertainties associated with the 11-parameter are much larger.  The maximum horizontal 

uncertainty exceeds 24m while the vertical TPU is over 37m (column 1).  The first 

observation one can always make with regard to calibration uncertainties is that the 
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results can be improved by more data.  As seen in Chapter VI, quadrupling the data 

density will reduce the uncertainty of the calibration parameters by 50%.  This trait 

carries forward to the point cloud TPU: quadrupling the data density will halve the 

contribution of the calibration parameters towards both the TVU and THU (column 2). 

Delving further into the point cloud uncertainties, one notices a broad range from 

point to point.  For example, the contribution to THU ranges from 0.085m to 24.6m (the 

TVU similarly ranges from 0.003m to 37.5m).  There is no apparent correlation between 

the uncertainty and the vehicle’s aspect (pitch, roll or heading) or altitude.  There is, 

however, a large correlation with the scanner’s azimuth (Figure 183).  The beams 

directed forward and to port (315°) are associated with the most confident beams; 

whereas the aft-starboard beams (135°) have the largest uncertainty.  The root cause of 

both these large uncertainties and the large variation can be understood if the calibration 

is recomputed while holding different parameters fixed.  

 

 
Figure 182. Table of calibration results from an 11-parameter calibration including 
prism/scanner alignments (1σ uncertainties shown).  Parameters marked by a ‘-‘ were not 
included in a given calibration trial.  The horizontal and vertical TPU are shown under 
various calibration configurations.  
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Figure 183. Horizontal (left) and vertical (right) TPU (1σ) versus scanner azimuth (0° = 
forward, 90° = starboard, etc.) for the calibrated point cloud depicted in Figure 182 – 
column 2.  Each plot shows two separate bands which are representative of the two 
acquisition altitudes (higher altitudes yielding higher uncertainties). 
 

 As was discussed in Section 6.3.4.1, the inclusion of the prism/scanner alignments 

xPS  and yPS  (and their highly correlated nature) led to the inordinately large 

uncertainties in the values for the parameters themselves (Figure 121 – columns 2 

through 4).  Suspecting one of these two parameters to be the dominant factor in the point 

cloud’s uncertainty, the calibration was performed three more times in which either one 

of both of the parameters xPS  and yPS  was held as constants.  When neither 

parameter was included in the adjustment, the point cloud TPU dropped to a maximum 

THU of 0.100m and a maximum TVU of 0.009m (Figure 182 – column 3).  The marked 

drop in uncertainty establishes one of these two parameters is corrupting the TPU.  

Alternately holding first yPS  (column 4) and xPS  (column 5) fixed, while adjusting 

the other, the point cloud still shows large uncertainty implying neither parameter can be 

included in the adjustment without greatly adversely affecting the TPU. 

 Of course, if a user was adamant about adjusting xPS  and yPS , it is possible to 

improve the point cloud TPU by increasing the amount of data adjusted.  As stated, every 
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time the data volume is quadrupled, the point cloud uncertainty is halved.  In the first 

entry of Figure 182, a 51Hz laser (totaling 3,828 data points) netted a maximum TVU of 

37.5m (1σ).  If one wished to decrease this uncertainty to 0.15m (1σ), then approximately 

250,000,000 data points would be required.  To achieve this data density, a lidar running 

at a full 10,000Hz repetition rate would need to survey non-stop for 6.96 hours over 

roughly the same area (for a 0.15m – 2σ, survey for 27.9 hours).  If the surveyor does not 

have the resources to dedicate to this task, then the next best option is to remove xPS  

and yPS  from the adjustment and determine their values by some other means. 

7.3.3 – Uncertainty of Scanner Azimuth Bias 

In Section 6.3.4.2, the scanner azimuth bias, zPS  was discussed in the context of 

the system calibration and demonstrated to be linearly dependent on LS  (along with the 3 

boresight angles).  This implies a decision must be made with regard to which of the two 

variables is included in the adjustment and which is held fixed.  Figure 184 shows the 

results of a 9-parameter calibration and the associated point cloud uncertainties for an 

adjustment that contains LS  (left column) and zPS  (right column).  Notice the 

uncertainties for the parameters themselves are comparable, both around 1.2° (1σ); the 

point cloud TPU highlights a vast disparity.  When zPS  is adjusted rather than LS , the 

maximum contribution to the point cloud horizontal uncertainty by the calibration 

parameters increases by over 1,000 times (0.009m to 9.331m).  The vertical TPU 

increases by over 10 times (0.100m to 1.142m).  From the perspective of determining the 

most confident values for the calibration parameters, either of the two parameters can be 

adjusted.  However, if the end goal is producing the most confident reported positions of 
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the lidar point cloud, the scanner azimuth bias should be held at 0° while LS  is 

determined through the LSA. 

 

 
Figure 184. Table of calibration results from an 9-parameter calibration including the 
scanner azimuth bias (1σ uncertainties shown).  Parameters marked by a ‘-‘ were not 
included in a given calibration trial.  The horizontal and vertical TPU are shown under 
various calibration configurations.  

 
 

7.3.4 – Uncertainty of Final Calibration with and without Ground Control 

 Estimated uncertainties for both the calibration parameters and the associated 

point cloud TPU are shown in Figure 185 for the final proposed 11-parameter calibration 

(11 parameters as opposed to 13 parameters because of the difficulty associated with 

calibrating  and ).x yPS PS    Significant to this table is that it contains the ultimate 

uncertainties that a surveyor should expect to achieve when using the proposed 

calibration procedure.  Also considered are the effects of the inclusion of ground control 

and manually measuring the INS offset vector.  There are several key observations to be 

taken from this table and they will be discussed one at a time. 
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Figure 185. Table of anticipated calibration and point cloud uncertainties (1σ) for the 
final proposed calibration procedure.  Parameters marked by a ‘-‘ were not included in a 
given calibration trial.  All uncertainties are displayed as a percentage of the baseline 
(Trial 1) flight.  The effects of including ground control and manually determining the 
INS offset vector are considered.  

 
 

 Trial 1 – If ground control is to be used (that is, a single point on the planar 

surface is identified in advance), then Trial 1 is the recommended calibration 

configuration.  The vertical point cloud TPU (1σ) is only 0.026m.  Recall, to achieve this 

level of accuracy, only the four flight lines (each of an approximately 20 second duration) 

of the crossing flight pattern shown in Figure 101 are necessary. 

 Trial 2 – Demonstrates the anticipated point cloud accuracy of the recommended 

calibration configuration when acquisition rates are at 10KHz.  The uncertainty of the 

calibration parameter’s values will contribute only 0.002m to the point cloud TVU (and 

0.012m to the THU).  The simple rule of thumb is that by quadrupling the data density, 

the uncertainty will be halved.  More generally, if x data points are acquired to produce 
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an uncertainty (1σ) of s, then adjusting n times more data points will yield an uncertainty 

given by: 

 *

ln
ln41

.
2

n

s s
   
 

 (7.69) 

Thus going from 51Hz data to 10KHz data will reduce the uncertainty of both the 

calibration parameters and the point cloud to 7.1% of the previous levels.  This principle 

can be applied to all the other trials shown in this table if an alternative calibration 

configuration were to be considered. 

 Trial 3 – As was seen in Section 6.3.3.3, if ground control is not included, the 

uncertainty in the vertical INS offset will become prohibitively large leading to excess  

uncertainties of the point cloud TVU (1.289m).   

 Trial 4 – without ground control, including the laser range bias in the calibration 

will also lead to large (0.281m – 1σ) vertical uncertainties in the point cloud. 

 Trial 5 – In the absence of a ground control point, the best practice is to manually 

measure the vertical offset of the INS and withhold 0  from the calibration.  Though one 

could still achieve comparable point cloud accuracies and adjust the laser range bias, it 

would require collecting about 400 times more data,  

 

ln
ln41

since 0.014 0.281 402.9.
2

n

n
    
 

 

If a ground control point is not included in the calibration, then Trial 5 is the 

recommended configuration. 

 Trial 6 – Is a repeat of Trial 5 (no ground control, no calibration of 0 , manually 

measure vertical INS offset), but also includes manually measuring the horizontal INS 
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offset.  Out to one-thousandth of a meter, no improvement is gained in either the 

horizontal or vertical point cloud uncertainty.  Therefore, rather than risking an erroneous 

measurement of the horizontal INS offset, the user should let the LSA determine this 

value. 

 Trial 7 – Even if ground control is being employed, the user may elect to 

manually measure all three INS offset vector components (rather than just the requisite 

one, ILy ) and treat them as fixed quantities in the calibration.  This is not a 

recommended strategy for three reasons:  First, the user may erroneously measure the 

offset vector.  Second, at 10KHz the calibration module can determine the horizontal 

offset to 0.006m and the vertical offset to 0.020m.  Third, in the case of ground control, 

while it is true the point cloud vertical uncertainty induced by the calibration parameters 

will be improved by 51.5% by manually setting the INS offset vector, with a 10KHz 

dataset, the vertical TPU contribution was already 0.002m.  When the vertical 

uncertainties due to such factors as GPS positioning are accounted for (~0.10m vertical), 

the calibration induced point cloud uncertainty is already negligible.  As such, the user 

can effectively eyeball one component of the INS offset vector (say ILy ) and then let the 

calibrator determine all the other parameters. 

7.3.5 – Final Assessment of the Calibrator’s Performance 

In Chapter VI, it was cautioned that the success or failure of a given calibration 

trial should not be assessed based exclusively on the reported uncertainties of the 

calibration parameters.  Since the ultimate goal is the production of a geometrically-

correct, well-positioned point cloud, judgment of the calibration should be reserved until 

the total propagated uncertainty of the point cloud is assessed. 
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One must first appreciate the uncertainty of the point cloud that can be attributed 

exclusively to the random noise in the measured quantities (laser range, scanner azimuth, 

GPS position, etc.).  In the case of the crossing flight pattern of Figure 101, the maximum 

horizontal TPU is 0.216m and the vertical is 0.112m (Figure 186 – column 1).  As 

discussed in the previous section, the crossing flight pattern at a 10KHz sampling rate 

will induce a maximum horizontal TPU of 0.012m and a maximum vertical error of 

0.002m (Figure 186 – column 2).  When the errors induced by the random noise of the 

observed quantities are combined with the errors induced by the calibration parameters, 

the point cloud TPU does not change (rounded to the nearest millimeter) from the 

uncertainty due to the observables alone (Figure 186 – column 3).  The fact that the point 

cloud uncertainty induced by the calibrator is negligible definitively establishes the least 

squares adjustment employed by the calibration module is a successful method for 

determining the calibration values. 

For comparative purposes, the TPU of the point cloud was computed assuming 

the calibration values were determined using some method other than the method of least 

squares (e.g., manually adjusting the parameters until adjacent swaths appear to align 

themselves).  Suppose one is able to determine the confidence of all the angular 

calibration parameters to within 0.05° (less than 1mrad) and all the distance parameters to 

within 0.01m.  In such a case, the combined observation/calibration maximum point 

cloud horizontal TPU will be 1.153m and the maximum vertical TPU will be 0.457m 

(Figure 186 – column 4).  In spite of the fact that many of the uncertainties of the 

individual calibration parameters are smaller (INS offset, laser range bias, VRF/IRF 

heading bias), the point cloud uncertainty grows larger (5 times the THU and 2-to-4 times 
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the TVU) when the calibration parameters are determined by a method other than the 

LSA.  The LSA is the superior method because, while it may lead to large uncertainties in 

the calibration parameters, their covariances will keep the point cloud uncertainty small. 

 

 
Figure 186. Table of point cloud uncertainties (1σ) induced by the observed parameters 
(column 1), the calibration parameters derived from the LSA (column 2), the combined 
observed and LSA-calibrated parameters (column 3) and the combined uncertainty when 
the calibration parameters are determined by a method other than the LSA (column 4).  
Data based on crossing flight pattern of Figure 101.  
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 Rather than offering repeated theoretical estimates of the point cloud uncertainty, 

a more visual example is offered.  The crossing flight pattern was simulated at 51Hz with 

the sensor misalignments listed in Figure 187 (column 1).  Further, random noise was 

added to the eight observed parameters (the magnitude of the noise is shown in Figure 

186– column 1).  The adjustment was then performed, deriving estimated values for the 

calibration parameters shown in Figure 187 (column 2).  Notice that the misclosures of 

the proposed calibration values are all within the predicted tolerances shown in Figure 

185 (column 1).  According to Figure 185, a dataset of this size should yield calibration 

values that are confident enough to produce a point cloud with a maximum calibration 

induced TVU of 0.026m.  To test this, an independent flight line with its own trajectory 

was simulated again using the true calibration values of Figure 187 to determine the 

corresponding observations.  For this particular flight, the observations were simulated as 

error-free so all biases in the point cloud would be attributed exclusively to the 

calibration values.  These observations and the (incorrect) adjusted calibration values 

were then used to reconstruct the point cloud (Figure 188).  The maximum vertical 

misclosure was only 0.016m, which is well within the predicted tolerance. 

 
Figure 187. Table of the true and adjusted values of the calibration parameters used to 
render the point cloud in Figure 188.  Misclosures of the proposed calibration values are 
also shown.  
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Figure 188. An independent flight line was simulated (left).  Using the flight’s true, 
error-free observations, the point cloud was reconstructed using the calibration values 
based on a noisy dataset (right).  True laser points shown in black, biased points in red.  
All units in meters. 
 

7.4 – Summary of Key Results 

 The following is a bulleted list of the key results, concepts and contributions 

presented within this chapter.  When possible, the relevant section(s) that offer a more 

detailed explanation are indicated. 

 The full mathematical frame work was presented for computing the total 

propagated uncertainty of a point cloud which accounts for both the uncertainty in the 

calibration parameters and the measured quantities (Section 7.1.1.1). 

 The issue of covariance was discussed along with its history of being omitted 

from uncertainty models.  The potentially large effects of covariance on the propagated 

uncertainty were presented using both simple examples (Section 7.1.2) and examples 

specific to lidar (Sections 7.2.2.1 & 7.2.2.2).  The key message with regard to covariance 

is this:  if covariance terms are available, they must be included in the TPU calculation.  

This includes the covariance terms derived during the calibration. 
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 The point cloud TPU was calculated for various model IMUs.  The higher-end 

IMU only had a slight improvement on the THU and a negligible improvement on the 

TVU (Section 7.2.1.1). 

 It is difficult to identify any single factor in what will lead to larger or smaller 

point cloud uncertainties.  Generally speaking, increased laser ranges, increased changes 

in vehicle attitude, and even increased misalignments within the calibrator will lead to an 

increased uncertainty in the point cloud.  However, even tripling the acquisition height 

(Section 7.2.1.3) or rolling the vehicle by as much as 30° (Section 7.2.1.4) will not lead 

to unacceptably large point cloud TPU.  This does appear to be a conundrum in that, from 

the previous chapter, the greater the changes in vehicle altitude or attitude experienced, 

the more confident the solutions for the calibration parameters.  The obvious solution is 

to perform the dynamic flight during calibration, but then shift to a more ‘level’ strategy 

when acquiring survey-grade data. 

 The vertical uncertainty associated with the GPS position (even at 0.10m – 1σ) 

dominates the point cloud TVU.  The point cloud THU is derived equally from the 

uncertainty of the GPS position and from the other 5 observed parameters (laser range, 

scanner azimuth, and vehicle orientation) (Section 7.3.1).   

 With sufficient data density (as is the case with a 10KHz lidar), the contribution 

to the point cloud TPU by the calibration parameters are nearly negligible when 

compared to the uncertainties associated with the observed parameters (Section 7.3.5). 

 Based on uncertainty analysis, the parameters  and x yPS PS   cannot be included 

in the calibration as they lead to inordinately large point cloud uncertainties (Section 

7.3.2). 
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 As was the case with the calibration parameters’ reported confidence, quadrupling 

the number of data points adjusted will halve the contribution by the calibration 

parameters to the point cloud TPU (Section 7.3.2). 

 As discussed in Chapter 6, LS  and zPS   are linearly dependent on each other, 

thus one must be held fixed while the other is adjusted.  Based on the point cloud 

uncertainty zPS  should be held fixed (the alternative leading to point cloud 

uncertainties nearly 100 times larger) (Section 7.3.3). 

 By analyzing the point cloud TPU, it was seen if ground control is included in the 

calibration area, then a total of 11 parameters can be adjusted (three boresight angles, 

prism slope, VRF/IRF heading bias, two INS offset components, two laser/scanner 

angles, and the laser range scale factor and bias).  Without ground control ILz  should be 

measured by hand 0  must be withheld from the adjustment (Section 7.3.4). 

 Finally, the point cloud TPU was computed assuming the calibration parameters 

were determined by some means other than a least squares adjustment and thus lacked 

any covariance information.  In such a case, the point cloud THU increased by 500% and 

the TVU increased by 200% to 400% as compared to what the point cloud uncertainties 

would be were the LSA-derived calibration uncertainties used.  This represents a 

complete validation of the calibration methodology proposed in this dissertation. 

 It is equally important to understand both the root causes and the symptoms of 

large uncertainties.  In the context of the point cloud positions, while the calibration 

parameters may have larger reported uncertainties than some would like, thanks to their 

covariances, they have little impact on the uncertainty of the final point cloud. 
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CHAPTER VIII 

CONCLUSIONS  

8.1 – Results 

 By all accounts, this dissertation achieved all of its stated goals.  First, a laser 

point positioning equation was developed for a novel large aperature circular scanner 

such as the one to be implemented in the Coastal Zone Mapping and Imaging Lidar 

(CZMIL) (3.46). 

 Next a complete simulation of the lidar was programmed to permit the generation 

of test datasets that could be used in conjunction with the development of the calibration 

module as well as provide insight into the behavior of the soon-to-be constructed lidar.  

Anticipating the potential conditions necessary for calibration, the simulator incorporated 

such features as:   

 the ability to dynamically change the attitude of the vehicle mid-flight;  

 the ability to subsample a dataset to simulate conditions over a runway,  

 the presence of an undulating sea surface to demonstrate the effects of beam 

steering on the sea floor scan pattern, as well as investigate the feasibility of using 

the sea surface as a proxy for the flat calibration surface.  A tidal model was also 

incorporated. 

The simulator also provided a mechanism for visualizing the behavior of a point cloud 

should any unidentified misalignments exist within the system (e.g., if the prism slope 

can only be machined to a given precision, what is the maximum vertical error that will 

be induced in the point cloud?).  By visualizing these biases, a sensitivity analysis can 

easily be undertaken for all of the system parameters.  Further, from the bias plots, the 
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optimal flight maneuvering characteristics were established for all of the proposed 

calibration parameters. 

 With simulated datasets in hand, the calibration module was created which 

performs a weighted constraint least squares adjustment.  The model takes the 

uncertainties of all the measured quantities (like laser range, scanner azimuth, etc.) as 

well as initial estimates and uncertainty bounds for all the parameters to be calibrated.  Of 

the 15 proposed calibration parameters, 11 can routinely be determined with a high 

degree of confidence. 

 Parameter estimation is achieved through a least squares fit to a planar surface.  

While a broad, flat terrestrial plane would be best, it was shown either a narrow runway 

or a wavy sea surface are acceptable calibration sites.  Though the uncertainty of the 

latter two are larger, the confidence in the calibration results were still negligible when 

compared to the uncertainties associated with such factors as the GPS position of the 

vehicle. 

 The calibrator also included a separate module which can be used to display both 

the covariances and the correlation coefficients of all the adjusted parameters.  In this 

way, the correlations (and in some cases the linear dependence) of all the proposed 

calibration parameters were determined with respect to one another.  The correlation 

coefficients are of great benefit in interpreting whether an adequate geometry was 

achieved during the calibration acquisition (i.e., did the vehicle change heading enough?), 

as well as put into context any (seemingly) large variances for a pair of calibration 

parameters.  The implication being two parameters with large variances, may only 
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contribute a small amount of uncertainty to the point cloud if they also have a 

correspondingly large covariance. 

 A proposed flight plan to be followed during calibration was presented.  Only four 

flight lines are required, to be conducted at two different altitudes and crossing over a 

common point.  During one pair of lines the pilot should induce a change in the vehicle’s 

roll aspect and heading, while in the other pair the pilot should induce a change in vehicle 

pitch and altitude.  Each line need total no more than 20 seconds in duration.  Under such 

a configuration, even if limited to a 50m wide runway, the anticipated contribution to the 

point cloud uncertainty by the calibration parameters would be 0.052m in the horizontal 

and 0.007m in the vertical.  Comparable results were achieved when simulated over a sea 

surface with waves of up to 1m in height. 

 The impacts of a lack of ground control were also investigated.  Without a ground 

control point, neither the laser range bias, nor the IMU vertical offset can be reliably 

determined.  What is more, the TVU of the point cloud will increase by a factor of 10 to 

50 times.  Either a single ground control point must be provided, or the two 

aforementioned calibration parameters must be excluded from the LSA. 

 Finally a module was developed for computing the total propagated uncertainty 

(both horizontal and vertical) of the final point cloud.  Uncertainties can be computed 

directly from the simulator, where the user can enter any tolerances they wish for the 

various measured quantities (e.g., what happens if I relax my positioning from real-time 

kinematic to differential GPS?).  Or, the TPU module can be executed after the 

calibration using the full variance-covariance matrix constructed during the calibration.  

In this case, the uncertainties induced in the point cloud are calculated based upon both 
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the uncertainties of the measured quantities as well as the uncertainty resulting from the 

calibration.  The ultimate validation of the proposed calibrator’s success is shown in 

Figure 186 in which it was shown the uncertainties induced in the point cloud by the 

calibration parameters were completely negligible when compared to the uncertainties 

induced by the measured values.  That is, not only does the calibrator produce a 

geometrically correct point cloud, but it has a negligible impact on the point cloud 

uncertainty! 

 Regarding the MATLAB code itself, the programs are too large (16,000 lines) to 

paste into the appendix of this document.  They were developed using MATLAB R2007b 

Version 7.5.0.342 without the use of any additional toolbox.  The code is freely available 

and a digital copy can be obtained by contacting the author at 

michael.gonsalves@noaa.gov. 

8.2 – Recommendations for Future Work 

 Recommendations for future work can be divided into two categories:  

refinements and expansions to the existing algorithms and modules.  Refinements to 

improve the overall performance and expansions to address issues not conceived before 

this work was undertaken.  

8.2.1 – Refinements to the Present Work 

 The algorithms presented should be tested on actual datasets.  Presently the 

constructs for reading external files do not exist. 

 Based on the residuals of the observations which can be determined during the 

least squares adjustment, a noise filtering algorithm should be instituted to remove fliers 
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from the dataset which could potentially corrupt the calibration.  That is, perform the 

adjustment once, identify and delete the fliers, then re-execute the adjustment. 

 Incorporate an atmospheric refraction model or establish that the induced 

geometric misalignments are negligible with regard to the calibration.  Determine 

whether the atmospheric refraction will have a greater affect when calibrating over the 

land or over the water. 

 While a precise time protocol is recommended, incorporate a navigation time 

latency into the calibration module. 

 Restate the prism-to-scanner alignments in spherical coordinates (similar to how 

the laser/scanner reference frames were related) to see if the parameters  and x yPS PS   

can be calibrated. 

 Incorporate three parameters to represent the biases in the INS sensed pitch, roll 

and yaw.  Assess whether they will be linearly dependent on the previous parameters. 

 Develop a method of accounting for the large uncertainty of a calibration 

parameter with a high correlation with a planar parameter.  As presently written, such a 

calibration parameter will lead to an anomalously large point cloud TPU. 

 Extend the TPU model for the laser points on the sea floor.  As it stands, the 

equations for the point cloud TPU are only valid for the topographic laser and for the 

laser strikes on the water’s surface. 

8.2.2 – Expansions Beyond the Present Work 

 Further develop the QC tools similar to those shown in Figure 67 which allow for 

the inspection of the structure of the point cloud for misalignments without having to 

perform a live calibration. 
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 Develop a method of automatically extracting the dataset over an airport runway, 

perhaps based on the intensity of the return, when such a region is used in the calibration. 

 Rather than using the manufacturer’s reported uncertainties for the GPS positions 

and vehicle attitude, use the output from the SBET file, which computes a shot-by-shot 

uncertainty. 

 The framework now exists for the geometric calibration of any geometric system, 

provided the observation equation is known.  The proposed techniques should be applied 

to other lidars (e.g., CHARTS or EAARL). 

 Conceivably, the proposed techniques could even be extended to the calibration of 

ship-based acoustic systems.  The problem of ray tracing would have to be addressed as 

the sonar pulse travels through the water column, but otherwise, the geometry exists for a 

successful calibration. 

 Develop a new observation equation that results in the point cloud being adjusted 

to a control dataset rather than being adjusted to a planar surface.  A low-pass filtered 

spatial surface could be derived from the control dataset and then the would-be calibrated 

datasets would be compared to the control surface (again using an LSA approach).  In 

this way, there would be no requirements placed upon the acquisition conditions 

necessary for a calibration trial (other than having the reference dataset, obviously).  

Further with the presence of buildings, trees or other projecting features, the confidence 

of the calibration routine would be much higher. 

 Consider the development of inputting a ground control target file, in which the 

user may enter several “known” points on the ground plane into the calibration routine.  

This would lessen the calculated uncertainty of the calibration parameters and minimize 
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the chance of a blunder being entered for the single ground control point that is presently 

accepted. 

 Develop a method of real-time calibration.  As the lidar is operating, a very small 

percentage of the data can be siphoned to a perpetually running calibration algorithm 

which is constantly testing whether the point cloud is well-aligned.  Such a technique 

could reveal whether something internal to the lidar becomes misaligned should it be 

bumped, or whether the GPS solution or INS attitude suddenly becomes corrupt. 
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APPENDIX 

TAIT-BRYAN ROTATIONS 

A.1 – Traditional Formulation 

Euler angles are a system for describing a coordinate transformation by defining 

three angular rotations, the proper sequence of these rotations, and the three orthogonal 

axes about which the rotation occurs.  The present motivation is found in trying to 

describe the orientation of an aircraft given its pitch, roll and yaw angles.  Even adhering 

to the standard, SAE (Grewal, Weill, & Andrews, 2007) body-fixed reference frame 

(right-handed Forward-Starboard-Down, see Figure A1), there are 24 possible 

permutations for the sequencing of the rotations.  The Tait-Bryan convention specifies 

the order and direction of these rotations. 

 
Figure A1. An aircraft’s roll (x-axis), pitch (y-axis) and yaw (z-axis) axes, where the 
arrow indicates the positive direction (from Grewal, Weill, & Andrews, 2007). 
 

The Tait-Bryan convention is followed throughout the geomatics, remote sensing 

and hydrographic communities.  More importantly, it is adhered to by Applanix, the 

manufacturer of IMU to be deployed with CZMIL (Applanix, 2003; Applanix, 2007).  

The rotations described by Tait-Bryan are not only applicable in the trajectory of the 
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aircraft, but are also used to describe the order of rotations for rectifying the boresight 

misalignment angles (University of New Brunswick, 1998; Wehr, 2009).  Figure A2 

shows the labeling of the axes under Tate-Bryan along with the direction of a positive 

rotation.  For reference, when located at the coordinate system’s origin and looking along 

a positive axis, a positive rotation is perceived as a rotation in the clockwise direction.  

That is, a positive rotation about the x-axis can be thought of as “port-side up,” a positive 

rotation about the y-axis can be thought of as “nose up,” and a positive rotation about the 

z-axis can be thought of as “turn right.” 

 
Figure A2. An aircraft’s three orthogonal axes and the corresponding direction of a 
positive rotation. 
 

If one has a set of vehicle orientation angles and wishes to represent the vehicle 

reference frame (VRF) with respect to an Earth-centered Earth fixed (ECEF) reference 

frame, the Tait-Bryan convention specifies the rotations are to be performed in the 

following order (Bryan, 1911): 

 Begin with the vehicle aligned with the ECEF (Figure A3a). 
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 Rotate the VRF about the VRF’s z-axis by the yaw angle, κ (Figure A3b). 

 Rotate the VRF about the VRF’s now once-rotated y-axis, y , by the pitch 

angle, ψ (Figure A3c). 

 Finally, rotate the VRF about the VRF’s now twice-rotated x-axis, x , by the 

roll angle, ω (Figure A3d). 

 
Figure A3. The Tait-Bryan rotation sequence (ECEF to VRF):  (a) align vehicle to ECEF, 
(b) rotate yaw angle, κ,  about VRF z-axis, (c) rotate pitch angle, ψ, about once-rotated 
VRF y-axis, (d) rotate roll angle, ω, about twice-rotated VRF x-axis. 
 

To convert a vector, n


, from the ECEF to the VRF, three rotational matrices, 

 (representing a rotation about the z axis, the once-rotated  axis, and the 

twice rotated 

, ,z y x    y

x  axis respectively), must be applied, such that: 

 VRF x y z ECEFn   n
     (9.1) 
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Where the rotation describing yaw, , is given by a simple rotation about the vector z

 0 0 1
T

, that is: 

 

cos sin 0

sin cos 0

0 0
z

 
 



1

 
   
  

  (9.2) 

Subsequent rotations require a more general formula for rotating about an arbitrary axis.  

From Fillmore (1984), the Rodrigues’ Rotation Formula states to rotate a vector 

, about an arbitrary vector
T

x y zv v v v 
 

T

x y zL L L L   


, by an angle α, then: 

 Lv v 
   (9.3) 

where: 

 

1 0 0 0

cos 0 1 0 sin 0

0 0 1 0

T T

x x x x z y

L y y y y z x

z z z z y x

L L L L L L

L L L L L L

L L L L L L

 

            
                           
                         

  (9.4) 

To compute , y y


 must first be found.  This is easily done, as the columns of  

represent the vectors 

z

, , and x y   
z


 respectively.  Re-examining (9.2): 

  (9.5) 



cos sin 0 cos sin 0

sin cos 0 sin , cos , 0

0 0 1 0 0
z

zx y

   
   

     
         
        

 



   
1

  
  
  
    

So, substituting y


 for  in L


(9.4), with a pitch of ψ, yields: 

  (9.6) 

2 2

2 2

sin cos cos sin cos (cos 1) sin cos

sin cos (cos 1) cos cos sin sin sin

sin cos sin sin cos
L y

      
       

    


  
     
   

 

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Finally, we are left with computing x , which necessitates determining x


.  This is 

fairly straightforward with the observation that: 

 y z z y       (9.7) 

Which can be confirmed by substituting the respective matrices into (9.7) and 

multiplying out both sides.  Showing just the right-hand side of (9.7) yields: 

 

cos sin 0 cos 0 sin

sin cos 0 0 1 0

0 0 1 sin 0 cos

cos cos sin cos sin

sin cos cos sin sin

sin 0 cos

z y

  
 



 

    
    

 

   
        
      

 
   
  

 

 (9.8) 

Combining (9.7) and (9.8), much like in (9.5) gives the vectors , , and x y z    
. 

 

cos cos sin cos sin

sin cos cos sin sin

sin 0 cos

cos cos sin cos sin

sin cos , cos , sin sin

sin 0 cos

y z

x y z

    
    

 

    
   

 







 
    
  

     
           
          

  

 

    

 (9.9) 

The form of x  can now be determined through a substitution of x


 into (9.4).  Using 

the shorthand , etc., 2 2cos , sin , cosC S C        x will be the (3 x 3) matrix 

given by: 
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 
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        
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         

         
 







  
    
    
  
    
    
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 






2 2(1 )

S C S C S S C C

S C S

       
  

 
   
   

 (9.10) 

Thus, by Tait-Bryan, VRF x y z ECEFn n 
    , where , ,x y    z  are given by 

equations (9.10), (9.6) and (9.2) respectively.   

A.2 – Alternative Formulation 

The preceding equations, however, are computationally expensive, and a simpler 

calculation can be performed with the observation that: 

 x y z z y  x           (9.11) 

In words, the preceding equation, (9.11), states that the Euler angles used in the 

Tait-Bryan rotations (left-hand side) can instead be performed in reverse order, provided 

they are rotations about the original ECEF axes, , , and x y z
  

, see Figure A4.  This relation 

has been confirmed by the author both numerically and algebraically.  A full algebraic 

validation is too large for this document. 
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Figure A4. By reversing the order of rotations prescribed by the Tait-Bryan convention, 
an equivalent transformation can be performed by rotating about the fixed (non-rotating) 
Earth-centered Earth-fixed (ECEF) coordinate axes.  Note:  the right-hand side of Figure 
A4 is equivalent to the results shown in Figure A3. 
 

Writing out the right-hand side of (9.11)

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

cos cos cos sin sin cos sin sin sin cos cos sin

sin cos cos cos sin sin sin sin cos co

z y x

   
   

   

           
        

     
               
          

  
   

  

s sin sin

sin sin cos cos cos

  
    

 
 
 
  

 (9.12) 

The above equation, (9.12), agrees with the coordinate transformations from a North-

East-Down coordinate system to a Roll-Pitch-Yaw coordinate system presented in 

Grewal, Weill, and Andrews (2007).  More importantly, it agrees with the original text of 

Bryan (1911), showing nothing has been lost in translation over the past 99 years.  This 

convention, rotating a vector about an x-axis, then y-axis, then z-axis is employed 

throughout this dissertation whenever a three axis transformation is required (vehicle 

attitude, boresight misalignment, prism-to-scanner alignment, etc.). 
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