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ABSTRACT 
 

NEW DUAL INITIATORS FOR POLYISOBUTYLENE-BASED  
 

BLOCK AND STAR POLYMERS  
 

by Yaling Zhu 
 

May 2012 
 

 Polyisobutylene (PIB), available solely by living carbocationic polymerization 

(LCP), is a commercially important polymer with excellent thermal stability, good 

flexibility and extraordinary impermeability to gases.  Due to these attractive properties, 

coupling PIB to other polymer blocks is expected to result in new and useful products.  

Two types of new dual initiators possessing initiating sites for both LCP and atom 

transfer radical polymerization (ATRP), have been designed for the preparation of AB 

linear and A2B miktoarm star copolymers, where A is PIB-based block copolymer that 

grows cationically and B is polyacrylate or other radically-derived polymer block, 

without intermediate modification. 

 Mono-cationic mono-radical dual initiators, 3,3,5-trimethyl-5-chlorohexyl 2-

bromopropionate (IB2BP) and 3,3,5-trimethyl-5-chlorohexyl 2-bromo-2-

methylpropionate (IB2BMP) were synthesized and used to prepare AB linear polymers.  

PIBs obtained from both initiators showed high efficiency in ATRP initiations of methyl 

acrylate (MA), yielding polymers with targeted block length and narrow polydispersity 

index (PDI).  However, IB2BMP and IB2BP displayed slow cationic initiation of 

isobutylene (IB) leading to moderate initiation efficiencies (0.50 < Ieff < 0.80) at low 

temperature (-70 °C) and low monomer/initiator ratio (82).  3,3,5,5,7-Pentamethyl-7-

chlorooctyl 2-bromo-2-methylpropionate (IB3BMP), which differs from IB2BMP by the 
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inclusion of one additional isobutylene (IB) repeating unit, was then synthesized.  It 

showed quantitative initiation efficiency (Ieff ~1) in TiCl4-co-initiated LCP of IB under 

various reaction conditions.  Ieff and PDI of the resulting PIBs were identical to those 

obtained with the standard mono-cationic initiators.  The superiority of IB3BMP 

compared to IB2BMP in carbocationic initiation was attributed to elimination of 

through-space interactions between the tert-chloride initiating site and the 

TiCl4:carbonyl complex at the ATRP initiating site. 

 Di-cationic mono-radical dual initiator 3-[3,5-bis(1-chloro-1-

methylethyl)phenyl]-3-methylbutyl 2-bromo-2-methylpropionate (DCCBMP) was 

syntheized for the preparation of miktoarm star copolymers.  Initiation efficiency of 

DCCBMP was high (0.89 < Ieff  < 0.98) for LCP of IB and it was comparable to the 

standard di-cationic initiator.  Using sequential monomer addition under LCP 

conditions, narrow-polydispersity poly(styrene-b-isobutylene-b-styrene) (PS-PIB-PS) 

triblock copolymers were prepared, yielding poly(acrylic acid-b-styrene-b-isobutylene)2-

s-poly(acrylic acid) [(PAA-PS-PIB)2-s-PAA] amphiphilic miktoarm star polymer after 

ATRP of tert-butyl acrylate (tBA) and thermolysis of poly(tert-butyl acrylate) (PtBA) 

block.  Upon thermolyzing PS-PIB-PS macroinitiator, poly(styrene-b-isobutylene)2-s-

poly(acrylic acid) [(PS-PIB)2-s-PAA] stars were obtained in the same manner. 
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CHAPTER I 

SYNTHETIC STRATEGIES FOR POLYISOBUTYLENE-BASED POLYMERS 

USING CONTROLLED/LIVING POLYMERIZATIONS 

 Polyisobutylene (PIB) is a commercially important polymer with a large number 

of applications due to its excellent UV and thermal-oxidative stability, good flexibility 

at low and ambient temperatures, high mechanical damping, high gas impermeability, as 

well as good biocompatibility.  It was first invented by BASF Corp. in the late 1930s, 

and they have marketed a few PIB products such as Oppanol® and Glissopal®.  Today, 

over 19 chemical companies, including many key and niche players such as Chevron 

Oronite Company LLC, Exxonmobil Corp, Lanxess Corp, and TPC group Inc., 

manufacture polyisobutylene or PIB-based products. 

 Low-molecular-weight PIBs ranging in form from viscous liquids to tacky 

semisolids are used for lubricating oil and fuel additives,1 chewing gum base, caulks, 

and sealants.2  High-molecular-weight PIBs are rubbery solids and are typically used as 

plasticizers and impact modifiers of thermoplastics.  Butyl rubber, a copolymer 

consisting of isobutylene (IB) monomer with a few percent of isoprene comonomer, is 

produced at a rate of about 1 billion pounds annually in the United States.3  It is widely 

used in the production of tubeless automobile and truck tires, tire innertubes, ball 

bladders, cable coatings, automotive parts, construction materials, adhesives, and 

consumer products.  Besides these applications, PIB’s biocompatibility and biostability, 

due to the fully saturated hydrocarbon backbone structure, make it ideal for the 

healthcare and medical devices fields.4 
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PIB-based Polymers via Living Carbocationic Polymerization (LCP)  

 The discovery of controlled/living polymerizations is credited to Michael 

Szwarc.5  He demonstrated in 1956 that electron transfer from sodium naphthalenide to 

styrene resulted in stable dimeric dianions of styrene, which subsequently initiated 

styrene polymerization.  Szwarc’s research revealed that polymer continued to grow as 

more monomers were added and that the carbanion propagating center could only be 

terminated in the presence of terminating agents, such as water, alcohols, acids and 

esters.  This was the first example of a polymerization that could proceed in the absence 

of termination and chain transfer reactions.  Since then, investigateors have been 

dedicated to developing other controlled/living polymerization mechanisms, such as 

cationic and radical.  Such processes can function without chain breaking side reactions 

and allow precise control over molecular weights, molecular weight distributions, end-

functionalities, and architectures. 

 Extension of this mechanism to living cationic polymerizations was successfully 

demonstrated in the mid 1980s.  Higashimura et al.6,7 were the first to observe a living 

cationic polymerization process when polymerizing isobutyl vinyl ether monomer with a 

HI/I2 initiating system in 1984.  In 1987, living carbocationic polymerization (LCP) of 

isobutylene (IB) was reported for the first time by Faust and Kennedy using acetate-

BCl3 initiating systems.8  The livingness of IB polymerzaiton was indicated by the linear 

increase in PIB molecular weight with monomer conversion during the course of 

polymerization. 

 To achieve living polymerizations with precise control over molecular weight 

and molecular weight distribution, initiators are carefully designed to begin 
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polymerization efficiently and fast.  Initiators are commonly designed to generate 

carbocations structurally similar to that of the propagating center.  For example, 

initiators for IB polymerization are often tertiary halides (or acetates) derived from 

isbutylene dimmer (2,4,4-trimethylphent-2-yl) or cumyl (Figure1).  The choice of 

solvent and Lewis acid (or counterion) is also critical for LCP.9  For a typical 

isobutylene polymerization induced by a tertiary alkyl chloride/TiCl4 Lewis acid 

catalyst, the livingness of polymerization is achieved by introducing a dynamic 

equilibrium between the active propagating species (ion pairs) and dormant species 

(covalent chain ends), as shown in Figure 2.  Solvent and Lewis acid that have been 

selected for a polymerization should be able to push the equilibrium to the left, thus 

reducing the effective concentration of the active propagating center.  This decreases the 

risk of chain-breaking reactions and lowers the overall rate of polymerization, allowing 

greater synthetic control.   

 Quenching LCP of IB with hard nucleophiles such as methanol or ammonia 

yields PIBs with tert-chloride chain end functionalities.10,11  This permits important 

functional groups such as exo-olefin (isobutenyl),12,13 succinic anhydride,14 

hydroxyl,15,16,17 phenol,18 epoxide,15,16,19, sulfonic acid,20 as well as carboxylic acid21-27 

to be added as end groups onto PIB chain end through post-polymerization 

modifications of the tert-chloride functional group.  However, PIB propagating chains 

can also be functionalized in situ by quenching the living polymerization with various 

soft nucleophiles, which do not react (or react very slowly) with the Lewis acid.  

Successful classes of soft-nucleophilic quenching compounds include non-

homopolymerizable olefins (to avoid multiple addtion),16,28,29,30 sterically hindered 
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bases,31,32,33 sulfides,34,35  and ethers.36  For example, Kennedy et al.16,28 reporeted the 

direct end-capping of PIB carbocations using allyltrimethylsilane to yield an allyl-

terminated PIB.  In the same manner, quantitative addition of methallyltrimethylsilane29 

and 2-phenylallyltrimethylsilane30 to the living PIB ends yielded methallyl and α-

methylstyryl functional macromonomers, respectively.  The one-pot synthesis of exo-

olefin-terminated PIB31,32 and halogen-free PIB33 was accomplished in through β-proton 

abstraction with a hindered base and in situ hydride transfer from tributylsilane, 

respectively.  Morgan et al.34 quenched the LCPs of IB with mono- and disulfides to 

form PIB polymers with isopropyl thioether and 2-bromoethylsulfanyl chain ends, 

respectively. 

 Quantitative monoadditions of PIBs with 2-substituted furans,37 bis-furan,38 

thiophene,39 alkoxybenzenes,40 and N-substitutedpyrroles,41,42,43 have been achieved 

under appropriate conditions.  Faust et al. reported the synthesis of haloallyl end-

functionalized PIBs (PIB-allyl-X, X = Cl or Br) using the quantitative capping reaction 

of living PIB with 1,3-butadiene.44,45  The latter authors used several methods to convert 

the allyl-X groups at the PIB chain ends into useful functionalities including hydroxy, 

amino, carboxy, azide, propargyl, methoxy, and thymine end groups.46  More 

importantly, they studied the initiation behavior of PIBs with allyl halide end group as 

macroinitiators for atom transfer radical polymerization (ATRP),47 which will be 

discussed later in this chapter. 

 Based on the excellent properties of PIB, coupling this thermally, oxidatively, 

and hydrolytically stable polymer to a variety of other polymer blocks is expected to 

produce many new and useful block copolymers.  Kennedy and coworkers48,49,50 were 
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the first to synthesize poly(styrene-b-isobutylene-b-styrene) (PS-b-PIB-b-PS) using a di-

functional cationic initiator in the early 1990s.  The polymer was produced by bi-

directionally polymerizing isobutylene followed by styrene combining living 

carbocationic polymerization (LCP) and the technique of sequential monomer addition.  

These copolymers exhibit strong phase separation in the bulk state and constitute a 

group of useful thermoplastic elastomers (TPEs).  These triblock copolymers show 

excellent low-temperature flexibility and elongation properties, imparted by the rubbery 

PIB center block, and possess elastic recovery and physical strength properties due to 

the glassy PS segments.48-54 Compared to other well-known TPEs such as PS-b-

polyisoprene (PI)-b-PS and PS-b-polybutadiene (PB)-b-PS, which contain unsaturated 

double bonds in the middle rubbery segments, PS-b-PIB-b-PS shows outstanding 

resistance to oxidation and has long lifetime of usage.  Because of its biostability, PS-b-

PIB-b-PS was approved in 2004 to sequester Paclitaxel® on the highly successful 

Taxus® drug-eluting coronary stent.55,56 

 Over the years, other cationically polymerizable monomers including α-

methylstyrene,57,58,59 p-methylstyrene,60,61 p-chlorostyrene,62 p-(tert-

butyldimethylsiloxy)styrene63 and vinyl ether64-67 have also been copolymerized with 

PIB via sequential monomer addition.  Faust et al.68,69 developed synthesis methods for 

cases when the second monomer is significantly more reactive than isobutylene.  Here 

good blocking efficiencies were obtained by adding a non-homopolymerizable olefin, 

such as 1,1-diphenylethylene (DPE) and 1,1-ditolylethylene (DTE), to living PIB to 

affect complete ionization of the chain ends, followed by adjusting the Lewis acidity 

prior to the introduction of the second monomer.  Alkylfurans represent another class of 
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non-homopolymerizable monomers useful in preparing block copolymers.  By capping 

of living PIB chains with 2-alkylfurans instead of DPE or DTE, a stable carbocation is 

generated which can initiate the polymerization of methyl vinyl ether (MeVE) 

monomer, yielding poly(isobutylene-b-methyl vinyl ether) (PIB-b-PMeVE) diblock 

copolymers.37,70  A potential disadvantage of the capping technique is that it introduces 

an additional step in the synthesis of block copolymers.  This increases the possibility of 

premature chain termination by impurities.   

 An alternative strategy for the synthesis of symmetric ABA linear triblock 

copolymers involves the formation of living AB chains and subsequent coupling them 

with an appropriate coupling agent.  A number of non-homopolymerizable compounds, 

such as bis-diphenylethylenes (bis-DPEs), bis(furanyl) derivatives and allylsilanes, have 

been successfully utilized for the efficient coupling of cationic living chains.  Cao et 

al.71 succeeded in preparing poly(α-methylstyrene-b-isobutylene-b-α-methylstyrene) 

triblock copolymers by coupling living poly (α-methylstyrene-b-isobutylene) diblock 

copolymers with 2,2-bis[4-(1-phenylethenyl)phenyl]propane (BDPEP).  Faust and 

coworkers reported the success for coupling living PIB polymer chains using 

BDPEP,72,73 2,5-bis(2-furyl-2-propyl)furan (bFPF)74 and 1,3-bis[2-(3-

trimethylsilyl)propenyl]benzene (bTPB).30  More interestingly, this group also prepared 

star polymers having an average of four PIB arms with high efficiency by the same 

coupling strategy using 1-(2-propenyl)-3-[2-(3-trimethylsilyl)-propenyl]benzene 

(PTPB).30  In addition to the methods utilizing non-homopolymerizable olefin agents, 

coupling ω-isopropenyl PIB with catalytic amounts of triflic acid (CF3SO3H) in 

quantitative yields at -80 °C was reported by Coca and coworkers.75   
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 Non-linear polymers are receiving increased attention because of their different 

rheological, solution, and mechanical properties compared to their linear counterparts.  

Kennedy and coworkers found that multi-arm PIB stars showed superior rheological 

behaviors as compared with linear PIBs, making them useful as motor oil additives.76  

The first star polymer prepared via cationic polymerization, although only with three 

PIB arms radiating from a phenyl ring core, was produced by Kennedy et al.77  This PIB 

star polymer was not synthesized by true living polymerization methods, but rather via a 

transfer-dominated process involving a trifunctional initiator-transfer agent (inifer).  Tri- 

and tetrafunctional initiators were synthesized later for the preparation of well-defined 

three- and four-arm PIB star polymers using living polymerization technique.78-81   In 

1996 Kennedy and coworkers82 reported the synthesis of well-defined star polymers 

with eight PIB arms emanating from a calixarene core, which was produced from the 

cyclic condensation of a para-substituted phenol with formaldehyde.  Growing the 

living polymer chains radically outward from a multifunctional initiator allows for the 

sequential addition of a second monomer, such as styrene,51,83,84 or p-chlorostyrene,85 

producing versatile thermoplastic elastomers possessing multiple PIB-based block 

copolymer arms.   

 Coupling agents, such as cyclosiloxanes and divinylbenzene (DVB), have often 

been used in the synthesis of non-linear block copolymers, eventhough the number of 

arms produced by this method is not as controllable as those involving multifunctional 

initiators.  Stars with multiple PS-b-PIB arms84,86 or poly(isobutylene-b-indene) (PIB-b-

PInd) arms87 emanating from a cyclosiloxane core were synthesized by linking allylic 

end-functionalized PS-b-PIB or PIB-b-PInd prearms with cyclosiloxanes.  In 1998, 
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Storey et al.88 reported the synthesis of a series of gel-core, multi-arm star-branched 

PIBs via living carbocationic polymerization using a cumyl chloride/TiCl4/pyridine 

initiating system and DVB as core-forming comonomer.  Divinylbenzene (DVB) 

induced star-block PS-b-PIB polymers were also obtained by Kennedy and coworkers.89  

These multiarmed PS-b-PIB star block copolymers possess superior tensile properties, 

lower dynamic melt viscosity, and much lower sensitivity to diblock contamination than 

their linear triblock counterparts.86,89  

 Hetero-arm stars having a AnBm topology can also be prepared using these 

coupling agents, because the living sites are stoichiometrically retained in the coupled 

product.  The resulting polymer can thus grow new chains outward upon addition of a 

second monomer.90  Amphiphilic A2B2 star-block copolymers (A is PIB and B is 

PMeVE) were prepared by the coupling reaction of living PIB followed by the chain 

ramification polymerization of MeVE at the junction of the living coupled PIB using 

2,2-bis[4-(1-tolylethenyl)phenyl]propane (BDTEP).73  Similarly, A3B3 star-block 

copolymers were formed by reacting ω-furan functionalized PIB (2-PIB-furan), 

synthesized by end-capping living PIB with 2-Bu3SnFu, with 1,3,5-tricumyl chloride, 

followed by polymerizing MeVE from the resulting tri-functional core.91  The 

asymmetric star AA’B was obtained by the quantitative addition of 2-PIB-furan to living 

PIB (designated A’ because it has a different molecular weight than 2-PIB-furan), 

thereby producing living coupled PIB-Fu+-PIB’; this was then successfully employed in 

the subsequent chain ramification polymerization of MeVE.70   

 The disadvantage of producing AnBm hetero-arm stars with coupling agents is 

the possibly severe steric congestion at the linking site.  This especially happens when 
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the number of arm attachment points is above four or five.  Thus, this approach is 

limited to the synthesis of stars with small numbers of arms.  In addition, the arm 

number is often not controllable with the second double bond causing loops fromation.92 

PIB-based Polymers via the Combination of Controlled/Living Polymerizations 

 Block copolymers are able to self-assemble, in bulk as well as in selective 

solvents, into ordered nanostructures, with domain size and shape as well as the 

interdomain distance can be manipulated by changing the molecular weight, chemical 

structure, molecular architecture, and composition of the polymer.93  Phase behavior for 

polymers with more than two monomer blocks, also depends on the sequence of the 

blocks in the chain (i.e., whether it is sequenced A-B-C, B-C-A, or C-A-B).94,95  

Therefore, it becomes increasingly important to develop new synthetic strategies to 

overcome the synthetic limitations of known techniques in order to simultaneously 

allow both efficient preparation and precise control over polymer compositions and 

architectures.96,97 

 Although the technique of sequential monomer addition is simple and direct, it is 

limited to those monomer combinations that can be polymerized by the same 

mechanism: anionic, cationic, radical, etc.  To create block copolymers from monomers 

that cannot be polymerized by the same mechanism, one may couple existing 

prepolymers or combine different controlled/living polymerization methods.  As shown 

in Figure 3, coupling, site transformation (mechanism transformation), and dual initiator 

approaches were developed to produce new and unique, otherwise unavailable, polymer 

architectures.  Combining different living polymerization techniques, such as anionic or 
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radical, with LCP can significantly expand the existing synthetic methods, leading to 

complex but well-defined polymeric materials from new and existing monomers. 

 As previously discussed, living PIB cationic chains can be coupled using various 

non-homopolymerizable coupling agents.  Similarly, homopolymer blocks prepared by 

different mechanisms can also be linked using either multifunctional coupling agents or 

highly efficient chemical reactions and/or physical interactions.  This approach can 

produce well-defined polymer structures using monomers that can not be polymerized 

via the same mechanism easily and efficiently.  Methods to synthesize such PIB-based 

block copolymers have focused on using various reactions or interactions such as ionic 

substitution98,99 and click chemistry.100,101  For example, Faust and coworkers98 reported 

the synthesis of PIB-b-poly(methyl methacrylate) (PMMA) by reacting PIB-allyl-Cl, 

prepared by quenching living PIB with 1,3-butadiene, with living anionic PMMA-Li+.  

Hirao et al.99 synthesized new A2B, A4B, and A8B asymmetric star polymers, as well as 

A2BA2, A4BA4, and A8BA8 star polymers (A is PMMA, B is PIB), by reacting PIB 

having either 2, 4, or 8 benzyl bromide moieties at each chain terminus with living 

anionic PMMA-Li+.  The multiple benzyl bromide moieties were fitted to the termini in 

a successive generational fashion similar to the synthesis of dendrimers.  Starting from 

allyl halide-terminated PIB, the terminal halide groups were reacted with an anionic 

end-capping compound based on 1,1-diphenylethylene (DPE).  The DPE end-capper 

was then fitted with two new benzyl bromide moieties.  This sequence could be repeated 

multiple times, with the number of primary halide groups doubled with each successive 

generation.  Binder et al.100 prepared a star block copolymer with three equivalent 
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poly(ethylene oxide) (PEO)-b-PIB arms by linking a three-arm azido-telechelic PIB star 

with three equivalents of alkyne-terminated PEO via the azide/alkyne ‘‘click’’ reaction.      

 Site transformation approaches that combine two or more living polymerization 

mechanisms is an easy route to synthesize polymers with various monomer components 

and structures.  Here a stable but potentially reactive functional group is introduced at 

the chain ends.  This modified chain end can then provide a means for another 

polymerization mode to be used.   

 The pioneering work in this area was reported by Burgess et al.,102 who prepared 

PS-b-poly(tetrahydrofuran) (PTHF) diblock copolymers by combining anionic and 

cationic polymerization mechanisms.  In 1995, Endo and coworkers103,104 reported a 

direct transformation from cationic to anionic living polymerization.  However, in many 

cases, indirect transformations involving multiple steps are required to switch reaction 

schemes.   

 Site transformation is used to convert the growing chain ends of a cationically-

derived polymer into an initiating site for other polymerization processes including 

LAP, 39,105,106,107 ATRP,108-114 reversible addition-fragmentation chain transfer (RAFT) 

polymerization,115,116 anionic olefin polymerization39,117,118 and anionic ring opening 

polymerization (ROP).26,119  For example, Muller and coworkers106 reported the first 

synthesis of PIB-b-poly(tert-butyl methacrylate) diblock copolymer, with high blocking 

efficiency, by transforming the polymerization from LCP to LAP.  In this instance they 

capped living PIB chains with DPE then quenched with methanol/ammonia to form PIB 

with a methoxydiphenylmethyl terminus.  Quantitative metalation with K/Na alloy, Cs 

metal, or Li in THF at room temperature produced an anionic macroinitiator that was 
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used to polymerize tert-butyl methacrylate.  By transforming LCP to a radical 

polymerization mechanism, hydroxyl-tailed PIBs were functionalized with 

bromoisobutylryl (or bromopropionyl) groups.  This yielded PIB marcroinitiators with 

classical bromoester functional groups for ATRP.120  It is interesting to note that ATRP 

and LCP of styrene share the same dormant chain end, sec-benzylic chloride; thus site 

transformation may be theoretically performed in either direction with equal facility.  

For example, Masar and coworkers121,122 synthesized PIB-b-PS-b-PMMA-b-PS-b-PIB 

pentablock copolymers by radically polymerizing MMA and then styrene, followed by 

mechanism transformation to the LCP of IB.  In contrast, Storey et al.110 prepared PtBA-

b-PS-b-PIB-b-PS-b-PtBA in the reverse order by applying sequential cationic 

polymerization of IB and then styrene, followed by transformation to ATRP to add tert-

butyl acrylate (tBA). 

 The key in producing block copolymers via mechanism transformation is to 

quantitatively functionalize the chain ends and to ensure the initiating site can begin the 

second polymerization efficiently and fast.  Matyjaszewski et al.47 studied the ATRP 

initiation performance of PIB-allyl-X systems (X = Cl or Br), prepared by capping 

living PIB with 1,3-butadiene.44,45  Results showed that PIB-allyl-Br performed better 

then PIB-allyl-Cl, with the efficiency of initiation and cross-propagation in ATRP 

depending strongly on the structure of the dormant species.     

 Another synthetic scheme to produce block copolymers involves the use of dual 

initiators containing initiating sites for two or more different polymerization processes.  

The different sites must be able to survive the first polymerization process while 

initiating the second polymerization in a selective and independent manner.  In addition, 
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unwanted intermediate transformation such as deprotection/activation steps or the use of 

multifunctional coupling agents must be avoided. 

 Sogah et al.123,124 first reported the synthesis of multifunctional initiators 

possessing initiating sites for different types of polymerization and the synthesis of 

block and graft copolymers.  This concept was further developed by Hawker et al.125 

who performed dual living polymerizations from a single initiating molecule without the 

requirement of additional reactions.  Lim et al.126,127 managed to perform two 

mechanistically distinct polymerizations in one step using a palladium complex.  

Copolymers prepared through this method showed narrow polydispersities and 

controllable molecular weights on each individual block.  To date, polymers synthesized 

from dual initiators include combinations such as nitroxide-mediated polymerization 

(NMP)-ROP,123,124,125,128 ROP-ATRP,129-141 ATRP-NMP, 142,143 and ROP-ATRP-

NMP.144,145  For some dual initiators, the order of reaction is not specific; for example 

synthesis could be arranged in an alternating order.125,132,134,136,141  Also, more complex 

molecular architectures such as graft copolymers,123 and ABC,144,145 A2B,129,130 

A2B2,
131,133 and A3B3

141
 miktoarm star copolymers have been prepared using dual 

initiators. 

Dual Initiators for PIB-based Polymers via the Combination of LCP and ATRP 

 As discussed previously, new strategies combining living carbocationic 

polymerization (LCP) with different controlled/living polymerization mechanisms have 

been developed to expand the number of PIB-based block copolymers.  Compared to 

coupling and site transformation methods, dual initiators provide a more attractive 

approach to combine normally inconvertible monomers into one polymer.  They 
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maintain the livingness of polymer chain ends after each step and allow different 

polymerizations be performed consecutively without any post-polymerization 

modifications or coupling reactions. 

 Among the various controlled/living polymerization mechanisms, ATRP is 

recognized to be versatile with regard to monomer type and tolerant to a wide variety of 

functional groups, such as allyl, amino, epoxy, hydroxy and vinyl; ATRP is also easy to 

implement due to the availability and/or relative ease of synthesis of ATRP initiators.146  

The first reports of ATRP appeared in 1995 by Sawamoto,147 Matyjaszewski148 and 

Percec149 each using different initiators.  They all demonstrated the living characteristics 

of ATRP.  A variety of monomers, all with substituents that can stabilized the 

propagating radials, have been successfully polymerized via ATRP.  These include 

styrenes, (meth)acrylates, (meth)acrylamides, and acrylonitrile.149-159  ATRP allows 

good control over polymer architecture (stars, combs, branched),160-164 comonomer 

sequence, composition (block, gradient, alternating, statistical), and end group 

functionality.165,166,167 

 The ATRP reaction is initiated by a halogenated organic species, whose 

concentration determines the concentration of growing polymer chains.  Propagation 

involves a reversible redox process in the presence of a metal halide species Mt
n–Y, as 

shown in Figure 4.  Because Mt
n–Y species is typically not very soluble in organic 

solvents, a ligand is added to improve the solubility.  In a well-controlled ATRP, the rate 

of chain terminations is low to allow all chains to propagate uniformly.  The latter 

condition is usually accomplished through careful selection of the initiator.  Homolysis 

of the carbon-halide bond should produce a relatively stable radical, preferably with a 
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structure similar to that of the growing chain end, so that the rate of initiation is equal to 

or greater than the rate of propagation.168,169  Any alkyl halide with activating 

substituents on the α-carbon, such as aryl and carbonyl groups shown in Figure 5, can be 

used as ATRP initiators.167 

 Inherent in the mechanism of ATRP is the incorporation of the halogen at the 

chain ends.  The alkyl halide end functionalities can be transformed by standard organic 

procedures into other functionalities, including azide and amine groups,170,171,172 

hydroxyl end groups,173 acetate and phosphonium end groups,174 allyl end groups.175,176  

Monomers such as allyl alcohol and 1,2-expoxy-5-hexene,177 silyl enol ethers178 and 

bicylic olefin179 have also been used to modify the halogen end groups. 

 Few dual initiators have been reported to contain a cationic polymerization 

initiating site.  Du Prez et al. reported the compound 2-bromo-(3,3-diethoxy-propyl)-2-

methylpropanoate, which contains an acetal function for initiation of the cationic 

polymerization of MeVE and a 2-bromo-2-methylpropionate functional group to initiate 

the ATRP of tBA, styrene or methacrylate monomers.180  The same group132,137 also 

reported the compound 4-hydroxybutyl 2-bromo-2-methylpropionate with the same 

ATRP initiating site as well as a primary hydroxyl group to serve as an initiator for the 

cationic ROP of THF.  Schubert et al.181 used 2-bromo-2-methylpropionyl bromide for 

the cationic ROP of 2-ethyl-2-oxazoline and subsequent ATRP of styrene. 

 In 2006, Storey et al.182 reported synthesis of the latent dual initiator, 3,3,5-

trimethyl-5-chlorohexyl acetate (TMCHA), a carbocationic initiator containing a 

blocked hydroxyl group, which can be subsequently converted to an ATRP initiator.  

This compound was first used as a cationic initiator to create PIB-b-PS block 
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copolymers.  The primary acetoxy group remained intact throughout the carbocationic 

polymerization process and was easily converted back to a primary hydroxyl group 

served as an ATRP initiator by reacting with 2-bromopropionyl bromide.  The resulting 

macroinitiator was used to produce poly(tert-butyl acrylate) (PtBA) under ATRP 

conditions, which was then hydrolyzed into poly(acrylic acid) (PAA) to form 

amphiphilic triblock copolymers PAA-b-PIB-b-PS with PAA attached directly to the 

PIB chain.  Disadvantages of TMCHA were its low initiation efficiency (Ieff) during 

cationic polymerization and the tedious two-step site transformation reaction prior to 

ATRP.  Although the authors did not fully understand the cause for low Ieff, it was 

speculated to be related to the complexation of the ester carbonyl group with the Lewis 

acid TiCl4.  This was postulated by Takacs and Faust183 in the case of a similar initiator.  

Besides linear triblock copolymers, star polymers PAA2-s-PIB-PS were also prepared 

from the same TMCHA initiator by functionalizing the protected primary hydroxyl with 

a branching agent 2,2-bis((2-bromo-2methyl)propionatomethyl)propionyl chloride 

(BPPC) after cationic polymerization of IB and then styrene.  This molecule placed two 

bromoester groups into the polymer head to initiate ATRP.184 

Phase Separation of Block and Star Polymers 

 The increasing importance and interest in block copolymers arises mainly from 

their unique phase separation properties in solution and the solid state.185-188  The driving 

force for microphase separation is the incompatibility between the covalently linked 

blocks within block copolymers.  The formation of ordered periodic phases, sphere, 

cylinder, gyroid, or lamellae morphologies, with sizes comparable to the chain 

dimensions, as shown in Figure 6, is largely controlled by the inherent block 
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incompatibility, block length, and the volume fraction of the components.189,190,191  The 

morphological structure of linear triblock copolymers depends not only on the molecular 

weight and the fraction of each block, but also on the chain block sequence.94,95  For 

example, a lamellar morphology was observed for poly(isoprene-b-styrene-b-2-

vinylpyridine) (ISP) of a given composition,192 whereas a hexagonally ordered coaxial 

cylindrical phase is obtained for poly(styrene-b-isoprene-b-2-vinylpyridine) (SIP) with 

the same composition.193 

 Molecular architecture affects the morphology and physical behavior of block 

copolymers.  A variety of experimental research as well as molecular dynamics 

simulations194 have compared the difference between linear and A2B,195 ABC miktoarm 

star,196 H and π-shaped,197 and highly branched polymers.198  For example, miktoarm 

star copolymers, in which three or more different blocks are linked at one junction point, 

require that these junction points lie on the mutual intersections of different domains.  It 

was confirmed by Yamaguchi and coworkers199 by showing the energy-filtering 

transmission electron microscopy (TEM) images taken from a miktoarm star polymer 

composed of PI, PS, and polydimethylsiloxane (PDMS).  This topological requirement 

effectively suppresses the formation of concentric domains and leads to novel 

morphological features with promising potential applications in nanotechnology, which 

were never thought possible for linear polymers.199-203  However, in contrast to the 

substantial studies on AB diblock and linear ABC triblock copolymers, there is still 

limited understanding concerning the morphology of branched copolymers because of 

the experimental difficulties in synthesizing these materials with the desired well-

characterized structures.   
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 Using the tunable phase separation property of block copolymers to produce 

selective membrane materials continues to be of interest, including protective clothing 

for military personnel and first-responders.204  In this application the selective 

membrane material would allow the transport of perspiration moisture through its 

thickness while still completely blocking harmful chem-bio agents.  This would provide 

significant advantages over conventional materials, which have often been constructed 

of impermeable rubbers, such as butyl rubber.  One promising selective membrane 

material is a TPE discussed earlier, PS-b-PIB-b-PS.  Water transport through this 

triblock copolymer films was enabled by sulfonating the PS phase.205-208  However, 

thermodynamic driving forces during processing tend to strongly orient the PS phase in 

the film plane, limiting the thru-thickness transport.  Latter studies showed the 

attachment of the hydrophilic polymer PAA to both ends of PS-b-PIB-b-PS, yielded a 

pentablock terpolymer, PAA-b-PS-b-PIB-b-PS-b-PAA, having diffusion pathways for 

water by forming effective triphasic morphologies illustrated in Figure 7.209  Increasing 

the weight percentage of PAA from 11.6% to 43.8% changes the PAA phase 

morphology from non-continuous rods located along the centering of PS cylinders, to 

continuous rods, to coaxial cylinders within PS cylinders, and finally, PAA lamellae 

containing PS cylinders alternating with PIB lamellae.  Simultaneously, water sorption 

increased from 1.3% to 163.0% due to increasingly larger and more extended 

hydrophilic PAA domains formed in the film.  In this way, the crosslinking and 

diffusion characteristics were decoupled into separate blocks, thereby allowing for more 

freedom in tailoring these materials. 
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 Compared with phase separation behavior of block copolymers in solid state, the 

use of selective solvents creates polymer micellar aggregates with addtional controlling 

parameters such as solvent-polymer interactions and polymer concentration.186,210  

Because of their stability, variety of sizes, and core-shell structure, micelles are used in 

numerous applications, such as colloidal stabilization, compatibilization of polymer 

blends, controlled drug delivery, water purification, gene therapy, phase transfer 

catalysis, and viscosity and surface modification.211-216 The micellization of block 

copolymers using selective solvents for one of the blocks was first described by Merret 

in 1954.217  Futher studies show that structural parameters of amphiphilic block 

copolymer micelles such as critical micelle concentration (CMC), micelle aggregation 

number (Nagg), average hydrodynamic radius (<Rh>), micelle shape, and colloidal 

stability are mainly determined by the solution conditions (pH, temperature, and ionic 

strength), relative block lengths (composition), and molecular weights.164,210,218-224  

 Recent research results suggest polymer architectures also play an important role 

in controlling the solution self-assembly behavior.  For example, ABC triblock linear 

polymers225-228 can segregate into multicompartment micelles with two or more 

separated compartments in the core.  However, this is contingent on the two blocks 

composing the core being large enough and thermodynamically incompatible.   

 Branching points within a polymer reduce the conformational entropy and lead 

to self-assembled nanostructures that differ from its linear counterparts.229-233  For 

example, PS8PI8 star polymers showed a lower aggregation number than corresponding 

consecutive diblocks or diblocks of similar total molecular weights and composition.234  

Micelles formed by dissolving PS-s-PI2, PS2-s-PI miktoarm stars in a selective solvent 
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for PI exhibit different aggregation numbers, hydrodynamic radii, and thicknesses as 

compared with PS-b-PI linear polymer aggregates.195  Liu and coworkers129 observed 

analogous results by comparing the aqueous self-assembly of well-defined amphiphilic 

AB2 and A2B stars with AB linear diblock copolymer; here A is poly (ε-caprolactone) 

and B is poly(2-(dimethylamino)ethyl methacrylate).  Lodge, Hillmyer and coworkers 

have been very productive in developing various sets of amphiphilic ABC miktoarm 

stars and charactering their multicompartment micelle morphology in aqueous 

solution.235,236,237 

 One type of architecturally asymmetric linear polymer, ABCA tetrablock 

copolymers, has gained special attention, because they can form vesicles with 

asymmetric membranes.  Bates et al.238 reported vesicles composed of PEO-b-PS-b-PB-

b-PEO tetrablock copolymers contained an asymmetric bilayer hydrophobic core, with 

the PB blocks located along the inside surface at weight percentages of the hydrophilic 

block PEO was less than 0.50.  As shown in Figure 8, increasing the weight percentage 

of the outer block PEO to over 0.50 transformed the core into a complex in-plane 

structure having a bicontinuous or hexagonally arranged state of segregation that 

exposes both PB and PS domains.  Balsara and coworkers239 reported the platelet self-

assembly of an amphiphilic tetrablock copolymer poly(sulfonated styrene-b-

methylbutylene-b-ethylene-b-sulfonated styrene) in water.  The vesicle formation 

process of ABCA linear polymers in solvents that were selective for block A was 

studied using Monte Carlo simulations.240  Results showed that the chain length ratio 

and the hydrophobicity of the hydrophobic blocks B and C are two key factors 

determining the hydrophobic layer structure of the vesicles.
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Figure 1.  Typical initiators for living carbocationic polymerization (LCP) of 

isobutylene (IB). 

 

 

 

 

Figure 2.  Reversible termination process in living carbocationic polymerization (LCP) 

of isobutylene (IB).  
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 3.  Schematic illustration of AB diblock copolymer synthesis: (a) coupling of 

polymer blocks prepared from different mechanisms; (b) transforming the chain end 

functionality from one polymerization mechanism to another; (c) use of a dual initiator 

consisting of two distinct initiating fragments. 

 mechanism A  mechanism B 

changing the type of propagating center 

 mechanism A  mechanism B 

 mechanism A 

  mechanism B 
 

containing multiple initiating sites 

high efficiency reaction or linking agents 
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Figure 4.  Mechanism of transition-metal-catalyzed atom transfer radical polymerization 

(ATRP). 

 

 

 

 

Figure 5.  Structures of representative ATRP initiators.  
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————————————————————→  

increasing the volume fraction of polyisoprene (white) 

 

Figure 6.  Schematic representations of the morphologies obtained for polystyrene-b-

polyisoprene (PS-b-PI) diblock copolymer melts when increasing the volume fraction of 

PI.  Reproduced with permission from ref 189. Copyright 1995 American Chemical 

Society.  



   

  

25 
 

 

 

 

 

Figure 7.  Schematic morphology of PAA-b-PS-b-PIB-b-PS-b-PAA pentablock 

terpolymers with	
  dark non-continuous rod-like PAA packed in ordered PS cylinders in a 

continuous PIB phase.  Reproduced with permission from ref 209. Copyright 2008 

Elsevier Ltd.  
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Figure 8.  Structural models of vesicles formed by PEO-b-PS-b-PB-b-PEO tetrablock 

copolymers in aqueous solution.  Dark and light regions correspond to PB and PS 

regions, respectively.  Reproduced with permission from ref 238. Copyright 2004 

American Chemical Society.  
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CHAPTER II 

DESIGN AND SYNTHESIS OF MONO-CATIONIC MONO-RADICAL DUAL 

INITIATORS TO COMBINE LIVING CARBOCATIONIC POLYMERIZATION 

AND ATOM TRANSFER RADICAL POLYMERIZATION 

Objective 

 As mentioned in the previous chapter, a latent dual initiator, TMCHA, was 

synthesized for the purpose of synthesizing PtBA-b-PIB-b-PS triblock copolymers via 

the combination of LCP and ATRP.182  This study showed that after cationic 

polymerization of IB followed by sequential addition of styrene, the acetate head group 

of the resulting PIB-b-PS could be deprotected and converted to a 2-bromopropionate 

function, with retention of high head-group functionality, guaranteeing effective 

initiation in the consecutive ATRP process.  However, this 2-step site transformation 

reaction was tedious, and high reaction conversion was required at each step.  Another 

drawback with TMCHA was low cationic initiation efficiency (Ieff).  This phenomenon 

has been discussed by Takacs and Faust,183 who suggested that this was caused by 

interaction of the carbonyl group with the Lewis catalyst, TiCl4.  In order to alleviate 

these issues, especially the 2-step transformation procedure, we have developed two new 

dual initiators, 3,3,5-trimethyl-5-chlorohexyl 2-bromopropionate (IB2BP) and 3,3,5-

trimethyl-5-chlorohexyl 2-bromo-2-methylpropionate (IB2BMP).  Figure 9 shows the 

structure of these two initiators and an overview of their synthesis.  These compounds 

have a cationic initiating site identical to that of TMCHA, but the acyl groups contain a 

bromine atom bonded to the α carbon and are thus ATRP-ready.  The bromide function 

is predicted to be essentially inert toward the strong Lewis acids used in carbocationic 
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polymerization since ionization would place a positive charge on a carbon that is α to a 

carbonyl group, which would be extremely unstable.  The bulkiness and electron 

withdrawing nature of bromine is also predicted to diminish the tendency toward 

interaction of the carbonyl oxygen with Lewis acids, thus potentially improving Ieff.  

Comparing the two compounds, the 2-bromo-2-methylpropionate group of IB2BMP 

would be less resistant toward ionization, but it would be more bulky, providing more 

steric suppression of complexation.  

 We have demonstrated the utility of these new initiators by synthesizing PIB-b-

PMA diblock copolymers.  Methyl acrylate (MA) was chosen as a model ATRP 

monomer since its methoxy group provides a well-separated, easily quantifiable signal 

in 1H NMR.  The general synthesis of the PIB-b-PMA diblock copolymer is illustrated 

in Figure 10.  It involves first the LCP of IB from the tert-chloride function of the 

initiator, followed by ATRP of MA from the resulting macroinitiaor yielding PIB-b-

PMA diblock copolymer.  The synthesis can be easily extended to form ABC triblock 

copolymers such as PS-b-PIB-b-PMA. 

Experimental 

Materials 

 Methyl 3,3-dimethyl-4-pentenoate was used as received from TCI America.  

Methyl magnesium bromide (3 M solution in diethyl ether), borane–tetrahydrofuran 

(THF) complex (1 M solution in THF), hydrogen peroxide (30 wt% solution in water), 

2-bromopropionyl bromide (97%), 2-bromo-2-methylpropionyl bromide (98%), 

triethylamine (99.5%), silica gel (70-230 mesh, 60Å, for column chromatography), 

hexane (anhydrous, 99%), 2,6-lutidine (99+%), TiCl4 (99.9%, packaged under N2 in 
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Sure-Seal bottles), Cu(I)Br (99.999%), aluminum oxide (activated, neutral, Brockmann I, 

~ 150 mesh, 58 Å), 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA), toluene 

(anhydrous, 99.8%) and deuterated chloroform were used as received from Sigma-

Aldrich, Inc.  Diethyl ether (spectranalyzed), methylene chloride (99.9%), 

tetrahydrofuran (HPLC grade), heptane (HPLC grade), sodium chloride, potassium 

carbonate, sulfuric acid, magnesium sulfate, calcium chloride, sodium bicarbonate, and 

sodium hydroxide were used as received from Fisher Chemical Co.  Isobutylene (IB) 

(99.5%, BOC Gases) and CH3Cl (MeCl) (99.5%, Alexander Chemical Co.) were dried 

through columns packed with CaSO4 and CaSO4/4 Å molecular sieves, respectively.  

Methyl acrylate (MA) (99%, Sigma-Aldrich) was passed through a K2CO3 and 

aluminum oxide column to remove inhibitor. 

Instrumentation 

 Molecular weights and polydispersity index (PDI) of polymers were determined 

using a size exclusion chromatography (SEC) system consisting of a Waters Alliance 

2695 Separations Module fitted with on-line multi-angle laser light scattering (MALLS) 

detector (MiniDAWNTM, Wyatt Technology, Inc.), interferometric refractometer 

(Optilab rEXTM, Wyatt Technology Inc.), and on-line differential viscometer 

(ViscoStarTM, Wyatt Technology, Inc.), all operating at 35 °C, and either two mixed E 

(3 µm beadsize) or two mixed D (5 µm beadsize) PL gel (Polymer Laboratories Inc.) 

SEC columns connected in series.  Freshly distilled THF served as the mobile phase and 

was delivered at a flow rate of 1.0 mL/min.  Samples were prepared by dissolving 10-12 

mg polymer into 1.5 g freshly distilled THF, and the injection volume was 100 µL.  The 

detector signals were recorded using ASTRATM software (Wyatt Technology Inc.) and 
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PIB homopolymer molecular weights were determined using an assumed dn/dc given by 

the following equation:241 dn/dc = 0.116×(1-108/ ) (  = number average 

molecular weight).  PIB-b-PMA diblock copolymers were analyzed using a dn/dc 

calculated from the interferometric refractormeter detector response and assuming 100% 

mass recovery from the columns. 

 Solution 1H nuclear magnetic resonance (NMR) spectra were obtained on a 

Varian Mercuryplus NMR spectrometer operating at a frequency of 300.13 MHz, using 5 

mm o.d. tubes with sample concentrations of 5-7% (w/v) in deuterated chloroform 

(CDCl3) (Aldrich Chemical Co.) containing tetramethylsilane (TMS) as an internal 

reference.  All shifts were referenced automatically by the software (VNMR 6.1C) using 

the resonance frequency of TMS (0 ppm). 

 A ReactIR 4000 reaction analysis system (light conduit type), equipped with a 

DiComp (diamond composite) insertion probe, a general-purpose platinum resistance 

thermometer, and CN76000 series temperature controller (Omega Engineering, 

Stamford, CT), was used to collect spectra of the polymerization components and 

monitor reaction temperature in real time.  The light conduit and probe were contained 

within a drybox (MBraun Labmaster 130) equipped with a thermostatted 

hexane/heptane cold bath. 

Initiator Synthesis   

 The overall synthesis of IB2BP and IB2BMP is illustrated in Figure 9.  The 

Grignard and hydroboration-oxidation reactions were carried out as previously 

described.182  Esterification of 1,5-dihydroxy-3,3,5-trimethylhexane (DHTMH) was 

performed using 2-bromopropionyl bromide or 2-bromo-2-methylpropionyl bromide.  
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After applying column chromatography to remove impurities, dry, gaseous HCl was 

bubbled through a solution of the purified ester in CH2Cl2 to chlorinate the tertiary 

hydroxyl group. 

Esterification   

 To a 500 mL three-neck, round-bottom flask, equipped with magnetic stirrer, and 

nitrogen inlet/outlet, were charged triethylamine (2.2 mL, 0.016 mol) and DTHMH (2.5 

g, 0.016 mol) dissolved in 20 mL THF.  2-Bromopropionyl bromide (3.9 g, 0.018 mol) 

dissolved in 10 mL THF was added dropwise via syringe, and a light orange precipitant 

appeared.  The reaction was allowed to proceed for 5 h.  Then 100 mL diethyl ether was 

added to the flask, and the mixture was washed thrice with deionized water (DI H2O) 

and dried over magnesium sulfate.  After removing the solvent, the crude product, 5-

hydroxy-3,3,5-trimethylhexyl 2-bromopropionate, was obtained as a yellow liquid in 

89% yield (4.1 g). 

 5-Hydroxy-3,3,5-trimethylhexyl 2-bromo-2-methylpropionate was synthesized 

similarly using 2-bromo-2-methylpropionyl bromide (crude yield 95%). 

Column Chromatography   

 Before chlorination, crude 5-hydroxy-3,3,5-trimethylhexyl 2-bromopropionate 

(4.1 g) was passed through a 15 cm silica gel column, using 9/1 (v/v) heptane/THF (9/1, 

v/v) cosolvents as the eluent.  A clear, yellow liquid was obtained in 53% yield (2.4 g).  

1H NMR (CDCl3): δ = 1.06 (s, 6H, 3-Me), 1.30 (s, 6H, CH3COH), 1.53 (s, 2H, 4-H), 

1.76 (t, 2H, 2-H), 1.82 (d, 3H, CH3CHBr), 4.25 (t, 2H, 1-H), 4.35 (q, 1H, CH3CHBr) 

ppm.  13C NMR: δ = 21.60 (CH3CHBr), 29.11 (3-Me), 32.09 (C6), 33.32 (C3), 40.19 

(CHBr), 40.95 (C2), 53.31 (C4), 63.66 (C1), 72.22 (C5), 171.32 (CO) ppm.  5-Hydroxy-
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3,3,5-trimethylhexyl 2-bromo-2-methylpropionate was treated similarly and obtained as 

a colorless liquid in 47% yield.  1H NMR (CDCl3): δ = 1.09 (s, 6H, 3-Me), 1.32 (s, 6H, 

CH3COH), 1.56 (s, 2H, 4-H), 1.78 (t, 2H, 2-H), 1.93 (s, 6H, CH3CBr), 4.27 (t, 2H, 1-H) 

ppm.  13C NMR: δ = 29.04 (3-Me), 30.67 (CH3CBr), 31.99 (C6), 33.28 (C3), 40.98 

(C2), 53.32 (C4), 55.80 (CBr), 63.65 (C1), 72.12 (C5), 171.70 (CO) ppm. 

Chlorination   

 Dry, gaseous HCl, formed by dripping sulfuric acid over sodium chloride, was 

bubbled through a solution of 5-hydroxy-3,3,5-trimethylhexyl 2-bromopropionate (2.4 g, 

8.1×10-3 mol) in 30 mL methylene chloride for 5 h.  The liquid product, IB2BP was 

obtained in 91% yield (2.8 g).  1H NMR (CDCl3): δ = 1.11 (s, 6H, 3-Me), 1.68 (s, 6H, 

CH3CCl), 1.79 (t, 2H, 2-H), 1.83 (d, 3H, CH3CHBr), 1.89 (s, 2H, 4-H), 4.26 (t, 2H, 1-H), 

4.35 (q, 1H, CH3CHBr) ppm.  13C NMR: δ = 21.61 (CH3CHBr), 28.76 (3-Me), 34.22 

(C3), 35.00 (C6), 40.16 (CHBr), 41.14 (C2), 55.66 (C4), 63.29 (C1), 70.84 (C5), 171.32 

(CO) ppm.  IB2BMP was obtained in the same way.  1H NMR (CDCl3): δ = 1.12 (s, 6H, 

3-Me), 1.68 (s, 6H, CH3CCl), 1.79 (t, 2H, 2-H), 1.91 (s, 2H, 4-H), 1.93 (s, 6H, 

CH3CBr), 4.25 (t, 2H, 1-H) ppm.  13C NMR: δ = 28.72 (3-Me), 30.73 (CH3CBr), 34.21 

(C3), 35.01 (C6), 41.32 (C2), 55.72 (C4), 55.85 (CBr), 63.31 (C1), 70.81 (C5), 171.70 

(CO) ppm. 

PIB Synthesis   

 The following procedure was employed for polymerizations of IB initiated by 

IB2BP or IB2BMP within an inert atmosphere drybox equipped with a hexane/heptane 

cold bath.  FTIR (ReactIR 4000) was used to monitor isobutylene conversion by 

observing the olefinic =CH2 wag (887 cm-1) of IB.242  The DiComp probe was inserted 



   

  

33 
 

 

into a 250 mL 4-necked round bottom flask equipped with a temperature probe and a 

stirring shaft with a Teflon paddle.  The reactor was placed into the cold bath and 

allowed to equilibrate to -70 °C.  Into the flask were charged 57.9 mL prechilled hexane, 

38.6 mL prechilled MeCl, 2,6-lutidine (0.0489 mL, 4.23×10-4 mol), and IB2BMP 

(0.4224 g, 1.29×10-3 mol).  The mixture was allowed to stir for 10 min to reach thermal 

equilibrium after which a background spectrum was collected.  Prechilled IB (8.50 mL, 

0.106 mol) was added to the flask, and then about 15 spectra were obtained to establish 

the average intensity at 887 cm-1, A0, corresponding to the initial monomer 

concentration.  Then TiCl4 (0.565 mL, 5.16×10-3 mol) was injected into the flask.  The 

molar concentrations of reagents were [IB]0 = 1.00 M; [I]0 = 12.2 mM; [2,6-lutidine]0 = 

4.00 mM; [TiCl4]0 = 48.8 mM.  Once the monomer was fully consumed, which was 

indicated by the 887 cm-1 absorbance approaching an asymptotic value, Ar, 20 mL 

prechilled CH3OH was added to quench the polymerization.  After warming to room 

temperature and loss of MeCl, the hexane layer was washed with CH3OH and DI H2O 

and dried over magnesium sulfate.  PIB samples were then precipitated from MeOH and 

dried under vacuum to yield a colorless viscous liquid. 

 Monomer concentration at a given reaction time, [M]t, was calculated from the 

intensity of the 887 cm-1 absorbance at that time, At, using the following equation, 

where [M]0 is the original monomer concentration: 

     (1) 

PIB-b-PMA Synthesis 

 ATRP of MA was performed using Cu(I)Br as a catalyst, PMDETA as a ligand, 

and PIB with 2-bromo-2-methylpropionate (BMP-PIB) or 2-bromopropionate head 
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group (BP-PIB) as the macroinitiator (MacroI).182,243  Polymerizations were performed 

with molar ratio [MacroI]0 : [CuBr]0 : [PMDETA]0 = 1 : 1 : 1 in toluene with [MacroI]0
 

= 0.05 M at 70 °C, targeting  of 60, 90, or 120.  The number average molecular 

weight for the BP-PIB via SEC was 5,570 g/mol; the PDI was 1.04, and  = 89 by 

NMR. The number average molecular weight for the BMP-PIB via SEC was 4,650 

g/mol; the PDI was 1.02, and  = 77 by NMR. 

 The following procedure was employed for ATRP of MA.  A dry Schlenk flask 

was charged with BMP-PIB (0.93 g, 1.7×10-4 mol), MA (1.8 mL, 2.0×10-2 mol), CuBr 

(0.029 g, 2.0×10-4
 mol), and 4 mL anhydrous toluene.  After three freeze-pump-thaw 

cycles, PMDETA (0.042 mL, 2.0×10-4
 mol) was added to the reaction mixture via a 

deoxygenated syringe.  Then the reaction mixture was immersed in an oil bath at 70 °C.  

Aliquots were taken every half hour, and the progress of polymerization was monitored 

by observing diminution of the olefinic resonances of monomer in the 1H NMR 

spectrum.  The polymerization was allowed to proceed for several hours to reach a 

monomer conversion of about 60%.  After polymerization, the polymer solution was 

passed through an Al2O3-packed column to remove the copper salt.  Then 15-20 mL 

THF was added to completely dissolve the polymer, and the resulting solution was 

passed through a filter with pore size 0.2 µm to remove Al2O3.  PIB-b-PMA samples 

were then precipitated into MeOH and dried under vacuum to yield a solid product. 

Results and Discussion 

Initiator Synthesis   

 New initiators, IB2BP and IB2BMP, for LCP of IB were synthesized via the 

route shown in Figure 9.  Synthesis of the common intermediate, DTHMH, has been 
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reported.182  Esterification to attach either the 2-bromopropionoyl or the 2-bromo-

2methylpropionoyl moiety was carried out in each case using the acid bromide in THF 

solution with triethylamine as acid scavenger.  Upon esterification of DTHMH with 2-

bromopropionyl bromide or 2-bromo-2-methylpropionyl bromide, the products were 

contaminated by impurities, which could not be simply eliminated by extraction.  

However, by passing either crude product through a silica gel column and eluting with 

heptane/THF (9/1, v/v) cosolvents, pure product was obtained in approximately 50% 

yield. 

 Figure 11 shows 1H NMR spectra of 5-hydroxy-3,3,5-trimethylhexyl 2-

bromopropionate (upper) and 5-hydroxy-3,3,5-trimethylhexyl 2-bromo-2-

methylpropionate (lower) after column chromatography.  For both compounds, the 

methylene protons formerly next to the primary hydroxyl group shifted downfield to 4.2 

ppm (peak g).  In addition, a new doublet at 1.8 ppm (peak h) and a quartet at 4.3 ppm 

(peak i) appeared for the methyl and methine protons in the newly incorporated 2-

bromopropionoyl group, as shown in the upper spectrum.  Likewise, a singlet at 1.9 ppm 

(peak j) appeared for the methyl protons in the 2-bromo-2-methylpropionoyl group, as 

shown in the lower spectrum.  For both spectra, the integrated peak areas were in 

excellent agreement with the theoretical values. 

 The last step of the synthesis was substitution of the tertiary hydroxyl group by 

chlorine for both intermediates.  As this reaction increased deshielding of adjacent 

methyl and methylene protons in both products, their proton NMR peaks shifted 

downfield to 1.6 ppm (peak a) and 1.9 ppm (peak b), as shown in Figure 12. 
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PIB Synthesis 

 Various PIBs with α-bromoester head groups were prepared from both initiators 

via LCP (Tables 1-4).  Figure 13 shows 1H NMR spectra of representative PIBs initiated 

by IB2BP (upper) and IB2BMP (lower).  Large peaks for the methyl and methylene 

protons in the isobutylene repeat units were observed at 1.1 ppm (peak c) and 1.4 ppm 

(peak d), respectively.  Peaks due to the methyl groups within the α-bromoacyl groups 

at 1.82 ppm (doublet, h, IB2BP) and 1.93 ppm (singlet, j, IB2BMP) and the triplet due to 

the methylene protons next to the ester linkage at about 4.2 ppm (peak g) were present in 

both spectra, indicating that the α-bromoester head groups survived intact during LCP.  

For both polymers, as determined by integration of peak g relative to the combined 

peaks characteristic of the tail group of the polymer31 (tert-Cl plus possible fractions of 

exo- and endo-olefin244), the number of α-bromoester head groups was approximately 

equal to the number of total polymer chains, indicating that protic initiation and transfer 

to monomer were absent and all chains contained the desired ATRP initiating sites. 

 To optimize polymerization conditions for LCP of IB, parameters that control 

the active chain end concentration, including the initial concentration of TiCl4 catalyst 

([TiCl4]0), polymerization temperature, polarity of cosolvent mixture, and targeted 

number average molecular weight ( ) were examined systematically for both 

initiators. 

 The influence of TiCl4 concentration was first investigated (Table 1).  LCPs of 

IB (1.0 M) were performed at -70 °C using IB2BMP as the initiator, 2,6-lutidine as 

Lewis base in 60/40 (v/v) Hex/MeCl cosolvents, targeting  = 4,900 g/mol.  

Polymerization time listed in the tables is the observed time to reach 6 half-lives (98.4% 
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IB conversion) as determined from ReactIR data; the actual time from catalyst addition 

to reaction termination was typically between 6.2 and 9 half-lives.  As shown in 

equation (2), number average degree of polymerization ( ) was determined by 1H 

NMR spectroscopy using the ratio of the integrated peak area, AMe, of the methyl 

protons in the isobutylene repeat unit (peak c, 1.1 ppm) to that of the sum of all chain 

ends, ACE, the sum of the integrated peak areas of characteristic resonances representing 

the various polymer chain ends, defined by equation (3).  In quation (3), Aexo is the area 

of the upfield exo-olefinic resonance at 4.64 ppm, Aendo is the area of the single endo-

olefinic resonance at 5.15 ppm, and Atert-Cl is the area of the resonance at 1.96 ppm due 

to the methylene protons of the tert-chloride end group.  Acoupled was calculated by 

equation (4), where A4.75-5.0 is the integrated area of the convoluted peaks from 4.75-5.0 

ppm associated with the downfield exo-olefinic proton and the two identical protons of 

the coupled product.  Number average molecular weight ( ) and polydispersity 

index (PDI) were determined by SEC/MALLS using a dn/dc calculated as dn/dc = 

0.116×(1-108/ ).241  Ieff was calculated as /  and / , from 

NMR and SEC/MALLS data, respectively.  As shown in Table 1, Ieff’s determined by 

the two methods were in fair agreement and low relative to a single-cationic-site initiator 

such as 2-chloro-2-methyl-2,4,4-trimethylpentane (TMPCl).  

     (2) 

ACE = Aexo + Aendo + Atert-Cl/2 + 2Acoupled   (3) 

    (4) 
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 For the 5 runs in Table 1, PDIs were narrow (≤ 1.15).  As [TiCl4]0 was raised 

from 36.6 mM to 85.4 mM, the polymerization time decreased from over 6 h to about 

0.5 h.  This increase in polymerization rate reflects a progressive shift in the ionization 

equilibrium toward a higher concentration of active propagating species, controlled by 

the effective equilibrium constant, Keq[TiCl4]2.  However, Ieff was consistently < 1 and 

did not change significantly with increasing [TiCl4]0.  Faust et al.245 reported Ieff < 1 for 

the related initiator, 5-chloro-3,3,5-trimethylhexyl methacrylate, which also contains an 

ester group, and these authors suggested that complexation of TiCl4 with the carbonyl 

group was the likely cause of low Ieff.  Breland, Murphy, and Storey182 observed low 

initiation efficiency with the acetate ester of this compound and likewise attributed low 

Ieff to complexation with the Lewis acid.  However, if complexation were the cause, one 

would reasonably expect initiation efficiency to steadily diminish with increasing 

[TiCl4]0.  However, initiation efficiency was insensitive to [TiCl4]0 based on the data in 

Table 1, and this suggests that complexation, is not the reason, or least not the principal 

reason, for low initiation efficiency. 

 ReactIR provided a means to monitor real-time [IB] during the polymerization.  

Figure 14 compares ln([M]0/[M]) vs. polymerization time plots for polymerizations 

initiated by IB2BMP and TMPCl, at the same reaction conditions.  Polymerization 

initiated by IB2BMP was slower, and the first-order plot showed upward curvature, 

indicating the overall polymerization rate increased as reaction continued.  This 

behavior is consistent with slow initiation for IB2BMP initiated polymerizations.  In fact, 

initiation was not only slow; it was incomplete at this monomer/initiator ratio, as 

supported by the detection of unreacted IB2BMP in the MeOH wash.  Slow initiation by 
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IB2BMP produced an asymmetric peak in the SEC trace, with a characteristic low 

molecular weight tail, as shown in Figure 15.   

 As [TiCl4]0 did not influence Ieff significantly, the value of [TiCl4]0 was chosen 

to complete polymerizations within a reasonable amount of time for all the experiments 

discussed below. 

 The influence of polymerization temperature on Ieff was next investigated over 

the range -70 to -50 °C, employing IB2BMP as the initiator.  Polymerization conditions 

and results are listed in Table 2.  In general, polymerization rate decreased with 

increasing temperature, consistent with the well-known negative apparent activation 

energy for IB polymerization under these conditions.246  At the same time, number 

average molecular weight, characterized by SEC, decreased from 155% to 114% of 

theoretical.  This clearly shows that Ieff increases with increasing polymerization 

temperature, which is consistent with the fact that the apparent activation energy for 

ionization by TiCl4 is greater than that for propagation, i.e., run number decreases with 

increasing temperature.247 

 The influence of solvent polarity was next investigated at -70 °C, employing 

IB2BMP as the initiator.  These experiments were conducted in part to eliminate the 

possibility that low Ieff resulted from incompletely dissolved initiator.  Polymerization 

conditions and results are listed in Table 3.  Reaction time decreased from 2 h to about 

10 min as the volume percentage of MeCl in the cosolvents was increased from 40 to 80.  

However, Ieff was essentially unchanged with increasing medium polarity, which 

confirmed that initiator solubility is not the cause of low Ieff. 

 The effect of IB2BMP initiator concentration (at constant [IB] = 1 M) was 



   

  

40 
 

 

investigated at several temperatures, targeting. s of 3,000 g/mol (3k), 5,000 g/mol 

(5k), and 10,000 g/mol (10k).  Polymerization conditions and results are listed in Table 

4.  Different [TiCl4]0 were applied to adjust the polymerization time.  At -70 °C, as the 

targeted  was increased from 3k, 5k, to 10k, Ieff (SEC) increased from 53%, 58%, to 

83%, as expected.  The same trend was observed for the polymerizations performed at -

60 °C, consistent with slow initiation.  At -50 °C, the Ieff for 5k and 10k was about same, 

approximately 87%. 

 All polymerizations discussed above were initiated by IB2BMP.  

Polymerizations of IB were also performed using IB2BP as the initiator, targeting s 

of 3k, 5k, and 10k.  Polymerization conditions and results are listed in Table 5.  

Different [TiCl4]0 were used to adjust the polymerization time.  At -70 °C, as the 

targeted  was raised from 3k, 5k, to 10k, Ieff (SEC) increased from 58%, 65%, to 

83%, revealing the same tendency as IB2BMP.  SEC elution curves (see representative 

curve in Figure 15) showed low molecular weight tailing, indicating slow initiation.  In 

general, under the same conditions, IB2BP produced slightly higher Ieff compared to 

IB2BMP. 

PIB-b-PMA Synthesis  

 ATRP was demonstrated from both α-bromoester functionalized PIB 

macroinitators (BP-PIB and BMP-PIB) using methyl acrylate (Table 6).  

Polymerizations were monitored and terminated at 60% conversion in order to avoid 

termination or chain transfer reactions.  Figure 16 shows 1H NMR spectra of BP-PIB-b-

PMA60 (upper) and BMP-PIB-b-PMA60 (lower), which are representative.  Peaks due to 

the PMA block appeared at 3.6 (peak k), 2.3 (peak j), and 1.4-2.0 ppm (peak i).  
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Tacticity effects caused the PMA methylene protons to exist in three different chemical 

environments, and thus exhibit 3 major peaks in the range 1.4 to 2.0 ppm.248 

 Compositions of block copolymers listed in Table 6 were calculated from both 

1H NMR spectroscopy and SEC, considering the IB2BMP or IB2BP residue as part of 

the PIB block.   was calculated from the ratio of the integrated peak area of the 

methyl hydrogens of the PMA block, A3.6ppm, to that of the gem-dimethyl hydrogens of 

the PIB block, A1.1ppm, via equation (5).  Weight percentage of PMA in the block 

copolymer was calculated using equation (6), where MIB, MMA, and MI are the molecular 

weights for IB, methyl acrylate, and the initiator, respectively.   and PDI of 

block copolymers were obtained by SEC-MALLS using two mixed D columns and a 

dn/dc calculated from the refractive index detector response and assuming 100% mass 

recovery from the columns.  Number average molecular weight of the PMA block, 

, and copolymer composition were calculated from SEC data using equation (7) 

and (8), respectively.  PIB-b-PMA diblock copolymer compositions characterized by 

these two methods were comparable. 

   (5) 

  (6) 

    (7) 

   (8) 

 SEC characterization (Figure 17) showed that low PDI diblock polymers were 
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obtained and that no unreacted MacroI was present.  This indicated that the α-

bromoester functional groups of both IB2BP and IB2BMP remained intact during LCP 

and that ATRP initiation was quantitative.  As the target degree of polymerization of the 

PMA block increased, SEC elution peaks shifted to the left, as expected.  However, for 

systems targeting the highest PMA degree of polymerization, radical-radical coupling 

occurred, as evidenced by a high molecular weight shoulder in the SEC curve (see 

BMP-PIB-b-PMA120 in Figure 17). 

Conclusions 

 New dual initiators, IB2BMP and IB2BP, containing both a cationic 

polymerization initiating site and an ATRP initiating site, were designed for the 

preparation of PIB-based AB diblock and ABC triblock copolymers.  Both initiators 

were successfully synthesized in four steps, as confirmed by 1H NMR spectroscopy.  

When used for the LCP of IB, low initiation efficiencies (Ieff), caused by slow initiation, 

were observed for both initiators.  To optimize the conditions for LCP and to examine 

the cause for low Ieff, polymerization conditions including the initial concentration of 

catalyst ([TiCl4]0), temperature, solvent polarity, and targeted number average of 

molecular weight ( ) were examined.  The observed Ieff for all reactions were less 

than 1 for both initiators within the range of conditions examined.  However, increasing 

polymerization temperature significantly improved Ieff, and at -50 °C, about 90% 

efficiency was achieved for IB2BMP at a target molecular weight of 5k, i.e., for 

[IB]0/[IB2BMP]0 = 82.  As expected, Ieff increased with increasing target molecular 

weight.  Changes in [TiCl4] and solvent polarity caused negligible changes in Ieff.  

Complexation between TiCl4 and the carbonyl oxygen of 3,3,5-trimethyl-5-chlorohexyl 
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esters has been proposed182,244 as a reason for low Ieff, but this seems inconsistent with 

the absence of any correlation between Ieff and [TiCl4].   

 Further investigations directed to the origin and solution of low Ieff will be 

presented in the next chapter.  However, the following points can be presently made for 

optimal use of either initiator.  If the initiator is being used to create low molecular 

weight PIB, then a relatively high polymerization temperature, e.g. -60 to -50 °C, is 

advantageous since the lower propagation run number248 boosts Ieff and lowers PDI.  If 

the initiator is being used to create high molecular weight PIB, the high 

monomer/initiator ratio will ensure Ieff ≅ 1.0 and low PDI regardless of temperature, and 

therefore a lower temperature such as -80 °C is preferred to maximize livingness. 

 PIBs with 2-bromo-2-methylpropionate (BMP-PIB) or 2-bromopropionate (BP-

PIB) head groups were successfully used for ATRP of MA.  Targeted  and narrow 

PDIs were obtained for both macroinitiators.  No macroinitiator residue was observed 

via SEC, indicating that the α-bromoester functional groups remained intact during LCP. 



   

  

44 
 

 

Table 1.  Effect of [TiCl4]0 on IB2BMP-Initiated Living Carbocationic Polymerizations 

(LCP) of isobutylene (IB)a 

 
NMR 

 

 
SEC 

  
Run 

 

 
 

 

 
Timeb 
(min) 

 
 

 
 

 

 
 

 
Ieff 

 

 

 
(g/mol) 

 

 

 
(g/mol) 

 

 
Ieff 

 

 
PDI 

 

 
1 

 
3 

 
370 

 
102 

 
82 

 
0.80 

 
6750 

 
4900 

 
0.73 

 
1.08 

 
2 4 120 128 82 0.64 8410 4900 0.58 1.05 

 
3 5 110 118 82 0.70 7680 4900 0.64 1.11 

 
4 6 40 123 82 0.67 7570 4900 0.65 1.11 

 
5 7 35 120 82 0.68 7300 4900 0.67 1.09 

 
 

Note.  a60/40 Hex/MeCl cosolvents (v/v); -70 °C; [IB]0 = 1.00 M; [IB2BMP]0 = 12.2 mM; [2,6-lutidine]0 = 4.00 mM 

bTime required to reach 6 half-lives for monomer consumption (98.4% IB conversion) 
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Table 2.  Effect of Temperature on IB2BMP-Initiated Living Carbocationic 

Polymerizations (LCP) of isobutylene (IB)a 

 
NMR 

 

 
SEC 

Run Temp. 
(°C) 

Timeb 
(min)  

 
 

 

 
 

 
Ieff 

 

 

 
(g/mol) 

 

 

 
(g/mol) 

 

 
Ieff 

 

 
PDI 

 

 
4 

 
-70 

 
40 

 
123 

 
82 

 
0.67 

 
7570 

 
4900 

 
0.65 

 
1.11 

 
6 -60 85 107 82 0.77 7230 4900 0.68 1.10 

 
7 -50 170 91 82 0.90 5610 4900 0.81 1.15 

 
 

Note.  a60/40 Hex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [IB2BMP]0 = 12.2 mM; [TiCl4]0 = 73.2 mM; [2,6-lutidine]0 = 4.00 mM 

bTime required to reach 6 half-lives for monomer consumption (98.4% IB conversion) 

 



   

  

46 
 

 

Table 3.  Effect of Solvent Polarity on IB2BMP-Initiated Living Carbocationic 

Polymerizations (LCP) of isobutylene (IB)a 

 
NMR 

 
SEC 

 
Run Hex/MeCl 

(v/v) 
Timeb 
(min)  

 
 

 
Ieff 

 

 
(g/mol) 

 

 

 
(g/mol) 

 

Ieff PDI 

 
2 
 

 
60/40 

 
120 

 
128 

 
82 

 
0.64 

 
8410 

 
4900 

 
0.58 

 
1.05 

 
8 50/50 50 119 82 0.69 8060 4900 0.61 1.07 
          
9 20/80 10 121 82 0.68 7770 4900 0.63 1.15 

 
 

Note.  a-70 °C; [IB]0 = 1.00 M; [IB2BMP]0 = 12.2 mM; [TiCl4]0 = 48.8 mM; [2,6-lutidine]0 = 4.00 mM  

bTime required to reach 6 half-lives for monomer consumption (98.4% IB conversion) 
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Table 4.  Effect of [IB2BMP]0 on Living Carbocationic Polymerizations (LCP) of 

isobutylene (IB) at Several Temperaturesa 

 
NMR 

 
SEC 

 
Run 

 

[IB2BMP] 
(mmol/L) 

Temp. 
(°C) 

Timeb 
(min)  

 
 

 
Ieff 

 

 
(g/mol) 

 

 

 
(g/mol) 

 

Ieff PDI 

 
10 

 

 
20.8 

 
-70 

 
70 

 
94 

 

 
48 

 
0.51 

 
5630 

 
3000 

 
0.53 

 
1.10 

2 12.2 -70 120 128 82 0.64 8410 4900 0.58 1.05 
 

11 6.1 -70 160 201 164 0.82 11370 9500 0.84 1.06 
 

 
12 

 
12.2 

 
-60 

 
290 

 
107 

 
82 

 
0.77 

 
7070 

 
4900 

 
0.69 

 
1.06 

 
13 6.1 -60 450 200 164 0.82 11060 9500 0.86 1.10 

 
 

7c 
 

12.2 
 

-50 
 

170 
 

91 
 

82 
 

0.90 
 

5610 
 

4900 
 

0.87 
 

1.15 
 

14d 6.1 -50 320 201 164 0.82 10880 9500 0.87 1.09 
 

 

Note.  a60/40 Hex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [TiCl4]0 = 48.8 mM; [2,6-lutidine]0 = 4.00 mM 

bTime required to reach 6 half-lives for monomer consumption (98.4% IB conversion) 

c[TiCl4]0 = 62.5 mM 

d[TiCl4]0 = 73.2 mM 
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Table 5.  Effect of [IB2BP]0 on Living Carbocationic Polymerizations (LCP) of 

isobutylene (IB)a 

 
NMR 

 
SEC 

 
Run 

 

 
[IB2BP] 

(mmol/L) 
 

Timeb 
(min)  

 
 

 
Ieff 

 

 
(g/mol) 

 

 

 
(g/mol) 

 

Ieff PDI 

 
15c 

 
20.8 

 
35 

 
82 

 
48 

 
0.59 

 
5160 

 
3000 

 
0.58 

 
1.06 

 
16 12.2 110 117 82 0.70 7590 4900 0.65 1.12 

 
17 6.1 250 183 164 0.90 11460 9500 0.83 1.10 

 
 

Note.  a60/40 Hex/MeCl cosolvents (v/v); -70 °C; [IB]0 = 1.00 M; [TiCl4]0 = 48.8 mM; [2,6-lutidine]0 = 4.00 mM 

bTime required to reach 6 half-lives for monomer consumption (98.4% IB conversion) 

c[TiCl4]0 = 62.5 mM 
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Table 6.  Atom Transfer Radical Polymerization (ATRP)a of Methyl Acrylate (MA) 

Initiated from PIB Macroinitiatorsb 

 
NMR 

 
SEC 

Run  

 
 

wt% PMA 

 

 
(g/mol) 

 

PDI wt% PMA 

 
BP-PIB-b-PMA60 

 

 
68 

 

 
52.4 

 

 
5780 

 

 
1.06 

 

 
50.9 

 
BP-PIB-b-PMA90 

 
80 

 
56.5 

 
7020 

 
1.04 

 
55.8 

 
BP-PIB-b-PMA120 

 
112 

 
64.5 

 
12900 

 
1.14 

 
69.8 

 
BMP-PIB-b-PMA60 

 
62 

 
53.5 

 
6020 

 
1.04 

 
56.4 

 
BMP-PIB-b-PMA90 

 
90 

 
62.5 

 
8970 

 
1.04 

 
65.9 

 
BMP-PIB-b-PMA120 

 
126 

 
70.0 

 
13760 

 
1.05 

 
74.7 

 
 

Note.  
a[MacroI]0 : [CuBr]0 : [PMDETA]0 = 1:1:1 ([MacroI]0

 = 0.05 M) in toluene at 70 °C; 0.60[MA]0/[MacroI]0 = 60, 90, or 120 

bBP-PIB:  = 5,570 g/mol and PDI = 1.04 (SEC);  = 89 by NMR.  BMP-PIB:  = 4,650 g/mol and PDI = 1.02 (SEC);  

= 77 by NMR 
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Figure 9.  Synthesis of LCP-ATRP dual initiators 3,3,5-trimethyl-5-chlorohexyl 2-

bromopropionate (IB2BP) and 3,3,5-trimethyl-5-chlorohexyl 2-bromo-2-

methylpropionate (IB2BMP). 
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Figure 10.  Synthesis of PIB-b-PMA copolymers using dual initiators via combined 

LCP and ATRP. 
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Figure 11.  Proton NMR spectra of 5-hydroxy-3,3,5-trimethylhexyl 2-bromopropionate 

(upper) and 5-hydroxy-3,3,5-trimethylhexyl 2-bromo-2-methylpropionate (lower). 
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Figure 12.  Proton NMR spectra of IB2BP (upper) and IB2BMP (lower). 
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Figure 13.  Proton NMR spectra of BP-PIB (Run 15, upper) and BMP-PIB (Run 2, 

lower). 
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Figure 14.  First-order kinetic plots for IB polymerizations initiated by IB2BMP and 

TMPCl.  Conditions were as follows: 60/40 Hex/MeCl cosolvents (v/v); -70 °C; [IB]0 = 

1.00 M; [I]0 = 12.2 mM; [TiCl4]0 = 48.8 mM; [2,6-lutidine]0 = 4.00 mM. 
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Figure 15.  The SEC elution curves for IB polymerizations initiated by TMPCl, 

IB2BMP, and IB2BP.  Conditions were as follows: 60/40 Hex/MeCl cosolvents (v/v); -

70 °C; [IB]0 = 1.00 M; [I]0 = 12.2 mM; [TiCl4]0 = 48.8 mM; [2,6-lutidine]0 = 4.00 mM.  
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Figure 16.  Proton and NMR spectra of BP-PIB-b-PMA60 (upper) and BMP-PIB-b-

PMA60 (lower). 
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Figure 17.  The SEC elution curves (crude samples prior to precipitation) of BP-PIB-b-

PMA (upper) and BMP-PIB-b-PMA (lower) with different length of PMA block. 
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CHAPTER III 

MODIFICATION OF MONO-CATIONIC MONO-RADICAL DUAL INITIATORS 

TO TARGET QUANTITATIVE INITIATION EFFICIENCY 

Objective 

 As discussed in earlier chapters, dual initiators, 3,3,5-trimethyl-5-chlorohexyl 2-

bromo-2-methylpropionate (IB2BMP) and 3,3,5-trimethyl-5-chlorohexyl 2-

bromopropionate (IB2BP) (Figure 9) possessing initiating sites for both living 

carbocationic polymerization (LCP) and atom transfer radical polymerization (ATRP) 

were developed to imporove upon an earilier initiator, 3,3,5-trimethyl-5-chlorohexyl 

acetate (TMCHA), which required intermediate chemical reactions to be fitted with an 

ATRP initiating site.  It was expected that IB2BP and IB2BMP would also improve or 

eliminate the low initiation efficiency (Ieff) displayed by TMCHA.182  We demonstrated 

that IB2BMP and IB2BP show equal ability to initiate LCP of isobutylene (IB), and that 

the α-bromoester head groups are unaffected by the cationic polymerization and remains 

intact for subsequent ATRP initiation of, for example, an acrylate monomer methyl 

acrylate (MA).  However, at low temperature (-70 °C) and relatively low 

monomer/initiator ratio (48-82), these initiators also displayed low cationic initiation 

efficiencies, in the range 0.50 - 0.80 depending on polymerization time, catalyst 

concentration, and solvent polarity.  Higher cationic initiation efficiencies (0.80 < Ieff < 

0.90) were observed when temperature was increased to -50 °C and/or the 

monomer/initiator ratio was increased. 

 Low Ieff of IB2BMP, IB2BP, and similar initiators such as TMCHA has been 

attributed to complexation between the Lewis acid catalyst, TiCl4, and the carbonyl 
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oxygen of the ester group.249,245,182  Complexation between Lewis acids and carbonyl 

groups is well known250,251,252 and nearly always characterized by a 1:1 stoichiometry.251  

In the IB2BMP, IB2BP, and TMCHA systems, complexation is revealed by a lower 

polymerization rate caused by a lower effective concentration of TiCl4, [TiCl4]eff.182  The 

effect on rate can be offset by compensating the amount of TiCl4.  However, we have 

observed that Ieff of IB2BMP is unaffected by changes in TiCl4 concentration.249  

 By studying the structure of IB2BMP, we now hypothesize that low Ieff is not 

caused by complexation or the presence of the ester carbonyl within the molecule, per se, 

but rather proximity of the TiCl4:carbonyl complex to the initiating center (tert-chloride 

group).  In IB2BMP, the TiCl4:carbonyl complex and the tert-chloride group interact 

readily via an entropically favored cycle conformer.  This interaction may substantially 

diminish the rate of ionization of the tert-chloride group, thereby reducing Ieff. 

 To test this hypothesis, we designed a new initiator 1,5-dichloro-3,3,5-

trimethylhexane (TMHDCl) (Figure 18), which shares the same 5-chloro-3,3,5-

trimethylhexyl cationic initiating structure with IB2BMP.  Instead of an ATRP-ready 

initiating site, it is functionalized with a primary chloride, which is inert under LCP 

conditions.  Therefore, there is no concern of the initiator-TiCl4 complexation issue, and 

TMHDCl is expected to be able to initiate cationic polymerization of IB quantitatively.   

 Moreover, we synthesized a new dual initiator, 3,3,5,5,7-pentamethyl-7-

chlorooctyl 2-bromo-2-methylpropionate (IB3BMP) (Figure 19), which preserves the 

same α-bromoester and tert-chloride functional groups as in IB2BMP, but separates 

them by one additional IB repeating unit.  With this structure, cyclic conformers that 

bring the TiCl4:carbonyl complex and tert-chloride group into proximity are not likely 
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and interactions between them should be disrupted.  Therefore, if the hypothesis is 

correct, IB3BMP should exhibit excellent initiation efficiency.   

Experimental 

Materials   

 2-Methallyltrimethylsilane (MATMS) (>95%) was used as received from Gelest 

Inc.  Thionyl chloride (SOCl2) (≥99%) was used as received from Sigma-Aldrich, Inc.  

Ammonium hydroxide (NH4OH) (28.0-30.0%) was used as received from Fisher 

Scientific.  2,4,4,6,6-Pentamethyl-1-heptene (PM1H) was generously provided by 

Chevron Oronite Company, LLC, and was vacuum distilled prior to use.  The sources 

and purity of all other reagents were the same as reported in the previous chapter.  

Instrumentation   

 Absolute molecular weights and polydispersity index of polyisobutylene (PIB) 

and poly(isobutylene-b-methyl acrylate) copolymer (PIB-b-PMA) were determined 

using size exclusion chromatography (SEC) (35 °C, THF) with interferometric 

refractometer and multi-angle laser light scattering (MALLS) detectors.  The dn/dc 

value used for PIB homopolymer was calculated from the following equation:241 dn/dc = 

0.116(1-108/ ) (  = number average molecular weight); the dn/dc value for PIB-b-

PMA was calculated from the interferometric refractometer detector response and 

assuming 100% mass recovery from the columns.  Solution 1H and 13C nuclear magnetic 

resonance (NMR) spectra were obtained at 22 °C using CDCl3 as the solvent and 

tetramethylsilane as internal reference.  Progress of IB polymerizations was monitored 

using real-time, remote-probe (light conduit type) attenuated total reflectance Fourier 

Transform infrared spectroscopy (FTIR) (ReactIR™ 4000).  Detailed descriptions of the 
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SEC, NMR, and FTIR instrumentation and corresponding procedures have been 

included in Chapter II.  

Synthesis of 1,5-Dichloro-3,3,5-trimethylhexane (TMHDCl)   

 The synthesis of the starting material, DTHMH was synthesized as previously 

described in Chapter II according to the synthetic route shown in Figure 9.  The tertiary 

hydroxyl group was chlorinated by reaction with excess HCl (g) in CH2Cl2 following 

the same procedure as described in Chapter II.  After removal excess gaseous HCl in the 

solution using sodium bicarbonate, the solution was dried over MgSO4 and 5-chloro-

3,3,5-trimethylhexanol was isolated by vacuum stripping of the solvent. 

 The hydroxyl group of 5-chloro-3,3,5-trimethylhexanol was converted to 

chloride by reaction with SOCl2 as follows: Into a 100 mL round-bottom flask equipped 

with magnetic stirrer were charged 5-chloro-3,3,5-trimethylhexanol (4.0 g, 0.022 mol) 

and 50 mL triethylamine.  SOCl2 (2.0 mL, 0.027 mol) was added dropwise into this 

solution over a period of 30 min.  The reaction was allowed to proceed for another 

additional 7 h.  Then diethyl ether was added to extract the product, and the solution was 

washed thrice with de-ionized water (DI H2O) to remove triethylamine.  The organic 

phase was dried over magnesium sulfate.  The crude liquid product was then distilled to 

obtain pure TMHDCl as a light yellow oil in 10% yield (0.44 g).  1H NMR (CDCl3): δ = 

1.08 (s, 6H, 3-Me), 1.68 (s, 6H, CH3CCl), 1.86 (s, 2H, 4-H), 1.92 (t, 2H, 2-H), 3.57 (t, 

2H, 1-H) ppm.  13C NMR: δ = 28.64 (3-Me), 34.95 (5-Me), 35.25 (C3), 41.11 (C2), 

46.38 (C4), 55.41 (C1), 70.69 (C5) ppm. 

Synthesis of 3,3,5,5,7-Pentamethyl-7-chlorooctyl 2-bromo-2-methylpropionate (IB3BMP) 
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 The starting material, IB2BMP, was prepared as described in Chapter II, with the 

synthetic route shown in Figure 9.  As illustrated in Figure 19, IB3BMP was synthesized 

from IB2BMP by reaction with 2-methallyltrimethylsilane (MATMS) at -94 °C with 

TiCl4 as the catalyst, followed by hydrochlorination with anhydrous HCl (g).  The 

procedure was analogous to that of Mayr et al.253 

 In a 250 mL round-bottom flask, MATMS (4.12 g, 3.21×10-2 mol) in 180 mL 

CH2Cl2 was cooled to about -94 °C using an external acetone/liquid N2 bath.  TiCl4 

(1.60 mL, 1.46×10-2 mol) was slowly added, and the color of the reaction mixture turned 

to dark red.  Next, a solution of IB2BMP (2.63 g, 8.03×10-3 mol) and MATMS (2.36 g, 

1.84×10-2 mol) in about 10 mL CH2Cl2 was dropped into the mixture during 30 min.  

The solution was stirred for 2 h at low temperature, and then the reaction was terminated 

by addition of 20 mL NH4OH aqueous solution.  A fine, solid precipitate appeared, and 

the solution turned from dark orange to white.  The reaction mixture was filtered, and 

the organic and aqueous layers were separated.  The aqueous layer was extracted with 

CH2Cl2, and the combined organic fractions were dried with MgSO4.  The solution was 

filtered and vacuum stripped to yield 2.54 g (91.1%) of the crude olefin, 3,3,5,5,7-

pentamethyl-7-octenyl 2-bromo-2-methylpropionate.  After vacuum distillation, the pure 

olefin was isolated as a colorless oil in 45.3% yield (1.26 g).  1H NMR (CDCl3): δ = 

1.03 (s, 6H, 5-Me), 1.05 (s, 6H, 3-Me), 1.34 (s, 2H, 3-H), 1.69 (t, 2H, 2-H), 1.78 (s, 3H, 

7-Me), 1.93 (s, 6H, CH3CBr), 2.00 (s, 2H, 6-H), 4.24 (t, 2H, 1-H), 4.64 (m, 1H, olefin), 

4.86 (m, 1H, olefin) ppm.  13C NMR: δ = 25.70 (7-Me), 28.97 (5-Me), 29.28 (3-Me), 

30.73 (CH3CBr), 34.26 (C3), 35.82 (C5), 42.41 (C2), 53.12 (C6), 53.59 (C4), 55.85 

(CBr), 63.61 (C1), 114.53 (C8), 143.45 (C7), 171.61 (CO) ppm. 
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 The olefin was hydrochlorinated with dry, gaseous HCl using a procedure 

analogous to that used for IB2BMP as reported in Chapter II, and the final product, 

3,3,5,5,7-pentamethyl-7-chlorooctyl 2-bromo-2-methylpropionate (IB3BMP) was 

obtained in 93.5% yield (1.38 g).  1H NMR (CDCl3): δ = 1.07 (s, 6H, 3-Me), 1.18 (s, 6H, 

5-Me), 1.45 (s, 2H, 4-H), 1.68 (s, 6H, CH3CCl), 1.70 (t, 2H, 2-H), 1.93 (s, 6H, CH3CBr), 

1.95 (s, 2H, 6-H), 4.25 (t, 2H, 1-H) ppm.  13C NMR: δ = 29.32 (3-Me), 29.96 (5-Me), 

30.73 (CH3CBr), 34.41 (C3), 35.18 (C8), 37.28 (C5), 42.68 (C2), 54.91 (C4), 55.85 

(CBr), 58.44 (C6), 71.51 (C7), 171.61 (CO) ppm. 

Synthesis of 2-Chloro-2,4,4,6,6-pentamethylheptane (PMHCl)   

 PMHCl was synthesized from 2,4,4,6,6-pentamethyl-1-heptene (PM1H) by 

hydrochlorination with dry, gaseous HCl using a procedure analogous to that used for 

IB2BMP as reported in Chapter II.  1H NMR (CDCl3): δ = 1.00 (s, 9H, t-Bu), 1.15 (s, 6H, 

4-Me), 1.39 (s, 2H, 5-H), 1.68 (s, 6H, CH3CCl), 1.96 (s, 2H, 3-Me) ppm.  13C NMR: δ = 

29.90 (4-Me), 32.29 (6-Me), 32.48 (C6), 35.17 (CH3CCl), 37.28 (C4), 57.07 (C5), 58.31 

(C3), 71.82 (C2) ppm. 

Polymerizations   

 LCPs of IB were carried out using either IB2BMP, IB3BMP, TMHDCl, 2-chloro-

2,4,4-trimethylpentane (TMPCl), or PMHCl as initiator, TiCl4 as catalyst, and 2,6-

lutidine as proton trap/common ion salt precursor, in 60/40 (v/v) hexane/MeCl 

cosolvents at -70 °C as described in Chapter II.  All polymerizations were conducted 

within an inert atmosphere drybox equipped with a hexane/heptane cold bath using 

FTIR (ReactIR™ 4000) to monitor isobutylene conversion by observing the olefinic 

=CH2 wag (887 cm-1) of IB.  
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 ATRP of methyl acrylate (MA) was carried out in toluene at 70 °C using 

IB3BMP-initiated PIB (BMP-PIB) as macroinitiator, Cu(I)Br as catalyst, and 1,1,4,7,7-

pentamethyldiethylenetriamine (PMDETA), as solvating ligand for Cu(I), in a molar 

ratio of 1:1:1, as described in Chapter II.  The concentration of BMP-PIB was 0.05 M.  

 of BMP-PIB by SEC was 4,650 g/mol; the PDI was 1.02, and  = 77 by NMR. 

Results and Discussion 

Synthesis of initiators  

 TMHDCl was prepared by chlorinating both primary and tertiary hydroxyl 

groups in 1,5-dihydroxy-3,3,5-trimethylhexane (DTHMH).  The reactivity of those 

hydroxyl are not the same, therefore we first performed electrophilic chlorination using 

gaseous HCl, which selectively converts the tertiary one.  The resulting compound was 

then reacted with thionyl chloride under basic conditions, thereby converting the 

primary hydroxyl to chlorine.  

 Since the final product has a low boiling point and the second step is an 

exothermic reaction, it is important to add thionyl chloride slowly to maintain a slow 

reaction rate, and thereby maintaining a low reaction temperature.  If the reaction is 

under well control, light yellow liquid should be produced instead of charcoal-like solid. 

 1H and 13C NMR spectra of the diol starting material (upper) and TMHDCl 

(lower) are shown in Figures 20 and 21.  After reaction with HCl, the methyl and 

methylene protons next to the tert-OH, which appear at 1.3 ppm (peak k) and 1.6 ppm 

(peak l) shifted to 1.7 ppm and 1.9 ppm, respectively (Figure 20).  When the primary 

hydroxyl was reacted with thionyl chloride, the protons of the C1 methylene, adjacent to 

the OH group, shifted upfield from 3.7 ppm to 3.6 ppm (peak g); while the signal of the 
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C2 methylene shifted in the opposition direction to 1.9 ppm (peak f).  The C3 methyl 

protons shifted to 1.1 ppm (peak e) after the 2-step preparation.  Integrated areas of all 

peaks were consistent with the structure of TMHDCl.   

 In the carbon spectrum (Figure 21), the hydroxyl functionalized quaternary 

carbon (C5) shifted from 72.3 ppm (peak k) to 70.4 ppm.  The 5-methyl and C4 

methylene carbons next to the tert-OH, which appears at 32.3 ppm (peak b) and 52.5 

ppm (peak i), shifted to 34.9 ppm and 40.9 ppm, respectively.  Upon conversion of the 

primary hydroxyl group, the 3-methyl and C3 carbon (peaks c and e) shifted to 28.6 

ppm and 35.3 ppm, respectively; while two methylene carbons, C1 and C2 (peaks k and 

g) shifted downfield to 55.4 ppm and 41.1 ppm, respectively.  At the same time, the 

hydroxyl functionalized quaternary carbon (C5) shifted downfield to 70.7 ppm (peak k).  

The 5-methyl and C4 methylene carbons next to the tert-OH shifted to 35.0 ppm (peak b) 

and 46.4 ppm (peak i), respectively.   

 IB3BMP cannot be prepared by reacting IB2BMP with IB, since the desired 1:1 

addition product reacts rapidly with additional IB to form polymer.254  Instead, IB2BMP 

was first reacted with MATMS in the presence of TiCl4 at low temperature to yield the 

intermediate olefin, 3,3,5,5,7-pentamethyl-7-octenyl 2-bromo-2-methylpropionate.  

Then, after vacuum distillation, the olefin was hydrochlorinated to produce the final 

product.   

 Figures 22 and 23 show 1H and 13C NMR spectra, respectively, of the 

intermediate olefin (upper) and IB3BMP (lower).  The olefinic protons of the 

intermediate appear at 4.6 (peak m) and 4.9 ppm (peak n), and the methyl and methylene 

protons adjacent to the double bond are observed at 1.7 (peak a) and 2.0 ppm (peak b), 
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respectively (Figure 22, upper).  Upon hydrochlorination of the intermediate, the 

olefinic protons (peaks m and n) disappear.  Peaks k, e, and l shift downfield; while 

peaks a and b shift slightly upfield.  Integrated peak areas are consistent with the 

targeted structures.  Similarly, in the carbon spectra (Figure 23) the peaks for the 

olefinic carbons of the intermediate (peaks l and m) disappear upon hydrochlorination.  

The new quaternary carbon bonded to chlorine shows a resonance at 72 ppm (peak m).  

Moreover, peaks h, i, and a move downfield after hydrochlorination. 

 The initiator PMHCl was prepared by simple hydrochlorination of 2,4,4,6,6-

pentamethyl-1-heptene (PM1H).  Figures 24 and 25 show the NMR characterization of 

both the starting material, 2,4,4,6,6-pentamethyl-1-heptene (PM1H) (upper) and PMHCl 

(lower).  After hydrochlorination, the double bond proton peaks (peaks m and n) 

disappear (Figure 24).  Peaks k, e, and l shift downfield, and peaks a and b shifted 

slightly upfield, exactly the same pattern observed with IB3BMP.  In addition, integrated 

peak areas are consistent with the targeted structures.  In the carbon NMR spectrum, the 

double bond cartons (peaks m and l) moved from the olefinic region above 100 ppm to 

the region below 80 ppm (Figure 25), similarly to the change observed for IB3BMP. 

IB Polymerizations 

 To test the initiation performance of TMHDCl, living carbocationic 

polymerizations of IB were conducted with TiCl4 as the catalyst and 2,6-lutidine as the 

proton trap targeting molecular weights of 5,000 (5k) g/mol.  Results presented in 

Chapter II have shown that [TiCl4]0 does not influence Ieff.249  In the cationic 

polymerizaiton of IB initiated by TMHDCl, the concentration of TiCl4 catalyst was set 

at [TiCl4]0 = 3.5 × [I]0 in order to maintain a relatively slow polymerization rate.  To 
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better evaluate TMHDCl, control polymerizations were conducted with IB2BMP and the 

standard IB cationic polymerization initiator TMPCl, used as initiators.  The latter 

compound contains the same cationic initiating site and thus the same degree of back 

strain as TMHDCl.  Because TMHDCl does not contain a secondary functional group 

that can interact with TiCl4 and thereby interfere with IB polymerization, an Ieff higher 

than IB2BMP and similar to TMPCl is expected, provided the low initiation efficiency 

displayed by IB2BMP is due to the ester-TiCl4 complex. 

 Polymerization kinetics for the three initiators were studied employing data 

collected by FTIR spectroscopy; the first-order kinetic plots are shown in Figure 26.  

The most rapid polymerization was produced by TMPCl, the only initiator to yield a 

linear first-order plot.  This confirms that the concentration of active species is constant 

throughout the course of polymerization.  Thus initiation with TMPCl is rapid and 

complete (Ieff ~ 1).  The polymerization induced by IB2BMP yielded an upwardly 

concave curve with the smallest initial slope.  This behavior is characteristic of slow and 

incomplete initiation.  The upward curvature indicates that the concentration of active 

species is initially low, increasing over time as initiation and propagation occur 

simultaneously.  The final, linear region is considerably lower in slope than the TMPCl 

plot.  This is consistent not only with incomplete initiation but also a lower effective 

TiCl4 concentration due to complexation with IB2BMP.  This analysis is supported by 

the observed broad polydispersity (PDI = 1.11, Table 7) for the final polymer from 

IB2BMP.  The behavior of TMHDCl was similar to that of IB2BMP.  It also displayed 

an upwardly concave first-order plot indicative of slow initiation.  The fact that the 

overall rate of polymerization was higher for TMHDCl than for IB2BMP suggests that 



   

  

69 
 

 

the former does not complex TiCl4.   

 The apparent rapid monomer consumption (RMC) observed in Figure 26 

(apparent y-intercept) is due to precipitation resulting from proton scavenging by 2,6-

lutidine.255  The precipitate plates onto to the ReactIR probe, thereby distorting the FTIR 

spectral baseline and creating the appearance of a psudo-RMC phenomenon.   

 Characterization results for polymers produced from TMPCl, IB2BMP and 

TMHDCl are listed in Table 7.  Here Ieff was calculated as  and 

 using NMR and SEC/MALLS data, respectively.  The  was 

calculated as the molar ratio of monomer to initiator charged to the reactor.  The number 

average molecular weight was calculated using , where MIB 

and MI are the molecular weights of isobutylene and the initiator, respectively.  The 

 was calculated from 1H NMR data using equation (1), 

     (1) 

here AMe is the integrated peak area of the methyl protons in the PIB repeat unit, ACE is 

the same as defined in Chapter II, and i assumes a value of 1 for IB2BMP and TMPCl 

and a value of 2 for IB3BMP and PMHCl. 

 The standard initiator, TMPCl yielded a narrow-PDI polymer with an Ieff of 

almost 1 (0.98 from NMR and 0.97 from SEC results).  However, polymers produced by 

IB2BMP and TMHDCl possessed comparably high molecular weights and broad PDIs.  

Their Ieff value calculated from SEC data were 0.63 and 0.65, respectively.  The results 

of SEC analysis are presented in Figure 27.  TMPCl-initiated PIB has a narrow and 
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symmetric elution peak, whereas IB2BMP-initiated PIB has a shorter retention time and 

an asymmetric elution peak.  The SEC profile of PIB initiated by TMHDCl almost 

overlaps with that of IB2BMP, which is consistent with the data in Table 7 and the 

kinetic study.  It is unclear why TMHDCl displays slow initiation and in other respects 

behaves similarly to IB2BMP, even though it apparently does not complex TiCl4. 

 The performance of IB3BMP as a cationic polymerization initiator was evaluated 

by conducting TiCl4-co-initiated IB polymerizations at -70 °C.  The targeted molecular 

weights were 3,000 (3k), 5,000 (5k), and 10,000 (10k) g/mol.  Low target molecular 

weights were chosen to better judge the performance of the initiators.  If IB3BMP 

displays good initiation efficiency for preparing low molecular weight PIBs, its 

efficiency will be the same or higher at greater monomer/initiator ratios.  The direct 

comparison of IB3BMP directly with three control initiators, IB2BMP and the two 

monofunctional initiators TMPCl and PMHCl (hydrochlorinated IB dimer and trimer, 

respectively) was done.  Faust and Mayr et al.256 reported that, compared to the PIB tert-

chloride chain end, TMPCl is approximately 2.5 times more slowly ionizing and PMHCl 

is approximately 1.4 times more slowly ionizing due to lower degrees of back strain.   

 Table 8 lists the characterization results of PIB polymers produced from the four 

initiators.  Standard initiators TMPCl and PMHCl exhibited high initiation efficiencies 

(~1) in all cases with near-monodisperse PIBs having targeted molecular weights 

obtained.  Polymers initiated by IB2BMP were relatively polydisperse, with Ieff around 

0.5 for a 3k molecular weight target, 0.6 for 5k, and 0.8 for 10k.  Although Ieff increased 

with higher target molecular weight, it remained less than quantitative.  In contrast, 

IB3BMP was an excellent ATRP-ready cationic initiator.  It consistently performed well 
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in preparing both low and high molecular weight PIBs.  The NMR and SEC data 

showed that the resulting PIBs achieved the target molecular weights with narrow PDIs.   

 The SEC elution curves of representative PIB-3k samples are shown in Figure 28.  

These curves clearly demonstrate the difference between IB2BMP and IB3BMP.  The 

elution curve for IB3BMP is nearly identical to those of PMHCl and TMPCl; all are very 

narrow and symmetrical.  In contrast, the curve for IB2BMP is much broader and 

displays a low molecular weight tail, characteristic of slow initiation. 

 Polyisobutylenes produced from IB3BMP possess the desired 2-bromo-2-

methylpropionate head group.  Figure 29 shows the 1H NMR spectrum of a 

representative PIB-3k produced from IB3BMP.  The methylene unit adjacent to the ester 

linkage was observed as a triplet centered at 4.2 ppm.  The integrated area of this peak 

was approximately one-third that for the methyl groups (peak a) adjacent to the tert-

chloride end group, indicating that the α-bromoester functionality was quantitatively 

maintained during the LCP of IB.  This dual initiator therefore produces ATRP-ready 

polymers.   

 Because of complex formation between Lewis acid and carbonyl oxygen, 

IB3BMP requires a higher TiCl4 concentration, compared to standard initiators TMPCl 

or PMHCl, to achieve a given rate of polymerization.  Figure 30 shows first-order 

kinetic plots as determined by in situ FTIR (ReactIR™ 4000) for IB polymerizations 

initiated from IB3BMP and PMHCl.  The slight deviations from linearity observed in the 

plots reflect shifts in the equilibrium between dormant and active chain ends, due to the 

rise and fall of the reaction temperature caused by the initial exotherm of polymerization.  

This effect has been explained in detail previously.242  The two polymerizations depicted 
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in Figure 30 were formulated identically except for the identity of the initiator, and the 

fact that one additional equivalent of TiCl4 (relative to the initiator) was used for the 

case of IB3BMP.  The kinetic plots are identical within experimental error, indicating 

that [TiCl4]eff was the same in the two reactions.  This demonstrates the existence of 

complexation and shows that it is approximately 1:1. 

 The results in Table 8 and Figure 28 clearly show that IB2BMP is a relatively 

inefficient cationic initiator as compared with the standard oligoisobutylene 

hydrochlorides PMHCl and TMPCl, and IB3BMP.  Disappointing results have also been 

reported for other ester initiators derived from 5-chloro-3,3,5-trimethylhexanol, such as 

3,3,5-trimethyl-5-chlorohexyl 2-bromopropionate (IB2BP),249 3,3,5-trimethyl-5-

chlorohexyl acetate (TMCHA),182 3,3,5-trimethyl-5-chlorohexyl methacrylate,245,257 and 

3,3,5-trimethyl-5-chlorohexyl isobutyrate.257  These authors concluded the poor 

initiating performance is caused by complexation between Lewis acid and carbonyl 

oxygen of the ester group.  However, this explanation cannot be correct based on the 

essentially ideal initiating performance displayed by IB3BMP.  The latter ester is 

composed of the same carboxylic acid component as IB2BMP, and the two molecules 

have essentially identical structure in the immediate environment of the ester group.  

Furthermore, polymerization kinetics show that IB3BMP and IB2BMP tend to produce 

the same [TiCl4]eff within the reactor, suggesting a similar degree of complexation.   

 The results in Table 7 and Figure 26 and 27 also show the poor initiation 

performance of IB2BMP.  The new cationic initiator, TMHDCl, which does not contain 

bromoester functionality, was predicted to have initiation performance similar to the 

standard cationic initiator, TMPCl.  However, TMHDCl-initiated polymerizations were 
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actually slower than those initiated by TMPCl.  In addition, the first-order plots of 

TMHDCl and IB2BMP are similar in shape.  The fact that the rate of polymerization was 

higher with TMHDCl than with IB2BMP indicates that [TiCl4]eff was decreased in the 

latter system through complexation with the ester.  Furthermore, TMHDCl displayed 

slow initiation and low Ieff to almost the same degree as IB2BMP. 

 The results obtained with TMHDCl are consistent with the explanation that in 

IB2BMP and similar initiators, the TiCl4:carbonyl complex and the tert-chloride group 

interact via an entropically favorable cyclic conformer.  This interaction diminishes the 

rate of ionization of the tert-chloride group, thereby reducing Ieff.  In IB3BMP, the 

increased separation between the two sites eliminates this interaction.  The TMHDCl 

results show that this through-space interaction is not limited to initiators with ester 

functionality.  Because it shares the same 5-chloro-3,3,5-trimethylhexyl backbone 

structure with IB2BMP, TMHDCl is capable of forming similar cyclic conformers.  The 

only difference is that the interacting group is a chloride instead of a TiCl4:ester 

complex.  Based on these results, we theorize that this interaction and its negative effect 

on initiation performance can be expanded to include other interfering functionalities, 

provided the basic initiator backbone structure is the same.  Further study is needed to 

substantiate this hypothesis.  

ATRP Polymerization 

 We have demonstrated successful ATRP of MA from PIB macroinitiators 

produced from IB2BMP in the previous chapter.  Because PIB macroinitiators prepared 

from IB2BMP and IB3BMP are identical, their behavior in subsequent ATRP initiation 

should also be the same.  To confirm this expectation, the ATRP of MA was initiated 
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using a representative BMP-PIB macroinitiator; the results are summarized in Table 9.  

The observed polymerization degree of the PMA block, , was very close to the 

targeted value (40); SEC and NMR analysis indicated quantitative initiation efficiency.  

Figure 31 and 32 show SEC elution curves of BMP-PIB macroinitiator and resulting 

BMP-PIB-b-PMA40 block copolymer, and the 1H NMR spectrum of BMP-PIB-b-PMA40 

block copolymer, respectively. 

Conclusions 

 IB3BMP, a dual initiator possessing the same radical and cationic initiating sites 

as the dual initiator IB2BMP described in Chapter II, but with an additional IB repeating 

unit between the ester and tert-Cl functional groups, was shown to be an excellent 

cationic initiator.  Structure of the new initiator was characterized using 1H and 13C 

NMR spectroscopy.  Its initiation efficiency in the LCP of IB was quantitative (Ieff ~1) 

under all polymerization conditions studied, including low temperature (-70 ºC) and low 

monomer/initiator ratios.  NMR and SEC analysis showed IB3BMP-initiated PIBs have 

the same molecular weights and PDIs as those obtained from the standard initiators 

TMPCl and PMHCl.  Since its radical initiating site is identical to that of IB2BMP, PIB 

macroinitiators produced from IB3BMP perform equally well in ATRP. 

 We also synthesized a new cationic initiator, TMHDCl, by chlorinating both the 

primary and tertiary hydroxyl groups of DTHMH.  This compound does not have an 

ester function, preventing complexation with the TiCl4 catalyst.  It contains the same 

cationic initiating site as TMPCl and it is expected to have the same initiation efficiency.  

However, TMHDCl performed poorly in IB polymerization.  Kinetic studies utilizing 

FTIR and NMR spectroscopy as well as SEC characterization showed that this initiator 
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performed similarly as IB2BMP.   

 Therefore, we conclude that the poor initiation efficiency of IB2BMP, TMCHA, 

and other initiators derived from 3,3,5-trimethyl-5-chlorohexanol is not simply caused 

by complexation.  Instead, it is the interaction between the interfering functionality on 

C1 and the tert-chloride group, via an entropically favorable cyclic conformer.  This 

explains why differences in the carboxylic acid component of the ester, i.e., acetyl group 

in TMCHA, 2-bromo-2-methylpropionoyl group in IB2BMP, etc., that to introduce 

different steric and/or inductive properties to the carbonyl group, do not result in any 

improvement in Ieff.  However, when tert-chloride and ester groups are further separated, 

as in IB3BMP, the interfering interaction disappears and Ieff approaches 100%.  

Moreover, this interaction is not limited to initiators containing ester groups, but is also 

applicable to other interfering functionalities such as primary chloride, as evidenced by 

the slow initiation of TMHDCl. 
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Table 7.  Charaterization of Living Carbocationic Polymerizations (LCP) of isobutylene 

(IB) Induced by IB2BMP, TMHDCl and TMPCl 

 
NMR 

 
SEC 

  

 
 

 Ieff 

 

 
(g/mol) 
 

 

 
(g/mol) 
 

Ieff PDI 

 
IB2BMP-5k 

 

 
111 

 

 
82 

 

 
0.74 

 

 
7860 

 

 
4930 

 

 
0.63 

 

 
1.11 

 
TMHDCl-5k 

 
107 

 
82 

 
0.77 

 
7390 

 
4800 

 
0.65 

 
1.08 

 
TMPCl-5k 

 
84 

 
82 

 
0.98 

 
4920 

 
4750 

 
0.97 

 
1.02 

 
 

Note.  60/40 Hex/MeCl cosolvents (v/v); -70 °C; [IB]0 = 1.00 M; [I]0 = 12.2 mM; [TiCl4]0 = 4.27 mM; [2,6-lutidine]0 = 4.00 mM 

 



   

  

77 
 

 

Table 8.  Characterization Results for PIBs Prepared from Different Initiators: IB2BMP, 

IB3BMP, TMPCl and PMHCl 

 
NMR 

 
SEC 

 

 

 
 

 Ieff 

 

 
(g/mol) 

 

 

 
(g/mol) 

 

Ieff PDI 

 
TMPCl-3k 

 
52 

 
48 

 
0.92 

 
3090 

 
2840 

 
0.92 

 
1.02 

 
IB2BMP-3k 94 48 0.51 5630 3020 0.53 1.10 

 
IB3BMP-3k 49 48 0.98 3180 3080 0.97 1.07 

 
PMHCl-3k 49 48 0.98 2900 2900 1.00 1.01 

 
 

TMPCl-5k 
 

 
87 

 
82 

 
0.94 

 
4920 

 
4750 

 
0.96 

 
1.01 

IB2BMP-5k 120 82 0.64 8410 4930 0.59 1.05 
 

IB3BMP-5k 86 82 0.95 5070 4990 0.98 1.03 
 

PMHCl-5k 85 82 0.97 4800 4810 1.00 1.01 
 

 
TMPCl-10k 

 
161 

 
164 

 
1.02 

 
9050 

 
9350 

 
1.03 

 
1.05 

 
IB2BMP-10k 201 164 0.82 11370 9530 0.84 1.06 

 
IB3BMP-10k 170 164 0.96 9580 9590 1.00 1.06 

 
PMHCl-10k 165 164 0.99 9340 9410 1.01 1.06 

 
 

Note.  60/40 Hex/MeCl cosolvents (v/v); -70ºC; [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM   

[I]0 = 20.8 mM; [TiCl4]0 = 62.5 mM for 3k samples 

[I]0 = 12.2 mM; [TiCl4]0 = 48.8 mM for 5k samples 

[I]0 = 6.1 mM; [TiCl4]0 = 48.8 mM for 10k samples
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Table 9.  ATRPa of methyl acylate(MA) Initiated from a PIB Macroinitiatorb Prepared 

from IB3BMP 

 
NMR 

 
SEC 

  

 
 

wt% PMA 

 

 
(g/mol) 

 

PDI wt% PMA 

 
BMP-PIB-b-PMA40 

 
38 

 
41.0 

 
3600 

 
1.03 

 
43.6 

 
 

Note.  a[BMP-PIB]0:[CuBr]0:[PMDETA]0 = 1:1:1 ([BMP-PIB]0
 = 0.05 M) in toluene at 70 °C; 0.60[MA]0/[MacroI]0 = 40; 

conversion of MA limited to 60% 

bBMP-PIB:  = 4,650 g/mol and PDI = 1.02 (SEC);  = 77 (NMR) 
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Figure 18.  Synthesis of 3,3,5-trimethyl-1,5-dichlorohexane (TMHDCl) from 1,5-

dihydroxy-3,3,5-trimethylhexane (DTHMH). 

 

 

 

 

Figure 19.  Previously reported dual initiator 3,3,5-trimethyl-5-chlorohexyl 2-bromo-2-

methylpropionate (IB2BMP) and synthesis of 3,3,5,5,7-pentamethyl-7-chlorooctyl 2-

bromo-2-methylpropionate (IB3BMP) therefrom. 
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Figure 20.  Proton NMR spectra of 1,5-dihydroxy-3,3,5-trimethylhexane (DTHMH) 

(upper) and 1,5-dichloro-3,3,5-trimethylhexane (TMHDCl) (lower). 
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Figure 21.  Carbon NMR spectra of 1,5-dihydroxy-3,3,5-trimethylhexane (DTHMH) 

(upper) and 1,5-dichloro-3,3,5-trimethylhexane (TMHDCl) (lower). 
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Figure 22.  Proton NMR spectra of 3,3,5,5,7-pentamethyl-7-octenyl 2-bromo-2-

methylpropionate (upper) and 3,3,5,5,7-pentamethyl-7-chlorooctyl 2-bromo-2-

methylpropionate (IB3BMP) (lower). 
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Figure 23.  Carbon NMR spectra of 3,3,5,5,7-pentamethyl-7-octenyl 2-bromo-2-

methylpropionate (upper) and 3,3,5,5,7-pentamethyl-7-chlorooctyl 2-bromo-2-

methylpropionate (IB3BMP) (lower). 



   

  

84 
 

 

 

 

 

Figure 24.  Proton NMR spectra of 2,4,4,6,6-pentamethyl-1-heptene (PM1H) (upper) 

and 2-chloro-2,4,4,6,6-pentamethylheptane (PMHCl) (lower). 
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Figure 25.  Carbon NMR spectra of 2,4,4,6,6-pentamethyl-1-heptene (PM1H) (upper) 

and 2-chloro-2,4,4,6,6-pentamethylheptane (PMHCl) (lower). 
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Figure 26.  First-order kinetic plots for IB polymerizations at -70 °C using IB2BMP, 

TMHDCl, and TMPCl as the intiator.  Conditions were as follows: 60/40 Hex/MeCl 

cosolvents (v/v); [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM.  [I]0 = 12.2 mM; [TiCl4]0 = 

42.7 mM. 
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Figure 27.  The SEC elution curves of PIB-5k samples initiated by IB2BMP, TMHDCl, 

and TMPCl.  Conditions were as follows: 60/40 Hex/MeCl cosolvents (v/v); [IB]0 = 

1.00 M; [2,6-lutidine]0 = 4.00 mM.  [I]0 = 12.2 mM; [TiCl4]0 = 42.7 mM. 
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Figure 28.  The SEC elution curves of PIB-3k samples initiated by four different 

initiators: IB2BMP, IB3BMP, TMPCl and PMHCl.  Conditions were as follows: 60/40 

Hex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM.  [I]0 = 20.8 mM; 

[TiCl4]0 = 62.5 mM 
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Figure 29.  Proton NMR spectrum of a representative PIB (IB3BMP-3k). 
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Figure 30.  First-order kinetic plots for IB polymerizations at -70 °C using IB3BMP or 

PMHCl as the intiator. Conditions were as follows: 60/40 Hex/MeCl cosolvents (v/v); 

[IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM; [I]0 = 12.2 mM; [TiCl4]0 = 6×[I]0 for 

IB3BMP; [TiCl4]0 = 5×[I]0 for PMHCl. 
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Figure 31. The SEC elution curves for BMP-PIB macroinitiator prepared from IB3BMP 

and resulting BMP-PIB-b-PMA40 block copolymer prepared by the ATRP of methyl 

acrylate (MA). 
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Figure 32.  Proton NMR spectrum of BMP-PIB-b-PMA40 block copolymer prepared by 

the ATRP of methyl acrylate (MA). 
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CHAPTER IV 

DESIGN AND SYNTHESIS OF DI-CATIONIC MONO-RADICAL DUAL 

INITIATOR FOR POLYISOBUTYLENE-BASED MIKTOARM STAR POLYMERS 

Objective 

 As introduced in Chapter I, Storey et al. in 2005110 prepared PtBA-PS-PIB-PS-

PtBA pentablock terpolymers as potential permselective barrier elastomers with 

enhanced moisture transmission capabilities.  The synthesis employed LCP to first 

produce PS-PIB-PS, followed by site transformation to ATRP to create the poly(tert-

butyl acrylate) (PtBA) outer blocks.  Acid-catalyzed110,209 or thermal cleavage258 of the 

tert-butyl ester side groups yielded PAA-PS-PIB-PS-PAA, with water transmitting 

poly(acrylic acid) (PAA) block segments.  Transmission electron microscopy (TEM) 

revealed a PIB continuous phase, and concentric PS (outer) and PAA (inner) cylinders.  

At a composition of 50:25:25 PIB:PS:PAA (wt%), the membranes were elastomeric and 

relatively water permeable (10-5–10-4 g-1h-1mmHg-1); below 25 wt% PAA, the PAA 

domains were discontinuous within the PS cylinders and water permeation decreased by 

an order of magnitude.110  However, polymers prepared via site transformation from PS-

PIB-PS are limited to structures in which the third block (e.g. PAA) is covalently 

attached to the PS block.  This precludes morphologies possessing an interface between 

PIB and the third block, causing the PAA domains to be constrained within the rigid PS 

cylinders and potentially limiting water swelling and permeation.  To address this issue, 

we have targeted a new miktoarm star-branched configuration whereby the third block is 

covalently attached to the PIB block (Figure 33, right).  This structure retains the PS-

PIB-PS configuration, provideing elastic recovery and strength by physically 
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constraining the PIB segments at their ends.  In addition, phase-separated morphologies 

possessing an interface between PIB and the third block are possible.   

 The architecture shown in Figure 33 requires a di-cationic initiator with an 

initiation site for another polymerization process such as ATRP.  In this chapter, we will 

describe the synthesis of such an initiator, 3-[3,5-bis(1-chloro-1-methylethyl)phenyl]-3-

methylbutyl 2-bromo-2-methylpropionate (DCCBMP) via two different synthetic routes.  

As shown in Figure 34, the intermediate 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-

bromo-2-methylpropionate (DIPBMP) is either selectively brominated with N-

bromosuccinimide (NBS) or oxidized using N-hydroxyphthalimide 

(NHPI)/Co(OAc)2•4H2O catalyzed aerobic oxidation.   

 The proper use of DCCBMP requires that the carbocationic polymerization be 

carried out first, followed by ATRP.  The LCP of styrene naturally results in sec-

benzylic chloride PS chain ends, which are known to initiate ATRP.110  Therefore, PS-

PIB-PS polymers synthesized from DCCBMP require a procedure that will remove 

these groups and leave only the desired bromoester function.  Ivan et al. found that 

poly(vinyl chloride) readily and quantitatively dehydrochlorinates upon heating to 180-

200 °C.259  Here the PS-PIB-PS macroinitiator is processed in the same way to 

deactivate the PS chain ends and produce the miktoarm star, poly(styrene-b-

isobutylene)2-s-poly(tert-butyl acrylate) [(PS-PIB)2-s-PtBA] after ATRP of tert-butyl 

acrylate (tBA).  The tert-butyl ester side groups are then cleaved using the simple 

thermal treatment described by Kopchick et al.258 to convert PtBA to PAA and yield the 

desired amphiphilic poly(styrene-b-isobutylene)2-s-poly(acrylic acid) [(PS-PIB)2-s-

PAA] miktoarm star terpolymer (Figure 35, right).   
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 The original PS-PIB-PS macroinitiator can also be used to initiate tBA in three 

directions to produce poly(tert-butyl acrylate-b-styrene-b-isobutylene)2-s-poly(tert-butyl 

acrylate) [(PtBA-PS-PIB)2-s-PtBA] miktoarm star terpolymer.  Tis can be further 

converted into poly(acrylic acid-b-styrene-b-isobutylene)2-s-poly(acrylic acid) [(PAA-

PS-PIB)2-s-PAA] through the thermal treatment as described above.  As mentioned in 

Chapter I, architecturally asymmetric ABCA tetrablock terpolymers are able to form 

interesting bilayer vesicles238 and platelets239 when placed in a selective solvent for the 

A block, as reported by Bates and Balsara, respectively.  We anticipate similar 

morphological behavior will be observed for our (ABC)2A star polymers.  

Experimental 

Materials   

 3-Methyl-3-buten-1-ol (≥ 97%), 2-bromo-2-methylpropionyl bromide (98%), 

1,3-diisopropylbenzene (96%), N-hydroxyphthalimide (NHPI) (97%), Co(OAc)2•4H2O 

(≥ 98.0%), acetonitrile (anhydrous, 99.8%), methylcyclohexane (MCHex) (anhydrous, ≥ 

99%), CCl4 (99.9%), azobisisobutyronitrile (AIBN) (98%), N-bromosuccinimide (NBS) 

(99%), triethylamine (TEA) (99.5%), 1,1,4,7,7-pentamethyldiethylenetriamine 

(PMDETA) (99%), hexane (anhydrous, 99%), 2,6-lutidine (99+%), TiCl4 (99.9%), 

Cu(I)Br (99.999%), AlCl3 (99.99%), toluene (99.8%), CDCl3, and balloons with wall 

thickness of 15 mil were used as received from Sigma-Aldrich, Inc.  Compressed 

oxygen was used as received from Praxair, Inc.  Petroleum ether, CH2Cl2, K2CO3, 

tetrahydrofuran (THF), MgSO4, and NaHCO3 were used as received from Fisher 

Chemical Co.  Dowex HCR-W2 ion-exchange resin (strong cationic type) was used as 

received from Dow Chemical, Germany.  Isobutylene (IB) (99.5%, BOC Gases) and 
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MeCl (99.5%, Alexander Chemical Co.) were dried through columns packed with 

CaSO4 and CaSO4/4 Å molecular sieves, respectively.  Methyl acrylate (MA) (99%) and 

tert-butyl acrylate (tBA) (99%) were passed through a K2CO3 and Al2O3 column to 

remove inhibitor. 

Instrumentation  

 Absolute molecular weights and polydispersity index (PDI) of polymers were 

determined using size exclusion chromatography (SEC) (35 °C, THF) with 

interferometric refractometer and multi-angle laser light scattering (MALLS) detectors.  

The dn/dc value used for PIB homopolymer was calculated from the following 

equation:241 dn/dc = 0.116(1-108/ ) ( = number average molecular weight); the 

dn/dc values for block and miktoarm star copolymers were calculated from the 

interferometric refractometer detector response and assuming 100% mass recovery from 

the columns.  Solution 1H and 13C nuclear magnetic resonance (NMR) spectra were 

obtained at 22°C using CDCl3 as the solvent and tetramethylsilane as internal reference.  

Progress of IB polymerizations was monitored using real-time, remote-probe (light 

conduit type) attenuated total reflectance Fourier Transform infrared spectroscopy 

(FTIR) (ReactIR™ 4000).  Detailed descriptions of the SEC, NMR, and FTIR 

instrumentation and corresponding procedures have been included in Chapter II. 

 The melting point of 3-[3,5-bis(1-hydroxy-1-methylethyl)phenyl]-3-methylbutyl 

2-bromo-2-methylpropionate (DCOHBMP) was measured using a Q200 (TA 

Instruments) differential scanning calorimeter.  The furnace atmosphere was purged 

with a 50 mL/min nitrogen stream.  Standard capped aluminum crucibles were loaded 
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with ~5 mg of DCOHBMP solid, and the sample was subjected to a temperature ramp of 

1 °C/min from 35 °C to 100 °C. 

Synthesis of 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-bromo-2-methylpropionate 

(DIPBMP)   

 3-Methyl-3-butenyl 2-bromo-2-methylpropionate, 3, was produced by reacting 

3-methyl-3-buten-1-ol (2) with 2-bromo-2-methylpropionyl bromide (1) using a 

variation of a previously reported procedure (Figure 34).182  The intermediate DIPBMP 

was then synthesized by the Friedel-Crafts alkylation of 1,3-diisopropylbenzene by 3, 

using a modification of the procedure of Cheon and Yamamoto,260 as follows: within an 

inert atmosphere glove box equipped with a hexane/heptane cold bath, a 250 mL two-

necked, round-bottom flask, equipped with mechanical stirrer, was charged with 1,3-

diisopropylbenzene (85.7 g, 0.528 mol) and AlCl3 (26.5 g, 0.200 mol).  This mixture 

was chilled to -20°C and stirred vigorously.  Then, 3 (40.6 g, 0.173 mol) was slowly 

added, and the mixture was stirred vigorously for another 25 h.  The solution was added 

to ice-cold water (500 mL), and this mixture stirred vigorously for 2 h.  The organic 

phase was separated, and the water layer was extracted with CH2Cl2.  The combined 

organic solutions were washed with brine and then DI H2O and dried over anhydrous 

MgSO4.  After filtration, CH2Cl2 was removed by vacuum stripping, and the desired 

compound, 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-bromo-2-methylpropionate, was 

obtained as a light yellow oil (34.0 g, 49.5% yield) after purification by vacuum 

distillation.  1H NMR (CDCl3): δ = 1.25 (d, 12H, PhCH(CH3)2), 1.38 (s, 6H, 3-Me), 1.86 

(s, 6H, (CH3)2CBr), 2.02 (t, 2H, 2-H), 2.88 (m, 2H, PhCH(CH3)2), 4.03 (t, 2H, 1-H), 

6.92 (m, 1H, 4-PhH), 7.02 (m, 2H, 2,6-PhH) ppm.  13C NMR: δ = 24.1 (PhCH(CH3)2), 
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29.2 (3-Me), 30.7 ((CH3)2CBr), 34.3 (PhCH(CH3)2), 36.7 (C3), 42.1 (C2), 55.9 

((CH3)2CBr), 63.9 (C1), 121.3 (2,6-PhC), 121.8 (4-PhC), 147.8 (1-PhC), 148.5 (3,5-

PhC), 171.5 (CO) ppm. 

Synthesis of 3-(3,5-diisopropenylphenyl)-3-methylbutyl 2-bromo-2-methylpropionate 

(DMVBMP) via AIBN-induced bromination 

 Into a 100 mL round-bottom flask, equipped with magnetic stirrer and 

condenser, were charged DIPBMP (4.0 g, 0.010 mol), N-bromosuccinimide (NBS) (3.9 

g, 0.022 mol), azobisisobutyronitrile (AIBN) (0.62 g, 3.8 × 10-3 mol), and 40 mL CCl4.  

The mixture was heated at reflux for 1.5 h.  After the flask cooled down to room 

temperature, the reaction mixture was filtered to remove precipitated succinimide, and 

50 mL of water and 10 mL of 0.1 mol/L NaHCO3 were added.  The brominated product 

3-[3,5-bis(1-bromo-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-methylpropionate 

(DCBBMP) was then extracted with CH2Cl2 (3 × 25 mL) and then dried over MgSO4.  

The crude product was purified using column chromatography (SiO2, petroleum 

ether/ethyl acetate (v/v) = 35:1 cosolvents as the eluent), which lead to the loss of HBr 

at the benzylic 1-bromo-1-methylethyl functionalities, yielding a diolefin product, 

DMVBMP as a light yellow liquid in (1.07 g, 27.2% yield).   

Synthesis of 3-[3,5-bis(1-hydroxy-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-

methylpropionate (DCOHBMP) via aerobic oxidation 

 The title compound was prepared via aerobic oxidation of DIPBMP (Figure 34, 

right) using the N-hydroxyphthalimide (NHPI)/Co(OAc)2•4H2O catalyst system.261  Into 

a 250 mL Erlenmeyer flask equipped with a magnetic stirrer and a balloon filled with 

pure oxygen, DIPBMP (7.30 g, 18.4 mmol), NHPI (1.303 g, 8 mmol), Co(OAc)2•4H2O 



   

  

99 
 

 

(0.101 g, 0.41 mmol), and 25 mL MeCN were added.  Because Co(OAc)2•4H2O and 

NHPI are sparingly soluble in MeCN, an orange heterogeneous mixture was obtained.  

The reaction was stirred vigorously at 23°C for 72 h.  The solvent was vacuum stripped, 

and the solid was washed with CH2Cl2 (3 × 25 mL).  A clear, light-yellow liquid was 

obtained after drying over MgSO4.  The oxidized dihydroxy product, 3-[3,5-bis(1-

hydroxy-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-methylpropionate 

(DCOHBMP) (2.61 g, 6.05 mmol, 33.1% yield) was obtained as a white solid after 

removing the dihydroperoxy, diolefin, mono-hydroxy mono-hydroperoxy by-products, 

as well as the substituted acetophenone side product by column chromatography (SiO2, 

hexane/THF (v/v) = 2:1 cosolvents as the eluent).  The crude product was dissolved to 

saturation in toluene at 60°C.  Upon cooling to -10°C for several hours, white crystals 

formed, which were collected by filtration.  Melting point = 90-92 °C by DSC.  1H 

NMR (CDCl3): δ = 1.40 (s, 6H, 3-Me), 1.60 (s, 12H, PhCOH(CH3)2), 1.86 (s, 6H, 

(CH3)2CBr), 2.06 (t, 2H, 2-H), 2.31 (s, 2H, PhCOH(CH3)2), 4.01 (t, 2H, 1-H), 7.40 (m, 

2H, 2,6-PhH), 7.43 (m, 1H, 4-PhH) ppm.  13C NMR: δ = 29.4 (3-Me), 30.7 ((CH3)2CBr), 

31.9 (PhCOH(CH3)2), 37.0 (C3), 41.9 (C2), 55.9 ((CH3)2CBr), 63.8 (C1), 72.8 

(PhCOH(CH3)2), 118.1 (4-PhC), 120.1 (2,6-PhC), 148.0 (1-PhC), 149.0 (3,5-PhC), 

171.6 (CO) ppm.  High-resolution mass spectrometry (HRMS) (EI): C21H33O479Br [M]+, 

calcd. 428.1562, found 428.1575; C21H33O481Br [M]+, calcd. 430.1542, found 430.1553. 

 Figures 46 and 47, show 1H and 13C NMR spectra of dihydroperoxy by-product 

3-[3,5-bis(1-hydroperoxy-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-

methylpropionate (DCOOHBMP), and mono-hydroxy mono-hydroperoxy by-product 3-

[(3-hydroperoxy-1-methylethyl-5-hydroxy-1-methylethyl)phenyl]-3-methylbutyl 2-
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bromo-2-methylpropionate, respectively.  Upon hydrochlorination following the same 

procedure as reported in Chapter II, these by-products are able to yield the same final 

product DCCBMP. 

Synthesis of 3-[3,5-bis(1-chloro-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-

methylpropionate (DCCBMP) 

 The final product, DCCBMP, was obtained as a yellow-brown liquid (2.63 g, 

93.2% yield) by chlorination of DCOHBMP using anhydrous HCl, as previously 

reported. 249  1H NMR (CDCl3): δ = 1.41 (s, 6H, 3-Me), 1.86 (s, 6H, (CH3)2CBr), 2.01 

(s, 12H, PhCCl(CH3)2), 2.06 (t, 2H, 2-H), 4.04 (t, 2H, 1-H), 7.50 (m, 2H, 2,6-PhH), 7.62 

(m, 1H, 4-PhH) ppm.  13C NMR: δ = 29.2 (3-Me), 30.6 ((CH3)2CBr), 34.4 

(PhCCl(CH3)2), 37.0 (C3), 41.8 (C2), 55.8 ((CH3)2CBr), 63.5 (C1), 69.9 (PhCCl(CH3)2), 

120.2 (4-PhC), 122.1 (2,6-PhC), 146.0 (1-PhC), 148.0 (3,5-PhC), 171.5 (CO) ppm. 

Initiation performance test (isobutylene homopolymerization)   

 The LCPs of IB were carried out within an inert atmosphere glove box equipped 

with a hexane/heptane cold bath, following the previously reported procedure.249  

Polymerizations were performed at -70°C using DCCBMP or 5-tert-butyl-1,3-(1-chloro-

1-methylethyl)benzene (t-Bu-m-DCC) as the initiator.  TiCl4 served as the catalyst, and 

2,6-lutidine as the Lewis base in 60/40 (v/v) MCHex/MeCl cosolvents. 

PS-PIB-PS synthesis 

 PS-PIB-PS triblock copolymers were produced via LCP and sequential monomer 

addition within a drybox at -70 °C, using DCCBMP as the initiator, TiCl4 as the catalyst, 

and 2,6-lutidine as the Lewis base in 60/40 (v/v) MCHex/MeCl cosolvents.  FTIR 

(ReactIR 4000) was used to monitor isobutylene and styrene conversions by observing 
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the olefinic =CH2 wag of IB (887 cm-1) and styrene (907 cm-1).242   The DiComp probe 

was inserted into a 250 mL 4-necked round bottom flask equipped with a temperature 

probe and a stirring shaft with a Teflon paddle.  The reactor was placed into the cold 

bath and allowed to equilibrate to -70 °C.  Into the flask were charged 57.9 mL 

prechilled MCHex, 38.6 mL prechilled MeCl, 2,6-lutidine (0.0489 mL, 4.23×10-4 mol), 

and DCCBMP (0.3005 g, 6.45×10-4 mol).  The mixture was allowed to stir for 10 min to 

reach thermal equilibrium before a background spectrum was collected.  Prechilled IB 

(8.50 mL, 0.106 mol) was added to the flask; about 15 spectra were aquired to establish 

the average intensity of the 887 cm-1 peak, A0, corresponding to the initial monomer 

concentration.  At this point, TiCl4 (0.707 mL, 6.44×10-3 mol) was injected into the 

flask.  The molar concentrations of reagents were [IB]0 = 1.0 M, [DCCBMP]0 = 6.1 

mM, [2,6-lutidine]0 = 4.0 mM, and [TiCl4]0 = 61.0 mM, and the total volume was 105.7 

mL.  Once the IB monomer was fully consumed (>99% conversion), indicated by the 

887 cm-1 absorbance approaching an asymptotic value (Ar), a mixture of prechilled 25.7 

mL MCHex, 17.1 mL MeCl, and 7.1 g styrene was added.  These amounts were 

designed to achieve [styrene]0 = 0.4 M, assuming no volume loss when IB monomer 

was converted into polymer, while maintaining a 60/40 (v/v) MCHex/MeCl cosolvents 

system.  The FTIR instrument was reset to monitor the disappearance of the styrene 

band at 907 cm-1.  Once the styrene conversion reached ~50%, 20 mL prechilled 

CH3OH was added to quench the polymerization.  After warming to room temperature 

and loss of MeCl, the MCHex solvent and any remaining styrene monomer were 

vacuum stripped, and sufficient tetrahydrofuran (THF) was added to completely dissolve 
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the polymer.  The PIB-PS-PIB sample was precipitated into a 5-10X volume excess of 

MeOH and dried under vacuum to yield a white solid product.  

Star polymers synthesis 

 Miktoarm star terpolymers based on (PtBA-PS-PIB)2-s-PtBA were prepared by 

initiating tBA directly from unmodified PS-PIB-PS, which inherently carries sec-

benzylic chloride PS chain ends as well as the bromoester functionality at the initiator 

moiety.  However, to produce (PS-PIB)2-s-PtBA, the sec-benzylic chloride chain ends 

had to be deactivated; this was achieved by heating PS-PIB-PS to 180-200°C at 30 

mmHg of vacuum overnight.    

 ATRP of tBA was performed using CuBr as the catalyst, PMDETA as the 

ligand, and PS-PIB-PS as the macroinitiator (MacroI) following the same procedure as 

previously reported for ATRP of methyl acrylate.249  Polymerizations were performed 

using a molar ratio [MacroI]0:[CuBr]0:[PMDETA]0 = 1:1:1 in toluene at 70 °C , with 

[MacroI]0 = 0.01 M and with [tBA]0 set at various levels to achieve different molecular 

weights.  Conversion of tBA monomer was limited to ~60% to avoid coupling.  After 

polymerization, the solution was passed through a column packed with ion-change resin 

and neutral Al2O3 to remove copper salt.  Then THF was added to completely dissolve 

the polymer, and the resulting solution was passed through a 0.2 µm filter to remove any 

remaining Al2O3.  The solution was precipitated into a 5-10X volume excess of MeOH, 

and white (PS-PIB)2-s-PtBA was collected by vacuum filtration and dried under vacuum 

at room temperature. 
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 To convert PtBA into PAA, the star polymers were exposed to 150°C at 30 

mmHg of vacuum overnight to yield amphiphilic (PAA-PS-PIB)2-s-PAA and (PS-

PIB)2-s-PAA miktoarm star polymers. 

Results and Discussion 

Synthesis of DIPBMP 

 The key intermediate for DCCBMP, 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-

bromo-2-methylpropionate (DIPBMP), was produced by Friedel-Crafts alkylation of 

diisopropylbenzene by 3-methyl-3-butenyl 2-bromo-2-methylpropionate, 3, at -20 °C in 

the drybox.   AlCl3 was added at approximately an equal molar ratio to 3, forming a 

thick, deep red slurry.  Low temperature was employed to prevent unwanted substitution 

reactions at other carbons on the 1,3-diisopropylbenzene.   

 Proton and carbon NMR spectra of DIPBMP are shown in Figure 36.   Upon 

alkylation, the olefinic protons in 3 disappeared, and the new methyl protons of the 

tether unit appeared at 1.4 ppm (peak a).  The triplet at 4.0 ppm (peak e) was assigned to 

the methylene protons of the tether unit adjacent to the bromoester (1-H).  The 

methylene protons further from the ester (2-H) are observed as a triplet at 2.0 ppm (peak 

d).  The methyl groups of the 2-bromo-2-methylpropionate moiety (ATRP initiating 

site) exhibit a peak at 1.9 ppm (peak b).  The splitting pattern of the aromatic proton 

peaks changed upon substitution at 1-Ph, yielding two main peaks at 6.92 ppm (peak g) 

and 7.0 ppm (peak f).  Peak integration values were consistent with the proposed 

chemical structure.  Carbon NMR data provided better resolved peaks for analysis.  

After 3 was attached to 1,3-diisopropylbenzene, the olefinic carbon peaks disappeared, 

and corresponding new peaks a and d appeared at 29.3 ppm and 36.7 ppm, respectively.  
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Peak l (1-PhC) shifted downfield to 147.8 ppm.  Peaks i and j shifted upfield to 121.8 

and 121.3 ppm, respectively.  Only four peaks were observed in the aromatic carbon 

region, indicating that a symmetric structure was obtained and that substitution occurred 

only at the 1-Ph carbon. 

Synthesis of DMVBMP 

 Selective benzylic bromination of DIPBMP with NBS using AIBN as a free 

radical source was carried out following a previously reported procedure.262  By 

checking the crude product with NMR, we found that the benzylic isopropyl protons 

disappeared and a new singlet appeared with the expected chemical shift.  However, 

olefinic proton peaks were also observed above 5 ppm, indicating that the reaction 

produced a mixture of substitution and elimination products, namely 3-[3,5-bis(1-

bromo-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-methylpropionate (DCBBMP) 

and 3-(3,5-diisopropenylphenyl)-3-methylbutyl 2-bromo-2-methylpropionate 

(DMVBMP).  In addition, other unwanted peaks appeared in the region above 7 ppm 

and between 4 and 4.5 ppm, representing the production of side products.  Upon column 

chromatography, HBr was removed from DCBBMP through the interaction with silica 

gel substrate.  Therefore, the fully dehydrohalogenated diolefin product DMVBMP was 

obtained as a light yellow liquid; although a significant amount of product was retained 

on the column causing a low yield (27.2%).  

 The proton and carbon NMR spectra of DMVBMP are illustrated in Figure 37.  

The multiplet at 2.8 ppm (peak j, Figure 36) associated with the benzylic isopropyl 

proton of DIPBMP disappeared.  New olefinic proton peaks appeared at 5.1 and 5.3 

ppm (peaks k), and the protons of the newly formed isopropenyl methyl group appeared 
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at 2.2 ppm.  Aromatic protons appeared as a singlet at 7.4 ppm; while the bromoester 

tether signals remained the same.  The integrated areas of olefinic protons and protons of 

methylene next to the ester were found to be in a ratio of approximately 1:1, as predicted 

based upon the structure of DMVBMP.  The carbon spectrum also presented two new 

olefinic carbon peaks at 112.6 ppm (peak s) and 141.2 ppm (peak h).  Peak c shifted 

upfield to 21.9 ppm upon conversion of isopropyl to isopropenyl.  The number of peaks 

visible in the spectrum corresponds to the number of carbons in DMVBMP, indicating 

the desired structure was obtained. 

Synthesis of DCOHBMP 

 Due to the difficult purification and low yield of DMVBMP, we sought a 

different route to the final DCCBMP dual initiator.  In addition to the olefin, the tert-

hydroxyl was the obvious alternative intermediate starting from DIPBMP.  We found 

that NHPI/Co(OAc)2•4H2O catalyzed free radical aerobic oxidation (Figure 34, right) 

works efficiently to convert DIPBMP into the di-tert-hydroxyl intermediate, 

DCOHBMP.     

 Minisci et al. showed that aerobic oxidation of cumene using this catalyst system 

usually produces a methyl aryl ketone side product (i.e., acetophenone in the case of 

cumene);261 however, selectivity toward the desired cumyl alcohol could be increased by 

using low reaction temperature and a non-polar solvent medium.  Solvents 

recommended by these authors, such as chlorobenzene and acetonitrile, as well as the 

non-polar aliphatic solvent hexane, were tested as reaction solvents for the room 

temperature oxidation of DIPBMP.  No reaction was observed for hexane.  Very low 

conversion was obtained with chlorobenzene.  We next conducted a series of reactions 
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in acetonitrile at various temperatures (40 °C, 23 °C and 0 °C); we found that more 

methyl aryl ketone was obtained at 40 °C, while 0 °C led to insufficient conversion after 

a reasonably long reaction time.  Moreover, elevated temperature reaction was found to 

produce stable hydroperoxy by-products (di- and mono-substituted), as well as some 

methyl aryl ketone, in addition to the desired DCOHBMP.  The best combination for 

this reaction is to use acetonitrile as the solvent at room temperature, despite the 

relatively long reaction time required. 

 Regarding product isolation, the original purification strategy involved the use of 

column chromatography, which, although effective at removal of the methyl aryl ketone 

impurity, led to unacceptably high losses of DCOHBMP product, either by retention on 

the column or conversion to the diolefin, 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-

bromo-2-methylpropionate (DMVBMP).  The resulting mixture of tert-benzilic alcohol 

and olefin was a eutectic liquid that was carried forward to the hydrochlorination 

reaction without further attempts at purification.  With greater experience, we 

discovered that pure DCOHBMP is a solid.  This was a significant breakthrough, since it 

enabled purification by recrystallization in toluene.  The resulting pure DCOHBMP was 

obtained as a stable, white solid. 

 Figure 38 shows the NMR characterization results for DCOHBMP.  In the 

proton spectrum, the multiplet at 2.9 ppm (peak j, Figure 36) associated with the 

benzylic protons of DIPBMP was absent.  The doublet representing the methyl protons 

of the isopropyl groups, formerly at 1.2 ppm (peak c, Figure 36), was converted into a 

singlet at 1.6 ppm (peak c) upon aerobic oxidation.  A new peak representing the 

hydroxy proton appeared at 2.3 ppm (peak h).  Peaks f and g shifted downfield to 7.4 
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ppm and 7.5 ppm.  In the carbon spectrum, the oxidized carbon and adjacent methyl 

carbons shifted downfield to 72.7 ppm (peak h) and 31.6 ppm (peak c), respectively, and 

peak i shifted upfield.  The other three aromatic carbon peaks, as well as all carbon 

signals for the bromoester tail, were observed at the same chemical shift in reactant and 

product.   

 High-resolution mass spectrometry (HRMS) analysis of the recrystallized 

product revealed two molecular ions, corresponding to the presence of either 79Br and 

81Br, thus confirming the structure of DCOHBMP.  Differential scanning calorimetry 

(DSC) revealed the m.p. to be 91.3 °C. 

Synthesis of DCCBMP 

 Intermediate DMVBMP, synthesized via NBS bromination and purified by 

column chromatography, was not obtained in a very pure form as indicated by 

extraneous small peaks in the 1H NMR spectrum (Figure 37).  DCCBMP obtained from 

hydrochlorination of DMVBMP showed the same unwanted proton peaks, indicating 

that this initiator was not very pure.  

 Pure DCCBMP was prepared by chlorination of DCOHBMP.  Figure 39 shows 

the 1H and 13C NMR spectra of DCCBMP prepared in this way.  Methyl protons of the 

tether shifted downfield to 2.01 ppm (peak c) after chlorination.  Peaks associated with 

the aromatic protons shifted slightly downfield to 7.5 (peak f) and 7.6 (peak g) ppm.  

The carbon attached to chloride and the adjacent methyl groups shifted to 69.9 and 34.4 

ppm, respectively.  Moreover, the 13C NMR spectrum consisted of exactly 13 signals, 

which were unambiguously assigned to the 13 carbons in DCCBMP, providing further 

evidence that the targeted structure was obtained. 
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Initiation Performance Test 

 Performance of DCCBMPs prepared by NBS bromination plus column 

chromatography, as shown in Figure 34, was tested by using this initiator for the 

synthesis of PIB-5k and PIB-10k.   

 Molecular weight data for PIB-5k and PIB-10k are listed in Table 10.  Number 

average degree of polymerization ( ) was calculated from 1H NMR data using 

equation 1, 

     
(1) 

where, AMe is the integrated peak area of the methyl protons in the PIB repeat unit, and 

ACE is the sum of the integrated peak areas of characteristic resonances representing the 

various polymer chain ends, defined by equation 2, 

    (2) 

In equation 2, Aexo is the area of the upfield exo-olefinic resonance at 4.64 ppm, Aendo is 

the area of the single endo-olefinic resonance at 5.15 ppm, and Atert-Cl is the area of the 

resonance at 1.96 ppm due to the methylene protons of the tert-chloride end group.  

Acoupled was calculated as follows: 

        (3) 

where A4.75-5.0 is the integrated area of the convoluted peaks from 4.75-5.0 ppm 

associated with the downfield exo-olefinic proton and the two identical protons of the 

coupled product.  Equation 2 accounts for all likely terminal chain end types; however, 

the vast majority is tert-Cl.   
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 Initiation efficiency of DCCBMP, Ieff, was calculated as  and 

 from NMR and SEC/MALLS data, respectively.   was calculated 

as the molar ratio of monomer to initiator charged to the reactor; 

, where MIB and MI are the molecular weights of 

isobutylene and the initiator, respectively.   

 As Table 10 shows, PDIs of PIB homopolymers initiated by DCCBMP prepared 

by NBS bromination were < 1.2, indicating reasonable control of the IB polymerization.  

However,  and  data were larger than the designed value, yielding an 

apparent initiator efficiency, Ieff < 1.  We believe that this is indicative of low purity of 

this initial batch of DCCBMP, as opposed to some inherent problem with this particular 

initiator structure.  Thus, the actual amount of DCCBMP charged to the reactor was 

lower than designed. 

 Three PIB samples, PIB-5k, PIB-10k and PIB-20k, were prepared in order to 

study the cationic initiation performance of DCCBMP prepared via aerobic oxidation.  

Table 11 lists NMR and SEC characterization data for these samples.  Figure 40 shows 

the proton NMR spectrum of a representative sample, PIB-5k.  The PIB backbone 

methyl and methylene protons appear at about 1.1 ppm (peak o) and 1.4 ppm (peak p), 

respectively.  Characteristic peaks for the DCCBMP initiator, b, e, f, and g, are present, 

indicating that the radical initiating site remained intact after cationic polymerization.  

Number average functionality with respect to the ATRP initiating site, , was 

quantified and found to be in the range 0.93-1 (Table 11).   was calculated from 1H 
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NMR data using equation 4, where  is the integrated area of the methylene protons 

adjacent to the ester group (peak e) and ACE is defined by equation 2. 

                                 
(4) 

Ieff of DCCBMP characterized by NMR spectroscopy was 0.93-0.95.  SEC eulograms of 

all three PIBs were symmetrical, and PDIs were all less than 1.02.  Ieff calculated from 

SEC data were in the range 0.89-0.98.    

 Control experiments were conducted under the same conditions using the 

standard difunctional cationic initiator, 5-tert-butyl-1,3-di(1-chloro-1-

methylethyl)benzene (t-Bu-m-DCC).  PDIs of the resulting PIBs were the same as those 

obtained from DCCBMP, i.e., less than 1.02 (Table 11).  Ieffs calculated from SEC data 

were ~1, comparable with those of DCCBMP.  In addition, real-time ATR-FTIR 

monitoring of IB polymerizations initiated from DCCBMP yielded linear 1st order 

kinetic plots, similar to those obtained with t-Bu-m-DCC, as illustrated in Figure 41.  

These results show that the presence of the ATRP initiating site on DCCBMP does not 

interfere with or present any special problems in LCP and that pure DCCBMP prepared 

via the aerobic oxidation route enables precise control over molecular weight, 

polydispersity, and functionality of the resulting polymers.   

PS-PIB-PS Synthesis 

 PS-PIB-PS triblock copolymers with bromoester functionality in the center of 

PIB block were prepared via sequential LCP of IB and then styrene, using DCCBMP as 

the initiator.  Results of SEC analysis of these copolymers are given in Table 12 and 

Figure 42.  As listed in Table 12, PS-PIB-PS macroinitiators were prepared with very 



   

  

111 
 

 

narrow PDIs (1.06 for PS-PIB-PS-1, 1.02 for PS-PIB-PS-2).  The targeted molecular 

weight of the PIB block in PS-PIB-PS-1 was 9670 g/mol; the experimental molecular 

weight was 11380 g/mol, yielding Ieff = 0.85.  For PS-PIB-PS-2, the experimental  

(20020 g/mol) was almost the same as   (19540 g/mol), yielding Ieff =0.98.  

Conversion of styrene (0.88 for PS-PIB-PS-1, 0.82 for PS-PIB-PS-2) was higher than 

targeted (0.50), yielding PS-PIB-PS polymers composed of more PS volume than the 

designed value.   

 Figure 42 shows the progression of SEC elution curves during synthesis of PS-

PIB-PS-1, which is representative.  PIB initiated by DCCBMP (black) was characterized 

by a narrow and symmetrical peak.  Elution profile of the triblock copolymer (red) was 

still symmetrical but shifted to lower elution volumes, indicating that LCP of the second 

monomer, styrene, occurred to form the targeted triblock copolymer.   

 Figure 43 (upper) shows the 1H NMR spectrum of a representative sample, PS-

PIB-PS-2.  The styrene backbone methylene and methine protons were observed at 1.4 

ppm (peak q) and 1.8 ppm (peak r).  The broad peaks at 6.4-7.2 ppm (collectively 

denoted s) were assigned to the aromatic protons both of the PS block and DCCBMP 

initiator.  The methylene protons next to the bromoester group were observed as a well-

defined triplet at 4.0 ppm (peak e).  The characteristic broad absorbance due to the 

ultimate CH of the PS block (sec-benzyl chloride proton, peak t) was observed at 4.3-4.4 

ppm. 

Star polymers Synthesis   

 As illustrated in Figure 35, quenching LCP of styrene with MeOH produces sec-

benzylic chloride end groups, which are known to be active radical initiation 
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centers.110,114,263  To selectively grow tBA only from the designated bromoesters, PS-

PIB-PS macroinitiators were thermolyzed to eliminate HCl and thus deactivate the PS 

chain ends.  After thermolysis, the broad peak associated with CH of sec-benzyl chloride 

at 4.3-4.4 ppm disappeared, as shown in the lower spectrum in Figure 43.  Small peaks 

appeared at 3.1 ppm and 6.1 ppm, which were attributed to the newly formed olefinic 

chain ends.  PS-PIB-PS macroinitiators were re-analyzed by SEC after thermolysis, and 

as expected, the molecular weights of the treated and untreated PS-PIB-PS were about 

the same.  As shown in Figure 42, elution curve of the thermolyzed PS-PIB-PS-1 

(green) overlaps with PS-PIB-PS-1 (red), indicating the difference between treated and 

untreated macroinitiators concerns only PS chain ends. 

 The ATRP of tBA was next used to produce (PtBA-PS-PIB)2-s-PtBA and (PS-

PIB)2-s-PtBA miktoarm terpolymers from PS-PIB-PS and thermolyzed PS-PIB-PS 

macroinitiators, respectively.  SEC characterization results for these star polymers are 

given in Table 13.  PS-PIB-PS macroinitiators, either in their original state or after 

thermal deactivation of the PS chain ends, worked well in ATRP.  The resulting 

miktoarm stars possessed molecular weights of the PtBA very close to the targeted 

values, and the overall PDIs were narrow (< 1.1).  Only four sets (two for each 

macroinitiator) of ATRP results were demonstrated in Table 13. 

 Figure 42 illustrates the SEC elution profiles of (PS-PIB)2-s-PtBA star polymers, 

ATRP-1 (cyan) and ATRP-2 (blue), initiated by thermolyzed PS-PIB-PS-1.  Both star 

polymers possessed narrow PDIs (<1.1), and the elution profiles were symmetrical with 

no apparent shoulders, indicating very high blocking efficiency from the macroinitiator 

and negligible radical-radical coupling during ATRP.  High blocking efficiency 
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confirms that the ATRP initiating site of the DCCBMP initiator survives LCP and 

thermolysis at 180-200°C. 

 Figure 44 (upper) shows the 1H NMR spectrum of (PtBA-PS-PIB)2-s-PtBA star 

polymer (ATRP-3).  Addition of the PtBA blocks introduced new peaks at 1.5 (peak u) 

and 2.2 ppm (peak v), corresponding to the methylene and methine backbone protons, 

respectively, of PtBA.  As expected, (PS-PIB)2-s-PtBA prepared from deactivated PS-

PIB-PS showed the same characteristic proton signals.  

 Thermolysis has been reported to eliminate isobutylene molecules from PtBA 

via beta-type scission and thus produce PAA hydrophilic blocks.258  This technique 

proved to also work very well for the present systems.  Figure 44 (lower) shows the 1H 

NMR spectrum of (PAA-PS-PIB)2-s-PAA polymer obtained after thermolysis.  The 

integrated area for the combined PIB backbone methylene and PtBA tert-butyl protons 

(peak p and t) decreased.  13C NMR gave better evidence for removal of the tert-butyl 

groups.  Figure 45 shows 13C NMR spectra of ATRP-3 before (upper) and after 

thermolysis (lower).  The methyl and quaternary carbons of the tert-butyl groups of 

PtBA, which appear at 81 ppm (peak y) and 29 ppm (peak t) in the upper spectrum, as 

reported,258,264 completely disappear after thermolysis. 

Conclusions 

 The dual initiator DCCBMP containing two sec-benzylic chloride groups for 

cationic initiation and one bromoester for radical initiation was synthesized in four steps.  

Instead of brominating the DIPBMP intermediate radically, a new aerobic oxidation 

using NHPI and Co(OAc)2•4H2O catalyst system was employed to convert DIPBMP 

into DCOHBMP, a new compound easily purified by recrystallization.  The chemical 
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structure of this crystalline solid was confirmed by proton and carbon NMR 

spectroscopy and HRMS.  The melting point was determined by DSC to be 91.3 °C.  

Chlorination of DCOHBMP yielded the final product, DCCBMP, as a light yellow 

liquid.  The chemical structure of DCCBMP was confirmed by NMR spectroscopy.  

Compared with AIBN bromination, this mild aerobic oxidation reaction can easily 

convert benzylic CH(CH3)2 into COH(CH3)2 without destroying other functional groups.  

Although a small amount of side products were observed, the technique provids a better 

synthetic route and can be applied in other organic syntheses.     

 The initiation performance of DCCBMP was investigated by conducting TiCl4-

catalyzed IB polymerizations at -70 °C.  FTIR spectroscopy demonstrated a linear first-

order kinetic plot that passes through the origin, indicating fast initiation and a constant 

concentration of active chain ends during polymerization.  SEC results showed that high 

initiation efficiency (Ieff = 0.89-0.98) and near-monodisperse polymers (PDI ≤ 1.02) 

were obtained when DCCBMP was used to polymerize isobutylene, targeting molecular 

weights of 5k, 10k and 20k g/mol.  The cationic initiation performance of DCCBMP 

was essentially identical to the standard aromatic difunctional cationic initiator, t-Bu-m-

DCC, which was utilized as a control (Table 11).  The bromoester functionality, which 

is designed for the subsequent ATRP, was observed in the proton NMR spectrum of the 

resulting PIB.  The number average functionality,  was calculated to be 0.93~1.00, 

indicating that radical initiating group was intact during IB polymerization. 

 DCCBMP was utilized to prepare a series of amphiphilic (PAA-PS-PIB)2-s-PAA 

and (PS-PIB)2-s-PAA miktoarm star polymers using a combination of LCP, sequential 

monomer addition, and ATRP techniques.  PS-PIB-PS triblock copolymers were 
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produced by living carbocationic polymerization of IB followed by sequential addition 

of styrene.  After quenching with MeOH, the polymers thus obtained carried sec-

benzylic chlorides at the PS chain ends, which are able to induce radical polymerization.  

Thus, as obtained, these polymers possessed three ATRP initiating sites and were used 

to produce (PtBA-PS-PIB)2-s-PtBA miktoarm star polymers. 

 The PS terminal functionality could alternatively be selectively deactivated by 

heating the polymers to 180-200 °C in a vacuum oven.  Proton NMR spectra showed 

that only sec-benzylic chlorides were removed with no change observed for the 

bromoester group.  SEC characterization of PS-PIB-PS macroinitiators before and after 

thermolysis generated identical polymer elution profiles, indicating that there were no 

backbone structure changes.  Deactivated PS-PIB-PS macroinitiators enabled PtBA 

growth only from the bromoester group, yielding (PS-PIB)2-s-PtBA star polymers under 

the same ATRP conditions.   

 Both types of miktoarm stars were prepared with designed composition and 

narrow PDIs (<1.1) as confirmed by NMR and SEC analysis.  Upon thermolyzing these 

star polymers, PtBA was completely converted to PAA, yielding amphiphilic PIB-based 

star polymers (PAA-PS-PIB)2-s-PAA and (PS-PIB)2-s-PAA, in which the third block 

can share an interface with the PIB block.  Their intriguing self-assembly behavior in 

aqueous solution as well as phase separation morphology in solid state will be 

examined.
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Table 10.  Molecular Weight Data for PIB-5k, PIB-10k Prepared from Di-cationic 

Mono-radical Dual Initiator DCCBMPa via LCPb  

 
NMR 

 
SEC 

 

 

 
 

 Ieff 

 

 
(g/mol) 

 

 
(g/mol) 

Ieff PDI 

 
PIB-5k 

 
105 

 
82 

 
78.2% 

 
5910 

 
5060 

 
85.6% 

 
1.14 

 
PIB-10k 217 164 75.6% 12470 9670 77.5% 1.18 

 
 

Note.  aThis DCCBMP was prepared DMVBMP, synthesized via NBS bromination and column chromatography 

b-70°C; 60/40 MCHex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM 

[I]0 = 12.2 mM; [TiCl4]0 = 48.8 mM for 5k samples 

[I]0 = 6.10 mM; [TiCl4]0 = 48.8 mM for 10k samples 
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Table 11.  Characterization Results of PIBs Prepared from Di-cationic Mono-radical 

Dual Initiator DCCBMPa and Difunctional Cationic Initiator, t-Bu-m-DCC via LCPb 

 
NMR 

 
SEC 

 

   Ieff 

 

 
(g/mol) 

 

 
(g/mol) Ieff PDI 

Ieff, 

t-Bu-m-DCC 

 
PIB-5k 

 
88 

 
82 

 
0.97 

 
0.93 

 
5700 

 
5070 

 
0.89 

 
1.02 

 
0.97 

 
PIB-10k 174 164 0.93 0.94 10170 9670 0.95 1.01 1.00 

 
PIB-20k 357 340 1.00 0.95 20020 19540 0.98 1.01 0.99 

 
 

Note.  aThis DCCBMP was synthesized DCOHBMP, which was obtained via NHPI induced aerobic oxidaton 

b-70°C; 60/40 MCHex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM  

[I]0 = 12.2 mM; [TiCl4]0 = 48.8 mM for 5k samples  

[I]0 = 6.10 mM; [TiCl4]0 = 48.8 mM for 10k samples  

[I]0 = 3.05 mM; [TiCl4]0 = 91.5 mM for 20k samples 
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Table 12.  Molecular weight data for PS-PIB-PS macroinitiators prepared from 

DCCBMP via LCP and Sequential Monomer Addtiona 

 

 
  

(g/mol) 
 

 
(g/mol) 

PDI 

 
PS-PIB-PS-1b 

 
11380 

 
20150 

 
1.06 

 
PS-PIB-PS-2c 20020 32060 1.02 

 
 

Note.  a-70°C; 60/40 MCHex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 mM; [St]0 = 0.4 M 

b[DCCBMP]0 = 6.1 mM; [TiCl4]0 = 61.0 mM; [St]0/[DCCBMP]0 = 96; conv.(styrene) = 0.88 calculated based on SEC result 

c[DCCBMP]0 = 2.94 mM; [TiCl4]0 = 88.2 mM; [St]0/[DCCBMP]0 = 160; conv.(styrene) = 0.72 calculated based on SEC result 
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Table 13.  Molecular weight data for (PS-PIB)2-s-PtBA and (PtBA-PS-PIB)2-s-PtBA 

star polymers Prepared via ATRPa 

 
 

 
(g/mol) 

 

 
(g/mol) 

 
(g/mol) 

PDI 

 
ATRP-1 b 

 
26120 

 
5970 

 
7690 

 
1.08 

 
ATRP-2 b 36350 16200 15380 1.07 

 
ATRP-3 c 40250 8190 7690 1.02 

 
ATRP-4 c 77450 45390 45140 1.03 

 
 

Note.  a70°C; toluene; [MacroI]0 = 0.01 M; [MacroI]0:[CuBr]0:[PMDETA]0 = 1:1:1; quenched at 60% tBA conversion 

[tBA]0/[MacroI]0 = 100 for ATRP-1 and ATRP-3  

[tBA]0/[MacroI]0 = 200 for ATRP-2 

[tBA 0/[MacroI]0 = 580 for ATRP-4  

busing thermolyzed PS-PIB-PS-1 as macroinitiator, producing (PS-PIB)2-s-PtBA star polymers 

cusing PS-PIB-PS-2 as macroinitiator, producing (PtBA-PS-PIB)2-s-PtBA star polymers 
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Figure 33.  Schematic synthesis route of amphiphilic poly(acrylic acid-b-styrene-b-

isobutylene)2-s-poly(acrylic acid) [(PAA-PS-PIB)2-s-PAA] and poly(styrene-b-

isobutylene)2-s-poly(acrylic acid) [(PS-PIB)2-s-PAA] miktoarm star terpolymers from 

dual initiator 3-[3,5-bis(1-chloro-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-

methylpropionate (DCCBMP) using the combination of living carbocationic 

polymerization (LCP) and atom transfer radical polymerization (ATRP). 
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Figure 34.  Synthesis routes to DCCBMP via 3-(3,5-diisopropylphenyl)-3-methylbutyl 

2-bromo-2-methylpropionate (DIPBMP): radical bromination and aerobic oxidation. 
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Figure 35.  Synthesis of (PAA-PS-PIB)2-s-PAA and (PS-PIB)2-s-PAA miktoarm star 

polymers.  
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Figure 36.  Proton and carbon NMR spectra of 3-(3,5-diisopropylphenyl)-3-methylbutyl 

2-bromo-2-methylpropionate (DIPBMP). 
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Figure 37.  Proton and carbon NMR spectra of 3-(3,5-diisopropenylphenyl)-3-

methylbutyl 2-bromo-2-methylpropionate (DMVBMP) obtained after NBS bromination 

of DIPBMP and column chromatography. 
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Figure 38.  Proton and carbon NMR spectra of 3-[3,5-bis(1-hydroxy-1-

methylethyl)phenyl]-3-methylbutyl 2-bromo-2-methylpropionate (DCOHBMP) 

obtained by aerobic oxidation of DIPBMP. 
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Figure 39.  Proton and carbon NMR spectra of di-cationic mono-radical dual initiator 3-

[3,5-bis(1-chloro-1-methylethyl)phenyl]-3-methylbutyl 2-bromo-2-methylpropionate 

(DCCBMP). 
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Figure 40.  Proton NMR spectrum of PIB-5k initiated by DCCBMP. 
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Figure 41.  First-order kinetic plots for IB polymerizations at -70 °C.  Conditions were 

as follows: 60/40 Hex/MeCl cosolvents (v/v); [IB]0 = 1.00 M; [2,6-lutidine]0 = 4.00 

mM; [DCCBMP]0 = 12.2 mM; [TiCl4]0 = 48.8 mM targeting 5k. 
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Figure 42.  The SEC curves of PIB segment in PS-PIB-PS-1 (black), PS-PIB-PS-1 (red), 

PS-PIB-PS-1 after thermolysis (green) which overlaps with PS-PIB-PS-1, and (PS-

PIB)2-s-PtBA star polymers, ATRP-1 (cyan) and ATRP-2 (blue). 
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Figure 43.  Proton NMR spectra of PS-PIB-PS-2 before (upper) and after thermolysis 

(lower). 
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Figure 44.  Proton NMR spectra of (PtBA-PS-PIB)2-s-PtBA (ATRP-3) miktoarm star 

polymer (upper), and (PAA-PS-PIB)2-s-PAA prepared upon thermolysis (lower). 
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Figure 45.  Carbon NMR spectra of (PtBA-PS-PIB)2-s-PtBA (ATRP-3) and the 

corresponding (PAA-PS-PIB)2-s-PAA obtained by thermolysis. 
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Figure 46.  Proton and carbon NMR spectra of di-hydroperoxy product upon aerobic 

oxidation of 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-bromo-2-methylpropionate. 
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Figure 47.  Proton and carbon NMR spectra of mono-hydroxy mono-hydroperoxy 

product upon aerobic oxidation of 3-(3,5-diisopropylphenyl)-3-methylbutyl 2-bromo-2-

methylpropionate. 
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