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ABSTRACT 

RNA interference (RNAi) has transformed genetics research by revolutionizing 

reverse genetics in the nearly three decades that have passed since its discovery. ~19-31 

nt small non-coding RNAs play a central role in RNAi biology, and are found in all 

multicellular eukaryotes. In these animals, three major classes of small RNAs have been 

described: microRNA (miRNA), small interfering RNA (siRNA), and Piwi interacting 

RNA (piRNA), which are produced in distinct yet occasionally overlapping pathways. 

While miRNAs are involved in tuning endogenous gene expression, piRNAs and siRNAs 

are essential for defense against viruses and transposons. Argonaute proteins are the main 

effectors in RNAi biology; they associate with small RNAs forming RNA induced 

silencing complex (RISC), which finds target transcripts by complementary base-pairing 

between small RNA and target leading to destruction or inhibition of expression.  

In the present study, we sought to investigate the RNAi pathways in two basal 

arthropods; a major allergy causing agent—dust mites, and the most polyphagous and 

pesticide resistant plant pest—spider mites. We have discovered that the piRNA pathway 

is absent in dust mite, and has been integrated into a derived siRNA pathway in spider 

mites. The spider mite siRNA pathway, which appears to work upstream of piRNA 

biogenesis, is gonad specific, and is a complete reversal of worm’s piRNA biology. 

Besides a laboratory tool, RNAi is being developed into an efficient pest-control 

technique to knock down gene expression in a single, targeted species. In such strategy, 

RNAi is triggered by long double-stranded RNAs, which get incorporated into the 

endogenous RNAi machinery producing siRNA, and trigger cleavage of complementary 

target transcripts. So far, RNAi technology is largely unsuccessful against spider mites, 
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and the present study will help to design effective RNAi technology in future. Moreover, 

many species have been found insensitive to RNAi such as lepidopterans and 

hemipterans. Barriers in gut biology inhibit successful RNAi in these animals, which can 

be prevented if dsRNAs being delivered to epithelial cells effectively. To address this, we 

have developed a cationic polymeric delivery vehicle in this study that was successful in 

fall armyworm, a traditionally RNAi recalcitrant insect pest.  
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CHAPTER I – INTRODUCTION 

1.1 RNA Interference (RNAi) 

RNAi has revolutionized genetic research in both model and non-model 

organisms (Kamath and Ahringer 2003; Russell, et al. 2017) by transforming reverse 

genetics investigations. RNAi was originally outlined as a strategy by which exogenous 

double-stranded RNA (dsRNA) could be used to elicit degradation of complementary 

RNA (Fire, et al. 1998). 19-31nt small non-coding RNAs are the central player in RNAi 

biology. These small RNAs associates with Argonaute family protein forming RNA 

induced silencing complex (RISC), which finds target transcripts, and facilitates 

complementary base-pairing between the small RNA and target finally leading to 

translational silencing or destruction of the target transcript (Fig 1.1). 

 
 

Figure 1.1 RNA interference by miRNA and siRNA 

Hairpin-loop RNA and long double strand RNA (dsRNA) get incorporated into miRNA and siRNA pathways respectively. Hairpin-

loop RNAs are diced sequentially by Drosha and Dicer to produce mature miRNAs whereas siRNAs are produced only by Dicer. The 
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mature small RNAs associate with Ago proteins, which form RNA induced silencing complex (RISC) recruiting other protein factors. 

The complex facilitates complementary base pairing between small RNA and its target rendering transcriptional inhibition or 

destruction of target transcript. 

1.2 A Short History of RNAi Discovery 

Our present understanding of small RNA or RNAi biology in invertebrates is 

based on little over two decades of research on Drosophila melanogaster and 

Caenorhabditis elegans. Napoli and Jorgensen at the DNA Plant Technology Corporation 

-a private biotech company first reported an RNAi type phenomenon in 1990. They 

aimed to create commercially lucrative deeper purple petunia by expressing extra copies 

of chalcone synthase (CHS) gene, a key enzyme in the anthocyanin biosynthesis pathway 

(Napoli, et al. 1990). Result of the experiment was opposite of what they expected. 

Instead of deep purple petunia, the extra copies of the gene produced white and 

variegated flowers, which suggest that the pigment-producing pathway was knocked 

down or completely turned off. Indeed, CHS protein level dropped by 50 times in the 

engineered plant compared to the wild type. They hypothesized - the endogenous CHS 

gene was “cosuppressed” by the transgenes. In 1992, Romano and Macino observed a 

similar event in Neurospora crassa, and called the incident “Quelling” (Romano and 

Macino 1992). In both cases, the underlying molecular mechanisms were unknown.  

In 1993, Victor Ambros group at Harvard University observed down regulation of 

lin-14 gene by lin-4 in C. elegans (Lee, et al. 1993). They reported that the negative 

effect on lin-14 was due to complementary base pairing between lin-4 RNA and lin-14 

mRNA. They identified a 22 or 61nt region in the lin-4 RNA that was complementary to 

3’UTR of lin-14 mRNA. They proposed that the lin-4-lin-14 double stranded region 

became inaccessible to the translation machinery. Unlike cosuppression or quelling, 
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which were triggered by introducing exogenous genes, lin-4/lin14 regulation was an 

endogenous event. It was the first observation of gene regulation by a RNA molecule, 

and considered as exclusive to worm genetics. 

After the discovery of regulation of gene expression by non-coding single 

stranded RNA (i.e. lin-4), antisense became a popular tool. In worms, Guo and 

Kemphues observed a bizarre but striking incident (Guo and Kemphues 1995). They 

sought to silence par-1 gene by injecting par-1 antisense RNA, and observed down-

regulation of PAR-1 protein. However, when sense par-1 RNA was injected, PAR-1 

protein level went down too. No explanation was offered about the incident. Fire and 

Mello in 1998 provided the explanation for cosuppression, quelling or sense mRNA 

mediated gene silencing (Fire, et al. 1998). They showed that double-stranded rather than 

single-stranded RNA (ssRNA) worked as the effector molecule in those gene silencing 

events. They explained that the unexpected finding of Guo and Kemphues was caused by 

contamination of sense RNA with anti-sense and vice versa by bacteriophage RNA 

polymerase resulting production of dsRNA. Fire and Mello’s work paved the way of 

dsRNA mediated gene silencing application, and they won a Nobel prize in 2006. Still, 

there were many questions to be addressed. Mainly, the mechanism that could explain 

how dsRNA caused silencing by suppressing endogenous mRNA, and length of the anti-

sense RNA. In 1999, Hamilton and Baulcombe at Cambridge University determined the 

length to be 25nt in plant system (Hamilton and Baulcombe 1999). The following year 

Hannon and Bartel group independently discovered that 21–23nt RNAs were responsible 

for RNAi, and proposed that longer dsRNA get cleaved to produce small interfering 

RNAs (siRNAs), which unwind and bind to complementary sequence on target mRNAs 
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ultimately leading to their cleavage (Meye, et al. 2000; Zamore, et al. 2000).  

Regulation of lin-14 by a short RNA from lin-4 gene was considered as an 

unusual worm event until the discovery of the second small RNA in worm, let-7 in 2000 

(Lau, et al. 2001). Subsequently, let-7 gene was found to be conserved in organisms like 

human, fly. By the next year different groups reported similar small regulatory RNAs in 

other organisms, and finally the term microRNA was coined recognizing miroRNA genes 

to be conserved across species. 

There were seemingly two distinct anticipated cleavage events -processing of long 

dsRNA to siRNAs, and cleavage of target mRNA. It was still unknown whether the same 

enzyme was involved in both events. Subsequently, several independent groups 

determined that two actions were separated, and the dsRNA cleaving enzyme Dicer was 

eventually identified (Bernstein, et al. 2001). Dicer was found to be a RNAase III class 

enzyme that worked as part of a large complex; RNA induced silencing complex (RISC). 

In 2002, Argonaute1 (Ago1) and Ago2 were identified as part of RISC by Tuschl lab 

(Martinez, et al. 2002). “Slicer” function, which is responsible for cleaving mRNA was 

identified to be inherent to some of the Argonaute proteins by Joshua-Tor and Hannon 

labs in 2004 (Martinez, et al. 2002; Song, et al. 2004).  

Discovery of small non-coding RNAs transformed reverse genetics based 

functional studies. Hundreds of labs all over the world started working to discover 

different aspects of the pathways. In June, 2006, two independent groups lead by Gregory 

Hannon and Thomas Tuschl respectively from Cold Spring Harbor Laboratory and 

Rockefeller University reported a new class of small RNA in mouse; Piwi interacting 

RNA (piRNA), which differed from other two classes by their length and associated 
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Argonaute proteins. While miRNAs and siRNAs were 21-23nt long, piRNAs were found 

to be 26-31nt, and associated with Piwi clade Argonaute proteins (Aravin, et al. 2006). In 

subsequent years, piRNAs were identified as the most abundant, complex, and 

mysterious class small RNAs. Subsequently, next generation sequencing technologies 

emerged along with plenty of bioinformatics tools that enabled capturing very low 

abundant small RNAs. In 2007, Bartel group discovered a sub class of microRNAs; 

mirtrons, which located in introns of mRNA coding genes. Investigations by Fire and 

Mello and others used siRNA producing long dsRNAs that were introduced to cells or 

organisms exogenously. In 2008, endogenous siRNAs were discovered in fly and other 

mammals (Nilsen 2008; Okamura and Lai 2008). Endo-siRNAs were discovered in worm 

in 2009. Though biogenesis of these siRNAs varies widely from fly or mammals, they 

share the common theme that they derive from endogenous source.  

Though most of the basic RNAi discoveries were accomplished through classical 

genetics approaches, next generation sequencing (NGS) technologies have made it 

possible to undertake and complete very large genomics and transcriptomic projects over 

the last decade. Superior technology, and gradual decrease of cost are playing key roles in 

NGS. Moreover, available NGS technologies provide advantages to small RNA 

sequencing over genome or transcriptome (mRNA) sequencing. Present NGS methods 

require shearing messenger RNAs before constructing sequencing library as they are yet 

not capable of sequencing long stretches of nucleotides. However, NGS does not need 

small RNAs to be truncated before sequencing. The whole functional small RNA 

molecule is sequenced, which gives information about precise biogenesis pattern and 

abundance in cell or tissue, which is not the case in mRNA or genome sequencing (Fig 

https://en.wikipedia.org/wiki/MicroRNAs
https://en.wikipedia.org/wiki/Intron
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1.2). mRNAs are longer, and so are needed to be fragmented before cloning for 

sequencing. After sequencing the library, the reads should be assembled and normalized 

to get the actual expression data of a particular mRNA. However, number of reads in a 

small RNA library is a direct reflection of the abundance of that small RNA. Moreover, 

exact biogenesis information of the small RNA can also be learned from after sequencing 

them using the current technology. 

 
Figure 1.2 Small RNA sequencing method 

Small mature RNAs are cloned directly due to their small sizes which is amenable for current sequencing technologies. After adapter 

ligation, the entire small RNA is sequenced in one reaction.  

1.3 Major Classes of Small RNA 

Based on current knowledge, small RNAs can be divided into three major classes: 

I. MicroRNA (miRNA) 

II. Short interfering RNA (siRNA) 

III. Piwi interacting RNA (piRNA) 

They are produced in three separate pathways; however, their function, and biogenesis 

factors can overlap. 
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1.3.1 MicroRNA (miRNA) Pathway 

MicroRNAs are highly conserved across species, and work to down regulate 

expression of genes in every biological pathway throughout all developmental stages. 

Human genome encodes more than a thousand miRNA genes, which fine tune expression 

of over 60% cellular genes (Hogg and Harries 2014). Majority of the miRNAs are 

produced from their own transcriptional unit by RNA Pol II. As many as 40% of the 

miRNAs could be mirtrons, which are produced from introns (Rothman, et al. 2014). 

Transcriptional machinery adds 5’Cap and poly A tail to the nascent mRNA transcripts 

(primary miRNAs, pri-miRNA), which forms a secondary stem-loop structure, and 

RNase III enzyme Drosha crop in at the base of the stem producing ~80nt long stem-loop 

precursor miRNA (pre-miRNA) (Fig 1.3). Exportin-5, a RanGTP-dependent dsRNA-

binding protein transports pre-miRNA to the cytoplasm where Dicer protein cleaves off 

the stem-loop and produce a hairpin RNA duplex of ~19-22nt, which typically has a 

bulge around the mid length (Okamura 2012). However, mirtrons are generated from 

spliced-out gene introns, and do not need Drosha mediated cropping; a fundamental 

deviation from canonical miRNA biogenesis (Okamura, et al. 2007). After splicing, Dicer 

works on the spliced-out transcript and produces mature miRNA (mirton). Between the 

two strands of the mature miRNA hairpin, only one is selected and incorporated into 

RNA-induced silencing complex (RISC). In RISC, mature microRNAs associate with 

Ago proteins followed by Watson-Crick base pairing with target mRNA. 
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Figure 1.3 miRNA biogenesis 

RNA Pol II transcribed short hairpin-loop RNA is cleaved by Drosha in nucleus producing pre-miRNA, which is transported to the 

cytosol by Exportin-5. In the cytoplasm, Dicer protein dice the pre-miRNA around the base of the loop producing mature size 

miRNA. After Dicer mediated cleavage, mature miRNA associate with Ago protein, form RISC, and target mostly protein coding 

transcript and inhibit their translation. 

Though miRNAs are very conserved in both animals and plants, they evolved 

independently, and differ in their primary mechanism of action. In plants, miRNA 

follows near perfect complementarity with their target transcript, and repress translation 

by cleaving the target (Zhang, et al. 2006). Contrarily, animal miRNAs do not need 

perfect complementarity on the entire length, rather nt 2-8 (seed region) from their 5’ end 

base pair perfectly with the target, and suppress gene expression by inhibiting translation 

(Hansen, et al. 2016). As perfect complementarity is not required, one miRNA can target 

many genes. 

1.3.2 Short Interfering RNA (siRNA) Pathway 

siRNAs are generally 21-23nt long, like miRNAs, and are produced in a miRNA 

like biogenesis pathway though do not need Drosha mediated cleavage of precursor 



 

9 

transcripts (Fig 1.4). siRNAs are broadly divided into two classes i) endo-siRNA ii) exo-

siRNA; both are produced in similar fashion, however, sources of their precursor 

transcript and downstream functions may vary (Okamura and Lai 2008). Transcripts that 

form hairpin structure are targeted by Dicer, which generates mature siRNA by cleaving 

the hairpin on both sides. Such precursor transcripts can be found in several 

configurations in any genome including long inverted repeat transcripts, and transcripts 

that are produced in antisense orientation (natural antisense transcripts-NATs). When 

Dicer cleaves them into siRNAs, it produces 2nt overhang in both sense and anti-sense 

strands at their 3’ end. siRNAs work in anti-viral immune response, indeed RNAi 

mechanism thought to have evolved to restrict dsRNA virus propagation (Obbard, et al. 

2009). siRNAs can be produced from these exogenous transcripts in a similar fashion like 

the endo-siRNAs. Synthetic short hairpin RNAs (shRNA) are widely used to knock down 

gene expression in mammalian cell culture experiments, while long dsRNAs are used to 

knock down gene expression in arthropods and other invertebrates. Once these transcripts 

enter inside cells, they get incorporated into the endogenous siRNA pathway. Due to 

exogenous source, they are called exo-siRNA. 

While miRNAs are very conserved, siRNAs vary among organisms. D. 

melanogaster produce siRNAs that are exactly 21nt long while in C. elegans they are 

either 22nt or 26nt (22G RNA and 26G RNA) (Halic and Moazed 2009). In worm, these 

endogenous siRNA are produced in a completely different mechanism than insects or 

mammals. 
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Figure 1.4 siRNA biogenesis 

In invertebrates, long double strand RNA, which can be produced from virus, transposon, exogenous application or endogenous 

source are diced by Dicer producing ~21 nt mature siRNAs. These siRNAs associate with Ago proteins and result direct destruction of 

the target transcript. In mammalian cell culture experiments, short hairpin RNAs (which are shorter than 30nt) are used to produce 

siRNA in a similar mechanism. 

1.3.3 Piwi Interfering RNA (piRNA) Pathway 

piRNAs, which are expressed only in animal gonad, form the largest small RNA 

class. They differ from other two classes of small RNAs mainly due to their longer size, 

association with Piwi clade Argonaute proteins, and independence of RNase III mediated 

biogenesis. In arthropods and vertebrates, piRNAs are 25-31nt long, and predominantly 

work in silencing of transposable elements. Transposable elements (TE) are a threat to 

the germline genome due to their inherent capacity of creating random mutation, which is 

a deadly threat to the germ cells as they carry the message to next generation. piRNAs are 

expressed in the gonad and mainly halt activity of TE, and thus protect integrity of the 

germline genome. They control activity of TE by cleaving TE derived cognate transcripts 
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in cytosol or suppress TE expression at certain loci by changing chromatin conformation 

at transcription level in the nucleus. 

As piRNAs like the other small RNAs work in a sequence specific manner, once 

they are transcribed and produce matured piRNAs, any complementary transcripts can be 

targeted. So, the key is initiation of transcription, and recruiting the transcripts into 

piRNA biogenesis pathway. Transposons are repetitive but highly heterogeneous. 

Drosophila has more than 100 different types of TE, however, exceedingly well 

capability of transposition is their kay feature (Yamanaka, et al. 2014). Therefore, 

organisms need a massive approach to recognize such a varied set of TE, and a 

mechanism that can differentiate the TEs from the remaining genomic elements for 

selectively attacking them for suppression.  

Most organisms have devised a broad strategy to tackle both features. Animals 

have taken advantage of their repetitiveness by entrapping a group of TE at certain 

genomic locations and engage Piwi- interacting RNAs (piRNAs) machinery to focus on 

those loci specifically. In animal gonad, piRNAs are mainly produced from these loci, 

thus they are called piRNA clusters. These TEs are mostly inactive and fragmented but 

piRNAs that derive from these loci are not only complementary to their origin, due to 

high repetitive nature they also map to active TEs elsewhere in the genome and so can act 

as trans-acting suppressing element. Loss of the clusters diminishes TE regulation 

causing sterility (Malone, et al. 2009).  

TE clusters are located in a heterochromatin milieu, which put them under less 

selective pressure, and therefore, they are preserved in the genome. Within the 

heterochromatin, piRNA clusters lean to be resided in the proximity of the 
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heterochromatin and euchromatin. Generally, intact and active transposons are found 

across whole genome, but broken and/or defective TEs heavily accumulate in the 

transition zones between heterochromatin, and form piRNA clusters (Chirn, et al. 2015). 

How the piRNA clusters act as adaptive immune system, a model proposed that piRNA 

clusters act as “TE traps” (Zanni, et al. 2013). According to the model TEs that got 

inserted into a cluster are fixed by evolutionary selection. These piRNA clusters maintain 

relatively open chromatin conformation, which along with associated transcriptional 

factors give transcriptional license to that region. TEs also often carry transcription factor 

binding site with them, which if promotes expression in the gonad will make the locus a 

gonad specific TE locus. However, on top of these, the biggest question is how does a 

locus become piRNA cluster, or what are the prerequisitse to produce piRNAs? 

Theurkauf laboratory observed that transcription from both strands, and 

recruitment of Rhino to the locus to initiate piRNA production (Zhang, et al. 2014). 

Brennecke laboratory revealed that Rhino recruits Cutoff that suppresses termination of 

transcription (Mohn, et al. 2014a). Rhino, Cutoff and other factors recognize/distinguish 

piRNA cluster derived transcripts from other transcripts and trigger piRNA synthesis. 

Another line of idea is that the transcripts from such locus have some intrinsic properties 

such as altered splicing  (Dumesic, et al. 2013; Goriaux, et al. 2014), certain 3′-end 

processing (Goriaux, et al. 2014), or any definite cis-elements that help recognition by the 

special trans factors. Moreover, some flamenco cluster originated TEs in fly harbor 

abundant 3′-end managing signals. Hence, there could be mechanisms that these 

transcripts use to send signal to the piRNA-RISC that they are different from other 

transcripts. 
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In flies, Zucchini (Zuc), (a mitochondrial protein) and Piwi generate “primary” 

piRNAs from piRNA clusters, or 3’ UTRs of protein coding genes in a phasing process. 

These primary piRNAs successively initiate production of piRNAs in an amplification 

cycle commonly known as the ping-pong cycle (Huang, et al. 2014). This ping-pong 

produced secondary piRNAs overlap between two strands by 10nt due to the specific 

slicing mechanism of the piwi proteins. In succession, ping-pong piRNAs can also start 

production of Zuc-dependent piRNAs in a self-amplifying system (Fig 1.5) (Mohn, et al. 

2014a). Mammalian ortholog of Zuc is MitoPLD, which carries out equivalent role in 

human and mouse.  

Worm piRNAs play a similar role in TE control, but they are very divergent from 

other clades. They do not use Zuc-dependent or ping-pong biogenesis machinery. Rather, 

worm’s piRNAs are exactly 21nt produced from individual transcriptional unit (Obbard, 

et al. 2009). Despite the dissimilarities in synthesis, piRNAs generally contain an “U” 

residue at the 5’ end. Some secondary (ping-pong) piRNAs have an “A” at the tenth 

position. TE evolves very fast and to keep pace with them, piRNAs changes rapidly, thus, 

piRNAs can provide an adaptive immunity against selfish DNA. They are also like 

miRNAs in a way that they use “seed” method (Zhang, et al. 2018). Seeds are 5’ 2-8 nt 

that need to be perfectly complementary to target. Nucleotide pairing downstream of the 

seed allows mismatches in target recognition and thus brings much more transcripts 

under the purview of piRNA targets, which is important in attack against highly repetitive 

elements. 
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Figure 1.5 piRNA biogenesis 

Transposon derived single stranded transcripts are targeted by Piwi and a mitochondrial protein Zucchini (in fly) producing primary 

piRNAs. These piRNAs target complementary transcript (which are also TE derived) and produce secondary piRNAs. These 

secondary piRNAs initiate a self-amplifying loop by utilizing high repetitive nature of the TEs, and their transcription from both 

strands. This loop is commonly known as ping-pong loop, which in turn can also trigger production of primary piRNA. 

1.4 Major RNAi Factors 

RNAi pathways are very fluid across species; but, certain proteins are shared by 

all species, such as Argonautes, Drosha, and Dicer. RNA dependent RNA polymerase 

(Rdrp), and systemic RNA interference deficient-1 (Sid-1) proteins have some very 

special role in organisms which encode them. They are discussed below. 

1.4.1 Argonaute (Ago and Piwi) Proteins 

Being the main catalytic component of RISC, Argonaute proteins belong to the 

heart of the small RNA pathways (Meister 2013). They mediate complementary base 

pairing between small RNAs and their target transcripts leading to mRNA degradation or 

inhibition of translation. Argonaute proteins are divided into two clades: i) Ago ii) Piwi. 

Ago interacts with miRNA and siRNA whereas Piwis exclusively work in the piRNA 
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pathway. Argonautes have four domains: N-terminal, PAZ, MID, PIWI. PAZ is the RNA 

binding domain that interacts with the small RNAs. PIWI domain is responsible for 

carrying out slicing of target transcript. It harbors an amino acid tetrad (DEDH/D) that 

create the catalytic site (Tolia and Joshua-Tor 2007). Argonautes that do not have this 

tetrad are unable to slice target transcripts. As the main effector of RNAi, abundance of 

Argonautes reflects how complex small RNA pathways could be in an organism. Human 

encodes 8 Argonautes (4 Ago, 4 Piwi), D. melanogaster has 2 Ago (Ago1, Ago2), and 3 

Piwi (Ago3, Piwi, and Aub). Typically, organisms have distinct Ago proteins for miRNA 

and siRNA pathway. In Drosophila, Ago1 works in miRNA while Ago2 works in siRNA 

pathway. Worms encode extended number of Argonaute proteins. C. elegans has 26 Ago; 

19 of them are specific to worms (worm specific Ago, WAGO). Detailed functions of all 

these WAGOs are yet to be determined. 

1.4.2 Drosha 

Drosha is a class 2 RNase III enzyme that binds to double stranded RNA, and 

essential for miRNA biogenesis (Han, et al. 2004). Drosha works with Pasha/DGCR8 to 

generate pre-miRNA from pri-miRNA. Both Drosha and Pasha are located in the nucleus. 

Mirtrons can bypass Drosha mediated processing. 

1.4.3 Dicer 

Dicer is also a class 2 RNase III enzyme, and dice pre-miRNA and dsRNA into 

21-23nt long miRNA and siRNA respectively with characteristic 2 nt 3’ overhang 

(Ketting, et al. 2001). After cleavage, Dicer facilitates transfer of the small RNAs to Ago 

proteins and thus activates RISC. Dicer is a large multi domain protein with one PAZ, 

one or more RNase III and helicase domains. There is only one Dicer in mammals, which 
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works in both miRNA and siRNA pathways whereas in insects like Drosophila, two 

Dicers work separately in these two pathways. Dicer can work in posttranscriptional as 

well in transcriptional gene silencing as a part of RITS (RNA induced transcriptional 

silencing); as a result, its subcellular location could be either nucleus or cytoplasm. Dicer 

mutants are embryonic lethal (Kurzynska-Kokorniak, et al. 2015). 

1.4.4 RNA Dependent RNA Polymerase (Rdrp) 

Using RNA as template, Rdrp generates nascent RNA molecule. This process is 

different from canonical RNA synthesis where organisms use DNA template to produce 

RNA (transcription) using DNA-dependent RNA polymerase. Rdrp is an essential protein 

in RNA viruses. Though three paralogs of Rdrp were present in the most common 

Eukaryote’s ancestor, majority of the animal clades have lost them except the nematodes, 

lophotrochozoans, and chelicerates (Zong, et al. 2009) 

Rdrp mediated RNA polymerization is either primer dependent or independent 

(de novo). Rdrps that carry out de novo synthesis contain an extra Proline/Tryptophan 

rich loop in their structure that enables an initiating G nucleotide to be placed in the 

active site, which can initiate synthesis. De novo synthesis of RNA occurs in a non-

processive fashion, which means Rdrps fell off after polymerizing a short nucleotide 

stretch; thus, they produce shorter dsRNA. C. elegans has two types of Rdrp; RRF-1 type 

and RRF-3 type. RRF-1 class Rdrp are newly acquired whereas RRF-3 is older, present 

in all Nematode clades. RRF-1 synthesize RNA in a non-processive fashion while RRF-3 

can make RNA in processive fashion. siRNAs produced in canonical siRNA pathway 

(Dicer produced) possess 5’ mono phosphate, siRNAs produced by RRF-1 pathway have 

5’ triphosphate. These siRNAs then work in both transcriptional and posttranscriptional 
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gene silencing. Rdrp plays an important role in C. elegans by producing both de novo and 

amplifying siRNAs (Billi, et al. 2014). Rdrp in Chelicerates make dsRNA in primer 

dependent fashion only using single-stranded RNA templates, which are subsequently 

targeted by Dicer and siRNAs are produced through a process named RITS that is also 

present in nematodes (Sarkies, et al. 2015; Lewis, et al. 2017). C. elegans has an 

expanded siRNA pathway due to the presence of Rdrp contrarily fly and vertebrates, 

which do not have any Rdrp (Sarkies, et al. 2015). 

1.4.5 Systemic RNA Interference Deficient-1 (Sid-1) 

Sid-1 is an integral membrane protein, and play a very significant role in 

nematodes. They work as a channel, which is responsible for spreading RNAi signal 

across the body producing a systemic effect.  

1.5 RNAi in Chelicerates and Aim of the Study 

Chelicerates (mites, ticks, and spiders) are one of the most diverse groups of 

animals that includes 77,000 described species along with another ~650,000 undescribed 

animals. There is significant evolutionary distance between chelicerates and the 

predominant arthropod model organism, D. melanogaster (Fig 1.6) (Klenov and Gvozdev 

2005; Pikaard 2006; Verdel, et al. 2009). Chelicerates diverged from other arthropod 

lineages over 600 million years ago and from the Nematodes around 1100 million years 

ago, which suggests that fly based molecular biology knowledge might not be valid 

describing the chelicerates (Ai, et al. 2015). For example, chelicerates encode Rdrp, an 

important RNAi factor in nematodes, however, also have several Dicers like the insects. 

How these extra factors shape their RNAi biology is unclear but indicates that the 
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pathway potentially be more interesting in this subphylum, and demands a 

comprehensive investigation (Sienski, et al. 2015). 

 

Figure 1.6 Phylogenetic tree of invertebrates in superphyla Ecdysozoa 

Chelicerates is the home of many important pest such as Lyme disease causing 

ticks, the most polyphagous and pesticide resistant plant pest-spider mites (Tetranychus 

urticae), and house dust mites, the number one allergy causing agent worldwide. Mites 

are a ubiquitous group that is relatively poorly investigated–it is estimated that only 10% 

of mite species have been documented. These animals can be found in an extraordinary 

variety of niches that range from human eyelash follicles to the deep ocean. RNAi based 

reverse genetics studies are largely underrepresented in mites let alone their 

biotechnological application because there is no comprehensive RNAi study available for 

any chelicerates. House dust mites are particularly interesting due to their extraordinary 

evolutionary history. Once a parasite these mites reverted to free living niche opposing 

Dollo’s law of irreversibility suggesting multiple major genome shuffling events (Gould 

1970; Klimov and B 2013). As piRNAs and to some extent siRNAs work as vanguard of 

the animal genome, investigation into dust mites’ present status of the RNAi pathway is 
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exceedingly demanded. Chapter II of the present study describes comprehensive RNAi 

biology in dust mites. In our study, we have sequenced American house dust mite 

(Dermatophagoides farinae) genome, and small RNA. We have studied the RNAi 

pathways very systematically using our own computational pipeline, and some relevant 

wet-lab experiments. 

Lately, RNAi is being established as a promising substitute to toxic and 

growingly less efficient pesticides (Joga, et al. 2016). RNAi application has so far been 

successful against multiple insects (Gordon and Waterhouse 2007; Price and Gatehouse 

2008; Huvenne and Smagghe 2010). However, due to their fluid biogenesis and function, 

RNAi efficacy can considerably vary between species. As a result, for successful RNAi 

application, species-specific design will be necessary. T. urticae can rapidly develop 

resistance against almost any pesticide making the conventional pest control untenable 

against them (Dermauw et al., 2013; Grbic et al., 2011). Therefore, alternative control 

method, like RNAi, would be appreciated for lessening their damage on agriculture. In 

Chapter III, we have analyzed spider mite’s (SM) RNAi pathways by using available SM 

genome, transcriptome, and small RNA sequencing datasets (Grbic, et al. 2011). 

RNAi in agriculture is mostly focused on controlling insect pests. However, 

RNAi has remained yet to be successful in many insect orders, especially in lepidopterans 

(i.e., moths and butterflies). In these animals, blockades to dsRNA uptake, which causes 

RNAi futile largely exist in the digestive tract. To overcome this problem, a polymeric 

dsRNA delivery vector that can bypass the barriers has been developed. This study has 

been accomplished in collaboration with Charles McCormick lab from Department of 

Polymer Science and Engineering, USM. Chapter IV of the present study describes 
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successful application of the polymer in a traditionally RNAi recalcitrant lepidopteran 

pest- fall armyworm (Spodoptera frugiperda). 
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CHAPTER II – SMALL RNA BIOLOGY IN THE HOUSE DUST MITES 

2.1 Introduction 

House dust mites (HDM) allergy is the most common type of allergy and HDM 

alone affects more than 50% of allergic patients worldwide. Up to 85% asthma patients 

are allergic to HDM (Gregory and Lloyd 2011). They are very prevalent in human life as 

they live in all sorts of dwelling dusts, and thrive on organic matters mostly shredded 

human scales covered with fungi, bacteria, and yeast. They are microscopic organism; 

barely visible to the unaided eye, have translucent body, and typically measure 0.2–0.3 

millimetres or 0.008–0.012 inch in length. There are three major dust mite species who 

are responsible for most of their impacts: Dermatophagoides pteronyssinus, D. farinae 

and Euroglyphus maynei. D. farinae and D. pteronyssinus usually predominate in the 

temperate climate (Gehring, et al. 2005). Earlier it was well established that D. farinae 

was the dominated dust mite in the United States, and hence was given the name 

American dust mite whereas D. pteronyssinus was called European dust mite because of 

their prevalence over Europe. Contrary to their common name, North America, Europe as 

well as in rest of the world are inundated by both species. They require relative humidity 

above 55%, and humidity greatly determines their relative abundance (Arlian, et al. 

2001). 

Dust mites are exceedingly important not only being the major allergy causing 

agent, they have a unique evolutionary history. Though once were parasites of warm-

blooded vertebrate, HDM gave up parasitism, and became free living. Establishing 

parasitism results extensive genomic alteration; potentially to accommodate genetic 

novelty required to fruitfully intermingle with the host (Brookfield 2011; Poulin and 
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Randhawa 2015). Dust mites represent the unique example of parasitism as they are the 

only organisms who have reverted to free living possibly by a second round of genetic re-

wiring. Unwarranted activity of transposons is a key source of genome instability in 

animals (Hedges and Deininger 2007; Fedoroff 2012). In multicellular organism, RNAi 

based mechanisms play major role in restricting their movement; most animals deploy the 

piRNA pathway apparatus as the primary RNAi-based defense against the TE (Crichton, 

et al. 2014; Senti, et al. 2015). Aim of this chapter of the study is to investigate the status 

of RNAi pathways in the American dust mite to apprehend how the small RNA biology 

might be organized in this highly-derived organism. 

2.2 Materials and Methods 

2.2.1 Bulk Collection of Mixed Stages HDM 

An American house dust mite colony was obtained from the University of 

Michigan (Dermatophagoides farinae isolate:AD521), and maintained in the lab. Using a 

salt bath procedure, mixed stages HDM were collected that were used later for DNA and 

RNA extraction. Fish foods containing animals/eggs were added to high a molar NaCl 

solution and stirred gently, which separated the animals from foods and caused them to 

float due to hypo-osmolality of the mites to liquid. After five minutes of swirling, larger 

food particles sank to the bottom and animals/eggs separated out to the top of the liquid. 

Then the animals were separated from the flask using filter paper, dried on bench, and 

collected in conical flask. 

2.2.2 High Molecular Weight (HMW) Genomic DNA Extraction 

A described protocol was adapted for extracting high molecular weight genomic 

DNA from dust mite (Kim, et al. 2014). Five grams mixed stages animals were flash 
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frozen and homogenized. Homogenized powers were re-suspended in 5 ml HB buffer 

(7M Urea, 2% SDS, 50mM Tris pH 7.5, 10mM EDTA and .35M NaCl) and 5 ml of 1:1 

Phenol/Chloroform gently. On a nutator, the suspended mixture was rotated slowly for 30 

min followed by centrifuged at 20oC for 10 min at 18000 rpm. Centrifugation generated 3 

phases typical for phenol/chloroform extraction; top aqueous layer was separated. The 

same process was repeated twice. Two volumes of ethanol was added to the aqueous 

phase, and centrifuged again at 18000 rpm, 10 min at 20oC. Resulted pellet was re-

suspended in 3 mL TE buffer (10mM Tris 1mM EDTA pH 8.0). 3g CsCl and .3ml of 

10mg/ml Ethidium Bromide (EtBr) were added to the re-suspended DNA. Then the re-

suspended solution was centrifuged at 15oC, 45000 rpm for 16 hours, which resulted 

separation of nucleic acids based on molecular weight, and produced several bands 

visible in UV light. The top DNA band was collected in a conical flask using pipet, EtBr 

was removed by CsCl saturated butanol extraction. DNA solution was then diluted 3-fold 

using TE followed by addition of 1/10 volume 5M NaCl to the diluted solution. Lastly, 

HMW DNA was precipitated by adding 2 volumes of 100% ethanol followed by one 

round of 70% ethanol wash. Finally, the pellet was re-suspended in TE. The HMW DNA 

was used for long read PacBio sequencing. 

2.2.3 In vitro Transcription of dsRNA 

Using canonical TA cloning ~500nt fragments from the exonic regions of Derf1 

and all three Dicers genes were inserted in pGEM-T Easy vector (Promega). The regions 

were amplified by Polymerase Chain Reaction (PCR) using gene specific primers and 

Taq DNA polymerase. An inherent feature of Taq DNA polymerase is that it adds an 

extra adenine (A) nucleotide to the 3’ end of the newly polymerized DNA creating a 3’A 
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overhangs at both ends of PCR products. pGEM-T Easy (Promega) is a linear plasmid 

that harbor 5’T overhangs at both ends. This feature facilitates TA cloning. After ligation 

of the exonic fragments, and routine transformation, sequences of the ligated plasmids 

were checked. Moreover, pGEM-T Easy plasmid has a T7 promoter site. A primer was 

designed so that it contained another T7 promoter site. PCR was carried out using the 

primers; so, the resulting PCR products had two promoter sites on two ends. Using 

MEGAscript T7 Transcription Kit (Thermo Scientific) in vitro transcription was carried 

out that resulted dsRNAs from the ~500 genic regions. Synthesized RNAs were 

precipitated using LiCl solution, and final pellets were resuspended in water. Finally, 

RNA solutions were boiled for 2 min at 95oC to separate the strands. After that, the heat-

block was turned off leaving the tubes on the block for an hour, which allowed gradual 

reannealing of the RNA strands. 

2.2.4 dsRNA Soaking of Mites 

Mixed stage mites were soaked in a solution of dsRNA (150ng/µl) resuspended in 

nuclease free water. After 6 hours, animals were rescued, washed in water plus 0.1% 

Tween-20 solution, and dried on filter paper. Treated mites were kept in 23oC for two 

days in an incubator maintaining relative humidity of 80%. 

2.2.5 Northern Blot 

Total RNAs were extracted using Trizol following manufacturer’s protocol from 

the mixed staged treated or untreated mites. Genomic DNAs were removed from the total 

RNA preparation using DNA-free™ DNA Removal Kit (ThermoFisher). In a 12.5% 

urea-polyacrylamide gel 20 µg total RNA was resolved for each sample followed by 

blotting onto a Nylon membrane in 0.5X TBE in 10V 300mA for 1 hour in 12oC. The 
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membrane was then UV-crosslink and dried at 80oC for 10 min. Next, the membrane was 

prehybridized for 30 min at 40oC in the hybridization buffer (5X SSC, 1mM EDTA, 2X 

denhardt’s, 1% SDS, 2% dextran sulfate, 30 µg/ml ssDNA). 21nt RNA probes were 

prepared by adding Gamma-ATP (6000Ci/mmol) using T4 Polynucleotide Kinase. 

Prepared probe was added to the hybridization buffer and hybridization was performed at 

40oC for overnight. Following morning, the was washed in a washing buffer (2X SSC, 

0.1% SDS) for 2 hours followed by exposure to X-ray film (Flynt, et al. 2009). When 

radiolabeled dsRNAs were fed, gels were directly exposed to phosphoimager screens. 

2.2.6 β-elimination 

Total RNA (20 µg) was oxidized in a borax/boric-acid buffer (60 mM borax and 

60 mM boric acid-pH 8.6) plus 80 mM NaIO4 at room temperature for 30 min (Flynt, et 

al. 2009). 200 mM NaOH solution was used to carry out the β-elimination reaction at 

45oC for 90 min. Treated RNA was precipitated in isopropanol solution, and resolved in a 

12.5% urea-polyacrylamide gel. Next, northern blotting was performed as described 

above. 

2.2.7 Terminal Exonuclease and CIP Treatment of Small RNA 

Terminator exonuclease (epicenter) enzyme was added to a tube containing 20 µg 

of total RNA and the reaction was carried out at 30°C for 60 minutes followed by RNA 

purification by phenol-chloroform extraction protocol. In a second tube, after adding 1 µl 

Calf intestinal phosphatase (CIP, NEB), reaction was carried out at 37°C for 30 min. In 

the same tube 1 µl terminator exonuclease was added and incubated at 30°C for 60 

minutes. RNA form both treatments were subjected to northern blotting as described 

above. 
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2.2.8 Methylation Analysis 

A dust mite Methyl seq library was prepared using Methyl-seq TruSeq Kit from 

Illumina using dust mite genomic DNA, which was extracted by organic extraction 

protocol. Degree of cytosine methylation was calculated using the Bismark algorithm 

(Krueger and Andrews 2011). Bed files were generated for mRNA and TE using 

cufflinks and RepeatMasker annotations respectively, and methylation rates were 

determined for these genomic features. Only unique mapping reads were considered and 

duplicated reads were excluded, which resulted 6X final coverage depth. Bedtools was 

used to retrieve genomic regions which had >4 reads mapping event. The base conversion 

rates were measured in those regions 

2.2.9 Western Blot 

Animal lysates were prepared in a standard RIPA buffer (50 mM sodium chloride, 

1.0% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM Tris, pH 

8.0). Lysates were centrifuged in 13k for 5 minutes and protein concentration of the 

cleared lysate was measured using bradford reagent. 20 ug of the proteins were separated 

in 8-20% precast gradient polyacrylamide gel (Thermo Scientific) and electro-blotted 

onto PVDF membrane. After blocking 30 min in 5% dried milk in TBST membrane was 

incubated in anti derf1 primary antibody (Df10, Novus Biologicals USA antibody (1:1k) 

for overnight at 4oC. Then membrane was washed and incubated in horseradish 

peroxidase conjugated anti mouse secondary antibody (1:10k) and detected via 

chemiluminescence. 
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2.2.10 Genome Assembly Pipeline 

HGAP pipeline (Chin, et al. 2013) was used on PacBio SMRT analysis Portal to 

filter and assemble PacBio reads, which resulted in 1,828 contigs producing a total length 

of 93,777,723 bp 1. Then, Illumina reads were used to connect and extend the PacBio 

contigs. Before that the Illumina reads were preprocessed in three steps: a) Using 

Trimmomatic (Bolger, et al. 2014), from both ends of reads, nucleotides with base quality 

lower than 15 were removed 2. b). Using FastUniq (Xu, et al. 2012), duplicate pairs were 

removed from the PE library, and c). SOAPec (Luo, et al. 2012) was used to correct read 

error 3,4. To connect and extend the PacBio contigs, SSPACE scaffolding (Boetzer, et al. 

2011) was used that resulted a total of 1728 contigs, a total length 93,804,520 bp 5. Any 

initial genome sequence has bacterial contamination due to the presence of among others 

gut microbiota. To remove bacterial DNA sequences from HDM genome sequence, 

4,864,367 Bacterial genome sequences (Tatusova, et al. 2015) were downloaded from 

RefSeq database at: ftp://ftp.ncbi.nih.gov/refseq/release/bacteria and a blast (Camacho, et 

al. 2009) database was created using the sequences 6,7. All the contigs were blasted 

against the created bacterial genome database to check bacterial contaminations in the 

sequenced contigs. Then the matched percentages were calculated for each of the contigs. 

If the matched percentages were higher than 10% of an individual contig length, the 

contig was considered as contaminated by bacterial DNA and was discarded.  After this 

process, our final contig number was reduced to 1706, N50 Read Length of 19,371 with 

the total length of 91,947,272 bp. Finally; a published dust mite genome (Chan, et al. 

2015) was used as a reference genome to compare our assembled contigs using QUAST 
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(Gurevich, et al. 2013) 8,9. 79.3% bases of the reference genome could be aligned in the 

new assembly. Of our 1706 contigs, 791 had a total of 5197 “misassembled” sites. 

2.2.11 Transcript Annotation 

An available mRNA-seq dataset (Chan, et al. 2015) was used to annotate the DM 

transcripts by Tuxedo suite. Initial mapping carried out by Tophat was used for transcript 

annotation by cufflinks (Trapnell, et al. 2012). Blast2Go was used for determining 

transcript similarity. 

2.2.12 Small RNA Sequencing 

From a total RNA preparation, small RNAs were cloned using the illumina small 

RNA truseq kit. The dust mite total RNA was extracted from a bulk collected sample that 

comprised of all life stages of the animal. The cloned small RNA library was sequenced 

on illumina NextSeq platform, which produced nearly 500 million reads. Quality of the 

sequenced library was examined by FastQC tool. 

2.2.13 Analysis of Small RNA Datasets 

Next-gen sequencing reads (in fastq format) were clipped using fastx_clipper to 

remove the adapter sequences. Bowtie and bowtie2 were used to map the small RNA 

reads to different regions or the whole genome (Langmead 2010; Langmead and Salzberg 

2012). High expressed loci were determined using bowtie2 mapping. A bedgraph file was 

generated from the mapping, which was filtered for >1000 read coverage (Quinlan 2014). 

Adjacent regions were combined to get the coordinates of high expressed loci. Bowtie 

multi mapping and unique mapping option were used determine expression levels, 

biogenesis pattern, or strand bias. Reads that mapped exclusively to specific genomic 

regions (mRNA, TE, ncRNA–rRNA/tRNA/U6) were analyzed separately to reduce any 
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bias using custom pipeline developed in the study. For example, reads that mapped and 

did not map to TE loci were separated into two files. The TE unmapped reads were 

subsequently mapped to mRNA loci and divided into two categories like the TE 

mapping. This method was repeated for all genomic features. During each bowtie 

mapping, both. sam and .fastq files were generated. Number of unique reads were 

determined from. fastq files using an awk command. The. sam files were used to 

calculate overlap probability z-scores. Transposons were annotated using RepeatMasker 

and HMMER from the D. farinae genome. Read coverage for different genomic elements 

were computed by calculating per base depth using samtools. Strand-bias was computed 

as: ratio of the coverage difference between two strands to total coverage per strand. 

deepTools in Galaxy suite was used to visualize read depths (Ramirez, et al. 2016) (Fig 

2.1). 

 

Figure 2.1 Pipelines used to analyze small RNA-seq data 
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2.2.14 Oligonucleotides Used in the Study (5’ to 3’) 

Accession numbers of the genes are: 

Derf1  P16311 

DfaDcr1 KY794588 

DfaDcr2 KY794589 

DfaDcr3 KY794590 

 

pGem T7 primers  

pGEM 5' T7:  TAATACGACTCACTATAGGGAGAAATTGGGCCCGACGTCGCAT 

pGEM 3' T7:  TAATACGACTCACTATAGGGAGAGAGCTCTCCCATATGGTCGACCTG  

 

Primers for dsRNA synthesis against Derf1 

DerF1CDSFwd: ATGAAATTCGTTTTGGCCATTGCCTC 

DerF1CDSRev: TCACATGATTACAACATATGGATATTGTTCGATCATC 

 

DerF1RNAiT7s: TAATACGACTCACTATAGGGTCATTGGATGAATTCAAAAACCG 

DerF1RNAiT7as: TAATACGACTCACTATAGGGTTGGTATTGTATCGCCGTGAC 

 

Primers for dsRNA synthesis against Dicers 

Dcr1 F:  GACGAACAACTTTATCGAGATGCAG 

Dcr1 R:  AACAGACCATCCAAAATCTAACTTGGG 

 

Dcr2 F:  TTAACCGACCATCGATTAGTATCGG 

Dcr2 R:  GTGTTTTATTGTCCATATCATGAAAATCAGC 

  

Dcr3 F:  GTTGTTACACCCGATATTTTGTTGG 

Dcr3 R:  CTTATGAATTTTCATAAATACAAGCTG 

 

Primers for qPCR 

18S_rRNA F: GGCTACCACATCCAAGGAAGG 

18S_rRNA R:  GCATAAGCGAAGCCCGTATTG 

 

Derf1qPCR F:  ATGCCGACGACCAAATTCGC 

Derf1qPCR R:  CGGCAATAGCTGTGTGTGTTTGAG 

 

Dcr1 qPCR F:  TTACCGACGAAAAACGTCAGC 

Dcr1 qPCR R:   GACGATCGAAACGAAGTGAAG 

  

Dcr2 qPCR F:  GATTACTGGTGATCATAATCCGG 

Dcr2 qPCR R:  CATATAATATTGCTGGTGTCAG 
 

Dcr3 qPCR F:  GTTTCGGAAAGAACGGATGC 

Dcr3 qPCR R:  CCGCAAATAAAACCTGGTTTAAG 
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HE_TE2 F:  GTATTATGTCCAACACTTTCCAGTGG 

HE_TE2 R:  GATTTGGTCGATTGTATCATGGCAC 

 

HE_TE6 F:  GCGGAGGAAAAGAAACCAAATGGG 

HE_TE6 R:  GCGTTCAAGAGATGCGGCGTG 

 

HE_TE10 F: GGTGGTTTATTCAAGCTCCTGATG 

HE_TE10 R: CTCAATGCCGTTGTATTGAATTTTCGG 

 

HE_TE11 F: AAACTTACGAAAACGCTGTCAC 

HE_TE11 R: AGATCTCGATCTGTCTTCCAGG 

 

Helitron10 F: CTGATCTCATATTGACAGGAACGCAC 

Helitron10 R: TGGCAGTTCAGGATCTTGATCG 

 

Charlie74 F: ACATGTCCTTCGCAAAACCTC 

Charlie74 R: TGCTGCAGAGGATGAACGATAAC 

 

Gypsy F:   CATCTGATTAAATTCGTAAAGCTCTCC 

Gypsy R:   CAAGGGTTATTATCAGATCGAGATTGC 

 

Unk65 F:  GTTGAGTTACGCTTCGGGG 

Unk65 R:  CATCCGGTTTTGGTTTGTTGAC 

 

Oligos for northern blotting 

Dfa_ML1258siRNA2: AGTTGCTGAGCTACTAGGTTTTA 

Dfa_ML1258siRNA3: GGGTTCAAGAATTATTTTCAA 

Dfa_ML283siRNA1:  AGAATATTCAATACAGATTCT 

Dfa_ML283siRNA2:  AGAATCTGTATTGAATATTCT 

Dfa_ML95siRNA1:  AATGACATTACAATCCATTGGTA 

Dfa_ML95siRNA2:  GGCTACATTGAATCCAACATTAA 

Dfa_U6:   ACGATTTTGCGTGTCATCCTTA 
 
 

2.3 Results 

2.3.1 High Molecular Weight DNA Extraction 

Urea-CsCl gradient DNA extraction protocol produced very high molecular 

weight Genomic DNA, which was confirmed by pulse-field gel electrophoresis.  
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Figure 2.2 High molecular weight DNA extraction by Urea-CsCl gradient centrifugation 

A. Bulk collection of animals and embryos using salt-bath method. B. Extracted DNA separated in a 0.8% gel using pulse field gel 

electrophoresis along with 1Kb ladder. Large distance of the genomic DNA band from 20kb band of the ladder indicates very high 

molecular weight of the genomic DNA. 

2.3.2 Genome Sequencing Produced Improved Assembly 

Reads from Illumina and PacBio platforms were used to assemble the dust mite 

genome, which produced a final assembly of ~92 Mb compared to a previously reported 

53 Mb genome (BioProject ID: PRJNA17406, accession no.: ASGP00000000) (Chan, et 

al. 2015). mRNA-seq data annotation using Cufflinks produced ~18,500 transcripts; 47% 

of the transcripts had similarity to S. scabiei (BioProject PRJNA268368) 

and/or D. melanogaster protein coding genes or conserved protein domain collection in 

NCBI. 

2.3.3 Absence of Piwi Proteins in Dust Mite 

Ago/Piwi proteins from T. urticae -the closest relative of D. farinae were used for 

tblastn against assembled dust mite genome. Tblastn hits were manually annotated using 

the dust mite transcriptome data, which produced eight Ago family homologs. Assembled 

protein sequences were submitted in GenBank under the following accession numbers: 
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Ago1- KY794591, Ago2- KY794592, Ago3- KY794593, Ago4- KY794594, Ago5- 

KY794595, Ago6- KY794596, Ago7- KY794597, Ago8- KY794598 

Paz, Mid, and Piwi domain sequences of the Ago proteins sequences from 

T. urticae, D. melanogaster, C. elegans, and Ascaris suum were compared to dust mite 

Agos using phylogeny.fr suite (Dereeper, et al. 2008). The phylogenetic inquiry retrieved 

two Ago proteins likely belong to miRNA (DfaAgo1) and siRNA (DfaAgo2) pathways. 

However, the remaining Ago members clustered separately indicating existing of a 

divergent Ago clade specific to dust mite (DfaAgo3-8). However, none of the Argonautes 

belonged to the Piwi clade indicating absence of the Piwi pathway effectors (Fig 2.3 A). 

We also examined whether the DEDH slicer motif was present in the dust mite Agos. 

DEDH motif was found in DfaAgo1 and DfaAgo2 while the six divergent Agos had an 

uncommon DEDD catalytic motif (Fig 2.4). 
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Figure 2.3 Absence of Piwi/piRNA pathway in dust mites 

A. Relationship of Ago/Piwi proteins from D. farinae, Drosophila, C. elegans, and A. suum using conserved Paz, Mid and Piwi 

domains. Dust mite proteins indicated in red. Only two Wago proteins included for simplicity. Bootstrap values for major nodes 

indicated. B-D. Heatmaps showing Z-scores for Overlap probabilities for 18-30nt small RNAs from dust mites (B), spider mites (C), 

and Drosophila female bodies (D). Overlaps are shown for each read length as well as all lengths together. Read lengths listed 

horizontally, Overlaps vertically. Blue arrow labeled Dcr indicates expect 2nt register suggestive of dicer cleavage. Red arrow labeled 

pp shows expected overlap for ping pong processing. 
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Figure 2.4 Alignment of dust mite Ago “slicer” DEDH/D motif 

Multiple sequence alignment was carried out using clustal omega.  Active site residues are highlighted in red or green 

2.3.4 Loss of piRNAs in Dust Mite 

The dust mite small RNA library produced nearly 400 million reads. 80% of the 

reads mapped to the dust mite genome when default options were used. Uniquely mapped 

reads were separated and size distribution of the reds was determined. We observed that 

the longer reads (>24nt), which belong to the piRNA class was largely absent. 

Next, to examine 10nt overlap of ping-pong generated piRNA signature, an 

algorithm was used that determines overlap probabilities in small RNA read 

(Antoniewski 2014). No 10nt overlap was observed in any size or all size category reads 

(18-30nt), which indicates absence of ping-pong produced piRNAs in dust mites (Fig 2.3 

B). However, a strong signal was seen in a register that was 2nt shorter than each of the 

read sizes, which is a clear sign of Dicer cleavage (2nt overhang). Observation in the dust 

mites were clear departure from orthodox piRNA biology in spider mites and fly. Clear 

ping-pong signature was observed in longer (23-28nt) reads whereas Dicer involved 2nt 

overhang signature was clear in spider mite datasets (Fig 2.3 C). Similarly, a small RNA 

library generated from Drosophila female body showed prominent ping pong signature 

(Fig 2.3 D). siRNA signature was observed in a group of Drosophila retroelement 

(IDEFIX) but the signature was largely absent in the whole genome mapping (Fig 2.5). 
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Drosophila produce a small number of endo-siRNAs in comparison to the total small 

RNA library, and so capturing siRNA signature is not possible by the overlap probability 

calculation in the algorithm (Czech, et al. 2008). 

Next, using RepeatMasker and blast2Go, we dissected the dust mite genome into 

mRNA, TE, rRNA, tRNA, snRNA, and unknown small RNA-mapping loci. Both multi-

mapping and unique mapping bowtie options were used to map the reads against these 

features. To ensure that multi-mappings were exclusive to each group, datasets were 

filtered by separating reads that mapped to other groups (Materials and Methods) (Fig 2.6 

A). When using multi-mapping, TE exhibited significant enrichment compared to other 

classes, which was expected due to the fact that TEs are highly repetitive (Fig 2.6 A). As 

mappings to non-small RNA producing loci were quite high, it was necessary to measure 

whether those reads were functional small RNAs or RNA degradation fragments. Multi- 

and unique mapping to TE showed lower strand bias compared to other elements (Fig 

2.7), which is consistent with small RNA production from dsRNA. There was only one 

TE locus that showed 100% strand bias. As expected, higher bias was observed in all 

other loci, suggesting that the mapping events in those loci were because of capturing 

degradation fragments not functional small RNA (Fig 2.8). To corroborate this, overlap 

probability was calculated, and no consistent Dicer or ping-pong processing was 

observed for the loci except mRNAs and TE (Fig 2.9). The unknown class loci also 

exhibited similar pattern indicating these loci may be some uncharacterized ncRNAs, and 

sequencing library preparation captured fragments of the degradation products from them 

too (Fig 2.10). 
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Small RNA reads were mapped to TEs and mRNAs to decipher if there were 

some regions that show higher read coverage. deepTools in galaxy was used to measure 

and visualize average read depth across the loci and their flanking regions. Generally, 

coverage was even across the TE, but mRNAs had higher coverage at 3’ ends of the 

transcript (Fig 2.6 B), which suggests cis-NAT siRNAs are produced from dust mite 

mRNAs (Okamura, et al. 2008). cis-NATs are common siRNA producing features in fly. 

Absence of single-stranded small RNA producing TE loci is suggestive of 

absence of a Zuc-dependent piRNA pathway. However, there could be dual strand 

piRNA clusters; but such locus also produce piRNAs using the ping pong cycle, which 

was absent in our analysis (Mohn, et al. 2014b). Alltogether, our analysis suggests that 

dust mites have lost the piRNA pathway and TE control is likely under the purview of a 

siRNA-like pathway. 

 

Figure 2.5 Overlap probability z-scores for fly siRNAs derived from IDEFIX TEs  
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D. melanogaster female body derived small RNA library was used for the analysis. Top bar graph represents number of reads in each 

size. Probability z-scores were calculated for each length separately (18, 19, etc.) and together (18-30). R heatmap2 package was used 

to draw the heatmap. 2nt dicer processing register is shown by blue arrow “D”. Red arrow labeled “pp” shows 10nt ping-pong overlap 

signature. Blank areas in the heatmap are due the absence of overlapping pairs. 

 

 

Figure 2.6 Distribution of small RNA mapping across dust mite genomic features. 

A. An RDI plot of per locus strand bias seen after multi-mapping and uniquely-mapping protocols in dust mite genome feature 

classes: mRNA, rRNA, TE, tRNA, U6 snRNA, and unknown genomic loci. Mean indicated by black bar, white transparent box shows 

standard deviation. Under the graph millions of reads and number of loci in each category is shown. B. Coverage of small RNA 

mapping in TEs (left) and mRNAs (right). Line plots show average coverage across loci. Heatmaps below show length-normalized per 

locus coverage of small RNA reads. 



 

39 

 

Figure 2.7 Strand bias and expression for TE, mRNA, and unknown loci 

For each locus, number of mapped reads to either sense or antisense strand was determined using bedtools multicov. Strand bias was 

calculated by dividing the absolute difference between strand specific coverage by total converage (y-axis). Each locus is plotted by 

bias and log2(number of mapping reads) (x-axis). Read line indicates mean values, dotted lines standard deviation. Green regression 

line also plotted. Box plots on left and below show distribution of values: y-axis bias, x-axis expression.  
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Figure 2.8 Size distribution of reads mapped to different types of loci 
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Figure 2.9 Overlap probability z-scores for different types of loci 

Probability z-scores, on top of maps, were calculated for each size separately (18, 19,…. 30) and together (18-30). Overlaps shown on 

right of maps. Heatmaps were drawn in with the R heatmap2 package. The blue arrow labeled “D” shows 2nt dicer processing 

register. Red arrow labeled “pp” shows 10nt overlap where ping-pong cleavage would be seen. 
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Figure 2.10 Overlap probability z-scores for unknown loci 

Sizes of read pairs are indicated above the heatmaps. Blue arrows denote the expected overlap for dicer processing. Red arrows 

indicate expected overlap for ping pong cleavage. 

2.3.5 siRNAs Facilitate Genome Surveillance in Dust Mite 

To investigate the role of dust mite small RNAs in genome surveillance we 

compared the biogenesis of TE-associated small RNAs to those found in spider mites. 

The size distribution of genome-aligned dust mite small RNAs was unimodal peaking at 

24nt, compared to a bimodal distribution in spider mites (Fig 2.11 A). When only the TE-

mapping reads were examined, the 24nt sized RNAs in dust mite were enriched by 10%, 

while in spider mites only larger size range RNAs were found (Fig 2.11 B). Next, we 

looked at the 5’ nucleotide bias and found that dust mites TE siRNA reads have an equal 

prevalence of T and A residues versus spider mites where there was striking over 

representation of T (Fig 2.11 C). Then we examined per locus read size distribution and 

overlap probabilities to assess whether Dicer processed ~24 nt small RNAs are common 

across dust mite TE loci (Fig 2.11 D). All loci exhibited mapping of predominantly 24 nt 
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reads, and in the most prevalent size ranges (23-26nt) a clear pattern of overlaps could be 

seen that is consistent with Dicer processing (Fig 2.11 D). This contrasts with a similar 

analysis in spider mite where a ping pong signature was seen across all TEs. Together 

this suggests siRNAs are the main RNAi-based mode of controlling TEs in dust mites, 

accommodating the apparent loss of piRNAs. This is a clear departure from spider mites 

where stereotypical piRNAs target TEs. 

 
Figure 2.11 siRNAs facilitate genome surveillance in dust mite 

A. Size distribution of genome mapped small RNAs in dust mites (solid line) and spider mites (dashed line). B. Size distribution of TE 

mapped small in dust mites (solid line) and spider mites (dashed line). C. Seqlogo showing 5’ nucleotide bias in TE mapped small 

RNA in spider mites (top) and dust mites (bottom) nucleotide of TE mapping small RNAs from D. farinae (Dfa) and D. melanogaster 

(Dme). D. Per locus biogenesis of dust mite TE associated small RNAs. Left shows Log2 read accumulation per read size. Overhang 
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probabilities (positive z-scores only) of small RNA pairs at specific or all sizes. The size(s) of reads show above heat map. A similar 

analysis from spider mite small RNAs (18-30nt) shown on right. Red arrow indicates overlap for ping pong process. Blue arrow shows 

overlap expected for dicer processing. 

In the D. farinae genome we found three Dicers: DfaDcr1-  KY794588, DfaDcr2- 

KY794589, DfaDcr3- KY794590. DfaDcr1 is a close ortholog of Arthropod miRNA-

producing dicer (Fig 2.12). The other two Dicer proteins are related to family members in 

other mites and lophotrochozoans, and are unrelated to Arthropod Dicer2 or nematode 

Dicer. Surprisingly, Dcr1 of dust mite  possesses an ATP binding helicase domain, which 

is implicated for processing of long dsRNA (Fig 2.13 A) (Fukunaga, et al. 2014). 

DfaDcr2 and DfaDcr3, which are more divergent, does not have the DUF283 and dsRNA 

binding domains, and have divergent PAZ domains (Fig 2.13 B) (Park, et al. 2011; 

Fukunaga, et al. 2014; Gao, et al. 2014). Together this suggests that mites, and possibly 

other chelicerates, possess ancient Dicer biology present in basal protostomes that was 

lost both in nematoda and pancrustacea (insects and crustaceans). 

Next, we sought to verify if TEs are controlled by siRNAs in dust mites by 

function studies by means of reverse genetics approaches. To generate loss of Dicer 

function, we elicited RNAi against each Dicer separately by dust mites cognate Dcr-

dsRNA (Fig 2.14). Dust mites tolerate being soaked for several hours in aqueous 

solution, which they can be observed to ingest even after only 30 mins (Fig 2.14 A). 

Small RNAs (20-27nt) derived from dsRNA can be recovered from soaked mites (Fig 

2.14 B). Knockdown of target genes can also be observed (Fig 2.14C-K). Depletion by 

RNAi of each DfaDcr protein resulted in derepression of multiple TEs (Fig 2.14L, Fig 

2.15). A strong effect was seen with loss of DfaDcr1 and DfaDcr2 function. The presence 

of processive helicase activity in DfaDcr1 suggests that long dsRNAs could be substrates. 



 

45 

This combined with the lack of dsRNA binding motifs in DfaDcr2/3 suggests DfaDcr1 

has a unique capacity to process dsRNA, and therefore it is unsurprising that it has a 

significant role in the control of TEs (Fig 2.14 L). Loss of DfaDcr2 showed a greater 

effect on TE expression compared to DfaDcr3. How these atypical Dicer proteins 

function is unclear; however, residues in the DfaDcr3 PAZ differ significantly from those 

in DfaDcr2 PAZ suggesting non-overlapping roles in the metabolism of dust mite small 

RNAs (Fig 2.13). These results are consistent with reports that psoroptid mites are 

sensitive to dsRNA soaking, resulting in gene knockdown (Marr, et al. 2015; Fernando, 

et al. 2017). 
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Figure 2.12 Dicer family tree comparing relationships among Dicers 
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Dust mite Dicers indicated in red. Full name of the gene abbreviations are: 

 

Name of Species   Gene Abbreviation  Accession Number 

 

Cnidaria  

Nematostella vectensis   NvecA     ABZ10549 
NvecB   ABZ10551 

Hydra magnipapillata   HmagA    Hma2.212274  

HmagB   Hma2.205202  

HmagC    Hma2.222700  

Annelida  

Capitella teleta    Ctel    ELU12939  

Helobdella robusta    Hrob    103772  

 

Mollusca  

Lottia gigantea    Lgig    61365  

 

Platyhelminthes  

Schmidtea mediterranea   Smed1    ASA.00018.01  

Smed2    mk4.000125.07.01  

Schistosoma mansoni    Sman1    Smp_169750.1  

Sman2    Smp_033600  

Schistosoma japonicum   Sjap1    Sjp_0069770  

Sjap2   Sjp_0043700  

Echinococcus granulosus   Egra1    EgrG_000085200  

Egra2   EgrG_000181800  
Echinococcus multilocularis   Emul1    EmuJ_000085200  

Emul2   EmuJ_000180900  

Emul3   EmuJ_000181800  
Hymenolepis microstoma   Hmic1    HmN_000252400  

Hmic2   HmN_000200100  

Taenia solium    Tsol1    TsM_000872800  

Tsol2   TsM_000756400  

Nematoda  

Caenorhabditis elegans   Cele    NP_498761  
Bursaphelenchus xylophilus   Bxyl    BUX_s00116.153  

Pristionchus pacificus   Ppac    WBGene00096444  

Strongyloides ratti    Srat    g5271  
Brugia malayi    Bmal    WBGene00225287  

Trichinella spiralis   TspiA    XP_003377020  

TspiB    XP_003375890  
Loa loa filariasis    Lloa    XP_003137813  

 

Arthropoda  

Daphnia pulex    DpulA    EFX72380  

DpulB   EFX69538  
DpulC   EFX86072  

Pediculus humanus corporis   Phum    XP_002429494  

Tribolium castaneum    Tcas1    XP_968993 1865 
Tcas2    NP_001107840 1623  

Nasonia vitripennis    Nvit1    XP_001605287 1917  

Nvit2    XP_001602524 1450  
Acyrthosiphon pisum    ApisA    XP_001943370 1626  

ApisB    XP_001945890 1691  

Drosophila melanogaster   Dmel1    NP_524453 2249  
Dmel2    NP_523778 1772  

Anopheles gambiae    Agam1    XP_003436256 2336  

Agam2    XP_320248 1672  
Aedes aegypti    Aaeg1    XP_001652212 1658  

Aaeg2    XP_001659747 2193  

Culex pipiens quinquefasciatus   Cpip1    XP_001844757 2270  
Cpip2    XP_001855187 1165  

 

 
Dermatophagoides farinae  Dfar1   KY794588 

    Dfar2   KY794589 
    Dfar3   KY794590 
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Sarcoptes scabiei   Ssca1   KPM03314.1  

    Ssca4   KPM06069.1 

Tetranychus urticae   Turt1   XP_015789823.1 

    Turt2   XP_015784164.1 
 

Echinodermata  

Strongylocentrotus purpuratus  Spur    XP_790894 1850  
 

Chordata  

Branchiostoma floridae   Bflo    XP_002610617 1868  
Ciona intestinalis   Ciona    ENSCINP00000017117 1872  

Saccoglossus kowalevskii   Skow   Sakowv30031161m 

 

Investigation of RNAi in dust mites revealed loss of the piRNA pathway and 

replacement by siRNAs. This is similar to observations in nematodes and flatworms 

(Tsai, et al. 2013; Sarkies, et al. 2015). The loss of piRNA activity in dust mites, 

nematodes, and possibly in flatworms may be tolerated due to compensation by 

amplifying siRNAs produced by Rdrp (McVeigh, et al. 2014; Sarkies, et al. 2015). The 

collective function of dust mite Rdrps; however, appears to be distinct from nematodes, 

as only processive versions are present, suggesting the de novo siRNA pathway may not 

be present in mites (Fig 2.16). Substantial Rdrp activity does appear to be present in dust 

mites; dsRNA soaking results in elevation of target mRNA when reverse transcription is 

carried out with random hexamers (Fig 2.14 E,G,I,K) but not oligo dT (Fig 2.14 D,F,H,J). 

Increase of transcript abundance was not due to the presence of ingested dsRNA as the 

region cloned to generate dsRNA was distinct from the qPCR amplicon (Fig 2.15). 

Random priming will capture Rdrp products, while oligo dT will only hybridize to the 

initial transcript. For all the genes tested an elevation of cognate transcripts could be 

observed after random priming that were poorly recovered from Oligo dT primed cDNA 
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Figure 2.13 siRNAs facilitate genome surveillance in dust mite 

A. Size distribution of genome mapped small RNAs in dust mites (solid line) and spider mites (dashed line). B. Size distribution of TE 

mapped small in dust mites (solid line) and spider mites (dashed line). C. Seqlogo showing 5’ nucleotide bias in TE mapped small 

RNA in spider mites (top) and dust mites (bottom) nucleotide of TE mapping small RNAs from D. farinae (Dfa) and D. melanogaster 

(Dme). D. Per locus biogenesis of dust mite TE associated small RNAs. Left shows Log2 read accumulation per read size. Overhang 

probabilities (positive z-scores only) of small RNA pairs at specific or all sizes. The size(s) of reads show above heat map. A similar 

analysis from spider mite small RNAs (18-30nt) shown on right. Red arrow indicates overlap for ping pong process. Blue arrow shows 

overlap expected for dicer processing. 
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Figure 2.14 RNAi in dust mites 

A. Dust mite soaking. Mites were soaked separately in orange and green food color for 30 min. B. Radiolabeled RNAs recovered from 

mites fed either single-stranded (ssRNA) or double-stranded RNA (dsRNA). RNAs were treated with DNase and CIP prior to 

separation via denaturing PAGE. C. Western blot of Derf1 allergen after soaking animals with derf1 dsRNA (upper panel) and 

coomassie staining of the membrane (lower panel). Animals were soaked for 30 min and after 4 days lysates were prepared. D-K. 

qPCR for dust mite transcripts, all experiments were performed at least three times. Values represent four technical replicates. Reverse 

transcription was carried out with either oligo dT (D, F, H, J) or with random hexamers (E, G, I, K). Target transcripts were derf1 

(D,E), dcr1 (F,G), dcr2 (H, I), and dcr3 (J, K). Cntrl represents no treatment, and KD soaking in the indicated dsRNA. L. Increased 

expression of numerous TE’s (S2 Table) following RNAi (using ~500bp dsRNA) against three dust mite Dicers relative to untreated 

control. Expressions were measured by qPCR, and normalized to untreated control. Error bars represent SEM. 
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Figure 2.15 Positions of dsRNA and qPCR sites 

Regions used for creation of dsRNA and qPCR are shown in red and green respectively for the Derf1 and DfaDcr1-3 genes. 

 

 

Figure 2.16 Absence of proline/tryotophan rich loop in D. farinae Rdrps 

Insertion of a proline/tryotophan rich loop in RRF1/EGO1 group of Rdrp is responsible for de novo initiation of RNA synthesis, 

which is a property of non processive Rdrps. This group of Rdrp makes short RNAs like 22G RNA in C. elegans while processive 

Rdrps (RRF3 group) that do not have this loop elongate nascent RNA for longer length. All D. farinae Rdrps do not have this loop 

thus are processive (RRF3 type) and synthesize longer RNAs. 

2.3.6 Cataloging Restricted Sequences in siRNA Producing Master Loci 

Dust mites differ from nematodes that lost piRNAs in the organization of siRNA 

producing loci. A key feature of piRNA biology is the cataloging of restricted sequences 

into master loci. In nematode lineages lacking piRNAs, master loci also appear to be 

absent (Sarkies, et al. 2015). This is not the case in dust mites (Fig 2.17 A). Three loci 

were discovered that span 62 kb, contain sequences from multiple varieties of TEs, and 
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exhibit homology to 70% of TE mapped small RNAs (Fig 2.17 B). Two of the loci, ML-

283 and ML-95, appear to be generated by duplication; however, some sequence 

divergence indicates they are distinct loci. Similar regions could not be found in the S. 

scabiei genome (Rider, et al. 2015b). Though, poor conservation is a characteristic of 

piRNA master loci (Shi, et al. 2013). The dust mite loci appear to be generated from a 

dsRNA precursor as both strands of the loci show similar rates of read mapping (Fig 2.17 

A). We found a tendency for 2nt overhangs along with little evidence for nucleotide bias 

(Fig 2.18). The loci were inspected for common motifs using the meme suite (Bailey, et 

al. 2009). With the exception of a handful of scattered dinucleotide or trinucleotide 

repeats no common sequence elements could be identified, such as the Ruby motif which 

is central to directing piRNA transcription in C. elegans (Billi, et al. 2013). Following 

knockdown of each of the individual dust mite Dicers significant (>80%) reduction in 

siRNAs exhibiting homology to these regions was observed, indicating a dependence on 

the activity of all dust mite Dicers for biogenesis (Fig 2.17 C). Detection of the siRNAs 

was accomplished with a combination of oligonucleotide probes complementary to the 

three master loci and correspond to regions with the highest small RNA density. They 

also have homology to other regions of the genome, specifically TEs. Thus, the Dicer 

sensitive siRNAs include master loci derived primary siRNAs and potentially secondary 

siRNAs generated from processed TE transcripts. This is consistent with loss of TE 

control after knockdown of each Dicer (Fig 2.14 L). However, there is a clear difference 

in the magnitude of TE expression, which may point to roles for dust mite Dicer proteins 

outside the production of siRNAs and to involvement in targeting of TE transcripts. This 



 

53 

could be similar to limiting of latent viral infection by Drosophila Dcr2 (Flynt, et al. 

2009). 

 
 

Figure 2.17 Positions of dsRNA and qPCR sites 

A. siRNA producing TE-control master loci (ML). Read density of all mapping events to the positive strand in red, negative strand in 

blue. Density of uniquely mapping reads in yellow for positive strand and green for negative strand. B. Catalog of TE homology 

sequences in master loci.  Multiple sequence alignment of TEs against master loci to show homologous sequences. C. Northern blots 

against ML-associated siRNAs (ML-A siRNA) after eliciting RNAi against dust mite Dicers. ¬D. Northern blots against ML-A 

siRNAs after β-elimination test. E. Accumulation of ML-A siRNAs following incubation with the monophosphate specific terminator 

ribonuclease (term) and Calf intestinal phosphatase (CIP). Relative accumulation of ML-A siRNAs was determined by densitometry 

and normalization to U6 signal. Experiments were performed at least three times, representative results shown. 
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Next, we sought to characterize terminal moieties of master loci associated 

siRNAs through biochemical tests to gain greater insight into their biogenesis (Fig 2.17 

D, E). The primary goal was to determine if the siRNAs had characteristics of Dicer 

cleavage: 5’-monophosphates and 3’-OH groups. β-elimination showed a shift to a lower 

molecular weight indicating an unmodified 2’OH; therefore, unlike Drosophila Ago2 

endo-siRNAs or C. elegans Prg-1 associated small RNAs, dust mite siRNAs are not 2’-

OH methylated (2’OMe) (Fig 2.17 D) (Saito, et al. 2007; Montgomery, et al. 2012). Next, 

we identified groups on 5’ ends of small RNAs using the 5’ monophosphate specific 

terminator ribonuclease. After treatment, a 50% reduction in siRNAs could be observed 

(Fig 2.17 E). Degradation by terminator could be abrogated by prior treatment with calf 

intestinal phosphatase (CIP). There is a noticeable lag in siRNA gel migration following 

CIP treatment, which is consistent with removal of 5’ phosphate groups and loss of 

charge. These results also reinforce the absence of a de novo siRNA pathway. Small 

RNAs produced by non-processive Rdrps in C. elegans have 5’ triphosphate groups. 

While treatment with terminator did not completely eliminate siRNAs there was no 

observable change in migration. If the remaining small RNAs were spared due to the 

presence of trisphosphate groups there would be shift towards a smaller molecular 

weight, relative to untreated. Together, dust mite master loci associated siRNAs appear to 

be Dicer products arising from a dsRNA precursor, possess the expected 5’-

monophosphate, but differ from insect endo-siRNAs due to the absence of 2’-OMe 

groups. We were able to identify a dust mite gene with similarity to Hen1 

methyltransferase proteins; however, inspection of potential open-reading frames 

revealed the absence of a common motif involved in recognition of 2 nt 3’ overhangs 
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characteristic of Dicer products (Fig 2.19). This likely explains the lack of 2’-OMe 

groups on dust mite siRNAs. 

 

Figure 2.18 Characteristics of ML-siRNAs 

A. Overhang of reads uniquely mapping to ML-siRNA loci show a 2nt overhange, which is characteristics of Dicer processing. 

Overlap z-score probability was calculated using the python script for each size pair (18/18, 19/19,…..28/28) and averaged. Overlap 

probability was then converted to overhang probability by subtracting each overlap length from the read reangth (for example, 19 

overlap probability is same as 2nt overhang probability for 21/21 pair). B. Seqlogo analysis showing nucleotide bias in ML-siRNAs. 

These small RNAs tend to be AT rich. 
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Figure 2.19 Dust mite Hen1 protein 

A. Sequences from Drosophila and Arabidopsis were blasted against the dust dite genome. A single Hen1 homolog was found that 

lacks a conserved domain involved in recognition of 2 nt 3’ overhangs found in Dicer products. B. Expression from RNA seq at the 

Hen1 locus and annotations of neighboring genes. Potential syntenic region from the scabies genome below showing loss of the Hen1 

gene in this mite. 

 

2.3.7 DNA Methylation Is Not Involved in Dust Mite TE Control 

Extent of DNA methylation in CG widely varies across insect clades and can be 

as high as 40% in roaches, while other groups like flies show little evidence for this 
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modification (Bewick, et al. 2017). Here we investigated whether this epigenetic control 

mechanism is a component of TE control in dust mites, as the genomes of nematodes and 

platyhelminths that lack the piRNA pathway are frequently modified by cytosine 

methylation (Geyer, et al. 2013; Sarkies, et al. 2015). Dust mites differ from these 

organisms, as evidence for this modification seems minimal and it is not enriched at TE 

loci (Fig 2.20 A). Indeed, bisulfite sequencing showed potential CG and CHG 

methylation is underrepresented in TE sequences, despite these sites occurring at the 

same rate as other genomic loci. Furthermore, the overall rate of DNA methylation 

(0.5%) was very low suggesting this base modification is not a major feature of dust mite 

chromatin regulation. Moreover, we found a single DNA methyltransferase in the D. 

farinae genome, a Dnmt1 homolog (Fig 2.20 B, C). It is likely a pseudogene as it appears 

to be truncated and shows little evidence of expression. This further highlights the 

distinct, derived nature of small RNA-mediated genome surveillance in dust mites. 

 

Figure 2.20 DNA methylation status in dust mite 

A. Distribution of methylated bases assessed by bisulfite sequencing across the entire genome, mRNAs, and TEs. Percentage of 

methylated Cs (mC) identified in all sequence contexts are compared with the number of bases identified in each category. B. Dust 
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Mite DNMT1 homolog. Expression of dust mite DNA (cytosine-5)-methyltransferase 1 (Dnmt1) in mixed stage RNA-Seq data. Blue 

bar represents dust mite Dnmt1 locus in the scaffold. Read density in region shown as grey plot. Reads mapping below; plus strand 

mapping in red, minus strand mapping in blue. C. Domain structure of truncated D. farinae Dnmt1 and an intact ortholog from 

Limulus polyphemus. 

2.4 Discussion 

This work provides insight into the elaborate nature of RNAi in chelicerates, 

many of which appear to have both Piwi proteins and Rdrps (Kurscheid, et al. 2009; 

Grbic, et al. 2011; Sanggaard, et al. 2014). Loss of the piRNA pathway in dust mites 

probably occurred in the parasitic ancestor. Inspection of the scabies mite genome 

similarly failed to uncover Piwi proteins (Fig 2.21) (Rider, et al. 2015a). Members of the 

divergent dust mite Ago family; however, were found. Indeed, a deeper inspection of 

scabies mite RNAi factors uncovered further similarities to dust mites (Table 2.1). Thus, 

absence of the piRNA pathway in dust mites is likely a consequence of descending from 

an ancestor that underwent dramatic genome changes, potentially during the acquisition 

of a parasitic life style. This highlights plasticity of RNAi pathways and how clade-

specific biology might impact evolution of RNAi technologies. 

 

Figure 2.21 Comparison of dust mite and scabies Ago proteins 

Clade containing Dust Mite specific Ago proteins described in Figure 1 highlighted in yellow. microRNA binding Agos indicated by 

blue. Drosophila Piwi included to demonstrate lack of clustering with this group of Ago proteins 
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Table 2.1  Comparison of scabies and dust mite RNAi factors 

Name of Gene D. 

farinae 

Percentage identity to 

orthologous protein 

S. scabiei Percentage identity to 

orthologous protein 

Argonaute 8 78, 32, 25, 27, 26, 26, 

25, 28 

(D. melanogaster 

Ago1) 

4 82, 27, 26, 74 

(D. melanogaster Ago1) 

Piwi 0  0  

Drosha 1 63 

(D. melanogaster 

Drosha) 

1 59 

(D. melanogaster 

Drosha) 

Pasha 4 43, 39, 53, 35 

(D. melanogaster  

Pasha) 

2 37, 55 

(D. melanogaster Pasha) 

Dicer 3 39, 27, 32 

(D. melanogaster 

Dcr1) 

2 51, 32 

(D. melanogaster Dcr1) 

Rdrp 4 32, 33, 32, 31 

(C. elegans Rrf3) 

1 28 

(C. elegans Rrf3) 

Gw182 1 45  

(D. melanogaster 

Gawky) 

1 35 

(D. melanogaster 

Gawky) 

Dicer cofactors 

(R2D2, Loqs) 

2 34, 44 

(D. melanogaster 

Loqs) 

3 38, 33, 38 

(D. melanogaster Loqs) 

Hen1 1 34 

(D. melanogaster 

Hen1) 

0  

Zucchini 0  0  

Armitage 0  0  

 

Dust mites exhibit a highly distinct RNAi biology, possessing both novel and 

ancient effectors that haven’t been studied in popular ecdysozoan model organisms. 

Indeed, there seems to be wholesale changes to the small RNAome of these organisms. 

Dicer produced siRNAs are an unusually common feature of the dust mite small RNA 

populations, comprising approximately three-fourths of all small RNA species. This 

contrasts with many other organisms where microRNA-class small RNAs are the 

archetype. Dust mite siRNAs are, at least in part, involved in genome surveillance. They 

target TE’s and depletion of Dicer proteins causes derepression of these elements. 

Control of TE’s is typically carried out by piRNAs in flies, from which dust mite siRNAs 
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are distinct. A common feature of nearly all piRNAs is a “U” residue at the first position. 

We do not observe this in any subset of dust mite siRNAs. Furthermore, well-described 

modes of piRNA biogenesis found in Drosophila and C. elegans are absent in dust mites. 

Loss of piRNAs seems specific to Psoroptidic mites, as they are clearly present in other 

acari like spider mites. The divergent nature of dust mite siRNAs is particularly apparent 

in the absence of 2’-OMethylation of siRNAs–a common feature of siRNAs and piRNAs 

in other organisms. Interestingly, scabies mites also lack the requisite Hen-1 protein 

(Rider, et al. 2015a). Inspection of syntenic regions of the dust mite and scabies mite 

genome showed rearrangements at this locus, potentially linking the loss of this activity 

to the evolution of Psoroptidia-specific Ago proteins (Table 2.1). The highly divergent 

RNAi pathways of dust mites provide an evolutionary perspective not only on the utility 

of small RNAs to acquire roles in genome surveillance, but also that the precise 

mechanism may not be that important. This is supported by relatively similar 

composition of classes of TE’s in spider mites, dust mites, and scabies mites (Fig 2.22). 

While similar classes were observed their locations and specific identities are distinct. 

Furthermore, this indicates that the collection of dust mite TEs analyzed in this study 

accurately represent the overall TE population. 

 

Figure 2.22 Distribution of TE classes in spider mites, dust mites, and scabies mite 



 

61 

Flux of small RNA pathways correlates with evolutionary innovation; for example, 

higher arthropods lost Rdrp in favor of piRNA control of TE (Maida and Masutomi 2011). 

This also occurred when vertebrates diverged from basal chordates (Putnam, et al. 2008). 

In both cases, loss of Rdrp accompanied innovation in body plan and sensory organs. In 

vertebrates, whole genome duplication occurred twice following descent from a Rdrp 

expressing chordate ancestor, affirming a period of genome instability (Putnam, et al. 

2008). TE mobilization may be fortuitous for adaptation, and dramatic evolutionary 

changes may require extreme events such as perturbation of surveillance mechanisms. 
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CHAPTER III – SMALL RNA BIOLOGY IN THE TWO-SPOTTED SPIDER MITES 

3.1 Introduction 

RNA interference (RNAi) technology has transformed genetic investigation in 

model and non-model organisms (Kamath and Ahringer 2003; Russell, et al. 2017). It 

was originally described as a process where exogenous double-strand RNA (dsRNA) 

could be used to trigger destruction of complementary RNA (Fire, et al. 1998). Recently, 

RNAi is being developed into a promising alternative to broadly toxic pesticides (Joga, et 

al. 2016), and has been successful in controlling several insects (Gordon and Waterhouse 

2007; Price and Gatehouse 2008; Huvenne and Smagghe 2010). Yet, effectiveness of 

RNAi can vary dramatically between species suggesting that to be efficient, species-

specific design approaches will be needed. 

Spider mites (T. urticae) are chelicerates, which share RNAi features with 

nematodes such as Rdrp, and have multiple Dicers like insects. How these factors interact 

is unclear, which has implications for using RNAi to control gene expression in 

chelicerates. T.  urticae affects agriculture worldwide, and can rapidly develop pesticide 

resistance, having the maximum incident of pesticide resistance among all arthropods 

(Grbic, et al. 2011; Dermauw, et al. 2013). Thus, an additional control method, like 

RNAi, would be welcome for mitigating damage caused by these mites. The presence of 

Rdrp in spider mites suggests that RNAi might be potent as seen in worms. Indeed, there 

have been reports of trans-generational RNAi silencing in ticks–another chelicerae 

arthropod that encodes Rdrp (Kocan, et al. 2007). However, a recent study reported only 

modest effectiveness of ingested dsRNA to trigger RNAi in spider mites (Suzuki, et al. 

2017). Five methods were tested; only the two most aggressive methods yielded 
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appreciable efficiency; leaf coating and soaking. The challenge of eliciting robust RNAi 

in spider mites highlighted by this study suggests there may be a gap in the understanding 

of basic RNAi mechanisms and implementation in this organism. 

To understand biogenesis patterns, and targets we used available genome-wide 

datasets to examine RNAi pathways in a comprehensive way (Grbic, et al. 2011). Our 

analysis shows that spider mites possess an unusual mix of RNAi factors. T. urticae not 

only has Rdrp but also a more diverse piRNA pathway. We also discovered five siRNA 

producing loci expressed in the gonad that target transposons and appear to trigger 

piRNA production. This is the opposite of what is seen in nematodes, which use piRNAs 

upstream of secondary siRNA production (Girard, et al. 2007). Understanding the activity 

of these derived pathways will be critical for designing potent RNAi in spider mites as it 

resets expectations for the roles of different small RNA species in this organism’s 

biology. Moreover, our study will benefit efforts to deploy RNAi in other chelicerates as 

many species in this subphylum possess Rdrp and supernumerary Piwis. 

3.2 Materials and Methods 

3.2.1 Establishment of Spider Mite Colony  

A founder Tetranychus urticae Koch colony was provided by USDA ARS center 

in Stoneville MS, which was maintained in the lab on garden bean plants. 

3.2.2 Argonaute Sequence Annotation 

Amino acid sequences of spider mite Ago proteins were curated from existing 

annotations using genome and transcriptome data (Grbic, et al. 2011). Transcriptome data 

was analyzed by Tophat and complete open reading frames (ORF) of 7 Argonaute and 6 

Piwi were verified by manual inspection. ScanProsite was used to detect protein domains 
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(PAZ and PIWI) of the amino acid sequences (de Castro, et al. 2006). Ago amino acid 

sequences of other organisms were downloaded from NCBI. Multiple sequence 

alignment was accomplished using MUSCLE, phylogeny was constructed using 

PhyloML and tree was visualized using TreeDyn (Dereeper, et al. 2008). 

3.2.3 Analysis of The Small RNA Datasets 

Annotations of TE and other genomic elements were downloaded from ORCAE 

portal (http://bioinformatics.psb.ugent.be/orcae/overview/Tetur). Pipelines used to 

analyze datasets is shown in Figure 3.1. TE and ML specific index files were created 

using bowtie and the reads were mapped using either all mapping (-a -m 100) options or 

unique mapping (-v0 -m1 --best --strata) options (Fig 3.1).  

 

Figure 3.1 Pipeline used to analyze small RNA expression datasets 

“Unique mapping” strategies were used to identify loci, while “all mapping” methods were used to characterize biogenesis 

and potential targeting 

Heatmap in Figure 3.2 C was generated in R using output from the overlap 

signature python script (Antoniewski 2014). Nt bias was calculated using seqLogo. 

Uniquely mapped read depth was determined through bedtools. The thousand highest 

expressing regions were extracted from read depth data. Annotations were established 

after merging of features within 50nt. 

http://bioinformatics.psb.ugent.be/orcae/overview/Tetur)
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3.2.4 Counting Average Read Depth at TE Loci by deepTools 

Longer reads (24-31 nt) were mapped to TEs using bowtie unique mapping 

options (-v0 -m1 --best --strata), and the number of reads mapped to each locus was 

counted using bedtools. TE loci were then divided into three bed files: no reads mapped 

(no expression), 1-50 reads mapped (low expressing), and more than 50 reads mapped 

per locus (high expressed). ML-siRNAs were mapped to entire genome using bowtie 

option -a -m 100 and a bigwig file was created. Bed and bigwig files were used in 

deepTools through the Galaxy suite to count average read depth per TE locus. 

3.2.5 DIG-labelled RNA Probe Preparation 

~500 nt regions from ML1 and ML3 were amplified by Taq DNA polymerase. 

PCR product was ligated into the pGEM-T Easy vector (Promega) by T4 DNA ligase. 

PCR was done using the plasmid as template using primers which both encoded T7 

promoter sites. The PCR product was used for in vitro transcription using the 

MEGAscript T7 Transcription Kit (Thermo Scientific) and DIG RNA labelling mix 

(Roche). RNA was precipitated using LiCl.  

3.2.6 In situ Hybridization of Adult Animal Section 

Adult female mites were collected and embedded in Tissue-Plus™ O.C.T 

compound (Fisher Healthcare). 14 micron sections of whole adult animals were prepared 

using a cryostat. Sections were dried on glass slides for 20 min at room temperature 

followed by crosslinking using 4% PFA solution. Crosslinked sections were washed with 

PBST (PBS plus 0.1% Tween-20) and acetylated for 10 with acetic anhydride (0.25%) in 

triethanolamine solution. After acetylation, sections were washed in PBST at room 

temperature and pre-hybridized at 540C water bath in hybridization buffer (50% 
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formamide, 4X SSC, 1X Denhardts, 5% dextran sulfate, 250ug/ml boiled ssDNA, 

250ug/ml tRNA, 50ug/ml heparin, 0.1% Tween-20) for 2 hours. Hybridization of DIG-

labelled RNA probe (300pg/ul) was carried out at 540C overnight. Following 

hybridization, sections were washed in wash buffer (50% formamide, 2X SSC, 0.1% 

Tween-20) for 4 hours at 540C. Sections were incubated in PBST-B solution (PBS, 0.1% 

Tween, 0.1% BSA) for 30 min at room temperature. AntiDIG-AP (Fab fragments, 

Roche) antibody was diluted (1:2000) in PBST-B and sections were incubated in 

antibody solution for 1.5 hours. Sections were washed for 1 hour in PBST and incubated 

in AP buffer (100mM Tris 9.5, 100mM NaCl, 50mM MgCl2, 0.1% Tween-20) for 10 

minutes. Finally, color development was carried out using BM-Purple AP Substrate 

precipitating solution (Roche) at room temperature.  

3.2.7 Northern Blot 

In each of the reactions, 20 µg total RNAs were used. In one tube, 1ul Terminator 

exonuclease (epicenter) was added and exonuclease reaction was carried out for 60 min 

at 30°C. 1 µl Calf intestinal phosphatase (CIP, NEB) was added to a second RNA 

preparation followed by incubation at 37°C for 30 min. Subsequently, the second 

preparation was incubated at 30°C for 60 minutes after adding 1ul Terminator 

exonuclease. RNAs were purified by organic extraction protocol (Goubau, et al. 2014). 

Precipitated RNAs were resolved in urea-polyacrylamide gel (12.5%), and northern 

blotting was carried out as previously described (Flynt, et al. 2009). RNAs were 

transferred from the gel onto Nylon membrane in 0.5X TBE buffer using 10V, 300mA, 1 

hour at 120C followed by UV-crosslinking and heating at 80oC for 10 mins. Membranes 

were pre-hybridized in hybridization buffer (5X SSC, 1mM EDTA, 2X denhardt’s, 1% 
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SDS, 2% dextran sulfate, 30 µg/ml ssDNA) for 1 hour at 40oC. Radiolabeling of siRNA 

oligonucleotide probes was accomplished by incubation with T4 Polynucleotide Kinase 

(T4 PNK) and P32 gamma-ATP (6000Ci/mmol). Hybridization was carried out overnight 

at 40oC followed by washing in 2X SSC, 0.1% SDS for 2 hours. Detection of blot signal 

used phosphorimager screens. 

3.2.8 RT-qPCR 

1 ug of total RNA from male and female spider mites was used for cDNA 

synthesis using random hexamer primer. Synthesized cDNAs were used in qPCR assays 

containing SYBR Green real-time PCR master mix (Thermo Fisher) following 

manufacturer’s protocol. 

3.3 Results 

3.3.1 Spider Mite RNAi Pathways and Small RNA Producing Loci 

To begin investigation of RNAi pathways in spider mites, we first examined 

Argonaute/Piwi effector proteins. Distinct Argonautes/Piwis mediate the biology of 

different classes of small RNAs. Beginning with existing annotations we manually 

curated thirteen Argonautes/Piwis in T. urticae using genomic and transcriptome data 

(Table 3.1) (Grbic, et al. 2011). We then examined their relatedness to Argonautes/Piwis 

from deer tick, fruit fly, and C. elegans (Fig 3.2 a). We found that T. urticae Ago1 

closely resembles miRNA associated Ago proteins. The remaining six Agos potentially 

work in siRNA pathways as they clustered with worm Alg-3, Alg-4 and fly Ago2. 

Presence of six Piwis suggests more elaborate piRNA pathways in T. urticae. 

 

 



 

68 

Table 3.1 Genes analyzed in this chapter 

Gene name used here Gene identifier 

Ago1 tetur20g02910 

Ago2 tetur09g00620 

Ago3 tetur09g03140 

Ago4 tetur09g03140 

Ago5 tetur02g10560 

Ago6 tetur02g10580 

Ago7 tetur04g01190 

Piwi1 tetur02g10570 

Piwi2 tetur28g00450 

Piwi3 tetur28g00340 

Piwi4 tetur06g05580 

Piwi5 tetur06g05570 

Piwi6 tetur06g05600 

Dicer1 tetur19g00520 

Dicer2 tetur07g00990 

Drosha tetur12g00910 

Rdrp1 tetur02g08750 

Rdrp2 tetur02g08760 

Rdrp3 tetur02g08780 

Rdrp4 tetur02g08810 

Rdrp5 tetur02g08820 

Loqs1 tetur13g00430  

Loqs2 tetur05g07970  

Vig tetur22g01310  

GW182 1 tetur05g07970  

GW182 1 tetur05g07970  

Exp-5 1 tetur02g00520  

Exp-5 2 tetur02g00500  

Rhino tetur02g00500  

Vasa tetur10g01980 
 

Gene identifiers are the unique IDs used in the original annotation.  
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Figure 3.2 Small RNA effectors and populations in spider mites 

a. Phylogenetic tree showing relationship of Ago proteins from T. urticae (Tur), deer tick- Ixodes scapularis (Isc) Drosophila 

melanogaster (Dme), and C. elegans (Cel). b. Size distribution of stage specific reads mapped to the whole genome. Mapped reads 

were collapsed using fastx_collapser and the collapsed reads were used to calculate size distribution. NL = nymph and larvae c. Z-

scores for overlap probability of reads that mapped to TE. Red and blue arrow show ping-pong and Dicer cleavage signature 

respectively. pp=ping-pong. D=Dicer. d. Loci were compared by size (x-axis), read length (y-axis), and frequency of “T” residues at 

the 5’ position (z-axis). Green arrows indicate non-piRNA loci encoded in tandem on scaffold 9. The blue arrow indicates an 

annotated politron TE. 

Next, we analyzed expression patterns of major RNAi factors (Fig 3.3). Almost 

half of the annotated Argonaute family members (Ago2,4,5,6/Piwi2,3) showed negligible 

expression. High expression of Ago7 and Piwi6 was seen in adult animals and Piwi1,4,5 
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in embryos. Piwi proteins are commonly found to be involved with germline biology, and 

are functionally coupled with gametogenesis making high expression of Piwis in embryos 

unexpected. Differential expression of Piwi5 and Piwi6 between embryos and adults 

suggests that there might be embryo and adult specific piRNAs. As somatic piRNAs have 

been found in arthropods, these embryo specific Piwis suggest spider mites might also 

have somatic piRNAs (Lewis, et al. 2017). Other RNAi proteins were expressed 

moderately across stages except for the Rdrps, which were generally low expressed. In 

spider mites, all Rdrp family members are encoded at a single location on scaffold 2 in 

the same orientation, perhaps arising from tandem duplication of an ancestral gene (Fig 

3.4). Spider mite Rdrps are predicted to be processive enzymes like C. elegans Rrf-3 

(Sarkies, et al. 2015), which means they can synthesize long dsRNA using single 

stranded transcripts as templates and are not involved in generating de novo siRNAs (Fig 

3.5). 

 

 

Figure 3.3 Heat map showing expression (RPKM) of RNAi factors 
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Figure 3.4 Position of Rdrp in spider mite genome 

Tracks show read density, splicing, and read pileup. 

 

Figure 3.5 A proline/tryptophan rich loop in the non-processive Rdrps of C. elegans 

Rhe Rdrp family members produce short reads such as 22G RNA. Processive Rdrp (RRF3 group) does not have this loop. No loop 

seen in spider mite Rdrps. 

Using combined small RNA datasets from mixed gender, whole animal bodies at 

three developmental stages (adult, nymph-larvae, and embryo) we investigated the 

composition of spider mite small RNA populations (Fig 3.2 B-D). We observed a 

bimodal size distribution with peaks at 21-22 nt and 25-26 nt (Fig 3.2 B). These two 

CelEgo1

CelRrf1

CelRrf2

CelRrf3

TurRdrp1

TurRdrp2

TurRdrp3

TurRdrp4 

TurRdrp5
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peaks suggest the presence of small RNA classes seen in Drosophila, which is consistent 

with the repertoire of Ago/Piwi proteins present in the genome of T. urticae. In insects, 

piRNAs are predominantly involved in TEs suppression, and are produced in two distinct 

yet collaborative pathways: the mitochondrial Zucchini (Zuc) dependent pathway, and 

ping-pong amplification cycle (Huang, et al. 2017). The T. urticae genome does not 

appear to encode a Zuc ortholog, suggesting a divergent piRNA biology that eschews the 

Zuc-produced primary-piRNA mechanism. 

Next, we investigated if T. urticae small RNAs have a role in genome 

surveillance, despite the apparent absence of a major biogenesis factor–Zuc. To this end, 

we identified biogenesis patterns of small RNAs mapping to TE sequences. All mapping 

events from combined small RNA sequencing data were used to capture all potential 

RNA-RNA interactions. Alignments were analyzed with an algorithm that can identify 

overlap probabilities of read pairs in mapping data (Antoniewski 2014). We observed the 

10 nt ping-pong signature in TE mapped reads that were longer than 21 nt (Fig 3.2 C). 

We also observed the 2 nt overhang Dicer signature in small size TE mapped reads (19-

21 nt), which suggests co-occurrence of siRNA and piRNA at TEs. This is consistent 

with previous observations that small RNAs in the distinct size ranges of siRNAs and 

piRNAs map to TEs (Grbic, et al. 2011). 

To characterize the landscape of T. urticae small RNA producing loci we called 

peaks of small RNA expression using uniquely mapping reads. The thousand most highly 

expressed regions were compared by locus size, average read length, and frequency of 5’ 

“T” (Fig 3.2 D). This analysis recovered many TE loci dispersed throughout the genome, 

which exhibited a piRNA signature of longer reads and high frequency of 5’ “T”. The 
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largest locus with this profile is a 5.5 kb politron TE. This contrasts with 5 small RNA 

loci to which substantially shorter read align that have a significantly lower 5’ “T ” bias. 

These peaks are encoded in close proximity on scaffold 9. Application of this peak 

calling strategy on a Drosophila whole body, mixed gender small RNA dataset recovered 

major known piRNA clusters (42AB, flam, etc), but failed to identify loci similar to T. 

urticae scaffold 9 clusters with the exception of a known siRNA cluster in the flamenco 

locus (Fig 3.6) (Liu, et al. 2011; Guida, et al. 2016). The presence of the prominent 

scaffold 9 loci along with the absence of Zuc reinforces the notion that T. urticae has 

distinct small RNA-mediated genome surveillance pathways relative to Drosophila. 

 

Figure 3.6 Most abundant peaks of unique small RNA mapping in D. melanogaster 

Loci were compared by size (x-axis), read length (y-axis), and frequency of “T” residues at the 5’ position (z-axis). Larger loci tend to 

exhibit characteristics of piRNAs–the reads are longer and have a large fraction of “” 5’ reads. The blue arrow indicates a known 

region of siRNA production in the flamenco master locus. 

3.3.2 siRNA Master Loci in T. urticae 

Investigation of RNAi biology described in Chapter II on D. farinae, found a 

complete loss of piRNA pathways and replacement with Dicer produced, siRNA-
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mediated genome surveillance, complete with siRNA-based master loci (ML-siRNA). 

While spider mites clearly have an intact piRNA pathway, they appear to share ML-

siRNA loci with dust mites. Indeed, the five small RNA loci on scaffold 9 appear to have 

many features of ML-siRNA clusters (Fig 3.7). While these loci encompass a total length 

of only ~30 kb, 16% of reads from the combined sequencing data uniquely map with 

similar abundance on both strands (Fig 3.7 A). Almost all the reads were in 19-22 nt 

range with a peak at 21, suggesting they are siRNA-class small RNAs (Fig 3.7 B). 

Furthermore, we observed a Dicer-type biogenesis pattern at these loci as overlap Z-

scores were highest at -2 lengths (Fig 3.7 C). This pattern was prominent regardless of 

developmental stage. We also noticed equal representation of 5’-T/A nucleotide bias at 

the 5’ position of the reads, and not the high T bias seen in piRNAs (Fig 3.7 D). 

To gain better insight into biogenesis of the ML-siRNAs, we sought to determine 

if they have characteristics of Dicer cleavage: 5’-monophosphate and not Rdrp produced 

5’-triphosphates (Lee and Collins 2007). We treated total RNA with the 5’ 

monophosphate specific terminator ribonuclease. After treatment, complete elimination 

of ML-siRNAs was observed (Fig 3.7 E). Terminator mediated degradation could be 

abrogated by prior treatment with calf intestinal phosphatase (CIP). This result indicates 

ML-siRNAs are not generated by a de novo siRNA pathway. We also examined stage-

wise relative expression of ML-siRNAs and observed that these loci are primarily 

expressed in adult compared to other developmental stages indicating they have an adult 

specific function such as gametogenesis (Fig 3.7 F). Together, T. urticae ML-siRNAs are 

Dicer products deriving from a dsRNA precursor, possessing the expected 5’-

monophosphate. 
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Figure 3.7 siRNA producing master loci (ML) in spider mite 

a. Uniquely mapped read density of positive (red) and negative (green) at scaffold 9 master loci. b. Developmental stage specific read 

size distribution for both unique (Unq) and all mapping (MM) events. c. Overhang z-scores of reads produced from the ML from three 

different developmental stages. d. 5’-T/A bias of ML mapped reads. e. Northern blot of ML-siRNA after enzymatic treatment. U6 

RNA was used as loading control. Term = Terminal exonuclease, CIP = Calf-intestinal phosphatase. f. Relative read density mapping 

to ML, TE, and miRNA loci (RPKM) in different stages of the spider mite life cycle. NL = nymph and larvae 
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3.3.3 ML-siRNAs Appear to Trigger piRNA Production 

To investigate whether ML-siRNAs have a function like piRNAs produced from 

piRNA cluster in other animals, we mapped ML uniquely mapping reads back to the 

whole genome to look for secondary alignments. A mapping strategy was used that 

captured all mapping events and allowed up to two mismatches per alignment. This 

approach reveals all potential binding at near perfect complementarity between ML-

siRNAs and their targets. This analysis found a significant number of ML-siRNAs can 

target TEs, and that the frequency of targeting directly correlates to the abundance of 

piRNAs arising from the TEs (Fig 3.8 A-C). TE loci were separated into three categories 

based on piRNA abundance: high, low, and no expression based on density of uniquely 

mapped, longer reads (24-31 nt). 

DeepTools was used to count ML-siRNA read depth in TE loci along with 5’ and 

3’ flanking regions (Ramirez, et al. 2014). From this, we observed a strong correlation 

between high piRNA abundance at TEs and ML-siRNA mapping (Fig 3.8 A-C). This was 

slightly more pronounced in adults compared to other developmental stages. As the ML-

siRNAs only align to scaffold 9 when using unique mapping parameters, but then map to 

numerous TEs when 1-2 mismatches are permitted this allows us to clearly delineate their 

origin as scaffold 9, and their targets as piRNA processed TE transcripts. This suggests a 

mechanism where siRNA trigger piRNAs, which is opposite from the situation in In C. 

elegans where piRNA trigger siRNAs. This is further corroborated by the absence of Zuc 

in T. urticae, and implies that siRNAs act like primary piRNAs in this organism. Further 

dissection of these interactions through genetics will be needed to verify this mechanism. 
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Figure 3.8 Master loci siRNAs interact with piRNAs and are expressed in the gonad 

Average ML-siRNA read depth in three categories of TE loci in three different developmental stages (a, b, c). For each stage, TE loci 

were divided into three groups i) having > 50 longer (24-31) reads ii) having 1-50 longer reads iii) no mapping of longer reads. ML-

siRNAs were mapped back to the whole genome and average read depths were counted using deeptools for each TE group. Mapping 

to TE coordinates is displayed as size normalized heatmap that includes 500 nt of 5’ and 3’ flanking regions. RNA in situ 

hybridization of ML-1(e-f), ML-3 (g-h), Vasa (i), Ago3 (j), Ago7 (k), and Piwi6 (l). s- sense strand, as- anti sense strand. a, and p 

indicate anterior and posterior of the animals respectively. Red circles mark gonadal ISH signal.  m. RT-PCR for expression of ML in 

male and female adult animals. Same loci were amplified in RT-PCR that were used to generate ISH probe. n. qPCR of ML associated 

Argonautes and all expressed Piwi proteins, from three independent biological replicates. Error bars represents SEM. 
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3.3.4 ML-siRNAs Are Expressed in The Gonad 

To better understand the role of ML-siRNAs in spider mite biology, we 

determined their tissue specificity by in situ hybridization (ISH) in adult female spider 

mites. ~500 nt sequences from both strands of ML1 and ML3 were used as RNA probes, 

which revealed female gonad expression (Fig 3.8 D-I). Gonadal expression was verified 

by localizing Vasa transcripts−a well-known gonad specific protein (Fig 3.8 I) (Dearden, 

et al. 2003). Similar signal from hybridization of both sense and anti-sense probes 

supports that ML-siRNAs are produced from precursor dsRNAs; canonical substrates of 

Dicer. To accompany these gonad-specific siRNAs, we also found high expression of 

Ago7 and Ago3 in gonads of adult females (Fig 3.8 J-K).  

ML are expressed in both sexes, though higher expression was seen in females 

(Fig 3.8 M). We also compared expression of Ago/Piwi in male and female adult mites 

by RT-qPCR. Piwi6 was significantly more abundant in female compared to male (Fig 

3.8 N). Together, this suggest that piRNAs, potentially downstream of ML-siRNA 

expression, may be more active in females. Larger gonad size in females might be the 

reason for higher female specific piwi6 expression, however, similar expression levels of 

piwi1,4,5 and Ago3,7 in both male and female supports female specific expression of 

piwi5,6 and that suppressing TE’s through collaboration of siRNAs and piRNAs may 

more be an aspect of oogenesis. 

3.4 Discussion 

This study provides a thorough analysis of the small RNA biology in T. urticae. 

In comparison to other arthropods that have been extensively investigated, these 

chelicerates have distinct RNAi biology. We report existence of ML-siRNA loci in T. 
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urticae, which produce siRNAs in the gonad, and appear similar to loci described in dust 

mites. Significantly biased mapping of ML-siRNAs to high piRNA targeted-TEs suggests 

that they might be involved in activation of the ping-pong amplification loop, which is 

analogous to Zuc-piRNA mediated triggering of ping-pong (Fig 3.9). It is unclear if ping-

pong piRNAs feed-forward to promote generation of ML-siRNAs as seen with Zuc-

piRNAs, or whether maternally inherited piRNAs contribute to the interaction of piRNAs 

and siRNAs (Le Thomas, et al. 2014). Another outstanding issue is understanding the 

function of spider mite Rdrp. Is the ML-siRNAs pathway dependent on Rdrp? Does Rdrp 

activity synergistically interact with ping-pong amplification triggered by ML-siRNAs?  

 

 

Figure 3.9 Initiation of ping-pong amplification by ML-siRNA in spider mite gonad. 

This mechanism does appear to be unique to mites as ticks possess a Zuc 

ortholog. Failure to identify a Zuc homolog or large piRNA clusters could be a 

consequence of incomplete genome assembly, however, this is unlikely due to the small 
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size, low complexity, and method by which the genome was assembled (Grbic, et al. 

2011). Zuc-processing of piRNAs is conserved between flies and vertebrates, and 

therefore clearly the ancestral state. Nonetheless the mechanism we described here 

appears to be effective at controlling TE mobilization as T. urticae has relatively low TE 

burden. Furthermore, T. urticae has one of the smallest metazoan genomes, which might 

have been reduced by rearrangements caused by the loss of Zuc- piRNAs, and the 

ensuing mobilization of TEs. 

Exogenous dsRNA gets incorporated into an antiviral pathway involving Dcr2 

and Ago2 in flies. This pathway may be present in spider mites, however, expression of 

candidate somatic Ago2-like T. urticae genes is. Further divergence from flies is evident 

from embryo specific Piwi proteins and piRNAs suggests this pathway may not be 

confined to the germline. How the reconfigured RNAi pathways of spider mites influence 

the capacity of dsRNA to trigger RNAi is unclear, and highlights the need to investigate 

metabolism of exogenous dsRNA in spider mites to understand the relative insensitivity 

reported (Suzuki, et al. 2017). Appreciation of spider mite RNAi may also lead to better 

approaches for controlling other mites like Varroa destructor and citrus mites. 
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CHAPTER IV – GUANIDINIUM-FUNCTIONALIZED INTERPOLYELECTROLYTE 

COMPLEXES ENABLE RNAI IN RESISTANT INSECT PESTS 

4.1 Introduction 

In Chapter II and III of this study, we investigated RNAi pathways in dust mites, 

and spider mites. Primary goal in each of the chapter was to decipher unappreciated 

RNAi biology or understand the pathways to deliver improved knowledge to scientific 

community for better RNAi design. The major application of RNAi in agriculture is to 

control insect crop pests; however, RNAi is not yet successful against all insect clades. In 

this chapter, we sought to solve this issue by broadening extent of effective RNAi 

application by designing an avant-garde strategy. 

Insect crop pests are a major global concern that exacerbate increasing pressures 

on food supplies from overpopulation to global warming. Unfortunately, use of chemical 

pesticides causes collateral environmental damage, and kill non-target insects (Naranjo 

and Ellsworth 2009). Transgenic strategies such as Bt toxin can alleviate these concerns; 

however, resistance can emerge, which limits their effectiveness (Tabashnik and Carriere 

2017). Moreover, global acceptance of the GMO’s is still limited. An increasingly 

exciting non-transgenic option for control of plant insect pests is the use of RNA 

interference- (RNAi-) based technologies. RNAi in insects can be induced through 

introduction of double stranded RNA (dsRNA), which is processed into small interfering 

RNA (siRNA) effectors. Feeding of dsRNA to crop pests is effective at inhibiting gene 

expression in some species. Indeed, transgenic corn expressing dsRNA is currently being 

used to control western corn rootworm (WCR) by targeting vacuolar ATPase (V-

ATPase) (Baum, et al. 2007; Gordon and Waterhouse 2007; Price and Gatehouse 2008). 
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dsRNAs can also be applied as crop sprays, which enables use of synthetics to increase 

efficiency. Use of dsRNA in sprays is a very attractive mode of delivery as it eliminates 

the need for transgenics, which are not feasible to generate for some crops (Wang and Jin 

2017). 

Unfortunately, while attempts at RNAi-based pest control have been successful in 

some species, many insect orders seem refractory to ingested RNAi. Although feeding is 

ineffective in these insects, dsRNA injection is often capable of eliciting RNAi, 

indicating that barriers to dsRNA uptake primarily exist in the digestive tract (Liu, et al. 

2010; Luo, et al. 2013). Indeed, high nuclease activity in the migratory locust gut renders 

dsRNA feeding ineffective (Luo, et al. 2013). Furthermore, additional barriers may exist, 

such as the endosomal entrapment of dsRNA found in lepidopterans (i.e., moths and 

butterflies) (Shukla, et al. 2016) To address this problem we sought to develop a 

polymeric dsRNA vector that can circumvent barriers to uptake via ingestion, and 

facilitate the use of RNAi in crop sprays. 

Polycations have gained interest for their ability to electrostatically complex the 

negatively charged RNA phosphodiester backbone to form interpolyelectrolyte 

complexes (IPECs) (Kabanov and Kabanov 1998; Gebhart and Kabanov 2001). Polymers 

synthesized from N-(3-guanidinopropyl) methacrylamide (GPMA) are able to enter cells 

readily via both endocytotic and nonendocytotic routes (Treat, et al. 2012), and these 

polymers can bind and protect siRNAs (Tabujew, et al. 2014). pGPMA guanidinium 

groups provide moieties similar to arginine-rich cell penetrating peptides (CPPs), which 

are observed to accumulate in endomembrane vesicles, where they can cross membranes 

(Futaki 2002; Qian, et al. 2014; Qian, et al. 2016). CPPs have also been found to enter 
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cells through nonendocytotic routes (Silhol, et al. 2002). We tested effectiveness of the 

polymeric carrier in Sf9 cells, an RNAi-insensitive cell line derived from fall armyworms 

(Spodoptera frugiperda), and fall armyworm larvae (all six instar stages). RNAi mediated 

by naked dsRNA is inefficient in Sf9 cells because the dsRNAs are eliminated in 

endosomal compartments (Shukla, et al. 2016). We sought to resolve this issue by 

complexing dsRNA with pGPMA to deliver the dsRNA cargo into the cytoplasm. We 

also tested if the complex can overcome RNAi barriers in the gut by droplet feeding 

experiment.  

The polymer was synthesized and characterized by Charles McCormick lab 

(Department of Polymer Science and Engineering, The University of Southern 

Mississippi), and the study was carried out collaboratively by Flynt lab and McCormick 

lab. My contribution to this study was to create plasmid vector constructs, dsRNA 

synthesis, and carry out experiments on fall armyworm larvae. 

 

4.2 Materials and Methods  

4.2.1 Materials 

All reagents were purchased from Sigma-Aldrich at the highest available purity 

and used as received unless otherwise noted. 4-Cyano-4-

[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CEP) (Convertine, et al. 2009) and 

N-(3-guanidinopropyl)methacrylamide (GPMA) (Exley, et al. 2015) were synthesized as 

previously reported. Gibco Sf-900 II serum free media was purchased from Fisher. Sf9 

(S. frugipera, ovarian) cells were purchased from Millipore. Fall armyworm (S. 

frugiperda) larvae were obtained from Benzon Research through USDA permit P526P-
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17–00512. For reactions requiring nitrogen, ultrahigh purity nitrogen (purity ≥99.998%) 

was used. Spectra/Por regenerated cellulose dialysis membranes (Spectrum Laboratories, 

Inc.) with a molecular weight cutoff of 12–14 kDa were used for dialysis. 

4.2.2 Synthesis and Characterization of pGPMA 

Poly[N-(3-guanidinopropyl)methacrylamide] (pGPMA) was prepared employing 

4,4’-azobiscyanovaleric acid as the primary radical source and CEP as the chain transfer 

agent by the McCormick lab at the Department of Polymer Science and Engineering, The 

University of Southern Mississippi. (Detailed protocol can be found in: DOI: 

10.1021/acs.biomac.7b01717) 

4.2.3 In vitro Transcription of dsRNA 

Using Taq DNA polymerase, ∼500 nucleotide (nt) of exonic sequence was 

amplified by polymerase chain reaction (PCR) for GFP, and the S. frugiperda genes: sfV-

ATPase, sfKIF (Accession no: KC262641), and sfCDC27 (Accession no: KC262640) 

genes. Fragments were ligated into pGEM-T Easy plasmid (Promega), and sequence 

verified. dsRNAs were synthesized following protocol described in Chapter II.  

4.2.4 Polymer–dsRNA Binding Assay 

pGPMA-dsRNA solutions were prepared to complex 1 μg dsRNA at varying 

polymer–dsRNA weight ratios (0.25–100 μg of polymer/μg of dsRNA, ± = 0.5–180). 

Briefly, an appropriate volume of a 1 μg/μL or 10 μg/μL pGPMA stock solution in 10 

mM PBS was added to 2 μL of a 0.5 μg/μL dsRNA solution in nuclease-free diH
2
O. The 

solutions were gently mixed and allowed to equilibrate for 30 min before being diluted 

with 15 μL of 2× RNA loading buffer (Ambion). Gel electrophoresis was then performed 

on a 1% agarose gel in 1× TAE buffer stained with ethidium bromide. The gel was 

https://pubs.acs.org/doi/abs/10.1021/acs.biomac.7b01717?mi=aayia761&af=R&AllField=nano&target=default&targetTab=std#.WocZhFDc-Kc.linkedin
https://pubs.acs.org/doi/abs/10.1021/acs.biomac.7b01717?mi=aayia761&af=R&AllField=nano&target=default&targetTab=std#.WocZhFDc-Kc.linkedin
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soaked in diH
2
O for 30 min to remove excess ethidium bromide before being imaged. 

4.2.5 Gene Suppression in Sf9 Cell Culture 

Sf9 cells were grown in Sf-900 II SFM at 28 °C. Sf9 cells (1 million cells/mL, 2 

mL) were seeded in a 6 well plate (Corning Inc.). pGPMA-dsRNA complexes were 

formed to deliver a total of 5 μg of dsRNA complexed with 20, 30, or 40 μg of pGPMA 

per well. Briefly, 20, 30, or 40 μL of a 1 μg/μL pGPMA stock solution in 10 mM PBS 

was added to 10 μL of a 0.5 μg/μL stock solution of dsRNA targeting CDC27 in 

nuclease-free diH2O. The solution was gently mixed and allowed to equilibrate for 30 

min before being added to the cell media, resulting in [dsRNA] = 7.4 nM. Identical 

complex solutions using dsRNA targeting KIF were used as controls. After 24 h, cells in 

the culture dish were washed three times with PBS followed by scraping cell with TRI 

reagent. Total RNA was extracted with TRI Reagent following manufacturer protocol. 

CDC27 transcript abundance was determined via RT-qPCR. First strand cDNA was 

synthesized with the Reverse Transcription Kit (Fermentas). Amplification and 

quantification was carried out with qPCR mix containing SYBR green (Fisher Scientific) 

and a BioRad CFX 96. All amplifications were performed in quadruplicate. 

Time-dependent gene suppression followed a similar procedure. Cells were 

seeded as described above, and pGPMA-dsRNA complexes targeting CDC27 were 

formed to deliver a total of 5 μg of dsRNA complexed with 40 μg of pGPMA. 

Lipofectamine 3000 (Invitrogen) was used as a positive control, and the Lipofectamine-

dsRNA complexes were prepared according to manufacturer protocol. Untreated cells 

were used as a negative control. After 24, 48, or 72 h, total RNA was extracted, and RT-

qPCR was performed as described above. 
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4.2.6 Cell Viability Assay 

Cells (1 M cells/mL, 100 μL) were seeded in a 96 well plate (Corning Inc.). Cells 

were treated with 1, 1.5, or 2 μL of a 1 mg/mL pGPMA stock solution to yield polymer 

concentrations equivalent to those used in the gene suppression studies. Cell proliferation 

was determined via a standard MTT assay (Vybrant MTT Cell Proliferation Assay Kit; 

Invitrogen). Cells were incubated for 48 h before adding 10 μL of a 12 mM MTT reagent 

to each well. The cells were further incubated for an additional 4 h, followed by adding 

100 μL of a SDS (10%)/HCl (0.01 M) solution to each well. The absorbance was then 

determined utilizing a Biotek Synergy2MultiMode Microplate Reader. All studies were 

performed in triplicate. 

4.2.7 Confocal Microscopy 

Sf9 cells (200 000 cells/mL, 500 μL) were seeded in a 48 well plate (Corning 

Inc.). pGPMA-dsRNA complexes were formed to deliver a total of 25 ng Cy5-labeled 

dsRNA (vATPase) complexed with 150 ng pGPMA per well. Briefly, 1.5 μL of a 0.1 

μg/μL pGPMA stock solution in 10 mM PBS was added to 1.02 μL of a 24.5 μg/μL 

dsRNA solution in nuclease-free diH2O. The solution was diluted to 25 μL with 10 mM 

PBS, gently mixed, and allowed to equilibrate for 30 min before being added to cell 

media. A 25 μL solution containing 25 ng Cy5-labeled dsRNA was also prepared and 

added to cells as a control. After 24 h, the cells were collected and spun down at 4.5k 

RPM. The supernatant was removed, and the cells were washed with 500 μL PBS. After 

spinning down again, the cells were resuspended in 40 μL PBS and placed on precleaned 

microscope slides. The cells were then fixed with 4% formaldehyde, washed with PBS, 

and stained with 12 μL 4′,6-diamidino-2-phenylindole (DAPI) mounting medium before 
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adding coverslips. Fluorescence cell images were taken using a Zeiss LSM 510 scanning 

confocal microscope and processed with manufacturer software. Multiple fields were 

imaged for each sample to document uniform cytoplasmic distribution of complexes. 

4.2.8 Larvae Feeding Experiments 

pGPMA-dsRNA complexes targeting V-ATPase or GFP (control) were formed in 

8:1 weight ratio as previously described. Fall armyworm larvae were immobilized, and 

either pGPMA alone or pGPMA-dsRNA complex solution (∼100 ng/μL dsRNA) was put 

directly on larval mouth parts, and ingestion verified by observation under a 

stereomicroscope. Animals were then kept in a 26 °C incubator on larval food. Insect 

midguts were dissected and homogenized in TRI reagent for total RNA extraction 

following manufacturer protocol. V-ATPase transcript abundance was determined via 

RT-qPCR as described above. For survival assay, the number of larvae/pupae was 

counted in regular intervals (days) for mortality. 

4.2.9 Primers Used in this Study (5’ to 3’) 

Accession no of the genes: 

Sf-VATPase Sf2M13305-3-1 (EST tag no) 

CDC27 KC262640.1 

KIF  KC262641.1 

 

dsRNA Synthesis 

SfV-ATPase_dsRNA F GAGGCTCTTCGTGAGATCTCAGG 

SfV-ATPase_dsRNA R GAAACGATCGTATGACGAGTAGCTG 

SfCDC27_dsRNA F  ATTGTTCAAGAACCTATACAGGTTATCGTTTG 

SfCDC27_dsRNA R  CAGGAGCTTGAGTCTCTGGTGTGATGCTGG 

M13 F    TGTAAAACGACGGCCAGT 

Sp6-T7 R   TAATACGACTCACTATAGGGAGCTCTCCCATATGGTCGAC 
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RT-qPCR 

SfV-ATPase_qPCR F  TGTCCGTTCTACAAGACCGTGG 

SfV-ATPase_qPCR R  TCACGGATGACGTTCCAGGTG 

dsCDC27 F   CCACCAAGATGATTGTTCAAG 

dsCDC27 R   GAGTCTCTGGTGTGATGCTGG 

SfKIF23 F   AAGGAACTGATGGCACATTTGGAAATGAGG 

SfKIF23 R   AGTGGCGGTCAAGCGTTCTTCCAGAGCTCT 

SfActin_qPCR F  AGATGACACAGATCATGTTCG 

SfActin_qPCR R  GAGATCCACATCTGTTGGAAG 

GFP_qPCR F   TGAAGTTCATCTGCACCACCGG 

GFP_qPCR R   TTGAAGAAGTCGTGCTGGCG 

 

4.3 Results 

4.3.1 pGPMA-dsRNA IPEC Transfection and Gene Suppression in Lepidopteran 

Cell Culture 

The IPECs were tested for their ability to enter Sf9 cells and affect gene 

expression. This cell line is derived from embryonic fall armyworms. and unlike some 

insect lines (e.g., Drosophila S2), is insensitive to dsRNA (Shukla, et al. 2016). To verify 

the ability of pGPMA to facilitate uptake of dsRNA, Cy5-labeled dsRNA was complexed 

with pGPMA (8×) and added to Sf9 cell culture media. Cells were imaged following 

incubation with the complex for 24 and 48 h. Significant accumulation of the Cy5 signal 

could be observed in the pGPMA-dsRNA complex-treated cells after both 24 (Fig 4.2 A) 

and 48 h. (Fig 4.2 B). Conversely, cells treated with Cy5-dsRNA alone (Figure 4.3) 

exhibited no Cy5 signal. Accumulation appears constant, likely due to continued uptake 

from media. Primarily the dsRNA localized to cellular bodies that are likely endosomal, 
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consistent with observations that guanidinium-functionalized oligomers facilitate uptake 

of nucleic acids through an endocytosis-dependent mechanism (Funhoff, et al. 2004). 

Significantly, treatment with the polymers resulted in negligible cytotoxicity (Fig 4.2 C). 

 

Figure 4.1 Delivery of dsRNA to Sf9 Cell by pGPMA-dsRNA Complex  

Sf9 cells treated with Cy5-labeled dsRNA (red) complexed with pGPMA after (a, top row) 24 h or (b, bottom row) 48 h. Nuclei were 

stained with DAPI (blue). Scale bars = 5 μm. (c) Cell viability assay of pGPMA after 48 h employing polymer concentrations 

identical to the indicated weight ratios used in IPECs. Cell viability was determined relative to the untreated control. Error bars 

represent the standard deviation from triplicate experiments. 

The CDC27 gene, which was targeted by RNAi in Sf9 cells in a previous study 

that relied on Caenorhabditis elegans SID-1 to transport dsRNA into the cytoplasm (Xu, 

et al. 2013), was used to test the ability of pGPMA to enable gene knockdown. pGPMA 

was complexed either with CDC27-dsRNA or control dsRNA and added to Sf9 media. 

After a 48-h incubation, expression levels were quantitated by RT-qPCR (Fig 4.4 A). We 

observed extensive knockdown of CDC27 (>90%) that was sequence dependent. Time-

dependent gene suppression at an 8× weight ratio was then evaluated relative to untreated 

cells and those transfected using Lipofectamine 3000 (Fig 4.4 B). pGPMA-dsRNA IPECs 

induced knockdown comparable to Lipofectamine and showed better performance after 

72 h. To ensure that changes in gene expression were not induced by the polymer itself, 

CDC27 expression was evaluated after treatment with uncomplexed pGPMA equivalent 
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to that of 8× weight ratio. No gene suppression from the polymer alone was observed 

(Fig 4.5). 

 

Figure 4.2 Sf9 cells treated with Cy5-labeled naked-dsRNA  

(a) Expression of Sf9 cells treated with free Cy5-labeled dsRNA (red) after (a, top row) 24 hrs and (b, bottom row) 48 hrs. Nuclei 

were stained with DAPI (blue). Scale bars = 5 μm.  

 

Figure 4.3 RNAi in Cell Culture by pGPMA-dsRNA  

(a) Expression of CDC27 determined by RT-qPCR in Sf9 cells following incubation with pGPMA complexed with either CDC27- or 

control-dsRNA. Numbers indicate polymer/dsRNA weight ratios. Values are normalized to CDC27 expression in respective control 

(KIF-dsRNA-treated) samples. Errors bars represent SEM. (b) Expression of CDC27 determined by RT-qPCR in Sf9 cells following 

incubation with CDC27 dsRNA complexed with either pGPMA (8×) or Lipofectamine 3000. Values are normalized relative to 

respective untreated controls. Error bars represent SEM. (c) RT-qPCR quantification of CDC27-dsRNA transfected by pGPMA, 

Lipofectamine 3000, or untreated control. Values are relative to zero. Error bars represent SEM. For plots a–c, groupings indicated 

with asterisks (∗) were found to be significantly different after Tukey analysis. 
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The amount of dsRNA delivered at an 8× weight ratio was quantified via RT-

qPCR employing primers specific to the dsRNA, rather than the targeted mRNA (Fig 4.4 

C). After 24 h, pGPMA transfected similar amounts of dsRNA to Lipofectamine. 

However, at 48 and 72 h, cells treated with IPECs maintained significantly higher levels 

of transfected dsRNA than did those treated with Lipofectamine. The relatively high 

levels of dsRNA transfected by pGPMA resulted in consistent levels of gene suppression 

over 3 days. Lipofectamine, on the other hand, yielded decreasing levels of transfected 

dsRNA over the observed time period that correspond to a trend of decreasing 

knockdown. These results suggest that the IPEC provides greater dsRNA protection and 

retention within the cells, traits that would be advantageous when delivering dsRNA 

through feeding. 

 

Figure 4.4 Expression of CDC27 determined by RT-qPCR in Sf9 cells  

(a) Expression of CDC27 determined by RT-qPCR in Sf9 cells following incubation with free pGPMA at identical concentration as 

used for 8x IPEC. Blue bars are expression when polymer is added, green represents no treatment. Values are normalized to respective 

untreated controls. Error bars represent SEM 

4.3.2 pGPMA-dsRNA IPEC Gene Suppression in Lepidopteran Larvae after Oral 

Ingestion 

Having demonstrated that pGPMA-dsRNA IPECs successfully elicit gene 
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knockdown in an otherwise refractory cell line, we evaluated their ability to trigger RNAi 

in live caterpillars through feeding. RNAi has been used to target WCR V-ATPase 

through feeding. Thus, we sought to similarly target a fall armyworm V-ATPase ortholog 

(sfV-ATPase) using pGPMA. Larvae were fed pGPMA-dsRNA IPECs targeting either 

sfV-ATPase or Green Fluorescent Protein (GFP, control dsRNA). 100 ng of dsRNAs 

were fed to second or third instar larvae in complex with 8× pGPMA (w/w). Seven days 

after feeding, total RNAs were extracted from midguts, and RT-qPCRs were performed 

to determine changes in sfV-ATPase expression (Fig 4.6 A). Alike cell culture 

experiments, dsRNA delivered by pGPMA resulted in >80% knockdown of the target 

gene, indicating that pGPMA-dsRNA IPECs can successfully navigate the hostile 

environment of lepidopteran guts, resulting in gene suppression after feeding. 

 

Figure 4.5 RNAi in Fall Armyworm Larvae by pGPMA-dsRNA  

(a) Expression of V-ATPase mRNA in midgut tissue from second instar fall armyworm larvae fed with pGPMA complexed with 

either V-ATPase dsRNA or GFP dsRNA determined by RT-qPCR. Letters indicate individual animals. Days between feeding and 

harvesting are indicated in parentheses. Values are normalized to V-ATPase expression in control sample. Error bars represent SEM. 

(b) Percent survival of second and third fall armyworm larvae fed pGPMA complexed with dsRNA targeting V-ATPase (N = 25) or 

control dsRNA (N = 31). (c) Image of fall armyworm larval gut after feeding with pGPMA complexed with dsRNA targeting GFP or 

(d) sfV-ATPase. Scale bars =2 mm. 

Because suppression of sfV-ATPase leads to decreased nutrient uptake (Baum, et 
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al. 2007), such extensive knockdown was expected to result in large increases in larval 

mortality. However, only moderate larval death (Fig 4.6 B), was observed after 29 days. 

Such low mortality suggests that the inhibition of gene expression by RNAi is transient, 

or that knockdown of a different gene may prove more effective. This could be addressed 

with multiple doses of the IPEC, similar to what would be ingested through continuous 

feeding on sprayed foliage. In any case, larval mortality was associated with the 

significant gut hypertrophy expected from decreased nutrient uptake (Fig 4.6 D), as 

would be expected from sfV-ATPase knockdown. Additionally, when larvae were fed 

pGPMA alone, no death was observed, even when fed 100× the amount used in the IPEC 

feeding experiments (Fig 4.7). These results, along with those of the Sf9 viability assay, 

suggest low pGPMA toxicity, a necessary requirement for full implementation into crop 

sprays. 

 

Figure 4.6 Survival of fall armyworm larvae after ingestion of pGPMA 

Animals were directly fed masses indicated on the left y-axis (black line). The percentage of animals viable after feeding on right y-

axis (grey line). (N = 4) 

4.4 Discussion 

We find that pGPMA-dsRNA IPECs can elicit RNAi in fall armyworm cells and 

larvae that are otherwise insensitive to ingested RNAi. Feeding pGPMA-dsRNA IPECs 

to fall armyworm larvae caused suppression of target mRNA accumulation, resulting in 
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moderate animal mortality. Furthermore, pGPMA alone seems to be relatively nontoxic 

to the larvae and exhibited no significant toxicity in Sf9 culture. pGPMA has exhibited 

cytotoxicity toward one cell line, but similar guanidinium-functionalized polymers have 

exhibited negligible cytotoxicity in a myriad other cell lines. To account for this variance, 

extensive toxicology studies across multiple cell lines will be necessary before 

implementation into a commercial product. 

This is the first time to our knowledge that pGPMA-based polymers have been 

shown to elicit RNAi in lepidopterans after oral ingestion, a strategy that has heretofore 

been unsuccessful. The species specificity of RNAi makes this approach attractive from 

an environmental perspective, and insect inability to develop resistance points to long-

term efficiency of this strategy. Thus, RNAi-based pesticides built on this IPEC platform 

could be candidates for commercial development into crop sprays. Dosing optimization, 

toxicity studies in animal models, and alterations to the polymer architecture for spray 

formulation will be necessary to progress this technology and are the subjects of ongoing 

investigation in our laboratories. 
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CHAPTER V  – CONCLUSION 

More versatile, and critical roles of RNAi are being reported over the past decade, 

which increasingly broadens our understanding of scope of the application of the pathway 

in agricultural. Our findings on house dust mite certainly place them in a unique spot on 

the evolutionary road of the small RNA pathways. While the pathway is unique in the 

animal clades, not in plants, which use a similar TE controlling siRNA pathway. How 

dust mites acquired this special biology can be an outstanding topic of future research. 

In this study, we analyzed the endogenous small RNA pathways, and identified a 

siRNA-mediated genome surveillance route that triggers production of piRNAs from 

transposable elements (TE). It is yet unknown whether the master loci (ML) centered 

siRNA pathway is the sole siRNA pathway or works in parallel to another siRNA 

pathway. If the ML-siRNA pathway is the only siRNA producing system, how any 

exogenously introduced dsRNA would be metabolized is an outstanding question as the 

pathway is appeared to be gonad specific. Unfortunately, studies that aimed to knock 

down gene expression in spider mites by dsRNA feeding experiments failed to achieve 

significant level of repression of target genes arising the need to look for an efficient 

strategy. Moreover, none of the studies investigated processing of the exogenous dsRNA 

by the endogenous RNAi pathway of T. urticae. To end this, we are investigating how 

spider mites metabolise plant derived as well as synthetic exogenous dsRNAs in the lab. 

Our pGPMA-dsRNA complex has proven to be sucessful in lab setting in a single 

species. How effective the polymer-dsRNA complex in practical application on multiple 

animals is also a subject of future study. 
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