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ABSTRACT 

Polymer particles (micro to nano) with tunable functionality have emerged as a 

promising and viable technology platform for applications including coatings, cosmetics, 

nanomedicine, and imaging. Unfortunately, the lengthy polymerization time and lack of 

intrinsic functionality in the monomers used to fabricate particles is an industrial 

challenge. Thiol-ene chemistry cirmcumvents these limitations with very rapid 

polymerization kinetics, high reaction yields, with supressed side reactions and inherent 

functionality. This dissertation demonstrates the utility of thiol-ene/yne polymerization in 

miniemulsion and microfluidics to generate functional materials in a one-pot-method. 

The functionality is typically generated via off-stoichiometry thiol-ene (OSTE) resins 

which allow for either excess SH or alkene/yne functionality to be present throughout the 

material. The accessability of these functional groups are proven via infrared 

spectroscopy, confocal and optical microscopy.  

The first chapter focuses on the burgeoning field of thiol-ene/yne chemistry 

within multiphase emulsions and introduces innovative methods to generate functional 

particles/materials. Chapter II describes the first thiol-ene miniemulsion process where 

surfactant concentration, ultrasonication time/amplitude, and OSTE resins are explored. 

Chapter III expands the miniemulsion process to include thiol-yne resins in addition to 

the ability to encapsulate hydrophobic materials such as modified silver nanoparticles. 

Chapter IV highlights the utility of thiol-ene resins within microfluidics to generate 

unique multiphase particles that can outperform traditional acrylate-based resins. The 

application of thiol-ene chemistry in emulsions introduces a new class of functional 

materials which can be easily translated into exicisting technologies.
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CHAPTER I - UTILIZATION OF THIOL-ENE CHEMISTRY IN EMULSIONS 

1.1 Thiol-ene “click” coupling/polymerization reactions in heterogenous mixtures 

In the last decade, thiol-ene polymerization has been widely utilized in emulsions 

for the rapid fabrication of functional particles (nano-micro), capsules, and drug delivery 

platforms.1-5 Thiol-ene reactions are uniquely attractive for heterogenous oil-in-water 

(o/w) systems owing to their high efficiency/yields, rapid kinetics, facile reaction 

conditions (oxygen, water, room temperature), absence of expensive or potentially toxic 

catalysts, and tolerance towards a wide range of functional groups.4 In this introduction 

chapter, we will provide an overview of recent thiol-ene reactions within emulsions – 

covering topics such as encapsulation, crosslinked/linear thiol-ene particle formation, and 

unique applications of these new materials. 

1.2 Heterogeneous polymerization 

Suspension polymerization, miniemulsion polymerization, dispersion polymerization, 

and microfluidics have emerged as industrially viable methods to generate functional 

particles/capsules for coatings, cosmetics, nanomedicine, bioimaging, and delivery 

applications.6 In general, each technique relies on the dispersion and stabilization of 

monomer/polymer droplets into a continuous phase through the addition of surfactants 

and/or costabilizers;, however, the techniques differ in initial state of the polymerization 

mixture and rate/mechanism of particle nucleation/formation. In a suspension 

polymerization, a water insoluble initiator and monomer are mechanically stirred to form 

polydisperse droplets in the aqueous continuous phase. Upon initiation, the droplets are 

converted into beads of approximately the same size (no growth in droplet size) ranging 

from 1-1000 µm.7  
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In contrast to suspension polymerization, miniemulsion polymerization requires both a 

high energy mixer (ultrasonicator or homogenizer) to emulsify and a hydrophobic 

molecule to stabilize the nano-sized droplets (50-500 nm) against Ostwald ripening.8 

Alternatively, in dispersion polymerization the monomer and initiator are both soluble in 

the continuous phase prior to polymerization. Upon polymerization, the medium becomes 

a poor solvent for the polymer, leading to nucleation and particle growth with sizes 

ranging from 1-10 µm.7 Unfortunately, suspension, miniemulsion, and dispersion 

polymerization, cannot produce truly monodisperse droplets. The ultimate control in 

dispersity can only be achieved through microfluidics where the linear flow of organic 

and aqueous phases is precisely controlled through geometric constriction and flow rates 

within a device to finely tune droplet size (1-1000 µm).9 In general, the emulsification 

technique, monomer hydropathy, and concentration of surfactant/costabilizer need to be 

carefully considered when choosing a desired application, as they will impact both 

particle size and long-term stability. 

Apart from the polymerization/nucleation mechanism for particle formation, the 

emulsification technique also dictates the order of the resulting emulsion (o/w, w/o/w, 

o/w/o/w, etc.). For instance, suspension and miniemulsion polymerizations result in oil-

in-water (o/w) heterogeneous solutions, while techniques like microfluidics allow for the 

precise control over multiple order emulsions such as water-in-oil-in-water (w/o/w) 

emulsions or higher orders.10 

Although emulsion polymerization has mainly been used for chain growth 

polymerization, several examples recently have highlighted the utility of step-growth 

polymerization for the generation of nano-sized particles.11-12 Within the past two 
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decades, multiple step-growth reactions have been demonstrated in heterogenous 

polymerizations, such as diamine/epoxide13, diisocyanates/diols14-15,  diazides/dialkynes 

via copper-mediated and copper-free azide-alkyne 1,3-dipolar cycloaddition (CuAAC)16-

17, thiol/isocyanate18-19, dichlorophenylphosphate/diols20, thiol/alkene21-24, and 

thiol/alkyne25. Of these techniques, thiol-Michael and radical mediated thiol-ene/yne 

additions are uniquely suited for emulsion polymerization owing to their rapid 

polymerization kinetics, high yields, functional group tolerance, and limited side 

reactions.26-28  

 

Figure 1.1 (A) Base-catalyzed (thiol-Michael) addition. (B) Radical-mediated thiol-ene 

addition. 

Generally, the base-catalyzed thiol-Michael addition begins with proton 

abstraction from a thiol by a base (e.g. triethylamine) to generate a thiolate which adds 

across an electrophilic alkene to produce a carbon centered anion (Figure 1.1A). The 

subsequent anion can either abstract a proton from the conjugate acid to regenerate the 

base or abstract a proton from another thiol to regenerate a new thiolate. Alternatively, 

the radical-mediated thiol-ene reaction begins with the initiation of a thermal, redox, or 

photo-initiator upon exposure to a stimulus which generates a radical (Figure 1.1B). The 
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generated radical abstracts the hydrogen attached to a thiol to generate a thiol-centered 

radical. The thiol radical then adds across a carbon-carbon double bond to generate a new 

carbon-centered radical. Chain transfer to a new thiol can occur, and the process of 

addition and chain transfer continues until various termination events.  

 

Figure 1.2 Thiols, alkenes/ynes, and initiators previously used in heterogenous thiol-ene 

polymerizations. 

In recent years, both thiol-Michael and radical mediated thiol-ene/yne 

polymerizations have been successfully highlighted in multiple emulsification platforms 

(Table 1.1) with various thiols and alkene/ynes used to tune their thermal and mechanical 

properties (Figure 1.2). Typically, multifunctional thiols, when paired with 

multifunctional alkenes/ynes, generate homogenous crosslinked polythioether networks.  
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Table 1.1 Reported examples of polythioether emulsions. 

Technique Continuous PhaseS MonomersM InitiatorI Size Dispersity REF 

Suspension H2O + SDS PETMP:TTT I-184 100-400 

nm 

Broad 29 

Suspension  H2O + Tween 20, 40, 

60, 80; SDS, 

Lutensol XL 70, XP 

70; Pluronic PE6400, 

F108; SDBS; DTAB; 

or HTAB 

PETMP:TTT I-184 80-500 

µm 

Broad 30 

Suspension H2O + SDS, DTAB, 

Tween 20 

HDT, EGDT, PEMTP: 

TTT, HYA, ODY,  

I-184 5-200 

µm 

Broad 31 

Suspension H2O + GA, GG, XG, 

SDS 

PETMP:TTT I-184 100-600 

nm 

Broad 32 

Suspension  H2O + chitosan PETMP, TMPTMP : 

TTT, APE, TMPDE 

I-651 3-10 

µm 

Narrow  33 

Suspension Glycerol PETMP:TTT TPO-L 40-400 

µm 

Broad 34 

Suspension H2O + SDS PETMP:TTT I-184 200-400 

µm 

Broad 35 

Dispersion  MeOH + PVP PETMP,TMPTMP, 

TEMPIC, HDT : TTT, 

TMPDAE, HYA, 

ODY 

I-184 190-740 

nm 

Broad 36 

Dispersion  MeOH + PVP PETMP: TMPTMA TEA 1-6 µm Very narrow 37 

Dispersion MeOH + PVP PETMP, TMPTMP, 

GDMP:TMPTA, 

DTPTA, DVS 

Hexyl-

amine 

1-10 

µm 

Narrow 38 

Dispersion MeOH + PVP PETMP: TEGDA, 

MBTA 

TEA 3 µm Narrow 39 

Dispersion MeOH + PVP TMPTMP:DVS TeA 2 µm Narrow 40 

Dispersion MeOH + THF + PVP PETMP:TMPTA 

Tetrazole-acrylate 

TEA 4 µm Narrow 41 

Miniemulsion H2O + SDS EGDT:DAA I-2959 90-300 

nm 

Broad 21 

Miniemulsion H2O + SDS PETMP, 

GDMP:NDA,TMPTA 

TEMPO 

or I-2959 

200 nm Broad 42 

Miniemulsion H2O + SDS EDDT:DAP, DAA I-2959; I-

651 

155-190 

nm 

Broad 43 

Miniemulsion H2O + SDS PETMP:TTT I-184 50-160 

nm 

Broad 44 

Miniemulsion H2O + SDS PETMP:HY, ODY, 

TMPTPE 

I-184 45-200 

nm 

Broad 45 

Miniemulsion H2O + Hitenol BC-20 GDMP, PETMP: DAP I-184 150-180 

nm 

Broad 46 

Miniemulsion H2O + Lutensol 

AT80 

DGU: BDT AIBN 200-300 

nm 

Broad 47 

Miniemulsion H2O + SDS, Lutensol 

AT80 or AT50 

DGU: BDT AIBN or 

KPS 

180-220 

nm 

Broad 48 

Miniemulsion H2O + SDS or 

Lutensol AT80 

MEE, BDT:PDU AIBN 115-140 

µm 

Broad 49 
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Table 1.1 (Continued) 

Miniemulsion 

+ interfacial 

H2O + SDS TMPTMP: allyl-lignin AIBN 40-170 

nm 

Broad 50 

Emulsion H2O + Hypermer 

B246 or Span 80 

PETMP:TTT TPO-L 1-1.4 

µm 

Broad 51 

Emulsion H2O + SDS TMPDAE, TTT : 

HDT, TEGDT, 

PETMP 

KPS 73-355 

nm 

Broad 52 

Microfluidics H2O + PVA TMPTMP:TEGDVE, 

4-PA, TTT 

I-1173 150-300 

µm 

Monodisperse 53 

Microfluidics H2O + SDS or 

mineral oil + ABIL 

EM-90 

PETMP:DAP, TTT, 

ODY, PTE, DPPD, 

PA 

DMPA 210-580 

µm 

Monodisperse 54 

Acoustic 

excitation 

coaxial flow 

H2O + SDS TTT or APE : 

TMPTMP 

I-819 2.5-183 

µm 

Narrow 55 

Pickering 

emulsion 

H2O + Thiol-ene 

particles 

TMPTMP:TTT I-2959 100 µm Broad 56 

Interfacial  H2O + PVA DTT:TMPTA, PETA, 

DiPEPA, DiPEHA 

K2CO3 500 nm 

- 100 

µm 

Broad 57 

Solvent 

evaportaion 

H2O + PVA, PVP, 

SDS, DTAB 

PETMP, HDT, EDDT: 

4-PA 

I-184 200-300 

nm 

Broad 58 

 

S SDS: sodium dodecyl sulphate; SDBS: sodium dodecylbenzene sulfonate; DTAB: dodecyltrimethylammonium bromide; TTAB: 

tetradecyltrimethylammonium bromide; HTAB: hexadecyltrimethylammonium bromide; PVP: poly(vinylpyrrolidone); GA: Gum 

Arabic; GG: while guar gum; XG: while guar gum 

M PETMP: pentaerythritol tetrakis (3-mercaptopropionate); TMPTMP: trimethylolpropane tris(3-mercaptopropionate); GDMP: glycol 

di(3-mercaptopropionate); BDT: butanedithiol; HDT: 1,6-hexanedithiol; MEE: 2-mercaptoethyl ether; EDDT: 2,2-

(ethylenedioxy)diethanethiol; TTT: 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione; TMPDAE: trimethylolpropane diallyl ether; 

PETA: pentaerythritol tetraacrylate; DiPEPA: Dipentaerythritol pentaacrylate; DiPEHA: dipentaerythritol hexaacrylate; TMPTA: 

trimethylolpropane triacrylate; PDU: 1,3-propylene diundec-10-enoate; DAP: diallyl phthalate; DAA: diallyl adipate; TEMPIC: tris[2-

(3-mercaptopropionyloxy) ethyl] isocyanurate; MBTA: 2-methylene-propane1,3-bis(thioethyl acrylate); TEGDA: tetra(ethylene 

glycol) diacrylate; DGE: dianhydro-D-glucityl diundec-10-enoate; DVS: divinyl sulfone; TEGDVE: tri(ethylene glycol) divinyl ether; 

4-PA: 4-pentenoic anhydride; PTE: pentaerythritol allyl ether; DPPD: 2,2-di(prop-2-ynyl)propane-1,3-diol; HYA: 5-hexynoic acid; 

HY: 1-hexyne; ODY: 1,7-octadiyne; PA: propragyl amine; TMPTPE: trimethylolpropane tripropargyl ether. 

I I2959: 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone; I651: 2,2dimethoxy-2-phenylacetophenone; I-184: 1-

Hydroxycyclohexyl phenyl ketone; TEA: triethylamine; TPO-L: ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate; K2CO3: 

potassium carbonate; AIBN: azobisisobutyronitrile; KPS: potassium persulfate. 

1.2.2 Thiol-ene/yne suspension polymerization 

Durham and coworkers29 were among the first to synthesize crosslinked 

polythioether microparticles via thiol-ene suspension photopolymerization where water 
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insoluble monomers (TTT and PETMP) and photoinitiator (I-184) were sonicated in a 

surfactant [sodium dodecyl sulfate (SDS)] solution in the presence of cosolvent 

(chloroform or toluene). Durham highlighted that particle size was directly related to 

sonication time with higher energy input resulting in smaller sized particles with a broad 

distribution of sizes. Similarly, Zhang et al. used ultrasonication followed by UV 

irradiation for 2 minutes to synthesize large (>200 μm) porous microparticles using 

PMMA as a porogen.59 These initial studies highlighted the utility of thiol-ene 

polymerization for the generation of particles with rapid polymerization kinetics and high 

monomer conversions; however, these methods relied on the use of ultrasonication for 

the particle fabrication. 

Aside from sonication – homogenizers and high-speed mixers have proven 

equally effective at generating thiol-ene microparticles in a facile manner. For instance, 

Barker used a homogenizer at 16,000 rpm with an off stoichiometry thiol-ene (OSTE) 

resin to generate excess thiol functionalized particles (from 1–100 µm in diameter).33 The 

excess thiol particles were subsequently reacted with C60 fullerene to serve as a 

heterogenous photocatalyst.33 Additionally, Hoffmann et al. used glycerol instead of 

water as a dispersing medium in order to form OSTE particles under shear mixing (1000-

3500 rpm) without the addition of surfactants or organic cosolvents.34 Excess thiol 

particles had sizes ranging from 50–400 µm and were surface functionalized with a large 

library of alkenes. Epoxide functionalized particles were subsequently used to 

immobilize horseradish peroxidase with no effect on enymatic activity upon ligation.  

To understand the role of surfactant in droplet stabilization, Durham and 

coworkers studied the effect of surfactant concentration and surfactant type (anionic, 
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cationic, or neutral) on particle size and distribution.30 In general, the study found that 

increasing surfactant concentration regardless of surfactant type led to smaller particles 

from sizes of 500 µm (0.1 wt.% surfactant) to 80 µm (5 wt.% surfactant). No particular 

surfactant type resulted in narrower distributions as the sonication process inherently 

leads to polydisperse particles. Interestingly, aside from traditional omniphilic 

surfactants/emulsifiers, viscosity thickening agents can also stabilize particles by limiting 

droplet diffusion. A small library of natural gum stabilizers was found to readily stabilize 

micron-sized crosslinked thiol-ene particles in the complete absence of any traditional 

surfactants upon ultrasonication.32  

1.2.3 Thiol-ene/yne dispersion polymerization 

Thiol-ene dispersion polymerization has been widely utilized as a facile particle 

synthesis method, due to several advantages including: (1) rapid nucleation of multiple 

droplets; (2) fabrication in the absence of water; (3) mild reaction conditions (room 

temperature); (4) rapid kinetics; (5) complete monomer conversion; and (6) narrow 

polydispersity of droplets. Thiol-ene dispersion polymerizations have successfully 

produced particles via either base or radical initiated mechanisms with most common 

initiating species being amines (primary or tertiary). 

In a traditional thiol-ene dispersion polymerization, alkenes/thiols, and stabilizers 

are first homogenously dissolved in a solvent. Then a catalyst (typically triethylamine) is 

added to initiate the crosslinking process. As the molecular weight increases during 

polymerization, the oligomers/polymers/gels become insoluble in the solvent leading to 

nucleation for particle growth. If particle nucleation is slow – relative to particle growth – 

a broader distribution of particles is produced. Alternatively, if particle nucleation is fast, 
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a narrower distribution of particles is produced. The general dispersion polymerization of 

thiol-ene monomers is depicted in Figure 1.3.  

 

Figure 1.3 Mechanism for dispersion polymerization. Left: miscible monomer, stabilizing 

agent and solvent. Right: After the addition of catalyst, the crosslinked monomers are no 

longer soluble in the solvent and crash out to form stabilized particles. 

The most critical factors in controlling the dispersity and size of particles via 

dispersion polymerization are the initiating species, initiator/catalyst concentration, 

monomer concentration, stabilizer concentration, and solvent polarity. To probe the effect 

of initiating species on particle size, Alimohammadi et al. compared dispersion 

polymerization obtained via thermal, redox, and photo initiation.36 The study showed that 

the rapid initiation via photoinitiation led to narrower particle size distributions as 

compared to either the thermal or redox initiators. Additionally, the polymerization time 

required for complete conversion was less than 5 minutes via photoinitiation and ~3h for 

either redox or thermal initiation. Importantly, the study found that regardless of the 

initiation source, increasing the initiator concentration resulted in smaller particle sizes 

which suggests an increase in the number nucleation sites during polymerization. In 

terms of monomer conversion, at least 10 wt.% of a redox initiator was required to reach 

full monomer conversion whereas less than 1 wt.% photoinitiator or thermal initiator was 

sufficient to fully polymerize the particles. Additionally, Alimohammadi and coworkers36 
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varied the monomer crosslink density (from linear to very crosslinked polymers) and 

found that an increase in monomer functionality resulted in smaller sized particles. 

Interestingly, they found that for linear polythioethers, thermal properties such as the 

polymer glass transition or melting temperature dictated colloidal stability.36 In general, 

an increase in monomer concentration led to larger particle sizes, while an increase in 

stabilizer or initiator concentration led to smaller sizes.36 In the design of thiol-ene-based 

dispersion polymerizations, multiple variables need to be carefully considered in order to 

control particle size and emulsion stability. 

In 2014, Wang et al. reported the first thiol-ene dispersion polymerization via 

Michael addition reactions between multifunctional thiols and electron deficient 

alkenes.38 The initial monomers were dissolved in methanol along with poly(vinyl 

pyrrolidone), then upon stirring, the base-catalyst – hexylamine was added to initiate the 

polymerization. Crosslinked polythioether microparticles of low dispersity (3.7% 

coefficient of variation) were obtained with sizes ranging from 1-10 µm. OSTE was also 

employed to generate excess thiol or acrylate microparticles which were subsequently 

tagged with fluorescent dyes.  

The introduction of the Michael addition as a step-growth polymerization 

mechanism allows for the installation of unique radical sensitive compounds into the 

backbone of the polymer. For example, Cox et al. also utilized Michael addition 

dispersion polymerization to generate a crosslinked thiol-ene network with 2-methylene-

propane1,3-bis(thioethyl acrylate) (MBTA). The particles were formulated with MBTA, 

PETMP, I-651, and were crosslinked using triethylamine as catalyst. Upon exposure to 

UV light, the encapsulated photoinitiators would add across the internal alkenes of 
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MBTA and allow for the crosslink junction to fragment to release mechanical strains. 

Upon dual application of stress and UV light, permanent shape reconfiguration of 

microparticles was observed. This strategy provides a solution to the high radical-based 

reactivity of alkenes to thiols so that polymer networks could be fabricated using one 

specific alkene functionality at a time. Michael addition (thiol-ene dispersion 

polymerization) was recently used for the installation of a UV sensitive tetrazole-

containing acrylate which can undergo a UV-triggered nitrile imine-mediated 

tetrazoleene cycloaddition.41 The tetrazole functionality remained intact throughout the 

thiol-Michael reaction and the tetrazoles underwent a cycloaddition to generate 

fluorescent microparticles in a single step. 

For drug delivery applications, successful drug encapsulation within particles has 

also been achieved through thiol-ene dispersion polymerization. Wang et al.60 recently 

synthesized a poly(thioether orthoester) degradable network by mixing an orthoester-

diacrylamide with PETMP in acrylonitrile followed by the addition of triethylamine. The 

resulting crosslinked polymer nanoparticles (50-800 nm) could be subsequently swollen 

in the presence of DMSO and doxorubicin as an encapsulant. The presence of the 

orthoester-diacrylamide coupled with the step-growth nature of the thiol-ene 

polymerization allowed for every crosslink junction to degrade upon exposure to an 

acidic aqueous solution. The advantage to dispersion/precipitation of the nanoparticles 

into an organic solvent was that it allowed for the water-sensitive orthoesters to remain 

intact during polymerization. 
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1.2.4 Miniemulsion polymerization for functional polydisperse nanoparticles 

Miniemulsions are kinetically trapped and thermodynamically unstable 

heterophase systems created under high shear processing with polydisperse nano-sized 

droplets.61 Kinetic stabilization of the droplets if conferred by the addition of a 

hydrophobic molecule such hexadecane or cetyl alcohol. The hydrophobic compound 

prevents Ostwald ripening (emulsion breakdown occurring to a difference in Laplace 

pressure between droplets of different sizes) by preventing the diffusion of other 

additives between droplets through the continuous phase via formation of concentration 

gradients.62 Unique to miniemulsion polymerization, both initiation and particle 

nucleation occur in discrete dispersed droplets, or nanoreactors, which enables constant 

size and composition of each droplet during the miniemulsion polymerization as shown 

in Figure 1.4.63 

 

Figure 1.4 Polymerization steps within a miniemulsion: (i) initiation within a droplet, (ii) 

propagation within a droplet, and (iii) fully polymerized droplet. 

In order to form a nano-sized emulsion, high energy input through either 

homogenization or ultrasonication is required. In homogenization, plates with tailored 

geometries and hole spacing allow for oil droplets to break down in size as they are 

pumped through multiple times. Homogenizers have greater throughput compared to 

ultrasonicators, however, they require expensive equipment and require large volumes of 

reagents. Alternatively, ultrasonicators offer simple setup, but are limited to relatively 
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small volumes for processing.  Additionally, the ultrasonic process generates excess heat 

which can be problematic for emulsion stability and premature polymerization. It is well 

documented that ultrasonication can break weak covalent bonds64, generate radicals 

which can initiate polymerization65, and rapidly heat solutions. 

Within emulsions, the reaction volumes are so low that almost quantitative 

conversion can occur within seconds of exposure to a stimulus (e.g. UV light). To this 

end, Jasinski and coworkers showed that linear thiol-ene polymers (derived from 

ethyleneglycol dithiol and diallyl phthalate) can be synthesized in molecular weights up 

to 20 kDa in less than 15 seconds via miniemulsion photopolymerization.43 Interestingly, 

when either a water soluble or oil soluble photoinitiator was used, near quantitative 

conversion was observed with no significant difference in particle size.43  Additionally, 

the average particle size of the emulsified droplets (150 nm) did not change significantly 

after photopolymerization (130 nm) and scaled with an increase in reactor size (up to 150 

mL).21 The resulting linear polythioether nanoparticles were used to make clear, 

chemically resistant, and semicrystalline (55% crystallinity) elastomeric films. Moreover, 

Wang et al. also demonstrated that OSTE polymerization between multi-functional thiols 

and acrylates could result in functional nanoparticles.42 Particles synthesized with excess 

thiols were successfully functionalized with 11-azido-1-undecene and excess acrylate. 

Additionally, when OSTE particles were cast as a film and subsequently irradiated to 

further crosslink the acylate groups present in the latex a Tg increase from -1 ± 2 °C to 69 

± 2 °C was observed.  

Amato et al. have published multiple papers on thiol-ene/yne miniemulsions for 

the fabrication of functional polythioether nanoparticles.44-46 Amato demonstrated that the 
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inclusion of a radical inhibitor should be added to prevent the sonochemical generation of 

hydroxyl radicals which can initiate the polymerization as droplets are being sheared.44 

Additionally, Amato found that increasing the ultrasonication time or amplitude leads to 

smaller size nanoparticles (from 80 to 35 nm).44 OSTE reactions were employed to 

generate either excess SH or alkene/yne functional nanoparticles. These OSTE 

nanoparticles were subsequently functionalized via reactive fluorescent probes and 

imaged via confocal microscopy.44-45 Importantly, the thiol-yne nanoparticles can be 

ligated through the copper(I)-catalyzed alkyne-azide cycloaddition to a library of 

commercially available azides.45  

Although a hydrophobic solvent is typically added to the monomer phase to 

reduce viscosity during the emulsification process, Amato showed that a “functional” 

solvent such as antimicrobial terpenes like carvacrol or thymol could be incorporated 

during the emulsification process to create a drug-delivery platform.46 These carvacrol 

and thymol-loaded nanoparticles exhibited potent antimicrobial activity against a broad 

range of pathogenic bacteria.  While terpenes were used as a model antimicrobial 

delivery platform, the concept applies to other hydrophobic drugs or hydrophobically 

modified nanoparticles as previously demonstrated in traditional chain growth 

miniemulsions.66  

Similarly, de Meneses47 encapsulated clove oil (<25 wt.%) during the 

miniemulsion polymerization of a new bio-based dialkene to generate nanoparticles for 

antioxidant delivery. A follow up study showed that these polymers had up to 19% 

crystallinity, biocompatibility, and high encapsulation efficiency of coumarin (up to 

98%).49 Miniemulsion polymerization was also used to synthesize linear degradable 
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poly(thioether esters) with molecular weights ranging from 5-20 kDa.49 The linear 

poly(thioether ester) nanoparticles were shown to be biocompatible towards murine 

fibroblast, HeLa, and red blood cells and are being developed for a new controlled 

delivery platform. 

Finally, thiol-ene miniemulsion have also been explored as a viable method for 

rapid production of capsules. Chen and coworkers synthesized allyl-functionalized lignin, 

emulsified it with hexadecane, butyl acetate, and a coumarin dye, and then added a 

dithiothreitol (a water soluble dithiol) to induce interfacial polymerization.50  The allyl 

functionalized lignin cannot homopolymerize which ensures that a capsule is formed 

upon polymerization (confirmed via transmission electron microscopy). The unique size 

obtained with miniemulsions coupled with the rapid polymerization kinetics introduced 

via thiol-ene chemistry could lead to higher throughput latexes for paints, cosmetics, and 

agriculture. 

1.2.5 Other heterogenous thiol-ene techniques 

Aside from emulsification techniques mentioned above, the rapid production of 

functional particles via thiol-ene/yne polymerization can also be achieved through other 

methods such as microfluidics, acoustically-induced droplet breakup, and Pickering 

emulsions. Amato53 and Prasath54 have utilized microfluidics to generate functional 

monodisperse microcapsules via glass capillary microfluidics (GCMF) and a t-junction, 

respectively. GCMF utilizes the alignment of tapered and machine-cut glass capillaries to 

create inlets and nozzles. The glass capillaries can be surface functionalized via silane 

chemistry to promote the wetting or dewetting of fluids. Figure 1.5 depicts a typical 

GCMF w/o/w device in which water is first emulsified by coxial flow of the middle fluid. 
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The resulting w/o emulsion is immediately flow-focused by the outer fluid to induce 

droplet breakup. This two-step process allows for fine control over shell (oil) thickness 

and droplet size, while forming monodisperse w/o/w droplets. Typically, photocurable 

acrylates are polymerized to solidify the oil phase upon exposure to light, however, 

recent work by Lee and coworkers have highlighted difficulties of this platform in 

encapsulating omniphilic cargo.67-68 Specifically, Lee showed that within 24 h, 100% of 

fluorescein (an omniphilic dye) was released from these encapsulated particles. To solve 

this problem, Lee demonstrated that water/fluorocarbon oil/resin/water or 

oil/water/resin/water triple emulsions were necessary to retain omniphilic molecules. 

Recently, Amato53 utilized a GCMF device to fabricate monodisperse w/o/w 

emulsions to highlight the importance of monomer curing and structure on the retention 

of encapsulated additives. Low monomer conversion resulted in immediate leaking of the 

inner fluid from through the oil shell, whereas high conversion resulted in long term (>30 

day) encapsulation.  Additionally, Prasath and coworkers used a simple o/w t-junction 

device to generate large (200-600 µm) monodisperse porous beads via thiol-ene/yne 

photopolymerization.54 Polymerization of monomers, such as propargyl amine, allowed 

for the incorporation of amine functionality into the polymerized beads which has direct 

application as a support bead within the peptide coupling industry.  

 

Figure 1.5 Typical glass-capillary microfluidic device to produce o/w/o droplets. 
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Aside from microfluidics, acoustic excitation coaxial flow has also been studied 

by Windham and coworkers in which acoustically driven mechanical perturbations 

breakup a thiol-ene liquid jet, resulting in micron-sized thiol-ene droplets that can be 

photochemically polymerized to yield thiol-ene microspheres.55 The particle size could 

be controlled by adjusting the amplitude, frequency, flow rate, and resin viscosity while 

maintaining a relatively narrow size dispersity. 

Control over where initiation occurs (e.g. in oil or water) can be utilized to control 

particle morphology through various interfacial polymerization techniques. Li et al.56 

were able to encapsulate isophorone diisocyanate (IPDI) within a photocured thiol-ene 

shell made up of TTT and TMPTMP via a Pickering emulsion. To achieve this, an 

aqueous solution of photoinitator (I-2959) and poly(gylcidyl methacrylate) particles was 

emulsified with the resin (TTT, TMPTMP, and IPDI), shaken, and then irradiated. The 

particles adsorbed to the o/w interface and the UV irradiation only allowed for interfacial 

polymerization leading to the formation of a hollow capsule (observed via fracture 

scanning electron microscopy). Similarly, Liao and coworkers57 demonstrated that 

interfacial polymerization can occur if a water soluble thiol was copolymerized with an 

oil soluble alkene for the encapsulation of fragrance oil. First, an emulsion of fragrance 

oil and a library of acrylates, water and surfactant were prepared – followed by the 

dropwise addition of dithiothreitol (water soluble thiol) and K2CO3 (aqueous initiator). 

Upon complete addition of the thiol, stable spherical capsules were obtained. The 

capsules could be ruptured either by application of force or by heating to pressurize the 

capsules. These examples highlight the ability to employ parameters such as the 
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solubility of the initiating species or monomer to yield different particle morphologies 

upon polymerization. 

Preformed polythioether linear polymers can also be subjected to 

nanoprecipitation to generate nanoparticles. For example, Durham and coworkers 

highlighted that linear poly(thioether anhydride) copolymers can undergo 

nanoprecipitation to generate nano-sized-crosslinked particles.58 First a small library of 

linear polyanhydrides were synthesized, dissolved into dichloromethane (DCM) and 

combined with I-184 (photoinitiator) and PETMP (tetra-thiol). The monomer/polymer 

resin was then added to an aqueous-surfactant solution, sonicated, and then irradiated 

with UV light to cure the particles. After heating to remove DCM, particles with sizes 

ranging from 250-400 nm were generated. These semi-crosslinked networks had 

degradation rates that were dependent on the amount of PETMP (crosslinker) added to 

the formulation. 

1.3 Conclusion 

Remarkable progress has been made in the design and characterization of 

particles prepared via thiol-ene/yne chemistry with various emulsification techniques. 

Many examples presented have shown great promise in the encapsulation and delivery of 

model hydrophobic cargo (drug, fragrance, or dye), and these systems provide a facile 

and scalable method moving forward. Unfortunately, multiple opportunities to tailor drug 

release within well-defined thiol-ene networks remain unexplored, such as monomer 

design and functionality, crosslink density, hydrophobicity, and thermal mechanical 

properties. Additionally, precise control over the release of hydrophobic cargo from thiol-

ene matrices remains a constant challenge that needs to be addressed. Lastly, the 
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remarkable functional group tolerance and plug-in-play nature of the thiol-ene monomers 

can lead to new fundamental network structure-drug release relationships within 

functional thiol-ene particles. 
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CHAPTER II - FUNCTIONAL, SUB-100 NM POLYMER NANOPARTICLES VIA 

THIOL-ENE MINIEMULSION PHOTOPOLYMERIZATION 

 

Portions of the text in this chapter have been reprinted with permission from: 

Amato, D. V.; Amato, D. N.; Flynt, A. S.; Patton, D. L. Polymer Chemistry 2015, 6, (31), 

5625-5632. 

Copyright 2015 The Royal Society of Chemistry 

 

2.1 Abstract 

In this work, sub-100 nm crosslinked polythioether nanoparticles were 

synthesized via thiol-ene photopolymerization in miniemulsion using high-energy 

homogenization.  The effects of the miniemulsion formulation and homogenization 

parameters – including inhibitor concentration, surfactant concentration, organic weight 

fraction, ultrasonication time and amplitude – on nanoparticle size and size distribution 

were investigated.  Thiol-ene nanoparticles with a mean particle diameter of 46 nm were 

obtained under optimized conditions for the current system at 2.5 wt. % organic fraction 

and 20 mM surfactant concentration.  In an effort to demonstrate potential utility of thiol-

ene nanoparticles, we exploit the step-growth radical mechanism of thiol-ene 

photopolymerization under non-stoichiometric conditions to fabricate functional 

nanoparticles that express excess thiol or alkene at the particle surface.  We show that 

these excess functional groups can be utilized as reactive handles in thiol-Michael and 

radical-mediated thiol-ene reactions for immobilization of fluorescent moieties via 

postpolymerization modification. 
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2.2 Introduction 

Polymer nanoparticles with tunable functionality have emerged as a promising 

and viable technology platform for applications including coatings, cosmetics, 

nanomedicine, and imaging.  The prospects of advancing these and other technologies 

have provided great impetus for the development of rapid, low-cost methodologies for 

the synthesis of functional polymer nanoparticles – particularly with sizes less than 

100 nm.  Polymer nanoparticles have been prepared by two general routes: 1) 

postpolymerization processing, including nanoprecipitation, dialysis, and supercritical 

fluid expansion, and 2) direct polymerization of monomers or crosslinking of macromers 

in dispersed heterophase systems, including microfluidics, microemulsion, and 

miniemulsions.69  Miniemulsions – with droplet sizes typically in the range of 20-200 nm 

– are particularly well-suited for the synthesis of small polymer nanoparticles.63, 70 

Miniemulsions are non-equilibrium systems created under high shear conditions (i.e. 

ultrasonication or high-pressure homogenization) yielding small, narrowly distributed 

droplets stabilized by a surfactant and costabilizer (or hydrophobe) in a continuous 

phase.61  Unlike conventional emulsion polymerization, initiation and particle nucleation 

occur predominately in droplets, which serve as discrete nanoreactors, enabling the 

preservation of size and composition of each droplet during polymer synthesis.63 

While miniemulsion polymerizations have predominately been conducted using 

radical chain growth mechanisms, several examples have highlighted the utility of 

various step-growth mechanisms – particularly step-growth polyaddition 

polymerizations.11-12 The earliest work focused on classic polyaddition reactions in 

miniemulsion, such as diamine/epoxide13 and diisocyanates/diols.15  More recently, the 
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focus has shifted to “click” polyaddition reactions in miniemulsions for the synthesis of 

polymer microparticles, nanoparticles, and nanocapsules.  Landfester et al.16 employed 

miniemulsion copper-mediated and copper-free azide-alkyne 1,3-dipolar cycloaddition 

(CuAAC) interfacial polymerization for the synthesis of polytriazole nanocapsules.  

Similarly, Bernard et al.17 reported interfacial CuAAC miniemulsion polymerization of 

diazides and dialkynes under microwave irradiation to achieve glyconanocapsules with 

high conversion (>98%) in under 30 min.   

In addition to CuAAC, thiol-mediated chemistries (i.e. thiol-ene/yne, thiol-

Michael) represent an attractive family of “click” polyaddition reactions for rapid 

fabrication of microparticles and nanoparticles in dispersed heterophase systems, as these 

reactions generally proceed under mild conditions with high efficiency and rapid reaction 

kinetics.26-28  For radical-mediated thiol-ene reactions, the thioether product forms via a 

free-radical step-growth process facilitated by a rapid, highly efficient chain transfer 

reaction between multifunctional alkenes and thiols, which provides insensitivity to 

oxygen and water.  The earliest examples of thiol-ene related miniemulsions involved 

surface functionalization of residual alkenes with PEG-thiol on styrene/divinylbenzene 

composite nanoparticles,71 and crosslinked biodegradable nanoparticles composed of 

allyl-functionalized polylactide with a difunctional thiol.72 Regarding direct 

polymerization of thiol-ene in disperse heterophase systems, Shipp and coworkers73 

recently reported the first example of crosslinked polythioether microparticles 

synthesized via thiol-ene suspension photopolymerization.  Shipp’s initial work focused 

on the effects of surfactant concentration, cosolvent, and mixing on microparticle 

formation, while subsequent work explored the dependence of microparticle size and 
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stability on surfactant structure.30  These initial examples clearly illustrated the utility of 

thiol-ene photopolymerization for creating microparticles with rapid reaction rates, high 

monomer conversion and homogeneous network structure in dispersed systems; however, 

Shipp’s work focused minimally on the use of high-energy ultrasonication for the 

preparation of small thiol-ene nanoparticles.  Similarly, Zhang et al.59 reported thiol-ene 

suspension photopolymerization for the synthesis of large (>200 μm) porous 

microparticles using PMMA as a porogen.  In 2014, Jasinski et al.74 reported thiol-ene 

photopolymerization in miniemulsion using a difunctional thiol and a difunctional alkene 

yielding linear poly(thioether ester) nanolatex particles with 130 nm diameter and 55% 

crystallinity.  The authors demonstrated the formation of clear, chemically resistant, and 

elastomeric films upon evaporation of water from the cured dispersions.  It is also 

noteworthy to mention recent work by Bowman et al.75 that utilized thiol-Michael 

polyaddition reactions in dispersion polymerization to fabricate monodisperse 

microspheres (>1 μm) from multifunctional thiols and Michael acceptors.  Bowman 

importantly showed the ease by which fluorescent microspheres could be prepared via 

postpolymerization modification using off-stoichiometric conditions.  Considering the 

relatively few examples of thiol-mediated polyadditions in dispersed systems, and the 

primary focus of these works on either microparticles or linear nanolatex particles, a 

significant opportunity remains to exploit thiol-mediated polyadditions in miniemulsion 

for the fabrication of crosslinked, functional polymer nanoparticles.      

Herein, we report the synthesis of small, sub-100 nm polythioether nanoparticles 

using miniemulsion thiol-ene photopolymerization. We specifically focus on tailoring the 

miniemulsion formulation (inhibitor, surfactant concentration, monomer weight fraction) 
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and processing parameters (ultrasonication time and amplitude) to achieve nanoparticles 

with diameters in the sub-100 nm range with relatively narrow size distributions.  In 

contrast to previous work by Shipp73 and Jasinski,74 we found the inclusion of a radical 

inhibitor in the thiol-ene formulation to be critically important in preventing premature 

polymerization during ultrasonic emulsification – prior to exposure to UV light.  In an 

effort to demonstrate potential utility of thiol-ene nanoparticles, we exploit the step-

growth radical mechanism of thiol-ene photopolymerization under non-stoichiometric 

conditions to fabricate functional nanoparticles that express excess thiol or alkene at the 

particle surface.  We show that these excess functional groups can be utilized as reactive 

handles in thiol-Michael and radical-mediated thiol-ene reactions for immobilization of 

fluorescent moieties via postpolymerization modification. 

2.3 Experimental 

2.3.1 Materials 

Hexadecane, 1,3,5-triallyl-1,3,5-triazine-2,4,6 (1H, 3H, 5H) trione (TTT), 4-p-methoxy 

phenol (MEHQ), sodium dodecyl sulfate (SDS), 2,2-dimethoxy-2-phenylacetophenone 

(DMPA), tetrahydrofuran (THF), 7-mercapto-4-methylcoumarin and butyl acetate 

(Sigma-Aldrich), pentaerythritol tetra(3-mercaptopropionate) (PETMP, BrunoBock), 1-

hydroxycyclohexyl phenyl ketone (Irgacure 184, CIBA), and Texas Red® C2 maleimide 

(Invitrogen) were obtained at the highest purity available and used without further 

purification unless otherwise specified. 

2.3.2 General Sample Preparation 

Each sample was prepared in a 20 mL scintillation vial with a total volume 10 mL. The 

organic stock solution shown in Table 1 was added into the vial containing a stock 
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solution of SDS and deionized water. The samples were then placed into an ice bath and 

sonicated using a Q-700A-110 probe ultrasonicator at 5-25% amplitude for 5-45 minutes. 

The miniemulsions were then cured using an Omnicure S1000-1B with a 100W mercury 

lamp (λmax=365 nm, 320-500 nm filter) and an intensity of 185 mW cm-2 for 10 minutes 

unless noted otherwise. All samples were made in triplicate to ensure reproducible data. 

To optimize the formulation for small nanoparticles, the organic fraction was varied with 

a constant SDS concentration of 20 mM. The SDS stock formulation and tabulated 

samples prepared are listed in Table A1 and A2. 

Table 2.1 General formulation of organic stock solution for thiol-ene 

photopolymerization in miniemulsion. 

Organic Fraction Mass (g) Wt. % 

Hexadecane 0.439 (1.94 mmol) 4.72 

TTT 1.52 (6.10 mmol) 16.3 

PETMP 2.22 (4.53 mmol) 23.8 

Irgacure 184® 0.100 (0.49 mmol) 1.07 

4-p-methoxy phenol 0.030 (0.24 mmol) 0.322 

Butyl acetate 5.00 (43.04 mmol) 53.7 

 

2.3.3 Preparation of nanoparticles with excess thiol and excess alkene 

Nanoparticles with excess thiol were prepared using a 1.5:1 thiol to alkene stoichiometry, 

for example, PETMP (2.8 g, 5.73 mmol) and TTT (0.95 g, 3.81 mmol).  The remaining 

constituents in the organic formulation from Table 1 were held constant.  To the 

scintillation vial, 250 µL of organic solution was pipetted into 9.75 mL of 20 mM SDS in 
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DI water. The sample was then ultrasonicated for 20 minutes at 10% amplitude and cured 

under UV light for 10 minutes. Nanoparticles containing excess alkene were similarly 

synthesized using a 2:1 alkene to thiol ratio, i.e. TTT (2.15 g, 8.63 mmol) and PETMP 

(1.58 g, 3.23 mmol). 

2.3.4 Fluorescent tagging of excess thiol nanoparticles 

From the nanoparticle suspension (10 mL) with excess thiol prepared in 2.3, 2 mL were 

removed and placed into a 20 mL scintillation vial wrapped in aluminum foil with a stir 

bar.  A stock solution of Texas Red® C2 maleimide was made by addition 10 µL of 

Texas Red® C2 maleimide to 100 µL of DMSO.  50 µL of the Texas Red® C2 

maleimide stock solution was added to the nanoparticles and stirred overnight.  The 

nanoparticle were purified by centrifugation (5 minutes at 13,300 rpm, Fisher 

Scientific™ accuSpin™ Micro 17 centrifuge) to remove unreacted Texas Red® C2 

maleimide.  The supernatant was removed and the nanoparticle pellet was re-suspended 

in 1 mL DI water. The nanoparticle suspension was then cast onto a glass slide and 

allowed to dry at room temperature. The resulting slide was analyzed using a Zeiss LSM 

510 confocal laser scanning microscope (λex=543 nm). 

2.3.5 Fluorescent tagging of excess alkene nanoparticles 

From the nanoparticle suspension (10 mL) with excess ene prepared in 2.3, 1 mL was 

removed and centrifuged for 18 min at 13,300 rpm. The supernatant was removed and the 

nanoparticle pellet was re-suspended in 1 mL of THF. A solution was prepared 

containing 80 mg of 7-Mercapto-4-methylcoumarin, 30 mg of DMPA and 1 mL of THF 

was added. The solutions were combined and exposed to UV light for 5 minutes to 

induce the radical thiol-ene reaction. The solution was centrifuged for 10 minutes, 



 

27 

supernatant removed, the pellet re-suspended in THF. The coumarin-functionalized 

nanoparticles were then cast onto a glass slide with a coverslip for analysis by confocal 

laser scanning microscopy (λex=405 nm). 

2.3.6 Characterization 

The size and distribution of the nanoparticles were measured by dynamic light scattering 

(DLS) using a Microtrac Nanotrac Ultra NPA150.  Particle size and distribution were 

obtained using the Microtrac Flex software (v.10.6.1), which employs non-negatively 

constrained least-squares (NNLS) and cumulants analysis to obtain the intensity-

weighted “z-average” mean particle size as the first cumulant, and the polydispersity 

index from the second cumulant.76  Transmission electron micrographs (Digital Imaging 

with Gatan Model 785 ES1000W Erlangshen CCD Camera) were taken with a Zeiss 900 

TEM operating at 50kV. Samples were applied to 200 mesh copper grids (3.05 mm, 200 

lines/inch square mesh, EMS Cat. #G200-Cu) coated with Formvar (5% polyvinyl formal 

resin). The samples were then stained using OsO4.  Atomic force microscopy (AFM) was 

performed using a Bruker Icon in tapping mode. The samples were imaged with T300R-

25 probes (Bruker AFM Probes) with a spring constant of 40 Nm-1.  1H NMR was 

recorded on a Varian Mercury Plus 300 MHz NMR in D2O.  FTIR was conducted using a 

Nicolet 8700 spectrometer with a KBr beam splitter and a liquid nitrogen cooled MCT/A 

detector. 

2.4 Results and Discussion 

Thiol-ene polymer nanoparticles were synthesized via ultrasonication of a 

dispersed organic phase into an aqueous solution of surfactant, as shown in Figure 2.1. 

The horn was inserted into a glass vial and the organic phase was emulsified into the 
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aqueous phase while a secondary ice bath was placed around the vial to prevent 

overheating. Samples prepared without ice resulted in larger particles and coagulum 

formation on the horn tip. 

 

Figure 2.1 Thiol-ene precursors and miniemulsion process for preparing sub-100 nm 

polythioether nanoparticle via photopolymerization. 

 Thiol-ene miniemulsions were prepared by adding an organic phase containing 

monomers (TTT and PETMP), photoinitiator, hydrophobe, inhibitor, and solvent to an 

aqueous phase consisting of water and surfactant (SDS). Butyl acetate was chosen as the 

solvent because it is close to being isorefractive with water which could lower the final 

turbidity of the miniemulsion.77 Hexadecane was chosen, as it is known to help prevent 

Ostwald ripening and increase the lifetime of the miniemulsion. The organic phase once 

mixed was then emulsified in the aqueous phase via ultrasonication to create 

nanodroplets. 

 

Figure 2.2 Influence of inhibitor concentration (MEHQ) on preventing polymerization 

during ultrasonic homogenization. 
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Our initial attempts to synthesize sub-100 nm thiol-ene nanoparticles using probe 

ultrasonication under conditions described in the literature (i.e. in the absence of radical 

inhibitor as reported by Shipp et al.73) resulted in the formation of solids in solution and 

on the surface of the horn during ultrasonication, prior to exposure to UV light, 

presumably due to thermally-induced polymerization.  As a result of these observations, 

we introduced a radical inhibitor – MEHQ – into the organic phase and investigated the 

effect of inhibitor concentration on the miniemulsion process.  MEHQ was chosen 

because it is a commonly used stabilizer for alkene containing monomers.  The MEHQ 

concentration in the organic phase was varied according to values shown in Figure 2.2, 

where the minimum concentration that inhibited latex formation was found to be 55.7 

mM.  MEHQ concentrations below this minimum threshold resulted in the formation of 

solids on the surface of the ultrasonic horn, as shown in Figure 2.2.  

To further probe the ability of the inhibitor to prevent premature polymerization 

during the emulsification process, thiol-ene miniemulsions with and without inhibitor 

were prepared using a deuterium oxide/SDS solution as the continuous phase. Upon 

ultrasonication, an aliquot of sample was removed and analyzed via 1H NMR, while the 

remaining fraction of the sample was photopolymerized under UV light prior to 

collecting a second aliquot for analysis. Figure 2.3 shows the NMR spectra of thiol-ene 

miniemulsions with and without MEHQ prior to UV exposure.  The sample with MEHQ 

showed the typical proton resonances for the unreacted alkene of TTT at 4.92–5.15 ppm 

and 5.58–5.75 ppm, and a resonance for an unreacted mercaptopropionate (-CH2CH2-SH) 

at 2.51 ppm.  Devoid of MEHQ, the miniemulsion shows complete disappearance of the 

alkene and thiol monomer peaks, and exhibits peak broadening indicative of 
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polymerization.  These results provide evidence that the uninhibited sample undergoes 

polymerization through the sonochemical cavitation process, and that MEHQ is required 

to prevent premature polymerization. These observations are supported by the work of 

Skinner et al.,78 which quantified room temperature sonochemical initiation in thiol-ene 

systems using a radical trap (2,2­diphenyl­1­picryhydrazyl), and showed a radical 

generation at a rate of 0.62 × 10­4 mol dm­3 s­1 led to successful thiol-ene reactions even 

in the absence of a radical initiator.  Therefore, MEHQ plays a critical role in the current 

thiol-ene miniemulsion system to prevent simultaneous occurrence of monomer droplet 

formation and polymerization – a process that could lead to broad particle size 

distributions and uncontrolled process parameters.  It is also important to note that the 

inhibitor has a minimal effect on the thiol-ene photopolymerization process. Exposure of 

the inhibited thiol-ene miniemulsions to UV light results in high monomer conversion 

(>99%), as indicated by complete disappearance of the peaks associated with the thiol 

(2567 cm-1) and alkene (3082 cm-1) functional groups in FTIR of the cured samples (see 

Figure A.1).   

 

Figure 2.3 Typical 1H NMR spectra of ultrasonicated samples with and without inhibitor. 
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The stability and size of monomer droplets, and ultimately polymer nanoparticles, 

obtained from heterogeneous miniemulsion polymerizations are strongly influenced by 

several process parameters, including surfactant structure and concentration, organic 

phase volume fraction, and the presence of a costabilizer.  To explore the effect of SDS 

concentration on nanoparticle size, the concentration of SDS was varied from 0 to 40 

mM, while keeping the organic fraction and composition constant.  As shown in Figure 

2.4a, thiol-ene miniemulsions carried out in the absence of SDS provided a mean particle 

size of 145 nm and a broad, multimodal particle size distribution (PDI: 0.338).  With 

increasing SDS concentration, the mean particle size systematically decreased due to an 

increase in surfactant interfacial area and a decrease in interfacial tension enabling 

stabilization of smaller nanodroplets.  20 – 40 mM SDS provided thiol-ene nanoparticles 

with a mean particle size of 55 nm and relatively narrow particle size distributions (PDI: 

0.255).  A significant difference in particle size between 20 mM and 40 mM SDS was not 

observed, thus 20 mM SDS was used in all other formulations.  Figure 2.4b shows a 

representative tapping mode AFM image of thiol-ene nanoparticles obtained by 

evaporation of a droplet of the photocured miniemulsion (20 mM SDS).  As expected, the 

nanoparticles are spherical in shape and exhibit a ranges of particle sizes that agree with 

the DLS results. 
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Figure 2.4 (a) Effect of SDS concentration on nanoparticle size distribution. (b) 

Representative tapping mode AFM image of thiol-ene nanoparticles obtained at 20 mM 

SDS by evaporation of a droplet of the photocured miniemulsion (Synthetic conditions: 

2.5 wt.% organic, 20 min ultrasonication at 10% amplitude, 10 min UV exposure). 

The effect of organic weight fraction on the particle size was examined next. For 

these experiments, the concentration of SDS was kept constant (20 mM), while the 

organic weight fraction was varied from 0.5 – 5 wt. % relative to the aqueous phase.  

These conditions also correlate to a varying SDS:organic weight ratio from 0.12 – 1.22.   

The results from these experiments are shown in Figures 2.5a and 2.5b, which relate 

mean particle size to the organic weight fraction and SDS:organic ratio, respectively.  

Percent transmission and photographs of the minemulsions described above are shown in 
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Figure A.3.  The smallest mean particle size (46 nm) was obtained from a system 

containing 2.5wt. % organic phase.  The corresponding TEM image for the 2.5 wt. % 

sample shows well-defined thiol-ene nanoparticles with sizes that are in good agreement 

with values obtained by DLS (see Figure A.2 for lower magnification TEM image).  

Increasing the organic weight fraction from 2.5 wt. % resulted in an increase in the mean 

particle size, as shown in Figure 5a. A larger particle size with increasing organic fraction 

is likely due to depletion of free SDS required to stabilize the smaller nanodroplets.79  

With overall SDS concentration held constant at 20 mM, the SDS:organic ratio, as shown 

in Figure 5b, decreases with increasing organic fraction enabling droplet coalescence and 

ultimately larger nanoparticles.  Likewise, decreasing the organic weight fraction from 

2.5 wt. % resulted in an increase in nanoparticle size (up to 155 nm at 0.5 wt. %).  In this 

case, the SDS:organic ratio increases from 0.24 at 2.5 wt. % organic to 1.22 at 0.5 wt. % 

organic representing an excess of SDS, as shown in Figure 2.5b.  Consequently, 

destabilization and coalescence of small droplets may be caused by attractive forces 

between multiple nanodroplets in the presence of excess surfactant – a phenomenon that 

follows a similar mechanism as described in depletion flocculation.80-81 
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Figure 2.5 Dependence of the nanoparticle size on (a) organic weight fraction and (b) 

SDS:organic ratio. The (a) insets show representative TEM images of UV cured 

miniemulsions at various organic weight fractions (scale bar length = 200 nm). (Synthetic 

conditions: 20 min ultrasonication at 10% amplitude, 10 min UV exposure). 

Additionally, excess surfactant can facilitate Ostwald ripening via the diffusion of 

organic soluble constituents from smaller droplets, across the aqueous phase, into larger 

droplets.  Interestingly, thiol-ene miniemulsions prepared at various organic weight 

fractions (0.5 – 2.5 wt. %) with constant surfactant to organic ratios also exhibited a 

decrease in nanoparticle size with increasing organic weight fraction, as shown in Figure 

2.6.  Such behavior is indicative of a τ1 mechanism, or an osmotically controlled steady-

state droplet size driven by Ostwald ripening – as opposed to a steady-state controlled by 
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collision rates and colloidal stability (τ2 mechanism).82  The apparent τ1 mechanism 

observed here may be attributable to the choice of butyl acetate as a solvent for the thiol-

ene monomer phase. The relatively high solubility of butyl acetate in water may promote 

exchange of monomers through the aqueous phase via Ostwald ripening.  This interesting 

behavior will require additional investigation; however, we note that interest in such low 

(i.e. < 2.5 wt. %) solids content is likely minimal – particularly from nanoparticle yield 

viewpoint.   

 

Figure 2.6 Effect of SDS:Organic ratio on mean nanoparticle size. (Synthetic conditions: 

20 min ultrasonication at 10% amplitude, 10 min UV exposure). 

Figure 2.7 illustrates the importance of the costabilizer – hexadecane – on droplet 

stabilization directly following the formation of the miniemulsion via ultrasonication, 

particularly when employing butyl acetate as a solvent for the monomer phase.  Thiol-ene 

miniemulsions prepared with and without hexadecane as a costabilizer were allowed to 

equilibrate for various times prior to photopolymerization.  As shown in Figure 2.7, 

samples prepared with hexadecane exhibited a relatively stable mean particle size over a 

72 h period, and provided thiol-ene miniemulsions with translucent optical properties 

(Figure 2.7, inset).  In the absence of hexadecane, the miniemulsions were highly 
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unstable and resulted in the formation of precipitants that settled to the bottom of the vial 

upon cure.  For this reason, DLS measurements for samples without hexadecane were not 

representative of the full particle distribution and were not included in Figure 2.7.  The 

“no HD” vial in the Figure 2.7 inset image clearly shows an opaque suspension of thiol-

ene particles. Hexadecane functions to prevent Ostwald ripening by retarding monomer 

and solvent diffusion from small droplets to large droplets. 

 

Figure 2.7 Effect on the presence of hexadecane for samples that were ultrasonicated and 

then cured after three hours (Synthetic conditions: 20 mM SDS, 2.5 wt.% organic, 20 min 

ultrasonication at 10% amplitude, 10 min UV exposure). 

In addition to the effect of formulation parameters (i.e. surfactant concentration, 

organic fraction, etc.) on nanoparticle size, we also elucidated the evolution of particle 

size as a function of processing parameters, such as ultrasonication time and amplitude.  

Ultrasonication experiments were carried out on samples with a constant formulation, 

namely samples containing 2.5 wt. % organic phase and a constant SDS:organic ratio of 

0.25.  Figure 2.8a shows the evolution of nanoparticle size with ultrasonication time at 

10% amplitude for processing times ranging from 5 – 45 minutes.  As sonication time 

was increased, the particle size decreased from 82 nm at 5 min to 36 nm at 45 min.  
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Homogenization times beyond 45 min, at constant composition and amplitude, resulted in 

no further decreases in particle size.  It is important to note here that an ice bath was 

employed to keep the samples cool during the ultrasonication process.  For example, the 

bulk temperature of the reaction media typically showed a 10 °C increase after 20 min of 

ultrasonication at 10% amplitude.  Allowing the miniemulsions to further increase in 

temperature with extended sonication times resulted in reduced control over particle size 

and poor repeatability.  Figure 2.8b shows the progression of mean particle size after 20 

min of ultrasonication at various sonication powers (% amplitude).  Similarly to 

increasing the duration of ultrasonication, it was found that a particle size of 35 nm could 

be obtained at 20% amplitude in half the time observed for experiments conducted at 

10% amplitude.  Similar trends were reported by Delamas et al.83 for ultrasonic 

processing of small miniemulsions, where the equilibrated particle size was found to be 

dictated only by the total energy input with all other variables held constant. For the 

current thiol-ene samples, increasing the percent amplitude simultaneously increased the 

sample temperature (even in an ice bath), which led to larger particle sizes for amplitudes 

greater than 20%. Thus, for the current sample volume and compositions, 10% amplitude 

and 20 minutes were chosen as the standard operating conditions to provide less variation 

between samples. 
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Figure 2.8 Effect of (a) sonication time (at 10% amplitude) and (b) percent amplitude (20 

min ultrasonication time) on particle size.  The blue dotted lines are not fits to the data 

and are inserted to guide the reader’s eye. (Synthetic conditions:  20 mM SDS, 2.5 wt.% 

organic, 10 min UV exposure). 

A salient feature that arises from the step-growth radical mechanism of thiol-ene 

photopolymerization is the ability to alter the reaction stoichiometry to achieve thiol-ene 

networks containing either excess thiol or alkene.  The excess functional groups arising 

from non-stoichiometric photopolymerization conditions are then readily available for 

subsequent functionalization – an approach that was recently employed by Carlborg et 

al.84 to fabricate thiol-ene microfluidic devices with functional surfaces. Likewise, Storha 

et al.85 and Wang et al.75 employed non-stoichiometric thiol-ene conditions to prepare 
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particles with excess thiol and/or alkene on the surface, which were subsequently 

functionalized with fluorescent tags using various thiol-mediated modifications.  Here, 

we exploit non-stoichiometric ratios of PETMP and TTT – neither of which readily 

undergo homopolymerization – to synthesize sub-100 nm thiol-ene nanoparticles with 

thiol or alkene functional surfaces in a simple, one-step process (Figure 2.9). Using 

similar formulations as previously described, the ratio of thiol to alkene was adjusted to 

either 2:1 for thiol functionalized nanoparticles, or 1:2 for alkene functionalized 

nanoparticles. These formulations were ultrasonicated to create the miniemulsion and 

cured with UV light, as previously described for stoichiometric samples (TEM of non-

stoichiometric nanoparticles shown in Figure A.4). Thiol and alkene functionalized 

nanoparticles were analyzed by solution 1H NMR in D2O to confirm the presence of 

excess thiol and alkene available prior to functionalization (see Figure A.5 and Figure 

A.6).  Likewise, the excess thiol and alkene functional groups were observed by FTIR 

(Figure A.1).   

 

Figure 2.9 Postpolymerization modification of polythioether nanoparticles prepared with 

stoichiometric excess thiol or excess alkene via (a) thiol-Michael addition with Texas 

Red maleimide and (b) radical-mediated thiol-ene addition with 7-mercapto-4-

methylcoumarin. 
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To demonstrate the simplicity of ligating pendent functional groups to the 

nanoparticle surface, nanoparticles presenting excess thiol on the surface were reacted 

with Texas Red C2 maleimide via thiol-Michael addition, while alkene functionalized 

nanoparticles were reacted with 7-mercapto-4-methylcoumarin via radical-mediated 

thiol-ene addition under UV light (10 min exposure).  Nanoparticle dispersions were 

purified by multiple centrifugation wash steps following functionalization.  

 

Figure 2.10 Fluorescence microscopy and particle size distributions of post-

functionalized nanoparticles: a) 2:1 thiol:ene functionalized with Texas Red C2 

maleimide b) 2:1 ene:thiol functionalized with 7-mercapto-4-methylcoumarin.  DLS size 

distributions are shown before and after surface functionalization to illustrate the absence 

of particle agglomeration during the postmodification step. (Synthetic conditions:  20 

mM SDS, 2.5 wt.% organic, 20 min ultrasonication at 10% amplitude, 10 min UV 

exposure).  

Successful immobilization of both Texas Red and coumarin was confirmed by 

fluorescence microscopy, as shown in Figure 2.10A.  Importantly, DLS measurements 

collected before and after surface functionalization of the nanoparticles showed no 
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change in particle size or evidence of nanoparticle agglomeration as a result of post-

polymerization modification (Figure 2.10B). 

2.5 Conclusions 

In summary, crosslinked polythioether nanoparticles were prepared by radical-mediated 

thiol–ene miniemulsion photopolymerization.  The effects of formulation (inhibitor, 

surfactant concentration, monomer weight fraction) and processing parameters 

(ultrasonication time and amplitude) on nanoparticle size were elucidated, enabling the 

facile synthesis of thiol-ene nanoparticles with mean particle sizes less than  

100 nm. The step-growth nature of thiol-ene photopolymerization was exploited to prepare 

nanoparticles with thiol or alkene functional surfaces using non-stoichiometric monomer 

feeds.  These thiol and alkene decorated nanoparticles provided a versatile platform for 

ligation of different functional moieties using thiol-Michael addition and thiol-ene 

addition, respectively, as simple, one-step postpolymerization modifications.  We envision 

that thiol-ene miniemulsion polymerization can be exploited as a general method for the 

synthesis of functional polymer nanoparticles for a range of imaging, delivery, analysis, 

and coatings applications.  Our current efforts are focused on extending this synthetic 

approach to high solid content miniemulsions for more practical nanoparticle yields. 
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CHAPTER III - FUNCTIONAL, HYBRID POLYTHIOETHER NANOPARTICLES 

VIA THIOL-ALKYNE PHOTOPOLYMERIZATION IN MINIEMULSION 

 

Portions of the text in this chapter have been reprinted with permission from: 

Amato, D. N.; Amato, D. V.; Narayanan, J.; Donovan, B. R.; Douglas, J. R.; 

Walley, S. E.; Flynt, A. S.; Patton, D. L. Chemical Communications 2015, 51, (54), 

10910-10913. 

Copyright 2015 The Royal Society of Chemistry 

 

3.1 Abstract 

Thiol-yne photopolymerization in miniemulsion is demonstrated as a simple, 

rapid, and one-pot synthetic approach to polythioether nanoparticles with tuneable 

particle size and clickable functionality. The strategy is also useful in the synthesis of 

composite polymer-inorganic nanoparticles. 

3.2 Introduction 

Engineered polymer nanoparticles – with sizes ranging from 20-500 nm – are 

playing an increasingly important role in the advancement of emerging technologies for 

industrial, agricultural, pharmaceutical, and biological sectors.  Exemplary applications 

of engineered nanoparticles in these areas include improved agricultural production and 

crop protection,86 delivery of advanced therapeutics, and bioimaging/biosensing 

platforms.87  Emulsion-based processes – such as miniemulsion polymerizations – 

provide well-studied synthetic routes to polymer nanomaterials.  Miniemulsions 

polymerizations are characterized as aqueous dispersions of small, narrowly distributed 

monomer droplets stabilized against Ostwald ripening and collisional degradation by 
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addition of an appropriate surfactant and costabilizer.63    Monomer droplets ranging in 

size from 50-500 nm are achieved by application of high shear mixing – typically either 

ultrasonic processing or high-pressure homogenization – and subsequently serve as 

discrete nanoreactors for the formation of polymer nanoparticles.70     

   Recent miniemulsion literature has focused on “click” polyaddition 

reactions – such as copper-free or copper-catalysed azide-alkyne 1,3-dipolar 

cycloaddition (CuAAC)16-17 and thiol-mediated chemistries (i.e. thiol-ene30, 59, 71-74, 88 and 

thiol-Michael89) – as robust synthetic routes to nanoparticles.  Recently, we reported the 

synthesis of crosslinked polythioether nanoparticles with sub-100 nm diameters via thiol-

ene photopolymerization in miniemulsion.88  Additionally, we demonstrated the 

preparation of nanoparticles with thiol and alkene functional surfaces by exploiting the 

thiol-ene step polyaddition mechanism under non-stoichiometric monomer feed 

conditions.  The excess thiol and alkene moieties on the nanoparticle surface provided 

reactive handles for postpolymerization modifications via thiol-Michael and thiol-ene 

ligation reactions, respectively, to yield fluorescent nanoparticles.  However, thiol-ene 

photopolymerization fails to provide direct access to polymer nanoparticles with one of 

the most commonly exploited functional groups in the “click” chemistry toolbox – i.e. the 

alkyne moiety.   

Thiol-alkyne photopolymerization provides one such platform to access polymer 

materials exhibiting alkyne functionality.90-92 Thiol-alkyne proceeds via a radical-

mediated step-growth mechanism involving the addition of two thiols across the alkyne; 

the first addition yields a vinyl sulfide intermediate that subsequently reacts with a 

second equivalent of thiol to give the dithioether adduct (Scheme 1).  Thiol-alkyne 
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photopolymerization proceeds at room temperature, in the presence of oxygen, with rapid 

reaction kinetics, and yields inherently thiol or alkyne functional materials resulting from 

the step-growth process – particularly if carried out under non-stoichiometric monomer 

ratios.92 However, thiol-yne photopolymerization has rarely been exploited for functional 

particle-based platforms.  DuPrez et al.93-94 first applied this concept for synthesis of thiol 

or alkyne-functionalized microbeads (diameters ≈ 400 μm) via microfluidics using 

stoichiometric excess of pentaerythritol tetra(3-mercaptopropionate) (PETMP) or 1,7-

octadiyne, and explored the microbeads as resin supports for solid phase synthesis. Aside 

from DuPrez’s microbead work, we are currently unaware of any methodologies reported 

in literature that exploit thiol-yne photopolymerization for direct synthesis of functional 

polymer nanoparticles. 

 Herein, we report thiol-yne photopolymerization in miniemulsion as a simple, 

rapid, and one-pot synthetic approach to polythioether nanoparticles with tuneable 

particle size and clickable functionality.  We demonstrate the synthesis of nanoparticles 

with mean particle diameters ranging from 45 nm to 200 nm through simple 

modifications to the miniemulsion formulation and processing parameters.  Facile access 

to thiol or alkyne functional nanoparticles, and subsequent postpolymerization 

modifications of these functional moieties using thiol-Michael, thiol-yne, and CuAAC 

click reactions are reported. 

3.3 Experimental 

3.3.1 Materials 

Hexadecane, 4-p-methoxy phenol, sodium dodecyl sulfate (SDS), 1,7-octadyne, 

1-hexyne, 2,2-dimethoxy-2-phenylacetophenone (DMPA), tetrahydrofuran (THF), 7-
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mercapto-4-methylcoumarin, sulforhodamine B, silver nitrate (AgNO3), sodium 

borohydride (NaBH4, ≥96% purity), dodecanethiol (DDT, ≥98% purity), ethanol (EtOH, 

ACS reagent grade), toluene and butyl acetate (Sigma-Aldrich), pentaerythritol tetra(3-

mercaptopropionate) (PETMP, BrunoBock), 1-hydroxycyclohexyl phenyl ketone 

(Irgacure 184, CIBA), 7-methoxy-4-methylcoumarin (TCI, Tokyo, Japan) and Texas 

Red® C2 maleimide (Invitrogen) Click-iT® EdU Imaging Kit with Alexa Fluor® 488 

azide (Life Technologies™) were obtained at the highest purity available and used 

without further purification unless otherwise specified. Trimethylolpropane Tripropargyl 

Ether (TMPTPE) was prepared according to a previously reported method.95  

3.3.2 General Sample Preparation 

Each sample was prepared in a 20 mL scintillation vial with a total volume 10 

mL. The organic stock solution shown in Table 3.1 was added into the vial containing a 

stock solution of SDS and deionized water. The samples were then placed into an ice bath 

and sonicated using a Q-700A-110 probe ultrasonicator at 20 % amplitude for 20 

minutes. 

Table 3.1 General formulation of organic stock solution for thiol-yne 

photopolymerization in miniemulsion. 

Organic Fraction Mass (g) Wt. % 

Hexadecane 0.5 (2.2 mmol) 7.32 

1,7 Octadiyne 0.5 (4.7 mmol) 7.32 

PETMP 2.3 (4.7 mmol) 33.67 

Irgacure 184 0.1 (0.49 mmol) 1.46 

4-p-methoxy phenol 0.03 (0.24 mmol) 0.44 

n-butyl acetate 3.4 (29 mmol) 49.78 
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The miniemulsions were then cured using an Omnicure S1000-1B with a 100W mercury 

lamp (λmax=365 nm, 320-500 nm filter) and an intensity of 185 mW/cm2 for 10 minutes 

unless noted otherwise. All samples were made in triplicate to ensure reproducible data. 

To optimize the formulation for small nanoparticles, the organic fraction was varied with 

a constant SDS concentration of 20 mM. 

3.3.3 Preparation of nanoparticles with excess thiol and excess alkyne 

Nanoparticles with excess thiol were prepared using a 3.2:1 thiol to alkyne 

stoichiometry, for example, PETMP (3.68 g, 7.531 mmol) and 1,7-octadiyne (0.50 g, 4.7 

mmol).  The remaining constituents in the organic formulation from Table 1 were held 

constant.  250 µL of organic solution was pipetted into 9.75 mL of 20 mM SDS in DI 

water. The sample was then ultrasonicated for 20 minutes at 10% amplitude and cured 

under UV light for 10 minutes. Nanoparticles containing excess alkyne were synthesized 

similarly using a 1.51:1 alkyne to thiol ratio, i.e. 1,7-octadiyne (0.758 g, 7.14 mmol) and 

PETMP (2.30 g, 4.71 mmol). 

3.3.4 Fluorescent tagging of excess thiol nanoparticles 

From the nanoparticle suspension (10 mL) with excess thiol prepared in 1.3, 2 mL 

were removed and placed into a 20 mL scintillation vial wrapped in aluminum foil with a 

stir bar.  A stock solution of Texas Red® C2 maleimide was made by the addition of 10 

µL of Texas Red® C2 maleimide to 100 µL of DMSO.  50 µL of the Texas Red® C2 

maleimide stock solution was added to the nanoparticles and stirred overnight.  The 

nanoparticle were purified by centrifugation (5 minutes at 13,300 rpm, Fisher 

Scientific™ accuSpin™ Micro 17 centrifuge) to remove unreacted Texas Red® C2 

maleimide.  The supernatant was removed and the nanoparticle pellet was re-suspended 
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in 1 mL DI water. The nanoparticle suspension was then suspended in glycerol on a glass 

slide and a coverslip was affixed and imaged immediately. The resulting slide was 

analyzed using a Zeiss LSM 510 confocal laser scanning microscopes. 

3.3.5 Fluorescent tagging of excess alkyne nanoparticles via 7-mercapto-4-

methylcoumarin 

From the nanoparticle suspension (10 mL) with excess yne prepared in 1.3, 1 mL 

was removed and centrifuged for 18 min at 13,300 rpm. The supernatant was removed 

and the nanoparticle pellet was re-suspended in 1 mL of THF. A solution was prepared 

containing 21 mg of 7-mercapto-4-methylcoumarin, 30 mg of DMPA and 1 mL of THF 

was added. The solutions were combined and exposed to UV light for 5 minutes to 

induce the radical thiol-ene reaction. The solution was centrifuged for 10 minutes, 

supernatant removed, the pellet re-suspended in THF. The coumarin-functionalized 

nanoparticle were then cast onto a glass slide with a drop of glycerol and a coverslip for 

analysis by confocal laser scanning microscopy. 

3.3.6 Fluorescent tagging of excess alkyne nanoparticles via Alexa Fluor® 488 azide 

From the nanoparticle suspension (10 mL) with excess yne prepared in 1.3, 2 mL 

were removed and placed into a 20 mL scintillation vial wrapped in aluminum foil with a 

stir bar. The 1X Click-iT® EdU buffer was prepared with 1.0 mL of dH2O to the Click-

iT® EdU vial. To the Alexa Fluor® 488 vial, 100 µL of Click-iT® reaction buffer, 800 

µL of CuSO4 solution, and 100 µL of the prepared 1X Click-iT® reaction buffer was 

added. From this, 500 µL of the reaction cocktail was added to the nanoparticle 

suspension and allowed to react overnight. The solution was then centrifuged (10 minutes 

at 13,300 rpm, Fisher Scientific™ accuSpin™ Micro 17 centrifuge), supernatant 
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removed, nanoparticles resuspended in 1 mL of H2O and then added to a slide with 

glycerol. A coverslip was placed on top and was immediately imaged using a Zeiss LSM 

510 confocal laser scanning microscope. 

3.3.7 Preparation of hydrophobically modified silver nanoparticle 

Dodecanthiol capped AgNPs were prepared using a modified procedure.96 

Briefly, a 2.25 mM stock solution of AgNO3 was prepared with 19.11 mg AgNO3 in 50 

mL of EtOH. A second 69.4 mM solution of NaBH4 was prepared with 0.2625 g in 100 

mL of EtOH. Into a 20 mL scintillation vial, 14 mL of NaBH4 stock with 25.7 µL of 

DDT with a magnetic stirbar. The solution was stirred and in one continuous addition, 

4 mL of AgNO3 stock was added, upon which the solution immediately turned yellow 

and gradually turned dark brown. The solution was centrifuged at 8500 rpm for 12 

minutes, supernatant removed, 20 mL EtOH added three times. The final solution was 

resuspended in varying amounts of either toluene or butyl acetate to adjust the 

concentration of AgNPs. 

3.3.8 Preparation of composite Ag nanoparticles 

Each sample was prepared by mixing 250 µL of the 2:1 SH:yne octadiyne 

formulation with 50 µL of AgNPs (3% wt AgNP solution in butyl acetate). The solution 

was pipetted up and down to ensure mixing, upon which 250 µL was dispersed in a 

solution of SDS and deionized water. The samples were placed into an ice bath and were 

sonicated using a Q-700A-110 probe ultrasonicator at 20 % amplitude for 20 minutes. 

The miniemulsions were then cured using an Omnicure S1000-1B with a 100W mercury 

lamp (λmax=365 nm, 320-500 nm filter) and an intensity of 185 mW/cm2 for 10 minutes. 
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3.3.9 Characterization 

The size and distribution of the nanoparticles were measured by dynamic light scattering 

(DLS) using a Microtrac Nanotrac Ultra NPA150. Transmission electron micrographs 

(Digital Imaging with Gatan Model 785 ES1000W Erlangshen CCD Camera) were taken 

with a Zeiss 900 TEM operating at 50keV and a JEOL JEM-2100 TEM operating at 200 

keV. Samples were applied to 200 mesh copper grids (3.05 mm, 200 lines/inch square 

mesh, EMS Cat. #G200-Cu) coated with Formvar (5% polyvinyl formal resin). UV-vis 

measurements were performed on a Perkin-Elmer Lambda 6 UV/Vis spectrophotometer 

with quartz cuvettes. Atomic force microscopy was performed using a Bruker Icon in 

tapping mode. The samples were imaged with T300R-25 probes (Bruker AFM Probes) 

with a spring constant of 40 Nm-1. The samples then stained using OsO4. 1H NMR was 

recorded on a Varian Mercury Plus 300 MHz NMR in D2O. Samples for DSC analysis 

were prepared by placing 5–8 mg of freeze-dried cured nanoparticles into an aluminum 

hermetic DSC pan. Thermal history was erased before running DSC traces as samples 

were cooled to -50 ºC and heated to 100 ºC at 5 ºC/min. Samples were then cooled to -50 

ºC at 10 ºC/min and then heated at a rate of 5 ºC/min to 200 ºC. All DSC tests were run 

on a TA Instruments Q200 differential scanning calorimeter. 

3.4 Results and Discussion 

As shown in Scheme 3.1, thiol-alkyne miniemulsions were prepared from 

combinations of pentaerythritol tetra(3-mercaptopropionate) with three different alkyne 

monomers, including 1-hexyne, 1,7-octadiyne, and trimethylolpropane tripropargyl ether 

(TMPTPE) to provide polythioether nanoparticles with a range of thermal properties.  

Hexadecane, Irgacure 184® (1-hydroxycyclohexyl phenyl ketone), 4-methoxyphenol, and 
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butyl acetate (BA) served as the hydrophobe, photoinitiator, radical inhibitor, and organic 

diluent, respectively.    The organic-soluble constituents were dispersed into the aqueous 

continuous phase containing sodium dodecylsulfate (SDS) as a surfactant using ultrasonic 

emulsification.  Exposure of these thiol-yne miniemulsions to UV light resulted in 

complete conversion of the thiol and alkyne functional groups, as indicated by the absence 

of peaks at 2567 cm-1 and 3285 cm-1 in FTIR (Fig. S1). 

 

Scheme 3.1 (a-d) Various multifunctional alkynes and thiols used to generate 

polythioether nanoparticles via thiol-alkyne photopolymerization in miniemulsion.  

Thiol-yne involves sequential addition and hydrogen abstraction steps of primary alkynes 

(1) and subsequent vinyl sulfides (2) to generate crosslinked nanoparticles. 

The size of the dispersed monomer droplets, and consequently the size of the 

polymer nanoparticles obtained following photopolymerization, depends on a number of 

parameters including surfactant concentration, monomer weight fraction, and total 

ultrasonic energy input.  These parameters were explored thoroughly in our recent thiol-

ene miniemulsion work; here, we report thiol-yne nanoparticle synthesis under optimized 

conditions.  Figure 1 shows how nanoparticle size depends on the monomer phase weight 

fraction in a miniemulsion formulation containing a fixed amount of surfactant (20 mM 
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SDS).  Hexyne, octadiyne, and TMPTPE, when paired with PETMP, all exhibited a 

minimum particle size of 40 – 75 nm between 2 and 3 wt.% monomer phase – a result that 

can be attributed to an optimum surface coverage of SDS necessary to stabilize the 

equilibrium droplet size under these specific conditions.  An increase in monomer phase 

loading depletes SDS coverage enabling droplet coalescence, whereas a decrease in 

monomer phase loading provides excess SDS that can facilitate Ostwald ripening via the 

diffusion of organic soluble constituents from smaller droplets, across the aqueous phase, 

into larger droplets.  Both of these conditions result in larger nanoparticles, as shown by 

the u-shaped data in Figure 1a. Nonetheless, low polydispersity values were observed 

across the monomer loading range, from 0.260 for 2.5 wt.% to 0.467 for 5 wt.%, as 

illustrated by the DLS distribution curves in Figure 1b. 

 

Figure 3.1 (a) Effect of weight fraction of the organic monomer phase on the results 

particle size and distribution. (b) Inset shows nanoparticle size distribution curves 

obtained by dynamic light scattering. 

The thermal properties of the nanoparticles were analysed by differential scanning 

calorimetry (DSC).  As shown in Fig. S2, hexyne-PETMP nanoparticles exhibited the 

lowest glass transition temperature (Tg) at -32.5 °C – a result attributed to a low crosslink 
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density obtained from the monofunctional alkyne. As expected, increasing the functionality 

of the alkyne to difunctional or trifunctional by employing either 1,7-octadiyne or 

TMPTPE, respectively, provided nanoparticles with higher Tg.  The 1,7-octadiyne based 

nanoparticles showed a Tg at 45.7 °C, while TMPTPE based nanoparticles showed a Tg at 

47.3 °C (Fig. S2).  These results are consistent with an expected increase in Tg with an 

increase in network crosslink density at higher alkyne functionality. 

Particle morphology was characterized using atomic force microscopy (AFM) and 

transmission electron microscopy (TEM). All samples showed particle sizes in good 

agreement with data obtained by dynamic light scattering. For the hexyne-PETMP 

monomer pair (Fig. 2a), the particles exhibited an ill-defined spherical morphology with a 

strong tendency to aggregate upon drying for analysis. We attribute this behaviour to a low 

crosslink density resulting from the hexyne-PETMP constituents, and consequently a low 

Tg as confirmed by DSC.  The low Tg of these nanoparticles confers tackiness and leads to 

agglomeration of the particles. However, both the 1,7-octadiyne-PEMTP and TMPTPE-

PETMP monomer pairs provide nanoparticles with well-defined spherical morphologies 

that are stable against aggregation upon drying, and can be re-dispersed into aqueous 

solution.  The stability of these nanoparticles can be attributed to the higher glass transition 

temperature, as discussed previously. 
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Figure 3.2 AFM and TEM images corresponding to (A) hexyne-PETMP, (B) 1,7-

octadiyne-PETMP, and (C) TMPTPE-PETMP particles. 

Miniemulsion polymerization offers a versatile approach to synthesize composite 

inorganic-organic nanoparticles via encapsulation inorganic materials to endow 

properties such as magnetism, antimicrobial activity, and fluorescence.71, 97-99  However, 

surprisingly few examples have been reported that exploit the rapid nature of 

photopolymerization to prepare hybrid nanoparticles.100 Here, we demonstrate thiol-yne 

photopolymerization as a rapid two-step synthetic approach to prepare 

silver/polythioether nanoparticles. First, hydrophobically modified AgNPs were prepared 

via sodium borohydride reduction of silver citrate in the presence of dodecanethiol 

yielding 9 ± 3 nm AgNPs with a λmax = 435 nm (Fig. S3 and S4).96 After purification, the 

AgNPs were dispersed in BA and combined with the thiol-alkyne monomer formulation.  

The reaction mixture was then ultrasonicated in the presence of water and SDS, and 
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polymerized with ultraviolet light for 20 min to yield composite Ag/polythioether 

nanoparticles.  Typical thermal polymerization routes require 4 – 24 h reaction time.98-99 

TEM analysis revealed well-defined core-shell particle morphologies with AgNPs strictly 

confined within the core of the polythioether nanoparticles (Fig. 3a).  Image analysis 

carried out on a population of nanoparticles imaged at 50 keV revealed an average 

composite diameter of 127 ± 8 nm, an average 68 ± 6 nm AgNP core, and a clearly 

defined polythioether shell of ~ 30 nm. TEM images collected at 200 keV showed the 

inorganic core was comprised of individual AgNPs (Fig. 3b).  It is noteworthy that 

relatively few “empty” polythioether nanoparticles (i.e. devoid of AgNPs in the core) or 

unencapsulated AgNPs were observed in the TEM images surveyed – an observation 

indicative of a high encapsulation efficiency that minimizes the need for subsequent 

purification protocols. 

 

Figure 3.3 Representative TEM micrographs of composite polythioether–silver 

nanoparticles collected at (a) 50keV and (b) 200 keV, showing clusters of 9 nm AgNPs 

encapsulated within 1,7-octadiyne-PETMP nanoparticles. 

 To take full advantage of the step polyaddition nature of thiol-yne 

photopolymerization, different stoichiometries of thiol (SH) and alkyne were reacted 

within the miniemulsions to prepare thiol or alkyne functionalized polymer nanoparticles. 

The ratios of SH to alkyne were adjusted from 1.5:1 and 3.2:1, and the resulting 

nanoparticles were analysed via FTIR (Fig. S1). Nanoparticles prepared from the 
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monomer feed with excess SH (3.2:1 SH:yne) showed the presence of residual thiol 

functionality at 2567 cm-1. Conversely, nanoparticles resulting from the monomer feed 

with excess yne (1.5:1, SH:yne) showed a strong alkyne absorption at 3285 cm-1.  The 

preservation of the excess thiol and alkyne functionality provided a convenient strategy 

for postpolymerization modification of the nanoparticle surface using various click 

reactions.  As illustrated in Scheme 2, thiol-yne, thiol-Michael, and CuAAC reactions 

were employed to ligate a series of fluorescent dyes to the nanoparticle surface. To the 

thiol-functionalized nanoparticles (3.2:1 SH:yne), Texas Red maleimide was attached 

using a thiol-Michael click reaction (Scheme 2a). Following purification by repetitive 

centrifugation/wash steps, nanoparticles with red fluorescence were confirmed by 

confocal microscopy (λem 615 nm, Fig. 4a). 

 

Scheme 3.2 (a) Thiol-functional polythioether nanoparticles prepared with excess 

PETMP and postmodified via thiol-Michael with Texas Red maleimide. (b) Alkyne-

functional polythioether nanoparticles prepared with excess 1,7-octadiyne postmodified 

with 7-mercapto-4-methylcoumarin via thiol-yne or with Alexa Fluor® 488 azide via 

CuAAC.    
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The alkyne-functionalized nanoparticles were tagged with fluorescent dyes via 

two routes.  First, 7-mercapto-4-methylcoumarin was immobilized using a photoinitiated 

thiol-yne reaction in the presence of 2,2-dimethoxy-2-phenylacetophenone to afford 

nanoparticles that fluoresce blue (λem 385 nm), as shown by confocal microscopy in 

Fig. 4b. Lastly, the CuAAC click reaction between Alexa Fluor® 488 azide and the 

alkyne-functionalized nanoparticles resulted in fluorescently tagged nanoparticles with 

green emission (λem 385 nm, Fig. 4c). Control experiments were also carried out under 

the same conditions using non-reactive dyes to show physisorption plays no role in 

immobilization of the fluorescent tags (Fig. S5).  This two-step process of generating 

functional nanoparticles and subsequent functionalization through high efficiency 

reactions simplifies current multi-synthetic processes while also expanding the library of 

functional groups that can react with these particles. 
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Figure 3.4 Fluorescence microscopy of (a) thiol-functional nanoparticles postmodified 

with Texas Red maleimide using a thiol-Michael reaction, (b) alkyne-functional 

nanoparticles postmodified by photoinitiated thiol-yne with 7-mercapto-4-

methylcoumarin, and (c) alkyne-functional nanoparticles postmodified by CuAAC with 

Alexa Fluor® 488 azide.  (d) shows exemplary control experiment with non-reactive 

dyes. 

3.5 Conclusions 

In conclusion, we have demonstrated the versatility of thiol-alkyne photopolymerization in 

miniemulsion for the preparation of polythioether nanoparticles.  Simple off-stoichiometric 

monomer feed ratios provided access to functional nanoparticles that express thiol and 

alkyne moieties at the nanoparticle surface – and these moieties are readily available for 

postpolymerization modification using various click chemistries. We also demonstrated 

thiol-yne photopolymerization in miniemulsion as a means to synthesize hybrid 

silver/polythioether nanoparticles with defined core-shell morphologies; this approach 

provides hybrid nanoparticles in a fraction of time (20 min) as compared with previously 

reported thermally-initiated routes (4-24 h).  We anticipate that thiol-yne miniemulsions 
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will provide facile access to a functional and hybrid nanoparticle platform with 

antimicrobial, delivery, and imaging applications.  
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CHAPTER IV – FUNCTIONAL MICROCAPSULES VIA THIOL-ENE 

PHOTOPOLYMERIZATION IN DROPLET-BASED MICROFLUIDICS 

 

Portions of the text in this chapter have been reprinted with permission from: 

Amato, D. V.; Lee, H.; Werner, J. G.; Weitz, D. A.; Patton, D. L. ACS Applied Materials 

& Interfaces 2017, 9, (4), 3288-3293. 

Copyright 2017 American Chemical Society 

 

 

4.1 Abstract 

Thiol-ene chemistry was exploited in droplet-based microfluidics to fabricate 

advanced microcapsules with tunable encapsulation, degradation, and thermal properties. 

In addition, by utilizing the thiol-ene photopolymerization with tunable crosslink density, 

we demonstrate the importance of monomer conversion on the retention of omniphilic 

cargo in double emulsion templated microcapsules. Furthermore, we highlight the rapid 

cure kinetics afforded by thiol-ene chemistry in a continuous flow photopatterning device 

for hemispherical microparticle production. 

4.2 Introduction 

Microcapsules hold great potential for applications involving the encapsulation, 

delivery, and release of actives in the fields of agriculture,101 home care,102 drug 

delivery,103  and cosmetics,104  with some commercial applications already in place. A 

variety of techniques, such as interfacial polymerization, complex coacervation, sol-gel 

encapsulation, and spray-drying have been used for the preparation of functional 

microcapsules.105 However, the size, shell thickness, and composition of the 

microcapsules obtained from these techniques vary significantly, limiting the usage of 
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capsule technologies in many practical (or advanced) applications. Droplet-based 

microfluidics can overcome limitations associated with variability during microcapsule 

production by the precise control of multi-phasic flows, leading to highly monodisperse 

multiple emulsion drops with fine-tunable size, morphologies, and compositions of each 

compartment; these emulsion drops have been utilized as templates to prepare functional 

microcapsules in which the chemical compositions of polymeric shells, shell thicknesses, 

and volume ratios of encapsulant to membrane can be fine-tuned.106 Traditionally, the 

polymeric shells in these emulsion-templated microcapsules107-108 are obtained by 

dissolving a polymer in a volatile solvent and allowing for solidification,109 through 

dewetting of a cosolvent to form polymersome shells from amphiphilic polymers,110 or 

direct photopolymerization of monomers.111 Capsule shells fabricated from solvent 

approaches typically result in a non-homogeneous structure during solidification; this 

leads to the undesired formation of small defects, and consequently, to loss of 

encapsulated active. By contrast, defect-free shell structures can be achieved by 

photopolymerization of monomers.112 While a wide variety of materials have been 

examined for microparticle fabrication via photopolymerization, (i.e. methacrylates, 

acrylates, and crosslinkable poly(dimethyl siloxane) (PDMS)), many have intrinsic 

drawbacks. Methacrylates and acrylates suffer from inhibition of the polymerization by 

oxygen,113 polymerization induced stress development,114 incomplete reaction during 

curing,65, 115 and most importantly, the formation of highly heterogeneous polymer 

networks.116  PDMS is capable of efficient photopolymerization but exhibits poor 

mechanical properties and poor solvent resistance leading to premature leakage of small 

actives that are highly diffusive.117 Thus, there remains an unmet need for a new tunable 
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material platform for emulsion-based microcapsules that is photocurable, insensitive to 

oxygen, inexpensive, and modular in nature; this platform should possess tunable 

thermal-mechanical and chemical functionality, with simple processing conditions, in 

order to expand the range of possible applications. 

Thiol-ene photopolymerization – a robust, radical-mediated step polyaddition 

process – offers a promising route for synthesis of microcapsules possessing the 

aforementioned properties;118-119 however, previous reports of thiol-ene in microfluidics 

have primarily focused on the synthesis of solid microparticles.94  Multifunctional thiol 

and alkene monomers – a large number of which are commercially available – offer 

unparalleled control of thermal-mechanical properties, crosslink density, and 

incorporation of orthogonal chemistries while providing rapid polymerization kinetics 

without the oxygen inhibition typically associated with other radical based 

polymerizations.118 Additionally, the onset of gelation during polymerization occurs at 

high conversion facilitating low polymerization induced shrinkage and uniform network 

architecture.120 

In this paper, we describe a microfluidic approach for fabricating functional 

microcapsules via thiol-ene photopolymerization that show enhanced retention of an 

encapsulated model small active (fluorescein) that was previously shown to be highly 

permeable.121  By inserting degradable anhydride monomers into the thiol-ene backbone, 

we demonstrate tailored release kinetics from a homogenous degradable network, which 

reflects the recent Microbead-Free Waters Act of 2015,122 where all non-degradable 

plastic particles less than 5 mm are to be banned from sale in the United States.122 We 

also show that thiol-ene microcapsules can be oxidized to enhance the thermal-
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mechanical properties. Furthermore, we highlight the rapid cure kinetics afforded by 

thiol-ene chemistry in a continuous flow photopatterning device for hemispherical 

microparticle production. 

4.3 Experimental 

4.3.1 Materials 

Thiol-ene monomers used for the microcapsule shells and microparticles, 

trimethylolpropane tris(3-mercaptopropionate) (TMPTMP, Sigma-Aldrich, MW = 398.56 

g mol-1), tri(ethylene glycol) divinyl ether (TEGDVE, Sigma-Aldrich, MW = 202.25 g 

mol-1), triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (TTT, Sigma-Aldrich, MW = 

249.27 g mol-1) and 4-pentenoic anhydride (PA, Sigma-Aldrich, MW = 182.22 g mol-1) 

were used as received without further purification.  Poly(vinyl alcohol) (PVA, Mw = 13 - 

23 000 g mol-1, 87-89% hydrolyzed), photoinitiator (2-hydroxy-2-methylpropiophenone), 

n-octadecyltrimethoxy silane, 1,3-Dihydro-1,3,3-trimethylspiro[2H-indole-2,3’-

[3H]naphth[2,1-b][1,4]oxazine] (Photorome I), fluorescein (green fluorescent dye), and 

sulforhodamine B (red fluorescent dye) were purchased from Sigma-Aldrich and 2-

[methoxy(polyethyleneoxy)propyl] trimethoxy silane was purchased from Gelest. 

Distilled water (>18.2 MΩ•m, Millipore) (DI water) were used for all experiments. 

4.3.2 Characterization Methods. 

A Bruker Ascend 600 MHz (TopSpin 3.5) spectrometer was used to record 1H/13C 

NMR spectra with either chloroform-d or acetonitrile-d3. High resolution mass 

spectroscopy (HRMS) was performed with positive electrospray ionization on a Bruker 

12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source. Dynamic mechanical 

analysis (DMA) was performed using a TA Instruments Q800 dynamic mechanical 
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analyzer in tension mode equipped with a gas cooling accessory. Samples were clamped, 

evaluated at a strain of 1 %, and heated from -80 °C to 80 °C at a ramp rate of 3 °C min-1. 

Kinetic data was obtained using real-time FTIR (RT-FTIR) spectroscopy by determining 

the conversions of the thiol and ene functional groups. The RT-FTIR studies were 

conducted using a Nicolet 8700 FTIR spectrometer with a KBr beam splitter and a 

MCT/A detector with a 320–500 nm filtered ultraviolet light source. Each sample was 

exposed to a UV light with an intensity of 400 mW cm-2. Series scans were recorded, 

where spectra were taken approximately 2 scan s-1 with a resolution of 4 cm-1. Thiol 

conversion was monitored via integration of the SH peak between 2500-2620 cm-1 while 

the conversion of the alkene was monitored between 3050-3125 cm-1. Optical density 

(OD) and fluorescence readings were performed in a BioTek Synergy 2 programmable 

microplate reader (BioTek Instruments). 

4.3.3 Fabrication of a microfluidic device and its operation 

Two cylindrical glass capillaries (World precision Instruments) of inner and outer 

diameters 0.58 mm and 1.00 mm were tapered to a diameter of 40 µm with a 

micropipette puller (P-97, Sutter Instrument).  One of the cylindrical capillaries, the 

injection capillary, was grinded to final inner diameter of 70 µm. This tapered injection 

capillary was hydrophobically modified by dipping into n-octadecyltrimethoxy silane for 

20 min and subsequently drying with compressed air. The resulting injection capillary 

was inserted into a square capillary whose inner diameter (1.05 mm) is slightly larger 

than that of the outer diameter of the injection capillary (1 mm). Next, a small tapered 

glass capillary was prepared manually by heating and pulling a cylindrical capillary using 

a gas torch; this capillary was inserted into the injection capillary for the injection of an 
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aqueous phase that forms the innermost drop of the double emulsions. Finally, the other 

tapered cylindrical collection capillary was grinded to final inner diameter of 400 µm and 

was inserted into the square capillary from the other end; we treat this collection capillary 

with 2-[methoxy(polyethyleneoxy)propyl] trimethoxy silane to make the wall hydrophilic 

prior to the assembly. During drop generation, the volumetric flow rate was controlled 

using syringe pumps (Harvard Apparatus). The production of thiol-ene double emulsion 

drops within the microfluidic devices was recorded using an inverted microscope (Leica) 

equipped with a high-speed camera (Phantom V9). 

4.3.4 Fabrication of microcapsules from double emulsion drops 

The thiol-ene monomer comprising the emulsion drops were polymerized by UV 

exposure (Omnicure S1000) at the exit of the capillary device to produce microcapsules.  

We note that thiol-ene monomers contain 2.5 wt% of photoinitiator, 2-hydroxy-2-

methylpropiophenone. For photo-patterned microparticles, 0.3 wt% of Photorome I was 

added. 

4.3.5 Confocal Microscopy 

The optical and fluorescence images of the microcapsules with different monomer 

conversion of the thiol-ene shell encapsulating both fluorescein (green dye) and 

sulforhodamine B (red dye) as well as the degradable microcapsules encapsulating 

sulforhodamine B  were taken with a Leica TCS SP5 confocal laser scanning microscope, 

using a 10X dry objective with NA = 0.3. 

4.3.6 Fourier Transform – Infrared spectroscopy (FT-IR) 

The data was collected using a Bruker Lumos FTIR microscope with a liquid nitrogen 

cooled MCT detector using 64 scans in ATR mode with a single bounce Ge ATR crystal. 
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To avoid any background absorption from PVA, the microcapsule samples were prepared 

without any surfactant in the innermost aqueous phase and rigorously rinsed with DI 

water to remove any PVA adsorbed at the exterior of the capsule shell prior to 

measurement. 

4.3.7 Scanning electron microscopy (SEM) 

Microcapsules were cut open for cross-sectional imaging and sputter-coated with 

2 nm Platinum-Palladium (80:20) prior to imaging. Images were obtained on a Zeiss 

Ultra Plus Field Emission Scanning Electron Microscope (FESEM) using an acceleration 

voltage of 3 kV and an InLense detector. 

4.4 Results and Discussion 

To fabricate thiol-ene double emulsion drops, we use a glass capillary microfluidic device 

containing two tapered cylindrical glass capillaries – one for the injection, and the other 

for collection as shown in Figure 1a. Briefly, the tapered capillaries are aligned by insertion 

within a square capillary whose inner diameter is slightly larger than the outer diameter of 

the cylindrical capillaries. The injection capillary is treated with n-octadecyltrimethoxy 

silane to modify the surface hydrophobic and the collection capillary is treated with 2-

[methoxy(polyethyleneoxy)propyl] trimethoxy silane to make it hydrophilic. Additionally, 

a small cylindrical capillary is inserted into the injection capillary for the injection of an 

aqueous phase that forms the innermost drop of the double emulsions.  
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Figure 4.1 Production of thin-shell thiol-ene microcapsules. a) Glass capillary 

microfluidic device for preparation of thin-shell thiol-ene double emulsion drops. b) 

General scheme for the production of uniform thiol-ene networks.  c) Optical microscope 

images of monodisperse double emulsion drops produced; flows rates of the innermost 

aqueous phase (QI), middle thiol-ene monomer phase (QM) and outer aqueous phase (QO) 

were set at 500, 1000, 10 000 µL h-1, respectively. Scale bar represents 300 µm. d-e) 

Scanning electron microscope (SEM) images of dried microcapsules composed of 

TTT:TMPTMP at d) low magnification (scale bar 100 µm) and at e) higher magnification 

(scale bar 5 µm). 

The photocurable thiol-ene resin consisting of the thiol trimethylolpropane tris(3-

mercaptopropionate) (TMPTMP) and either tri(ethylene glycol) divinyl ether (TEGDVE), 

triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (TTT), or 4-pentenoic anhydride (PA) pairs 

shown in Scheme 1, is interjected through the injection capillary. The hydrophobic 

treatment of the injection capillary facilitates plug-like flow with preferential wetting of 

the thiol-ene resin around the capillary. We inject an aqueous surfactant solution as the 

continuous phase through the interstitial space between the square and collection 

capillaries. The plug-like stream of encapsulated drops from the injection capillary break 
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up into monodisperse double emulsion drops with a thin thiol-ene layer by shearing of the 

aqueous continuous phase. The resulting drops then flow through the collection capillary 

and are photocured with UV light (Figure 1b) to yield thin-shell microcapsules as shown 

in the optical microscope image of Figure 1c. The resulting microcapsules are 300 µm in 

diameter (Figure 1d) with a shell thickness of approximately 8 µm as shown in the scanning 

electron microscope images of Figure 1d and 1e. Based on the volume ratio of core to 

microparticle, the loading capacity of the aqueous encapsulant phase is estimated to be 

around 85 %. 

 

Scheme 4.1 Chemical structures of the monomers employed for thiol-ene microcapsules 

and microparticles. 

The ability to produce a highly impermeable, yet homogenous membrane with 

thiol-ene photopolymerization offers new opportunities for encapsulation and retention of 

small molecules in polymer microcapsules. To validate this capability, we prepared 

double emulsion microcapsules with different monomer conversion of the thiol-ene shell 

(TTT-TMPTMP, 1;1 SH:ene ratio) while encapsulating both fluorescein (green dye) and 

sulforhodamine B (red dye) as representative small actives as shown in Figure 2a. These 

two dyes exhibit different octanol/water partition coefficients (log Poct/wat); 

sulforhodamine B (hydrophilic, log Poct/wat = -2.02),123 and fluorescein (omniphilic, log 

Poct/wat = 0.34).124 Among these two model molecules, fluorescein was previously shown 

to completely leak within 24 h from double emulsion microcapsules with 
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photopolymerizable acrylate shells without the additional reinforcement of fluorocarbon 

oil within the polymerized shell.121  

 

Figure 4.2 The effect of monomer conversion on the retention of small actives in thiol-

ene microcapsules. a)  IR spectra of the resulting microcapsules after different cure 

conditions b) Scheme representing partially and fully converted thiol-ene network in 

microcapsules. c-e) Fluorescence images of microcapsules encapsulating both fluorescein 

(λex = 494) and sulforhodamine B (λex = 494) at different curing conditions: c) 4 mW cm-

2 / 2 s, d) 237 mW cm-2  / 2 s, and e) 411 mW cm-2 / 15 s. Scale bar represents 100 µm. 

To study the effect of thiol-ene monomer conversion on the retention of these two 

types of small actives, we prepared sets of microcapsules with different extent of cure by 

independently varying the UV intensity and the cure time from 4 - 411 mW cm-2 and 2 - 

15 seconds, respectively. To determine conversion, we use Fourier-transform infrared 

spectroscopy (FT-IR) to monitor the consumption of thiol at 2570 cm-1 and ene at 3085 
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cm-1 under various polymerization conditions as shown in Figure 2b. Microcapsules 

cured under low intensity (4 mW cm-2) for short durations (2 s) results in ~10% 

conversion and a partially cured membrane as indicated by the significant residual thiol- 

and ene- peaks in the IR spectra of Figure 2b. Increasing the cure intensity and curing 

time results in higher conversion, with 90% conversion of the monomers after curing 

under 411 mW cm-2 for 15 s. By monitoring the leakage of dyes from microcapsules with 

different cure dosage via confocal laser microscopy over two months, we show that 

controlling the monomer conversion of the thiol-ene network results in microcapsules 

with tailored release as shown in the series of fluorescent images of Figure 2c-e and 

Figure S1. For low UV dosage (4 mW cm-2, 2 s) microcapsules, an immediate release of 

fluorescein was observed within 10 minutes, while sulforhodamine B was completely 

retained after 44 days as shown in the fluorescence images of Figure 2c. Fluorescein’s 

log Po/w value of 0.34 signifies that this dye can readily diffuse through both oil and water 

phase leading to rapid permeation through the incompletely cured membrane. By 

contrast, ionically charged sulforhodamine B with a log Po/w value of -2.02 is unable to 

diffuse through the membrane resulting in complete retention within the capsule shell. 

The long-term retention of sulforhodamine B in microcapsules cured under low UV 

dosage also indicates that these microcapsules do not have physical defects such as holes, 

cracks, or voids as both dyes are not simultaneously released. The retention of fluorescein 

was substantially improved by increasing the UV dosage (237 mW cm-2, 2 s) as shown in 

Figure 2d, where the onset of fluorescein release occurred between 2-7 days. The leakage 

still occurs, but at a much slower rate likely due to a higher (~60%) yet incomplete 

conversion of the thiol-ene monomers as indicated by the IR spectra. Improved retention 
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of both dyes for up to 44 days was achieved by increasing the UV dosage (411 mW cm-2, 

15 s) to ensure high conversion (~90%) of the membrane as shown in Figure 2e. Intensity 

profiles comparing the dye release between Figure 3d and Figure 3e at 2 and 44 days 

further show the near complete retention of fluorescein at higher cure intensities (Figure 

S2). These results indicate that the highly uniform polymer network provided by thiol-

ene chemistry enables encapsulation and enhanced retention of omniphilic actives in 

microcapsules. Notably, fluorocarbon triple emulsions were required to achieve similar 

retentions; however, these triple emulsions were sensitive to surfactant selection and are 

environmentally unfriendly.121  

The thiol-ene based microcapsules also provide the ease of incorporating 

degradable linkages, such as anhydrides, within a network to fabricate degradable 

microcapsules. Following the work of Shipp et al.,125 we polymerized 4-pentenoic 

anhydride (PA) with TMPTMP, as shown in Scheme 1, to fabricate a degradable thiol-

ene anhydride membrane. We encapsulated an aqueous solution of Sulforhodamine B due 

to its inability to permeate through a polymer membrane unless a significant void is 

formed, which is achieved in this case via surface erosion of the membrane. We 

monitored the leakage of sulforhodamine B using confocal laser microscopy and observe 

full retention up to 3 h and subsequent gradual disappearance of the dye from the capsule 

as shown in the fluorescence and optical images of Figure 3a. These results are in good 

agreement with literature, as within 15 h, significant degradation of the membrane has 

occurred leading to release of the encapsulated dye. 
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Figure 4.3 a) Monomers used to prepare degradable microcapsules encapsulating aqueous 

solution of sulforhodamine B (red). The series of fluorescence (top) and optical (bottom) 

images on the right shows full retention of the dye within the microcapsule up to 3 h in 

DI water and subsequent gradual release due to surface erosion of the shell. Scale bar 

represents 50 µm.  b) Conversion of thiol-ene (sulfide) network into oxidized thiol-ene 

(sulfone) networks with hydrogen peroxide treatment. The plot on the right shows the 

differential scanning calorimetry (DSC) data before and after oxidation. c) Scheme of a 

continuous photopatternable droplet device and the resulting droplets d) before and e) 

after dewetting. Scale bars represent 500 µm. 

We further explore the utility of thiol-ene network in emulsion templated 

microcapsules by demonstrating their ability to be post-functionalized through very 

efficient reactions. We first prepared double-emulsion microcapsules consisting of 

TEGDVE and TMPTMP to fabricate low glass transition (Tg = -36 °C) temperature 

microcapsules. Then, we modified the sulfide linkages present in the capsule shell into 
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sulfone linkages with H2O2 using the protocol recently highlighted by Podgórski et al.126 

Upon simple incubation of the microcapsules with H2O2 for 24 hours, an increase in Tg 

from -36 °C to -8 °C was observed as shown in the differential scanning calorimetry plot 

of Figure 3b. This oxidation can be applied to networks derived from other thiol-ene 

monomer pairs to even increase the glass transition temperature up to 120 °C higher than 

the original network.126 This result indicates that the capsule shell can be post-modified to 

achieve microcapsules with tunable thermomechanical properties which may provide 

unique opportunities in advanced energy dampening coating technologies. 

We also exploit the rapid cure kinetics of thiol-ene based systems by 

demonstrating the production of photopatterned microparticles in a continuous process. A 

single emulsion droplet generator was outfitted with a steel photomask placed to expose 

half the channel width to UV light as shown in Figure 3c. The monomer combination, 

TEGDVE:TMPTMP, was used with the addition of a colorless spiropyran, Photorome I, 

which undergoes a photoinduced color change upon exposure to UV light. A certain 

percentage of Photorome I is irreversibly converted into a colored state which allows for 

visual contrast between the polymerized and non-polymerized sections of the 

microparticles (Figure A.3). As the droplets pass under the photomask, a color change 

was observed in the UV exposed half of the droplet, as shown in the optical image of the 

collected droplets in Figure 3d. Collection of the photopatterned microparticles in 

deionized water without presence of any surfactants to stabilize the drop allows the non-

polymerized oil portion to dewet and form polymerized hemispherical particles as shown 

in the optical image of Figure 3e. This simple demonstration exploits the rapid cure 

kinetics of thiol-ene photopolymerization which can yield new asymmetric or three 
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dimensional structures from emulsion drops. We anticipate that this approach will afford 

new tools for the polymer and colloid community with applications in particle self-

assembly, drug delivery, and diagnostics. 

4.5 Conclusion 

In summary, thiol-ene chemistry was exploited in droplet based microfluidics to fabricate 

microcapsules with tunable encapsulation, degradation, and thermal properties. This work 

demonstrates the importance of monomer conversion on the retention of omniphilic cargo 

in double emulsion templated microcapsules. The wide range of commercially available 

thiol-ene monomers enabled easy incorporation of degradable anhydride linkages within 

the thiol-ene membrane – generating degradable microcapsules. The thiol-ene membrane 

itself can be oxidized to improve thermal/mechanical properties of the microparticles. 

Lastly, the rapid cure kinetics show great promise in generating photopolymerizable 

microparticles with complex geometries via continuous flow photomasking. The strategies 

of utilizing thiol-ene chemistry in fabrication of advanced microcapsules/particles outlined 

in this work are general and can be further extended to many biological applications 

including, tissue engineering, 127 and immobilization of peptides and dyes within gels.128 

Moreover, while allyl and vinyl ethers were primarily discussed in this work, other alkenes 

such as norbornenes, n-vinyl amides, N-substituted maleimides or acrylates can be used to 

tune reactivity, release kinetics, and provide new network architectures with different 

reactive handles for simple post-polymerization modification or sequestration. The rapid 

cure kinetics, ease of fabrication, and wide range of commercial monomers suggest 

unprecedented opportunities for designer emulsions with well-defined network 

architectures. 
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APPENDIX A – Supporting Information for Chapter II 

 

 

Table A.1 Typical SDS stock solution formulation to prepare samples with various 

concentrations of organic phase. 

SDS Stock Solution Mass (g) Weight % 

SDS 0.578 (2.00 mmol) 0.600 

DI water 90.0 99.4 

 

Table A.2 Typical SDS stock solution formulation to prepare samples with various 

concentrations of organic phase. 

SDS Stock (mL) DI Water (µL) Organic Stock (µL) 

9 500 500 

9 600 400 

9 650 350 

9 700 300 

9 725 275 

9 750 250 

9 775 225 

9 800 200 

9 815 185 

9 825 175 

9 850 150 

9 900 100 

9 950 50 

9 975 25 

 

Effect of Various Concentrations of SDS 

The organic concentration was kept constant at 2.5 % (v/v) while the relative amounts of 

SDS stock (Table A.3) and DI water were adjusted to maintain 10 mL total volume 

(Table A.4). 
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Table A.3 Aqueous formulation to prepare samples at a variety of SDS concentrations. 

SDS Stock Solution  Mass (g) Weight % 

SDS 2.38 (8.00 mM) 2.5 

DI water 90.0 97.5 

 

Table A.4 Samples preparation for varied SDS concentration with a constant organic 

stock. 

[SDS] 

(mmol) 

SDS Stock 

(µL) 

DI Water 

(µL) 

Organic Stock 

(µL) 

0.80 9000 750 250 

0.40 4500 5250 250 

0.20 2250 7500 250 

0.10 1125 8625 250 

0.05 562.5 9187.5 250 

0.025 281.25 9468.75 250 

 

Effect of Sonication Time  

Samples with 2.5 % of organic and 20 mM of SDS were prepared while the sonication 

time was varied from 5, 10, 15, 20, 25, 30, 45, 60 minutes. 

 

Effect of Sonication Amplitude (Intensity setting) 

Samples with 2.5 % of organic and 20 mM of SDS were prepared by varying amplitude 

setting from 5, 10, 15, 20, 25 percent.   

 

Effect of inhibitor  

Samples with 20 mM of SDS and 2.5 % organic phase were prepared with varying 

amounts of inhibitor (MEHQ) ranging from 0 to 60 mg. The samples were emulsified at 

10 % amplitude for 20 minutes.  
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Effect of hexadecane 

Two different organic phases with and without hexadecane were prepared following 

Table SI-1. Samples with 20 mM of SDS were prepared using 2.5 % with and without 

hexadecane. The samples were then placed into an ice bath and sonicated at 10 % 

amplitude for 20 minutes. The samples then place in the dark for different amount of time 

ranging from 0, 3, 6, and 72 hours before curing. 

 

 

Figure A.1 FTIR spectra of thiol-ene nanoparticles obtained after photopolymerization of 

miniemulsions containing (a) 1:1 stoichiometric ratios of thiol and alkene functional 

groups, (b) 1:2 thiol to alkene, and (c) 2:1 thiol to alkene.  As expected, the 1:1 samples 

shows complete conversion of thiol (2567 cm-1) and alkene (3082 cm-1) functional 

groups. 
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Figure A.2 Lower magnification TEM image of thiol-ene nanoparticles synthesized at 2.5 

wt. % organic fraction.   

 

 

Figure A.3 Percent transmittance of thiol-ene miniemulsions as a function of organic 

weight fraction in the formulation.   

 

 



 

78 

 

Figure A.4 TEM image of thiol-ene nanoparticles synthesized with stoichiometric excess 

of thiol groups.   

 

 

Figure A.5 1H NMR of TTT and PETMP starting materials, miniemulsion containing 

excess PETMP (2:1 thiol:ene) prior to UV exposure, and miniemulsion containing excess 

PETMP after UV exposure. The lower spectrum confirms the presence of thiol (~ 2.5 
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ppm) remaining on the nanoparticles, and the complete consumption of the alkene.  See 

Figure A.1 for complimentary FTIR data. 

 

 

Figure A.6 1H NMR of TTT and PETMP starting materials, miniemulsion containing 

excess TTT (1:2 thiol:ene) prior to UV exposure, and miniemulsion containing excess 

TTT after UV exposure. The lower spectrum confirms the presence of alkene (5.0 – 5.8 

ppm) remaining on the nanoparticles, and the complete consumption of the thiol at 2.5 

ppm.  See Figure A.1 for complimentary FTIR data. 
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Figure A.7 Confocal fluorescence control experiments for nanoparticle 

postpolymerization functionalization: (a) Thiol-functionalized nanoparticles (synthesized 

with excess 2:1 excess thiol:ene) were exposed to sulphorhodamine B (without 

maleimide) using the same reaction conditions as for Texas Red C2 maleimide.  (b) 

Alkene-functionalized nanoparticles (synthesized with excess 1:2 excess thiol:ene) were 

exposed to 7-methoxy-4-methylcoumarin (without thiol) using the same reaction 

conditions as for 7-mercapto-4-methylcoumarin.  After washing, the absence of 

nanoparticles in the fluorescence images in (a) and (b) shows that covalent attachment, 

rather than physisorption is responsible for nanoparticle fluorescence when employing 

reactive fluorescent tags. 

 

 



 

81 

 

Figure A.8 Control experiments for nanoparticle postpolymerization functionalization: 

Alkene-functionalized nanoparticles (synthesized with excess 1:2 excess thiol:ene) were 

reacted with 7-mercapto-4-methylcoumarin in the presence of the non-reactive dye 

sulphorhodamine B to show that the non-reactive dye is not physisorbing onto the surface 

of the nanoparticles.  (a) Image at excitation (λex = 405 nm) for 7-mercapto-4-

methylcoumarin, (b) image at excitation (λex = 543 nm) for sulphorhodamine B, and (c) 

composite overlaid image.  
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APPENDIX B – Supporting Information for Chapter III 

 

Figure B.1 FT-IR spectra of octadiyne samples prepared at off stoichiometric ratios.  
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Figure B.2 DSC thermograms of all three alkyne formulations prepared in the absence of 

hexadecane to eliminate additional peaks. The melting peak from 17-18 °C is attributed 

to SDS crystallization.129 

 

Figure B.3 TEM image of synthesized dodecanethiol capped AgNPs.  

 

Figure B.4 UV-vis spectra of AgNPs dispersed in toluene.  
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Figure B.5 Control experiments for nanoparticle postpolymerization functionalization: (a) 

Thiol-functionalized nanoparticles (synthesized with excess 3.2:1 excess thiol:yne) were 

exposed to sulphorhodamine B (without maleimide) using the same reaction conditions 

as for Texas Red C2 maleimide.  (b) Alkyne-functionalized nanoparticles (synthesized 

with excess 1.51:1 excess yne:thiol) were exposed to 7-methoxy-4-methylcoumarin 

(without thiol) using the same reaction conditions as for 7-mercapto-4-methylcoumarin.  

After washing, the absence of nanoparticles in the fluorescence images in (a) and (b) 

shows that covalent attachment, rather than physisorption is responsible for nanoparticle 

fluorescence when employing reactive fluorescent tags.  
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APPENDIX C – Supporting Information for Chapter IV 

 

Figure C.1 Full spectrum of release profiles with different curing conditions.  
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Figure C.2 Intensity profiles of the green fluorescence in the microcapsules shown in 

Figure 2d – medium cure (237 mW cm-2 with 2 s exposure time) and Figure 2e – highest 

cure (411 mW cm-2 with 15 s exposure time). The profiles show greater intensity outside 

of the particles under medium cure conditions at both 2 and 44 day time points. 

 

 

Figure C.3 A photograph showing that a certain percentage of Photorome I is irreversibly 

converted into a colored state upon exposure to UV.
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