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ABSTRACT 

The understanding of thermoset cure has, traditionally, been limited to the 

analysis of a single degree of cure value obtained via techniques such as dynamic 

scanning calorimetry (DSC). These analyses limit the scope of understanding of network 

development during cure. The continued development of rapid cure matrix chemistries 

necessitates the advancement of analytical techniques capable of quantifying how thermal 

cure profiles influence crosslinked network architectures throughout cure. This 

dissertation investigates and elucidates the mechanisms of polymer network growth 

through glassy epoxy/diamine thermoset to improve the way network growth is tracked 

and inform the role of cure protocol on network formation. The primary tool used to 

study the effect of cure protocol on network development was Real-Time Fourier 

Transform Infrared Spectroscopy in the near infrared wavelength region (RT-NIR).  

Through the course of this work great strides were made in the considerations 

needed to accurately monitor functional group conversion in RT-NIR when using 

variable temperatures. A temperature dependence on the absorbance of NIR overtones 

was identified and a methodology to correct for the effect was developed. The improved 

RT-NIR analytical technique was applied to study how a thermal ramp rate affects the 

network formation pathway of high glass transition temperature (Tg), glassy thermosets 

during cure. It was determined that highly crosslinking networks based on the 

tetrafunctional epoxide tetraglycidyl-4,4'-diaminodiphenylmethane (TGDDM) have their 

pathway of network formation effected by the rate if thermal ramp to a constant cure 

temperature. Finally, the material properties of epoxy diamine networks cured with 

varied thermal ramp rate was studied. This dissertation improved upon the application of 
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RT-NIR as a quantifiable characterization tool to accurately study the formation of 

epoxy/diamine networks during cure. The RT-NIR technique was then applied to study a 

cure protocol effect on the pathway of network formation during cure of epoxy/diamine 

thermosets.   
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CHAPTER I – INTRODUCTION 

1.1 Aerospace Composites 

The history of mankind has been defined by the innovation of material science. 

The development, use, and continued improvement of materials is so important that entire 

periods of time have been defined by the predominant material of use. The Stone Age, 

Bronze Age, and Iron Age have marked humanity’s progress in the understanding of 

materials, thereby allowing the harnessing of their favorable properties. 

It could very well be argued that we are currently living in the Polymer Age. The 

proliferation of polymers in the last century has promoted an explosion of new 

technologies as these synthetic materials have, in many cases, exceeded properties of 

their traditional analogs. The composite industry is on the leading edge of these 

technological innovations. A composite is a compound of two or more components that, 

when combined, provide properties and performance unattainable by the constituents. 

Polymer based composites have superior strength-to-weight ratios and corrosion 

resistance as compared to many metals. Thus, composites have replaced metals in 

industries such as: construction, commercial products, civil infrastructure, and 

transportation.  

The advantages of composite materials are especially salient in the aerospace 

industry. Even small improvements in strength-to-weight ratio can result in large gains in 

fuel economy and aircraft performance. The continued development of this technology 

can revolutionize industrial materials as evidenced in the recent development of the 

Boeing 787 Dreamliner.  
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Aerospace composites are predominantly composed of carbon fiber reinforcement 

imbedded within a high glass transition temperature (Tg) epoxy network cured with a 

diamine hardener. The epoxy/amine network serves as the composite matrix transferring 

applied load to the fiber reinforcement. Delivering the thermal and mechanical properties 

necessary in aerospace applications requires epoxide and amine curatives that are 

typically aromatic, low-molecular-weight monomers, which cure around the 

reinforcement to form highly crosslinked networks. The industrial protocol used to cure 

composite panels has not been challenged. This is attributed to the final parts produced 

by these methods having properties that meet target benchmarks. There is much potential 

in terms of fundamental scientific knowledge as well as industrial economic benefit in 

understanding the role of cure protocols on the formation of composite-relevant, high Tg, 

glassy epoxy/amine networks. In fact, few studies have focused on this question in the 

published literature especially with the focus on the role of temperature ramp rates on 

network formation. Thus, this work examines this question, with an emphasis on network 

formation throughout cure via real time monitoring of functional group conversion and 

production.   

1.2 Epoxy/Amine Networks 

The leading matrix chemistries used in aerospace fiber reinforced composites are 

epoxy/amine thermosets. The epoxide/amine reaction involves the ring opening of the 

oxirane ring of the epoxide functional group by an amine via nucleophilic attack to 

generate a hydroxypropylether linkage.1 A typical aerospace epoxy/amine network is 

formed by reacting an epoxide monomer (functionality ≥ 2) with an aliphatic or aromatic 
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diamine curative having two primary amine functional groups. This step-growth 

polymerization begins with the opening of the oxirane ring by the primary amine, 

creating a secondary amine and a hydroxyl site (Figure 1.1). For cures involving a 

difunctional epoxide, this first reaction phase is characterized by linear growth of the 

polymer. In the second phase, the secondary amine attacks another oxirane to form a 

crosslink between chains and creates tertiary amine group.2,3 For epoxy networks 

composed of epoxide monomers of greater functionality (e.g. tetrafunctional), polymer 

branching and crosslinking occurs earlier in the reaction as compared to reactions 

involving difunctional epoxide monomers.4,5  

 

Figure 1.1 Prominent reactions in the epoxy/diamine network polymerization. 

During network formation, the oxirane ring can also react with a hydroxyl group 

to form an ether linkage. This etherification reaction consumes a hydroxyl and an epoxide 

group but also produces a new hydroxyl group.6,7 Etherification has a higher activation 

energy than the primary or secondary epoxide/amine reactions; thus this pathway has a 
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lower probability of occurrence. In general, for epoxy networks cured with aromatic 

diamines etherification occurs only after extended cure times and at elevated 

temperatures during the late stages of cure. In the literature, etherification has been driven 

in epoxy/amine networks by curing systems with an excess of epoxide so those groups 

were be available for reaction with free hydroxyls upon complete consumption of amine.8 

In systems prepared at 1:1 stoichiometry, etherification is commonly viewed to be a 

negligible event.6,9  

Epoxy network cures are very complex because both the chemical and physical 

environment changes during polymerization, with the physical state of the system 

transitions from a liquid, to a gel, and finally to a glassy solid.10–13 The liquid system at 

the beginning of cure has no molecular network present that restricts diffusion; the 

monomers can freely move in solution and react to each other. During this stage the 

molecular weight of oligomers increase, thereby increasing the system’s overall viscosity. 

The size of isolated reacted species grows until a network spanning the entire sample 

forms. This is termed the point of gelation and is also considered the point where the 

molecular weight of the growing polymer is infinite.14  

Although the gel is insoluble, it is surrounded by a soluble fraction consisting of 

lower molecular weight species and unreacted monomer. After gelation, network growth 

progresses as more of these monomers react and add to the system-spanning network. 

During this initial stage of network growth, the unreacted species can diffuse freely and 

react with the network, as functional group reactivity is unchanged from that in the liquid 

state.15 The crosslink density of the system increases as the reaction proceeds, eventually 
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affecting the diffusion of branched segments that are not a part of the gel and eventually, 

even begin restricting diffusion of the unreacted monomer.16 

 The network continues to develop until the system reaches a glass transition 

temperature (Tg) that exceeds the cure temperature. This transition from a rubbery 

crosslinked system to an amorphous glassy network is termed the point of vitrification 

and represents the loss of long-range cooperative mobility of the backbone segments of 

the network. At this point the rate of crosslinking and functional group conversion is 

reduced as the cure kinetics become limited by diffusion.17,18 Upon vitrification the 

developed network structure is effectively frozen. Further reactions can occur, advancing 

the degree of cure, but most of the network has already formed; limiting its impact on the 

overall network architecture. Networks which vitrify during the cure typically do not 

reach a fully cured state, meaning that not all the available functional groups (such as the 

epoxides) are reacted into the network. In order to reach full conversion, higher “post-

cure” temperatures are applied, devitrifying the network to create the mobility necessary 

to react the remaining functional groups.19,20  

The individual reactions occurring in epoxy/amine network formation are 

generally understood and have been verified via model systems and small molecule 

analogs. However, the kinetics and ordering of these reactions, and how they are affected 

by cure pathway is not well understood. In addition, the methods used to monitor cure 

kinetics are questionable. These are important issues as monomer connectivity directly 

affects ultimate network properties, with the manner these materials are cured greatly 

affecting the curing cycle time and cost of composite parts.  
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Network properties, especially in the glassy state, are related to several factors, 

including crosslink density, chemical composition between crosslinks, concentration of 

unreacted end groups, and structural defects.21–24 Most of these factors are governed by 

the order of network-forming reactions, as this ultimately determines the architecture.25 If 

all available primary amines react prior to any secondary amines or hydroxyls the 

evolution of the network structure will be much different than for cases where those 

reactions are more competitive. For thermoset matrix polymers, the term “network 

architecture” describes the three dimensional arrangement of monomers in space. The 

description of network architecture exists on the order of nanometers and the nature of 

these molecular orientations have been a focus of considerable work in the Wiggins 

Research Group (WRG) over the last several years.26–29 The general hypothesis of this 

study is that the cure heating ramp rate dictates the kinetics of the various network 

reactions and therefore can be used to control cured network architecture.30–32 Previous 

research in WRG has attempted to probe these differences by a variety of methods, 

including free volume measurements such as solvent uptake and Positron Annihilation 

Lifetime Spectroscopy (PALS), dielectric and spectroscopic analysis, dynamic 

mechanical analysis (DMA), differential scanning calorimetry (DSC), Digital Image 

Correlation (DIC) and even measurements of macro-scale properties such as ultimate 

mechanical performance.33,34  

Network structure and the ultimate mechanical properties of a cured epoxy/amine 

thermoset are greatly influenced by the chemical structure of its component monomers. 

Subtle differences in structure of these building blocks significantly effect network 
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properties. For example, Diglycidyl ether of bisphenol-F (DGEBF) and diglycidyl ether 

of bisphenol-A (DGEBA) are almost identical in structure, both are based on bisphenols 

and difunctional. The only difference is that DGEBA has an isopropylidene moiety at the 

center of the molecule, whereas DGEBF has a methylene group in that position. 

Networks based on DGEBA have higher Tgs as compared to their DGEBF analogs 

directly because the isopropylidene moiety limits the molecular motion of the 

backbone.26 A similarly dramatic effect is observed in the case of the two 

diaminodiphenylsulfone (DDS) structural isomers commonly studied as aromatic 

curatives in aerospace grade networks.28 The meta-substituted isomer, 3,3’-DDS, has 

more conformational mobility than the para-substituted isomer, 4,4’-DDS. The increased 

backbone rigidity of systems cured with 4,4’-DDS leads to networks with higher Tgs and 

more robust mechanical properties.  

Another major determinant on material properties of epoxy/diamine networks is 

the functionality of the epoxide monomer. Systems with higher functionality typically 

affect network architecture by increasing the crosslink density.35 High-functionality 

monomers experience rapid growth in molecular weight, with the high crosslink density 

constraining molecular motion in the growing network. Higher crosslink density 

increases glass transition temperature; consequently, vitrification occurs earlier during the 

cure.36 Cured multifunctional resins have the potential to create heterogeneous network 

architectures, with a range of crosslink densities throughout the network due to the 

limited mobility in these systems.37 
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Network architecture is related to the chemical structure and functionality of the 

epoxide and diamine monomers. The role of the pathway these systems take while 

forming the network’s final structure is less understood. Epoxy/diamine thermosets can 

follow different reaction pathways. For example, all the primary amines may react prior 

to any secondary amines. For cases involving difunctional epoxides this would promote 

linear chain growth prior to significant branching and crosslinking.38 The linear growth 

pathway is thought to produce more homogenous networks as the linear segments pack 

efficiently before crosslinking. Alternatively, if secondary amines react before the 

primary amine groups are exhausted, network formation will proceed in a “microgel-

type” manner. Therefore, the relative reactivity of the secondary amines versus the 

primary amines has significant implications for network architecture.  

During “microgel-type” growth, branching and crosslinking occur in portions of 

the developing network earlier in cure, creating localized regions of high crosslink 

density. As the cure progresses these regions impinge on one another to form a single 

network.39 Microgel-type growth generally produces a more heterogenous network. The 

degree of network homogeneity can be qualitatively probed with DMA; indicated by 

observing the breadth of the tan δ peak at Tg, which is related to the uniformity of the 

viscoelastic response of a cured network. 

1.3 Cure Protocol Dependence 

Over the past half century, many factors affecting the ultimate material properties 

of epoxy/amine thermosets have been thoroughly investigated.40–42 These include factors 

such as the chemical make-up of the network backbone as well as isomer effects and the 
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role of monomer functionality.43 The role of the protocol utilized to cure these networks 

has received comparatively limited attention. As a result, there is little agreement in the 

literature on the effect variables such as cure temperature, isothermal dwell time, or 

temperature ramp rate have on network formation.44–48 This lack of a consensus 

understanding is responsible for the varied methodologies used to address these 

questions. Most of the research in this area predominantly focus on final mechanical 

properties. It has been demonstrated that the study of final network properties can 

identify relationships between cure protocol and network formation. For example, Trappe 

and coworkers observed a connection between cure rate and the propagation of 

microcracks within a cured polymer matrix.49,50 This was attributed to increasing levels 

of built up residual stress in the matrix after vitrification due to the restricted mobility of 

the network. However, only testing final material properties provides a limited scope of 

network formation as it ignores the development of network properties as cure 

progresses. Macroscopic tests also cannot adequately probe molecular level events during 

network formation. A complete study of thermoset cure necessitates the use of analytical 

techniques which can monitor network formation in real time throughout the reaction.  

The most commonly used, and conventionally trusted, characterization tool for 

studying cure is DSC.51 The magnitude and rate of evolution of the exothermic reactions 

can be directly monitored with DSC; so the cure event can be directly studied. It is 

understood that varying the maximum cure temperature alters the conversion and 

thermomechanical properties of the network by affecting the onset of vitrification.52 The 

majority of the studies in this area focus on isothermal cures at a given temperature or 
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multiple, segmented isotherms at increasingly high temperature; however, it is unclear if 

the heating ramp rate affects the network formation pathway and/or the eventual material 

properties. Hardis and coworkers studied the effect of cure protocol for a difunctional 

epoxide and aliphatic amine system.53 This system used is a relatively low temperature 

curing epoxy that does not form the high Tg glassy thermosets commonly used in high 

performance aerospace materials. However, it does serve as a platform for studying the 

cure throughout network formation. The project is notable for monitoring the 

development of the degree of cure over time through the course of reaction proceeds. In 

addition, the kinetics and non-isothermal behavior of the networks were mapped using 

DSC, Raman spectroscopy, and dielectric analysis. This work demonstrated the potential 

for in situ characterization techniques to record the evolution of cure and correlate the 

results with the more commonly accepted DSC data. It was found that the development 

of the network (i.e. the degree of cure) could be predicted for isothermal cure at various 

temperatures. However, the utility of in situ monitoring of network growth in a thermally 

dynamic environment still requires validation. 

There is great potential in understanding the role of temperature ramp rate on 

network formation. It would, obviously, provide increased theoretical understanding of 

epoxy/amine network cure, but there would also be a very real practical benefit. There is 

an inherent drive in the composites industry to expedite part turnover. Increased 

temperature ramp rates for the curing of thermosetting polymer networks reduces cycle 

time, especially as novel out-of-autoclave technologies continues to push the industry 

standards.54–56 Understanding the effects of temperature ramps is also valuable for 
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industries desiring to maintain traditional and conservative cure protocols. As the 

composite industry continues to make inroads to the sectors of large-scale infrastructure 

and vehicle manufacturing, fabricated parts will continue to get larger and thicker. These 

thickset parts will heat unevenly from the surface into the interior, creating sections of the 

same part which experience differing thermal histories as the entire part reaches the cure 

temperature. Therefore, it is imperative to understand the role varied cure pathways have 

on final network properties.   

1.4 Real-Time Near Infrared Spectroscopy 

The development of an epoxy/amine network is difficult to monitor by many 

traditional polymer characterization techniques such as nuclear magnetic resonance 

(NMR) and size exclusion chromatography (SEC) due to the insoluble nature of the 

evolving thermoset. However, the progress of cure can be directly measured throughout 

the reaction by techniques such as DSC and rheology. These two methods, however, are 

only able to give information about the extent of cure in terms of a single number. It is 

difficult to infer any information on the developing network architecture by these 

techniques as they do not distinguish between the types of reactions occurring during 

cure. Real-Time Fourier-transform infrared spectroscopy (FTIR) spectroscopy has 

emerged as an invaluable tool for understanding how a network forms.57  
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Figure 1.2 WRG Nicolette 6700 FTIR equipped with heated transmission cell. 

The near infrared region (NIR) from 8000 cm-1 to 4000 cm-1 is used in this work 

because it contains overtones representative of the key functional groups in the 

epoxide/diamine reaction. Utilizing this region allows for the clear analysis of discrete 

absorbance peaks as opposed to using the mid-IR range (4000 cm-1 – 600 cm-1) wherein 

the epoxide peak is only present within the so called “finger print” region which adds a 

high degree of complexity to deconvolute and accurately study the signal.58–60 NIR 

spectroscopy is able to differentiate between the reaction of epoxides with primary and 

secondary amines and also monitor the production and consumption of hydroxyl 

groups.61,62 This allows monitoring of network structure from the earliest state of the 

reaction in the liquid phase, through gelation, vitrification, and beyond.  



 

 

13 

 

 

Figure 1.3 Initial spectra for two different epoxy/diamine with relevant peaks identified. 

In infrared spectroscopy chemical structures (such as functional groups) absorb 

the incident light at specific frequencies which match the vibration frequency of specific 

groups. Because of this, the presence of functional groups can be discerned by their 

characteristic absorbance at known frequencies. The total absorbance of a given species 

at a specific wavenumber is directly related to the light which interacts with the sample as 

can be observed in equation 1.1.63,64 The term ‘A’ here is absorbance, I0 is the intensity of 

radiation entering the sample, and I is the intensity of radiation upon leaving the sample 

picked up by the detector.  

 [Equation 1.1] 

FTIR spectroscopy commonly is used qualitatively to determine the presence or 

absence of chemical groups, but in addition, the instrument can be used to quantitatively 

measure the consumption and production of key functional groups of a reaction. Here 
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NIR  spectroscopy is especially useful in epoxy/diamine cures as the peaks of interest are 

well resolved.65–67 Figure 1.3 illustrates two different epoxy/diamine systems an shows 

that the frequency of the absorption of the epoxide groups is unaffected by system 

composition.   

The general method to determine the conversion of functional groups of interest 

during a reaction is described as follows: The peak at 5070 cm-1 is solely representative 

of primary amine and thus can be directly integrated to determine conversion over time. 

Conversion can be determined using the initial area of the peak of interest (A0) and the 

peak area at some later time (At) using Equation 1.2. The primary amine for DDS, a key 

aerospace curative, also absorbs infrared at the wavenumbers 4535 cm-1 and 6680 cm-1, 

which are the locations of the representative peaks for epoxides and secondary amines 

respectively. Interpretation of the peaks at those wavenumbers is more complicated, as 

the contribution from each functional group must be determined. This issue is addressed 

using Beer’s law (Equation 1.3), where ε is the component’s absorption coefficient (a 

constant directly pertaining to the functional group at a specific wave number), c is the 

concentration, and l is the path length.68,69 The path length is typically normalized with 

the use of an internal standard; in these cases ε and l can be combined into a single term 

known as molar absorptivity (𝑎). In NIR spectra the total absorbance of a band of more 

than one component is simply the sum of the individual components (Equation 1.4). The 

epoxide group exhibit a strong band at 4535 cm-1, and the initial epoxide concentration of 

epoxide at the initial time is known, however in order to calculate epoxide conversion 

over time the portion of the absorbance signal from the primary amines must be 
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accounted for. The amine concentration at any given time can be obtained from the peak 

at 5070 cm-1, thus the instantaneous concentration of epoxides can be directly studied by 

using the molar absorptivity term for each functional group at 4535 cm-1.70 Historically, 

the molar absorptivity term shown in Equation 1.3 is considered to be a constant.71 This 

is acceptable when IR cure studies of epoxy systems are performed by removing the 

curing network from a separate vessel and performing IR scans on the sample at discreet 

time points all at room temperature. Additionally, the use of a single molar absorptivity 

constant is acceptable during in situ isothermal cure studies wherein the absorptivity was 

determined at the target temperature previously. Molar absorptivity can most accurately 

be described as a constant for a functional group at a specific wavenumber when studies 

are performed under the conditions at which it was measured. 

                   [Equation 1.2] 

                                                [Equation 1.3] 

  [Equation 1.4] 

Methods for monitoring the epoxide/diamine cure via NIR spectroscopy have 

continuously improved.72–75 Initially, cure studies had to be performed in a step-wise 

manner involving curing networks to increasing degrees of cure in an oven and then 

removing them for a single snapshot scan of the system.76,77 With improved technology 

came the development of transmission cells which could impart heat to a sample while 

remaining in the beam path continually. This allowed for a proliferation of studies 

utilizing real-time near infrared (RT-NIR) data to improve the understanding of network 
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evolution. However, the vast majority of epoxy/diamine cure studies have focused on 

RT-NIR monitoring of isothermal cure conditions. Almost no investigations have 

analyzed epoxy networks cured with differing thermal ramp rates. It is also important to 

note, that there have been no reports on the effect of changing the thermal environment 

during data collection on the RT-NIR spectroscopic signal.57,58,78–83 

1.5 Research Preview 

This dissertation will investigate and elucidate the mechanisms of polymer 

network growth in glassy epoxy networks in order to improve methods to monitor 

network growth and establish the role of cure protocol on network formation. This work 

will increase the understanding of the effect of cure profiles for glassy, high Tg 

thermosets on network properties, which ultimately will impact the performance of 

industrially relevant, composite structures.  

This dissertation focuses the role of thermal ramp rate in cure protocols of 

epoxy/diamine networks. The primary tool used in this study is RT-NIR spectroscopy. 

Through the course of this work significant improvements were made in the techniques 

needed to accurately monitor functional group conversion in RT-NIR, especially under 

variable temperature conditions. Chapter III focuses on these improvements with a 

special emphasis on the identification of the temperature dependence of molar 

absorptivity, which must be considered during analysis. Chapter IV studies the effect of 

cure protocol on network formation by analyzing the order of functional group 

consumption and production during epoxy/diamine cures. The role of isomerism of 

epoxy/diamine curatives as well as the degree of crosslinking are reported. Chapter V 
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will continue the study of cure protocol on viscoelastic and mechanical properties of fully 

cured and under cured networks. Finally, Chapter VI will contain concluding remarks as 

well as proposed areas for future work in this field.  
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CHAPTER II - EXPERIMENTAL 

2.1 Material Preparation 

Diglycidyl ether of bisphenol F (DGEBF) (EponTM Resin 862, Hexion Inc.) with 

an epoxide equivalent weight (EEW) of 165-173 g/epoxide or tetraglycidyl-4,4'-

diaminodiphenylmethane TGDDM (Araldite MY721, Huntsman Chemical Company, 

EEW: 111-117 g/epoxide) was cured with 3,3’-diaminodiphenyl sulfone (33DDS) or 

4,4’-diaminodiphenyl sulfone (44DDS). All networks were formulated using a 1:1 

stoichiometric equivalent of oxirane to amine active hydrogen. All epoxy/amine mixtures 

were then heated at a prescribed rate to 180 °C, followed by a two-hour isotherm. Tested 

temperature ramp rates included: 0.5, 1, 3, 5, 10, and 20 °C/min. 40 °C/min was also 

investigated for some tests. TGDDM/33DDS formulations will be referred to in this 

document by the abbreviation T-33. T-44, similarly, will refer to TGDDM/44DDS, and 

F-33 for DGEBF/33DDS systems.  

 

Figure 2.1 Epoxide monomers common to high Tg aerospace networks used in this work. 
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Figure 2.2 Diamine curatives used in this work. 

For some portions of this work preparation of the epoxy/amine mixtures prior to 

cure was compared using the traditional WRG method. Most of the networks were cured 

from and studied beginning from a slurry state. The differences of the two methods are 

listed below. 

The traditional method of network preparation in WRG would involve TGDDM 

being charged to a 500 mℓ Erlenmeyer flask equipped with a vacuum fitting and 

magnetic stirring device. The epoxide monomer would be heated to ~100°C with a 

stoichiometric amount of dried 33DDS or 44DDS slowly added over a 10 to 15 minute 

period to avoid agglomeration. Upon addition, vacuum was applied to a level of ~ -30 in 

Hg with the temperature increased to 125 °C in 5 °C intervals while the mixture stirred 

until dissolution of amine was observed. Vacuum was then removed and the clear 

solution either poured into preheated (100 °C) silicone molds of various dimensions for 

curing, or quenched at sub-ambient temperature for subsequent analysis. 
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The slurry method was determined to be favorable for the purposes of this study. 

Data supporting this is provided below. For this method a slurry of TGDDM or DGEBF 

and DDS (both 33 and 44) which had been combined in stoichiometrically equivalent 

amounts and prepared to homogeneity were mixed in a centrifugal speed mixer. Slurries 

were stored at sub ambient temperatures and were prepared in small volume batches to 

keep the mixtures used as fresh as possible. 

 

Figure 2.3 Sample molding issues when curing from slurry at low temperatures. a) 

degassing in Erlenmeyer flask, b) and c) filling the mold will slurry preheated to 50 and 

80 °C respectively, d) and e) poor samples produced by the Erlenmeyer flask slurry 

method. 

Due to the difficult workability of the slurried mixtures (Figure 2.3), material was 

placed in a vacuum oven preheated to 80°C to lower the viscosity. Vacuum (~-30 in Hg) 

was then applied to de-gas the mixture prior to molding. The material was then molded in 
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whichever shape required. If silicon molds were used (as shown in Figure 2.4) the molds 

were preheated to ~80°C to allow for the slurry to fill the molds.   

 

Figure 2.4 Slurry method for molding a) low viscosity slurry during degassing, b) after 

degassing, c) slurry poured into preheated DMA mold, d) mold after curing, e) close up 

of defect free DMA bar made using slurry method. 

2.2 Differential Scanning Calorimetry (DSC)  

The methods described in Material Preparation were used to mix the epoxy 

(TGDDM) and curative (33DD or 44DDS) for the DSC study, which was performed with 

a TA Instruments Q200 DSC. Homogenous, uncured material was further solidified by 

placing into liquid nitrogen to improve the ease of sample preparation. The cryogenic-

temperature mixture was chipped into 2-6 mg sections and sealed into hermetic DSC 

pans. Two different cure prescriptions were used, one to obtain the total heat of reaction 
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of the uncured specimen (∆HUC), and another to obtain the heat of reaction of a desired 

cure profile (∆HC). The prescription for finding ∆HUC for each network formulation was 

a ramp at a set heating rate from -25 °C – 300 °C at 10°C/min. The residual heat of 

reaction (ΔHC) for any cure protocol was determined by the following method: a 

heat/isotherm/cool/heat prescription was used for any given heating rate up to isothermal 

hold at 180 °C for increasing durations, then the sample was cooled from 180 °C to -25 

°C at 10 °C/min to halt the reaction, finally a second ramp of 10 °C/min to 300°C was 

applied and the heat of reaction exotherm collected and compared to the overall ΔHUC. 

Figure 2.5 represents the cure prescriptions used to obtain ∆HC for each ramp rate.  

 

Figure 2.5 Thermal profile used in DSC cure studies of various cure protocols. 

Degree of cure (DOC) was calculated from DSC data using Equation 2.1, where 

∆HUC (J/g) is found by integration of the exotherm peak of the ΔHUC ramp, and ∆HC 

(J/g) is found by integration of the exotherm peak from the second ramp in the 

heat/cool/heat experiment.84  
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   [Equation 2.1] 

2.3 Modulated Differential Scanning Calorimetry (MDSC)  

The methods described in Material Preparation were used to mix and solubilize 

the epoxy (TGDDM) and curative (33DDS or 44DDS) for the MDSC study, which was 

performed with a TA Instruments Q2000 DSC. Homogenous, uncured material was 

further solidified by placing into liquid nitrogen to improve the ease of sample 

preparation. The cryogenic-temperature mixture was chipped into 2-6 mg sections and 

sealed into hermetic DSC pans. Modulated DSC tests were performed similarly to DSC 

where the slurry was ramped at a given rate to 180°C and held for a predetermined 

isotherm before being rapidly quenched to -25°C and then ramped to 300°C at 10°C/min 

in order to determine the residual exotherm as well as the Tg of the network which was 

formed by the given cure prescription.  

MDSC differs from standard DSC in its ability to separate reversible and 

irreversible transitions by applying a sinusoidal heating rate as observed in Figure 2.6a. 

Slight changes in the rate of heating allow the instrument to identify and separate out 

reversible and irreversible transitions. This is of value for the present study because the 

Tg transition is reversible and the exotherm produced when finishing the residual cure is 

an irreversible transition. The residual exotherm in a standard heat flow graph can 

obscure the Tg making it difficult to monitor the progression of Tg along with the 

evolution of cure (Figure 2.6b). 

For this project, both oven-cured samples and samples cured in the MDSC, were 

studied. In situ cured samples were ramped at a given rate and held for a predetermined 

isotherm, then quenched to -25°C and ramped at 10°C/min to 300°C with a modulation of 
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1°C every 60 sec. Samples which had previously been cured in the oven were just 

ramped from -25°C to 300°C at the same rate and with the same modulation in order to 

determine the properties of the network as it came out of the oven. 

 

Figure 2.6 MDSC example output a) Sinusoidal modulated temperature applied during 

ramp, b) Heat flow separated into reversible and nonreversible signals. 

2.4 Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical analysis experiments were conducted on a TA Instruments 

Q800 using a film tension test fixture. DMA specimens were formed by casting 

homogenized prepolymer into silicone molds with rectangular cavities of 5.0mm width 

by 1.5mm depth and 60.0mm length, and each cured with a prescribed cure schedule 

previously mentioned. After cure, specimens were trimmed to approximately 25mm in 

length, ensuring constant thickness and lack of voids or bubbles. Samples were then 

mounted in the three point bend clamp with a constant tested length of 20mm.  A 

temperature sweep was used to develop E’ and Tan δ vs. temperature relationships. A 

strain of 0.05 and a frequency of 1 Hz were used. Temperature sweeps were performed 

from 30 to 325 °C for standard investigation and lower temperatures (-125°C) were also 

studied to investigate sub Tg transitions. All thermal sweeps in these DMA tests were 

ramped at 3°C/min. 
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2.5 Near Infrared Spectroscopy 

Fourier transform infrared spectroscopy in the near infrared range (4000-8000 cm-

1) in transmission mode was used to monitor network formation during each cure 

prescription studied. The slurry method described in Material Preparation was used to 

mix the epoxy (TGDDM or DGEBF) and curative (33DDS or 44DDS) for the near-

infrared spectroscopy (NIR) study. The low viscosity epoxy/amine mixture was placed 

between two glass cover slides and within the confines of a steel washer (~1 mm 

thickness) in order to provide a constant thickness of the sample even during heating. The 

washer was adhered to the glass slides using a high temperature silicone-based gasket 

maker and allowed to set overnight to provide a good seal. The light source within the 

near infrared range is white light; this means optical clarity is necessary for the 

instrument to record a spectrum. Samples were exposed to the minimum amount of 

energy from a heat gun required to solubilize the curative into the epoxy and achieve 

clarity.  

Experiments were performed using a Nicolet 6700 FT-IR from Thermo Fisher 

Scientific using a CaF2 beamsplitter and deuterated triglycine sulfate detector (DTGS). 

Prepared samples were heated in a HT-32 Heated Transmission Cell from Simplex 

Scientific. The Simplex software was paired to the OMNIC FTIR software native to the 

Nicolet 6700. This allowed for various cure protocols to be performed while NIR 

transmission spectra were simultaneously recorded. A unique spectrum made of 32 scans 

(4 cm-1 resolution) was collected every minute to track the progress of the network 

formation.  
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2.6 Rheology  

Oscillatory temperature ramp tests that mimicked the NIR cure profiles were 

performed on an ARES G2 Rheometer equipped with a forced air convection oven to 

determine the time to gelation for each cure protocol. Sample slurries were loaded onto 

smooth 25 mm aluminum parallel plates held at 30 °C and brought to a 1 mm plate gap. 

This gap was maintained in the pre-gelled state while a 10% oscillatory strain was 

imposed on the sample at a frequency of 1 Hz until gelation occurred, taken as the G’ and 

G’’ crossover. T-33 samples were brought through the entirety of cure (past gelation) on 

8 mm aluminum plates to keep the forces imposed on the instrument below the point 

where damage could be done to the instrument to discern whether cure path variations 

could be observed. For these tests, a manually set change in strain was programmed to 

occur post gelation to prevent damaging the formed network, the initial pre-gel strain of 

10% was dropped to 0.015% and an auto-strain feature was enabled that allows the 

software to vary the strain to protect the instrument. In conjunction with the strain 

change, the sample gap was allowed to change post-gelation to maintain a constant axial 

force as cure induced shrinkage occurred that would otherwise max out the axial 

transducer. The experiment was broken up into two steps, pre-gelation and post-gelation, 

to balance meaningful data acquisition and instrument safety due to the magnitude of 

viscosity and modulus development from the viscosity well in the liquid stage to the 

modulus plateau after vitrification.  

2.7 Solvent Uptake 

Solvent uptake tests are important validations to make before selecting a material 

for a service environment.85 Highly crosslinked networks are often very resistant to 
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solvents. However, fluid uptake causes a plasticization effect in cured thermosets which 

decrease ultimate network properties.86  Therefore, the effect of cure protocol on solvent 

uptake was probed in this work for fully cured networks. Samples were placed in 

deionized water and heated to reflux for 24 hours to expedite solvent swelling. The 

samples were recovered and dried and had their mass recorded (mi) and the percent mass 

increase was calculate as shown in Equation 2.2. The sample geometry was 15mm x 

5mm x 2mm. 

  [Equation 2.2] 
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CHAPTER III – IMPROVEMENTS IN THE QUANTIFIABILTY OF RT-NIR 

SPECTROSCOPY 

3.1 Chapter Overview 

Through the course of this dissertation work, a major development was made in 

using RT-NIR spectroscopy for quantitative analysis of cure in thermoset systems, 

namely the effect of temperature on molar absorptivity. This is especially important when 

analyzing the formation of a network during a nonisothermal cure. A simple correction 

factor for functional group absorptivities when at elevated temperatures was 

implemented. This dramatically improved the reliability of molar concentration data for 

the reactive species, needed to accurately ascertain the pathway to network formation. 

This chapter will show clear evidence of the temperature effect on absorbance and the 

need to apply a correction factor.  

In order to obtain reliable data to monitor cure, other improvements to the 

technique had to be made. This chapter will begin with a description of some of these 

improvements prior to detailing the implementation of the temperature dependent 

absorptivity term.     

3.2 Refinement of RT-NIR Technique 

The Wiggins Research Group historically used RT-NIR spectroscopy to monitor 

epoxy/diamine cures.26,27 These techniques were able to produce good, but inconsistent 

results. The frustrations associated with the technique ultimately led to an investigation of 

how the existing methodologies could be improved.  

Analysis of epoxide/amine formulations in the NIR spectroscopic studies benefit 

from the fact that glass is invisible in the near infrared region, allowing samples to be 
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prepared using inexpensive materials. The absorbance signal for IR spectroscopy is 

directly related to the path length of the interacting radiation through a sample. It is 

therefore important, to the extent possible, to maintain a constant sample thickness in the 

direction parallel to the instrument beam. To try and achieve this, a method was 

developed in the research group of putting a drop of a solubilized and partially reacted 

epoxide/amine mixture between two glass slides separated by a spacer. The method 

involved affixing a thin Teflon ring to one glass slide with glue and then adding the drop 

of epoxy/amine solution to fill the ring followed by gluing the other side of the ring to a 

second glass slide. The heated cell used in the WRG FTIR instrument places the sample 

vertically (Figure 1.2), with the instrument beam traveling horizontally through the 

sample chamber. This instrument design, coupled with the glass/glue/Teflon sample cell 

assembly, led to many issues related to sample leakage. The effect of material leakage on 

a spectrum is shown in Figure 3.1. The path length changes dramatically which also 

affects the absorbance signal. Also, the appearance of air bubble passing through the 

beam path during cure creates sufficient noise to make proper analysis of an IR spectrum 

untenable.      
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Figure 3.1 Stacked spectra during cure with original WRG IR sample preparation leading 

to leakage and unusable data. 

Several improvements in sample preparation for the RT-NIR studies were 

developed which led to an increase in the consistency and reliability of the data. This led 

to a reduction in failed samples and allowed for a greater number of experiments to be 

analyzed. One improvement was changing the materials used in sample cell construction. 

A rigid steel washer was used as the spacer in the sample cell. Additionally, it was 

observed that the glue used to adhere the spacer to the glass windows was clear, which 

could lead to incomplete sealing via operator error and create a channel the curing system 

to leak out. Therefore, a high temperature grade silicon base gasket maker was used. The 

gasket maker was colored, making it easier to ensure complete coverage could be assured 

when making sample cells, also the steel washer and silicon sealant have low thermal 

expansion at the temperatures most commonly probed for cure studies further reducing 

the possibility of leaks. 
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Figure 3.2 Actual temperature of the IR sample as related to the target input in heated cell 

program. 

The analysis of cure data was also improved by identifying an offset between the 

targeted temperature of and the actual sample temperature. A sacrificial sample was 

prepared with a thermocouple embedded into an epoxide/amine slurry. Temperature 

versus time was recorded with an OMEGA HH147U data logger. Interestingly, the offset 

was consistent and linearly increased as the target temperature increased (Figure 3.2) 

This permitted the use of a straightforward correction to cure samples at the correct 

temperatures and ramp rates. 
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Figure 3.3 NIR sample made with slurry before and after solubilization. 

As explained in Chapter II, in this work, a large emphasis was placed on studying 

network development from as close to a “true zero” degree of cure as possible. The 

primary strategy to achieve this was to begin the cure from a slurried state rather than 

after a solubilization step, which was known to cause some progression in the reaction. 

Monitoring cure via RT-NIR spectroscopy is not possible, however, when starting from a 

slurried state. The radiation source for the near infrared range is white light; therefore, 

optical clarity is necessary to detect a signal. Slurry loaded samples were slightly warmed 

with a heat gun for the minimum amount of time necessary for the curative to solubilize 

into the epoxy and clarify (Figure 3.3). Heat of reaction studies were performed on the 

mixtures before and after achieving optical clarity by this method and it was determined 

that no reaction occurred. As seen in Figure 3.4, no change in the cure exotherm of T-33 

or F-33 (558.3 J/g and 402.1 J/g respectively) was observed after clarification.  
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Figure 3.4 Exotherm of ΔHUC for T-33 and F-33 before and after clarification for IR. 

Due to these practical improvements in acquiring data, consistent RT-NIR cure 

studies were now possible, allowing for in-depth studies of cure protocol on network 

formation. The ability to monitor the consumption of functional groups from as close to 

the beginning of cure as possible allows a more complete picture of the nature of the 

epoxy/diamine thermosetting reaction during cure to be drawn. 

3.3 Temperature Dependence of Molar Absorptivity 

An example of RT-NIR cure study data is shown in Figure 3.5. Select spectra 

have been selected to observe the evolution of the predominate peaks throughout cure. 
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Figure 3.5 Series of stacked spectra of T-33 taken throughout cure with the peaks of 

interest identified. 

It is often stated in literature that the absorption coefficient (ε) is a constant. This 

term is then used to calculate chemical group concentration at an IR band of interest 

using Beer’s Law as in Equation 1.3.70 The analysis of absorbance signals are typically 

normalized to an internal standard peak representing a nonreactive species in order to 

account for subtle changes in path length, sample viscosity, and refractive index. This 

adjustment simplifies the Beer’s Law equation and directly relates absorbance to 

functional group concentration (c) and the path length normalized molar absorptivity 

term (a). Molar absorptivity can more accurately be described as a constant for a 

functional group at the IR band for conditions in which it is measured and is therefore not 

a true constant. It has been reported in the literature that molar absorptivity changes as a 

function of temperature, however the effect has been viewed to be not unlike the changes 

which occur via path length.87 Thus, a constant molar absorptivity value is traditionally 

still used in the analysis of functional group concentration during cure. It has been 
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determined in this work, however, that it is incorrect to discount the temperature effect on 

molar absorptivity because the change to the absorbance signal is not uniform across the 

spectrum. This will be discussed in greater detail below. 

Ignoring changes in absorptivity has previously been acceptable because IR 

studies of epoxy cures would be performed by removing aliquots from a separate curing 

vessel and acquiring IR scans of the sample at discreet time points at a single temperature 

(e.g. room temperature). Real time NIR obtains scans of the reacting network during 

cure, however it also means data acquisition occurs at different temperatures. Studies 

comparing systems cured with matching temperature profiles may not require a 

correction as any change in temperature over time is the same for all systems. Noting this 

effect is important for this study, because the samples are subjected different 

temperatures at different times throughout cure.  

 

Figure 3.6 Spectra of a cured sample collected during one heat/cool cycle. Inset shows 

change in absorbance area of the nonreactive aromatic peak. Arrows indicate the trend of 

peak area for the given peak when heated. 
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To ascertain the temperature effect on absorbance, a cured sample of T-44 was 

heated from room temperature to 180 °C then cooled to its initial temperature. Figure 3.6 

confirms that absorbance is affected by temperature but not uniformly across the 

spectrum, indicating frequency specific temperature effects on absorbance. The sample is 

not undergoing significant reaction; therefore, these changes are due to changes in molar 

absorptivity. The peak representative of the nonreactive aromatic groups, monitored 

through several heat/cool cycles (Figure 3.7), displays a repeatable and predictable 

temperature effect on molar absorptivity. Because the concentration of aromatic rings in 

the system is a known constant it was possible to calculate the change in absorptivity 

with temperature. The data shows that the peak area decreases 0.35% for every degree 

above 30 °C, which was used as the reference temperature.  
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Figure 3.7 Molar absorptivity of the aromatic peak cycled from 30°C to 180°C four 

times. 

Further investigation into the change in absorbance of the relevant peaks in the 

cure of epoxy/diamine networks is shown in Figure 3.8. Here a T-33 network was used to 

study the change in absorbance with temperature. It is clear these peaks have repeatable 

and predictable changes in absorbance as a function of temperature. The changes in 

absorbance are plotted normalized to the absorbance at 30 °C, which was the reference 

temperature from which an initial value of molar absorptivity calculated. This was 

achieved by using a known initial functional group concentration at the beginning of 

cure, as is traditionally done in Beer’s Law calculations. In this work the change in 

absorptivity with temperature was determined by using heating and cooling cycles for a 
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previously cured network. This was done to insure constant concentrations of the 

functional groups studied throughout thermal cycling and to eliminate absorbance 

complexities which arise from changes in physical state during the collection of IR 

spectra. However, this approach prevented the determination of the temperature 

dependence of the molar absorptivity of primary amines, which were fully consumed in 

the tested samples. Table 3.1 lists the molar absorptivity (aref) determined for key 

functional calculated at 30 °C for the epoxy/diamine cure as well as the fractional change 

in absorptivity per degree (acf) from the 30 °C reference value.  

 

Figure 3.8 Change in the absorbance of the four peaks of interest available in a postcured 

sample upon four heat/cool cycles from 30 °C to 150 °C. 
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Table 3.1 Molar Absorptivity and the Fractional Change Per Degree  

Functional Group Wavenumber 

Range (cm-1) 

Molar Absorptivity 

at 30 °C (ai) 

Fractional Change 

in Absorptivity per 

Degree (ac) 

Epoxide 4553-4491 3.081 -0.00172 

Primary Amine 4553-4491 0.3912 - 

Aromatic 4624-4603 1.212 -0.00350 

Primary Amine 5112-5044 3.872 - 

Primary Amine 6780-6522 6.586 - 

Secondary Amine 6780-6522 10.11 0.0004047 

 

The change in absorbance is not related to a change in path length as verified 

using Thermomechanical Analysis (TMA) data. Figure 3.9 shows a slight linear thermal 

expansion for a cured RT-NIR sample cell. The observed increase of 0.0113% per above 

30 °C does not match the trends observed for the changes in molar absorptivity with 

increasing temperature. Additionally, the increase and decrease in the absorbance signals 

for different functional groups with increasing temperature further illustrates that unlike 

thermal expansion (which would increase absorbance across the whole spectrum) 

changes in absorptivity must be individually corrected for in the analysis of each 

functional group.   
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Figure 3.9 Dimensional change over a 5 °C/min temperature ramp from 30 °C to 180 °C 

followed by a 1-hour isotherm and 5 °C/min cool to room temperature. 

  [Equation 3.1] 

Based on the data, a temperature correction factor was formulated to account for 

the change of molar absorptivity with temperature and correct the absorbance in order to 

accurately calculate functional group concentration (Equation 3.1). Here Ac is the 

corrected absorbance value, aref is the initial molar absorptivity determined at the 

reference temperature, and acf is the fractional change per degree of the absorptivity due 

to temperature. This correction factor was used to adjust in situ cure spectral data.  

Epoxide conversion determined via this improved RT-NIR analysis was 

compared degree of cure data taken from DSC. The integration over time of the cure 

exotherm for identical networks cured with different protocols show a high degree of 

agreement with the calculated epoxide conversion, which lends confidence to the 

necessity for the temperature correction (Figures 3.10 and 3.11). It should be noted that 
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over the course of the 180 °C isotherm all the samples achieve the same degree of 

conversion regardless of ramp rate; DGEBF based systems reached 100% conversion, 

while the higher crosslinked TGDDM system achieved ~96 % conversion for all 

protocols. This will be discussed in greater detail in Chapter IV. 

 

Figure 3.10 T-33 epoxide conversion vs DOC as calculated from DSC. 
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Figure 3.11 F-33 epoxide conversion vs DOC as calculated from DSC. 

Further validation was performed using a F-33 system reacted to a point pre-

gelation. Here, the F-33 sample was ramped at 5 °C/min for 29 minutes then removed 

from the heat cell and quenched to stop the reaction (Figure 3.11). The conversion of 

epoxide and primary amine groups by RT-NIR analysis was 28.8% and 50.0% 

respectively. The quenched epoxy/amine system was then recovered from the RT-NIR 

sample cell and analyzed for degree of cure in DSC. The reduction of primary amine 

proton signal was analyzed by NMR spectroscopy to verify the RT-NIR concentration 

results. The integration for the peak representative of the primary amine protons at 5.2 

ppm was normalized to the signal of the protons on the aromatic peak. A reduction in 

peak intensity of nearly 50% as well as the appearance of a peak representative of 

secondary amine protons at 5.6 ppm was observed. As indicated by Figures 3.13 and 
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3.14, the data are in excellent agreement, confirming the validity of the correction factor 

applied to molar absorptivity.  

 

Figure 3.12 Concentration vs. Time graph of F-33 system ramped from 30 °C to 175 °C 

at a rate of 5 °C/min indicating the calculated conversion of epoxides (E), primary amines 

(A’), and secondary amines (A”) at the point the reaction was halted. 

 

 

 



 

44 

 

Figure 3.13 ΔHUC and ΔHC of a F-33 slurry before reaction and after partial cure in the 

RT-FTIR cell. 
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Figure 3.14 Proton NMR spectra of F-33: a) initial slurry; b) after reaction to a point prior 

to gelation in the RT-NIR cell. 

3.4 Conclusions 

 The calculation of functional group conversion via Beer’s Law has been refined 

by identifying the temperature effect on molar absorptivity, which must be accounted for 

when attempting to analyze network formation during a nonisothermal cure. A correction 

factor for the absorptivity of functional groups at elevated temperatures was 

implemented. This proved to significantly improve the reliability of molar concentration 
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data needed to accurately study the pathway of network formation. A high degree of 

agreement was observed between the RT-NIR data and traditional DSC methods using 

this correction factor. This validates using RT-NIR spectroscopy to monitor cure kinetics.  

 



 

47 

CHAPTER IV – EPOXY/DIAMINE NETWORK FORMATION MONITORED IN 

REAL TIME VIA FTIR 

4.1 Chapter Overview  

The effects of rapid cure rates on the formation of epoxy/diamine glassy 

thermoset networks such as those commonly used as matrices in high performance 

composite panels are yet to be determined. While there are many potential effects to 

consider when decreasing matrix cure cycle time, this work seeks to understand the effect 

of varied cure protocols on epoxy-amine network formation during cure. Traditionally, 

much attention is placed on the final material properties of a cured network and this 

becomes the only metric to determine the effect of some experimental variable, such as 

cure protocol. Very little is understood about the state of the network during cure, as the 

network develops. This is predominantly due to the limited availability to quantify the 

extent of the epoxy/amine reaction with traditional characterization techniques such as 

rheology and dynamic scanning calorimetry (DSC).  

This work showcases the ability to directly monitor the development of 

epoxy/diamine networks using real-time Fourier transform infrared spectroscopy (RT-

FTIR). With this technique the concentration of specific functional groups can be 

observed independently throughout cure. This contrasts with the more commonly used 

DSC heat of reaction technique, which produces one degree of cure value for analysis. 

RT-FTIR is not only able to quantify the extent of reaction but is also able to distinguish 

the identity of functional groups reacting. As demonstrated in Chapter III the 

quantifiability of this technique has been affirmed and therefore the information gained 

with regard to relative concentration of reactive groups have a high degree of validity. 
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Monitoring the concentration of reactive functional groups in curing 

epoxy/diamine systems is a key factor towards understanding the pathway of network 

formation An understanding of the pathway of network formation by this analytical 

method also has the potential to inform and improve predictive computer modelling.88  

For this chapter, three networks were studied. The potential role of the structural 

isomerism of two common amine curative has on network formation was investigated by 

comparing T-33 to T-44 networks. The cure of F-33 networks was also compared to T-

33. DGEBF is difunctional and therefore would tend toward linear growth prior to 

crosslinking if all primary amine reacts prior to the formed secondary amine. The overall 

lower average functionality of the F-33 means that a higher percentage of the total 

reactions will need to occur before the system gels and reaches infinite molecular weight.  

4.2 Network Formation Pathway as a Function of Thermal Ramp Rate 

For this chapter, RT-NIR is the primary tool used to monitor network growth 

though cure. The effect of the cure protocol on matrix formation was studied by 

maintaining several consistent variables. The beginning temperature as well as the 

temperature of the isotherm were kept consistent (30 °C and 180 °C respectively). The 

dwell (length of time) of the isotherm applied to a full cure protocol was also kept 

consistent at 2 hours for all networks and cure protocols. The chemical structures of the 

network components studied and the thermal ramp rate to the isotherm were the only 

variables changed.  

Figures 4.1, 4.2, and 4.3 contain many graphs that monitor the concentration of a 

functional group in the curing system. The logged concentrations are of the epoxide 

group (E on the graphs), primary amine (A’), and secondary amine (A”). The units of 
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concentration, it should be understood, are mols per kg, and refer the mols of the 

functional group in the system. The initial concentration of epoxides and primary amines 

in the slurries is directly calculated from the molecular weight of the monomers and their 

functionality. The average functionality of the T-33 and T-44 systems are the same and 

the molecular weight of the DDS monomers, of course, equal. The initial molar 

concentration of epoxides in the TGDDM based formulations is 5.963 mol.kg-1. The 

initial concentration of primary amines is 2.981 mol.kg-1. For the F-33 system the initial 

concentration of epoxides in 4.582 mol.kg-1 and 2.291 mol.kg-1
. 

It is important to note that by the nature of the epoxide/diamine reaction the 

theoretical maximum concentration of secondary amines during cure and network growth 

equals the initial concentration of primary amines. This would only happen in the case 

where all primary amines react (creating secondary amine) prior to any secondary amine 

reacting into the system. When interpreting concentration vs. time graphs for 

epoxy/diamine cures special attention should be payed to the peak height of the 

secondary amine curve, because it will indicate how much free secondary amine was 

created without reacting into the network. This is one of the main ways to determine the 

pathway of growth for an epoxy/diamine network. 

In the below figures, it can be observed that over the course of the isotherm at 180 

°C all the samples reach approximately the same conversion (i.e. the final concentration 

of epoxide groups) for each formulation regardless of ramp rate. DGEBF based systems 

all reached 100% conversion while the higher crosslinked TGDDM systems reach 

epoxide conversions of ~96 % and ~91% for T-33 and T-44 networks respectively.  
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In comparing the TGDDM based systems (Figures 4.1 and 4.2), primary amine 

(A’) is consumed at a faster rate with increasing ramp rate, and it is interesting to note 

that at all ramp rates, the onset of the reduction of secondary amine concentration (A”) 

occurs prior to A’ exhaustion. At each ramp rate the time at which primary amine is 

exhausted is closely followed by the conversion plateau of epoxide. For both systems, 

and at all ramp rates, when primary amine reaches 100% conversion epoxide conversion 

has already greatly exceed 50%. This indicates that both epoxy/diamine networks do not 

undergo linear growth followed by crosslinking, but rather that crosslinking occurs 

concurrently with molecular weight increase. 
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Figure 4.1 T-33 concentration vs. time graphs for epoxide (E), primary amine (A’), and 

secondary amine (A”) functional groups for four cure ramp rates. 
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Figure 4.2 T-44 concentration vs. time graphs for epoxide (E), primary amine (A’), and 

secondary amine (A”) functional groups for four cure ramp rates. 
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Figure 4.3 F-33 concentration vs. time graphs for epoxide (E), primary amine (A’), and 

secondary amine (A”) functional groups for four cure ramp rates. 

The most information can be gained on network formation pathway by observing 

the shape of secondary amine concentration curves (Figures 4.4, 4.5 and 4.6). The trends 

in peak height and the eventual plateaus are different for each network as a function of 

cure protocol. It is easier to understand the differences in the developing network 

architectures by analyzing the networks in two groups. By comparing T-33 to T-44 the 

role of the structural isomer of DDS can be determined and the role of average 

functionality can be discerned when comparing F-33 to T-33.  
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For both TGDDM systems a cure protocol dependence is observed. The fastest 

ramp to the isotherm leads to a secondary amine peak closest to the maximum of any of 

the cure protocols. Also, the slowest cure path produces a curve with the lowest peak. It 

is worth emphasizing here that a lower peak does not mean less reaction occurred as 

might be the case if primary amines did not react to produce a higher concentration of 

secondary amine. It is known that all the primary amines react in these cures and that the 

epoxides reach high conversion, so secondary amine is present and reacting during cure. 

The molar concentration of secondary amines is best looked at as a net value. When 

secondary amines are consumed as they are created the observed concentration will 

remain low. In both T-33 and T-44 there is a trend of faster ramp leading to the 

preferential consumption of primary amine prior to the consumption of secondary amine.  

The other major characteristic of the secondary amine molar concentration curve 

which should be analyzed is the point where consumption of the amine stops, resulting in 

a concentration plateau. In both TGDDM based networks, regardless of thermal ramp 

rate, the total amount of epoxide converted was approximately equal. However, it can be 

clearly seen that for the more rapidly cured systems the concentration at which secondary 

amine consumption plateaus increases. The formulations of all of the networks studied 

were prepared with equal amounts of epoxides and amine active hydrogens. The high 

plateau observed in the rapid cure of T-33 and T-44 suggest a large portion of epoxide is 

being consumed by a means other than the amine reaction. The most likely alternative is 

the etherification reaction. The potential to monitor the etherification in epoxy/diamine 

cures will be discussed in further detail later.  
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The concentration of the secondary amine plateau in the T-44 networks is higher 

than those of all the T-33 networks with analogous cure ramp rates. Two potential 

reasons for this difference are that the T-44 network cures slower than T-33 and the 

44DDS monomer is more rigid. This may lead to a network which forms in such a 

manner as to not allow for secondary amine to diffuse to and react with available 

epoxides.  

 

Figure 4.4 Concentration of secondary amine versus time of T-33 networks cured with 

thermal ramp rates of 1, 5. 10, and 20 °C/min. 
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Figure 4.5 Concentration of secondary amine versus time of T-44 networks cured with 

thermal ramp rates of 1, 5. 10, and 20 °C/min. 

 

Figure 4.6 Concentration of secondary amine versus time of F-33 networks cured with 

thermal ramp rates of 1, 5. 10, and 20 °C/min. 
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Comparing the difunctional based epoxide F-33 to T-33 reveals a dramatically 

different response of the two systems to varied ramp rates. The relatively consistent peak 

concentration of A” in the F-33 systems indicates a similar network growth pathway 

independent of cure ramp rate. The T-44 networks display a dramatic effect of the ramp 

rate. The lower maximum of A” concentration observed in the slower cure protocols is 

not indicative of any undercure relative to the faster cured networks, as indicated by the 

equivalent final conversion. The lower peak indicates a greater abundance of tertiary 

amine present in the system earlier in network formation for these slower cured networks. 

This would result in localized areas of higher crosslink density in the early stage of cure 

for these systems. The consequence of this different network growth pathway merits 

further investigation into the effect on final network mechanical properties of networks 

cured with using these increasing ramp rates. The faster cures (10 and 20 °C/min) of F-33 

also exhibit a secondary amine concertation plateau higher than that of the slower cure 

protocols.  

4.3 Evidence of Etherification 

There is compelling evidence to suggest that etherification reactions are occurring 

in the epoxy/diamine networks studied in this work. Historically, the contribution of the 

etherification reaction has been deemed to not be a major factor in network development. 

It was believed that significant etherification can only happen at high temperatures held 

for extended times. The data collected in this work proves the etherification reaction 

occurs in these high Tg epoxy/diamine systems at temperatures much lower than 

previously identified.  
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Figure 4.7 shows the change in absorbance for the aromatic, epoxide, and 

hydroxyl peaks of a cured T-33 network over ten heat-cool cycles from 30 °C to 150 °C 

heated and cooled at a rate of 1 °C/min, normalized to the absorbance at 30 °C. 

Frequency specific temperature effects on the absorbance of these signals can be 

observed for all three peaks which agree with the findings reported in Chapter III. The 

aromatic signal maintains the change in slope and consistency previously observed. The 

hydroxyl peak is also consistent, always returning predictably. The epoxide peak shows a 

slow reduction in peak signal at 30 °C. This indicates consumption of epoxide during the 

cycling. However, the unchanging nature of the hydroxyl peak suggests that the epoxides 

may be undergoing an etherification reaction rather than reacting with amine, as an 

epoxide/amine reaction results in the production of a hydroxyl group. Figure 4.8 shows 

the change in absorbance of the functional groups monitored and also does not show a 

reduction in the epoxide peak absorbance when samples was only raised to 100 °C (well 

below the point of any expected post-curing) indicates that reaction is occurring during 

this cycling to higher temperatures. 
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Figure 4.7 Change in normalized absorbance over 10 heat/cool cycles from 30 °C to 150 

°C for the available peaks of interest. 

 

Figure 4.8 Change in normalized absorbance over 4 heat/cool cycles from 30 °C to 100 

°C for the available peaks of interest. 

Further evidence of etherification can be observed in Figure 4.9. A pre-cured T-33 

network was held at three different isotherms for 3 hours. The large offset in epoxide 
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conversion does not match up with the growth in hydroxyl peak that would represent the 

formation of an epoxy-amine linkage. Etherification of epoxide reacting with hydroxyl 

creates another hydroxyl group so the net result is no change in concentration. The trends 

observed strongly indicate this is what is happening during the post cure rather than 

further reaction with available secondary amines. It is worth pointing out that the 

etherification observed in cured network is taking place below the Tg of the network and 

is therefore occurring in a state of limited mobility. This analysis may further be 

expanded to quantify etherification reactions during cure. 

 

Figure 4.9 Percent change in absorbance of epoxide and hydroxyl peak of already cured 

sample during isothermal post cure at 180 °C, 150 °C, and 120 °C. 
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4.4 Conclusions 

In this work, it was proven that irrespective of ramp rate for all of the TGDDM 

based networks primary and secondary amine react concurrently, and crosslinking occurs 

at early stages of network growth. However, differences are observed in both networks in 

the timing and rate of secondary amine production and consumption. This indicates 

differences in the relative dispersion of crosslink density during different points for cure 

for networks cured using different cure protocols. The TGDDM based networks show 

that when cured with a slower ramp rate the secondary amine reacts to a great extent 

while primary amine is still available to react. This indicates the formation of localized 

areas of high crosslinking as tertiary amine linkages are created an a “micro gel” like 

growth pathway is taken. The faster cures however, in all the systems studied exhibit 

higher plateaus of secondary amine concertation at the end of cure which means that 

secondary amine does not appreciable continue to react. In many of these cases the 

concentration of epoxide continues to be reduced. Etherification is believed to be the 

leading reaction in this region. The role presence of etherification reactions in already 

formed networks was identified at temperatures well below the glass transition. The 

development of RT-NIR to monitor network growth of thermosets has the potential to 

improve the understanding of cure pathways. 
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CHAPTER V – EFFECT OF CURE PROTOCOL ON EPOXY/DIAMINE NETWORK 

MATERIAL PROPERITES 

5.1 Chapter Overview 

Increased temperature ramp rate for curing thermoset polymer networks is 

desirable for reducing manufacturing cycle time, especially as novel out-of-autoclave 

technologies continue to drive the industry standards. There are many factors to consider 

when increasing processing temperature ramp rates; this project’s goal was to understand 

changes or differences in epoxy/diamine network properties as a function of cure 

protocol. Initially, TGDDM was selected as a standard multi-functional epoxide 

prepolymer in order to facilitate comparison with commercial formulations. 33DDS and 

44DDS are also common aerospace matrix curatives which allow for an investigation into 

isomer effects on network formation. Selection of these two curatives allows for 

consistency in the chemical and physical compositions of the networks, such as 

molecular structure and molecular weight between crosslinks. However, curing networks 

with the para-substituted 44DDS or meta-substituted 33DDS affects the reactivity of 

curative in the formulation as well as the conformational freedom of the curative during 

network formation. These two factors were determined to affect the network formation 

pathway of T-33 and T-44 when cured with different thermal protocols as determined by 

RT-NIR analysis and the effect of those altered pathways on macroscopic material 

properties was investigated.  

Later, in the course of this work, the role of epoxide prepolymer functionality was 

investigated. Networks cured with the tetrafunctional TGDDM were compared to 

analogous formulations cured with DGEBF, which has a similar backbone structure but is 
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difunctional. These epoxide prepolymers were both cured with 33DDS in order to keep 

the diamine constant and directly probe the role of average functionality of 

epoxide/diamine systems cured with different thermal protocols. The lower average 

functionality of the F-33 system was expected to alter the gelation behavior of the 

network as more conversion is required to take place before a continuous network is 

formed. DGEBF also has a lower room temperature viscosity that TGDDM. The role of 

the viscosity of the curing systems up to the point of gelation was also studied.  

5.2 Traditional versus Slurry Preparation Method 

The main goal of this project was to study the cure pathway for epoxide/amine 

reactions and how that may be affected by different cure protocols such as the 

temperature ramp rate to isotherm. One of the main network properties of interest was 

DOC along with the evolution of properties during cure as the network developed. It was 

hypothesized that the traditional method of materials preparation may initiate reaction. 

To accurately relate DOC to sample properties, all samples must begin at zero 

conversion. This concern led to the decision to investigate the utility of using slurries 

homogenized by a speed mixer as described in Chapter II.  

Heat of reaction experiments on TGDDM/DDS mixtures were performed using 

DSC. Figure 5.1 shows example exotherms illustrating the effect of various 

homogenization methods for T-44 systems. One slurry was mixed at ambient temperature 

in a speed mixer and stored at sub ambient temperatures until curing. This sample 

exhibited a mass normalized average heat of reaction of 562.5 J/g and was used to 

compare and evaluate the effect of other homogenization and sample preparation 

methods. The results for a T-44 mixture prepared by the traditional method, as described 
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in Chapter II, is shown in Figure 5.1. It is clear reaction is initiated by this method. An 

average ΔHUC of 488 J/g indicates at least 10% of reaction occurred in the flask prior to 

any curing or formulation testing. It is also important to note that this false ΔHUC would 

artificially decreases DOC calculations if it were to be used as representative of the zero 

point of the reaction. Finally, as is described in the materials preparation section, working 

with the slurries and filling desired molds require the viscosity to be reduced using a 

vacuum oven. Slurried samples treated in this manner were also tested to determine if 

reaction was prematurely initiated. The results indicate that this preparation technique 

maintains a true zero conversion of the slurry before beginning cure or testing. 

 

Figure 5.1 Heat of reaction for a freshly mixed slurry compared to the traditional WRG 

pre-solubilized mixture and in the slurried mixture after reducing viscosity and degassing 

in a vacuum oven. 
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5.3 Thermomechanical Properties of T-33 and T-44 Networks 

Slurried mixtures of TGDDM/DDS were cured as described in the Chapter II at 

pre-designated temperature ramp rates. The storage modulus and tan δ plots for the fully 

cured samples are shown in Figure 5.2. The ultimate Tg for both systems (i.e. the 

temperature at the maximum point of the tan δ curve) are equivalent regardless of 

temperature ramp rate (T-33 – 254.53 °C, T-44 – 286.78 °C). A lower peak or shoulder is 

observed next to the main tan δ peak and appear at the same temperature regardless of the 

cure protocol used (33DDS – 217.23 °C, 44DDS – 226.69 °C). This temperature sweep 

method used to probe thermomechanical relaxations of these high Tg glassy thermosets 

has limitations in fully probing the properties of the cured networks. A commonly 

reported property of networks is the molecular weight between crosslinks. The 

calculation of this property requires an accurate value of the rubbery modulus, which is 

taken as the storage modulus value at a temperature above the Tg. However, for both the 

TGDDM based networks the onset of degradation occurs at temperatures very near to the 

ultimate Tg, so we were unable to record an accurate value for the rubbery modulus. Also, 

both of these high Tg networks vitrify during cure. The lower peaks in both networks 

most likely represent the Tg of networks as they were cured in the oven and during the 

thermal ramp within the DMA the samples devitrified and finished cure. This means that 

we are unable to probe past the Tg of these networks via thermal sweep DMA.  
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Figure 5.2 Storage modulus and Tan δ data for a) T-33 and b) T-44 networks cured with 

temperature ramp rates of 1, 5, 10, and 20 °C/min. 

Sub-Tg transitions were investigated by acquiring low temperature DMA data 

(Figures 5.3 and 5.4). As observed in the other DMA work, the temperature ramp rate did 

not affect the thermomechanical properties of the networks. It is interesting to note that 

the magnitude of the γ transition in the loss modulus is greater than the α transition for T-

44 as compared to the T-33 networks. This is probably due to the ability for the aromatic 

rings of 44DDS to rotate about an axis and thus to dissipate energy. 
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Figure 5.3 Low temperature E’, E”, and tan δ data for T-33 networks at slow, 

intermediate, and fast temperature ramp rates. 

 

Figure 5.4 Low temperature E’, E”, and tan δ data for T-44 networks at slow, 

intermediate, and fast temperature ramp rates. 
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5.4 Development of Network Tg with Increasing Conversion 

Slurried mixtures of TGDDM/DDS were cured in a Modulated DSC cell and held 

at 180 °C for increasing durations to observe the effect of temperature ramp rate on DOC. 

Using MDSC allows for the identification of reversible and irreversible thermal 

transitions. Thus, the instantaneous Tg can be to be directly related to the extent of 

conversion in the network which can be calculated with the irreversible exotherm of the 

residual heat of reaction. Here, the instantaneous Tg refers to the Tg of the matrix at the 

point of quenching. The progression of Tg as a function on isothermal duration can be 

seen in the set of reversible heat flow curves plotted in Figure 5.5.  

 

Figure 5.5 Reversible heat flow output from MDSC of a T-33 system showing the 

increase of Tg of the network when ramped at 10°C/min and held at 180 °C for increasing 

durations. 

The instantaneous Tg of fully and under cured networks were plotted against 

conversion in order to determine if the cure pathway affected the development of network 

properties (Figure 5.6). The curve shapes differ for the networks cured with 33DDS and 
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44DDS, with 33DDS exhibiting a more linear relationship between the extent of 

conversion and increasing of Tg. Although samples were ramped up to 180°C at different 

ramp rates, no major difference were observed as the results followed the same trend. 

 

Figure 5.6 Tg vs conversion of a) T-33 and b) T-44 cured with thermal ramp rates of 1, 5, 

10, and 20 °C/min and held for different durations at 180°C in order to drive various 

degrees of cure. 

44DDS exhibits a less linear trend, characterized by a slow increase in Tg prior to 

~30% conversion. 33DDS is more reactive than 44DDS, so this may explain the results. 

All cures in the MDSC cell were ramped to 180°C prior to quenching. None of the 1 

°C/min thermal ramp protocols produced networks with below 60% DOCs even for 

protocols with no isothermal hold. This indicates that a majority of cure occurs in these 

networks curing temperature ramp for the slowest rate studied. 

5.5 Thermomechanical Properties of Undercured Networks 

DMA samples were cured using different cure protocols to create samples with 

varied degrees of cure. The DOCs for the cured samples were determined with by 

residual heat of reaction with DSC. DMA bars of T-33 generally were not sufficiently 

stiff for DMA analysis at DOC values below 85%; thus, the 33DDS samples exhibited 
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very little difference in thermomechanical properties of the undercured samples. In 

contrast, the T-44 samples were able to be cured over a wider span of DOC values. A 

drop in the low temperature storage modulus was observed for samples having DOC 

levels of between 60% and 75% DOC. Unfortunately, a sample with a DOC value 

between those limits could not be produced; obtaining such a sample is a possible future 

goal for this project. 

The large span of DOCs obtained for the T-44 networks allowed for a deeper 

investigation into the thermomechanical properties of these networks as a function of 

cure. Figure 5.7 shows the tan δ data for T-44 networks cured to different DOC levels. 

Note the higher temperature peaks are basically identical in shape and position with the 

fully cured T-44 networks. This indicates post curing is occurring during data acquisition. 

This is further verified by MDSC analysis of the cured DMA bars which show that the Tg 

in the reversible heat flow is far below the ultimate tan δ peak (Figure 5.8). In fact, the 

instantaneous Tg determined using MDSC matches the initial tan δ peak of the 

undercured T-44 network. 
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Figure 5.7 Tan δ plots of T-44 samples undercured to various degrees of cure. 

 

Figure 5.8 DMA data for undercured T-44 (74% DOC) compared to the reversible heat 

flow of the same sample obtained with MDSC with the network’s instantaneous Tg 

identified. 

5.6 Considerations of Rapid Curing Thermosets in Convection Ovens 

The main goal of this work is to identify and quantify potential differences in 

epoxy/diamine networks when cured using increasing temperature ramp rates. This has 
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done using a variety of thermal, thermomechanical, and spectroscopic techniques. It is 

normally assumed that curing of small volumes of slurry in DSC and RT-NIR 

instruments mimic the cure larger samples performed in an oven and then removed for 

analysis by DMA or other mechanical methods. Additionally, in previous work it was 

assumed that the actual temperature ramp rate of the systems cured by these different 

methods match the targeted protocols. To test this assumption, the actual matrix 

temperature during cure in the oven was monitored. Temperature versus time readings 

were collected using a Four-Channel Handheld Data Logger Thermometer (OMEGA 

HH147U) capable of simultaneously recording data from four discrete thermocouples 

simultaneously. Thermocouples were placed outside as well as within the matrices being 

cured. 

 

Figure 5.9 Temperature readings for the matrix while curing within the programmable 

oven. 
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Figure 5.9 shows data collected from thermocouples placed in slurry during cure. 

The temperature of the curing network is very different from the programmed rate of the 

convection oven.  There is a noticeable slope change for the faster ramp rates, so the 

initial and secondary slopes of these cures are both identified in Figure 5.9. Previously it 

was determined that the oven needed to be set to a higher target temperature in order to 

obtain an actual oven temperature of 180 °C. These observations suggest that the actual 

matrix heating rates did not match the programmed protocol values, thereby making data 

acquired using samples cured in the ovens such as DMA questionable. This may explain 

the similarity of the observed thermomechanical properties of the networks cured with 

increasingly fast protocols. The fastest targeted rate (40 °C) initially has a maximum 

thermal ramp rate of ~6 °C/min for first 20 minutes, after which point the rate decreases. 

This implies that these sample’s properties are for a network cured at an average thermal 

ramp rate to the isotherm of ~3 °C/min (Table 5.1).  

Table 5.1 True Temperature Ramp Rates of Oven Cured Matrix. 

Programmed 

Rate 

(°C/min) 

Initial 

Slope 

(°C/min) 

Average 

rate to reach 

isotherm 

(°C/min) 

40 5.98 3.19 

10 4.04 2.71 

5 2.70 2.23 

1 0.91 0.85 

 

5.7 F-33 vs T-33 

F-33 and T-33 networks were compared using maximum temperature ramp rates 

of 5 °C/min due to the limitations of the oven cure process. The F-33 networks offer 

potential differences compared to T-33 systems. The lower average functionality of the 
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monomers should reduce the crosslink density; thus, gelation is expected to occur at a 

higher DOC and thereby permit more of the reaction to occur due to the functional 

groups having higher mobility. Also, the ultimate Tg of F-33 is lower than the 180 °C 

cure temperature, which should allow for 100% cure. The tan δ of the F-33 and T-33 

networks are displayed in Figure 5.10. The Tgs of the F-33 networks were unaffected 

(~157 °C) as were the instantaneous Tgs of the T-33 networks (~231 °C). As previously 

observed, the ultimate Tg of the T-33 networks cured by each protocol were equivalent. 

The unimodal tan δ peak for the F-33 systems indicates that the ultimate Tg of the 

network was reached when cured with each thermal protocol. There appears to be slight 

broadening of the tan δ peak for the 5.0 °C/min thermal ramp rate cure, which may 

indicate a higher degree of heterogeneity in the network architecture for that system.  

 



 

75 

 

Figure 5.10 Tan δ of F-33 and T-33 networks cured using temperature ramp rates of 0.5, 

1, 3, and 5 °C/min. 

The F-33 and T-33 samples were both placed in refluxing DI water for 24 hours 

as described in Chapter II to determine if cure rate affected free hole space. The results 

shown in Table 5.2 indicate no effect caused by different cure protocols. 

Table 5.2 Percent Mass Increase After Swelling with DI Water. 

Network 
0.5 °C/min 1.0 °C/min 3.0 °C/min 5.0 °C/min 

Mass Increase (%) 

F-33 2.84 ± 0.0531 2.67 ± 0.0573 2.53 ± 0.106 2.61 ± 0.168 

T-33 3.71 ± 0.0402 4.21 ± 0.150 4.02 ± 0.110 4.08 ± 0.212 

 

Figure 5.11 shows the stress/strain curves for the F-33 and T-33 networks. The 

data shows cure protocols do not significantly affect the mechanical properties. It appears 

that after the full 2-hour 180 °C isotherm the network connectivity in both networks 
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indistinguishable when cured with different thermal ramp rates. The Young’s modulus 

and yield stress are listed in Table 5.3. 

 

Figure 5.11 Stress vs. strain mechanical data collected in compression mode for a) F-33 

and b) T-33 networks cured with thermal ramp rates of 0.5, 1, 3, and 5 °C/min. 

Table 5.3 Young’s Modulus and Yield Stress from Compressive Mechanical Tests of F-

33 and T-33 Networks. 

Network 
0.5 °C/min 1.0 °C/min 3.0 °C/min 5.0 °C/min 

Young’s Modulus (GPa) 

F-33 2.99 2.90 3.04 2.93 

T-33 3.39 3.42 3.39 3.39 

 Yield Stress (MPa) 

F-33 115.16 153.21 156.6 150.55 

T-33 205.35 213.04 211.13 205.35 

 

5.8 Comparison of Rheologic Data to RT-NIR Results 

Oscillatory shear rheological profiles up to gelation were acquired for the F-33 

and T-33 systems cured at various ramp rates to determine if the development of the 

viscoelastic properties is related to the different network growth pathways observed in 
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RT-NIR analysis. For this study F-33 and T-33 samples were cured using temperature 

ramp rates of 1, 3, or 5 °C/min in the rheometer and the RT-FTIR spectrometer.   

The gelation time marks the onset of the diffusion restricted reaction kinetics, as 

material behavior transitions from being dominated by a liquid-like, viscous response to a 

solid-like, elastic response. As shown in Figures 5.12 and 5.13, increasing the temperature 

ramp rate from 1 °C/min to 5 °C/min affects the time to gelation for both the T-33 and F-

33 system. Tables 5.4 through 5.6 summarize the rheological results. 

Table 5.4 Points of Interest at the Gel Point of F-33 and T-33 Networks Cured Using a 

Temperature Ramp Rate of 1 °C/min.  

Network 

1 °C/min 

Complete A’ 

Consumption 

(min) 

Gel 

Time 

(min) 

Viscosity at 

Gel Point 

(Pa.s) 

F-33 132 139.1 7.9 

T-33 138 139.1 161.0 

 

Table 5.5 Points of Interest at the Gel Point of F-33 and T-33 Networks Cured Using a 

Temperature Ramp Rate of 3 °C/min. 

Network 

3 °C/min 

Complete A’ 

Consumption 

(min) 

Gel 

Time 

(min) 

Viscosity at 

Gel Point 

(Pa.s) 

F-33 54 59.6 9.3 

T-33 56 55.2 132.6 

 

 

 

 



 

78 

Table 5.6 Points of Interest at the Gel Point of F-33 and T-33 Networks Cured Using a 

Temperature Ramp Rate of 5 °C/min. 

Network 

5 °C/min 

Complete A’ 

Consumption 

(min) 

Gel 

Time 

(min) 

Viscosity at 

Gel Point 

(Pa.s) 

F-33 35 35.2 2.6 

T-33 45 36.9 67.9 

 

For both networks, the 1 °C/min ramp rate was the only cure protocol whereby 

gelation occurred before the 180°C isotherm was reached. This creates longer dwell times 

in more diffusive environments for the reactants at the lower temperature ramps, thereby 

yielding a higher conversion of primary amine at or before the gel point. 
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Figure 5.12 Crossover of G’ and G” for the F-33 network cure with temperature ramp 

rates of 1, 3, and 5 °C/min. 
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Figure 5.13 Crossover of G’ and G” for the T-33 network cure with temperature ramp 

rates of 1, 3, and 5 °C/min. 
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The above tables show a trend in the F-33 systems involving time to gelation and 

the time until complete primary amine consumption via RT-NIR analysis. All primary 

amines have reacted before gelation occurs for each F-33 cure path; this indicates linear 

chain growth is the dominant mechanism prior to gelation. However, upon consumption 

of primary amines gelation rapidly occurs due to crosslinked formed by the reacting 

secondary amines. Furthermore, the viscosity at the point of gelation is extremely low 

(Figure 5.14) for the F-33 systems, which correlates with the low amount of secondary 

amines that have been reacted into the system at that point limiting the degree of 

crosslinking early in cure (Figure 5.16). The data also suggests that the low viscosity of 

the system allows for primary amines to remain more reactive than secondary amines 

thus resulting in the near theoretical maximum concentration of the secondary amines 

observed in RT-NIR analysis. 
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Figure 5.14 Complex viscosity of F-33 systems up to the gel point for temperature ramp 

rates of 1, 3, and 5 °C/min. 

 

 



 

83 

 

Figure 5.15 Complex viscosity of T-33 systems up to the gel point for temperature ramp 

rates of 1, 3, and 5 °C/min. 

In the T-33 systems, using a 1 °C/min ramp rate, all the primary amines were 

reacted immediately preceding gelation. However, for the higher ramp rates gelation 

preceded the complete consumption of primary amines. This effect is quite clearly 

observed at the highest ramp rate, where gelation occurred approximately 8 minutes 

before the total primary amine consumption. The viscosity at gelation for the T-33 system 

exhibited a trend similar to that observed for the F-33 system, with the concentration of 

secondary amines at gelation correlating directly with viscosity.  
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Figure 5.16 Concentration of secondary amine versus time of F-33 systems cured with 

thermal ramp rates of 1, 3 and 5 °C/min. 

 

Figure 5.17 Concentration of secondary amine versus time of F-33 systems cured with 

thermal ramp rates of 1, 3 and 5 °C/min. 
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It is interesting to compare RT-NIR data concerning the pathway of network 

formation to the development of network properties as determined by rheometry. First, it 

should be noted, the order of magnitude difference in viscosity between the F-33 and T-

33 systems in their minimum viscosity states prior to gelation (Figures 5.14 and 5.15). 

Prior to the storage and loss modulus crossover event, the F-33 system is in a more 

diffuse environment for the epoxide/amine reactions to occur. Also, a higher maximum 

concentration of secondary amines is observed; this suggests linear growth prior to 

secondary amine reaction (Figure 5.16). In the higher viscosity T-33 system, a lower 

maximum secondary amine concentration is observed, indicating the effect viscosity has 

on the competitive reaction between secondary amine and primary amines. The loss of 

molecular freedom promotes local secondary amine consumption due to the lack of 

network mobility. This behavior is supported by both the RT-NIR and rheological data. 

5.9 Conclusions and Future Work 

The final macroscopic mechanical and thermomechanical properties of all the 

networks studied were not affected by the thermal ramp rate applied during cure. The 

RT-FTIR results prove that the pathway in which the networks form is affected by the 

cure protocol. However, the consequence of those different pathways is not apparent 

based on the macroscopic properties tested on the cured networks. One hypothesis based 

on the results suggest the length of time spent at 180 °C drives the networks, regardless 

of cure protocols used, to a level of connectivity and cohesiveness such that the resulting 

macroscopic properties are indistinguishable from each other.  

It is possible that there is an effect on the matrix that has yet to be probed. The 

probable best way to probe tangible network material property effects of cure protocol is 
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to study systems in various states of undercure. It must be noted that the tests cannot 

progress the reaction, as a thermal sweep observed for DMA analysis does or the 

potential changes in matrix properties will be obscured. Additionally, long term effects 

on network properties were not studied in this work. Investigations into fatigue properties 

or solvent uptake over an extended time may elucidate effects imparted on epoxy/diamine 

networks cured with increasing thermal ramp rates. 
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