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ABSTRACT 

RANDOM AND BLOCK COPOLYMERS OF 

POLY(DODECAMETHYLENETEREPHTHALAMIDE) 

by Theodore Frank Novitsky, Jr. 

December 2009 

The following dissertation focuses on the synthesis and characterization of 

poly(dodecamethylene terephthalamide) (PA-12,T) and novel copolymers. 

Chapter I details the synthesis of PA-12,T homopolymer by melt condensation 

polymerization. A series of homopolymers with different molecular weights were 

obtained by adjusting the stoichiometry of the polymerization using 

1,12-diaminododecane, terephthalic acid and benzoic acid. End group 13C NMR 

spectroscopy resonances were obtained by correlating peak intensities with intrinsic 

viscosity values. From the NMR data, total end group concentrations and molecular 

weights were determined for each sample. The data exhibited a linear trend when plotting 

log (IV) versus log (Mn), and previously unknown PA-12,T Mark-Houwink solution 

constants were found. 

Chapter II examines the synthesis and characterization of PA-12,T, 6,T and 10,T, 

6,T copolymers. Melt condensation procedures and solution constants from Chapter I 

were used to synthesize and confirm that high molecular weight copolymers were 

obtained. The substituted aromatic carbon resonance of 13C NMR spectra was found to be 

sensitive to copolymer sequence, and was used to determine that the copolymers are 

random. Differential scanning calorimetry data shows that the copolymers exhibit 

eutectic melting behavior, displaying a decrease in copolymer melting temperature and 
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enthalpy up to the eutectic point of 30 wt-% PA-6,T, and a corresponding increase in 

both up to 60 wt-% PA-6T. Optically clear materials were obtained at 30 wt-% PA-6,T. 

Data collection was stopped at 60 wt-% due to phase separation of PA-6,T rich phases. 

Wide angle x-ray diffraction data displayed three distinct regions: 1) sharp PA-10,T 

crystal diffractions from 0-20% PA-6,T, 2) broad amorphous scattering between 25-45% 

PA-6,T, 3) sharp diffraction peaks from 50-60 wt% PA-6,T. All copolymers had 

relatively high glass transition temperatures from 137-149 °C determined from dynamic 

mechanical analysis. This study provides a method in which crystallinity and optical 

clarity of semi-aromatic polyamides can be tuned while maintaining high glass transition 

temperatures. 

In Chapter III, a novel, one pot polyamide-polyamide block copolymer synthetic 

strategy is explained. The synthesis of PA-12,T - PA-6 block copolymers occurs in two 

sequential steps, in which it was found that CaCl2 is needed to avoid crosslinking of the 

material. First, reaction variables of the solution, step growth polymerization of 1,12-

diaminododecane and biscaprolactam terephthalamide (BCT) in caprolactam were 

investigated. PA-12,T with an average degree of polymerization of 15 and n-

terephthaloyl end groups was obtained using 5 mol-% excess BCT. The second stage of 

synthesis uses anionic polymerization of the caprolactam using the n-terephthaloyl 

capro lactam end groups. While CaC^ concentration had little effect on this step growth 

reaction, it was found that the CaCl2 greatly effected the conversion and transamidation 

of the anionic polymerization. This effect yielded a variety of materials with different 

molecular weights and blockiness that display unique thermal and solubility properties 

not obtained with polymer blends. Furthermore, this technique can be applied to wide 
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variety of monomers to create novel polyamide-polyamide block copolymers currently 

undiscovered. 
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INTRODUCTION 

Poly (dodecamethylene terephthalamide) is a semi-crystalline polyamide 

synthesized by melt condensation polymerization of 1,12-diaminododecane and 

terephthalic acid. PA-12,T belongs to a family of semi-aromatic polyamides having 

unique properties that result from the aliphatic and aromatic nature of the polymer 

structure. 

When introducing aromaticity into the backbone of aliphatic polyamides both 

performance properties and processability of the material are changed. With increasing 

aromaticity, performance properties such as strength and glass transition (Tg) are 

increased, while properties that define the processability of the material, such as the 

crystalline melting temperature and melt viscosity, are also increased. For example, the 

wholly aromatic polyamide, poly(p-phenylene terephthalamide) (Kevlar), is known for its 

superior strength, but cannot be melt processed due to its high melting temperature. 

Therefore, Kevlar is limited to high-end niche applications and is expensive because it is 

not easily processed. Semi-aromatic polyamides are an important class of polyamides 

because they display strength and glass transition enhancement while having melting 

temperatures suitable for melt processing. 

Within the branch of semi-aromatic polyamides, there are practical limitations of 

processability on monomer selection. For example, PA-6,T has a crystalline melting 

temperature of 370 °C, which, similar to Kevlar, cannot be melt processed without 

degradation. However, increasing the length of the diamine monomer lowers the melting 

temperature of the polymer. For instance, the melting points of PA-9,T, PA-10,T, PA-
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12,T and PA-18,T are approximately 309, 315, 295 and 245 °C, respectively. These semi-

aromatic polyamides are well known in patent literature to be melt processable. 

Additionally, PA-12,T has a Tg of 120 °C compared to 60 °C of nylon 6,6. 

Therefore, PA-12,T is suitable for under-the-hood automobile applications where wholly 

aliphatic polyamides cannot be utilized. The combination of high Tg and low melting 

point justifies our and our collaborators, Ascend Performance Materials (formerly 

Solutia), interest in PA-12,T. 

My studies of PA-12,T are presented in the following three chapters. A more 

detailed background and introduction can be found in each section. In Chapter I, we 

i -i 

developed Mark-Houwink solution constants by correlating intrinsic viscosities with C 

NMR end group concentrations of PA-12,T synthesized with a variety of molecular 

weights. Since no solution constants are available for these types of polymers, this data 

provides a manner of determining molecular weights of copolymers synthesized in the 

following sections, and allows proper evaluation of the multitude of process patents 

available for PA-12,T and similar polyamides. 

In Chapter II, the synthesis of PA-12,T with PA-6,T comonomer is detailed. 

Using a melt polycondensation of the salt mixture, random copolymers were obtained. 

While isomorphism of PA-12,T, 12,6 copolymers have been shown in literature, our 

work represents the first study to examine the eutectic melting behavior of PA-12,T and 

10,T. 

In Chapter III, the synthesis of PA-12,T - PA-6 block copolymers is discussed. 

Copolymers were synthesized by a novel one-pot process utilizing both step-growth and 

anionic polymerization methods in the presence of CaCk. Fundamental principles of melt 
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condensation of PA-12,T examined in Chapter I were applied to the solution 

polymerization of biscaprolactam terephthalamide and 1,12-diaminododecane in 

capro lactam. By adjusting the stoichiometry of the step growth reaction, PA-12,T with 

anionic coinitiator end groups were obtained, followed by the addition of initiator to form 

block copolymers. Due to the observed crosslinking of the material without CaCb_, the 

effect of the CaCb. concentration was studied for both reactions. 

In the final conclusions section, extensions of the findings of these studies are 

briefly discussed. 
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CHAPTER I 

EFFECT OF STOICHIOMETRIC IMBALANCES ON THE MELT CONDENSATION 

POLYMERIZATION OF POLY(DODECAMETHYLENE TEREPHTHALAMIDE) 

STUDIED BY INTRINSIC VISCOSITY AND 13C NMR. 

Abstract 

Poly(dodecamethylene terephthalamide) (PA-12,T) was synthesized by melt 

condensation polymerization of 12,T salt with 0, 1, 3, 5, or 10 % molar excess of 1,12-

diaminododecane (DA), terephthalic acid (TA), or benzoic acid (BA). Intrinsic 

viscosities (0.5 g/dL in 96% H2SO4 at 25 °C) were measured to determine relative 

molecular weight differences. IV was highest for reactions containing 1 and 3 mol-% 

excess DA (1.36 and 1.31 dL/g, respectively), followed by the product of pure 1:1 salt 

(1.25 dL/g). For all concentrations of excess TA and BA, IV decreased progressively. C 

NMR chemical shifts for DA, TA, and BA end groups were identified and their 

concentrations determined by comparison with the intensity of main chain polymer 

peaks. A log-log plot of IV and Mn calculated from C NMR data shows a linear trend 

with Mark-Houwink constants of K=5 5.8*10~5 dL/g and a = 0.81. 

Introduction 

Semi-aromatic polyterephthalamides (SAPT) are reaction products of aliphatic 

diamines and terephthalic diacids. SAPT's possess improved thermal and mechanical 

properties relative to purely aliphatic polymers, while being easier to process than 

aromatic polyamides. Symmetrical aromaticty in the polymer backbone results in higher 

melting and glass transition temperatures, rendering them useful for high temperature 

automotive applications. For example, poly(hexamethylene terephthalamide) (PA-6,T) 
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has a melting temperature of 370 °C and a glass transition temperature of 125 °C 

compared to 265 °C and 60 °C for PA-6,6. However, high melt viscosities and melting 

temperatures that approach the degradation temperature makes conventional melt 

processing of SAPT's difficult. Overcoming these obstacles has been the focus of much 

patent literature. " Melting temperatures of SAPT's can be tuned to suitable ranges by 

changing the chemical composition of monomers. For example, increasing the length of 

diamine from 6 to 12 carbons decreases the polymer melting temperature from 370 °C to 

295 °C. 

Controlling molecular weight during melt condensation polymerizations of 

SAPT's is crucial for obtaining desired mechanical properties and processability. For 

instance, materials having a molecular weight less than a critical value have poor 

mechanical properties and are brittle. Increasing molecular weight above the critical 

value results in high melt viscosities and complicates processing. Control of molecular 

weight in A-A B-B systems is attained by adjusting the stoichiometry of reactants. 

Although perfect stoichiometric balance is theoretically most favorable for obtaining high 

molecular weight condensation polymers, a practical discrepancy between relative 

concentrations of starting materials and finished products exits. Industrial practices and 

patents indicate that excess diamine 4 or terephthalic acid 6 have to be added to the 

diacid/diamine salt to generate suitable products with the desired molecular weight. 

Additionally, end capping is also used to limit the molecular weight during melt 

condensation polymerizations.14 In SAPT literature, end cappers are referred to as 

terminal blocking agents , viscosity stabilizers2, or molecular weight stabilizers6. 

Commonly used end capping agents for SAPT's are benzoic acid and acetic acid. 
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Although adjusting stoichiometry is common practice in SAPT patent literature, 

there is a need for a fundamental study that uses to quantify its effects on molecular 

weight and end group functionality. Typically, single-point intrinsic viscosity 

measurements are used to determine relative molecular weight changes. However, no 

Mark-Houwink constants are available for SAPT's. Therefore, the magnitude of the 

impact on molecular weight of the products is unknown. 

Our group has developed C NMR spectroscopic tools for examining end groups, 

cis amide content, and number average molecular weights of various aliphatic 

polyamides.15'16 This study uses l3C NMR spectroscopy to determine end group 

concentrations and number average molecular weights of poly(dodecamethylene 

terephthalamide) (PA-12,T) synthesized at varying molecular weights by adjusting the 

reaction stoichiometry of the melt condensation polymerization. 

Experimental 

Materials 

Terephthalic acid, 1,12-diaminododecane, benzoic acid, hexafluoroisopropanol, 

concentrated sulfuric acid (96%) and chloroform-d were purchased from Aldrich 

Chemical Company. Benzoic acid and 1,12-diaminododecane were sublimed at 70 °C 

and dried at room temperature under vacuum before use. Hexafluoroisopropanol and 

chloroform-J were dried before use with molecular sieves. 
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Synthesis 

PA-12,TSalt. Into a 2 L beaker, 1200 mL of deionized water, 40.1 grams (0.20 

mol) of 1,12-diaminodecane and 32.9 grams (0.198 mol) of terephthalic acid were added, 

and the slurry was heated to a boil. Additional water was added and brought to boil to 

give a supersaturated clear salt solution (approximately 6.3 wt-%). The hot salt solution 

was then added to a 2 L beaker containing 800 mL of reagent alcohol and cooled to room 

temperature, followed by overnight cooling in a freezer at 0.5 °C. The precipitate was 

then filtered and washed with reagent alcohol, producing 68 g of PA-12,T salt with a 

95% yield. The salt was then recrystallized using a water/ethanol mixture and dried 

overnight at 80 °C under vacuum (mp - 271.9 °C, AHmeiting 428 J/g). 

Melt Condensation Polymerization of Polyamide (12, T). PA-12,T salt, added 

excess reactant, and antioxidant (0.5 wt-%) were weighed and mixed with a mortar and 

pestle. The solid mixture was then added to a test tube and approximately 50 wt-% water 

was added and mixed to create a slurry. Twelve test tubes were then loaded into a Pan-

reactor, which was then sealed and purged with nitrogen. Heating steps were 

programmed into the reactor controller unit and monitored with a thermocouple placed in 

one of the test tubes. The reactor was surrounded by insulation for precise heating 

control. Pressure was controlled manually with nitrogen and measured by a gauge on the 

reactor head. Predetermined temperatures provided signals for pressure changes. With 

approximately 125 kPa nitrogen pressure and a 200 °C set point, the sample temperature 

remained at 125 °C until all water was evaporated. At 150 °C the pressure was elevated 

to 1724 kPa. At 280 °C the pressure was released and the temperature was allowed to 

rise and hold at 310-315 °C for 15 minutes with purging nitrogen. 
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Sample Preparation 

Material plugs were immersed in liquid nitrogen for approximately 10 minutes, 

then ground using a Waring blender with stainless steel mixing jar. Resulting pellets were 

dried at 80 °C under vacuum for 24 hours, and placed in a desiccator before 

characterization. 

Characterization 

Nuclear Magnetic Resonance (NMR). NMR samples containing 10 wt-% polymer 

in a 3:1 volume ratio of hexafluoroisopropanol (HFIP) to CDCI3 were prepared by 

dissolving pellets in HFIP, followed by addition of CDCI3. Solution 13C spectra were 

collected on a Varian UNITYINOVA NMR spectrometer operating at a frequency of 125.7 

MHz. Routine acquisitions were obtained using a 1.3 second acquisition time, a 45° 

pulse width of 2.9 (is, and a 1 second recycle delay. The number of accumulate transients 

ranged from 15,000 to 30,000, involving 12-24 hour collection times. Spectra were 

recorded at 25 °C. Data was zero-filled up to 256k points and filtered with 1 Hz of line 

broadening prior to application of Fourier transformation. Baselines were corrected using 

a 10th order polynomial. 

Viscometry. Solutions containing 0.5 g/dL of polymer in concentrated sulfuric 

acid were made to obtain a single point intrinsic viscosity (IV). The solutions were 

prepared by adding 0.25 grams of polymer and 25 mL of concentrated sulfuric acid into a 

50 mL flask. After 12 hours of mixing using magnetic stirring, the solutions were diluted 

with an additional 25 mL of sulfuric acid, and stirring was continued for another 12 

hours. If gelled material was visibly present, the samples were passed through a funnel 

packed with glass wool. Measurements were obtained using a Cannon viscometer in a 25 
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°C controlled water bath. The viscometer was washed with sulfuric acid and a portion of 

the next sample to be tested before measurements were recorded. Flow times were an 

average of three measurements that agree within +/- 0.2 seconds. Flow times of 

concentrated sulfuric acid and polymer solution were used to calculate the specific and 

relative viscosities. Single point IV's were then calculated using the Solomon and Ciuta 

relationship; 

h ] = [(2*(ilsp-ln(nrel)]
1/2)]/C 

where nsp is specific viscosity, r|rei is relative viscosity, and C is sample concentration. 

Results and Discussion 

Synthesis and Intrinsic Viscosity 

The synthesis scheme of PA-12,T is depicted in Figure 1.1. PA-12,T salt was first 

synthesized by creating a saturated solution in boiling water followed by addition of 

ethanol. After cooling, the precipitated salt was then recrystallized using a water/ethanol 

mixture. The salt had a sharp melting point of 271.9 °C and enthalpy of 428 J/g as 

observed by differential scanning calorimetry. 

Melt condensation polymerizations were performed using a three stage method 

shown in Figure 1.2. After purging with nitrogen, the reactor is sealed for the first two 

stages, and vented during the third. During the first stage, the temperature remains at 

approximately 120 °C at 125 kPa while the water boils from the reaction. Following 

boiling, the temperature begins to rise, and the pressure is increased 1724 kPa in order to 

mitigate loss of 1,12-diaminododecane due to volatilization during the early stages of the 

reaction. The release of the high pressure marks the final stage of the reaction at 275 °C. 

In the hold stage, reaction temperature is increased to approximately 315 °C, and held for 



10 

15 minutes. The DSC first heating melting temperature of PA-12,T is 295 °C, ensuring 

that the polymer is in the molten state during the hold stage of the polymerization. 
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Figure 1.1. Synthesis of PA-12,T showing C NMR end group (EG) spectral 

assignments. 
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Figure 1.2. Temperature (o) and pressure (•) profiles of PA-12,T melt condensation 

polymerization. 

PA-12,T was synthesized using 0, 1,3, 5, and 10 mol-% excess of 1,12-

diaminododecane (DA), terephthalic acid (TA), or benzoic acid (BA). Single-point IV 

measurements of the resulting polymers are shown in Figure 1.3. The melt condensation 

polymerization of pure 12,T salt using the standard process yields PA-12,T with an IV of 

1.25 dL/g. Adding 1 and 3 mol-% excess DA to the reaction increases IV to 1.36 and 

1.31 dL/g, respectively. However, DA in excess of 3 mol-% results in products with 

lower IVs of 1.08 and 0.70 dL/g for 5 and 10 mol-% excess DA, respectively. The PA-

12,T salt is stoichiometrically balanced prior to the polymerization, and should yield the 

highest molecular weight, but IV results indicate that PA-12,T synthesized using 1 and 

3% excess DA have higher IVs and inherently higher molecular weights. Since 1,12-
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diaminododecane boils at a lower temperature than terephthalic acid, an imbalance occurs 

during the polymerization. The addition of 1 and 3% DA compensates for this imbalance 

resulting in higher molecular weight. Adding 1 and 3 excess mol-% TA, however, 

decreases IV to 0.94 and 0.67 dL/g, respectively. Here, any excess TA contributes to the 

imbalance imposed by volatilization of DA and thus further decreases the molecular 

weight. Despite their differences in functionality, BA and TA appear to reduce IV to a 

similar extent at all concentrations. 
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0.4-

0.2-
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Figure 1.3. Single point intrinsic viscosities of PA-12,T salt polymerized with 1,12-

diaminododecane (•), terephthalic acid (•), and benzoic acid (A). 

High Resolution Solution C NMR Spectroscopy 

Figures 1.4-1.6 show 0-200 ppm solution NMR spectra for each family of 

polymers. Backbone carbon atoms appear as intense peaks at expected chemical shifts. 
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Assignments for repeat units and anticipated end groups are shown in Figure 1.1. 

Additionally, three sets of solvent peaks are present in each spectrum and labeled 

accordingly. Vertical scales for each spectrum have been adjusted to maximize the 

intensity of the tallest polymer peak without truncation. These data confirm the identity 

of each polymer main chain as poly(dodecamethylene terephthalamide). 

Horizontal and vertical scales have been expanded in Figures 1.7-1.15 to show 

end groups and other less populous peaks. Here the vertical scales in the aliphatic, 

aromatic and carbonyl regions have been normalized with respect to backbone carbon 

atoms 1, 9, and 7 respectively, in order to determine trends in the lesser peaks. Main 

chain carbon atoms appear as relatively broad, truncated peaks in these figures. 

Figure 1.7 contains 3 peaks at 42.3 (Al), 27.8 (A2), and 26.2 (A3) ppm with 

intensities directly proportional to the concentration of excess DA present in starting 

materials. As excess DA increases from 0 to 10 mol-%, the relative intensity of these 

peaks (measured as peak heights) as compared to main chain peak 1 increases from 0 to 

5.3%. For all concentrations of excess TA, these resonances are not observed (Figure 

1.10). This behavior confirms their identities as amine end groups Al, A2, and A3. With 

1 7 

specific assignments based on previous work on PA-6,6 and PA-12 materials. 

Figure 1.11 shows 4 peaks at 127.6 (T4), 131.5 (T3), 132.6 (T5), and 139.3 (T2) 

ppm with intensities directly proportional to the concentration of excess TA present in 

starting materials. As excess TA increases from 0 to 10 mol-%, the intensity of these 

peaks relative to main chain peak 9 increases from 1.5 to 10.7%, while the same 

resonances in Figure 1.8 are shown to be inversely proportional to molar excess DA. 

Additional peaks in the carbonyl region (Figure 1.9 and Figure 1.12) follow similar 



14 

trends with intensities directly proportional to excess acid concentration and inversely 

proportional to excess diamine concentration. This behavior confirms their assignments 

as acid end groups. Chemical shifts for peaks T2 and T4 are within 1 ppm of those 

reported by Hall and others using HFIP as an NMR solvent to observe end groups of 

other terephthalic acid containing polyamides. However, T3 and T5 are different from 

those reported by Hall by 1-3 ppm. Two possible reasons are: 1) spectra in this study 

were acquired using a mixed solvent system, and 2) end group chemical shifts are 

sensitive to pH altered by changes in concentration of acid and amine end groups 

themselves. ' 

In Figure 1.14, the intensity of terephthalic end group peak T3 increases from 

1.47 to 5.16% relative to terephthalic main chain peak 9 as excess BA is increased from 0 

to 10 mol-%. This increase in end group intensity is due to a corresponding decrease in 

number average molecular weight as the concentration of mono functional BA increases. 

In addition to terephthalic end group peaks, 4 new peaks appear in the aromatic region at 

133.6 (Bl), 132.8 (B4), 129.9 (B3), and 127.4 (B2) ppm, a single new peak appears in the 

aliphatic region at 42.0 (B6) ppm (Figure 1.13), and a single new peak in the carbonyl 

region appears at 173.2 ppm (Figure 1.15). The peak at 129.9 ppm increases from 0 to 

5.61% as the concentration of BA increases from 0 to 10 mol-%. Based on these trend 

resonances, these are assigned to benzamide end groups. This is further supported by 

previous work of Hall and others20; their assignments agree with our results within +/- 1 

ppm. Chemical shifts of BA peaks in these systems are within 1 ppm of assignments 
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Figure 1.4. Solution 1JC NMR spectra of polymers synthesized from starting materials 

containing 0, 1, 3, 5, and 10 mol-% excess 1,12-diaminododecane (XS DA). Vertical 

scales for each spectrum have been adjusted to maximize polymer peak intensities 

without truncation. 
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Figure 1.5. Solution 13C NMR spectra of polymers synthesized from starting materials 

containing 0, 1,3, 5, and 10 mol-% excess terephthalic acid (XS TA). Vertical scales for 

each spectrum have been adjusted to maximize polymer peak intensities without 

truncation. 
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Figure 1.7. Aliphatic region of solution 1 C NMR spectra for polymers synthesized from 

starting materials containing 0, 1,3, 5, and 10 mol-% excess diaminododecane (XS DA). 

Peak intensities are normalized with respect to backbone carbon 1. 
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Figure 1.8. Aromatic region of solution 13C NMR spectra for polymers synthesized from 

starting materials containing 0, 1,3, 5, and 10 mol-% excess diaminododecane (XS DA). 

Peak intensities are normalized with respect to backbone carbon 9. 
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Peak intensities are normalized with respect to backbone carbon 7. 
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Figure 1.10. Aliphatic region of solution 13C NMR spectra for polymers synthesized 

from starting materials containing 0, 1,3, 5, and 10 mol-% excess terephthalic acid (XS 

TA). Peak intensities are normalized with respect to backbone carbon 1. 
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Figure 1.11. Aromatic region of solution C NMR spectra for polymers synthesized 

from starting materials containing 0, 1,3, 5, and 10 mol-% excess terephthalic acid (XS 

TA). Peak intensities are normalized with respect to backbone carbon 9. 
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Figure 1.12. Carbonyl region of solution C NMR spectra for polymers synthesized 

from starting materials containing 0, 1, 3, 5, and 10 mol-% excess terephthalic acid (XS 

TA). Peak intensities are normalized with respect to backbone carbon 7. 
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Figure 1.13. Aliphatic region of solution C NMR spectra for polymers synthesized 

from starting materials containing 0, 1,3, 5, and 10 mol-% excess 1,12-diaminododecane 

(XS BA). Peak intensities are normalized with respect to backbone carbon 1. 
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13, Figure 1.14. Aromatic region of solution C NMR spectra for polymers synthesized 
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(XS BA). Peak intensities are normalized with respect to backbone carbon 9. 
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A11NMR samples analyzed exhibited three equally intense peaks at 44.9 (C), 33.9 

(C), and 22.2 (C) ppm which fluctuated between 2.3 and 6.3% (average 3.9%). The only 

apparent trend is that they are more pronounced for polymers containing excess BA 

(5.5% average intensity) as compared to those containing no excess (3.2% average 

intensity). However, the significance of this data is uncertain. These peaks are not 

consistent with NMR spectra of monomer and do not behave like end groups. Other 

possibilities include the presence of cyclical structures or cis amide repeat units. Figures 

1.9, 1.12, and 1.15 show a peak at 185.2 ppm that also exhibits anomalous behavior. It is 

present in all spectra except for products formed using 10 mol-% excess diamine or 

diacid in their starting materials. Its identity is unconfirmed to date. 

End Group Concentrations and Molecular Weights 

End group concentrations relative to the polymer main chain peaks were 

calculated by NMR analysis using the equation; 

[EG] = IEG/[ ( / I /2+/ 9 /4 ) /2] 

where IEG = /AI or In/2 or 7B3/2. Figure 1.16 displays a plot of total end group 

concentration [EG] and IV as a function of excess DA and TA. Note that the positive and 

negative x-axis values refer to the mol-% excess or deficiency of DA. For all samples, 

end group concentration is inversely proportional to IV. For example, the product 

synthesized with 10 mol-% excess TA has the lowest IV and the highest [EG]. As amount 

of excess TA is decreased from 10 to 0 mol-%, [EG] decreases and IV increases 

progressively. A similar trend is apparent as excess DA decreases from 10 to 3 mol-%. 

However, there is a large difference in IV and [EG] between samples containing 10 mol-

% excess DA and TA. This deviates from traditional step-growth theory which predicts 
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that an equivalent imbalance of either the A-A or B-B monomer similarly affects 

molecular weight. Further deviation from theory is apparent in the fact that products 

synthesized with 1 and 3 mol-% excess DA had higher IVs than products of pure salt. 

0 - | — . — i — • — r 
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mol-% Excess DA 

8 10 

Figure 1.16. Total end group concentration by 13C NMR (a) and IV (•) of PA-12,T 

synthesized with excess DA (positive values) and excess TA (negative values of DA). 
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Figure 1.17: Acid (A) and amine (•) end group concentrations of PA-12,T synthesized 

with excess DA (positive values) and TA (negative values) 

Figure 1.17 shows the concentration of amine and acid end groups as a function 

of excess DA and TA. No amine end groups were observed for all concentrations of 

excess TA, therefore, these reactions have reached maximum attainable conversion. With 

excess TA, molecular weight advances to a point where DA is completely reacted or 

volatilized, resulting in polymer with total acid end groups. Higher molecular weight is 

obtained by decreasing amount of excess terephthalic acid, thus lowering acid (total) 

[EG]. 

Pure PA-12,T salt and excess DA products have both acid and amine end groups. 

These reactions have not reached full conversion and are still in an equilibrium state 

within the given polymerization conditions. The majority of end groups are acid at 1 mol-
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% excess DA, while amine end groups are the majority at 3 mol-% DA. Recall that these 

compositions have the highest IV and the lowest total end group concentration. 

Interpolation of Figure 1.17 reveals that end group functionality would be balanced 

yielding the highest molecular weight with approximately 2.4 mol-% excess DA. Without 

determining the equilibrium constant specifically, qualitative observations show that the 

highest equilibrium molecular weight would be obtained close to this value. This data 

suggests that maximum molecular weight is achieved when the stoichiometry of the 

product is balanced, which is not necessarily the same as balancing the stoichiometry of 

the initial reactants. This is due to the volatilization of diamine from the reaction and IV 

and I3C NMR have shown in agreement that adding between 1 and 3 mol-% excess 

diamine accounts for this loss, resulting in the highest molecular weight and most 

balanced end group functionality. 

Total end group concentrations and IV for PA-12,T synthesized with excess BA 

and TA are presented in Figure 1.18. No amine end groups were detected in polymers 

synthesized with excess BA or TA. Therefore, reactions have reached total attainable 

conversion and the total end group concentration is the sum of terephthalic acid and 

benzamide end groups. As the initial concentration of excess BA and TA increased, the 

total end group concentration increased and IV decreased. The magnitude of the effects 

of BA and TA on IV and [EG] were identical on a molar basis despite their different 

functionality. Thus, the only difference observed between PA-12,T synthesized with 

excess BA and TA was end group functionality. An excess of 1 mol-% BA yielded 

polymer containing 71% acid and 29% benzamide end groups. 
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At 10 mol-% excess BA, the resulting polymer had 48% acid and 52% benzamide end 

groups. Differences in the reactivity and polarity of these end groups can affect post 

polymerization processes, dyeability5 and interactions with fillers in composite 

materials. 19 

2 4 6 8 
mol-% Excess TA or BA 

Figure 1.18. IV (solid) and total end group concentration (hollow) for PA-12,T 

synthesized with TA (•, o) and BA (W,V). 

Number average molecular weights (Mn) were calculated by multiplying the 

molecular weight of the repeat unit for PA-12,T (Mo = 330.5 g/mol) by the average 

degree of polymerization (DP) using the equation; 

Mn (g/mol) = M0[(/i/2 + /9/4)/2] / [(/A1 + /T3/2 + 7B3/2)/2] 

The degree of polymerization was calculated by NMR analysis as the ratio of average 

main chain repeat units to the sum of end group units. I] and I9 represent the intensity of 
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amine and acid main chain peaks, respectively, while 7A 1, 7j3, and 7B3 respectively 

represent the intensity of amine, terephthalic acid, and benzoic acid end group peaks as 

assigned in Figure 1.1. Mn versus excess reactant is plotted in Figure 1.19. Similar trends 

in Figures 1.3 and 1.19 demonstrate strong agreement between IV measurements and Mn 

calculations based on NMR analysis. Both confirm that 1-3 mol-% excess DA yielded 

polymers with higher Mn and IV than the product of pure 12,T salt. Both Mn and IV 

decreased progressively above 3 mol-% excess DA and for all concentrations of excess 

BA and TA. 
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Figure 1.19. PA-12,T number average molecular weights calculated by NMR plotted as 

a function of mol-% excess 1,12-diaminododecane (•), terephthalic acid (•), or benzoic 

acid (A). 
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Figure 1.20. Log-Log plot of IV vs. Mn for: A) poly(p-benzamide) (96% sulfuric acid, 

20°C)21; B) PA-6I (cone, sulfuric acid, 25°C)22'23; C) experimental data (o) and best fit 

curve for PA-12,T(conc. sulfuric acid, 25°C); D) PA-6,6 (96% sulfuric acid, 25°C)23; E) 

PA-12 (96% sulfuric acid, 25°C)23. 

Figure 1.20 shows a log-log pot of IV versus Mn with a linear trend for these 

polymers. A best fit line was used to calculate Mark-Houwink constants of 10=55.8* 10"5 

dL/g and a = 0.81. The physical significance of these data is a tendency for the net 

polymer system to behave more like flexible chains than rigid rods under these 

conditions.20 Sulfuric acid is not a theta solvent for these polymers; therefore plots are 

only shown over the molecular weight range where the Mark-Houwink relationship has 

been demonstrated to be accurate for each system. i_23 IV of PA-12,T is 1-2 orders of 

magnitude less than poly(p-benzamide) and PA-6,I over the range of molecular weights 
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studied. However, PA-12,T shows only a marginal increase in IV over completely 

aliphatic nylons of comparable molecular weights. For example, at a Mn of 14,300 g/mol, 

PA-6,6 has an IV of 0.70 g/dL (commercial grade), PA-12,T has an IV of 1.30 g/dL. 

Conclusions 

PA-12,T of varying molecular weights was synthesized by the melt condensation 

polymerization of 12,T salt with 0-10 mol-% excess 1,12-diaminododecane, terephthalic 

acid, or benzoic acid. Molecular weight differences as identified by intrinsic viscosity 

1 "5 

were in agreement with relative end group concentrations determined by C NMR 

methods. Addition of 1 and 3 mol-% molar excess diamine increased the number 

average molecular weight of products to (-14,000 g/mol) compared to pure salt (12,000 

g/mol). Additionally, it was seen that an inversion between the relative concentration of 

acid and amine end groups occurred between 1 and 3 mol-% excess DA. At 

approximately 2.4 mol-% excess DA, equal stoichiometry is expected to be obtained for 

products using these detailed polymerization conditions, producing PA-12,T of maximum 

equilibrium molecular weight. On a molar basis, addition of terephthalic acid or end 

capping with benzoic acid, decreased molecular weights to a similar degree. Molecular 

weights of all polymers calculated using CNMR spectroscopy showed a linear trend on 

a log (Mn) - log (IV) plot. These were used to calculate with Mark-Houwink constants of 

K=55.8*10"5 dL/g and af=0.81. Since these values are based on single-point intrinsic 

viscosity measurements used to a great extent in semi-aromatic polymer patent literature, 

they should prove useful in determining the magnitude of molecular weight changes of 

similar monomer systems. 
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CHAPTER II 

EUTECTIC MELTING BEHAVOIR OF POLY AMIDE 10,T/12,T: 6,T 

COPOLYTEREPHTHALAMIDES 

Abstract 

Semi-aromatic polyterephthalamides 10,T and 12,T were synthesized with 0-60 

wt-% PA-6,T comonomer by melt condensation polymerization. Molecular weights of 

the copolymers ranged from 12,000 to 27,000 g/mol and all produced tough melt-pressed 

films. The substituted aromatic carbon of the C NMR spectra revealed that comonomer 

sequences are statistical, e.g., 50:50 wt-% PA- 12,T, 6,T copolymer had 12,T-12,T:12,T-

6,T:6,T-6,T sequence ratios of approximately 1:2:1. Copolymers of both PA-10,T and 

12,T exhibited a eutectic melting point at 30-wt% PA-6,T, with melting points decreasing 

linearly from 315 and 292 °C to 280 and 272 °C, respectively. Melting enthalpies showed 

a similar depression at 35 wt-% PA-6,T. Although PA-10,T/12,T and PA-6,T are not co-

crystalline, no wholly amorphous samples were observed at any composition. WAXD 

displayed three regions of diffraction patterns: 1) sharp PA-10,T crystal diffractions from 

0-20%) PA-6,T, 2) broad amorphous scattering between 25-45% PA-6,T, 3) sharp 

diffraction peaks from 50-60 wt% PA-6.T. The Tg of PA-10/T and 12,T, observed by 

DMA, were 147 and 137 °C, respectively. At 15 wt% PA-6,T, both PA-10,T and 12,T 

showed a second, higher Tg phase at 190 and 182 °C, inferring phase separation. At 50% 

PA-6,T, a single Tg was observed at 151 and 144 °C for PA-10J and PA-12,T 

respectively. Differences in storage modulus below Tg (100 °C) were negligible, while 

samples with lower crystallinity (30 wt-% PA-6,T) showed an approximate 40% decrease 

in storage modulus at 200 °C. 
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Introduction 

Semi-aromatic polyamides combine high melting temperatures and heat resistance 

of wholly aromatic polyamides (e.g. Kevlar poly p-phenylene terephthalamide) with the 

melt proccessability of aliphatic polyamides (nylon 6,6). Much research has focused on 

semi-aromatic polyamides synthesized using aliphatic diamines and terephthalic acid.1 

With short aliphatic diamines (2-7 CH2's), melting temperatures surpass the thermal 

decomposition temperature of polyamides, thus making melt processing impractical. For 

example, the melting points of PA-4,T and PA-6,T are 430 and 370 °C, respectively. 2 

Increasing the length of the aliphatic diamine, the melting point is lowered into a 

processable range. For instance, the melting points of PA-9,T, PA-10,T, PA-12,T and 

PA-18,T4 are approximately 309, 315, 295 and 245 °C, respectively. Semi-aromatic 

polyamides also have glass transition temperatures ranging from 100 - 140 °C (as 

observed by DSC), rendering them suitable for applications below these temperatures. 

Comonomers are commonly used in semi-aromatic polyamides to alter properties 

such as melting temperature, processability, and optical clarity.1 The ability of monomer 

to co-crystallize is determined by plotting polymer melting temperature versus copolymer 

composition. If melting temperatures do not display a local minimum as a function of 

composition, the comonomers are said to be isomorphous. Isomorphism of adipic acid 

and terephthalic acid in PA-6,T, 6,6 copolymers is well known.5'6'7 The explanation of 

their co-crystallization is that the length between amide groups of adipic acid and 

terephthalic acid units are similar, thereby allowing entrance into the same crystal 

structure. Alternatively, when a local minimum, or eutectic point, is observed, the 

comonomers are not co-crystalline and thus do not fit into the same crystalline lattice. 
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Here the comonomer acts an impurity, thus decreases the perfection and melting point of 

the formed crystals. This is observed in copolyamides of PA-6,T and poly(hexamethylene 

isophthalamide) (PA-6,I) and PA- 6, 6,T. 

Research on PA-10,T copolymers has been limited to copolymerizations 

involving caprolactam and adipic acid . It has been demonstrated that adipic acid and 

terephthalic acid co-crystallize when polymerized with decamethylene diamine showing 

melting point versus composition trends similar to that of PA-6,T, 6,6 copolymers. No 

literature currently exists covering the copolymerization of PA-10,T of 12,T with other 

linear diamines. A single reference describes semi-aromatic copolyamides synthesized 

using terephthalic acid and a combination of linear aliphatic diamines.9 It was found that 

copolyamides of PA-4,T and 6,T display a depression of melting temperature with 

composition, but maintain some level crystallinity throughout all compositions studied. 

In the present study, copolymers of PA-10,T and 12,T were synthesized with 

PA-6,T via melt condensation polymerization. Polymers were characterized using high 

resolution C NMR spectroscopy for composition analysis and intrinsic viscosity for 

molecular weight determination. Differential scanning calorimetry and dynamic 

mechanical analysis were used to examine the thermal properties of the synthesized 

copolymers, while wide-angle x-ray scattering provided information concerning the 

effect of composition on crystallinity. 
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Experimental 

Materials 

Terephthalic acid, 1,10-diaminodecane, 1,12-diaminododecane, and 1,6-

diaminohexane (HMDA) were purchased from Aldrich. Terephthalic acid and 1,6-

diaminohexane were used as received. 1,10-Diaminodecane, and 1,12-diaminododecane 

were sublimed at 70 °C and dried at room temperature under vacuum before use. N,N-

Dimethylacetamide (DMAc) and triethylamine were distilled from barium oxide onto 

molecular sieves before use. Concentrated sulfuric acid (96%) for viscosity 

measurements was purchased from Aldrich and used as received. Solutia provided 

PA-6,T salt, siloxane antifoam, and a commercial antioxidant. 

Synthesis 

Polyamide (n,T) salt. Into a 2 L beaker, 1 L of deionized water, 1,10-diaminodecane 

(49.5 g, 0.287 mol) and terephthalic acid (42.3 g, 0.285 mol) were added and the slurry 

was heated to a boil. Additional water was added and brought to boil to yield a 

supersaturated clear salt solution. The hot salt solution was then added to a 2 L beaker 

containing 500 mL of reagent alcohol and cooled to room temperature, followed by 

cooling in a freezer. The precipitate was then filtered and washed with reagent alcohol. 

The resulting 10,T salt was formed in quantitative yield (95 %). PA-12,T salt was 

prepared in a similar manner. All terephthalic acid salts were precipitated from water into 

reagent alcohol and dried before use. PA 12,T, 10,T, and 6,T salt melting temperatures 

were 271.9, 271.6, and 281 °C respectively, with melting enthalpies of between 430 and 

450 J/g. 
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Melt condensation ofpolyamide (n,T) and copolymers. Polyamide (n,T) salt, 3 mol-% 

excess diamine, and 0.5 wt-% antioxidant were weighed and mixed with a mortar and 

pestle. The solid mixture was then added to a test tube and approximately 50 wt-% 

deionized water was added to create a slurry. Twelve test tubes were loaded into a Pan-

reactor, which was then sealed and purged with nitrogen. Heating steps were 

programmed into the reactor controller unit and monitored with a thermocouple placed in 

one of the test tubes. The reactor was surrounded by insulation to improve heating 

control. Nitrogen pressure was controlled manually and measured by a gauge on the 

reactor head. Predetermined temperatures provided signals for pressure changes. With 

approximately 125 kPa nitrogen pressure and a 200 °C set point, the sample temperature 

remained at 125 °C until all water evaporated. At 150 °C the pressure was elevated to 

1724 kPa. At 280 °C the pressure was released and the temperature was allowed to rise 

and hold at 310-315 °C for 15 minutes with purging nitrogen. 

Solution polymerization ofpolyamide 6,T (PA-6,T). HMDA (10.98 g, 0.095 mol) and 

triethylamine (27 mL, 0.194 mol) were dissolved in 230 mL of DM Ac and added to a 

glass Waring blender. The blender was turned on high and 60 mL of DMAc with 

terephthaloyl chloride (19 g, 0.094 mol) was added as quickly as possible. A white 

precipitate immediately formed and followed by a large increase in viscosity. After 5 

minutes, the precipitate was filtered and washed with acetone followed by water, giving 

PA-6J (20.7 g, 90%). 

Sample Preparation 

Solid polymers obtained from the test tubes immersed in liquid nitrogen for 

approximately 10 minutes were ground using a Waring blender with a stainless steel 



42 

mixing jar. The pellets were then dried at 80 °C under vacuum for 24 hours, and placed in 

a desiccator until further characterization. 

Dry pellets were then compression molded into 0.8 or 0.3 mm films at a 

temperature approximately 10-20 °C above the melting temperature of the polymer. The 

pellets were placed between two woven Teflon sheets and held at this temperature 

between two hot plates for 3 minutes with no pressure. For an additional 2 minutes, the 

film was pressed with 2700 kPa. Hot plates were then taken from the press and immersed 

in a room temperature water bath. For a higher degree of supercooling, films were 

removed from the hot plates and placed underneath a room temperature steel plate. Films 

were dried at 80 °C under vacuum for 12 hours. Annealing was performed at 200 °C for 

12 hours under vacuum. 

Characterization 

Nuclear magnetic resonance spectroscopy (NMR). NMR samples having a 10 wt-% 

polymer concentration was prepared using a 3:1 volume ratio of hexafluoroisopropanol 

(HFIP) to CDCI3. Preparation was performed by first dissolving pellets in HFIP, 

followed by addition of CDCI3. Solution C spectra were collected on a Varian 

UNITYINOVA NMR spectrometer operating at a frequency of 125.7 MHz. Routine 

acquisitions were obtained using a 1.3 second acquisition time, a 45° pulse width of 2.9 

u.s, and a 1 second recycle delay. The number of accumulate transients ranged from 

15,000 to 30,000, involving 12-24 hour collection times. Spectra were recorded at 25°C. 

Data was zero-filled up to 256k points and filtered with 1 Hz of line broadening prior to 

application of Fourier transformation. Baselines were corrected using a 10th order 

polynomial. 
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Viscometry. Solutions containing 0.5 g/dL of polymer in concentrated sulfuric acid 

were prepared by adding 0.25 grams of polymer and 25 mL of concentrated sulfuric acid 

into a 50 mL flask. After 12 hours of mixing via magnetic stirring, the solutions were 

diluted with an additional 25 mL of sulfuric acid, and stirring continued for another 12 

hours. Solutions were visually inspected for gelling, and passed through a funnel packed 

with glass fiber if gel was present. Measurements were obtained using a Cannon 

viscometer in a 25 °C controlled water bath. The viscometer was washed with sulfuric 

acid and a portion of the next sample to be tested before measurements were recorded. 

Flow times were an average of three tests with that agree within +/- 0.2 seconds. Using 

flow times of concentrated sulfuric acid and polymer solution were used to calculate the 

specific and relative viscosities. Single point intrinsic viscosities were then determined 

using Solomon and Ciuta relationship; 

[n] = [(2*(risP-ln(Tlre,)]1/2)]/C 

where, nsp is specific viscosity, nrei is relative viscosity, and C is concentration.10 

Differential scanning calorimetry (DSC). Polymer melting temperatures were 

analyzed using a TA Instruments 2920 DSC. Scans were taken at a heating rate of 10 

°C/min. Data from first and second heating scans were collected. Samples were heated 

approximately 10-20° C above their melting temperature, air cooled to room temperature, 

and heated a second time to 350° C. 

Wide-angle x-ray scattering (WAXD). WAXD was performed on a Rigaku Ultima II 

x-ray diffractometer. Data was collected from 3-40° 29 at a rate of 2 7min. Samples were 

annealed at 100 °C for 12-24 hours prior to analysis to achieve maximum attainable 

crystallinity. 
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Dynamic mechanical analysis (DMA). Tensile mode DMA was obtained using a 

Thermal Analysis Q800 series instrument. Samples of 0.8 mm thickness were prepared 

by melt pressing, followed by annealing and drying at 200° C prior to testing. Data was 

collected from 30-250 °C at a heating rate of 2° C/min with a 20 um amplitude, 0.05 N 

preload force, and 125% force track. 

Results 

Synthesis and Intrinsic Viscosity 

Copolymers were synthesized from their corresponding diamine/terephthalic acid 

salts as shown in Figure 2.1. Figure 2.2 shows the temperature and pressure profiles of 

the melt condensation polymerization used to synthesize all copolymers. 
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W // 
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+ 3 mol-% excess H2N' 
.NH9 

100-x 

Figure 2.1. Synthetic scheme of PA-10,T:6,T copolymers, where x = 0-60 wt-% 

The melt condensation polymerization was performed in three stages, the boiling, 

high pressure, and hold stage. Duration and pressure of each stage was determined by 

temperature of the reaction. The boiling stage ensures homogenization of the reaction 

mixture and very little polymerization occurs. At completion of boiling and sudden rise 
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of temperature, the pressure is increased to 1724 kPa. High pressure is maintained from 

125-270 °C to mitigate the loss of diamine due to volatilization throughout this initial 

stage of the polymerization. The pressure was released and the polymerization was 

allowed to heat to maximum temperature. Stage three is the hold stage at maximum 

temperature. Initially, higher polymerization temperatures and hold times were used, but 

this process often resulted in polymers that were not soluble in sulfuric acid or amendable 

to compression molding. In order to avoid this 'gelling', a lower maximum temperature 

(315 from 330 °C) and polymerization time (15 from 30 minutes) were used. This yielded 

homo and copolymers that were soluble in both sulfuric and dichloroacetic acid, and were 

suitable for compression molding into films for testing. 
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Figure 2.2. Melt condensation polymerization temperature and pressure profiles 
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In studies published separately, it was found that PA-12,T synthesized with 1 and 

3 mol-% excess 1,12-diaminododecane had the lowest total end group concentration, the 

most balanced acid/amine end groups, and the highest molecular weights, under identical 

melt polymerization conditions. Therefore, in order to obtain suitable molecular weights 

for copolymer analysis, 3-mol% deca or dodecamethylene diamine was added to each 

reaction. Single point intrinsic viscosities were determined to estimate relative number 

average molecular weights between copolymer samples. IV values for several of the 

copolymers studied are given in Table 2.1. 

Table 2.1. Intrinsic viscosities and 1st heating DSC melt temperatures of homo and 

copolymers 

Feed Ratio 
(PA-n,T:PA-6,T) 

100:0 
85:15 
70:30 
50:50 

PA-10,1 

IV 

1.68 

1.41 
1.26 
1.68 

Mn
a 

(g/mol) 
19700 
15900 
13800 
19700 

Tm(°C) 

327 
316 
283 
324 

PA-12,T 

IV 

1.14 
1.21 
1.24 
2.17 

Mn
a 

(g/mol) 
12200 
13100 
13500 
27000 

Tm(°C) 

295 
287 
274 
328 

a K = 0.000558 dL/g and a=0.81 in 96% H2S04 at 25 °C 

Number average molecular weights for PA-12,T:6,T and PA-10,T:6,T copolymers 

were estimated from Mark-Houwink constants developed for PA-12,T homopolymer. 

Assuming that the solution properties of PA-10,T, 12,T and 6,T are similar, an estimate 

of Mn for the copolymers was determined using the equation; 

[n] = 0.000558(dL/g)*(Mn)
81 

Note that these constants were developed using single-point IV values, and this 

relationship is only applicable for 0.5 g/dL concentrations dissolved in 96% concentrated 

H2S04 at 25 °C. 



There are two effects that create Mn differences in the copolymers; differential 

diamine volatility and the physical state of the polymer during the reaction. Excess 

diamine is required in order to obtain balanced stoichiometry and the amount of excess 

needed is a function of the volatility of the diamine during the polymerization. Since, 

hexa-, deca-, and dodecamethylene diamine have different melting points and vapor 

pressures, using a constant 3 mol-% excess diamine for all copolymer compositions will 

not result in the same stoichiometric balance under identical polymerization conditions. 

For example, PA-12,T, 85:15 and 70:30 PA-12,T, 6,T had intrinsic viscosities of 1.14, 

1.21, and 1.24, respectively. Increasing the amount of PA-6,T comonomer has a greater 

impact on stoichiometric imbalance, because a higher fraction of the more volatile 

HMDA (compared to deca and dodecamethylene diamine) is present. If equal molecular 

weights were desired, the amount of excess diamine would need to be increased 

corresponding to the amount PA-6,T comonomer in order to compensate for differential 

volatility of the two diamine monomers. 

The main cause of molecular weight differences is the physical state of the 

polymer during the reaction, as determined by the relationship between the crystalline 

melting temperature of the polymer and the maximum reaction temperature. Table 1 lists 

the DSC first heating melting temperatures of several of the copolymers. Their 

corresponding DSC thermographs are presented in Figure 2.3. The 1st heating DSC data 

is related to the crystalline state of the polymer formed from the reaction. Comparison of 

the IV and DSC data show that when the melting temperature of the polymer is higher 

than the maximum process temperature, the intrinsic viscosity is notably higher. The 

melting temperatures of PA-10.T (327 °C), 50:50 10,T:6,T (324 °C) and 50:50 12,T:6,T 
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(328 °C) are substantially higher than the final reaction temperature of 315 °C. These 

polymers also have the highest intrinsic viscosities (1.68, 1.68, and 2.17) and molecular 

weights (19,700, 19,700, and 27,000). Comparison of a molten (PA-12,T - Tm= 295 °C) 

and crystallized polymer (50:50 PA-12,T, 6,T - Tm = 328 °C) shows a near doubling of 

intrinsic viscosity from 1.14 to 2.14 dL/g. This phenomenon is known as solid state 

polymerization. Step-growth polymerizations proceed via the equilibrium, Pi + P2 • P3 + 

B, where Pi and P2 are small molecule reactants or polymer end groups, P3 is a higher 

molecular weight chain, and B is water.12 If polymer (P3) is crystallized from the 

reaction mixture, the equilibrium of the molten state is changed. Since end groups do not 

participate in crystallization, the concentration of reactants (Pi and P2) is increased, and 

the reaction proceeds to higher molecular weight materials (P3). 

Despite the Mn differences, the copolymers could be compression molded into 

films were tough. This implies all copolymers are above the critical molecular weight and 

thus molecular weight variations of the following results are negligible. It is noteworthy 

to mention that the compression molding of the 50:50 PA-12,T, 6,T (the highest Mn) was 

the most difficult, requiring much a higher temperature and pressure compared to the 

other copolymers. Semi-aromatic polyamides are known have markedly higher melt 

viscosities than purely aliphatic polyamides, and an IV of 2.16 (Mn~ 27,000) may 

approximate an upper limit in regard to the processability of these materials. 
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Figure 2.3. First heating DSC thermographs of PA-10,T (top) and PA-12.T (bottom) 

with (a) 0, (b) 15 wt-% (c) 30 wt-%, and (d) 50 wt-% PA-6,T (vertical line represents the 

maximum reaction temperature). 
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High Resolution Solution C NMR Spectroscopy 

High resolution NMR spectroscopy was used to determine copolymer 

composition and comonomer distribution. The 13C NMR spectra for PA-12,T and PA-

10,T are shown in Figures 2.4 and 2.5. General peak assignments for PA-12,T are as 

follows (see labels on Figure 2.4): carbonyl (1) - 170.8 ppm, substituted aromatic 

carbons (2) - 137.7 ppm, aromatic carbons (3) - 128.0 ppm, oamide carbon (4) - 41.7 

ppm, methylene carbons (5-9) - 30.0, 29.9, 29.7, 29.4, and 27.3 ppm. General peak 

assignments for PA-10,T are as follows (see labels on Figure 2.5): carbonyl (1) - 170.8 

ppm, substituted aromatic carbons (2) - 137.7 ppm, aromatic carbons (3) - 128.0 ppm, 

a-amide carbon (4) - 41.6 ppm, methylene carbons (5-8) - 29.8, 29.6, 29.4, and 27.2 

ppm. 

Analysis of the PA-10,T/12,T, 6,T copolymers displays multiple peaks of carbon 

atoms 1, 2, 3, and 4 as labeled in Figure 2.4 and 2.5. Figures 2.6 shows expanded regions 

of the a-amide carbon (4) and substituted aromatic carbon (2) of PA-12,T, PA-6,T, and 

several of copolymers. Slight variations in sample viscosity and solvent caused small 

shift changes; therefore peaks were aligned based on the oamide carbon. The a-amide 

carbon shows two distinct peaks representing the fraction of PA-12,T and PA-6,T in the 

copolymer, ensuring that resulting polymer corresponds to the monomer feed ratio. Note 

that samples were prepared in wt-%, e.g. 50:50 wt-% is approximately 45:55 mol-% PA-

12,T, 6,T. This is significant since NMR spectral intensities reflect molar compositions. 
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In addition to the substituted aromatic carbon peaks (Figure 2.6, left) for PA-12,T 

and 6,T at 137.74 and 137.62 ppm respectively, two new peaks appear for all 

copolymers. The new peaks are due to the formation of PA-12,T - PA-6,T alternating 

sequences. This is further confirmed by comparing the 50:50 wt-% copolymer and a 

50:50 wt% mixed solution of the two homopolymers shown in Figure 2.7. The physical 

mixture of the two homopolymers displays two chemical shifts for the substituted 

aromatic carbon, whereas the 50:50 copolymer has four chemical shifts (Figure 2.7, a and 

b). The new peaks (c and d) are due to PA-12,T-PA-6,T alternating sequences, having 

identical peak heights and representing one carbon each. This sequence information gives 

insight to the randomness of the copolymers.13 For example, the 50:50 wt-% PA-12,T, 

6,T copolymers, the ratio of 12,T-12,T:12,T-6,T:6,T-6,T units is approximately 1:2:1, 

ensuring that the polymerization yields completely random, statistical copolymers. 

The relative amounts of PA-12,T, PA-6,T, and PA-12,T-PA-6,T sequences 

formed by varying PA-6,T content of the copolymer from 15 to 50 wt-% is shown in 

Figure 2.6 (bottom left). At 15 wt-%> PA-6,T (Figure 2.6b), a short broad peak between 

the chemical shifts for pure PA-6,T and the 12,T-6,T unit is present. Comparison with the 

corresponding peak of the PA-12,T - PA-6,T sequence indicates little if any pure PA-6,T 

exits at a 15 wt-% loading. At 30 wt-% PA-6,T, the peak due to pure PA-6,T sequences 

appears, but the number of these sequences are still small as compared to the 12,T and 

12,T-6,T sequences. At 50-wt% PA-6,T, the peak for pure PA-6,T sequences is increased 

to approximately the same number at pure 12,T units and half that of 12,T-6,T sequences, 

typical of a random melt condensation polymerization. Since crystallinity is dependent on 

regularity of the polymer structure, the behavior of the substituted aromatic carbon 
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should provide additional chemical information to help characterize the physical eutectic 

melting property of the copolymers in question. 

I t l f — i — l 1 — r — [ r — i — 1 1 | l — l 1 — i — | r — r — <" • J ' ' ' ' | ' ' <i i | i i • i | i i • i | i 

1380 137.8 137.6 137.4 42.0 41.8 41.6 41.4 41.2 

Figure 2.6. Expanded 13C spectrum of substituted aromatic and oamide carbon of a) PA-

12,T, b) 85:15 wt-% PA 12,T, 6,T, c) 70:30 wt-% PA 12,T, 6,T, d) 50:50 wt-% PA 12,T, 

6,T, and e) PA-6,T. 
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13, Figure 2.7. Peak assignments of substituted aromatic C NMR chemical shifts of the 

50:50 PA- 12,T, 6,T copolymer and a 50:50 mixture of the two homopolymers. 

Thermal Characterization 

A select series of second-heating DSC thermograms of PA-10,T, 6,T (Top) and 

12,T, 6,T (Bottom) copolymers are shown in Figure 2.8. Melting temperatures and 

enthalpies versus wt-% PA-6, T are plotted in Figure 2.9. PA-10,T and PA-12,T 

homopolymers have melting temperatures of 315 and 292 °C, respectively. Copolymers 

initially show a linear decrease in melting temperature with increasing PA-6,T 

comonomer content, with the lowest melting temperatures of 280 and 272 °C observed 

for PA-10,T, 6,T and 12,T, 6,T copolymers at 30 wt-% PA-6,T, respectively. Similarly, 

melting enthalpies of both sets of copolymers show a linear decrease with increasing PA-

6,T comonomer. Melting enthalpies of PA-10,T, 6,T and PA-12,T, 6,T copolymers a 

minimum at 35 and 30 wt-% PA-6,T, respectively, decreasing from 70 to 24 J/g for PA-

10,T, 6,T and 60 to 26 J/g for PA-12,T, 6,T copolymers. In addition, the melting 
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endotherms of copolymers containing 30 wt-% PA-6,T are very broad compared to those 

of their respective homopolymers. 

The data indicates that PA-10,T/12,T and PA-6,T are not co-crystalline. The 6 or 

8 carbon difference in the diamine portion of the repeat unit increases the length between 

amides, and therefore inhibit entrance of the PA-6,T repeat unit into PA-10,T/12,T crystal 

structure. The decreasing melting temperatures up to 30-wt% PA-6,T are consistent with 

the formation of smaller, less perfect crystals, while the decrease in melting enthalpies 

are due to the overall decrease in the amount of crystallinity. Here PA-6,T sequences up 

to 30-wt% act as impurities, and inhibit the formation of PA-10,T or PA-12,T crystals. 

C NMR spectroscopy has shown that with 15-wt% PA-6,T, most PA-6,T units are 

statistically incorporated in PA-6,T-PA-12,T alternating units and not purely PA-6,T 

sequences. This maximizes the number of irregularities in the polymer chain, and 

therefore has a negative effect on crystal content as well as size and perfection, which is 

consistent with the copolymer melting behavior. The broadening of the melting 

endotherms is also associated with a larger distribution of crystal size and perfection. 

Compression molded films at these compositions have an increased clarity with PA-6,T 

content, further signifying a reduced crystallinity as depicted in Figure 2.10. 

The eutectic point for PA-10,T, 6,T and PA-12,T, 6,T copolymers is 30 wt-% 

PA-6,T. Note that a totally amorphous composition may lie in the vicinity of 30 wt-%. 

Increasing PA-6,T comonomer content above 30 wt-%, increases the melting temperature 

in a manner that is independent of the comonomer PA-10,T or 12,T. PA-6,T comonomer 

content from 30 wt-% to 35 wt-% of PA-10,T, 6,T yields a copolymer with a higher 

melting temperature but a lower melting enthalpy. If the decrease in enthalpy was a 



57 

further reduction of the size PA-10,T crystals, a corresponding decrease in melting 

temperature would result. Since the melting temperature is increased rather than 

decreased, this indicated the onset of PA-6,T crystal formation. NMR results have shown 

that at 30 wt-% PA-6,T pure PA-6,T sequences are being formed. Although the 

crystalline melting temperature of PA-6,T homopolymer is 372 °C, the PA-6,T crystals 

formed at 35 wt-% in the copolymers have reduced size and perfection, and thus reduced 

values. Increasing from 30 wt-%, the PA-10,T, 12,T and alternating sequences now act as 

defects to the formation of PA-6,T crystals. This effect is reduced as the amount of PA-

6,T comonomer increased. Melting temperature of PA-10,T , 6,T and PA-12,T, 6,T 

copolymers are increased from 272 and 280 at 30 wt-% PA-6,T to 325 °C and 320 °C at 

60 wt-% PA-6,T, respectively. The rise of the melting temperature is similar in both 

copolymer sets studied, further confirming the formation of PA-6,T crystals. In addition, 

melting enthalpies show a corresponding increase exceeding PA-6,T content past 35-

wt%. 
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gure 2.8. Second-heating DSC thermographs of PA-10/T (top) and PA- 12, T (bottom) 

containing 0 (a), 10 (b), 20 (c), 30 (d), 40 (e), 50 (f), and 60 (g) wt-% PA 6,T. 
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Figure 2.9. Second-heating DSC melting temperatures (left) and enthalpies (right) of PA-

10,T (•) and PA-12,T (•) versus wt-% PA-6,T. 
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Figure 2.10. Compression molded films of PA-12J and 70:30 wt-% PA-12,T,6,T 

copolymer displaying increased optical clarity 

It is noteworthy to mention that copolymers from 60% PA-6,T displayed phase 

separation producing phases that have melting points of approximately 350 °C. The 

degree of phase separation was found to be affected by the heat treatment of the polymer. 

For example, compression molding of the 40:60 10,T, 6,T copolymer produced a film 

with different regions of clarity. Figure 2.11 shows compression molded films of the 

40:60 PA-10,T, 6,T copolymer. Blotches were large enough to separate by regions of 
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clarity. Figure 2.12 shows first heating DSC thermographs of a relatively (a) white and 

(b) clear spot of the compression molded film, along with second heating curves of 

material from the melt polymerization and a DSC annealed sample. The vertical line at 

240 °C on the graph represents molding and annealing temperatures. 

f 
i 

clear • 

white • 

Figure 2.11. Blotchy compression molded films of the 40:60 PA-10,T,6T copolymer 

Figure 2.12 shows that the white sections (a) of the blotchy film have a larger 

melting enthalpy, corresponding to a higher melting phase as compared to the clearer area 

(b) of the film. It appears that compression molding at 340 °C induces phase separation 

and/or annealing of this higher melting phase, resulting in the blotchiness of the film. To 

confirm that annealing of the higher melting phase is occurring during compression 

molding, DSC annealing of the bulk reaction material at 340 °C was performed for 30 

minutes. The control sample (c) was bulk reaction material that was heated to 340 °C and 

immediately air cooled. The annealed sample displayed a higher melting peak that was 

approximately five times larger than that of the un-annealed sample, confirming that 

phase separation and annealing is occurring during melt pressing of the 40:60 PA-

10,T,6,T copolymers. Since there was no mixing and the maximum reaction temperature 
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was 316 °C, this phase separation could be a result of the crystallization of PA-6,T rich 

phases during the reaction. If crystallization during the reaction occurs, the randomness 

of the resulting polymer would be directly affected, thus producing the observed 

multiphase system. Since this topic is currently unexplored in SAPT literature, further 

investigations are needed confirm these results. 

0 
Exo Up 

150 200 250 
Temperature (°C) 

400 

Figure 2.12. DSC thermographs of white (a) and clear (b) regions of compression 

molded film, and unannealed (c) and annealed (d) non-compression molded samples of 

the 40:60 wt-% PA-10,T, 6,T copolymer (vertical line represents compression molding 

and DSC annealing temperature). 
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Melting point trends have shown that PA-6,T comonomer is not co-crystalline 

with PA-10,T or PA-12,T, although no wholly amorphous samples were observed. X-ray 

diffraction patterns was used examine the types of crystalline regions formed with 

addition of the PA-6,T comonomer. Copolymers of PA-10,T with 0-60 wt-% PA-6,T are 

shown in Figure 2.13. For brevity, WAXD trends of PA-12,T, 6,T copolymers are 

omitted, but show similar diffraction patterns with increasing PA-6,T content. Diffraction 

patterns of PA-10,T and 12,T compression molded films display sharp diffraction peaks 

at approximately 19.5, 20.5 and 20 ° two theta. Note that the PA-6,T diffraction pattern 

was obtained from a powder, whereas all others are from compression molded films. 

Three regions of diffraction patterns were observed: 

• 0-20 wt-% PA-6.T- Sharp diffraction peaks of PA-10,T broaden and their 

intensity decreases, falling into the amorphous halo when the PA-6,T content to 

20%. All diffraction peaks are consistent with PA-10,T homopolymer diffraction 

patterns. This confirms that the addition of low levels of PA-6,T disrupt PA-10,T 

crystal formation, and new types of crystals are not formed. 

• 25-45 wt-% PA-6,T~No sharp diffraction peaks are observed between 25-45 wt-

% PA-6,T, although DSC shows melting enthalpies between 24-30 J/g. The 

absence of sharp diffraction peaks, is due to the low crystallinity of the samples, 

while the broad amorphous scattering prevails. Increasing from 25 to 45 wt-%, the 

width of this broad diffraction increases from that of PA-10,T to PA-6,T. At 40-

45 wt-% peaks corresponding to PA-6,T crystals are forming, but are still in 

minority to the amorphous phase. This is in agreement with the DSC 
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thermographs which indicate an increase in melting enthalpy after 35 wt-% PA-

6,T. 

• 50-60 wt-% PA-6,T- The reappearance of sharp diffraction peaks is observed 

between 50 and 60 wt-% PA-6,T similar to those PA-6,T homopolymer 

synthesized by solution polymerization. This further confirms that past the 

eutectic point, PA-6,T crystals are being formed. 

0 5 10 15 20 25 30 35 40 45 
20 (°) 

Figure 2.13. X-ray diffraction patterns of PA-10,T (a) containing 10 wt-% (b), 20 wt-% 

(c), 30 wt-% (d), 40 wt-% (e), 50 wt-% (f), and 60 wt-% (g), PA-6,T (100% PA-6,T(h)). 

(5-wt-% PA-6,T increments) 
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Figure 2.14 displays the tan 5 of compression molded and annealed copolymer 

films obtained from dynamic mechanical analysis. All the DMA data, including the 

storage modulus at 100 and 200 °C and the maximum tan 8 is summarized in Table 2.2. 

The glass transition temperature (Tg), as determined by the tan 8 maximum for PA-10,T 

and PA-12,T were found to be 147.7 and 137.3 °C, respectively. PA-12,T has two 

additional flexible methylene groups per mole of repeat unit when compared to that of 

PA-10,T, thus decreasing the amide density and Tg. 

Comonomer composition has been shown to influence the amount of crystallinity 

and the types of crystals formed due to the variation of comonomer sequences formed. 

This consequently impacts the composition of the amorphous phase. Both PA-10,T and 

12,T with 15 wt-% PA-6,T display a small second transition at approximately 190 and 

182 °C respectively. This is consistent with the formation of a second phase. Although 

there exists no data in the literature describing the miscibility of these polymers, this 

work suggests that at 15 wt-% PA-6,T phase separation may occur, resulting in a higher 

Tg phase. WAXD has shown that 6,T segments do not participate in crystallization at 15 

wt% PA-6,T. With this exclusion from the crystalline domain, the local content of PA-

6,T in the amorphous domain is increases upon crystallization of the 10,T or 12,T 

sequences. This result creates a concentration and distribution of sequences that favor 

phase separation. At 30 and 50 wt-% PA-6,T this shoulder disappears, but an overall 

increase in Tg is observed. Due to lack of crystallinity at these PA-6,T levels, the tan delta 

signal is larger compared to the homopolymers. The slight increase in Tg is due to the 

increase of more rigid 6,T segments in the amorphous domain. 
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Figure 2.14. Tan delta of PA-10.T (Top) and PA-12.T (Bottom) with 0 (a), 15 (b), 30 (c), 

and 50 (d) wt-% PA-6,T 



66 

Table 2.2. Storage modulus, maximum tan <5 and melting enthalpies for PA-10,T, 6,T and 

PA-12,T, 6,T copolymers 

PA-10,T 
15wt-%PA6,T 
30 wt-% PA 6,T 
50 wt-% PA 6,T 

P A - 1 2 J 
15 wt-%PA6,T 
30 wt-% PA 6,T 
50 wt-% PA 6,T 

E' at 75 °C 
(MPa) 
1740 
1810 
1790 
1820 
1730 
1600 
1660 
1750 

E' at 200 °C 
(MPa) 

470 
330 
260 
260 
450 
360 
240 
280 

tan 
"max 

148 
146 
149 
149 
137 
140 
142 
144 

AHmelt 

(J/g) 
70 
43 
30 
52 
60 
38 
26 
42 

While the differences in the storage modulus below Tg (75 °C) are negligible, the 

modulus above Tg (200 °C) is significantly lower for less crystalline samples. For 

example, the modulus at 200 °C for PA-12,T is 450 MPa while the 70:30 PA-12,T, 6,T 

copolymer has a modulus of 240 MPa at that temperature. Crystals act as reinforcing 

agents by tying the chains together and are independent of the glass transition, therefore 

the modulus above Tg is a function of the degree of crystallinity. Thus, the decrease in the 

storage modulus and enthalpy from the homopolymer to 30 wt-% PA-6,T can be properly 

deduced as reduction of the degree of PA-12,T crystallinity. This is in correlation with 

WAXD, where the diffraction peak intensity and sharpness decreased with increasing 

PA-6,T content. 

While the melting enthalpy of the 50 wt-% PA-6,T copolymers recover from the 

eutectic point, the storage modulus above Tg does not. For example, the melting 

enthalpies of the 30:70 and 50:50 PA-12,T, 6,T copolymers are 26 and 42 J/g 

respectively, and their moduli above Tg are 240 and 280 MPa, respectively. Additionally, 

the 15:85 copolymer has a lower melting enthalpy, but a 20% larger modulus at 200 °C. 
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Therefore, the rise in melting enthalpy from 30 to 50 wt-% PA-6,T is not solely due to 

the increase of the degree of crystallinity, but also corresponds to the change of crystal 

form from PA-12,T to PA-6,T, since the theoretical melting enthalpy of a perfect PA-6,T 

crystal is higher. This is in agreement with WAXD data, where the PA-12,T crystals at 15 

wt-% PA-6,T are much sharper than those for PA-6,T crystals and 50 wt-% PA-6,T. 

Interpretation of the enthalpy data as the degree of crystallinity can be misleading 

because there is the change of enthalpy associated wit new crystal formation. 

Discussion 

Copolyamide crystallization behavior is a result of amide distance and orientation 

symmetry. For example, PA-6,6, 6,T copolymers exhibit co-crystalline (isomorphic) 

behavior because they are both A-A B-B, even-even monomers and the distance between 

amide groups of adipic and terephthalic acids have only a 0.3 angstrom difference.5 

Therefore, they display linear trend of melting temperature as function of PA-6,T 

comonomer content. This data is shown Figure 2.15, along with PA-12,T (10,T) - 6,T 

and several other PA-6,T copolymers ' as a function of PA-6,T comonomer content. 

PA-10,T(12,T) - 6,T, PA-6,I, 6,T, PA-4,T, 6,T, and PA-6, 6,T copolymers are 

not isomorphic, displaying a minimum of melting temperature as a function of 

composition. Figure 2.15 shows that the eutectic melting behaviors of these 

copolyamides are distinct in terms of the location and depth of the curve. For instance, 

PA-10,T(12,T)-6,T copolymers display a smaller melting point depression which occurs 

at higher amounts of PA-6,T, compared to PA-6, 6,T copolymers. At the eutectic point, 

the decrease in melting temperature from PA-6 homopolymer is 88 °C with 16 mol-% 

PA-6,T, while for PA-12,T, 6,T and PA-10,T, 6,T copolymers these values are 20 °C at 
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34 mol-% and 35 °C at 37 mol-%, respectively. This implies that PA-6,T disrupts PA-6 

crystallinity to a greater extent than PA-10,T and PA-12,T. This behavior can be 

attributed to similarities in PA-10,T, 12,T, and 6,T repeat unit structures. 

Terephthalamide copolymers maintain a regular hydrogen bonding orientation and all 

have an even number of carbon atoms between amide bonds. Alternatively, PA-6 

includes a reverse amide bond due to the head to tail linkage of the A-B structure. 

Therefore, addition of PA-6,T has a larger effect on the eutectic meting behavior of PA-6, 

6,T copolymers. 

450 

100 
PA-6, 6,T 

10 20 30 40 50 60 70 80 90 100 

mol-% PA-6.T 

Figure 2.15. PA-10,T(12,T) - 6,T copolymer melting data overlaid with several 

additional PA-6,T copolymers versus mol-% PA-6,T 

PA-6,I is amorphous due its kinked nature and its copolymers display a absence 

of crystallinity up to 43 mol-% PA-6,T. Both the length and orientation between amide 

bonds is affected by inclusion of the isophthalamide structure. The data shows the PA-

6,T crystals can have exceedingly low melting temperatures (< 250°C), however eutectic 

behavior of fully terephthalamide polymers do not show such reduced melting points for 
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the onset of PA-6,T crystallinity. For example, PA-10,T, 6,T, 12,T, 6,T copolymers have 

lowest melting points of 281 and 270 °C respectively even despite having different 

lengths between amide bonds. Therefore, the symmetry of the aromatic substitution plays 

the major role in determination of shape of the eutectic melting temperature trends. 

Additionally, PA-4,T, 6,T copolymers have a similar shape as the PA-10,T, 6,T and 12,T, 

6,T copolymers. Since, PA-6,T is the lower melting component, the eutectic point occurs 

at higher PA-6,T concentrations. Distinct from the isophthalamide copolymers, 

terephthalamide species maintain a symmetrical amide bond orientation in both homo 

and alternating segments. Their unique melting point trend may be associated with the 

ability of alternating units to crystallize or participate in homopolymer crystal formation 

in the eutectic well. Thus, they do not display a large reduction in melting point of PA-

6,T crystals as seen in PA-6,I, 6,T copolymers. 

The melting behavior of PA-6,6, 6,T and PA-10,T(12,T), 6,T copolymers 

exceeding 50 mol-% PA-6,T are similar. By definition, the melting temperature of 

isomorphic copolymers is a function of crystal composition with no loss of crystallinity, 

while non-isomorphic crystalline melting temperature is a function of crystal amount and 

size. For instance, the density PA-6,6, 6,T isomorphic copolyamides were found to rise 

with increasing PA-6,T content5, whereas PA-10,T(12,T), 6,T copolymers were found to 

have reduced crystallinity with PA-6,T content based on DSC and DMA. Interestingly, 

PA-6,6, 6,T and PA-10,T(12,T) - 6,T copolymers exceeding 50 mol-% PA-6,T have 

crystals that differ in composition, amount, and size, but have the same melting 

temperature. 
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Conclusions 

Melt condensation polymerization of PA 10,T and 12,T with PA-6,T comonomer has 

1 T 

been demonstrated to produce statistical copolymers. The C chemical shift of the 

substituted aromatic carbon is sensitive to the comonomer connectivity at different 

compositions, providing key chemical information in describing the physical changes of 

the above mentioned copolymers. It was found that at 15 and 30 wt-% PA-6,T little pure 

PA-6,T sequences exist, and the majority of the PA-6,T comonomer is found in PA-10,T 

(or 12,T) - PA-6,T alternating sequences. Since the comonomers are not co-crystalline, 

PA-10,T (or 12,T) - PA-6,T alternating units act as impurities that deter the formation of 

PA 10,T (12,T) crystals. This is supported by a decrease in melting temperature and 

enthalpy by DSC, the loss of sharp x-ray diffraction peaks up to 30 wt-% PA-6,T, and the 

increased clarity of compression molded films. However, at PA-6,T content greater 30-

wt% increases the melting temperature of the corresponding copolymer in a manner 

independent of the comonomer. Past the eutectic point, pure 6,T sequences become 

sufficiently abundant for themselves to crystallize. NMR analysis confirmed the increase 

pure PA-6,T sequences being formed at 50 wt-% PA-6,T. X-ray diffraction at this 

composition also displayed sharp diffraction peaks that correspond to PA-6,T crystals. 

It has been demonstrated that melting temperatures and amount of crystallinity can be 

tuned by changing the amount of PA-6,T comonomer of PA-10,T, 6,T and PA-12,T, 6,T 

copolymers. These properties will affect the processability, optical clarity, and solvent 

resistance of the resulting polymer, while maintaining the notably higher glass transition 

temperatures than aliphatic polyamides. 
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CHAPTER III 

ONE-POT SYNTHESIS OF PA-12,T - PA-6 BLOCK COPOLYMERS USING CaCl2 

Abstract 

PA-12,T-PA-6 block copolymers were synthesized using a one-pot synthesis 

involving the step growth formation of PA-12,T macroinitiator using biscaprolactam 

terephthalamide and 1,12-diaminododecane in caprolactam followed by the anionic 

polymerization of the caprolactam. The effect of time, stoichiometry, and CaCb 

concentration on the step growth polymerization was first studied, following the effect of 

CaCb. on the anionic polymerization. CaCb has little effect on the step growth formation 

of the PA-12,T macroinitiator, but has a substantial effect on the anionic polymerization. 

At a constant 5 minute reaction time, reactions with CaCl2 concentrations below 5 mol-% 

of caprolactam display complete conversion of the caprolactam into PA-6, while above 5 

mol-% only show partial conversion. Intrinsic viscosities of these samples increase 

linearly from 0.72 to 3.59 dL/g with a decreasing CaCk concentration, and in the absence 

of CaCk a crosslinked material is produced. The amount of PA-12,T block 

transamidation was found to increase linearly with decreasing CaCb concentration 

observed by quantitative 13C NMR. Results show that both caprolactam conversion and 

transamidation are competing reactions and are both negatively affected with increasing 

CaCk concentration. DSC and solubility of the resulting materials behave consistently 

with trends found in copolymer composition, structure, and molecular weight variations 

provided by the dramatic effects of CaC^ on PA-12,T macroinitiator anionic 

polymerization. 
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Introduction 

Polyamide block copolymers have properties and morphologies that cannot be 

achieved by polymer blends. Unfortunately, the synthesis of polyamide-polyamide block 

copolymers is complicated using conventional methods due to transamidation of the 

amine endgroups leading to random backbone structures. For example, Groeninckx et al. 

have shown by 13C NMR spectroscopy that melt mixing PA 6,1 and PA 4,6 

homopolymers for 90 minutes at 315 °C yields average block sequences of 8 PA-4,6 

repeat units.' 

Anionic polymerization (AP) of lactams offers alternative synthetic strategies to 

achieve better control in forming of polyamide block copolymers. Lactam AP is 

performed by using sodium hydride (or sodium caprolactam salt) as the initiator with an 

n-acyl caprolactam co-initiator. Two approaches have been reported in the literature to 

form block copolymers via anionic polymerization. The sequential addition of monomers 

in AP using twin screw extrusion has been extensively studied by White et al. They 

demonstrated that block copolymers can be formed by first initiating the anionic 

laurylactam (PA-12) followed by the sequential addition of caprolactam and capro lactone 

at various points into the extruder. However, the variety of cyclic monomers is much 

less than linear polyamide monomers, limiting the applicability of this strategy. 

Another means of forming block copolymers by anionic polymerization of 

lactams involves reactions coinitiated by n-acylcaprolactam based macroinitiators. This 

approach is advantageous because the macroinitiator can be synthesized by other 

polymerization methods, thereby making a wide variety of PA-6 block copolymers 

available. Such examples in the literature include; polybutadiene ' , polytetrahydrofuran5, 
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polyisoprene6, polyethylene oxide-polyisoprene , polyimides , polysiloxanes , and 

poly(butadiene-co-acrylonitrile)10. Here, it is essential for AP that the MI has n-acyl 

caprolactam functionalities, usually adding an extra functionality step in the synthetic 

scheme. One popular method of functionalization is to endcap with isocyanates by 

reacting diisocyanate with a hydroxy or amine functional MI. When the isocyanate 

functionalized MI is dissolved in caprolactam, the isocyanate endgroups react with 

caprolactam to create an the n-acyl caprolactam coinitiator. While this approach is 

applicable to afford many types of copolymers with cyclic amides, the synthesis of 

polyamide-polyamide block copolymers remains challenging. 

This study investigates the synthesis of polyamide-polyamide block copolymers 

by utilizing a one pot method. Only one other study was reported to utilize a one pot 

approach.11 The first step of the synthesis involves the solution step growth 

polymerization of biscaprolactam terephthalamide and 1,12 diaminododecane using 

caprolactam as a solvent. By utilizing basic principles of polyamide step growth 

reactions, PA-12,T MI systems with n-terephthaloyl caprolactam end groups were 

obtained. 

AP was then performed using the PA-12,T MI and caprolactam solvent as the 

monomer. The effect of CaCl2 on the AP of PA-12,T MI is a pivotal finding in this study. 

Without CaCk, the reaction produces a crosslinked material in less than one minute. The 

presence of CaCk in the AP yields tractable materials, making the CaCk concentration 

the main variable of this study. While, several effects of inorganic salts such as LiCl and 

CaCi2 on the AP of lactams have been reported in literature, actual mechanisms are still 

unknown.12 Reaction rates, enthalpy and free energy of caprolactam AP have been 
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shown to decrease with increasing CaCb. and LiCl concentrations by monitoring the heat 

of formation of the reaction under adiabatic conditions. Generally, CaCL. and LiCl are 

stated to retard the kinetics of capro lactam AP. The goal of this study is to examine the 

effect of CaCb, on the one pot synthesis and to use this retarding effect to identify the 

steps leading to the eventual crosslinking of the material. 

Experimental 

Materials 

Terephthaloyl chloride, capro lactam, 1,12-diaminodoecane, triethylamine, 

calcium chloride and sodium hydride were purchased from Aldrich. Terephthaloyl 

chloride was recrystallized from hexanes by first creating a saturated boiling solution, 

then filtering this solution to remove undissolved acid, reheated and cooled. 

Diaminododecane was sublimed at 70 °C and dried before use. Caprolactam was dried at 

room temperature under vacuum for 24 hours. Hexanes, benzene, and triethylamine were 

dried over molecular sieves. Sodium hydride (60% in mineral oil) was used as received. 

CaCl2 was pre-dried at 130°C under vacuum for 24 hours. Vacuum was released under 

dry air and the CaCb. stored in a dessicator. Sodium hydride was pre-weighed into 

separate vials in a dry box purged with argon. 

Synthesis 

Biscaprolactam terephthalamide (BCT). A solution of terephthaloyl chloride 

(22.624g, 0.111 mol) in 250 mL of benzene was added drop-wise to caprolactam (31.523 

g, 0.279 mol) dissolved in 410 mL of benzene and 77 mL of triethylamine in an argon 

purged 2000 mL round bottom flask. The solution became progressively yellow with 

addition of the acid chloride solution. Following a one hour addition, the solution was 
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then heated at 80 °C for two additional hours. The solution was allowed to cool to room 

temperature overnight. The solids were then filtered and washed with 100 mL of cold 

benzene, followed by water to remove the triethylamine hydrochloride salt. The resulting 

solid was then dispersed in water, filtered and dried in under vacuum at 80 °C. The 

resulting BCT (36 g, 90% yield) had a melt point of 207 °C and 100 J/g melting enthalpy. 

PA-12,T macroinitiator (PA-12,T MI). Test tubes with magnetic stir bars and pre-

dried CaCb were dried at 130 °C under vacuum for 24 hours. Vacuum was released using 

dry air (pulled through desiccant) and test tubes were immediately purged with argon. In 

a typical experiment 1,12-diaminododecane (0.5 g, 0.0025 mol), BCT (0.9362 g, 0.0026 

mol), and caprolactam (4.5454g, 0.0402 mol) were added to the test tube. Note that mol-

% CaCt refers to the molar ratio of CaCl2 to mols caprolactam in the initial monomer 

feed. Dry argon purging was continued for approximately 5 minutes. The test tube was 

then immersed in a silicone oil bath at 200 °C. The reaction was held at 200 °C with 

stirring for 4 hours. The solid white material plug was then ground, and soxhlet extracted 

with methanol for 12-18 hours. The white PA-12,T powder was obtained in a quantitative 

yield. 

PA-12,T- PA-6 block copolymers. AP was performed subsequent to the formation of 

PA-12,T macroinitiator with various levels of CaCk. After the 4 hour PA-12,T step 

growth polymerization time, sodium hydride (0.022 g, 0.00036 mol) was added to the 

reaction mixture. The tube was then hand shaken to ensure complete dispersion of the 

sodium hydride. Magnetic stirring was adjusted throughout the reaction. After 5 minutes 

at 200 °C, the test tube was removed from the silicone bath and immersed in ice water. 

Samples with 10% CaCk were a viscous liquid after reaction and when cooled turned 
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into brittle, white solid. Using 1% CaCb., resulted in material that was opaque, tough, and 

solid after reaction. The products were either freeze ground in a blender or pelletized by 

hand, and soxhlet extracted with methanol for 18-24 hours. Polymer solutions (1 wt-%) 

in concentrated sulfuric acid were then passed through a glass wool packed filter and 

precipitated into water. Total water used to wash each sample was approximately 2 L. 

Air-dried samples were then ground and dried under vacuum at 90 °C. 

Characterization 

Intrinsic Viscosity (IV). Single point intrinsic viscosities of 0.5 g/dL of polymer 

solutions in concentrated sulfuric acid (96%) were obtained to analyze molecular weight 

variations. Polymer solutions were prepared by adding 0.25 grams of polymer and 25 mL 

of concentrated sulfuric acid into a 50 mL flask. After 12 hours of mixing using magnetic 

stirring, the solutions were diluted with an additional 25 mL of sulfuric acid, and stirring 

was continued for another 5-10 hours. Solutions were visually inspected for gelling, and 

passed through a funnel packed with glass wool if gel was present. Measurements were 

obtained using a Cannon viscometer in a 25 °C controlled water bath. The viscometer 

was washed with sulfuric acid and a portion of the next sample to be tested before 

measurements were recorded. Flow times were an average of three tests with that agree 

within +/- 0.2 seconds. Using flow times of concentrated sulfuric acid and polymer 

solution were used to calculate the specific and relative viscosities. Single point intrinsic 

viscosities were then calculated using Solomon and Ciuta relationship; 

[11] = [(2*(Tlsp-ln(T1re!)]
1/2)]/C 

where, nsp is specific viscosity, nrei is relative viscosity, and C is concentration. 
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Nuclear magnetic resonance spectroscopy (NMR). NMR samples containing 10 wt-% 

polymer in a 3:1 volume ratio of hexafluoroisopropanol (HFIP) to CDCI3 were prepared 

by dissolving pellets in HFIP, followed by addition of CDCI3. Quantitative solution C 

spectra were collected on a Varian UNITYINOVA NMR spectrometer operating at a 

frequency of 125.7 MHz. A 90° degree pulse width of 5.8 us was used, with recycle 

delays for each sample equal to approximately 5 times the longest Ti time. All spectra 

were recorded at 25°C with decoupling implemented only data acquisition. The number 

of transients required to achieve sufficient signal-to-noise for end group identification 

ranged from 5,000 to 18,000, depending on molecular weight. Data was zero-filled up to 

128k points and filtered with 1 Hz of line broadening prior to application of Fourier 

transformation. Baselines were corrected using a 10th order polynomial. 

Differential scanning calorimetry (DSC). Polymer melting temperatures were 

determined using a TA Instruments 2920 DSC. Scans were collected at a heating rate of 

10 °C/min from 30 -310 °C followed by forced air cooling. Thermograms from first and 

second heating scans were acquired. 

Solubility. Polymer solutions in formic acid were prepared at 1 wt-% concentration, 

shaken overnight, and visually inspected. 

Results and Discussion 

The one-pot synthesis of PA-12,T - PA-6 block copolymers occurs in two 

sequential steps. First, the solution polymerization of biscaprolactam terephthalamide 

(BCT) and 1,12-diaminododecane (DA) is carried out using caprolactam as the solvent. 

The molecular weight and endgroup functionality of PA-12,T is controlled using basic 

principles of PA-12,T synthesized by melt condensation outlined in Chapter I. The 
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second step of the synthesis involves the anionic polymerization of the caprolactam using 

the n-terephthaloyl moieties of the PA-12,T MI. This is the focus of the second section of 

this paper. 

The two-step reaction without CaCk produces crosslinked materials that are 

insoluble in H2SO4 or any other common polyamide solvent. The utility of this 

investigation is based on the finding that >1 mol-% of CaCl2 produces tractable materials. 

Therefore, the effect of CaC^ on each step was investigated. 

PA-12.T macroinitiator (MI) 

The first step of the one-pot approach of the synthesis PA-12,T - PA-6 block 

copolymers is the step-growth reaction of BCT and DA to form PA-12,T (Figure 3.1). 

The reaction of DA with the n-terephthaloyl caprolactam carbonyl to displace 

caprolactam is favored. However, C NMR spectroscopy reveals that 5-15% of the 

reactions consists of ring opening of the caprolactam carbonyl to form PA-12,6,T units in 

the resulting polymer (Figure 3.2). The o-amide carbon peak provides the clearest 

evidence of PA-12,6,T unit formation. The three chemical shifts at 41.59, 41.09, and 

41.01, represent the pure PA-12,T, 6,T and 12,6 a-amide carbon atoms, respectively. The 

6,T and 12,6 units are generated by the same reaction and therefore have identical 

heights. The expanded aliphatic region of the spectrum presented in Figure 3.2 clearly 

shows extra 1,12-diaminododecane peaks due to the PA-12,6,T units, providing further 

evidence of ring opening through the BCT monomer. 
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Figure 3.1. Synthesis of PA-12,T MI. 
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Figure 3.3. Expanded aliphatic l3C NMR spectrum of PA-12.T MI from BCT and 

DA with 10 mol-% CaCl2 in caprolactam 

Samples synthesized with 5 mol-% excess BCT and 5 mol-% CaCt were soxhlet 

extracted with methanol and precipitated from a sulfuric acid solution to remove the 

caprolactam and CaCk. The 13C NMR spectrum of the product shows that n-

terephthaloyl end groups are converted into terephthalic acid endgroups by hydrolysis. To 

mitigate hydrolysis, a crude MI sample was washed with dry dichloromethane. The 

carbonyl and aromatic 13C NMR spectra of the dichloromethane extracted sample along 

with the H2SO4 precipitated sample are presented in Figure 3.4. Peak broadening of the 

dichloromethane extracted sample was observed because the CaCb was not removed. 

This caused complexation between polymer chains and sample thickening. The peak at 



83 

182.6 ppm is associated with n- acyl caprolactam species, shifted downfield by 0.6 ppm 

from the BCT monomer. The n-acyl caprolactam peak is not observed in the H2SO4 

precipitated sample, while the chemical shifts for terephthalic acid endgroups as 

identified in Chapter I are seen in the spectrum. No peaks corresponding to amine 

endgroups were observed at 42.3, 27.8 and 26.2 ppm. 
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Figure 3.4. Carbonyl and aromatic C NMR spectrum regions of a) dichloromethane 

extracted and b) H2SO4 precipitated PA-12,T MI formed with 5 mol-% excess BCT and 5 

mol-% CaCl2 

The concentration of anionic coinitiator (n-terephthaloyl caprolactam endgroups) 

is a function of the molecular weight and endgroup functionality of the PA-12,T 

macro initiator (MI). Therefore, the effect of time, stoichiometry, and CaCl2 concentration 

of the step-growth formation of PA-12,T MI was studied. In each experiment, BCT, DA 

and caprolactam were added to an argon-purged test tube with a predetermined amount of 

CaCh.. Solid polymer formed immediately upon melting of the caprolactam, trapping the 

magnetic stir bar. Complete dissolution of all components and the onset of stirring 

occurred at approximately 8-15 minutes for all reactions. Reaction temperatures (200 °C) 

and MI concentration (15-wt-% caprolactam) were kept constant throughout all 

experiments to ensure homogeneous solutions. With 5 mol-% CaCi2, the solubility limit 
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of MI (BCT:DA = 1:0.95) was approximately 22 wt-% of capro lactam. If the temperature 

of this mixture is then lowered below -190 °C, the MI started to precipitate. At the end of 

each polymerization, a clear viscous liquid was obtained. The white solid produced upon 

cooling was then ground, soxhlet extracted with methanol, and precipitated into water 

from a 1 wt-% H2SO4 solution. Table 3.1 lists the properties of MI synthesized with 

variations of polymerization time, stoichiometry, and CaCL.. 

Table 3.1. Properties of PA 12,T MI under various reaction conditions after soxhlet 

extraction and precipitation 

Variable 

Reaction 
Time 

Stoichiometry 
(BCT:DA) 

CaCl2 

Reaction 
time 

(hours) 
1 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

BCT:DA 

1:0.98 
1:0.98 
1:0.98 
0.95:1 
0.98:1 

1:1 
1:0.98 
1:0.95 
1:0.95 
1:0.95 
1:0.95 
1:0.95 

CaCl2 

(mol-% of 
Caprolactam) 

3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
0 
1 
5 
10 

IV 
(dL/g) 

0.75 
0.74 
0.77 
0.61 
1.19 
1.13 
0.77 
0.52 
0.75 
0.55 
0.55 
0.59 

Mn
a 

7100 
7000 
7400 
5500 
12700 
11900 
7400 
4500 
7100 
4800 
4800 
5300 

DP 

21 
21 
22 
17 
38 
36 
22 
14 
21 
15 
15 
16 

a K = 0.000558 dL/g and a =0.81 in 96% H2S04 at 25 °C 

To determine the reaction time needed to ensure complete reaction of BCT and 

DA, identical polymerizations were run at 1,2, and 4 hours. A stoichiometry of 1:0.98 

BCT:DA, and CaCb. concentration of 3.5 mol-% were arbitrarily chosen. At 1,2, and 4 

hours at 200 °C, the intrinsic viscosity of the MI was 0.75, 0.74, and 0.77 dL/g, 

respectively. These values are identical within experimental error, and correspond to 

molecular weights of 7100-7500 g/mol based on Mark-Houwink solution constants 

developed for PA-12,T produced by melt condensation of terephthalic acid (TA) and 
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DA.14 Although one hour appears to be a sufficient reaction time to complete the 

polymerization, four-hour experiments were chosen to ensure formation of a homogenous 

MI solutions for anionic polymerizations. 

Keeping reaction time and CaC^ concentration constant, stoichiometry was then 

varied from 5 mol-% excess BCT to 5 mol-% excess DA. Figure 3.5 displays the change 

of intrinsic viscosity of the resulting polymer versus the reaction stoichiometry for the 

solution polymerization of BCT and DA in caprolactam and the melt polymerization of 

TA and DA. By adjusting the stoichiometry of the reaction to include 2 mol-% excess 

DA (BCT:DA = 0.98:1), MI with the highest intrinsic viscosity of 1.18 was observed, 

corresponding to a molecular weight of 12,700 g/mol. This result is due to the 

volatilization of the DA from the reaction, thereby altering stoichiometry by the nature of 

the polymerization conditions. This agrees with the data obtained from the melt 

polymerization of terephthalic acid and DA, where it was found that 1 and 3 mol-% DA 

yielded the highest molecular weight polymer and balanced amine and acid endgroups. 

Since amine endgroups do not initiate anionic polymerization, and may cause side 

reactions, e.g. transamidation, amine endgroups are not preferred for this study. 

Therefore, a stoichiometry of 5 mol-% excess BCT (BCT:DA = 1:0.95) was used for 

anionic polymerization to ensure complete n-terephthaloyl endgroups (Figures 3.1 and 

3.4). 
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Figure 3.5. Effect of stoichiometry on (o) solution polymerization of BCT and DA in 

caprolactam and (•) melt polymerization of TA and DA. Negative values represent 

excess BCT or TA and positive values DA 

Because this is a one pot reaction and CaCl2 is present in both reactions it is 

important to examine its effect on the step-growth formation of the MI. The intrinsic 

viscosities of MI synthesized in the presence of 1, 5, and 10 mol-% CaCl2 are 0.55, 0.55, 

and 0.59 dL/g respectively, with molecular weights of 4800-5300 g/mol. Table 3.2 

displays DSC data of these samples, and DSC 1st and 2nd heating thermographs are 

presented in Figure 3.6. Generally, 1st heating melting temperatures display one sharp 

melting point. Since the samples were precipitated, the ability of the polymer chains to 

form more perfect crystals is greater due to increased mobility upon precipitation. Also, 

cold crystallization occurs between 100-105 °C, giving some indication of the glass 



87 

transition temperature of these materials. When cooling from the molten state and 

reheating, two melting temperatures were observed. Polyamides are known to have alpha 

and gamma crystal types, the alpha phase being a more perfect and higher melting crystal 

due to inter-chain and lamella symmetry. Due to the fast degree of supercooling (RT 

forced air cooling) from the melt and the rigid structure of PA-12,T compared to wholly 

aliphatic nylons, second heating curves display melting temperature for alpha and the less 

ordered gamma phases. 

Table 3.2. DSC data of PA-12,T MI synthesized with various CaCb. concentrations 

0 
1 
5 
10 

1st Heating 

Tm (°C) 
289.4 
285.7 
290.2 
291.0 

^J"lmelting 

78.7 
64.4 
70.0 
86.3 

2nd Heating 

Tm1 (°C) 
278.1 
284.9 
287.3 
278.9 

Tm
2 (°C) 

287.2 
272.7 
277.8 
288.9 

*-i ̂ melting 

44.9 
33.2 
44.0 
51.8 

PA-6,T/ 
PA-12,T 

-

13.8 
8.1 

6.35 

wt-% 
PA-6 

-

3.0 
1.5 
1.3 

- 1 . 5 1 _ ^ _ _ _ ^ _ ^ 1 - l . b l • . • , . — • • . • •———H 
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Exo Up Temperature (°C) Exo Up Temperature (°C) 

Figure 3.6. DSC 1st (left) and 2nd (right) heating thermographs of PA-12/T MI 

synthesized in caprolactam with (a) 0, (b) 1, (c) 5, and (d) 10 mol-% CaCl2 

While CaCl2 has little effect on the molecular weight of the PA-12,T MI, slight 

changes in the melting behavior were observed. It was found that increasing the amount 
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of CaCb decreases the amount of PA-6 incorporated into the PA-12,T MI through ring 

opening of the BCT monomer. The amount of PA-6 incorporated was determined by 

integrating the PA-6,12,T and PA-12,T carbonyl peaks of the 13C NMR spectra. The 

changes in melting temperature can be attributed to the amount of PA-6 incorporated, 

thus increasing the PA-6 amount decreases the melting temperature of the MI. It appears 

the PA-6 units are not co-crystalline with of PA-12,T crystals. PA-6 units act as 

irregularities, inhibiting the size and perfection of PA-12,T crystals, and thus decreasing 

the melting temperature and enthalpy. It is not surprising that co-crystallinity is not 

observed due to the differences hydrogen bonding orientation and length of the A-B PA-6 

repeat unit and A-A B-B PA-12,T repeat unit. However, the amount of incorporation by 

using the BCT monomer is unexpected. The molar ratio of PA-12,T (Figure 3.3, 4) and 

PA-6,T (Figure 3.3, 10) will be used to represent the degree of randomness of the PA-

12,T block in the following sections. As seen in Table 3.2, an increase in the randomness 

of PA-12,T MI decreases crystalline melting temperature and enthalpy. 

Anionic Polymerization ofPA-12,TMI 

Without CaCk.fhe sequential anionic polymerization of PA-12,T MI forms a 

gelled product. Therefore, it is the topic of this second section is to examine the effect 

CaCb. on the anionic polymerization by varying its concentration from 1-10 mol-% of 

caprolactam. A five minute polymerization time was arbitrarily chosen and kept constant. 

PA-12,T MI concentrations were a constant 15 wt-%. This concentration was chosen 

because it is approximately 5 wt-% less than the solubility limit to ensure complete 

solubility in caprolactam and large enough to show significant effect that can be seen by 

high resolution NMR spectroscopy. Sodium hydride concentrations ranged from 1.5-1.6 



89 

times the endgroup concentration. The previous section showed that the molecular weight 

of the MI was not dependent on CaCb. concentration, therefore endgroup concentrations 

were calculated from the concentration of DA, assuming that the MI degree of 

polymerization was 15. 

The anionic polymerization of PA-12,T MI is depicted in Figure 3.7. The initiator 

is formed in-situ when NaH abstracts a hydrogen atom from caprolactam, forming the 

caprolactam sodium salt and hydrogen gas. The reaction bubbles immediately following 

NaH addition, affirming formation of initiator. The caprolactam anion then attacks the n-

terephthaloyl caprolactam endgroup of the PA-12,T MI (b). This reaction forms a 

relatively unstable amide anion (c), which abstracts a proton from the surrounding 

caprolactam medium, reforming the initiating caprolactam anion (d). Propagation occurs 

through repetition of steps b-d forming PA-12,T- PA-6 block copolymers (e) from the 

PA-12J MI (a). 

Qualitative observations. The anionic polymerization using 1 and 10 mol-% CaCl2 

are qualitatively very different. At 1 mol-% CaCh. the reaction mixture solidifies in 

approximately 15 seconds and remains solid throughout the five minute polymerization. 

Increasing CaCk concentrations from 1% decreases the time until solidification of the 

reaction. At 10 mol-% CaCk, the reaction mixture is a viscous liquid at the end of 5 

minutes. Both PA-12,T and PA-6 homopolymers have melting temperatures above the 

polymerization temperature, therefore the physical state of the polymerization at a certain 

reaction time results from the relative concentrations of caprolactam and PA-6. When the 

conversion of caprolactam to PA-6 is high, little caprolactam is available to fully dissolve 

the polymer and solidification occurs. When degree of conversion is low, the polymer 



can still be dissolved in caprolactam. This qualitative difference hints at the degree of 

conversion of the caprolactam with CaCh. concentrations. 
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Figure 3.7. Anionic polymerization of (a) PA-12,T MI forming (e) PA-12,T - PA-6 

block copolymers 
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The final solid products also showed considerable variations. At 10% CaCh., 

crystallization occurs forming a white product, and the material plug shrinks away from 

the test tube. At 1% CaCb, little crystallization occurs and the opaque product adheres to 

the walls of the test tube. 

With the exception of the 1 mol-% CaCh. sample, all materials were soluble at 

1 wt-% in concentrated sulfuric acid. The 1 mol-% CaCh. sample was partially soluble 

showing different behavior than a completely gelled sample. For example, completely 

gelled materials swelled and there was no noticeable difference in viscosity of the 

sulfuric acid, while the 1 mol-%> CaCk product exhibited decreased particle size with 

thickening of the solution. A portion of this sample was recovered by further dilution and 

the gel particles were removed by filtering. 

13 C NMR spectroscopy and IV. The NMR spectrum of the 8 mol-%) CaCk sample 

with that of the PA-12,T MI and PA-6 homopolymers are displayed in Figure 3.8. Figure 

3.9 shows the full 13C NMR spectrum of anionic polymerizations of MI with 1, 2, 5, 8, 

and 10 mol-%) CaCh.. Spectra were normalized to the intensity of the PA-6 chemical shift. 
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PA-6 conversion was determined by dividing the height of the PA-6 carbonyl 

peak by the sum of the PA-6 and PA-12,T carbonyl peak heights in the 13C NMR spectra. 

The results are plotted in Figure 3.10 as function of CaCi2 concentration. The vertical line 

at 89% represents the theoretical incorporation at full conversion based on the initial 

reaction mixture. Below 5 mol-% CaCk, the reaction approaches full conversion of 

caprolactam into PA-6 within the five minute reaction time. Reactions above 5 mol-% 

CaCb do not reach full conversion. For example, at 10 mol-% CaCk, the PA-6 

incorporation is 64%. This is consistent with the retarding effect of CaCl2 on the kinetics 

of the anionic polymerization of caprolactam. Note that reaction conversion and CaCl2 

concentration do not have a linear relationship. Thus, the five minute reaction time was 

long enough to allow full conversion of caprolactam using less than 5 mol-% CaCk 

despite the retarding effects. This is consistent with the observed increase of time until 

solidification (approximate full conversion) with increasing CaCb. concentration. 
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Figure 3.10. PA-6 incorporation based on (o) intensity,(n) integration, and (•) average 

•13 of "C NMR of PA-6 and PA-12,T carbonyl 
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The intrinsic viscosities of the PA-12,T - PA-6 copolymers and PA-12,T MI as a 

function of CaCb concentration are shown in Figure 3.11. The data exhibits a linear 

increase in molecular weight with decreasing CaCk concentration, with the only 

deviation occurring for the 1 mol-% CaCh. sample. As stated earlier, only a portion of the 

soluble sample was tested for IV. Removal of the crosslinked or high molecular weight 

material causes the apparent decrease in intrinsic viscosity. Also, note that there is no 

change in molecular weight of the PA-12,T MI with CaCl2 concentration as discussed 

earlier. 
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Figure 3.11. Intrinsic viscosities of (•) PA-12,T - PA 6 block copolymers and (o) PA-

12,T MI at 1-10 mol-% CaCl2 

If molecular weight is solely dependant on the conversion of caprolactam, then 

the intrinsic viscosity should follow a similar trend as Figure 3.10. For example, reactions 

containing 5 mol-% or less CaCl2 have reached full conversion and should be similar 

molecular weights. As can be seen in Figure 3.11, a maximum IV is not reached 
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(omitting 1 mol-%). Two possible explanations for this behavior are; 1) a change in 

coinitiator concentration, or 2) side reactions. It is believed that no drastic changes in 

coinitiator concentration between samples, because the IV of the PA-12,T MI has been 

shown to remain constant with CaCk concentration. Therefore, this suggests the 

molecular weight behavior is due to the presence of a side reaction. 

Closer inspection of the aliphatic region of the copolymer NMR spectra reveals 

evidence of a side reaction taking place during the AP of the PA-12,T MI. Figure 3.12 

shows the expanded aliphatic region of the 13C NMR spectrum of anionic 

polymerizations of PA-12,T MI with 1 and 10 mol-% CaCl2. At 1 mol-% CaCl2 the peak 

height of PA-12,T (42.6 ppm) has dropped to the same level of the two peaks for the 

12,6,T unit (41.2 and 41.0 ppm), while at 10 mol-% the amount of PA-12J prevails. 

Additionally, all peaks corresponding diamine portion of PA-12,T repeat unit show the 

same splitting. To further clarify this finding, the peak heights and integrations of the a-

amide PA-12,T and PA-6,T were compared. By diving the values of the PA-6,T unit by 

that of the PA-12,T units, a value of PA-12,T randomness is obtained. For example, with 

a decrease in the PA-12,T peak or an increase in the PA- 6,T peak, the randomness value 

corresponding to the destruction of pure PA-12,T segments is given. This data is 

presented graphically in Figure 3.13 as a function of CaC^ concentration. Recall that the 

characterization of the PA-12,T MI showed that 5-15% of step-growth reactions occurred 

through ring opening of the BCT monomer to form the PA-12,6,T unit. PA-12,T MI 

randomness values were also calculated and presented in Figure 3.12. With decreasing 

CaCi2 concentration, PA-12,T randomness is increasing, reducing the amount of purely 

PA-12,T segments. Transamidation (or interchange reactions) is known to occur in the 
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anionic polymerization of caprolactam, resulting in branching and crosslinking.15'16 This 

data indicates that transamidation of the PA-12,T segments is competing with the AP of 

caprolactam. 

12,6 

^Jvw*«**?^*W^ 

44 42 40 38 36 34 32 30 28 26 

13/ Figure 3.12. IJC NMR aliphatic regions of the AP of PA-12,T MI with a) 1 and b) 10 

mol-% CaCl2 
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Figure 3.13. Randomness (I6,T/II2,T) of PA-12.T - PA-6 copolymers (•) and PA-12.T MI 

(o) plotted as a function of CaCl2 concentration. 

Two scenarios that have to be considered to fully understand the behavior of the 

system studied: 

1. Incomplete conversion of caprolactam (>5 mol-% CaCk) 

With greater than 5 mol-% CaCfe, the propagation of the anionic polymerization 

and transamidation are in competition. Both processes seem to be deterred by the 

presence of CaCb (lower conversions and less PA-12,T randomness). Molecular weight 

variations are due both reactions, but the extent of each component cannot be properly 

elucidated without further experimentation. 

2. Full Conversion (<5 mol-% CaCl2) 

At full conversion of caprolactam, the copolymer branching and transamidation 

reactions have been shown progress due to the rise intrinsic viscosity and consumption of 

PA-12,T. It is not clear from this series of experiments if both are caused by the same 
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reaction, but both transamidation and branching(crosslinking) seem to be uniformly 

controlled by CaCi2 concentration. These phenomena are responsible for gelling of the 

anionic polymerization in the absence of CaCk and partial gellation of the 1 mol-% 

CaCk sample. 

Melting behavior. The melting behavior of the synthesized PA-12,T - PA-6 block 

copolymers are directly related to the aforementioned change in chemical composition 

discussed above. Full DSC thermographs are presented in Figure 3.14, and expanded PA-

12,T melting temperatures are shown in Figure 3.15. DSC raw data and polymer 

compositions are given in Table 3.3. 

Samples synthesized between 5 and 10 mol-% CaCk display a melting peak for 

PA-6 and PA-12,T segments. In both scans, PA-12,T melting temperatures and enthalpies 

decrease progressively when samples are polymerized with decreasing CaCb 

concentrations. PA-6 melting peaks show a decrease in melting temperature and increase 

in melting enthalpy. As discussed in the previous section, there is an increase in reaction 

conversion of caprolactam and the transamidation reaction of PA-12,T with decreasing 

CaCk concentration. The increase in conversion from 10 to 5 mol-% CaCl2 results in the 

dilution of PA-12,T segments from 45 to 15 wt-%. As transamidation increases, the 

length of pure PA-12,T segments decreases. Both dilution and decrease segment length 

cause the lowering in melting temperature and enthalpy of PA-12,T when CaCt 

concentrations are decreases from 10 to 5 mol-%. Since the AP is complete at lower 

CaCl2 concentrations, it is the transamidation reaction that negates the formation of PA-

12,T crystals. 
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The increased enthalpy of the PA-6 melting peak from 10-5 mol-% CaC^ is due 

an increase in the overall amount of PA-6 (55-85 wt-%) with increasing reaction 

conversion. The lowering of the PA-6 melting temperature with decreasing CaCl2 

concentration is a result of the transamidation reaction forming non-crystallizable 

segments, which disrupt the size and perfection of PA-6 crystals. 
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Figure 3=14= First (left) and second (right) heating DSC thermographs of PA-12,T - PA-6 

copolymers synthesized with a) 1, b) 2.5, c) 5, d) 8, and e) 10 mol-% CaCk 
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Table 3.3. DSC 1st and 2nd heating melting temperatures and enthalpies of PA-12.T - PA-

6 copolymers 

mol-% 

CaCl2 

1 

2 

2.5 

4.5 

5 

8 

10 

Composition 

(wt-%) 

PA-6 

83% 

84% 

-

-

85% 

78% 

55% 

P A -

12,T 

17% 

16% 

-

-

15% 

22% 

45% 

1 st Heating 

P A - 6 

Tm 

211.6 

211.4 

212.6 

215.6 

217.6 

220.9 

220.3 

AHraeit 

44 

49 

49 

44 

49 

37 

22 

PA 12,T 

T 
1 m 

-

-

-

-

284.3 

287.5 

295 

AHmei, 

-

-

-

-

2.3 

8.4 

27 

2nd Heating 

PA-6 

Tra 

208.9 

206.8 

209.0 

211.9 

215.5 

218.0 

215.1 

AHmeh 

32 

32 

33 

31 

33 

30 

24 

PA 12,T 

T ' 

-

-

-

-

-

265.61 

281.77 

T 2 

1 m 

-

-

-

-

-

285.22 

291.3 

AHme|, 

-

-

-

-

2.3 

9.0 

15.18 

Solubility. Figure 3.16 shows the solubility behavior of the copolymers at 1 wt-% in 

formic acid (FA). PA-6 is completely soluble in FA while the PA-12,T MI is completely 

insoluble. Copolymers synthesized with 8 and 10 mol-% CaCh form swelled particles in 

FA. While the PA-6 portions of the block copolymer have the propensity to dissolve, the 

insolubility of the PA-12,T blocks(crystals) keep PA-6 from fully dissolving. Swelling is 

noticeably greater with the 8 mol-% sample due to the increased amount of the PA-6. 

Interestingly, the gels of the 8 mol-% sample are slightly hazy, consistent with the DSC 

data showing that PA-12,T crystals remain. The 2 and 5 mol-% CaC^ samples show 

complete swelling of the FA forming a soft gel. No hazy areas appear because PA-12,T 

segments are depleted and cannot crystallize as shown by DSC. The high molecular 

weight and remaining fragments of 12-T blocks and PA-12,6,T units keep the sample 

from fully dissolving. 
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Figure 3.16. Solubility of PA-12,T MI, PA-6, and several copolymers 

Conclusions 

PA-12,T - PA-6 block copolymers have been synthesized by the one pot reaction 

involving the anionic polymerization of PA-12,T macro initiator. By changing CaCl2 

concentration, a variety of materials can be obtained using identical reaction conditions. 

Caprolactam conversion and PA-12,T block transamidation have been proven to be 

competing reactions which are directly effected by CaCk concentration. At CaCh. 

concentrations higher than 5 mol-% block copolymers are obtained having distinct PA-6 

and PA-12,T melting temperatures and unique swelling in formic acid. At CaCk 

concentrations lower than 5 mol-%, copolymers are less blocky due to transamidation 

reactions and have much higher molecular weights. 
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CONCLUSIONS 

In the final section, the extension of this work is briefly discussed. In Chapter II, 

we have found that crystalline melting temperature and enthalpy is affected by the 

addition of the PA-6,T monomer. Copolymers were found to be crystalline at all 

compositions, and no totally amorphous materials were formed despite the lowering of 

the melting temperature and enthalpy. Therefore, it would be interesting the further 

characterize these materials to understand: 

• Crystal type- alpha, gamma, or pseudo-hexagonal phase 

• Crystal composition - Do PA-12,T - 6,T alternating segments crystallize? 

(solid state 13C NMR) 

• Crystal size - How big are the crystals versus wt-% PA-6,T comonomer? 

(AFM) 

• Mechanical Properties - How do crystalline changes affect strength and 

toughness? 

• Annealing properties 

Also, the crystallization rates of these materials are very different. At the 

Washington D.C., ACS meeting in 2009, Dr. Harry Allcock posed an interesting 

question, "Using this idea, can you make a material that turns consistently opaque with a 

corresponding increase in temperature?" This research has left questions like this 

unknown, but provides a synthesis that can be scaled-up for both mechanical and 

annealing properties. 

A variety of questions are unveiled by the findings in Chapter III. While the data 

shows that CaCh. has a large effect on the conversion and transamidation of the anionic 
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polymerization of PA-12,T macro initiators, the actual mechanism is unknown. Gaining 

this knowledge would enable better control of the final polymer structure. The following 

variables of the anionic polymerization left constant in this study still need to be 

examined: 

• Temperature - held at a constant 200 °C, but raising and lowering would 

affect the rate and crystallization of the reaction. 

• Macroinitiator concentration - held to a constant 15 wt-%, but if increased 

closer to the solubility limit (22 wt-%), could the PA-12,T crystallize out 

before transamidation preventing randomization? 

• Macroinitiator molecular weight - held at constant DP of 15, but by adjusting 

the stoichiometry of the step growth reaction to obtain a higher DP, could the 

randomization of PA-12,T block be mitigated? 

• Inorganic salt - LiCl has been also shown to have different effects on AP than 

CaCk by increasing the initial rate of the reaction at low concentrations 

(<5 mol-%). 

GPC using HFIP was not available to characterize the molecular weight and 

molecular weight distribution of the samples. This would analysis would provide an 

interesting piece of information that would help examine the molecular weight build up 

of the reaction as a function of CaCl2 concentration, conversion, and transamidation. 

An attractive feature of the studied block copolymer synthesis is the variety of 

block copolymers that could be made by simply changing the monomers. PA-12,T and 

PA-6 blocks are both crystalline. Using different monomers, block copolymers with a 
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crystallizable MI and amorphous AP reaction mixture (and vice versa) can be studied. 

The following briefly discusses the variation of monomers that could be investigated. 

• Biscaprolactam species - It would be interesting to compare the 

terephthalamide to the isophthalamide biscapro lactam monomer. Since 

polyisophthalamides are not crystalline, the effect of crystallinity on the AP of 

MI can be elucidated. Also, linear biscapro lactam monomers could be used 

for further comparison. Since linear polyamides are expected to be more 

soluble in lactams than polyphthalamides, higher concentrations and/or 

molecular weights could be used. 

• Diamine - Different lengths of diamines can be used to change amide density 

of the middle block which will affect solubility and final properties. Also, 

aromatic diamines could be studied to include fully aromatic polyamide 

blocks. 

• Solvent/AP monomer - along with caprolactam, laurolactam is commercially 

available. Both homopolymers are crystalline, but amorphous blocks can be 

attained by using caprolactam/laurylactam mixtures. 

Since reactions produce a solid polymer with near full conversion of monomer 

very quickly, the applicability of this synthesis to reaction injection molding needs to be 

accessed. This would involve adding the anionic initaitor as a specific point in the barrel 

of a twin screw extruder to afford bulk materials into a mold. By simply using differents 

amounts of CaCb., crosslinking, molecular weight, and transamidation can be controlled, 

and a variety of materials can be synthezied with one process. 
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Finally, mechanical and thermomechanical properties of the block copolymers 

needs to be examined. Their DSC and solubility behavior have been shown to be quite 

different, therefore it is expected that mechanical properties and the glass transition 

temperatures will follow. Using this data, application of the materials can then be 

properly asscessed. 
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