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ABSTRACT 

Students’ weak understanding of conservation of matter is well documented; 

however, there is a paucity of research that provides science educators with actual 

examples of empirically proven curricula employing physical modeling that can be used 

in the chemistry classroom to teach this fundamental concept.  An intervention (three 

sequential physical modeling activities) was developed and evaluated.  The intervention 

was administered to two sections of a General Chemistry I course at a community college 

in the southeastern United States, and pre-test/post-test data using a published instrument 

were collected to evaluate the physical model’s effectiveness in developing students’ 

understanding of conservation of matter compared to traditional teaching approaches.  

Because cognitive ability is theorized to play a significant role in understanding abstract 

concepts such as conservation of matter, student logical thinking ability was also 

measured using the abbreviated Group Assessment of Logical Thinking (GALT).   

The results of a two-way mixed analysis of variance (2x2 ANOVA) revealed that 

statistically significant growth in understanding of conservation of matter and conceptual 

understanding occurred from pre-test to post-test for the treatment group only.  In 

general, overall student understanding of conservation of matter was low with an average 

pre-test score of 39% and average post-test score of 47%.  Initially, 87% of the students 

operated below the formal operational level, which decreased to 68% by the end of the 

study.  The findings suggest that the physical model not only significantly enhanced 

students’ understanding of conservation of matter, but also develop their conceptual 

understanding.   
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CHAPTER I – INTRODUCTION 

Overview 

The history of education in the United States is a story of constant change and 

reform.   Over the years, policymakers and other stakeholders have proposed a variety of 

curricular and pedagogical ideas in an effort to remedy deficiencies that undermine the 

academic performance of students from all over the country.  Science education reform is 

no exception.  In 2012, the National Research Council published their Framework for K – 

12 Science Education (Framework).  From this Framework, the Next Generation Science 

Standards (NGSS) were born in 2013.  The release of these newly developed science 

standards signified the start of a paradigm shift in science education in the United States.  

Suddenly, science and engineering practices were considered an important part of student 

engagement in authentic scientific inquiry (Bybee, 2013).  The Framework states that 

true science is much more than just the memorization of a collection of facts about the 

natural world, but that it is also “a set of practices used to establish, extend, and refine 

that knowledge” (NRC, 2012, p. 26).  The assumption made is that if scientists use a 

specific set of practices to refine their knowledge and understanding, then students should 

also use these same practices to develop their own learning. 

The Framework and the NGSS identify eight science and engineering practices 

used by scientists that should be emulated by students in the science classroom.  These 

practices are: (1) asking questions (for science) and defining problems (for engineering), 

(2) developing and using models, (3) planning and carrying out investigations, (4) 

analyzing and interpreting data, (5) using mathematics and computational thinking, (6) 

constructing explanations (for science) and designing solutions (for engineering), (7) 
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engaging in argument from evidence, and (8) obtaining, evaluating, and communicating 

information.  The focus of this study is on the second scientific practice – developing and 

using models – and its implications for teaching abstract concepts in chemistry, namely, 

conservation of matter. 

This study sought to explore the effect of a novel instructional manipulative on 

students’ understandings of conservation of matter.  This effect was examined within 

chemistry classrooms at a public community college in a southeastern state of the United 

States.  This chapter presents an overview of the study and is organized according to the 

following sections: (a) background of the problem, (b) theoretical framework, (c) 

statement of the problem, (d) the purpose of the study, (e) research questions, (f) 

hypotheses, (g) delimitations, (h) assumptions, (i) definitions of terms, and (j) summary. 

Background of the Problem 

The phrase “seeing is believing” is well known by many around the world.  It 

suggests a certain degree of skepticism to those things that are invisible to the naked eye 

and implies that one cannot truly accept the unseen.  This skepticism of the intangible can 

be extended to the realm of chemistry, in which students are often faced with the difficult 

task of learning concepts that cannot always be readily observed.  It is unsurprising to 

discover that students tend to struggle with the glut of abstract concepts chemistry has to 

offer, especially when mental manipulation on the molecular level is involved (Copolo & 

Hounshell, 1995).  Related research has suggested that traditional teaching methods in the 

chemistry classroom are ineffective (Ozman & Ayas, 2003; Plass, Homer, & Hayward, 

2009) and calls for instructional strategies that deepen students’ conceptual understanding 

instead of promoting rote memorization. 
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Fortunately, there exists a countermeasure that every chemistry teacher has access 

to in their arsenal of instructional tools that can help students overcome the challenges 

that abstract concepts present; the use of instructional manipulatives as physical models.  

Unlike model cars or model cities, chemistry’s models are big representations of small 

(often invisible) things.  As external representations of mental concepts, models provide 

scientists a way to visualize and understand certain phenomena (Krajcik & Merritt, 

2012).  Using instructional manipulatives as physical models, students are also able to 

physically interact with concrete representations of natural phenomena (Berk, 1999; 

Carbonneau, Marley, & Selig, 2013). 

The general consensus regarding the role of instructional manipulatives in the 

science classroom is that they effectively bridge the gap between the concrete and the 

abstract, thereby promoting students’ conceptual understandings of scientific concepts 

that are notoriously difficult for students to learn (Bruner, 1964; Marley & Carbonneau, 

2014; Piaget & Inhelder, 1969), a claim that has been verified by decades of research in 

educational contexts (Chiu & Linn, 2014; Salta & Tzougraki, 2011; Sowell, 1989; Wise 

& Okey, 1983; Za). 

Conceptual versus Algorithmic Understanding 

How, though, is student understanding of science gauged?  One of the most 

important measures of success in science education is whether students have achieved 

conceptual understanding – as opposed to algorithmic understanding - of scientific 

concepts (Doucerain & Schwartz, 2010; Slavings, Cochran, & Bowen, 1997; Vosniadou, 

2007).  Being able to evaluate the degree of student conceptual understanding, however, 

is much more difficult than it may seem.  Often, science educators unknowingly make the 
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mistake of assuming that students have a conceptual understanding of an idea simply 

because they can solve a related algorithmic problem (Nakhleh & Mitchell, 1993; 

Nurrenbern & Pickering, 1987).  Related research has revealed that over time many 

students’ understanding of science concepts remains weak, while their ability to apply 

algorithms to solve problems improves significantly.  This is probably so because 

algorithmic understanding is the primary beneficiary of the often-used traditional 

approach to teaching (Abraham & Williamson, 1994; Pfundt & Duit, 2000; Sawrey, 

1990).  Researchers have called for a focus on instructional strategies that develop 

students’ conceptual understanding of conservation of matter (Agung & Schwartz, 2007).   

Conservation of Matter 

This study focuses on the law of conservation of matter, which states that matter 

can neither be created nor destroyed.  Thus, the amount of matter in a closed system is 

conserved and remains the same regardless of other processes that may be active within 

the system (Doucerain & Schwartz, 2010).  Conservation of matter in physical and 

chemical processes is not only described as a central crosscutting concept in the 

Framework and the NGSS, but it is also integral in understanding more advanced 

concepts in chemistry (Ozmen & Ayas, 2003) and in other sciences (Hartley, Wilke, 

Schramm, D’Avanzo, and Anderson, 2011; Thomson & Lotter, 2014).  Therefore, a 

sound understanding of the law of conservation of matter is an especially important factor 

in a student’s ability to understand the world around them (Pyke & Ochsendorph, 2004).  

Most students, however, show a weak understanding of this law (Agung & Schwartz, 

2007; Benjaoude & Barakat, 2000) and hold numerous misconceptions (Andersson, 

1986; Barkar & Millar, 1999; Ben-Zvi et al., 1987; Driver et al., 1984; Andersson, 1984; 



 

5 

Hesse & Anderson, 1992; Ozmen & Ayas, 2003; Ramsden, 1997; Yarroch, 1985).  

Formal instruction has helped students perform better on algorithmic problems such as 

balancing equations and stoichiometry but does not seem to improve students’ conceptual 

understanding of the law (Gomez, Pozo, & Sanz, 1995).  Considering its significance and 

challenging nature, conservation of matter is perfect for studying the impact of 

instructional manipulates on science learning. 

Instruction 

Since the creation of universities in Western Europe over 900 years ago, the 

predominant form of instruction has been lecturing (Freeman, Eddy, McDonough, Smith, 

Okoroafor, Jordt & Wenderoth, 2014).  The traditional style of instruction relies heavily 

on the textbook, lectures, and worksheets.  Unfortunately, this approach to teaching 

seldom influences students’ misconceptions, as they tend to retain any preconceptions 

after instruction has ended (Driver, 1985; Perkins, 1992; Osborne, 1985, Harlen, 1985).   

Recently, a large-scale meta-analysis on STEM (Science, Technology, Engineering, and 

Mathematics) education revealed that in comparison to the traditional, instructor-focused 

approach to teaching, a constructivist approach (i.e., allowing students to construct their 

own knowledge as more active learners) not only decreases the likelihood that students 

will fail, but also contributes to an increase in exam scores by an average of 6 percentage 

points (Freeman et al., 2014).  This study sought to extend these findings to the concept 

of conservation of matter, which is both fundamental to the sciences and notoriously 

difficult for students to learn. 
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Theoretical Framework 

Over the past few decades, constructivism has been at the forefront of the 

paradigm shift in science education.  In support of this framework, research has shown 

that student learning is maximized when students take control of their own learning 

(National Research Council, 2000).   The integration of hands-on activities and 

particularly the use of instructional manipulatives as aids in student learning are hallmark 

of Jerome Bruner’s (1966) constructivist theory of learning. 

Constructivism calls for students to take an active role in their own learning as 

they construct new knowledge through a process involving the acquisition of new 

information and its assimilation into preexisting knowledge schemas (Bruner, 1966).  

Essentially, all students come already preconfigured with their own repertoires of 

knowledge that are dependent upon personal experiences and prior knowledge.  There are 

three major principles of the constructivist approach.  First, instruction must provide an 

environment in which students are willing and able to learn.  Second, instruction must be 

structured in a way in which students are able to understand.  Lastly, instruction should 

be preconfigured in a way that allows for students to explore beyond the information 

presented.  Essentially, the main goal of the instructor should be the active engagement of 

all students (Schlechty, 2002). 

In contrast, the traditional method of teaching places students in a much more 

passive role in the learning process, as the teacher takes center stage in the classroom and 

teaches in a way that generally requires students to use rote memorization to master 

concepts.  Naturally, this method of teaching leaves very little opportunity for students to 

become actively engaged in the learning process. 
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Following a constructivist approach to teaching does not suggest, however, that 

the learning process will be easy or that the acquisition of knowledge is guaranteed.  On 

the contrary, teachers and students face many challenges on the road towards the 

construction of knowledge that are often specific to the various academic disciplines.  As 

previously discussed, chemistry is notoriously difficult for both teachers and students.  

Educational research in chemistry has identified several reasons contributing to 

complexities in the teaching and learning of chemistry.  Johnstone’s (1982) triangle 

which attempts to shed light on why chemistry is often difficult for students offers a 

popular theoretical framework in understanding how chemistry concepts are often 

represented.  Johnstone describes three interconnected levels of chemical representation: 

the macroscopic level, the submicroscopic level, and the symbolic level.  An overview of 

the three levels are shown in Figure 1, with examples of each of the three levels of 

chemical representation of matter in Figure 2. 

 

Figure 1. Three levels of chemical representation of matter (Johnstone, 1982). 
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Figure 2. Examples of each of the three levels of chemical representation of matter 

(Johnstone, 1982). 

Harrison and Treagust (2002) discovered that for the majority of 8th grade 

students, and even for many junior high and high school science teachers, their 

understanding of the submicroscopic level of matter is deficient.  Furthermore, 

subsequent research has revealed that students ranging from secondary school to college 

as well as teachers have trouble shifting from one level to another, which suggests a dire 

need for teachers to know how and facilitate the process of transferring students from one 

level to another (Treagust and Chittleborough, 2001). 

As suggested by Philips (1995), there are many constructivist theories of learning.  

This study focused on the constructivist theory of Piaget, as it is among the most 

commonly referenced in the realm of science education.  Jean Piaget’s (1973) cognitive 

development theory provides additional support for the study as an explanation of how 

students can successfully construct abstract concepts such as conservation of matter 

through the manipulation of models as symbolic representations within Johnstone’s 

hierarchal level (Herron, 1975; Johnstone, 1993).  Piaget describes the process of 

cognitive development in terms of four sequential stages: sensorimotor, preoperational, 
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concrete operational, and formal operational.  The stages most relevant to this study are 

the concrete operational and the formal operational stages.  Each stage is associated with 

an age range in which it is most likely to be observed.  According to this theory, we 

would expect children to enter the formal operational stage at the age of 12 and 

essentially complete their cognitive development by the age of 15.  However, much 

research has been done that contradicts the age progression outlined by Piaget.  Huddle 

and Pillay (1996) and Smith (1978) found that most of the high school chemistry students 

in their study lacked the capacity for formal operational thought and therefore struggled.  

These findings have been corroborated in other studies done around the world such as 

England (Lovell, 1961) and Australia (Dale, 1970).  Even more striking is what science 

education researchers have discovered about attainment of formal operational thought by 

students at the college level.  A study of 131 college freshman enrolled at the University 

of Oklahoma revealed that 50% of the sample were functioning at the concrete 

operational level as defined by Piaget and only 25% met the criteria for formal 

operational thinking established by the researchers (McKinnon & Renner, 1971).  The 

implications of these studies become plain once a clear distinction is made between a 

student at the concrete operational level of development and a student at the formal 

operation level of development. 

Recently, new research has been conducted specifically in the field of science 

education that corroborates the story being told by the classic studies of students’ logical 

thinking ability presented above.  Bird (2010) conducted a study surveying 466 students 

who were enrolled in the second semester of General Chemistry.  Approximately 59% of 

the students fell below the formal operational level.  Considering that the logical 
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reasoning skill test was administered at the start of the second semester of General 

Chemistry, it can be assumed that the percentages do not include students who failed or 

withdrew during the first semester of the General Chemistry course.  Therefore, it would 

be sensible to speculate that the excluded students falling below the formal operational 

level could further inflate the percentage value of 59%.  McConnel, Steer, Owens, & 

Knight (2005) had comparable findings in their study of 741 students enrolled in an 

introductory geoscience course.  These students were found that 57% of these students 

were functioning below the formal operational level based on the same assessment and 

score ranges used in Bird’s (2010) study.  

The nature of concrete operational thinking is revealed in the name of the stage 

itself – concreteness.  The thinking process of a student at the concrete operational stage 

of cognitive development is completely oriented towards concrete things.  This student is 

unable to understand abstract concepts that stray from concrete reality and can be readily 

observed (Herron, 1975).  On the other hand, a formal operational thinker can think 

abstractly and has the capacity for higher-order reasoning (Inhelder and Piaget, 1958). 

Figure 3 presents the theoretical framework for this study, which attempts to 

combine Piaget’s stages of cognitive development and Johnstone’s three levels of 

representation in chemistry to show how physical modeling can be used as a bridge to 

transition students unable to move from macro level of representation (concrete 

operational stage) to the submicro level of representation (formal operational stage) on 

their own.  In theory, this is accomplished because the physical modeling represents the 

unobservable in a way that allows students to not only visualize but manipulate it while it 

is being taught.   
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Figure 3. Transitioning through the three types of representations – the combination of 

Piaget’s stages of cognitive development and Johnstone’s three levels of representation in 

chemistry. 

Note.  Triplet component image modified from “The role of submicroscopic and symbolic representations in chemical explanations” 

by D.F. Treagust, G. Chittleborough, and T. L. Mamiala (2003), International Journal of Science Education, 25, p. 1354. 

Statement of the Problem 

Conservation of matter is a concept that is not well understood by students of 

various ages, a trend that persists in all around the globe, from the United States to 

Indonesia (Agung & Schwartz, 2007).  As the law of conservation of matter is central in 

chemistry (Ozmen & Ayas, 2003), a study investigating how students grasp this concept 

while evaluating the use of various teaching strategies would be an important benchmark 

in science education research.  While research shows that instructional manipulatives as 

physical models work to improve student learning, there is a paucity of research that 

provides science educators with actual examples of a proven curriculum employing 

physical modeling that can be directly implemented in the chemistry classroom to teach 

conservation of matter (Chiu & Linn, 2014; Salta & Tzougraki, 2011; Sowell, 1989; Wise 

& Okey, 1983).  To help fill the gap in the literature, this study drew from current 
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research on student learning in science education to create a hands-on lesson designed to 

help students master this difficult concept. 

Purpose of the Study 

While previous studies have examined student understanding of conservation of 

matter and called for the increased use of modeling as a tool to promote the growth of 

knowledge in the chemistry classroom, none have specifically examined the extent to 

which the implementation of an actual physical model affects students’ understanding of 

conservation of matter (Chittleborough and Treagust, 2007; Coll and Treagust, 2001; 

Gabel & Sherwood, 1980; Harrison & Treagust, 1996).  The purpose of the study was to 

investigate whether the physical modeling lesson developed by the researcher helped 

community college students better understand the concept of conservation of matter as 

reflected by improved achievement on the Conservation of Matter questionnaire (Sadler 

& Schwartz, 2004).  Because cognitive ability is theorized to play a significant role in 

understanding abstract concepts such as conservation of matter, student logical thinking 

ability was also measured (Inhelder and Piaget, 1958; Roadranka, Yeany, & Padilla, 

1983). 

Research Questions 

1. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ overall understanding of 

conservation of matter? 

2. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ logical thinking abilities? 
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3. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ conceptual and algorithmic 

understanding of conservation of matter? 

Research Hypotheses 

This study was designed based off the research questions listed above, to 

investigate the following hypotheses: 

• H1:  There is a difference between students who receive instruction that 

incorporates physical modeling and students who receive instruction that does 

not regarding their overall understanding of conservation of matter. 

• H2:  There is a difference between students who receive instruction that 

incorporates physical modeling and students who receive instruction that does 

not regarding their logical thinking abilities. 

• H3:  There is a difference between students who receive instruction that 

incorporates physical modeling and students who receive instruction that does 

not regarding their conceptual and algorithmic understanding of conservation 

of matter. 

Delimitations 

Delimitations of this research study are as follows.  For practical and logistical 

purposes, this study was delimited to students enrolled at a public community college in 

the southeastern United States.  Therefore, findings of this study may not be 

generalizable to students in other areas, due to cultural and societal differences.  

Justification of this delimitation exists in the way in which researchers in the reviewed 

literature often delimited their studies to single schools or a small group of schools.  
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While this delimitation is effective in increasing internal validity, generalizability suffers.  

Nevertheless, the potential differences between participants from different schools, cities, 

or even states may hamper internal validity by introducing confounding variables or 

variables not relevant to this study.   

Justification for using a public community college located in the South also exists 

in the fact that positive findings from this study can have the greatest impact in the South, 

where student achievement in the sciences is lower than anywhere else in the country.  

The latest National Assessment of Educational Progress (NAEP) results have serious 

implications about student performance in science in the South compared to the rest of 

the country and beyond.  In 2015, achievement-level results for twelfth-grade students 

assessed in NAEP Science was lower for the South than any other region of the U.S.  

81% of tested students performed below the proficient level on the science assessment in 

the South while percentages for students in the same achievement range for the remaining 

regions of the U.S. was 74% for the Northeast, 74% for the Midwest, and 80% for the 

West (NCES, 2016).  Assumptions from these data are even further corroborated by 

comparing the percentage of students that met science benchmark scores on the ACT in 

southern states.  In twelve of sixteen Southern states, the percent of students meeting the 

science benchmark score was well below the national average of 37%.  Of these twelve 

Southern states, Mississippi had the lowest percentage of 20% (ACT, Inc., 2017).  

The sample population of students enrolled in General Chemistry I, chosen 

because naïve participants were available, may further reduce generalizability.  In 

addition, this study was delimited to the data gathered over the course of one month in 

the Spring 2018 academic semester.  Therefore, the researcher was unable to fully 
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examine the longitudinal effects of the proposed intervention.  Furthermore, it is possible 

that the sample was not be wholly representative since participation is voluntary.  

This study was delimited to the inclusion of just two instructional strategies.  

Future research may explore other types of instructional strategies that have proven 

successful in various disciples outside of the sciences, such as discourse initiated through 

argumentation and simulations.  

Assumptions 

Two assumptions were made for this study.  First, it was assumed that all 

participants responded honestly to the Group Assessment of Logical Thinking (GALT), 

and the Conservation of Matter questionnaires (Roadranka, Yeany, & Padilla, 1983; 

Sadler & Schwartz, 2004).  Second, it is assumed that all parties involved in the study 

(i.e., students, teachers, and researchers) adhered to the intervention with fidelity. 

Definition of Terms 

The following definitions are provided to clarify terms identified as pertinent to 

the study: 

1. Abstract concept – concepts that exist solely as thoughts or ideas and cannot 

be conceived at the physical level.  

2. Algorithmic understanding – algorithmic understanding describes a level of 

understanding that involves simply being able to complete mathematical 

functions to correctly solve problems.  

3. Balanced chemical equation – a chemical equation that shows an equal 

number and kinds of atoms between reactants and products. 
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4. Chemical formula – the written representation of a substance’s chemical 

makeup. 

5. Chemical reaction – the process by which a new substance is formed. 

6. Coefficient – the number before the formula of a substance in a chemical 

equation. 

7. Conceptual understanding – conceptual understanding reflects a deep level of 

understanding that goes beyond the rote memorization of ideas. 

8. Concrete operational – the third stage in Piaget’s theory of cognitive 

development that involves the ability to use logical thought but can only apply 

logic to concrete objects. 

9. Conservation of matter – a fundamental chemistry concept that describes how 

matter is neither created nor destroyed in a chemical reaction, despite changes 

in appearance or state of matter.  Thus, matter is conserved and simply 

reshuffled to form new substances. 

10. Formal operational – this final stage in Piaget’s theory of cognitive 

development involves fully mature logical thinking and the ability to think 

abstractly without reliance on the concrete. 

11. Manipulative – an object designed to allow a learner to perceive some concept 

through manipulation. 

12. Matter – traditionally defined as anything that has mass and takes up space.  

In addition, matter is made up of atoms.   

13. Physical model – used to describe unobservable phenomena by providing a 

physical representation that can be visualized and manipulated. 
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14. Products – the substances that are formed in a chemical reaction. 

15. Reactants – the substances that are consumed in a chemical reaction. 

16. Subscript – quantifies the number of atoms of each element in a molecule (ex: 

O2). 

17. Traditional instruction – the predominant form of teaching which incorporates 

instructor-led lectures and promotes heavy use of textbooks and worksheet 

practice. 

Summary 

This study investigated how understanding of conservation of matter was 

impacted as a result of two separate instructional techniques used to teach students taking 

General Chemistry I at a public community college in the southeastern United States.  

This study is presented in five chapters.  Chapter I has provided an introduction and 

overview of the study and is followed by an exhaustive review of the literature relating to 

science education in Chapter II.  Chapter III outlines the research methodology followed 

by a discussion of the findings in Chapter IV.  A summary of overall conclusions for this 

study is presented in Chapter V. 
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CHAPTER II – REVIEW OF THE LITERATURE 

Overview 

To provide a rationale for this study, this chapter presents a review of the 

literature, which includes the key components for understanding the many variables 

related to increasing the conceptual understanding of conservation of matter in high 

school chemistry students. Chapter two contains three major sections.  The first section 

provides an historical background of science curriculum reform in the United States.  The 

second section focuses on recommendations of instructional techniques related to the 

proposed intervention that have been proven to theoretically facilitate conceptual change 

in understanding abstract science concepts.  The third section presents literature 

evaluating students’ understanding of conservation of matter. 

Foundations of Science Curriculum Reform in the United States 

During the 1950s, the many criticisms of science education in America had 

become an important topic of discussion and reflection among scientists.  Initially backed 

by various professional organizations and the National Science Foundation, groups of 

scientists pondered ways in which science education in the United States could be 

revitalized with a healthy injection of scientific rigor.  This initiative finally received 

governmental support and financial backing with the launch of the Russian satellite, 

Sputnik I, into orbit in 1957 (DeBoer, 1991, p. 147).  In the following year, Congress 

passed the National Defense Education Act, which provided substantial funding to boost 

science education, ushering the U.S. into a Golden Age of Science and federal 

involvement in science teaching.  During this time, many national science programs were 

started to further encourage science education in the United States.  Such programs 
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included the Biological Science Curriculum Study (BSCS), which played a large part in 

redefining science instruction and revolutionizing the content of early science textbooks.  

With the release of A Nation at Risk in 1983, recommendations for science education 

were made that focused on a broader approach to achieving science literacy, as opposed 

to a narrower focus on content knowledge.  This reform movement of inducing positive 

change within the educational system continued into subsequent years, as shown by the 

inception of Project 2061: Science for all Americans (Rutherford & Ahlgren, 1990) and 

the National Science Education Standards (NSES) (National Research Council, 1996).  

Most recently, the Next Generation Science Standards (NGSS) have emerged as the latest 

reform effort in science education. 

Scientific Practices in Science Learning 

The Framework and NGSS are constructed around the three dimensions of 

crosscutting concepts, disciplinary core ideas, and scientific practices.  The reasoning 

behind this structure exists in the idea that allowing students to explore crosscutting 

concepts and core ideas through engagement in scientific practices will result in an 

increased achievement and a deeper understanding of the nature of science itself (NRC, 

2012).  These scientific practices involve a specific set of behaviors and activities in 

which scientists are constantly engaged.  

There are eight science and engineering practices identified in the Framework and 

NGSS.  These practices are: (1) asking questions (for science) and defining problems (for 

engineering), (2) developing and using models, (3) planning and carrying out 

investigations, (4) analyzing and interpreting data, (5) using mathematics and 

computational thinking, (6) constructing explanations (for science) and designing 



 

20 

solutions (for engineering), (7) engaging in argument from evidence, and (8) obtaining, 

evaluating, and communicating information.  The focus of this study is on the second 

scientific practice – developing and using models.  Therefore, a brief description of this 

practice only is provided below. 

Developing and Using Models.  The NGSS assert that as soon as the eighth grade, 

students should be able to (1) develop a model to predict and/or describe phenomena; and 

(2) develop a model to describe unobservable mechanisms (p. 56). Lehrer and Schauble 

(2006) argue the importance of model-based reasoning to science practice asserting, 

“Scientific ideas derive their power from the models that instantiate them, and theories 

change as a result of efforts to invent, revise, and stage competitions among models” (p. 

371).  Selley (1981) goes so far as to say that familiarity with models and their role in the 

development of scientific ideas should be a key component to every chemistry educator’s 

philosophy of education and pedagogy beliefs.  This idea of the importance of models to 

science supports the use of modeling as practice.  Specifically related to the focus of this 

study, the NGSS performance expectation MS-PS1-5 calls for the use of physical models 

to describe how mass is conserved in chemical reactions.  Figure 4 depicts the NGSS 

performance expectations for the middle school physical science relevant to this study. 
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Figure 4. Examining the Next Generation Science Standards (NGSS Lead States, 2013) 

at the middle school level. 

In keeping with the three-dimensional style of teaching described by the NGSS 

Framework, this model included appropriate NGSS middle school standards and an 

integration of the three NGSS dimensions (science and engineering practices [SEP], 

disciplinary core ideas [DCI], and crosscutting concepts [CC]) into both student lessons 

and assessments. 

The physical model curriculum directly addresses the DCI, PS1.B: Chemical 

Reactions, that provides the foundation knowledge base for understanding conservation 

of matter and the balancing of chemical equations (NGSS Lead States, 2013).  Mastering 

this basic concept in middle school is essential in preparation for higher-level science 

courses offered in high school and college.  Considering previously aforementioned 

research that indicates that undergraduate students do not have a strong fundamental 
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understanding of conservation of matter, it would make sense to address middle school 

standards that focus on the concept even when dealing with college students. 

The NGSS focus on students’ abilities to engage with science and engineering 

practices by developing and using models to demonstrate and explain abstract 

phenomena or unobservable mechanisms as within balancing chemical reactions.  Using 

this model allows students to manipulate and visualize the abstract recombination of 

atoms within a chemical reaction, helping them to better grasp conservation of matter.   

This model also addressed NGSS CC 2: Scale, Proportion, and Quantity, as 

students use tangible items (colored chips) and mathematical applications to concretely 

demonstrate conservation of matter.  In addition, CC 5, Energy and Matter, is the most 

evident connection, as students were able to visualize the phenomena of atoms being 

conserved in physical and chemical processes. 

To further assess the ability that manipulative models have in relaying abstract 

concepts to students, a simple curriculum comprised of three sequential physical 

modeling activities used to scaffold the learning tasks related to conservation of matter 

was developed by the researcher.  These activities paired the NGSS crosscutting concepts 

of Energy and Matter with the science and engineering practice of Developing and Using 

Models within the disciplinary core idea of Chemical Reactions.  Table 1 shows how the 

proposed intervention connects to the NGSS. 
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Table 1  

Connecting to the Next Generation Science Standards.  

Standard: MS-PS1: Matter and Its Interactions 

Performance Expectation: MS-PS1-5: Develop and use a model to describe how the 

total number of atoms does not change in a chemical reaction and thus mass is 

conserved. [Clarification Statement: Emphasis is on law of conservation of matter and 

on physical models or drawings, including digital forms that represent atoms.]  

Dimension NGSS code or dimension name Link to the standard 

Disciplinary Core 

Idea 

Chemical Reactions The total number of 

each type of atom is 

conserved, and thus the 

mass does not change. 

(MS-PS1-5) 

 

Science and 

Engineering Practices 

Developing and Using Models Develop a model to 

describe unobservable 

mechanisms. (MS-PS1-

5) 

 

Crosscutting Concept Energy and Matter Matter is conserved 

because atoms are 

conserved in physical 

and chemical processes. 

(MS-PS1-5) 

 

 

Note. (NGSS Lead States, 2013). 

Teaching Chemistry 

Long before the inception of initiatives to reform science education on the 

national level, research had been conducted in almost every scientific discipline to 

maximize student learning of science curricula.  Instead of a more typical general 

approach to improving instructional strategies, research in science education seems to 

focus more specifically on ways to improve science learning.  

http://www.nap.edu/openbook.php?record_id=13165&page=56
http://www.nap.edu/openbook.php?record_id=13165&page=56
http://www.nap.edu/openbook.php?record_id=13165&page=56
http://www.nap.edu/openbook.php?record_id=13165&page=56
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Constructivism is at the forefront of this revolution, as it without a doubt has a 

positive impact in student learning.  Curriculum based on constructivism tends to actively 

involve students in the learning process as opposed to traditional lecture-style teaching.  

Teaching Chemistry Using Different Types of Representations 

It is well known that one of the main reasons explaining why learning science can 

be so difficult for students is that scientific knowledge can be represented on several 

different levels.  Not all these levels are readily observable to students, and therein exists 

the problem (Handbook of Science Research, p.382).  Chittleborough and Treagust 

(2007) purport that just as scientists must be able to represent knowledge to conduct 

research, teachers must also do the same to teach students.  This is especially relevant in 

the realm of chemistry, in which students are often faced with the difficult task of 

learning concepts that cannot always be readily observed (Johnstone, 1991; Nakhleh, 

1992; Taber, 2002).  Understandably, visualization cannot be realized in the traditional 

classroom environment that relies solely on textbooks and lecturing.  To improve 

students’ cognitive and affective outcomes, several external representations have been 

integrated into science education over the past few decades.  These external 

representations have been heavily researched and documented in the science education 

literature across a wide variety of content areas.  Treagust and Tsui (2014) categorize 

these external representations into six major overlapping categories: analogies (e.g., 

Dagher, 1994; Treagust, Harrison, & Venville, 1998) and metaphors (e.g., Aubusson, 

Harrison, & Ritchie, 2006; Martins & Ogborn, 1997); visualization (e.g., Gilbert, Reiner, 

& Nakhleh, 2008); models and model-based learning (e.g., Buckley, 2000; Clement & 

Rae-Mamirez, 2008; Gilbert, 2004; Gilbert & Boulter, 1998); multilevel representations 
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(e.g., Chandrasegaran, Treagust, & Mocerino, 2011; Gilbert & Treagust, 2009); 

multimodal representations (e.g., Waldrip & Prain, 2012; Waldrip, Prain, & Carolan, 

2010); and multiple external representations (eg., Ainsworth, 1999; de Jong et al., 1998; 

Treagust & Tsui, 2013; Tsui & Treagust, 2003).  Each type of representation contributes 

in its own unique way to the development of students’ understanding of the science 

concept being studied (Coll and Treagust, 2001).  This study is grounded in the use of 

models as external representations, which overlaps with most of the previously 

mentioned methods and strategies. 

Models and Modeling. The release of the National Research Council’s (NRC) 

Framework for K-12 Science Education in 2012 and the NGSS in 2013 marked a shift in 

the dialogue surrounding science education reform.  This shift acknowledged the idea 

that science is more than just the rote memorization and recitation of knowledge, but also 

“a set of practices used to establish, extend, and refine that knowledge” (NRC, 2012, p. 

26).  As listed in the NGSS, one of these essential practices is that of modeling.  A model 

is simply comprised of actual objects representative of some natural phenomena.  For 

example, modeling was used by the scientists James Watson and Francis Crick to 

elucidate the correct structure of DNA.  Even today, modeling is used across a wide 

variety of disciplines to help scientists investigate and predict phenomena.  The premise 

for incorporating modeling into science education is that if scientists use modeling to 

further their own scientific understanding, why should students not also use modeling to 

enhance their own learning? 

The use of models has distinct advantages. One main advantage is the fact that 

models can incite discussions and explanations that encourage students to evaluate the 
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logic of their own thinking and understanding (Raghavan & Glaser, 1995).  Considering 

the heavy amount of abstract content in chemistry, the use of models and modeling is 

commonplace as it allows students to circumvent the problem of unobservable 

phenomena by helping them to fabricate their own mental models of chemical 

compounds.  In fact, Coll and Treagust (2001) state that it is nearly impossible to explain 

chemical phenomena without the use of modeling.  

While the use of models has been shown to improve students’ understanding of 

chemical concepts (Gabel & Sherwood, 1980; Harrison & Treagust, 1996), they can 

present a unique problem within science education in which students often confuse the 

reasons for using models and modeling (Renstrom et al., 1990; Treagust, Chittleborough 

& Mamiala, 2001).  To elaborate, students often do not regard models differently from 

the natural phenomenon that the model represents (Harrison & Treagust, 1996) and see 

them through a simplistic lens as mere copies of the scientific phenomena they represent 

(Grosslight, Unger, Jay, & Smith, 1991).  Lehrer and Schauble (2006) note that novice 

interpretation of physical models by students typically focuses on literal similarity, a 

finding shared by other researchers (Grosslight, Unger & Jay, 1991; Schwarz et al., 

2009).  To confront this issue, Hardwicke (1995) suggests that a solution lies in 

discussing the strengths and limitations of each model so that students can assess its 

value.  Gilbert, Boulter, & Elmer (2000) and Harrison & Treagust (1996) place 

responsibility on the teacher, suggesting that educators be trained to use models in the 

classroom in a more scientific way. 



 

27 

Manipulative Instruction 

Manipulatives are known to be physical items such as markers, blocks, or puzzles 

that are often used in education.  Manipulatives are not always concrete, however and can 

be virtual as well in the form of simulations and games.  The use of manipulatives in an 

educational environment is regarded as a constructivist approach, as students are using 

the items for active engagement as they learn the concepts taught to them.  In this 

approach, the educator supplies the students with the items that they require to 

accomplish specific learning objectives and may provide them with a basic direction for 

pursuit or guide them more directly in a ‘step-by-step’ format of guidance.  Many 

students may prefer this approach to traditional lecture-based approaches, and the use of 

manipulatives has potential to be effective through the providence of a multi-sensory 

experience, representation capacity, facilitating communication between students, and 

increasing understanding (Green, Piel, & Flowers, 2008; Marley & Carbonneau, 2014). 

Several analysts across a variety of disciplines have discussed or studied the 

effects of instruction with a manipulatives emphasis, recommending considerations for 

practice while confirming the practical benefits of using the approach (Gire et al., 2010; 

Klahr & Williams, 2007; Olympiou & Zacharia, 2012).  These recommendations 

generally imply that the methods and techniques could be used in educational processes, 

such as science classrooms that teach conservation laws.  More specifically, Burns (2007) 

suggests that manipulative models help students to make sense of abstract concepts, 

allow students to evaluate ideas, are useful in problem solving, and increase student 

motivation to learn by making it more engaging.  Furthermore, Chiu and Linn (2014) 

point out the fact that manipulative models allow students the opportunity to physically 
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interact with chemical reactions on the molecular level through the visualization of 

atoms, invisible to the naked eye. 

Green, Piel, & Flowers (2008) studied the potential for manipulatives to address 

common misconceptions regarding arithmetic, and completed two research efforts, 

targeting 50 and 39 students, respectively.  In the first study involving 50 participants, the 

researchers assessed their capacity to solve basic math problems (i.e. regarding whole 

numbers and fractions) using concrete and representational manipulatives across five 

sessions.  In the second study, the researchers attempted to reproduce the results with a 

slightly smaller sample of 39 people.  Studying the results, the researchers found that the 

participants in the first study had been able to use the manipulatives to successfully 

substantially increase their knowledge, while the participants in the second study 

generated results that led the researchers to conclude that manipulatives can facilitate 

both an improvement in general knowledge and a reduction of misunderstandings or 

misconceptions regarding a given topic.  Discussing the relevant theory in further detail, 

Green, Piel, & Flowers (2008) explained that while the impacts of learning with this 

approach vary based on the context, the approach is generally associated with increased 

learning outcomes and improved conceptual comprehension in mathematics and other 

subjects such as chemistry.  They also questioned why they are generally not more 

commonly used for math instruction if they are known to tend to facilitate improved 

learning outcomes; they hypothesized that it may be due to a common belief that 

manipulatives function well as attractors of interest and stimulation during parts of a 

lecture or traditional teaching method, but that they cannot be used on any type of regular 

basis to optimize learning.  Considering all of this, they recommended that educators 
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consider using manipulatives on more of a regular basis, especially in courses of a more 

quantitative nature such as mathematics and chemistry, claiming that they can even be 

effective for teaching in a subject with a qualitative emphasis.   

Marley and Carbonneau (2014) discussed a range of empirical evidence and 

theory regarding their general use, focusing on how evidence supports the theory, and the 

implications for adopting the strategies in classrooms.  They explained that technology 

has increasingly been used as a way of applying manipulatives to education, and that 

virtual manipulatives have great potential to be useful in a wide range of classroom 

settings.  Marley and Carbonneau (2014) offer the following thoughts about 

manipulatives for consideration: 

If one accepts that manipulatives are core instructional materials in educators’ 

toolkits, this question goes beyond head-to-head comparisons of manipulatives vs. 

no manipulatives conditions.  One might even consider summative contrasts of 

this nature uninteresting, as there are many dimensions that symbolic or iconic 

control conditions can differ from enactive treatment conditions that are unrelated 

to the presence or absence of manipulatives. (p. 3).  

While a great deal of literature has been concerned with whether teaching through 

manipulative use is better than teaching through the more traditional methods, the 

analysts recommended that ongoing research and analyses focus on the capacity for 

manipulatives to be used in conjunction with traditional approaches to optimize 

educational objectives and learning outcomes.  Meanwhile, educators and those involved 

with designing educational programs are recommended to consider literature 

demonstrating the effectiveness of manipulatives in guiding learning, in teaching science, 
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in improving retention, and in generally improving the educational process in the range of 

specific settings that have been targeted.  Marley & Carbonneau (2014) concluded that 

while there is a consensus that manipulatives are effective in instruction, and therefore 

play an important role in it, many aspects of the nature of the role and potential 

mechanics in the process as a teaching technique are not fully understood, and therefore 

experts should continue to work to understand them.  There is much that experts can 

attempt to do to do this, including designing research studies to strategically target which 

techniques are most effective in a specific setting, target variables for compatibility or 

affinity in potential students, and strategically assess the underlying theory of what can 

make the use of manipulatives most effective in teaching processes in general.  

Moreover, they can assess the existing research in attempt to isolate patterns that had not 

been noticed, and to attempt to further extrapolate meaning from the conclusions that had 

been reached in these studies. 

Much of the underlying science involved in the effectiveness of using 

manipulatives is cognitive science and underlying processes that might be involved with 

a person believing that they are learning more (or are learning more effectively) from the 

use of manipulatives (as opposed to any combination of traditional auditory and visual 

approaches of conveying information).  Conducting an analysis in this area, Pouw, Gog, 

& Paas (2014) examined a range of literature regarding the capacity for manipulatives to 

increase the general ‘richness’ of learning, disagreeing with a so-called ‘moderate view’ 

that the use of manipulatives can actual compromise the effectiveness of learning through 

its demand of so much attention and restricting the development of inferences believed to 

be better facilitated through traditional methods.  The researchers referred to the 
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underlying concepts in the Embedded Embodied perspectives on cognition, and argued 

that the ‘richness’ of interaction can actually reduce the net amount of ‘cognitive load’ 

proposed to be high in manipulative use, and that transferring information may be better 

facilitated by the range of sensorimotor experiences the student has when using 

manipulatives (Pouw, Gog, & Paas, 2014).  The latter statement may be true when 

considering that there are more mediums for potential memorization when manipulatives 

are used, and further research may help to facilitate better understanding of this aspect of 

the cognitive science.  Concluding, Pouw, Gog, & Paas (2014) wrote: 

Manipulatives have specific properties that make only certain actions possible…a 

mouse-based virtual interface that only allows for unimanual manipulation, or a 

pie-wedge that only allows for re-arranging parts in preset wholes.  However, 

manipulative perceptual properties also determine which behavior given the 

possibilities is likely to be solicited. (p. 59).  

They explained that while children requested to use blocks, they were observed to 

struggle with instructions to use one hand for one block at a time.  The automatic nature 

of engagement is generally fundamentally inherent in people, which suggests potential 

for more engagement than would occur from simply listening or watching as instruction 

is received in the traditional learning environment.  

Loong (2014) further reported on potential for a combination of physical and 

virtual manipulatives to benefit teaching, focusing on mathematics.  According to this 

analyst, “physical manipulatives aid deep conceptual understanding because they present 

alternative representations that help reconstruct concepts…and aid concrete 

thinking…Students who have worked with manipulatives tend to perform better in 
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maths” (Loong, 2014, p. 3).  They also explained that using virtual manipulatives in 

conjunction with traditional ones could assist students in making substantial 

improvements over students that use only one type.  They reported that educators and 

educational developers are recommended to consider mathematical fidelity, cognitive 

fidelity, and pedagogical fidelity when choosing manipulatives to use for math course 

instruction, and to consider comparable variables when choosing them for instruction of 

another course subject.  They concluded that the importance of virtual manipulatives 

should not be ignored, but that traditional ones should not be ignored either, as a 

combination of both is recommended for use.  

Satsangi & Bouck (2015) studied the impact of virtual manipulative use in online 

education, explaining “secondary students with a learning disability in mathematics often 

struggle with the academic demands presented in advanced mathematics courses, such as 

algebra and geometry.  With greater emphasis placed on problem solving and higher-

level thinking skills in these subject areas, students with a learning disability in 

mathematics often fail to keep pace with their general education peers” (p. 174).  Their 

research sample was small, comprised of only three participants, but they were able to 

make an original empirical contribution to literature in documenting their finding that the 

virtual manipulatives used were able to improve learning outcomes.  They further 

reported, “results from this study provide new evidence showing virtual manipulatives to 

be a viable and accessible technology to teach students with learning disabilities 

advanced mathematical concepts” (Satsangi & Bouck, 2015, p. 174). 
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Student Understanding of Conservation of Matter 

First named by Antoine Lavoisier, the law of conservation of matter states that 

matter cannot be created or destroyed in a chemical reaction (Ebbing, 1996).  As such, 

the total amount of mass also remains unchanged in the same system.  Numerous 

scientists since Lavoisier have shared his sentiment on the importance of this law in being 

able to understand chemistry in general (Ozmen & Ayas, 2003).  Piaget was the first to 

conduct a relevant research study on how children learn conservation of matter while 

studying children’s ideas on solutions (Piaget and Inhelder, 1974).  The researchers 

quizzed children between the ages of 4 and 12, on the phenomenon of sugar dissolving in 

water.  The gathered responses were categorized into three specific stages ranging from 

no conservation (for example, “the sugar disappears”) to full conservation (related to both 

quantitative and qualitative observations).  Naturally, due to the quantitative aspect of the 

full conservation stage, it is only possible when children can grasp the abstract nature of 

matter on the atomic level.  Piaget & Inhelder (1974) concluded that basic acquisition 

occurs at the concrete operational stage (ages 7-11). 

In addition to studies done on how to improve student learning of science 

concepts, much research has also been done on student understanding of the concepts 

themselves.  The focus of this study was on student understanding of the law of 

conservation of matter.   

The concept of conservation of matter is not unique from other fundamental 

science concepts in the sense that it seems to be difficult for students to grasp.  Several 

studies have discovered that students at the high school and even college levels have a 

fragmented understanding of conservation of matter (Agung & Schwartz, 2007; 
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Boujaoude & Barakat, 2000).  More shocking is the fact that this trend of weak 

understanding of conservation of matter plagued with misconceptions extends beyond 

students to preservice chemistry teachers (Haidar, 1997). 

Ozmen & Ayas (2003) identified many misconceptions that students harbor 

regarding the law of conservation of matter.  The two most common misconceptions 

among the 10th grade students in the study were that “the total mass increases in a 

precipitation reaction because the precipitate produced is solid and is heavier than a 

liquid”, and “when chemical combustion occurs in a closed system, the total mass 

decreases” (p. 279).  Stavy’s (1991) claim that misconceptions are especially difficult to 

extinguish with traditional teaching methods is further supported by Ozmen and Ayas. 

Agung and Schwartz (2007) examined Grade 12 chemistry students’ 

understanding of conservation of matter, balancing equations, and stoichiometry.  They 

found that in general, student understanding of this fundamental principle in chemistry 

was low, with an average score of 41%.  Results also suggested that students performed 

better on algorithmic-based problems (i.e., stoichiometry).  Algorithmic concepts such as 

stoichiometry and balancing chemical equations are deeply based upon the law of 

conservation and are commonly taught in the chemistry curriculum; however, as stated 

by Mason, Shell, and Crawley (1997), student success with either of these algorithmic 

concepts does not necessarily correlate with student conceptual understanding of this 

fundamental principle.  Thus, Agung and Schwartz (2007) call for future research to be 

done that focuses on teaching practices and curricula that focus specifically on 

developing students’ conceptual understanding of conservation of matter. 



 

35 

The importance of conceptual understanding was emphasized in a study involving 

436 chemistry professors at 205 separate institutions in the United States (Slavings, 

Cochran, & Bowen, 1997).  Faculty from various areas of chemistry identified 

“conceptual understanding” as one of the two most significant outcomes for student 

learning. 

Doucerain and Schwartz (2010) decided to tackle the challenge of finding 

teaching strategies that enhance conceptual understanding.  The researchers conducted a 

study in which the impact of two teaching strategies on students’ conceptual 

understanding of the conservation of matter was probed.  The two strategies existed in 

guided inquiry and argumentation, respectively.  It was found after a pre- and post-test 

analysis that guided inquiry was especially effective in improving conceptual 

understanding. 

Gomez, Pozo, and Sanz (1995) conducted a more detailed study that examined 

students’ understanding of conservation of matter and how it correlated with age, level of 

instruction, and level of expertise in chemistry.  The researchers discovered that 

understanding of conservation of matter was strongly correlated with age group.  

However, when the researchers compared subjects of similar age, the influence of level 

of expertise in chemistry was lower than predicted from other novice-expert studies.  

More interesting is the finding that level of instruction had a more significant influence 

on understanding of conservation of matter when quantitative reasoning was introduced, 

suggesting that formal instruction enables students to solve algorithmic problems better, 

but does not really enhance their conceptual understanding.  These findings are support 

differences observed between algorithmic and conceptual understanding in other studies 
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(Agung & Schwartz, 2007; Nurrenbern & Pickering, 1987; Sawrey, 1990), which find 

that only a small number of students in secondary school and the first year of college 

could solve conceptual chemistry problems.   

Considering the widespread deficient level of understanding of conservation of 

matter across age, educational level, and location, it seems important to focus on 

interventions that have proven to be successful in teaching conservation of matter.  A 

small handful of studies have reported substantial gains in students’ understanding of 

conservation of matter because of some special teaching strategy or instructional unit 

(Campanario, 1995; Doucerain and Schwartz, 2010; Garnet, Oliver, & Hackling, 1998; 

Johnston & Scott, 1991; Lynch, Kuipers, Pyke, & Szesze, 2005; Paixao & Cachapuz, 

2000; Stavy, 1991).  More specifically, Kimberlin and Yezierski (2016) devised an 

intervention composed of two inquiry-based activities for high school chemistry students 

that was found to have a profound effect on student achievement. 

As much of the relevant literature describes conservation of matter as a 

cornerstone of chemistry, it is reasonable to assume that student mastery of this concept 

is imperative to future success.  Unfortunately, the literature also identifies issues with 

students’ understanding of this fundamental concept.  Furthermore, the literature does not 

present a specific example of a proven curriculum employing physical modeling that can 

be directly implemented in the chemistry classroom to teach conservation of matter. 

Summary 

Students are expected to use models when learning conservation of mass in a 

chemical reaction as early as middle school according to the NGSS.  However, research 

has shown that students often have trouble understanding this concept (Lempinen, 2010).  
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Students’ understanding of fundamental concepts such as conservation of mass has a 

profound impact on their ability to grasp more advanced science concepts as they 

progress from middle school to high school and college.  Science educators must try to 

utilize the best instructional strategies to teach these big ideas in science.  One such 

instructional strategy is the use of instructional manipulatives as physical models. 

Potential implications of this study could be tremendous.  While research 

discussed in this chapter shows that physical modeling works to improve student 

learning, there is a paucity of research that provides science educators with actual 

examples of curriculum employing modeling practices that can be directly implemented 

in the classroom to teach conservation of matter, specifically. 

 



 

38 

CHAPTER III  - RESEARCH DESIGN AND METHODOLOGY 

Overview 

In this chapter, the research questions and research hypotheses are stated.  Also, 

the research design, sampling and experimental procedures, data collection instruments, 

and the analytic approach employed are discussed. 

Research Questions 

To explore the effect of physical modeling in the classroom on students’ 

understanding of conservation of matter, the following research questions were 

examined: 

1. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ overall understanding of 

conservation of matter? 

2. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ logical thinking abilities? 

3. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ conceptual and algorithmic 

understanding of conservation of matter? 

Research Hypotheses 

This study was designed based off the research questions listed above, to 

investigate the following hypotheses: 

• H1:  There is a difference between students who receive instruction that 

incorporates physical modeling and students who receive instruction that does 

not regarding their overall understanding of conservation of matter. 
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• H2:  There is a difference between students who receive instruction that 

incorporates physical modeling and students who receive instruction that does 

not regarding their logical thinking abilities. 

• H3:  There is a difference between students who receive instruction that 

incorporates physical modeling and students who receive instruction that does 

not regarding their conceptual and algorithmic understanding of conservation 

of matter. 

Research Design 

This study employed a type of quasi-experimental research design commonly 

used in social research called the nonequivalent groups design.  The nonequivalent 

groups design is structured similarly to a pre- and post-test randomized experiment but 

lacks a crucial component of randomized experimentation - random assignment.  This 

means that for the study, the assignment to the treatment or control groups was not 

controlled via random assignment.  Instead, classes of students that were already intact 

were randomly assigned to either treatment or control groups.  Ideally, each class 

consisted of students that had much in common and were quite similar.  However, groups 

may have been significantly different prior to the start of the study.  For this reason, pre-

test measures taken on the same outcome variables as the two post-tests were employed.  

Shadish, Cook, and Campbell (2002) describe the usefulness of pre-tests in this type of 

design, stating that they help to identify initial differences between the groups being 

compared, which allows for stronger causal inferences to be made.  Figure 5 depicts a 

diagram summarizing the overall research design. 
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Figure 5. Research design diagram. 

Variables 

Independent variables.  This study follows a quasi-experimental research 

approach with a nonequivalent control group design using pre-tests and post-tests.  For 

this study, a 2 x 2 mixed design approach was employed.  Mixed designs are designs that 

include at least one between-subjects variable (group assignment condition) in addition to 

at least one within-subjects variable.  In this study, participants were divided into two 

groups.  Thus, treatment condition (control and treatment groups) was the between-

subjects factor in this study.  Participants were also given pre-tests and post-tests, and 

these together served as the within-subjects factor. 

Dependent variables.  In the first research question, the dependent variable is 

understanding of conservation of matter.  In the second research question, the dependent 

variable is logical thinking ability.  The third research question probes specific types of 



 

41 

understanding of conservation of matter – conceptual and algorithmic understanding.  

Figure 6 highlights the variables of the study. 

 

Figure 6. A hierarchical diagram highlighting variables of the study. 

Note. (2) – two testing periods (i.e., pre-test and post-test) 

Materials Design 

Conservation of Matter Lesson 

Every participant, regardless of their group assignment condition received initial 

and follow-up lectures on Chemical Reactions and Reaction Stoichiometry (Chapter 3 of 

the course textbook), in which the idea of matter conservation and its application in 

chemistry was introduced and covered.  Lecture material was comprised of the chapter 

PowerPoint provided by the publisher of the adopted textbook and was used in all 

classes.  The treatment in this study were two types of enrichment activities and 

depended on group placement.  These two treatments are discussed below. 

Traditional Treatment 

Traditional teaching methods are often teacher-directed and involve the use of 

standard materials such as worksheets, group work, textbooks, and demonstrations.  
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Traditional activities used in this study included one worksheet on counting atoms and 

one worksheet on balancing chemical equations.  An overview of the traditional 

curriculum can be found in Appendix H. 

Physical Modeling Treatment 

To probe the incredible potential that physical models have in relaying abstract 

concepts to students in science, a simple physical model comprised of three sequential 

activities used to scaffold the difficult learning tasks of counting atoms and balancing 

chemical equations was utilized in the treatment group (see Appendix G).  During 

development of the physical modeling activities, a panel of 14 elementary, junior high, 

high school, and college science educators participated in a pilot study to help ensure the 

validity of the model and correct usage of terminology. 

The physical model used colored chips to represent atoms of different elements 

that were placed in designated areas on a template.  Each activity was followed up with 

informal assessments and discussion questions to incite thought and clear misconceptions 

that may have been introduced.  As Levy Nahum, Hofstein, Mamlok and Bar-Dov (2004) 

suggest, ‘in chemistry, almost all models are metaphorical models’ (p. 303).  Therefore, 

special effort was made to make sure that the features of the physical model used in this 

study were not interpreted literally but symbolically.  Through discussion, students may 

have gained further appreciation for the use of models in science while also becoming 

aware of the limitations. 

In activity 1 (25 minutes), students were presented with chemical formulas and 

were challenged with counting the total number of atoms, taking into consideration 

coefficients and subscripts, Figure 7. 
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Figure 7. Template used for Activity 1. 

Activity 2 (25 minutes) required students to count atoms for both sides of an 

entire chemical equation, as opposed to a simple chemical formula.  Activity 2 presented 

more of a challenge because students were now presented with multiple substances 

present on both sides of a chemical reaction.  Activity 2 ended with students being able to 

recognize if a chemical equation was balanced or not but did not require them to take any 

further steps.  In Activity 3, students brought together everything that had been 

introduced and reinforced in Activities 1 and 2 to take on the final task of balancing 

entire chemical equations.  The template used for Activity 2 and Activity 3 are shown in 

Figure 8. 
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Figure 8. Template used for Activities 2 and 3. 

In addition, formative assessments were integrated into each activity to guide the 

instruction and feedback of the teacher.  The use of these formative assessments was 

backed by research conducted on learning progressions and sequencing that investigate 

how students develop their understanding and ability to use practices and disciplinary 

core ideas with time (NRC, 2012; Merritt & Krajcik, 2013).  Teachers are encouraged to 

create formal assessments appropriate for their classroom.  Recently published literature 

(Bybee, 2013; Lyon 2013; NRC, 2014) recommends that assessments be developed along 

each of the three dimensions of the NGSS and that students have numerous opportunities 

to demonstrate their knowledge. 



 

45 

Procedures 

Sampling Procedure 

Following approval from the Institutional Review Board at the University of 

Southern Mississippi, sixty-eight undergraduate students currently taking General 

Chemistry I at a public community college in a southeastern state of the United States 

participated in this study. 

To attain the sample, the researcher solicited the participation of the community 

college by contacting the institutional research offices with a letter of introduction and 

completed all applications for study approval.  The researcher determined when to 

administer the pre-tests and post-tests.  Following consent, any student enrolled in 

General Chemistry I in the Spring 2018 academic semester was eligible for participation. 

Regarding anonymity and confidentiality, each student was assured that their real 

name would not be collected nor revealed in any presented form of the research results.  

In addition, as participation in the study was not part of the curriculum, each student was 

informed that participation was not mandatory. 
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Experimental Procedure 

 

Figure 9. Chain diagram showing the experimental procedure for the treatment group. 

Note. COM = Conservation of Matter; GALT = Group Assessment of Logical Thinking; (1) – pre-test; (2) – post-test. 

Two separate learning sessions per group were held, which took place over the 

course of a week during the regular laboratory time.  Rather than employing random 

assignment of students to determine placement in either the treatment or control groups, 

intact groups of students were used according to their respective scheduled lab times.  

Therefore, the design of this experiment fell under the scope of a non-equivalent groups 

design which does not employ random assignment as a tactic in which to safeguard 

equivalence between the two groups.  The fidelity of the treatment was maintained 

through fully structured physical modeling activities. 
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Figure 10. Chain diagram showing the experimental procedure for the control group. 

Note. COM = Conservation of Matter; GALT = Group Assessment of Logical Thinking; (1) – pre-test; (2) – post-test. 

Figures 9 and 10 summarize the experimental flow for the treatment and control 

groups, respectively.  After consenting and completing a short demographic 

questionnaire, participants completed the COM pre-test (1) and GALT pre-test (1) to 

assess their initial understanding of conservation of matter and their current level of 

logical thinking ability, respectively.  Afterwards, participants in both groups received 

instruction on learning tasks related to conservation of matter via lectures.  Following 

instruction, participants in the treatment group received additional practice and 

enrichment through physical modeling while participants in the control group received 

additional practice and enrichment through traditional activities in the form of practice 

worksheets.  Next, all participants took a COM post-test (2) in addition to a GALT post-

test (2). 
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Instrumentation 

Two instruments were used for data collection in this study.  They included the 

Group Assessment of Logical Thinking (GALT) questionnaire (see Appendix E), and a 

Conservation of Matter questionnaire (see Appendix D). 

Group Assessment of Logical Thinking (GALT) 

The logical thinking ability of each student was assessed with the Group 

Assessment of Logical Thinking (Roadranka, Yeany, & Padilla, 1983).  The GALT has 

been used in a number of research studies to successfully measure logical thinking ability 

of students (Bird, 2010; Bitner, 1991; Brunce et. al., 1993; Fah, 2009; McConnell et. al, 

2005). 

To account for limitations found in other logical thinking tests, Roadranka et al. 

(1983) developed the GALT, a Piagetian test of logical thinking that integrates the six 

reasoning nodes identified as essential abilities for success in advanced science and 

mathematics courses.  One node of reasoning is concrete operational.  The remaining five 

nodes of reasoning are formal operational in nature (Brunce et al., 1993).  The GALT 

does not measure logical thinking ability below the concrete operational level, but instead 

identifies subjects as either concrete, transitional, or formal operational thinkers.  

Roadranka et al. (1983) suggested that the original 21 items in the GALT be used instead 

as a pool of items, so that shorter tests could be utilized in consideration of time 

constraints.  Their suggestion, which was used in this study, includes the following 

recommended 12 items and 6 subscales: conservation of matter, items 1 and 4; 

proportional reasoning, items 8 and 9; controlling variables, items 11 and 13; 
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probabilistic reasoning, items 15 and 16; correlational reasoning, items 17 and 18; and 

combinatorial reasoning, items 19 and 20. 

The test format for the GALT, apart from the combinatorial reasoning questions, 

consists of an illustration of the problem and a corresponding multiple-choice response 

for both the correct answer and justification.  Each combinatorial item is open response, 

requiring students to provide their own answers.  The answers to the GALT items 1 to 18 

were considered correct only if the student selected the appropriate answer and 

justification.  For item 19, Roadrangka et al. (1983) explain that students “must (1) show 

a pattern and (2) have no more than one error or omission”.  Item 20 follows similar 

guidelines, requiring students to show a pattern while not having more than two errors or 

omissions.  For the abbreviated version of the GALT used in this study, classification of 

students as concrete, transitional, or formal thinkers was dependent on the following 

score criteria: (a) 0-4, concrete; (b) 5-7, transitional; (c) 8-12, formal. 

The GALT was chosen as a measure of formal reasoning mainly due to validity 

and reliability results obtained by Roadranka et al. (1983) on a sample of 628 students 

from various grade levels ranging from sixth grade to college.  The original 21-item 

GALT has a reported Cronbach’s reliability coefficient for internal consistency of α = .85 

(Bitner, 1991).  For the abbreviated GALT, Bunce and Hutchinson (1993) report the 

Cronbach’s reliability coefficient for internal consistency as α = .62 - .70. 

Conservation of Matter Concept Questionnaire 

To measure students’ understanding of conservation of matter, a multiple-choice 

instrument developed at the Harvard-Smithsonian Center for Astrophysics was used.  The 

construction of this 25-item instrument relied on numerous student interviews and 
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answers to open-ended essay questions (Sadler & Schwartz, 2004).  As a result, each item 

included distractors that aimed at identifying common misconceptions that emerged from 

the data gathered during the development phase.  During the development of the 

instrument, a pilot study using Rasch analysis was conducted to assure one-

dimensionality of certain constructs (Agung & Schwartz, 2007).  Agung and Schwartz 

(2007) state that this one-dimensionality examination was used to ensure the reliability 

and validity of the instrument.  Numerous rounds of student interviews, analysis of open-

ended essay questions, question refinement, and reviews from subject matter experts 

including chemistry teachers and graduate students helped to provide validity checks for 

each question of the questionnaire.  Over the years, a few studies have used this 

instrument to measure students’ understanding of conservation of matter, further 

validating this instrument (Agung & Schwartz, 2007; Asghar, 2005; Doucerain, 2009; 

Doucerain & Schwartz, 2010). 

The conservation of matter questionnaire consists of 17 conceptual questions 

exploring conservation of matter through various chemical and physical changes (items 1, 

3-14, 16-17, 24-25), 3 questions regarding the nature of matter (item 15, 18-19), and 5 

questions algorithmic in nature that are related to stoichiometry and balancing chemical 

equations (items 2, 20-23).  For the purposes of this study, only the items that tested 

conceptual and algorithmic understanding were used to answer research question three.  

Items 15, 18 and 19 were omitted on the premise that their content was neither conceptual 

nor algorithmic in nature and, therefore, said items would not accurately assess students’ 

conceptual and algorithmic understanding of conservation of matter.   
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Data Collection 

Although no random selection was possible in this setting, all grouped laboratory 

sections of students were randomly assigned to treatment conditions.  To eliminate 

having to also consider the many differences that may exist between instructors, the 

researcher was the sole administrator of treatment for of both groups in this study.  The 

treatment group made use of the physical model to explore conservation of matter, while 

the control group was presented with traditional practice materials. 

This study took place over the course of the Spring 2018 academic semester.  

Each student participating in the study completed the initial pre-tests during their General 

Chemistry I lecture class time at the beginning of the unit.  Each COM and GALT pre-

test established a baseline for the participants. 

For the physical model curriculum, the researcher carried out all experimental 

protocols with the groups receiving the proposed treatment by following the activity steps 

and procedures for the physical model activities as seen in Appendix G.  Since the 

researcher took the place of the administrator for both the treatment and control groups, 

the need to control for individual instructors was eliminated, and lent itself to the ability 

of the researcher to make stronger causal inferences from the results. 

In the treatment group sessions, each student participating in the study explored 

the idea of conservation of matter through physical modeling.  The physical model 

activities engaged students in hands-on experiences that allowed them to observe how 

atoms are conserved and rearranged in chemical reactions.  The two major components of 

the treatment intervention were a) a physical model that students can visualize and b) 

hands-on activities.  The activities were developed by the researcher in alignment with 
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the recently adopted NGSS with the goal of enhancing students’ understanding of 

conservation of matter.  In addition, the model was piloted to ensure clarity and 

appropriateness and further evaluated by subject matter experts. 

For the laboratory sections that served as the control group, the students were 

enriched with traditional materials.  In general, the researcher asked them to apply their 

knowledge by completing worksheet assignments.  Students were permitted to work in 

small groups while doing so. 

At the end of the study, each participant completed the questionnaires a second 

time (as post-tests) to measure individual changes in both cognitive level and 

understanding of conservation of matter in addition to group differences across the 

treatment and control groups. 

Analytic Approach 

After data screening, descriptive statistics such as standard deviations, students’ 

mean scores, and frequencies of student responses were computed using SPSS 20 and 

organized in tables.  Furthermore, the final scores of the GALT and COM measures were 

tallied by computing raw scores and the percentage of correct answers. 

For data analysis, a 2 x 2 mixed analysis of variance (ANOVA) was used to 

address the research hypotheses.  Group assignment conditions (treatment and control) 

served as the between-subjects factor, and time (pre-test and post-test) was the within-

subjects factor in this study.  To satisfy a desire to understand the nature of any 

interaction between the two factors on the dependent variables, follow up simple effects 

tests were conducted on significant interactions.  Scores on the GALT and COM 

questionnaires served as dependent variables.  All data was analyzed using SPSS 20. 



 

53 

Summary 

In summary, this chapter describes the methodology used for the study which 

examined the extent to which the incorporation of physical modeling affected students’ 

understanding of conservation of matter.  The students were enrolled at a public 

community college in the southeastern United States and were currently taking Chemistry 

I.  The researcher employed a nonequivalent groups pre-test post-test quasi-experimental 

research design which utilized questionnaire scores to investigate the three identified 

hypotheses.  A quantitative approach was most appropriate in comparing levels of 

content knowledge between participants receiving two different types of treatment.  

Power analysis using G*Power dictated that a minimum sample size of 68 was required 

to detect a large effect size with the given variables, assuming an alpha of .05. 

Participants were obtained from a public community college.  While participation 

did not depend on program of study or major, participants needed to be currently enrolled 

in General Chemistry I.  The experimental procedure consisted of the two pre-tests, 

lectures on the chapter which introduced conservation of matter and its application in 

chemical reactions, supplemental practice with either traditional activities or physical 

modeling, and the two post-tests.  Each participant took part in the study which took 

place over the course of a month.  During the final phase of the instructional unit, 

participants were randomly divided into two groups, each receiving additional instruction 

via either traditional methods or through physical modeling, and then took the post-tests. 

Quantitative data generated by the pre-tests and post-tests were analyzed through 

a 2 x 2 mixed-model ANOVA with follow up simple effects tests, using SPSS 20.  The 
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experimental design employed was most appropriate for comparing the effectiveness of 

two instructional strategies. 

Results of these analyses are presented in the next chapter.  Final participants are 

discussed first, followed by the quantitative and descriptive results by each research 

question and respective hypothesis. 
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CHAPTER IV – RESULTS 

Research Questions 

This study sought to answer three questions.  These three questions are listed 

below and are followed by a discussion of the instruments used to answer each of the 

research questions: 

1. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ overall understanding of 

conservation of matter? 

2. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ logical thinking abilities? 

3. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ conceptual and algorithmic 

understanding of conservation of matter? 

Description of the Instruments 

Two instruments were used to measure students’ understanding of conservation of 

matter and logical thinking ability: (a) the Conservation of Matter (COM) questionnaire 

(see Appendix A) and (b) the abbreviated Group Assessment of Logical Thinking 

(GALT) questionnaire (see Appendix B).  The Conservation of Matter questionnaire 

comprised of 25 multiple-choice items was used to assess understanding of conservation 

of matter (Sadler & Schwartz, 2004).  Following the item analysis of Doucerain (2009), 

the questionnaire contains 17 conceptual questions that probe conservation of matter 

through scenarios involving physical and chemical changes (items #1, 3-14, 16-17, and 
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24-25), 3 questions about the nature of matter (items #15, 18-19), and 5 algorithmic 

questions related to stoichiometry and balancing equations (items #2, 20-23).  Relevant to 

this study are the conceptual and algorithmic subscales, which were used to answer the 

third research question.   

A 12-item paper-and-pencil abbreviated Group Assessment of Logical Thinking 

(GALT) was used to provide a direct measure of logical thinking abilities (Roadranka, 

Yeany, & Padilla, 1983).  The test format for the GALT consists of an illustration of the 

problem and a corresponding multiple-choice response for both the correct answer and 

justification.  There are also open response questions, requiring students to provide their 

own answers.  Based on raw score, students were categorized as either concrete (0-4), 

transitional (5-7), or formal operational (8-12).   

Both instruments were administered as a pre-test and post-test during the 

beginning and end of the Chemical Reactions and Reaction Stoichiometry unit of the 

Spring semester of 2018 at a community college in a southeastern state in the United 

States.  One month passed between the administration of the pre-tests and post-tests.  

Raw scores and average percent correct scores on each pre-test and post-test for each 

group were computed. 

Description of the Sample 

Seventy-five individuals consented to participate in the study, mostly aged 

between 18 and 19 years old.  Participants missing key data (i.e., pre-test or post-test) 

were excluded from the study.  Thus, only 62 of the 75 total participants had a 

sufficiently complete data set for inclusion in data analysis.  Of the 62 students, the 

majority were female (n = 40, 65%) and the minority were male (n = 22, 35%).  All 
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participants were enrolled in General Chemistry I.  The composition of the control group 

(n = 30) was also more female (n = 19, 63%) than male (n = 12, 37%).  This trend was 

also observed in the treatment group (n = 32) which also had more females (n = 22, 69%) 

than males (n = 10, 31%). 

Description of the Variables 

The overall average percent correct score for all participants in the control group 

on the COM questionnaire was 37.5% (SD = 14%) on the pre-test and 41.7% (SD = 

17.2%) on the post-test.  COM scores increased within the control group from 37.5% to 

41.7% from pre-test to post-test, but not significantly (p = .104).  The treatment group 

performed better overall.  For the treatment group, overall average score on the pre-test 

was 39.8% (SD = 14.7%) and 53.1% on the post-test (SD = 19%), a significant difference 

(p <.001).  Despite the apparent group differences, both groups still performed poorly on 

the COM questionnaire.  Table 2 presents an item analysis of the COM questionnaire and 

overall scores for both groups. 

Of the twenty-five items on the COM questionnaire, 17 items tested conceptual 

understanding (Items 1, 3 – 14, 16 -17 and 24 – 25), and 5 items tested algorithmic 

understanding of conservation of matter (Items 2 and 20-23).  The overall average 

percent correct scores for students were very low for both subscales and are shown in 

Table 3.  For the 17 conceptual questions, the control group obtained an average score of 

38.2% on the pre-test and 42.5% on the post-test and was not significantly different (p = 

.134).  For the treatment group, average scores significantly increased from 39.2% to 

51.8% (p < .001).  For the 5 questions on the algorithmic understanding subscale, average 

percent correct scores for the control group rose ten percentage points from 28% to 38%, 
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but not significantly (p = .075).  For the treatment group, average scores also increased, 

from 32.5% to 47.5%, which was a significant change (p = .007). 

In general, correlations between post-tests across each subscale were weak.  

However, a significant correlation was found when looking at how conceptual 

understanding post-test scores correlated with algorithmic understanding post-test scores 

(p = .011).  This was surprising, considering the literature describes a disconnect between 

algorithmic and conceptual learning, suggesting that they are not correlated.  Therefore, a 

second correlation analysis was conducted for each group separately, to further explore 

this significant correlation observed that is not present in the literature. 

Follow-up correlations between post-test scores across each of the two subscales 

in the control group were weak.  However, a similar analysis for the treatment group 

uncovered a strong correlation between post-test scores for each subscale.  This finding 

suggests that the physical model treatment is likely the factor explaining the significant 

correlation between algorithmic and conceptual understanding.  The results of the 

Pearson correlations are presented in Tables 4 and 5. 

The GALT was used to measure and assess changes in logical thinking ability in 

the student sample.  At the beginning of the study, the general student population was 

found to be 40.7% concrete, 46.5% transitional and 12.8% abstract.  Table 6 displays the 

percentages of the students’ various cognitive levels as measured by the GALT for pre-

tests and post-test in both groups. 

All test results were normally distributed.  The COM pre-test had a skewness of 

.437 and kurtosis of -.231, and the COM post-test had a skewness of .150 and kurtosis of 

-.392, both well within the acceptable bounds for skewness of kurtosis.  The GALT pre-
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test had a skewness of .517 and kurtosis of .327, while the post-test had a skewness of 

.298 and kurtosis of -.990, also well within the acceptable bounds. 

Table 2  

Percent Correct for All Items for COM Pre-test and Post-test 

 Control Group  

(N = 30) 

Treatment Group  

(N = 32) 

Question number Pre-test 

(%) 

Post-test 

(%) 

Pre-test 

(%) 

Post-test 

(%) 

1c 57 73 66 66 

2a 40 60 59 75 

3 c 40 43 62 53 

4 c 53 63 75 69 

5 c 43 67 41 53 

6 c 53 60 56 75 

7 c 30 43 28 66 

8 c 47 47 41 34 

9 c 23 27 22 47 

10 c 37 53 38 69 

11 c 23 30 22 34 

12 c 33 37 19 53 

13 c 60 43 72 78 

14 c 17 20 19 34 

15  83 80 91 94 

16 c 40 40 28 53 

17 c 37 40 38 44 

18  17 17 19 31 

19  50 33 56 75 

20 a 47 37 34 44 

21 a 20 27 28 44 

22 a 17 37 28 41 

23 a 17 30 12 34 

24 c 20 17 9 16 

25 c 33 20 31 47 

     

Overall Average Score 37.5 41.7 39.8 53.1 

     
 

Note. cConceptual understanding subscale; aAlgorithmic understanding subscale. 
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Table 3  

Overall Average Score by Subscale.  

 Control Group (N = 30) Treatment Group (N = 32) 

Subscale Pre-test (%) Post-test (%)  Pre-test (%)  Post-test (%) 

Conceptual 38.2 42.5 39.2 51.8 

Algorithmic 28.0 38.0 32.5 47.5 
 

Note. As measured by the Conservation of Matter (COM) Questionnaire. 

 

Table 4  

Pearson Correlation on Subscales 

  Conceptual 

pre-test 

Conceptual 

post-test 

Algorithmic 

pre-test 

Algorithmic 

post-test 

Conceptual pre-test Pearson correlation 

p (two-tailed) 

1     .680** 

.000 

.065 

.613 

.189 

.141 

Conceptual post-test Pearson correlation 

p (two-tailed) 

    .680** 

.000 

1 .115 

.372 

    .415** 

.001 

Algorithmic pre-test Pearson correlation 

p (two-tailed) 

.065 

.613 

.115 

.372 

1 .220 

.086 

Algorithmic post-test Pearson correlation 

p (two-tailed) 

.189 

.141 

    .415** 

.001 

.220 

.086 

1 

 

Note. **Correlation is significant at the 0.01 level (two-tailed), *Correlation is significant at the 0.05 level (two-tailed). 
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Table 5  

Pearson Correlation on Subscales by Group 

 

Group 

  Conceptual 

pre-test 

Conceptual 

post-test 

Algorithmic 

pre-test 

Algorithmic 

post-test 

Control Conceptual pre-test Pearson correlation 

p (two-tailed) 

1     .740** 

.000 

.010 

.956 

.240 

.201 

 Conceptual post-test Pearson correlation 

p (two-tailed) 

    .740** 

.000 

1 .002 

.991 

.341 

.065 

 Algorithmic pre-test Pearson correlation 

p (two-tailed) 

.010 

.965 

.002 

.991 

1 .215 

.254 

 Algorithmic post-test Pearson correlation 

p (two-tailed) 

.240 

.201 

.341 

.065 

.215 

.254 

1 

       

Treatment Conceptual pre-test Pearson correlation 

p (two-tailed) 

1     .657** 

.000 

.117 

.522 

.132 

.473 

 Conceptual post-test Pearson correlation 

p (two-tailed) 

    .657** 

.000 

1 .172 

.347 

  .443* 

.011 

 Algorithmic pre-test Pearson correlation 

p (two-tailed) 

.117 

.522 

.172 

.347 

1 .192 

.291 

 Algorithmic post-test Pearson correlation 

p (two-tailed) 

.132 

.473 

  .443* 

.011 

.192 

.291 

1 

 

Note. **Correlation is significant at the 0.01 level (two-tailed), * Correlation is significant at the 0.05 level (two-tailed). 
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Table 6  

Student Logical Thinking Ability Domain Percentages 

 Control Group  

(N = 30) 

Treatment Group  

(N = 32) 

Domain Pre-test 

(%) 

Post-test 

(%) 

Pre-test 

(%) 

Post-test 

(%) 

Concrete Operational 53.3 50.0 28.1 40.6 

Transitional  36.7 26.7 56.3 18.8 

Formal Operational 10.0 23.3 15.6 40.6 
 

Note. As measured by the Group Assessment of Logical Thinking (GALT). 

Data Analysis Summary 

Analysis Overview 

A Two-Way Mixed ANOVA was conducted to examine the effects of physical 

modeling strategy on understanding of conservation of matter and logical thinking ability 

in community college chemistry students.  Scores for both measures at various times 

before (pre-test) and after (post-test) treatment were compared for two grouping 

assignments (control and treatment).  Thus, the design is a 2 x 2 factorial design where 

Group is a between-subjects factor and Time is a within-subjects factor.  A mixed-model 

ANOVA was chosen over other individual analyses due to increased protection against 

Type I error, and to thoroughly examine any significant interactions that may be present 

in the data.  To avoid conflict, a separate mixed-model ANOVA was run while 

investigating the third research question since the subscales involved were a part of a 

measure already included the model.  Simple effects tests were run as follow-up analyses 

to further examine significant interactions.  A summary of these results is show in in 

Table 7. 
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Due to the lack of random assignment and the inclusion of two separate measures 

as dependent variables, a Box’s Test of Equality of Equality of Covariance Matrices was 

conducted.  The Box’s Test was not significant, which indicated a reduced risk of Type I 

error.  In addition, to satisfy the assumption of homogeny of variance of each group at 

each level of the within-subjects variable (pre-test and post-test) Levene’s Test was 

conducted.  Levene’s test was not significant for any of the dependent variables. 

Table 7  

Summary of Results of Mixed Design Analysis of Variance (ANOVA) 

Within-Subjects 

Effects 

Measure df Mean 

Square 

F p Partial Eta  

Squared 

Time COM 1/60 150.594 24.060 .000 .286 

 GALT 1/60     1.539     .878 .353 .014 

 Conceptual  1/60   64.643 18.466 .000 .235 

 Algorithmic  1/60   12.097 10.557 .002 .150 

       

Time * Group COM 1/60   40.153 6.414 .014 .097 

 GALT 1/60       .249   .142 .708 .002 

 Conceptual  1/60   15.675 4.478 .038 .069 

 Algorithmic 1/60       .484    .422 .518 .007 

       

Between-

Subjects Effects 

Measure df Mean 

Square 

F p Partial Eta  

Squared 

Group COM 1/60 90.487 3.195 .079 .051 

 GALT 1/60 40.216 3.432 .069 .054 

 Conceptual 1/60 23.316 1.241 .270 .020 

 Algorithmic 1/60 3.794 2.228 .141 .036 

       

 

Note. Time - Pre-test & Post-test; Group - Control Group & Treatment Group; COM - Conservation of Matter Questionnaire; GALT - 

Group Assessment of Logical Thinking; Conceptual - Conceptual Understanding subscale; Algorithmic - Algorithmic Understanding 

subscale. 
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Analysis of Data 

The researcher explored three research questions and three corresponding 

research hypotheses.  Each of the three research questions were quantitative in nature and 

dealt with differences in overall understanding of conservation of matter, logical thinking 

ability, and conceptual and algorithmic understanding of conservation of matter, 

respectively.  The data were collected in relation to each of the questions and hypotheses 

posed below. 

Research Question 1: Differences Made in Overall Understanding  

Regarding this area of examination, the researcher asked the following question 

concerning differences made in overall understanding of conservation of matter: 

How does the use of physical modeling compare to traditional teaching methods 

regarding differences made in students’ overall understanding of conservation of matter?   

Hypothesis 1 predicted that there is a difference between students who receive 

instruction that incorporates physical modeling and students who receive instruction that 

does not regarding their overall understanding of conservation of matter. 

The results of the Two-Way Mixed ANOVA showed that there was no significant 

main effect of Group (F(1, 60) = 3.195, p = .079, ηp2 = .051) on Conservation of Matter 

raw scores, with the control group (M = 9.90) and treatment group (M = 11.609) 

performing similarly overall. 

There was, however, a significant main effect of Time for the Conservation of 

Matter questionnaire (F(1, 60) = 24.060, p < .001, ηp2 = .286), with students having 

significantly higher post-test scores (M = 11.857) over pre-test scores (M = 9.652). 
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There was a significant interaction between Group and Time (F(1, 60) = 6.414, p 

= .014, ηp2 = .097).  As depicted in Figure 11, examination of the cell means indicated 

that while the control group showed improvement in raw scores from pre-test (M = 9.367, 

SD = 3.557) to post-test (M = 10.433, SD = 4.376) following treatment; the treatment 

group showed even larger overall score gains in response to treatment from pre-test (M = 

9.938, SD = 3.741) to post-test (M = 13.281, SD = 4.814). 

 

Figure 11. Time x Group interaction graph for the Conservation of Matter (COM) 

measure. 

A follow up simple effects test was conducted to further determine the nature of 

the significant interaction.  Simple main effects analysis showed that conservation of 

matter score changed significantly in response to treatment for the treatment group (p < 

.001), but not the control group (p = .104). 
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Simple effects tests also showed that before treatment there were no significant 

group differences, F(1, 60) = .38, p = .541, but after treatment there was a statistically 

significant difference between groups, F(1, 60) = 5.92, p = .018. 

These findings support the notion that physical modeling can be used as a 

powerful tool to effectively teach abstract concepts such as conservation of matter. 

Research Question 2: Differences Made in Logical Thinking Ability  

Regarding this area of examination, the researcher asked the following question 

concerning differences made in logical thinking ability: 

How does the use of physical modeling compare to traditional teaching methods 

regarding differences made in students’ logical thinking abilities?   

Hypothesis 2 predicted that there is a difference between students who receive 

instruction that incorporates physical modeling and students who receive instruction that 

does not regarding their logical thinking abilities. 

The results of the Two-Way Mixed ANOVA showed that there was no significant 

main of effect of Group (F(1, 60) = 3.432, p = .069, ηp2 = .054) on logical thinking 

ability scores, with the control group (M = 4.767) and treatment group (M = 5.906) 

comprised of mostly transitional thinkers. 

In addition, there was no significant main effect of Time on logical thinking 

ability scores (F(1, 60) = .878, p = .353, ηp2 = .014), with students showing similar 

average GALT scores for the pre-test (M = 5.225) and post-test (M = 5.448). 

As with each main effect, the interaction between Group and Time was not 

significant, F(1, 60) = .142, p = .708, ηp2 = .002.  As depicted in Figure 12, neither the 
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control nor treatment group attained significant gains in GALT scores from pre-test to 

post-test. 

 

Figure 12. Time x Group interaction graph for the Logical Thinking Ability (GALT) 

measure. 

Because no significant interaction was found, no follow-up tests were run.  These 

findings suggest that the physical model used in this study was not effective in moving 

students towards formal operational thought.  A possible explanation may exist in the 

relatively short amount of time between the implementation of the physical model and 

the measurement of logical thinking ability. 
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Research Question 3: Differences Made in Conceptual and Algorithmic Understanding 

Regarding this area of examination, the researcher asked the following question 

concerning differences made in conceptual and algorithmic understanding of 

conservation of matter:  

How does the use of physical modeling compare to traditional teaching methods 

regarding differences made in students’ conceptual and algorithmic understanding of 

conservation of matter? 

Hypothesis 3 predicted that there is a difference between students who receive 

instruction that incorporates physical modeling and students who receive instruction that 

does not regarding their conceptual and algorithmic understanding of conservation of 

matter. 

When comparing mean raw scores in pre-test and post-test conditions for the 

conceptual and algorithmic subscales of the conservation of matter questionnaire, 

significant differences were found in the pre-test (M = 6.578) and post-test raw scores (M 

= 8.023) for the seventeen conceptual questions (F(1, 60) = 18.466, p < .001, ηp2 = .235) 

and in the pre-test (M = 1.513) and post-test raw scores (M = 2.137) for the five 

algorithmic questions (F(1, 60) = 10.557, p = .002, ηp2 = .150).  Thus, a significant main 

effect of Time was observed.   

In addition, there was not a significant main effect of group assignment condition 

for neither the conceptual (F(1, 60) = 1.241, p = .270) nor the algorithmic subscales (F(1, 

60) = 2.228, p = .141). 
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A significant Time x Group interaction effect was found for the conceptual 

subscale (F(1, 60) = 4.478, p = .038, ηp2 = .069), but not for the algorithmic subscale 

(F(1, 60) = .422, p = .518). 

As depicted in Figure 13, examination of the cell means shows larger increases in 

scores on conceptual questions for the treatment group from pre-test (M = 6.656) to post-

test (M = 8.813), in comparison to increases in scores for the control group from pre-test 

(M = 6.500) to post-test (M = 7.233).  Before treatment, there was not much difference in 

conceptual understanding raw scores between control (M = 6.500) and treatment groups 

(M = 6.656).  However, after treatment, the control group (M = 7.233) had much lower 

conceptual understanding raw scores than the treatment group (M = 8.813).  Figure 14 

shows the nonsignificant interaction graph for the algorithmic subscale of the COM 

questionnaire.  
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Figure 13. Time x Group interaction graphs for the conceptual subscale of the 

Conservation of Matter (COM) questionnaire. 

 

Figure 14. Time x Group interaction graphs for the algorithmic subscale of the 

Conservation of Matter (COM) questionnaire. 

Follow-up simple effects tests were conducted to further explore the nature of the 

significant interaction regarding conceptual understanding of conservation of matter.  

Simple effects analysis showed that conceptual understanding changed significantly as a 

result of treatment for the treatment group (F(1, 60) = 21.25, p < .001), but not for the 

control group (F(1, 60) = 2.30, p = .134).  Furthermore, although no significant group 

differences were observed before treatment (F(1, 60) = .04, p = .845), group differences 

after treatment were approaching significance (F(1, 60) = 3.08, p = .084). 

These findings support the notion that physical modeling could be used to fill 

gaps identified by previous researchers concerning the paucity of empirically proven 
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instructional interventions that can be used to increase the often-neglected conceptual 

understanding goal of student learning. 

The following chapter concludes with a discussion of the findings and their 

implications on integrating physical modeling into the chemistry classroom.  Limitations 

and suggestions for further research to help build and expand on the findings of this 

research study are also given. 
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CHAPTER V – DISCUSSION 

This chapter discusses the findings, conclusions and implications of this study.  It 

is organized into four major sections: (a) a summary of the study, (b) conclusions and 

discussions of the findings that can be drawn from the results of each research question, 

(c) implications for practice, (d) limitations of the study, and (e) suggestions for further 

research. 

Summary of the Study 

Learning chemistry often requires students to imagine and visualize structures and 

reactions on particulate and sub-particulate levels.  This can be difficult for many 

students, particularly those who learn best in a visual or tactile way.  Instructional 

manipulatives used as physical models of unobservable phenomena can be a great 

solution for students to study chemistry concepts that require them to ‘see’ the structure 

or process to fully understand it. 

Recent educational reform has shifted the pedagogy of science education away 

from traditional instruction towards a more interactive approach.  Because conservation 

of matter is so fundamental in understanding a wide array of concepts across multiple 

science disciplines, educators need empirical evidence to further determine what type of 

instruction leads to the greatest growth in content knowledge of this concept.  This need 

led to the formulation of the following three research questions: 

1. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ overall understanding of 

conservation of matter? 



 

73 

2. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ logical thinking abilities? 

3. How does the use of physical modeling compare to traditional teaching 

methods regarding differences made in students’ conceptual and algorithmic 

understanding of conservation of matter? 

The study took place at a public community college in the southeastern United 

States.  The researcher conducted all research sessions in person.  The pre-test and post-

test questionnaires used in data collection were paper-based.  All necessary materials 

including pens, pencils, and dry-erase markers were provided for students who did not 

have or did not wish to use their own. 

The researcher recruited community college students currently enrolled in 

General Chemistry I via in-person solicitation.  No incentive was offered for participation 

in this study. 

Seventy-five students participated, and 13 were eliminated on the basis that each 

participant had to be concurrently enrolled in the lecture and laboratory sections of 

General Chemistry I for the duration of the entire study.  The remaining 62 students 

provided usable data sets for analysis.  Of the 62 students, 40 were female and 22 were 

male. 

To preserve anonymity, participants were assigned a random code to be used as a 

pseudonym.  While general instruction and the completion of the pre-tests and post-tests 

occurred during normal lecture times, the intervention was administered during the 

designated laboratory period.  Each of the four laboratory sections was randomly 

assigned to either the control or treatment groups.  At the beginning of the Chemical 
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Reactions and Reaction Stoichiometry unit that introduced conservation of matter, the 

researcher explained the study to the participants and distributed information sheets about 

the study and a consent form, with the researcher’s and the chair’s contact information 

(see Appendix C).  Following consent, the COM and GALT pre-tests were administered.  

After the pre-test, instruction continued as usual over the course of two weeks.  During 

the third week, participants in the control and treatment groups were exposed to the 

intervention for the entire 1 hour and 50 minutes of the laboratory period.  The COM and 

GALT post-tests were administered during each students’ lecture class a week later.  

Although extra time outside of the 50-minute lecture class time allotment was not needed, 

students were assured that they would not be time constricted while taking the pre-test 

and post-tests.  No major difficulties, such as campus closures due to bad weather 

occurred during the data collection process. 

The researcher analyzed the results of the pre-tests and post-tests using SPSS 20, 

through a mixed-model ANOVA with follow-up simple effects tests on significant 

interactions.  A mixed-model ANOVA compares the mean differences between two 

groups that are split on two independent variables, where one independent variable (or 

factor) is referred to as “between-subjects” factor and the other is referred to as ‘within-

subjects”.  In this study, Group was the between-subjects factor and Time was the within-

subjects factor.  COM, GALT, conceptual understanding, and algorithmic understanding 

scores for both pre-tests and post-tests served as the dependent variables.  These analyses 

revealed answers for the proposed researched questions. 

Research Question One:  How does the use of physical modeling compare to 

traditional teaching methods regarding differences made in students’ overall 
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understanding of conservation of matter?  Initial data analysis revealed that there were no 

overall differences in COM mean scores between the control and treatment groups.  

However, the researcher did find significant differences in mean scores between pre-tests 

and post-tests in general, suggesting that both interventions were effective in increasing 

students’ understanding of conservation of matter.  Further analysis revealed a 

statistically significant interaction effect between the effects of Time and Group on 

conservation of matter mean scores.  Simple main effects analysis revealed the nature of 

this significant integration; there was a significant increase in COM scores for the 

treatment group, but not for the control group.  In addition, it was observed that before 

the intervention, there were no significant group differences between groups, but after 

treatment there was a statistically significant difference observed between groups.  This 

lack of significant group differences before the implementation of the intervention 

supports the internal validity of the study and suggests that despite the lack of random 

assignment, the groups were both normally distributed. 

Research Question Two:  How does the use of physical modeling compare to 

traditional teaching methods regarding differences made in students’ logical thinking 

abilities?  No significant differences existed in logical thinking ability between 

participants in the control and treatment groups.  Thus, the physical model intervention 

was not effective in developing students’ logical thinking abilities. 

Research Question Three:  How does the use of physical modeling compare to 

traditional teaching methods regarding differences made in students’ conceptual and 

algorithmic understanding of conservation of matter?  When comparing mean raw scores 

in pre-test and post-test conditions for the conceptual and algorithmic subscales of the 
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conservation of matter questionnaire, significant differences were found in the pre-test 

and post-test scores for both the seventeen conceptual questions and five algorithmic 

questions.  Further analysis showed a significant change in conceptual understanding 

scores from pre-test to post-test for the treatment group, but not for the control group. 

Conclusions and Discussions 

The results of the quantitative analysis led to several possible conclusions.  In 

terms of a simple score analysis, there was a significant difference between pre-test and 

post-test scores overall for the COM questionnaire, but not for the GALT.  This suggests 

that the collective experiences of the traditional and physical modeling treatments 

increased students’ understanding of conservation of matter but were not effective in 

developing students’ logical thinking abilities. 

Furthermore, a significant Time x Group interaction effect was observed for the 

COM questionnaire, but not for the GALT.  Follow-up up simple effects tests further 

supported the superior effectiveness of the treatment intervention by showing that COM 

raw scores changed significantly because of treatment for the treatment group but not for 

the control group.  In consideration of the lack of random assignment in this study, the 

researcher was also pleased to see that before treatment (on the pre-test), there was not a 

significant difference between raw scores of the control (M = 9.367) and treatment groups 

(M = 9.938).  After treatment (on the post-test), however, a statistically significant 

difference between the control group raw scores (M = 10.433) and treatment group raw 

scores (M = 13.281) was observed.  Thus, further supporting the claim that the observed 

score increases could be confidently attributed to differences in treatment and not other 

variables.  These findings also corroborate the meta-analysis findings of Freeman et. al 



 

77 

(2014) which concluded that STEM students engaged in active learning (such as the 

physical modeling intervention examined in this study) achieve higher student 

performance over students who are strictly taught via traditional lecturing. 

Agung and Schwartz (2007) suggest that future studies focus on instructional 

strategies that focus on the development of students’ conceptual understanding of 

conservation of matter.  This study provides a promising solution to this unique issue.  

Data obtained in this study suggests that the physical modeling treatment was successful 

in presenting a targeted approach in which educators can increase the often-neglected 

conceptual understanding of conservation of matter.  When comparing mean raw scores 

in pre-test and post-test conditions for the seventeen conceptual and five algorithmic 

questions of the conservation of matter questionnaire, significant differences were found 

in the pre-test and post-test raw scores for both the conceptual and algorithmic subscales.  

This indicates that treatment was effective for both group assignment conditions in 

increasing understanding on both fronts.  While there was no significant difference in the 

mean raw scores of each subscale between the control and treatment groups, a significant 

Time x Group interaction was observed for conceptual understanding of conservation of 

matter, but not for algorithmic understanding.  In other words, conceptual understanding 

changed significantly because of treatment for the treatment group, but not for the control 

group.  The observed tremendous increase in conceptual understanding for the treatment 

group was evidence that physical modeling was indeed successful in increasing students’ 

conceptual understanding of conservation of matter, as measured by the COM 

questionnaire.  However, as Harrison and Treagust (2001) indicated, the attainment of 

high scores on a questionnaire does not always truly mirror students’ actual conceptual 
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understanding.  Therefore, the observed increased in students’ conceptual understanding 

scores must be considered with caution. 

In line with the findings of Agung and Schwartz (2007), a Pearson correlation 

showed that post-test scores for the conceptual and algorithmic subscales in the control 

group were not significantly correlated (p = .065).  However, the researcher was surprised 

to find that post-test scores for the conceptual and algorithmic subscales in the treatment 

group were significantly correlated (p = .011).  This was surprising, considering the 

literature describes a disconnect between algorithmic and conceptual learning, reporting 

that they are not correlated.  As Nurrenbern and Pickering’s (1987) study first showed 

with quantitative certainty, the ability to solve algorithmic problems is not equivalent to a 

conceptual understanding.  Simply put, due to the general lack of correlation between 

conceptual and algorithmic understanding, achieving one does not necessarily mean 

achievement in the other.  This issue manifests itself as a significant issue for science 

educators.  One of the most difficult hurdles to overcome in science education is the 

reality that the best instructional approach is one in which one type of understanding is 

not neglected over the other.  Sawrey (1990) follows up the work of Nurrenbern and 

Pickering with a bold proposition for further researchers.  Realizing that teaching 

strategies that give attention to algorithmic understanding often do not address conceptual 

understanding simultaneously, he petitions for ways in which science educators can 

remedy this problem.  This discrepancy between the study findings and the literature 

suggests that the physical modeling intervention was able to address both types of 

understanding simultaneously.   
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Implications 

This study may have varying implications for classrooms instruction and 

pedagogy.  The most obvious implication from this research is that four weeks of 

instruction including a single session of physical modeling is not enough to move 

students forward in terms of logical thinking ability.  As Ashgar (2004) proposed, a more 

prolonged experience using concrete physical modeling as a scaffolding strategy to 

facilitate understanding of abstract scientific principles is needed to help bridge the gap 

between concrete and formal operational thought.  While the physical modeling 

curriculum employed in the treatment group used scaffolding strategies, its use was 

limited to just one session, and not repeated sessions over a long period of time.  This 

likely explains the lack of significant growth in logical thinking ability, as measured by 

the GALT.  The exact length of time required to observe changes in logical thinking 

ability, however, is difficult to determine.  In their study of college chemistry students, 

Bunce and Hutchinson (1993) determined that even a 13-week science course was not 

enough exposure to yield measurable improvement in logical thinking ability. 

One important discovery by the researcher is that as McConnell (2003) pointed 

out, many instructors may wrongly assume that their undergraduate students operate at 

the highest order of logical thinking ability simply because they have not taken measures 

to know the cognitive levels of their students.  In this study, the cognitive level of 

students was far below what one would expect.  Overall, 41% of the sample population 

were functioning at the concrete operational level, 46% were transitional, and 13% were 

at the formal operational level at the time that the GALT pre-test was administered.  At 
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the time the GALT post-test was administered, 45% of the sample were concrete, 23% 

transitional, and 32% were found to be at formal operational thought.   

When analyzing student logical thinking ability across groups, the findings were 

even more interesting.  While overall differences in logical thinking ability over time 

were not significant (p = .107), a clear shift from transitional thought to formal 

operational thought was apparent.  During pre-test administration, a large percentage of 

the study population were in fact labeled as transitional (37% of the control group and 

56% of the treatment group), which describes the domain between concrete and formal 

operational thought.  While the control group saw a small reduction in transitional 

thinkers from pre-test to post-test (37% to 27%) and a small increase in formal 

operational thinkers from pre-test to post-test (10% to 23%), the treatment group saw 

percentages of transitional thinkers reduced from 56% to 19%.  Unfortunately, not all 

students were moved forward towards formal operational thought.  While the treatment 

group did see a substantial increase in formal operational thinkers (16% to 41%), the 

percentage of concrete thinkers also went up (28% to 41%).  These findings suggest that 

the physical modeling helped to move some students to formal operational thought but 

may have also handicapped other students and caused them to regress back to the 

concrete domain due to an overreliance of concrete examples.  Perhaps these students did 

not have the required prerequisite knowledge necessary to move forward.  Considering 

these findings, a crucial need becomes apparent.  Science educators must devise effective 

curriculum that caters to not one but all forms of thinkers in the classroom.  While the 

physical model used in this study was effective, it appears to have not only boosted 

logical thinking ability from the concrete to formal operational stages for some students, 
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but also promoted a transition away from formal operational thought back to the concrete 

level for others.  A plan in which to incorporate the physical model effectively must be 

devised if it is to be used to bridge the transition between concrete and formal operational 

thought.  Therefore, further research needs to be conducted to explore the cause of this 

bidirectional shift in logical thinking ability over time. 

In addition, this research supported the notion that a more constructivist approach 

to teaching plays an important role in building knowledge.  While the specific aspect of 

the physical model intervention that contributed to the significant changes in students’ 

understanding of conservation of matter may be unknown, social interaction cannot be 

prematurely ruled out as a possible contributor considering the amount of discussion 

between students the physical model intervention incited.  A study done by Doucerain 

and Schwartz (2010) highlighted the importance of discourse and argumentation in 

shaping cognitive processes.  However, the authors acknowledge that any conclusions 

suggesting that language and dialog play a role in shaping students’ ideas must be made 

with caution pending supporting empirical evidence regarding mechanisms underlying 

how exactly discourse enhances learning. 

College educators may find that effective use of physical models within the 

classroom can present some inherent difficulties.  One difficulty exists in student 

resistance to using the physical model itself.  Gray, Owens, Steer, McConnell, and Knight 

(2011) agree that using physical models is not a common experience for most 

undergraduate students.  As a result, students either refused to engage with the models or 

played with them inappropriately.  However, the researchers found that these initial 

observations did not tell the entire story.  Repeated use of the modeling activities resulted 
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in the students eventually accepting and actively engaging in the hands-on activities.  

Gray et. al. (2011) make an interesting point regarding some students’ preference for a 

more traditional instructional approach that may prove useful as future studies are 

designed: 

Preference for a traditional didactic lecture may reflect a desire to remain within a 

familiar pedagogy that has worked for them in the past, but our data suggest that 

continued use coupled [with] clear instructions and formative feedback will 

eventually reduce or eliminate such resistance. (p. 21) 

Another hinderance is that educators may find that the use of physical models 

during lecture takes up too much time to do within the confines of the allotted lecture 

period.  Fortunately, in this study the intervention was able to be administered during the 

much longer laboratory period.  

As Gray et. al (2011) point out, educators must be sure to explain the model and 

clearly describe its use to students in order to minimize not only resistance but also other 

complications such as the reinforcement of misconceptions.  One common problem 

experienced when using the models was students’ tendency to incorrectly assume certain 

qualities of the physical models.  For example, students interpreted the models literally 

and assumed that all atoms were spherical in shape, equal in size, or bonded to other 

atoms solely in a linear fashion.  Students must be reminded that while models are useful 

as tools to visualize unobservable phenomena, they are not always perfect representations 

are not meant to be interpreted literally.  
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Limitations 

Each participant received treatment only once within a 1 hour and 50-minute time 

block during his or her scheduled chemistry laboratory section.  This proved to be a 

serious limitation because it severely restricted the amount of exposure students had to 

either the traditional or physical modeling instructional strategies. 

Suggestions for Further Research 

While there is no research in literature supporting differences in gender or 

ethnicity regarding understanding of conservation of matter, a follow-up study should be 

conducted to further assist in evaluating if the intervention had an effect that differs by 

various demographic variables, such as gender, ethnicity, or socioeconomic status. 

Other age groups should also be explored to determine if age is a factor in the 

effectiveness of using physical modeling in the learning of conservation of matter.  The 

incorporation of various age groups across different areas of the country could uncover 

interesting results and add to the findings of this study.   

In addition, considering the importance of conservation of matter as a core 

concept in the sciences, future studies should be conducted that administer a delayed 

conservation of matter post-test at least thirty days after treatment to probe how well 

students in different treatment conditions are able to retain and apply their newly gained 

understanding over a prolonged period. 

Suggestions for future research also involve students’ logical thinking ability.  

The researcher suggests future studies of a longitudinal nature, to help determine how 

long-term exposure to physical modeling in teaching unobservable concepts affects 

logical thinking ability.  Furthermore, by using GALT pre-test scores, the researcher may 
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be able to isolate transitional students to more accurately assess the impact of physical 

modeling as a bridge to formal operation thought. 

The physical model intervention was limited in a few ways.  Most notable were 

the limitations to the size and coefficients of the chemical formulas in Activity 1 and the 

limitation of a maximum of two reactants and two products for each chemical equation 

used in Activity 2 and Activity 3.  While the model was effective in increasing 

understanding of conservation of matter, the physical model could not address some 

difficulties experienced when balancing chemical equations such as the presence of 

numerous reactants and products and the use of fractional coefficients to balance 

chemical equations.  Considering the inability of the physical model to handle complex 

chemical formula and equations, a redesign would be beneficial to increase usability for 

more advanced students.   

Researchers may also find value in using qualitative approaches to compare 

teaching strategies used to teach conservation of matter.  Considering the argument made 

by Harrison and Treagust (2001) that test scores are not always a perfect indicator of 

conceptual understanding, a qualitative study may provide a richer picture of students’ 

understanding of conservation of matter.  Furthermore, as shown in a mixed methods 

study done by Ashgar (2004), the use of case studies to evaluate various chemistry 

curricula have the potential to uncover truths and insight that quantitative methods 

cannot. 

Last, the findings of this study are based upon students from one public 

community college in a southeastern state of the United States.  A replication of this 
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study that includes more institutions of higher learning in different parts of the country is 

needed to produce results that can be confidently generalized. 

Summary 

This chapter presented the findings, conclusions, and discussion of this study as 

well as implications for science educators and suggestions for future research.  The 

purpose of this study was to investigate whether the proposed version of physical 

modeling helped community college students better understand the concept of 

conservation of matter, reflected by improved achievement on the Conservation of Matter 

questionnaire.  In addition, because cognitive ability is theorized to play a significant role 

in understanding abstract concepts such as conservation of matter (Inhelder and Piaget, 

1958), student logical thinking ability was also measured.  Results from the quantitative 

analysis led to the following conclusions.  First, compared to traditional methods, 

physical modeling made a difference in students’ understanding of conservation of 

matter.  Second, the physical model as used, did not make a difference in students’ 

logical thinking ability.  Third, compared to traditional methods, there was also a 

difference made in students’ conceptual understanding of conservation of matter.   
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APPENDIX C – Consent Form 
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APPENDIX D – Conservation of Matter Pre- and Post-test 
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APPENDIX E – Group Assessment of Logical Thinking Ability Pre- and Post-test 

 



 

99 

 



 

100 

 



 

101 

 



 

102 

 



 

103 

 



 

104 

 



 

105 

 



 

106 

 



 

107 

 



 

108 

 



 

109 

 



 

110 

 



 

111 

 

 



 

112 

APPENDIX F – Letter of Support from the Author of the COM Questionnaire 
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APPENDIX G – An Overview of the Physical Modeling Curriculum and its Activities 

The physical model curriculum has been divided into three separate activities, 

scaffolding the material that leads up to balancing chemical equations. 

Initial Instruction (same for both treatment conditions): 

Lecture, Reading, Review Questions 

• Lecture: PowerPoint 

• Reading: Textbook 

o Chemistry: The Central Science (14th edition) by Brown et. al. 
▪ Chapter 3 – Stoichiometry 

• Key vocabulary:  

o Reactants 

o Products 

o Coefficients 

o Subscripts 

o Law of conservation of matter 

o Balanced equation 

o Physical change 

o Chemical change 

• Sample review questions: 

o Describe what a chemical reaction is. 

o What are reactants and products? 

o What are key differences between physical and chemical changes? 

o What does it mean to say a chemical equation is balanced? 

Activities: 

Activity 1: Counting atoms (25 minutes) 

Before doing Activity 1, students should already be familiar with basic atomic 

structure and have a fundamental knowledge of the Periodic Table of Elements. At this 

point in the model, students are presented with chemical formulas and are challenged 

with counting the total number of atoms in a compound or molecule, taking into 

consideration coefficients and subscripts.  

 



 

114 

Activity 2: Modeling conservation of matter (25 minutes) 

In the second activity, students should have an understanding of conservation of 

matter, and be able to identify the reactants and products in a chemical equation. Activity 

2 presents more of a challenge because students are now presented with multiple 

molecules or compounds present on both sides of a chemical reaction.  

 

Activity 3: Learning to balance chemical equations (40 minutes) 

In the third activity, students will bring together everything that has been 

introduced and reinforced in Activities 1 and 2 to take on the final task of balancing 

chemical equations. It is important that students master Activity 2 before moving on to 

Activity 3.  
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APPENDIX H – An Overview of the Traditional Curriculum and its Activities 

This curriculum follows a traditional lecture approach which utilizes the textbook 

and practice worksheets.  Thus, ideas are mainly transferred via lectures and limited 

student interaction. 

Initial Instruction (same for both treatment conditions): 

Lecture, Reading, Review Questions 

• Lecture: PowerPoint 

• Reading: Textbook 

o Chemistry: The Central Science (14th edition) by Brown et. al. 
▪ Chapter 3 – Stoichiometry 

• Key vocabulary:  

o Reactants 

o Products 

o Coefficients 

o Subscripts 

o Law of conservation of matter 

o Balanced equation 

o Physical change 

o Chemical change 

• Sample review questions: 

o Describe what a chemical reaction is. 

o What are reactants and products? 

o What are key differences between physical and chemical changes? 

o What does it mean to say a chemical equation is balanced? 

 

Activities:  

Worksheets 
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