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ABSTRACT 

CHARACTERIZATION OF WHOLE PINE TREE SUBSTRATES FOR 

ADVENTITIOUS ROOTING OF CUTTINGS AND 

 INITIAL GROWTH OF SEEDLINGS 

by Anthony Lynn Witcher 

May 2013 

Processed whole pine (Pinus taeda L.) trees have been extensively evaluated to 

supplement peatmoss and pine bark usage in container substrates for greenhouse and 

nursery crop production. The suitability of whole pine tree (WPT) substrates for crop 

propagation has not been investigated. Demonstrating the versatility of WPT substrates is 

essential to expanding their commercial availability and use.  

The objective of this work was to evaluate WPT substrates for stem cutting and 

seed propagation of ornamental crops, and to identify factors affecting root development. 

Stem cutting and seedling root development was evaluated in WPT and traditional 

(peatmoss and pine bark) substrates. In the first study, stem cuttings of Chrysanthemum, 

Cupressocyparis, Euonymus, Evolvulus, Ligustrum, Persicaria, Rosa, and Salvia were set 

in whole pine tree and pine bark substrates. Rooting percentage was similar among 

substrates for each species, but root growth increased with the addition of peatmoss. In 

the second study, a phytotoxicity assessment of aged and fresh WPT substrates was 

conducted using a Phytotoxkit and a seedling growth test. Using the Phytotoxkit, seed 

germination rate and seedling root growth was similar for aged WPT and peatmoss. Fresh 

pine needles had an inhibitory effect on seed germination and seedling growth. Using the 

seedling growth test, lettuce, oat, and tomato seed emergence rate was similar for aged 



 

 

iii 

 

WPT and a peatmoss substrate. Root development was greatest in a peatmoss substrate 

compared with pine bark and aged and fresh WPT. In the final study, the effect of WPT 

particle size on seedling and stem cutting root development was evaluated. Processing 

WPT into finer particle sizes resulted in decreased air space and increased container 

capacity, but did not affect stem cutting or seedling root growth. Overall, root 

development was greater in peatmoss substrates compared with WPT substrates.  

Whole pine tree substrates can be used for germinating seeds and rooting stem 

cuttings. Differences in seed germination/emergence rate and seedling root length could 

not be attributed to phytotoxic compounds in WPT substrates. Nutrient availability and 

retention properties of WPT substrates during propagation should be further evaluated.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The environmental horticulture industry, also known as the ornamental 

horticulture industry or green industry, refers to businesses (public and private) involved 

in the production, sale, installation, and maintenance of ornamental crops (Hall et al., 

2005). Financial, environmental, and social benefits of the environmental horticulture 

industry impact everyone in some manner. Residential energy costs can be reduced by 

proper tree selection and placement, while landscaped homes are valued higher than non-

landscaped homes (Project Evergreen, 2005a). Reduced energy consumption means 

lower demand for fossil fuels, while air contaminants are absorbed by trees, shrubs, and 

turfgrass. Additionally, groundwater contamination and surface erosion are minimized by 

reduced runoff from landscaped areas (Project Evergreen, 2005b). Well-planned 

landscapes can provide privacy and soften the loud sounds of congested areas. In urban 

areas, communities with green spaces are more appealing to potential residents and are 

linked to fewer incidents of crime (Project Evergreen, 2005c). An improved quality of 

life is the greatest contribution of the environmental horticulture industry. 

Major sectors of the environmental horticulture industry include wholesale and 

retail nurseries, landscaping services, florists, golf courses, and urban forestry. Over the 

past 20 years, the environmental horticulture industry has been one of the fastest growing 

segments of agriculture in the United States, largely due to the strong economy and real 

estate market of the 1990s. Expansion of the environmental horticulture industry has 

resulted in job creation and enhanced revenues for state and local governments where 
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these businesses are located. Allied companies, which provide supplies and support for 

the various sectors, have also benefitted from industry growth. (Hall et al., 2005; Shields 

and Willits, 2003).  

Wholesale nurseries are a key component of the environmental horticulture 

industry because their products are used throughout all sectors of the industry. Wholesale 

nurseries vary greatly in respect to the production method used, the production 

environment, and the type of crop produced. The most common crop production methods 

are field-grown, container-grown, and pot-in-pot. Field-grown crops are planted directly 

into the soil and grown to an ideal size. Field-grown crops can be harvested as bare-root 

plants, or can be dug with the root ball wrapped for storage and transport. Container-

grown crops are planted and grown to a finished size in plastic containers filled with a 

soilless substrate (also known as growing medium, potting soil, or potting mix) for plant 

support and root development. At harvest, the plants are transported in the containers, 

which are removed prior to planting in the landscape. The pot-in-pot method requires two 

containers and combines field and container production. The first container is 

permanently buried in the soil as a socket for the second container. The crop is planted 

into a substrate-filled second container and inserted into the socket container. At harvest, 

the containerized plants are lifted from the socket container and treated as a typical 

container crop (Diver and Greer, 2001).  

Container-grown crops can be produced outdoors or inside a greenhouse. The 

production environment for container-grown plants will vary depending on the crop type 

or species. Hardy species of trees, shrubs, ground covers, and perennials can be grown 

outdoors. Tender species such as annuals, tropical foliage, and certain seasonal crops 
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must be grown inside a greenhouse. Greenhouses are used for the propagation and initial 

plant growth of most crops and for off-season production of hardy species.  

Most wholesale nurseries produce a variety of plant species, regardless of 

production method or environment. The United States Department of Agriculture 

(USDA) conducts surveys of horticulture crops every 10 years. The survey collects 

information from operations that grew and sold $10,000 or more of horticultural crops 

during the census year in order to accurately estimate national and state ornamental 

horticulture crop production. The two most valuable crop types for the 2009 survey were 

floriculture and nursery crops (USDA, 2010). The terms, floriculture crop and nursery 

crop, are used extensively in the fields of research and cooperative extension, although 

the terms are not universal and some overlap may occur because each category is broad 

in respect to plant type. 

Nursery crops are hardy species grown outdoors in full sun or under shade cloth 

and can be field-grown, container-grown, or grown pot-in-pot. Nursery crops are 

typically plants with woody stems and can be classified as broadleaf evergreens, 

coniferous evergreens, deciduous flowering trees, deciduous shade trees, deciduous 

shrubs, fruit and nut plants, ornamental grasses, ground covers and vines, palms, or 

propagative material (Jerardo, 2007). The wholesale value of all nursery crop categories 

totaled $3.9 billion for 2009 (USDA, 2010).   

Most floriculture crops are tender species which are container-grown inside a 

greenhouse, although some hardy species can be produced outdoors as field-grown or 

container-grown crops. Floriculture crops are typically herbaceous plants and can be 

classified as annual bedding plants, herbaceous perennial plants, seasonal flowering 



4 

 

 

 

plants, foliage plants, cut flowers, and propagative material. The total wholesale value of 

all floriculture crop categories totaled $5.0 billion in 2009. (USDA, 2010). 

Nursery and floriculture crops are started from propagative material, plant 

material produced for further growing. Examples of propagative material include rooted 

and unrooted cuttings, seedlings (bare root, liners, or plugs), and tissue cultured plantlets. 

Typically, the propagative material is transplanted into larger containers for final growth 

and sale. Most growers purchase propagative material, although some nurseries have the 

resources and facilities to propagate and produce certain crops. Propagative material 

accounted for $600 million (3%) of the total wholesale value of horticultural crops in 

2009 (USDA, 2010).  

Substrate Chemical and Physical Properties 

The propagation and production of container-grown crops requires a substrate that 

is uniform, free of weed seed and pathogens, easily re-wetted, physically stable in storage 

and during production, cost effective, light-weight, and readily available (Davidson et al., 

1994; Reid, 2001). Substrate is a universal term that refers to the contents of a container 

used to support the plant roots (Yeager et al., 1997). A universally accepted substrate 

does not exist, so a substrate selected for propagation or production is largely based on 

grower preference and availability. Before a substrate is selected, the grower should 

consider the chemical and physical properties of the material or combination of materials 

used to formulate the substrate. 

Substrate chemical properties such as pH, electrical conductivity, and cation 

exchange capacity are important to plant production. A pH range of 5.5 to 6.5 is desirable 

for most plant species, although some species may require or tolerate a higher or lower 
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pH. Electrical conductivity, typically measured in milliSiemens per centimeter 

(equivalent to deciSiemens per meter), is used to quantify the capacity of a solution to 

carry an electrical current. The ion concentration, or soluble salt concentration, of a 

solution will affect the conductance, pure water having a very low electrical conductivity 

due to the lack of ions. Periodic electrical conductivity analysis of substrate solution 

samples is a useful tool for monitoring the nutritional status of a substrate. The pour-

through method is a simple, non-destructive process for extracting substrate solution from 

container grown plants (Ingram et al., 2003). Synthetic fertilizers are composed of a 

variety of salts, thus electrical conductivity can be linked to the nutritional status of a 

substrate and be used as a guideline to determine if supplemental fertilizer is required. 

Cation exchange capacity is a measure of a substrate’s ability to retain positively charged 

ions against leaching. Negatively charged binding sites on substrate particles act as a 

reservoir for positively charged nutrients. Substrates with a high cation exchange capacity 

are buffered against drastic changes in pH and nutrient supply. Cation exchange capacity 

is typically measured in cmol/kg substrate, but is converted to a volumetric unit 

(cmol·L
−1

) for comparison of soilless substrates with varying bulk density (Argo and 

Biernbaum, 1997).   

The substrate physical properties important for healthy plant growth include air 

space, container capacity, total porosity, bulk density, and particle size distribution. The 

North Carolina State University porometer method (Fonteno et al., 1995) is used to 

calculate total porosity, container capacity, air space, and bulk density. Air space is the 

percent volume of a substrate filled with air after the substrate has been saturated and 

allowed to drain. Container capacity, or water-holding capacity, is the percent volume of 



6 

 

 

 

a substrate filled with water after the substrate has been saturated and allowed to drain. 

Total porosity is the percent volume of pore space containing air and water in a substrate. 

Bulk density refers to the dry weight of a substrate per unit volume and is represented as 

weight per volume (g·cm
–3

). Sufficiency ranges have been developed for physical 

properties of substrates used for nursery crop production (Yeager et al., 1997), but no 

such universally accepted values are available for substrates used in greenhouse crop 

production and propagation. Sufficiency ranges for nursery substrate physical properties 

include air space (10% to 30%), container capacity (45% to 65%), total porosity (50% to 

85%), and bulk density (0.19 to 0.70 g/cc).   

Particle size distribution is typically reported as the proportion (percentage) of a 

substrate sample composed of specific particle sizes. Particle size distribution is obtained 

by separating an air-dried substrate sample through a series of sieves, each sieve 

representing a separate range of particle size. After separation, the particles from each 

sieve are weighed and the proportion of particles for each sieve size is calculated using 

the following equation:  [(particle weight / total sample weight) x 100]. Particle size 

distribution has a direct effect on the values of the other physical properties. Handreck 

(1983) reported particle sizes less than 0.5 mm had a significant effect on air space and 

container capacity for pine bark substrates, while it has been reported that particle sizes 

less than 1 mm contribute to reduced air space and increased container in peatmoss 

(Raviv and Lieth, 2008). In container production, a substrate must be able to retain 

adequate water for plant use between irrigation events, while providing sufficient air 

space for drainage (Argo, 1998b). 
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Container height and environmental conditions of the production site must be 

considered when selecting a substrate. Container height will affect the air space and 

container capacity of a substrate inside the container. As container height increases, the 

force of gravity on the upper portion of the substrate results in more water draining from 

the container compared to a shorter container.  The substrate in a taller container will 

have more air space in the top portion and higher water content in the lower portion. The 

substrate in a shorter container has less air space in relation to water content, thus a 

higher container capacity (Fonteno et al., 1995; Owen and Altland, 2008).  

The production environment for containerized crops can range from a climate-

controlled greenhouse to an area exposed to the natural elements. Substrates with a high 

container capacity are acceptable in a greenhouse environment, but not recommended for 

outdoor production environments. Greenhouse-grown crops receive water strictly from 

mechanical irrigation, so growers can monitor the moisture content of the substrate and 

determine if irrigation is necessary. Crops grown outdoors are also mechanically 

irrigated, although excess water can be a problem during extended periods of rain 

(Ingram et al., 1993; Altland, 2006).  

A propagation environment usually involves frequent mist applications to plant 

material in short containers. A substrate with a higher percentage of air space is desirable 

for adequate drainage, a characteristic useful in the prevention of plant damage due to 

pathogens or physiological stress from overwatering. An ideal substrate will contain an 

optimum balance of air and water, which may be difficult to achieve if the substrate is 

used for the propagation and production of numerous plant species.   
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Substrate Components 

Traditional substrate components for container-grown crops include peat, pine 

bark, perlite, and vermiculite. Peat is a generic term that refers to a variety of partially 

decomposed plants in a bog habitat, including mosses, sedges, reeds, and grasses. The 

low oxygen environment present in bogs results in the slow decomposition and 

accumulation of dead plant material and other organisms. The vegetation type (plant 

species) and degree of decomposition affect the physical and chemical properties of peat. 

The high degree of decomposition for sedge and reed peats results in a high container 

capacity and low air space, typically at undesirable levels for a container substrate. 

Sphagnum peat (peatmoss), derived from slightly decomposed Sphagnum moss, is the 

predominant component of container substrates used for floriculture crops (Reid, 2001; 

Jaenicke, 1999). The physical and chemical characteristics of peatmoss make it an ideal 

component for substrates used in small containers. Peatmoss quality may vary as will 

values for container capacity (42% to 83%), air space (14% to 55%), and pH (3.0 to 4.0). 

The addition of agriculture grade limestone to peatmoss substrates can increase the pH to 

a desirable range for crop production. Characteristics such as a light weight, absence of 

weed seed and pathogens, and a slow rate of decomposition contribute to the popularity 

of peatmoss as the predominate component of horticultural substrates around the world 

(Ingram et al., 1993; Schmilewski, 2008; Yeager et al., 1997).  

Pine bark has been used in the eastern United States as a container substrate since 

the 1960s. Pine bark is a byproduct of the forestry industry and is obtained by stripping 

the bark from pine logs harvested to make lumber, paper, or other wood products. The 

physical and chemical characteristics of pine bark will vary due to the type of debarking 
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equipment used, processing technique, and the age of processed pine bark. Although 

variations exist in the pine bark supply, most sources of pine bark are suitable as the sole 

substrate component for container production of nursery crops (Ingram et al., 1993; Lu et 

al., 2006). Pine bark may have a pH 3.5 to 6.0 and values may also vary for container 

capacity (40% to 70%) and air space (10% to 40%). Pine bark substrate pH can be 

increased to a desirable range for crop production by the addition of agriculture grade 

limestone (Argo, 1998a; Bilderback and Lorscheider, 1995; Yeager et al., 1997). 

Although pine bark is typically used for nursery crop production, screened pine bark is 

commonly used in smaller containers for propagation.  

The physical and chemical characteristics of a substrate can be modified by the 

addition of inorganic components such as perlite and vermiculite. Inorganic components 

are not commonly used as the sole component of a container substrate due to increased 

expense or unacceptable chemical or physical characteristics. The air space and drainage 

of a container substrate can be increased with the addition of perlite. Perlite is a 

lightweight, structurally stable, sterile, chemically inert material with a neutral pH. Perlite 

is derived from a volcanic alumino-silicate mineral that has been crushed and heated at 

1100 to 1800°F. Depending on the grade, which is based on particle size, perlite can have 

an air space of 14% to 46% and a container capacity of 22% to 54% (Davidson et al., 

1994; Fonteno et al., 1995; Landis, 1990; Robbins and Evans, 2005). Vermiculite is used 

to increase the container capacity and nutrient retention of container substrates, due to its 

physical structure and high cation exchange capacity, respectively. Vermiculite is the 

product of heating an aluminum-iron-magnesium silicate mineral to over 1400°F. 

Vermiculite has a pH of 6.0 to 8.9, container capacity of 59% to 70%, and a cation 
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exchange capacity of 2.0 to 4.9. (Ingram et al., 1993; Robbins and Evans, 2005; Yeager 

et al., 1997).  

Cutting Propagation 

Cutting propagation is the most widely used method for cloning nursery and 

floriculture crops. Various vegetative portions of a plant can be used for cutting 

propagation, although stem cuttings are preferred for most crops due to the simple 

technique and abundance of cutting material. A cutting propagation substrate should 

physically support the cutting, have adequate aeration around the base of cutting, have 

adequate moisture retention, and create a darkened environment around the cutting base. 

Cuttings obtain water directly from the substrate, although the lack of roots prevents 

adequate uptake of water to replenish water loss from transpiration. Therefore, cutting 

propagation is conducted in a modified environment where water is applied intermittently 

as a mist or fog. The smaller containers used for propagation are filled with substrate and 

grouped into flats so a number of containers can be transported at once (Hartmann et al., 

2002).  

A proper balance of air space and container capacity is critical for healthy root 

system development from a cutting, so the combined effects of frequent mist application 

and small container size must be well understood when selecting a propagation substrate 

(Threadgill et al., 1985). For example, an environment that uses frequent mist to maintain 

adequate humidity would need a substrate with a high ratio of air space to container 

capacity for adequate aeration, compared to an environment in which high humidity is 

maintained by fogging and less water is applied to the substrate. The suggested range of 

chemical and physical properties for a propagation substrate include a 5.5 to 6.5 pH, 15% 
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to 40% air space, 20% to 60% container capacity , and 0.3 to 0.8 g·cm
–3

 bulk density 

(Hartmann et al., 2002). The recommended physical properties for production substrates 

can be used as a guide for propagation substrate selection, yet the desired proportion of 

air space to container capacity will vary among nurseries due to container preference and 

propagation environment (Bilderback and Lorscheider, 1995; Regulski, 1984).  

Economic and Environmental Factors for Peatmoss and Pine Bark 

Economic and environmental factors affect the cost and availability of peatmoss 

and pine bark. Reed-sedge peat and peatmoss account for 82.1% and 8.5%, respectively, 

of total U.S. peat production. In 2008, Canadian peatmoss represented 97% of the total 

peatmoss imported into the U.S. The reliance on Canadian peatmoss can negatively affect 

the U.S. horticulture industry. For example, abnormal weather conditions during the 

harvesting period, coupled with rising transportation costs, can contribute to a shortage in 

supply and increased prices of sphagnum peat (United States Geological Survey, 2008; 

Canadian Sphagnum Peat Moss Association, 2011). In Europe, a large portion of 

peatlands have been destroyed or damaged due to centuries of harvesting for fuel and 

clearing for agricultural purposes. As a result, strict environmental policies have been 

adopted to decrease the use of peat to protect intact peatlands and to reclaim and restore 

areas that have been previously harvested. Only 0.02% of Canadian peatlands are 

currently being harvested, none for fuel, so Canada has adopted less stringent policies for 

peatland management and restoration (Barkham, 1993; Daigle and Daigle, 2001). Future 

environmental policies may limit the amount of peatmoss available for U.S. consumption. 

Pine bark availability is linked to timber production, the economic status of the 

environmental horticulture industry, and fuel costs. Pine bark has been used increasingly 
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as an energy source since the 1970s and accounted for 50% of the energy consumed by 

the forest products industry in 2001. Domestic timber production has remained stable 

since 1986, but the recent closing and potential relocation of timber processing facilities 

to other countries will result in a higher cost and reduced availability of pine bark (Lu et 

al., 2006). In addition, the forestry industry has adopted in-field processing methods 

involving bark removal in the field. Therefore, bark is left in the field and not readily 

available to the environmental horticulture industry. The need for alternative components 

for container substrates will increase as traditional components become more expensive 

and more difficult to obtain.  

Alternative Substrate Components 

Increased demand for alternative substrate components is evident in the United 

Kingdom, where the proportion of container substrates composed of peat decreased by 

19% between 1999 and 2009 (Department for Environmental Food and Rural Affairs, 

2010). Various composted and raw organic materials have been evaluated as alternative 

components of container substrates. The addition of composted materials as a component 

of container substrates can improve substrate chemical and physical properties, be a 

source of essential plant nutrients, and reportedly suppress soil-borne pathogens (Hadar 

and Mandelbaum, 1992; Wilson et al., 2003).  Spent mushroom compost is the substrate 

left from commercial edible mushroom production. Nursery and greenhouse crops have 

been successfully grown in substrates composed of up to 100% spent mushroom 

compost, although precautions must be taken if a grower plans on using a substrate 

containing greater than 50% spent mushroom compost. High proportion spent mushroom 

compost substrates may contain salt levels detrimental to plant growth, have reduced 
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water holding capacity, and may exhibit shrinking over time (Chong, 2005; Moore, 

2005). Composted cotton gin trash is composed of residual plant material from the 

ginning process. A variety of ornamental crops have been successfully grown in 

substrates that contained various proportions of composted cotton gin trash. Although 

benefits from the addition of composted cotton gin trash to a substrate include increased 

water holding capacity compared to a 100% pine bark substrate (Cole et al., 2005; 

Jackson et al., 2005), the steady decline in cotton acreage since 2005 has led to reduced 

composted cotton gin trash availability (USDA, 2008).  

Composted green wastes, composed of lawn and garden waste, have become 

more accessible due to the recycling efforts of proactive municipalities. Quality 

herbaceous and woody crops have been produced in composted green waste substrates as 

part of experimental evaluations, although the greatest benefit was achieved with 

composted green waste concentrations of 50% or less. Although substrates composed of 

composted green waste may have increased nutrient content and similar plant growth 

compared to a traditional substrate, substrates with greater than 50% composted green 

waste may exhibit increased water holding capacity and an undesirable soluble salt 

concentration (Burger et al., 1997; Hartz et al., 1996; Moore, 1999). Common problems 

associated with composted materials include availability limited to localized area, 

inconsistent quality (physical and chemical properties) among batches, and uncertainty 

about a long-term supply (Chong, 2005).  

Coconut coir, the residual dust and short fibers of the husk after the desirable long 

fibers have been processed for commercial use, is an organic material that can be used 

without any composting. Coconut coir is currently available as a component of certain 
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commercial greenhouse substrates, although the cost of such substrates is similar to peat-

based substrates. Conflicting results have been observed from experimental evaluations 

of coir as a container substrate component. Variability among the experiments can be 

linked to differences in the physical structure of the coir and differences in sodium and 

chlorine content, most likely due to the various procedures used to process coconut husks 

worldwide (Abad et al., 2005; Evans et al., 1996; Meerow, 1994). Although various 

materials can be used to produce acceptable container-grown crops, such substrates may 

not be suitable for propagation. Few of the alternative materials mentioned possess all of 

the critical characteristics of a propagation substrate, which include being highly uniform, 

low in soluble salts, and having a consistent balance of air space and container capacity. 

Wood-based Substrates 

Non-composted wood-based materials can have various compositions of wood, 

bark, leaves, and reproductive structures depending on the source, although all have 

wood as the major component. Wood-based materials have been increasingly used as 

peat replacements for container substrates in Europe. In 2009, wood-based materials 

accounted for 6% of all materials used for container substrates and 16% of non-peatmoss 

materials used for container substrates in the United Kingdom (Department for 

Environmental Food and Rural Affairs, 2010). The European wood-base materials are 

primarily composed of coniferous species and are obtained from forestry operations or as 

waste from wood product manufacturing. Wood-based materials typically comprise up to 

30% of a container substrate and are rarely used as the sole substrate component (Gruda 

and Schnitzler, 2004; Schmilewski, 2008). In the United States, wood shavings and 

sawdust of coniferous species have been used as components container substrates. 
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Substrates composed of up to 50% pine wood sawdust and shavings are used at various 

nurseries in the southeastern United States, whereas redwood and Douglas fir sawdust 

and shavings are used as components of substrates in the Western U.S (Jackson et al., 

2008; Schaefer, 2009). The same issues associated with composted materials have led to 

limited use of sawdust and wood shavings.  

The residual pine tree material created by in-field processing equipment has been 

identified as a component for container substrates. Clean chip residual is composed of, on 

average, 50% wood, 40% bark, and 10% needles, although the actual composition will 

vary depending on tree age and production site. Substrates composed entirely of clean 

chip residual have been deemed acceptable, compared to pine bark substrates, for the 

production of various annual and perennial herbaceous crops. In order to maximize plant 

growth, clean chip residual may require processing into smaller particles to achieve a 

greater water holding capacity desirable for such crops. Clean chip residual may be a 

more suitable substrate for nursery crop production, although further research on such 

crops is required (Boyer et al., 2008a, 2008b). 

The importance of high (>50%) wood content  substrates was recognized by 

Laiche and Nash (1986), who evaluated whole pine tree chips and a wood/bark substrate 

as alternatives to pine bark. More recent studies have been conducted to determine the 

effectiveness of high wood content substrates. Readily available raw materials composed 

of greater than 50% wood include chipped pine logs and chipped whole pine trees. 

Processed pine logs may contain up to 90% wood, while processed debarked pine logs 

contain 100% wood. Plant growth of marigold and holly comparable to that obtained in a 

pine bark substrate has been reported in a pine log substrate composed of 90% wood 
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(Wright and Browder, 2005). Jackson et al. (2008) later discovered that additional 

fertilizer was required in a pine log substrate to attain azalea and holly plant growth 

comparable to that in a pine bark substrate. Wright et al. (2008) determined additional 

fertilizer was required for increased chrysanthemum growth in a pine log substrate. 

Whole pine tree substrate is composed of the entire above ground portion of a 

pine tree and contains about 80% wood. The raw material, widely sold as industrial fuel, 

is readily available throughout the southeastern United States during pine plantation 

thinning. Fain et al. (2008b) demonstrated that Vinca produced in whole pine tree 

substrates derived from three species had similar growth compared to plants in a pine 

bark substrate. Additional starter fertilizer was required to produce petunia in a 100% 

whole pine tree substrate compared to a peat-based substrate, although marigold had 

similar growth in all the substrates evaluated (Fain et al., 2008a). 

According to Jackson et al. (2008), Wright et al. (2008), and Fain et al. (2008a), 

the higher fertilizer requirement of plants grown in high wood content substrates is most 

likely due to a combination of nitrogen immobilization, particle size distribution, and 

reduced cation exchange capacity. Proposed solutions for increasing the overall nutrient 

availability in high wood content substrates include increasing container capacity and 

modifying fertilizer practices. Substrate container capacity may be increased by further 

mechanical processing to obtain a substrate with finer particles or by the addition of 

peatmoss. Nitrogen impregnation during processing, the use of starter fertilizers, or 

higher fertilizer rates during production could be used to offset nitrogen immobilization 

(Fain et al., 2008a; Gruda and Schnitzler, 1999; Wright et al., 2008). 
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Phytotoxicity 

Phytotoxicity may be a function of certain organic or inorganic compounds found 

in soil, compost, or other substrates used for growing plants. In substrates composed of 

various tree components, phytotoxicity may occur due to the presence of organic 

phenolic and terpenoid compounds, or from inorganic metal compounds (Harkin and 

Rowe, 1971; Sjöström, 1993). Seed germination bioassays and seedling growth tests are 

universally accepted procedures for determining whether a solid substrate has any 

phytotoxicity properties. Such tests are simple to conduct, relatively inexpensive 

(compared to laboratory chemical analysis), and reproducible. Chemical reactions 

detrimental to plant development may be observed in a bioassay, whereas such a response 

would not be obvious just by reviewing a chemical analysis. Although a single standard 

has not been universally accepted for the germination bioassay, the most common 

procedures involve exposing seeds to a liquid extract of a substrate or placing seeds in 

direct contact with a substrate (Archambault et al., 2004; Kapanen and Itävaara, 2001; 

Macias et al., 2000; Ortega et al., 1996;). The direct contact method accounts for any 

phytotoxic compounds bound to the solid particles, in addition to those dissolved in water 

(Naasz et al., 2009).   

Although much information is available on using bioassays to test compost 

maturity and quality (Emino and Warman, 2004; Hartz and Giannini, 1998; Kapanen and 

Itävaara, 2001; Murillo et al., 1995), little information exists on such tests for the 

phytotoxic effects of non-composted tree components such as wood, bark, and leaves. 

Rau et al. (2006) evaluated tomato seedling growth after 30 days in wood substrates 

derived from five tree species and found that plant dry weight decreased as the 
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polyphenolic concentration of the wood increased. Ortega et al. (1996) demonstrated that 

higher phenolic levels in an oak bark resulted in significantly reduced seedling growth of 

six vegetable species.  In the same study, two seed germination bioassay experiments 

were conducted to determine the effects of possible oak bark phytotoxicity on 

germination percentage and radicle growth. Two types of germination bioassays, liquid 

extract and direct contact, were conducted to determine the applicability for determining 

potential phytotoxicity. They concluded the direct contact method was the optimum 

method due to its similarity to actual production procedures. In both methods, seed 

germination was negatively affected in the presence of greater phenolic compound 

concentrations.  

Naasz et al. (2009) conducted lettuce seed germination and tomato seedling 

growth bioassays using the bark of seven tree species.  The degree of phytotoxicity varied 

among the barks, although there was a correlation between plant growth and substrate air 

space. They concluded low air space, rather than select chemical and biochemical 

properties, had the greatest effect on plant growth. The allelopathic effects of pine 

needles were investigated in seedling growth and seed germination bioassays conducted 

by Nektarios et al. (2005). They concluded pine needles contained compounds that 

inhibited plant development. The phytotoxic effect was more pronounced for fresh pine 

needles compared with senesced and decaying pine needles.  

Dissertation Research 

Stem cutting propagation has not been evaluated in whole pine tree substrates. 

Root development in whole pine tree and traditional substrates were evaluated through a 

series of experiments designed with modifications to substrate chemical and physical 
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properties. Seed germination and seedling growth experiments were conducted to detect 

potential phytotoxicity associated with whole pine tree and traditional substrates. Results 

from these experiments were used to identify chemical and physical properties suitable 

for propagation in a whole pine tree substrate.   
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CHAPTER II 

STEM CUTTING PROPAGATION IN WHOLE PINE TREE SUBSTRATES 

Abstract 

Wood-based substrates have been extensively evaluated for greenhouse and 

nursery crop production, yet these substrates have not been evaluated for crop 

propagation. The objective of this study was to evaluate processed whole pine trees as a 

rooting substrate for stem cutting propagation of ornamental crops. Substrates included 

processed whole pine tree (WPT), pine bark (PB), and each mixed with equal parts 

peatmoss (WPT:PM and PB:PM). Substrate physical (air space, container capacity, total 

porosity, bulk density, and particle size distribution) and chemical (pH and electrical 

conductivity) properties were determined for all substrates. Rooting percentage, total root 

length, total root volume, and total shoot length were evaluated for four species in 2008 

and five species in 2009. Substrate air space was similar between PB and WPT in the 

2008 experiment, and likewise between PB:PM and WPT:PM. In the 2009 experiment, 

PB and WPT had similar substrate air space. The addition of peatmoss to PB and WPT 

resulted in reduced air space and increased container capacity in both experiments. The 

proportion of fine particles doubled for PB:PM and WPT:PM compared with PB and 

WPT, respectively. Substrate pH for all substrates ranged 6.0 to 6.9 at 7 DAS and 6.9 to 

7.1 at 79 DAS. Rooting percentage was similar among substrates within each species in 

both experiments. The addition of peatmoss resulted in significantly greater total root 

length for PB:PM and WPT:PM compared with PB and WPT, respectively, for five of the 

eight species. Shoot growth was most vigorous for PB:PM compared with the other 

substrates for all species.  
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Introduction 

Cutting propagation is the most widely used method for cloning nursery and 

floriculture crops. Factors that affect successful cutting propagation include stock plant 

quality, timing of cuttings, propagation environment, container size, and rooting 

substrate. A proper balance of air space and container capacity are critical for healthy 

root development, so the combined effects of propagation environment (mist application 

volume/frequency) and container size must be well understood when selecting a 

propagation substrate (Threadgill et al., 1985).  

Sphagnum peatmoss, pine bark, perlite, and vermiculite are commonly used as 

substrates for propagation, either individually or in combination at various proportions. 

The high transportation costs and variable annual harvest of Canadian peatmoss have 

negatively impacted greenhouse crop producers in the United States (Canadian 

Sphagnum Peat Moss Association, 2011; Fain et al., 2008). Likewise, nursery crop 

producers have experienced a decline in pine bark supplies and a rise in cost due to pine 

bark’s use as boiler fuel and a decline in the timber market (Lu et al., 2006). Although 

many alternative substrates have been used to produce quality container-grown crops, 

such substrates may not be suitable for propagation. Ideally, an alternative substrate 

component should be cost effective, sustainable, and regionally available. 

Alternative substrates should be evaluated within a propagation environment prior 

to extensive use. Offord et al. (1998) demonstrated coconut coir was a suitable alternative 

to peatmoss for propagation of Pultenaea parviflora Sieber ex DC. Shah et al. (2006) 

reported silt and sawdust as acceptable substrates for Ficus binnendijkii (Miq.) Miq. 

‘Amstel Queen’ cutting propagation, yet a traditional substrate was not included for 
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comparison. Composts derived from a variety of materials have also been used for cutting 

propagation. Cuttings of three foliage plant species had similar root development in 

composts mixed with peatmoss or pine bark and in a standard substrate (Chen et al., 

2003). Chong (1999) noted composted municipal waste blended with perlite was a 

satisfactory substrate for cutting propagation of several woody plant species. 

Wood-based substrates have been identified as acceptable supplements or 

replacements for peatmoss and pine bark in crop production. Wood-based materials 

derived from pine trees are readily available throughout the southeastern United States 

and include clean chip residual (bark, limbs, and needles), processed whole pine trees 

(wood, bark, limbs, and needles), and chipped pine logs (wood and bark). These 

substrates have been extensively evaluated for greenhouse and nursery crop production 

(Boyer et al., 2008; Fain et al., 2008; Jackson et al., 2009; Wright and Browder, 2005). 

Although crops grown in these substrates commonly required additional fertilizer when 

compared to those grown in traditional substrates (Fain et al., 2008; Jackson et al., 2008; 

Wright et al., 2008), nutrient and water availability issues can be readily managed during 

crop production.  

The suitability of pine wood-based substrates for cutting propagation has not been 

investigated. Demonstrating the versatility of these substrates is essential to expanding 

their commercial availability and use. The objective of the current experiments was to 

evaluate WPT as a rooting substrate for stem cutting propagation of ornamental crops.  

Materials and Methods 

Root development of stem cuttings in four substrates was evaluated in two 

experiments conducted in 2008 and 2009 at the USDA-ARS Thad Cochran Southern 
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Horticultural Laboratory in Poplarville, MS. The substrates included processed whole 

pine tree (WPT), pine bark (PB), and each mixed with equal parts peatmoss (PM) by 

volume to produce two additional substrates (WPT:PM and PB:PM). In the 2008 

experiment, WPT was produced from 12-year-old loblolly pine (Pinus taeda L.) trees fed 

through a portable heavy-duty horizontal grinder with 10.19-cm screens (Peterson 

4700B; Peterson Pacific Corp. Eugene, OR) in Jan. 2007 and the resulting material was 

stored outside in full sun. In April 2007, the material was further processed through a 

hammer mill (C.S. Bell No. 30, Tiffin, OH) fitted with a 0.47-cm screen and stored in 

1.8-m
3
 polypropylene bulk bags placed under a canopy. In the 2009 experiment, WPT 

was produced from 20- to 25-cm diameter loblolly pine (Pinus taeda L.) trees harvested 

in Macon County, AL and chipped with a Woodsman Model 334 Biomass Chipper 

(Woodsman, LLC Farwell, MI) on 19 Jan. 2009. Chips were ground with a Williams 

Crusher hammer mill (Meteor Mill #40, Williams Patent Crusher and Pulverizer Co. Inc., 

St. Louis, MO) to pass a 0.95-cm screen.  

In both experiments, each substrate was amended with 3.37 kg·m
–3

 16N–2.6P–

10K (5-month formulation; Harrell’s, Sylacauga, AL) and 2.97 kg·m
–3

 dolomitic 

limestone. Individual 6.6-cm square (232-mL) plastic containers (SVD-250; T.O. Plastics 

Inc., Clearwater, MN) were filled with substrate, completely randomized in 6 carry trays 

(SPT-250-32-PF; T.O. Plastics Inc.), and placed under a greenhouse mist system to 

saturate substrates before use.  

The plant species used in the two experiments were chosen due to accessibility 

and to represent a range of plant types and rooting difficulty. In the 2008 experiment, 

species used were Chrysanthemum ×morifolium Ramat. ‘Dazzling Stacy’, 
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×Cupressocyparis leylandii (A.B. Jacks. & Dallim.) Dallim. ‘Murray’, Ligustrum 

japonicum Thunb. ‘Texanum’, and Salvia leucantha Cav. In the 2009 experiment, species 

used were Euonymus fortunei (Turcz.) Hand.-Mazz., Evolvulus glomeratus Nees & Mart. 

‘Blue Daze’, Persicaria microcephala (D. Don) H. Gross ‘Red Dragon’, Rosa ‘Red 

Cascade’, and Salvia leucantha. 

Stem cuttings from individual plant species were prepared (Table 1), all species 

(except Persicaria) received a 1-sec basal quick-dip in a 1000 ppm indole-3-butyric acid 

solution (Dip'N Grow Lite, Dip'N Grow Inc., Clackamas, OR), and a single cutting was 

inserted into each container for a total of 192 experimental units per species. Intermittent 

mist was maintained for all species at 8 sec every 15 min from 8:00 AM to 6:00 PM 

(2008 experiment) and at 5 sec every 15 min from 7:00 AM to 6:00 PM (2009 

experiment). Pin-Perfect nozzles (Dramm Corp., Manitowoc, WI) were used in the 2008 

experiment and mister nozzles (809 Series; Ein-Dor Co., Israel) were used in the 2009 

experiment. In the 2008 experiment, average monthly greenhouse temperature was 20°C 

(Feb.), 20°C (Mar.), 20°C (Apr.), 22°C (May), and 25°C (June). In the 2009 experiment, 

average monthly greenhouse temperature was 22°C (Apr.), 22°C (May), 24°C (June), and 

27°C (July). Day length ranged from 11 to 13.75 hours in 2008 and 13 to 14.1 hours in 

2009.   

Rooting periods varied by species, but all cuttings within a species were harvested 

at the same time (Table 1). Upon harvest, roots (if present) were washed and digitally 

scanned for analysis (total root length and total root volume) using WinRhizo software 

(WinRhizo Version 2007d; Regent Instruments Inc., Canada). New shoot growth (if 

present) was recorded as total shoot length. In the 2009 experiment, substrate solution  
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Table 1 

 

Plant Type, Cutting Data, Rooting Period, Cutting Description, Auxin Treatment, and Stock Plant Type/Location for Eight Plant 

Species Used in Two Rooting Experiments.  

 

Species Plant type Cutting date Rooting 

period 

Cutting 

description 

Auxin 

Treatment
z
 

Stock plant type/location 

Chrysanthemum 

×morifolium 

‘Dazzling Stacy’ 

Herbaceous 

perennial 

22 Jan. 2008 52 days Terminal 1000 ppm 

IBA 

Purchased from Yoder 

Brothers Inc. 

Ligustrum japonicum 

‘Texanum’ 

Large shrub 11 Feb. 2008 90 days Subterminal; 

semi-hardwood; 

2.25-3.5 in 

1000 ppm 

IBA 

Landscape planting; MSU
y
, 

Poplarville, MS 

Salvia leucantha Herbaceous 

perennial 

11 Mar. 2008 49 days Subterminal 1000 ppm 

IBA 

Landscape planting in 

Rancho Cucamonga, CA 

×Cupressocyparis 

leylandii ‘Murray’ 

Large shrub 14 Feb. 2008 138 

days 

Subterminal; 4.25 

in; brown wood 

of previous year’s 

growth 

1000 ppm 

IBA 

Avery Christmas Tree 

Farm, Purvis, MS 

Euonymous fortunei Evergreen 

ground cover 

24 Apr. 2009 81 days Subterminal; 2 in 1000 ppm 

IBA 

Container plants; MSU 

greenhouse, Poplarville, MS 

Evolvulus glomeratus 

‘Blue Daze’ 

Herbaceous 

perennial 

24 Apr. 2009 66 days Subterminal; 

three node 

1000 ppm 

IBA 

Container plants; MSU 

greenhouse, Poplarville, MS 

 

 



 

 

 

 

3
3
 

3
4
 

Table 1 (continued). 

Species Plant type Cutting date Rooting 

period 

Cutting 

description 

Auxin 

Treatment
z
 

Stock plant type/location 

Persicaria 

microcephala ‘Red 

Dragon’ 

Herbaceous 

perennial 

1 May 2009 33 days Subterminal; 

single node 

none Container plants; MSU 

greenhouse, Poplarville, MS 

Rosa ‘Red Cascade’ Ground cover/ 

climbing rose 

17 Apr. 2009 60 days Subterminal; 

single node 

1000 ppm 

IBA 

Container plants; MSU 

shade house, Poplarville, 

MS 

Salvia leucantha Herbaceous 

perennial 

14 May 2009 40 days Subterminal 1000 ppm 

IBA 

Container plants; USDA 

greenhouse, Poplarville, MS 

z
1-sec basal quick-dip; IBA = indole-3-butyric acid (Dip'N Grow Lite) 

y
MSU = Mississippi State University South Mississippi Branch Experiment Station. 
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was extracted from fallow containers (n = 4) at 7, 29, 52, and 79 days after setting (DAS) 

the cuttings via the pour-through method (Wright, 1986). Substrate solution pH and 

electrical conductivity (EC) were analyzed using an Accumet Excel XL50 

multiparameter meter (Fisher Scientific, Pittsburgh, PA). Substrate air space, container 

capacity, total porosity, and bulk density were determined (n = 3) using the North 

Carolina State University porometer method (Fonteno et al., 1995). Substrate particle size 

distribution (PSD) was determined by passing 500-mL air-dried substrate samples (n = 3) 

through 11 sieves (9.5- to 0.05-mm). Sieves were shaken for 3 min with a Ro-Tap (Ro-

Tap RX-29; W.S. Tyler, Mentor, OH) sieve shaker (278 oscillations/min, 159 taps/min). 

Particles collected on each sieve and in the pan (<0.05-mm) were weighed and grouped 

into three texture classes [coarse (>2.0-mm), medium (<2.0 to >0.5-mm), and fine (<0.5-

mm)].  

Assumptions of normality and common variance were tested (except for rooting 

percentage) using the GLM and UNIVARIATE procedures of SAS (Version 9.3; SAS 

Institute, Inc., Cary, NC). Rooting percentage data were analyzed using the MULTTEST 

procedure of SAS, with differences between treatment means determined using Fisher’s 

exact test with a permutation adjustment for multiple comparisons (P < 0.05). Total root 

length, total root volume, total shoot length, porometer data, PSD data, pH, and EC were 

analyzed with linear models using the GLIMMIX procedure of SAS. Differences 

between treatment means were determined using the Shaffer-Simulated method (P < 

0.05). Linear contrasts were used to test differences between means for peatmoss-

amended substrates (included PB:PM and WPT:PM) and the non-peatmoss-amended 

substrates (included PB and WPT), and differences between means for whole pine tree 
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substrates (included WPT and WPT:PM) and pine bark substrates (included PB and 

PB:PM).  

Results and Discussion 

Substrate air space ranged from 16.3% (PB:PM) to 35.5% (PB) in the 2008 

experiment (Table 2), and from 17.7% (PB:PM) to 31.7% (WPT) in the 2009 experiment 

(Table 3). Substrate air space was similar between PB and WPT in the 2008 experiment, 

and likewise between PB:PM and WPT:PM. In the 2009 experiment, PB and WPT had 

similar substrate air space. Substrate container capacity ranged from 51.8% to 66.6% 

(2008 experiment) and 53.9% to 60.5% (2009 experiment).  

The addition of peatmoss to PB and WPT resulted in reduced air space and 

increased container capacity in both experiments. Substrate air space was significantly 

lower in PB:PM and WPT:PM compared with PB and WPT, respectively, in both 

experiments. In the 2008 experiment, substrate container capacity was significantly 

greater in PB:PM and WPT:PM compared with PB and WPT, respectively. Total porosity 

was greatest in PB compared with the other substrates in the 2008 experiment, but similar 

between PB and PB:PM and between WPT and WPT:PM in the 2009 experiment. Bulk 

density decreased with the addition of peatmoss to PB, but increased with the addition of 

peatmoss to WPT in both experiments. Peatmoss has high water retention properties and 

is routinely used to enhance the container capacity of substrates used for crop production 

(Robbins and Evans, 2005).  

 Substrate air space and container capacity are critical factors in propagation 

substrate selection. Cuttings require sufficient aeration and moisture content for root 

initiation and  
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Table 2 

 

Physical Properties
z
 of Pine Bark and Whole Pine Tree Substrates in a 2008 Cutting 

Propagation Experiment.  

 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk density 

(g·cm
–3

) 

Substrate -----------------(% vol)----------------  

Pine bark  35.5 a
y 

52.0 b 87.3 a 0.292 a 

1 Pine bark : 1 peatmoss 16.3 b 66.6 a 82.9 b 0.264 b 

Whole pine tree
x 31.0 a 51.7 b 82.7 b 0.184 c 

1 Whole pine tree : 1 peatmoss 16.5 b 64.8 a 81.3 b 0.219 d 

Bark v. Tree
w 

0.1067 0.214 0.0168 <.0001 

Peat v. None
v
 <.0001 <.0001 0.0238 0.6703 

z
Data presented as means (n = 3) and obtained using the North Carolina State University porometer 

method. 
y
Means followed by different letters within columns indicate significant difference at P < 0.05 using the 

Shaffer-Simulated method. 
x
12-year-old whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.47-cm 

screen. 
w
Tested differences between substrates containing pine bark (Bark) and substrates containing whole 

pine tree substrates (Tree); P < 0.05. 
v
Tested differences between substrates amended with peatmoss (Peat) and substrates with no peatmoss 

(None); P < 0.05. 

 

Table 3 

 

Physical Properties
z
 of Pine Bark and Whole Pine Tree Substrates in a 2009 Cutting 

Propagation Experiment.  

 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk density 

(g·cm
–3

) 

Substrate -----------------(% vol)----------------  

Pine bark 24.0 b
y
  53.9 b 77.9 b 0.312 a 

1 Pine bark : 1 peatmoss 17.7 c   58.0 ab 75.7 b 0.248 b 

Whole pine tree
x 31.7 a 55.5 b 87.1 a 0.163 c 

1 Whole pine tree : 1 peatmoss 22.6 b 60.5 a 83.1 a 0.190 d 

Bark v. Tree
w 

<.0001 0.1437 <.0001 <.0001 
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Table 3 (continued). 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk density 

(g·cm
–3

) 

Substrate -----------------(% vol)----------------  

Peat v. None
v
 <.0001 0.006 0.0182 0.0235 

z
Data presented as means (n = 3) and obtained using the North Carolina State University porometer 

method. 
y
Means followed by different letters within columns indicate significant difference at P < 0.05 using the 

Shaffer-Simulated method. 
x
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 

0.95-cm screen. 
w
Tested differences between substrates containing pine bark (Bark) and substrates containing whole 

pine tree substrates (Tree); P < 0.05. 
v
Tested differences between substrates amended with peatmoss (Peat) and substrates with no peatmoss 

(None); P < 0.05. 

 

subsequent growth. A continuous film of water surrounding the cutting base would 

restrict cellular respiration and prevent root development, and waterlogged substrates 

may provide an ideal environment for pathogens to persist. Substrate air space between 

15% and 40% is recommended for adequate aeration during propagation, while substrate 

container capacity between 20% and 60% is recommended for adequate water retention 

(Hartmann et al., 1990; Threadgill et al., 1985). Substrate air space was within the 

recommended range for substrates used in the 2008 and 2009 experiments, while 

substrate container capacity was slightly greater than the recommended range for PB:PM 

and WPT:PM in the 2008 experiment.  

Pine bark substrate had the lowest proportion of fine particles followed by WPT, 

PB:PM, and WPT:PM in both experiments (Tables 4 and 5). The proportion of fine 

particles doubled for PB:PM and WPT:PM compared with PB and WPT, respectively. It 

has been reported that substrate particles less than 0.5 mm can have a significant effect on 

substrate air space and container capacity (Jackson et al., 2010; Owen and Altland, 2008). 
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The greater proportion of fine particles most likely resulted in the greater substrate 

container capacity and lower substrate air space of the substrates amended with peatmoss. 

 Rooting percentage was similar among substrates within each species in both 

experiments (Table 6). Rooting percentage was 90% or greater for all species except 

Ligustrum. The high rooting success is an indication that substrate did not have a 

significant effect on root initiation or rooting percentage in either experiment. Proper 

selection of propagation material (stock plant age, cutting type, seasonal timing, etc.) is 

critical in order to reduce variability during root initiation. Additionally, stem cuttings 

require adequate endogenous nutrients for root initiation and emergence so the relative 

health of the stock plants is also an important factor to consider when selecting cuttings 

(Hartmann et al., 1990). 

Table 4 

 

Particle Size Distribution
z
 of Pine Bark and Whole Pine Tree Substrates in a                    

2008 Cutting Propagation Experiment.  

 

Sieve opening 

(mm) 

Substrate 

Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
y 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

6.3 10.1 6.1 0.1 0.0 

3.4 29.7 15.4 8.6 5.4 

2.4 17.3 9.4 21.4 13.0 

2.0 6.6 3.9 10.2 6.0 

1.4 11.3 10.0 16.3 10.7 

1.0 6.1 9.1 10.3 8.0 

0.5 7.3 18.3 13.3 16.0 

0.25 7.3 17.1 9.9 16.0 

0.106 3.0 7.9 7.5 17.2 
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Table 4 (continued). 

 Substrate 

Sieve opening 

(mm) Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
y 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

0.053 0.6 1.9 1.8 5.9 

Pan 0.6 0.9 0.6 1.7 

Texture class
x
     

Coarse   63.8 a
w
 34.9 c 40.2 b 24.4 d 

Medium 24.8 d 37.4 b 40.0 a 34.8 c 

Fine 11.5 d 27.8 b 19.8 c 40.9 a 
z
Data presented as means (n = 3) of percent of particles collected on sieves and in pan. 

y
12-year-old whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to 

pass a 0.47-cm screen. 
x
Texture classes: coarse (>2.0-mm), medium (<2.0 to >0.5-mm), and fine (<0.5-mm). 

w
Means followed by different letters within rows indicate significant difference at P < 

0.05 using the Shaffer-Simulated method. 

 

Table 5 

 

Particle Size Distribution
z
 of Pine Bark and Whole Pine Tree Substrates in a         

2009 Cutting Propagation Experiment.   

 

Sieve opening 

(mm) 

Substrate 

Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
y 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

6.3 20.4 16.7 0.0 2.2 

3.4 17.9 15.1 1.7 5.2 

2.4 10.1 7.7 9.1 7.0 

2.0 3.8 2.7 8.8 5.1 

1.4 9.9 7.6 24.4 15.3 

1.0 8.1 6.6 17.7 11.5 

0.5 14.3 14.5 21.1 18.5 

0.25 8.6 12.9 11.3 15.9 
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Table 5 (continued). 

 Substrate 

Sieve opening 

(mm) Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
y 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

0.106 4.6 11.3 4.9 14.0 

0.053 1.4 3.5 0.8 4.1 

Pan 0.9 1.5 0.2 1.3 

Texture class
x
     

Coarse   52.2 a
w
 42.1 b 19.6 c 19.5 c 

Medium 32.2 c 28.7 d 63.2 a 45.3 b 

Fine 15.5 d 29.2 b 17.2 c 35.2 a 
z
Data presented as means (n = 3) of percent of particles collected on sieves and in pan. 

y
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and 

hammermilled to pass a 0.95-cm screen. 
x
Texture classes: coarse (>2.0-mm), medium (<2.0 to >0.5-mm), and fine (<0.5-mm). 

w
Means followed by different letters within rows indicate significant difference at P < 

0.05 using the Shaffer-Simulated method. 

 

Table 6 

 

Mean Rooting Percentage of Cuttings from Eight Species Rooted in Pine Bark and Whole 

Pine Tree Substrates. 

 

 
Substrate 

Species Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
z 

1 Whole 

pine tree :  

1 peatmoss 

(v:v) 

2008 experiment     

Chrysanthemum 

×morifolium ‘Dazzling 

Stacy’ 
 100 a

y
 100 a  100 a 100 a 

×Cupressocyparis leylandii  

‘Murray’ 
  94 a   96 a   90 a   96 a 

Ligustrum japonicum 

‘Texanum’ 
  88 a   83 a   75 a   75 a 



42 

 

 

 

Table 6 (continued). 

 Substrate 

Species Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
z 

1 Whole 

pine tree :  

1 peatmoss 

(v:v) 

Salvia leucantha 100 a 100 a 100 a 100 a 

2009 experiment     

Euonymus fortunei 100 a 100 a 100 a 100 a 

Evolvulus glomeratus  

‘Blue Daze’ 
100 a 100 a   94 a   94 a 

Persicaria microcephala 

‘Red Dragon’ 
100 a 100 a 100 a 100 a 

Rosa ‘Red Cascade’   94 a   98 a   94 a 100 a 

Salvia leucantha 100 a 100 a 100 a 100 a 
z
12-year-old whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.47-cm 

screen (2008 experiment); 20- to 25-cm diameter whole pine (P. taeda) trees harvested, chipped, and 

hammermilled to pass a 0.95-cm screen (2009 experiment). 
y
Means followed by different letters within rows indicate significant difference at P < 0.05 using 

Fisher’s exact test with a permutation adjustment for multiple comparisons.
 

 

Root development response to substrate varied by species in both experiments. 

Root development in WPT was less vigorous compared with the other substrates, yet the 

differences were not always significant. Total root length (Table 7) and total root volume 

(Table 8) were similar in WPT and PB for Persicaria, while total root length was similar 

among all substrates for Salvia in the 2009 experiment. Total root length and total root 

volume  was similar between PB and WPT:PM for Euonymus and Evolvulus. Maximum 

total root length was observed in PB:PM for all species except Cupressocyparis and 

Salvia (2009 experiment). In most cases, results for total root volume mirrored the results 

for total root volume within a species.  
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The addition of peatmoss resulted in significantly greater total root length for PB:PM 

compared with PB for Chrysanthemum, Euonymus, Evolvulus, Persicaria, and Rosa. The 

increased total root length between PB and PB:PM ranged from 9% (Chrysanthemum) to 

174% (Rosa). Similarly, significantly greater total root length in WPT:PM compared with 

WPT occurred for Salvia (2008 experiment), Euonymus, Evolvulus, Persicaria, and Rosa. 

The increased total root length between WPT and WPT:PM ranged from 26% (Salvia - 

2008 experiment) to 337% (Rosa).  

Shoot growth was most vigorous for PB:PM compared with the other substrates 

for all species (Table 9). A positive response for total shoot length was observed in 

PB:PM and WPT:PM, compared with PB and WPT, respectively.    

Peatmoss has a greater water holding capacity and lower aeration compared with 

pine bark and wood-based substrates (Raviv and Leith, 2008). Therefore, greater 

substrate container capacity and lower substrate air space was expected for PB:PM and 

WPT:PM. High rooting percentages and subsequent root development was an indication 

that sufficient water content and adequate aeration was present in all substrates and 

maintained within the propagation system used for these experiments.  

Disparities in root development among substrates are rarely attributed to 

differences in physical properties, unless extreme values are observed. Typically, low 

substrate air space (<10%) and high substrate container capacity (>60%) are considered 

undesirable for cutting propagation due to low oxygen content (Chen et al., 2003). 

Substrate air space above the recommended values, or a high proportion of coarse 

particles, may provide inadequate moisture or hinder contact between roots and substrate 

particles, but such conditions have not been widely reported for cutting propagation.  



 

 

 

 

4
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Table 7 

 

Mean Total Root Length (cm) of Cuttings from Eight Species Rooted in Pine Bark and Whole Pine Tree Substrates.  

 

 Substrate   

Species Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
z 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

Bark v. 

Tree
y
 

Peat v. 

None
x
 

2008 experiment       

Chrysanthemum ×morifolium ‘Dazzling Stacy’ 1353 b
w
 1481 a 1046 c 1051 c <.0001 0.0635 

×Cupressocyparis leylandii ‘Murray’ 570 a   379 b   249 c   295 c <.0001 0.0144 

Ligustrum japonicum ‘Texanum’ 474 a   485 a   277 b   330 b <.0001 0.3616 

Salvia leucantha 990 a 1036 a   623 c   790 b <.0001 0.0011 

2009 experiment       

Euonymus fortunei   165 b   226 a  111 c   165 b <.0001 <.0001 

Evolvulus glomeratus  ‘Blue Daze’   752 b 1173 a  462 c   907 b <.0001 <.0001 

Persicaria microcephala ‘Red Dragon’ 1055 b 1469 a  916 b 1431 a 0.0608 <.0001 

Rosa ‘Red Cascade’        236 c   647 a   91 d   398 b <.0001 <.0001 

Salvia leucantha  801 a   793 a 632 a   738 a 0.0231 0.3179 
z
12-year-old whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.47-cm screen (2008 experiment); 20- to 25-cm diameter 

whole pine (P. taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen (2009 experiment). 
y
Tested differences between substrates containing pine bark (Bark) and substrates containing whole pine tree substrates (Tree); P < 0.05. 

x
Tested differences between substrates amended with peatmoss (Peat) and substrates with no peatmoss (None); P < 0.05. 

w
Means followed by different letters within rows indicate significant difference at P < 0.05 using the Shaffer-Simulated method.
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Table 8 

 

Mean Total Root Volume (cm
3
) of Cuttings from Eight Species Rooted in Pine Bark and Whole Pine Tree Substrates.  

 

 Substrate   

Species Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
z 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

Bark v. 

Tree
y
 

Peat v. 

None
x
 

2008 experiment       

Chrysanthemum ×morifolium ‘Dazzling Stacy’   2.16 a
w
 2.36 a 1.81 b 1.9 b <.0001 0.0411 

×Cupressocyparis leylandii ‘Murray’ 1.75 a 1.20 b 0.79 c 0.94 c <.0001 0.025 

Ligustrum japonicum ‘Texanum’ 3.41 a 3.24 a 2.18 b 2.31 b <.0001 0.947 

Salvia leucantha 2.00 a 2.01 a 1.38 b  1.66 ab <.0001 0.2115 

2009 experiment       

Euonymus fortunei 0.21 b 0.28 a 0.15 c 0.22 b <.0001 <.0001 

Evolvulus glomeratus  ‘Blue Daze’ 1.12 b 1.80 a 0.69 c 1.35 b 0.0003 <.0001 

Persicaria microcephala ‘Red Dragon’ 0.56 b 0.85 a 0.53 b 0.96 a 0.3499 <.0001 

Rosa ‘Red Cascade’ 0.31 c 0.84 a 0.15 d 0.54 b <.0001 <.0001 

Salvia leucantha 1.28 a 1.33 a 0.87 b  1.16 ab 0.0059 0.0988 
z
12-year-old whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.47-cm screen (2008 experiment); 20- to 25-cm diameter 

whole pine (P. taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen (2009 experiment). 
y
Tested differences between substrates containing pine bark (Bark) and substrates containing whole pine tree substrates (Tree); P < 0.05. 

x
Tested differences between substrates amended with peatmoss (Peat) and substrates with no peatmoss (None); P < 0.05. 

w
Means followed by different letters within rows indicate significant difference at P < 0.05 using the Shaffer-Simulated method.
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In the 2008 experiment, root development was superior in PB:PM compared with 

WPT:PM, despite similar substrate air space. In the 2009 experiment, root development 

was similar (for most species) in PB and WPT:PM corresponding to similarities in 

substrate air space. As a result, differences in root development cannot be attributed 

solely to substrate air space. Although substrate nutrient content is not a critical factor 

during root initiation, newly developed roots require an external source of nutrients for 

continued growth. Substrate cation exchange capacity refers to how effectively mineral 

nutrients (cations specifically) are bound to the substrate particles. Peatmoss and aged 

pine bark have a greater cation exchange capacity compared with wood-based substrates 

(Jackson et al., 2010; Raviv and Leith, 2008). Nitrogen immobilization is another issue 

associated with wood-based substrates. Less nitrogen is available for plant absorption due 

to high microbial activity (Boyer et al., 2012). 

In the 2009 experiment, substrate pH for all substrates ranged 6.0 to 6.9 at 7 DAS 

and 6.9 to 7.1 at 79 DAS (Table 10). Substrate pH was above the recommended range 

(5.5 to 6.5) for all substrates at 29 DAS and thereafter. An increase in substrate pH was 

observed between 7 and 29 DAS for all substrates, yet remained relatively stable within 

substrates from 29 to 79 DAS. Substrate EC was in an acceptable range for all substrates 

at 7 DAS, but was in the low range for all substrates at 29 DAS and thereafter. Substrate 

EC was similar among all substrates throughout the experiment. Changes in substrate pH 

and EC within the first 29 days are likely due to the nutrient release rate of the controlled-

release fertilizer (Merhaut et al., 2006).  

During propagation, nutrients are more readily leached from the substrate due to 

high substrate porosity and excessive mist application rates (Santos et al., 2011).  
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Table 9 

 

Mean Total Shoot Length (cm) of Cuttings from Eight Species Rooted in Pine Bark and Whole Pine Tree Substrates.  

 

 Substrate   

Species Pine bark 

1 Pine bark : 

1 peatmoss 

(v:v) 

Whole 

pine tree
z 

1 Whole 

pine tree :   

1 peatmoss 

(v:v) 

Bark v. 

Tree
y
 

Peat v. 

None
x
 

2008 experiment       

Chrysanthemum ×morifolium ‘Dazzling Stacy’ NA NA NA NA NA NA 

×Cupressocyparis leylandii ‘Murray’ NA NA NA NA NA NA 

Ligustrum japonicum ‘Texanum’ NA NA NA NA NA NA 

Salvia leucantha 30.9 b
w
 37.1 a 23.7 c 31.6 b <.0001 <.0001 

2009 experiment       

Euonymus fortunei NA NA NA NA NA NA 

Evolvulus glomeratus  ‘Blue Daze’ 18.3 b 30.0 a 10.5 c 26.6 a 0.0016 <.0001 

Persicaria microcephala ‘Red Dragon’ 16.9 b 31.0 a 13.2 b 26.3 a 0.01 <.0001 

Rosa ‘Red Cascade’ 6.0 b 11.7 a 3.3 b 7.0 b 0.0024 0.0001 

Salvia leucantha 15.3 a 15.5 a 11.6 b 14.8 a 0.0036 0.0223 
z
12-year-old whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.47-cm screen (2008 experiment); 20- to 25-cm diameter 

whole pine (P. taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen (2009 experiment). 
y
Tested differences between substrates containing pine bark (Bark) and substrates containing whole pine tree substrates (Tree); P < 0.05. 

x
Tested differences between substrates amended with peatmoss (Peat) and substrates with no peatmoss (None); P < 0.05.

 

w
Means followed by different letters within rows indicate significant difference at P < 0.05 using the Shaffer-Simulated method.
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Table 10 

 

Substrate pH and Electrical Conductivity (EC) of Pine Bark and Whole Pine Tree Substrates in Fallow                                          

Containers at 7, 29, 52, and 79 Days After Setting (DAS) Cuttings in a 2009 Cutting Propagation Experiment. 

 

 7 DAS 29 DAS 52 DAS 79 DAS 

Substrate pH 

EC 

(dS∙m
–1

) pH 

EC 

(dS∙m
–1

) pH 

EC 

(dS∙m
–1

) pH 

EC 

(dS∙m
–1

) 

Pine bark 6.9 a
z
 0.47 a 7.2 a 0.19 a 7.1 a 0.21 a 7.1 a  0.15 ab 

1 Pine bark :  

1 peatmoss 
6.1 c 0.81 a 7.1 b 0.20 a   6.9 ab 0.18 a 7.1 a 0.12 b 

Whole pine tree
y 6.4 b 0.91 a 7.2 a 0.18 a 7.1 a 0.23 a 7.0 a 0.17 a 

1 Whole pine tree : 

1 peatmoss 
6.0 c 0.84 a 7.0 b 0.16 a 6.7 b 0.18 a 6.9 a 0.13 b 

z
Means followed by different letters within columns indicate significant difference at P < 0.05 (n = 4) using the 

Shaffer-Simulated method. 
y
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen. 
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Although water and nutrient availability can be readily managed in wood-based 

substrates used for crop production, such issues are more difficult in a propagation 

environment. The combined effects of leaching, low cation exchange capacity, and 

reduced nitrogen availability most likely contributed to less vigorous root and shoot 

growth in WPT.  

I demonstrated a range of plant species can be propagated from stem cuttings in 

WPT substrates. Combinations of WPT and peatmoss or other organic component with a 

high cation exchange capacity may be required for optimum root development in WPT 

substrates. A wealth of information is available regarding crop production in wood-based 

substrates, but stem cutting propagation in such substrates has not been evaluated. A 

single, universal propagation substrate has not been developed due to the unique set of 

factors associated with species variation and individual cultural practices. Rooting 

success is ultimately determined by the combined effects of container size, mist 

application rate and frequency, and substrate. Development of guidelines for propagation 

in WPT substrates would benefit manufacturers and growers interested in alternatives to 

traditional substrates. 
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CHAPTER III 

PHYTOTOXICITY ASSESSMENT OF WHOLE PINE TREE SUBSTRATES 

Abstract 

Reduced plant growth in wood-based substrates has been attributed to a variety of 

factors, including phytotoxity, yet a detailed method for evaluating the phytotoxic 

potential of wood-based substrates has not been identified. The objective of this study 

was to evaluate the Phytotoxkit and seedling growth test for identifying potential 

phytotoxicity in horticultural substrates and to identify factors affecting seed germination 

and seedling development in nonamended whole pine tree substrates. Substrates 

evaluated using the Phytotoxkit included a reference soil, aged (WPTA) and fresh 

(WPTF) whole pine tree, aged (PNA) and fresh (PNF) pine needles, pine bark (PB), 

peatmoss (PM), and saline pine bark (SPB). Substrates evaluated using the seedling 

growth test included WPTA, WPTF, PB, and a peat-lite (PL) substrate. Substrate physical 

(air space, container capacity, total porosity, and bulk density) and chemical properties 

(pH and soluble salt concentration), along with a complete mineral analysis, were 

determined for all substrates. Seed germination rate (%) and total root length (mm) were 

evaluated for 3 biosensor species (cress, mustard, and sorghum) in the Phytotoxkit 

experiments (2010 and 2011).  Seed germination rate was similar among all substrates, 

except for cress in PNF. Total root length was inhibited by PNF for cress, but varied 

among the substrates for mustard and sorghum. Total root length was similar or greater in 

WPTA compared with PM for all species. The only observed statistical differences 

between WPTA and WPTF were for sorghum total root length in 2010. Inhibitory effects 

associated with phytotoxic compounds were only observed with PNF. Seedling 
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emergence rate (%) and total root length (cm) were evaluated for 3 biosensor species 

(lettuce, tomato, and oat) in the seedling growth experiments (2010 and 2011). Seedling 

emergence rate varied among substrates, but was substantially greater in PL and WPTA 

compared with PB and WPTF in the 2010 experiment. Seedling emergence rate was 

similar among all substrates for lettuce and oat in the 2011 experiment. Total root length 

was greatest in PL compared to the other substrates for all species. Peat-lite substrate had 

significantly lower air space and greater container capacity compared with the other 

substrates. Differences in seed germination/emergence rate and seedling root length could 

not be attributed to phytotoxic compounds in the whole pine tree substrates. A 

combination of nutrient and water availability is likely responsible for reduced root 

development in PB, WPTA, and WPTF in the seedling growth test.    

Introduction 

Wood-based materials have been evaluated extensively as alternative substrate 

components for nursery and greenhouse crop production. A wood-based material is 

predominately composed of wood (secondary xylem), yet may contain various 

proportions of other plant parts including bark and leaves. Pine trees have been the 

prominent subject matter for such scientific evaluations in the United States, particularly 

in the southeastern United States where pine plantations are widespread. Ongoing interest 

in alternative substrates has sparked similar research efforts for evaluating a wide range 

of plant species.   

Nursery and/or greenhouse crop production has been demonstrated in wood-based 

substrates composed of loblolly pine (Fain et al., 2008; Wright et al., 2008), spruce 

(Gruda and Schnitzler, 2004), melaleuca (Brown and Duke, 2000; Ingram and Johnson, 
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1983), and various other tree species (Murphy et al., 2011; Rau et al., 2006). 

Nevertheless, reduced plant performance in high wood content substrates (compared with 

pine bark and/or peat-based substrates) has been observed and linked to various factors. 

Nitrogen immobilization has been reported in wood-based substrates, due to high levels 

of microbial activity (Gruda et al., 2000; Jackson et al., 2009). In order to offset reduced 

nitrogen availability in wood-based substrates, supplemental nitrogen applications can be 

used to provide sufficient concentrations for both microbial and plant requirements (Fain 

et al., 2008; Jackson et al., 2008). Less than ideal water and nutrient retention properties 

have also been reported in wood-based substrates, although these issues can be 

minimized by processing materials into a finer particle size or blending with peatmoss 

(Fain et al., 2008; Jackson et al., 2010). Although nutrient and water availability can be 

readily managed in wood-based substrates, concerns persist about potential phytotoxicity 

due to compounds present in wood.  

Phytotoxicity may be a function of certain organic or inorganic compounds found 

in soil, compost, or other substrate used for growing plants. In substrates composed of 

various tree components, phytotoxicity may occur due to the presence of organic 

phenolic and terpenoid compounds or inorganic metal compounds (Harkin and Rowe, 

1971; Sjöström, 1993). Seed germination tests and seedling growth tests are universally 

accepted procedures for determining the phytotoxic potential of a material. Such tests are 

simple to conduct, relatively inexpensive (compared to laboratory chemical analysis), and 

reproducible. Chemical reactions detrimental to plant development may be observed with 

these tests, whereas such a response would not be obvious simply by reviewing a 

chemical analysis. Although a single standard has not been identified for the germination 



56 

 

 

 

test, the most common procedures involve seeds exposed to a liquid extract of a substrate 

or seeds placed in direct contact with a substrate or substrate solution (Kapanen and 

Itävaara, 2001; Ortega et al., 1996; Archambault et al., 2004; Macias et al., 2000). The 

direct contact method accounts for any phytotoxic compounds bound to the solid 

particles, in addition to those dissolved in water (Naasz et al., 2009).   

A wealth of knowledge is available on using seed germination and seedling 

growth tests for evaluating compost maturity and quality (Emino and Warman, 2004; 

Hartz and Giannini, 1998; Kapanen and Itävaara, 2001; Murillo et al., 1995), yet little 

information exists on such tests for the phytotoxic effects of non-composted tree 

components such as wood, bark, and leaves. Rau et al. (2006) evaluated tomato seedling 

growth after 30 days in wood substrates derived from five tree species and concluded 

plant dry weight decreased as the polyphenolic concentration of the wood increased. 

Ortega et al. (1996) demonstrated that higher phenolic levels in oak bark resulted in the 

significantly reduced seedling growth of six vegetable species. In the same study, two 

types of germination bioassays, liquid extract and direct contact, were conducted to 

determine their applicability for determining potential phytotoxicity. In both methods, 

seed germination was negatively affected in the presence of greater phenolic compound 

concentrations. The investigators concluded direct contact was the optimum method due 

to its similarity to actual production procedures.  

Gruda et al. (2009) treated tomato and lettuce seeds with leachate extracted from a 

pine tree substrate and found that washing the substrate reduced the phytotoxic effects, 

indicated by germination rate and radicle growth. Nektarios et al. (2005) investigated the 

allelopathic effects of pine needles in seed germination and seedling growth tests. In this 



57 

 

 

 

study, the phytotoxic effect was more pronounced for fresh pine needles compared with 

senesced and decaying pine needles. Similar results were reported by Gaches et al. 

(2011a), wherein lettuce seedlings exhibited reduced growth when exposed to fresh pine 

needle leachate compared with exposure to aged pine needle leachate. In all three studies, 

the investigators posited that phytotoxic compounds within the wood/needles were 

responsible for the reduced germination and growth rates. 

Factors other than substrate chemical properties may also be responsible for 

reduced seed germination and seedling growth. Naasz et al. (2009) conducted lettuce seed 

germination and tomato seedling growth tests using the bark of seven tree species. The 

degree of phytotoxicity varied among the barks, but the investigators concluded that air 

space in the bark substrate, rather than select chemical and biochemical properties, had 

the greatest effect on plant growth.  

Reduced plant growth in pine tree-based substrates has been attributed to a variety 

of factors, but here I focus on the phytotoxic potential of these materials. Seed 

germination and seedling growth tests can be readily adapted for screening horticultural 

substrates. Seed germination tests are used for detecting phytotoxicity associated with 

substrate chemical properties, whereas seedling growth tests account for phytotoxicity 

associated with the individual or combined effects of substrate chemical and physical 

properties (Gong et al., 2001; Naasz et al., 2009). Seeds have nutritional reserves that will 

support growth for short periods after germination. As a result, nonamended substrates 

can be evaluated, minimizing the number of variables involved in plant development.  

A commercially available seed germination test, the Phytotoxkit (MicroBioTests 

Inc., Belgium), is a standardized, sensitive, rapid, reproducible, and cost-effective 
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procedure for determining the potential phytotoxicity of a solid substrate. The 

Phytotoxkit includes all the hardware required to perform a phytotoxicity test. It also 

includes a sterile reference soil (control) and seeds of three test species, specifically 

selected for rapid germination and sensitivity to a variety of factors. The Phytotoxkit is 

designed for contact between the seed and substrate solution, and for direct observation 

and measurement of germinated seeds and root/shoot growth. The Phytotoxkit test may 

be a useful laboratory procedure for scientists evaluating alternative horticultural 

substrates. 

The objectives of this study were to (1) evaluate the Phytotoxkit and seedling 

growth test for identifying potential phytotoxicity in horticultural substrates; and (2) 

identify factors affecting seed germination and seedling development in non-amended 

whole pine tree substrates.  

Materials and Methods 

Two biological tests (Phytotoxkit and seedling growth) were used to assess 

potential phytotoxicity in whole pine tree substrates compared with traditional substrate 

components. Each test was conducted as an individual experiment in 2010 and in 2011 

(four experiments total) at the USDA-ARS Thad Cochran Southern Horticultural 

Laboratory in Poplarville, MS.  

Phytotoxkit test - 2010 

The Phytotoxkit was supplied with a reference soil (RS) and seeds of three test 

plant species, one monocot species [sorghum, Sorghum saccharatum (L.) Moench] and 

two dicot species (cress, Lepidium sativum L. and mustard, Sinapis alba L.). Seed 

germination rates of the selected test species were determined prior to the experiment 
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[cress (82%); mustard (90%); sorghum (78%)].  Substrates evaluated with the 

Phytotoxkit included aged (WPTA) and fresh (WPTF) whole pine tree, aged (PNA) and 

fresh (PNF) pine needles, saline pine bark (SPB), and RS. Whole pine tree substrates 

were produced from 20- to 25-cm diameter loblolly pine (Pinus taeda L.) trees harvested 

and chipped on 29 Sept. 2009 (WPTA) and 26 May 2010 (WPTF) in Macon County, AL, 

then ground with a Williams Crusher hammer mill (Meteor Mill #40; Williams Patent 

Crusher and Pulverizer Co. Inc., St. Louis, MO) to pass a 0.95-cm screen. Pine needles 

were collected from a 12-year-old loblolly pine plantation in Stone County, MS, either 

directly from trees (PNF) or from the ground (PNA) surrounding the same trees. Pine 

needles were hammer-milled (model 30; C.S. Bell Co., Tiffin, OH) to pass a 0.47-cm 

(PNA) or 0.95-cm (PNF) screen. Saline pine bark [pine bark soaked in a sodium chloride 

(NaCl) solution (16 dS·m
–1

 for cress and sorghum; 30 dS·m
–1

 for mustard) overnight] 

was included to produce a negative effect on seed germination and initial root growth for 

verification of the procedure.    

All substrates were passed through a 2-mm sieve to eliminate coarse particles. 

Three 95-mL samples (loosely filled) of each substrate were collected in coffee-filter-

lined containers (T.O. Plastics SVD-250), bottom-saturated to the upper substrate surface 

with deionized water (NaCl solution used for SPB) for 1 hour, and drained. Samples were 

transferred to individual test plates (3 plates per substrate) and covered with filter paper 

onto which 10 seeds of a test species were placed in a single row. A clear plastic cover 

was placed on each test plate, then test plates were incubated vertically in a dark growth 

chamber at 25 °C for 4 (cress) or 5 (mustard and sorghum) days. Plates were digitally 

scanned and analyzed using ImageTool software (ImageTool Version 3.0; UTHSA, San 
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Antonio, TX). Data collected included seed germination rate (%) and total root length 

(mm). A complete laboratory soil test analysis was conducted on all substrates to 

determine pH, soluble salt concentration, and mineral nutrient content.  

Germination data were analyzed with generalized linear models using the binary 

distribution and a logit link function using the GLIMMIX procedure of SAS (Version 

9.3; SAS Institute, Inc., Cary, NC). Total root length data were analyzed with linear 

models using the GLIMMIX procedure of SAS. The ten seeds in each plate were 

analyzed as subsamples. Differences between treatment means were determined using the 

Shaffer-Simulated method (P < 0.05). Data from SPB was not included in the overall 

statistical analyses, but separate statistical analyses were conducted to test the sensitivity 

of the Phytotoxkit by comparing seed germination rate and total root length between RS 

and SPB. 

Phytotoxkit test - 2011 

A separate Phytotoxkit experiment was conducted in 2011, with design and 

procedural differences described below. Seed germination rates of the selected test 

species were determined prior to the experiment [cress (90%); mustard (94%); sorghum 

(96%)]. Substrates included WPTA, WPTF, PNA, PNF, pine bark (PB), peatmoss [(PM); 

Fertilome Pure Canadian Peat Moss; Cheek Garden Products, Austin, TX], SPB, and RS. 

Whole pine tree substrates were produced from 5.0- to 6.4-cm diameter P. taeda trees 

harvested in Pearl River County, MS. The main stems were chipped on 29 July 2010 

(WPTA) and 14 Mar. 2011 (WPTF) with a wood chipper (Liberty WC-6; Mesa, AZ) and 

a combination of 9 chipped stems : 1 needles (by weight) was ground with a hammer mill 

(Model 30; C.S. Bell Co., Tiffin, OH) to pass a 0.63-cm screen. Pine needles were 
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collected on 14 Mar. 2011 directly from trees (PNF) or from the ground (PNA) 

surrounding the same trees and hammer-milled to pass a 0.47-cm or 1.2-cm screen, for 

PNA and PNF, respectively. Saline pine bark was prepared using a NaCl concentration of 

16 dS·m
–1

 for cress and 30 dS·m
–1

 for mustard and sorghum. Test plates were incubated 

at 25 °C for 5 (cress and sorghum) or 6 (mustard) days. 

Seedling Growth Test - 2010 

Substrates included WPTA, WPTF, PB, and a peat-lite (PL) mix [3 peatmoss : 1 

perlite (Coarse grade; SunGro Horticulture, Bellevue, WA) : 1 vermiculite (Medium 

grade; SunGro Horticulture, Bellevue, WA); by volume]. Pine bark was passed through a 

5-mm screen, while WPTA and WPTF were prepared as described in the 2010 

Phytotoxkit test.  Individual cells were cut from 72-cell sheets (PROP-72-RD; T.O. 

Plastics Inc., Clearwater, MN) and filled with substrate (36 replications per substrate), 

randomized in 72-cell trays (36 cells/tray), and saturated under mist. Two seeds of a 

single test plant species (lettuce, Lactuca sativa L. ‘Buttercrunch’ and tomato, Solanum 

lycopersicum L. ‘Better Boy’) were sown in each cell. Plant species were chosen based 

on standards developed for conducting phytotoxicity tests using plants as the test species 

(Kapanen and Itävaara, 2001; U.S. E.P.A., 1996). Seed germination rates of the selected 

test species were determined prior to the experiment [lettuce (87%) and tomato 

(95%)].Trays were grouped by species and placed in separate growth chambers (25 °C 

day/21 °C night) with no light until germination occurred, thereafter receiving a 14-h 

light (375 – 415 µmol·m
–2

·s
–1

) and 10-h dark photoperiod. All trays were hand-watered 

as needed and all 4 trays of individual test species were watered equally. 
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At 11 (tomato) and 12 (lettuce) days after sowing (DAS), seedling emergence rate 

was recorded and seedlings were thinned to 1 per cell. At 35 (tomato) and 39 (lettuce) 

DAS, roots were washed and digitally scanned for analysis (total root length) using 

WinRhizo software (WinRhizo Version 2007d; Regent Instruments Inc., Canada). 

Substrate air space, container capacity, total porosity, and bulk density were determined 

using the North Carolina State University porometer method (Fonteno et al., 1995). A 

complete laboratory soil test analysis was conducted on all substrates to determine pH, 

soluble salt concentration, and mineral nutrient content. 

Seed emergence rate was analyzed with generalized linear models using the 

binary distribution and a logit link function using the GLIMMIX procedure of SAS. Total 

root length and porometer data were analyzed with linear models using the GLIMMIX 

procedure of SAS. Differences between treatment means were determined using the 

Shaffer-Simulated method (P < 0.05). 

Seedling Growth Test - 2011 

A separate seedling growth experiment was conducted in 2011, with design and 

procedural differences described below. Substrates included WPTA and WPTF (prepared 

as described in the 2011 Phytotoxkit test), PB (passed through a 5-mm screen), and PL [3 

peatmoss (Fertilome Natural Organic Pure Canadian Sphagnum Peat Moss) : 1 perlite 

(Coarse grade; SunGro Horticulture, Bellevue, WA) : 1 vermiculite (Medium grade; 

SunGro Horticulture, Bellevue, WA)]. Test plant species were lettuce (Lactuca sativa 

L.‘Green Ice’), oat (Avena sativa L. ‘Jerry’), and tomato (Solanum lycopersicum L. 

‘Brandywine’). Seed germination rates of the selected test species were determined prior 

to the experiment [lettuce (100%), oat (74%), and tomato (100%)]. Seeds were covered 
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with 2.5 mL of substrate, flats were placed in growth chambers (22 °C day/18 °C night 

for oat and lettuce; 25 °C day/21 °C night for tomato) and subjected to a 14-h light (349 – 

387 µmol·m
–2

·s
–1

) and 10-h dark photoperiod. Seedling emergence rate was recorded at 8 

(oat) or 9 (lettuce and tomato) DAS and seedlings were thinned to 1 per cell. The 

experiment was terminated at 14 (oat), 25 (tomato), or 33 (lettuce) DAS and roots were 

washed and digitally scanned for analysis. 

Seed emergence rate was analyzed with generalized linear models using the 

binary distribution and a logit link function using the GLIMMIX procedure of SAS. Total 

root length and porometer data were analyzed with linear models using the GLIMMIX 

procedure of SAS. Differences between treatment means were determined using the 

Shaffer-Simulated method (P < 0.05). 

Results and Discussion 

Separate statistical analyses were conducted to compare the sensitivity of the 

Phytotoxkit, comparing seed germination rate and total root length between RS and SPB. 

Significant inhibition of germination rate was observed for cress in 2010 and for mustard 

in both experiments (Table 11). Total root length was inhibited for mustard and sorghum 

in both experiments. These results verify salinity may not be an issue in the substrates 

evaluated in the experiments discussed within, although Phytotoxkit could be used to 

identify other sources of phytotoxicity. The Phytotoxkit has been used in previous studies 

for evaluating the phytotoxic potential of trace and heavy metals in sewage sludge 

(Oleszczuk, 2010) and herbicide contaminated soil (Sekutowski and Sadowski, 2009).  
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Table 11 

 

Mean Seed Germination Rate and Total Root Length of Three Biosensor Species Using a 

Phytotoxkit. 

 

 Germination rate (%)  Total root length (mm) 

Substrate Cress Mustard Sorghum  Cress Mustard Sorghum 

 2010 Experiment 

Reference soil   97 a
z    100 a 93 a  44 a     50 a 94 a 

Saline pine bark
y
   20 b      40 b 83 a  32 a       2 b 58 b 

 2011 Experiment 

Reference soil 97 a
 

 97 a 87 a  56 a 53 a 87 a 

Saline pine bark
x
 93 a  43 b 77 a  59 a   6 b 15 b 

z
Means followed by different letters within columns of each experiment indicate significant difference at 

P < 0.05 using the Shaffer-Simulated method. 
y
Pine bark soaked in a sodium chloride (NaCl ) solution overnight (16 dS·m

–1
 for cress and sorghum; 30 

dS·m
–1

 for mustard). 
x
Pine bark soaked in a NaCl solution overnight (16 dS·m

–1
 for cress; 30 dS·m

–1
 for mustard and 

sorghum) 

 

Phytotoxkit tests 

In the 2010 experiment, cress seed germination rate was lowest in PNF (10%), but 

germination rate was similar among all other substrates ranging from 90% to 97% (Table 

12). Mustard seed germination rate was 100% in all substrates, while sorghum seed 

germination rate was similar among all substrates, ranging from 77% to 93%. Cress total 

root length was greatest in WPTA (57 mm) and lowest in PNF (12 mm), yet each was 

statistically similar to the remaining substrates. Total root length for mustard was similar 

among all substrates. Sorghum total root length was greatest in RS (94 mm) and WPTA 

(98 mm), but total root length was similar among the remaining substrates.  

In the 2011 experiment, PM and PB were included so direct comparisons could be 

made with commercially available substrate components. Such comparisons allow 

investigators to determine how the results may relate to current horticultural production 
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practices. In this experiment, cress germination rate was lowest in PNF (7%), but similar 

among the remaining substrates (Table 13). Seed germination rate was similar among all 

Table 12 

 

Mean Seed Germination Rate and Total Root Length of Three Biosensor Species 

Evaluated in 2010 Using a Phytotoxkit. 

 

 Germination rate (%)  Total root length (mm) 

Substrate Cress Mustard Sorghum  Cress Mustard Sorghum 

Reference soil  97 a
z 100 a 93 a   44 ab 50 a 94 a 

Aged pine 

needles 
93 a 100 a 90 a   41 ab 30 a 60 b 

Fresh pine 

needles 
10 b 100 a 77 a   12 b 39 a 65 b 

Aged whole pine 

tree
y 97 a 100 a 93 a   57 a 42 a 98 a 

Fresh whole 

pine tree
x
 

90 a 100 a 83 a   47 ab 60 a 62 b 

z
Means followed by different letters within columns indicate significant difference at P < 0.05 using the 

Shaffer-Simulated method. 
y
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 Sept. 2009. 

x
Processed whole pine (P. taeda) trees harvested and chipped on 26 May 2010. 

 

Table 13 

 

Mean Seed Germination Rate and Total Root Length of Three Biosensor Species 

Evaluated in 2011 Using a Phytotoxkit. 

 

 Germination rate (%)  Total root length (mm) 

Substrate Cress Mustard Sorghum  Cress Mustard Sorghum 

Reference soil  97 a
z 

97 a 87 a   56 ab   53 bcd    87 a 

Peatmoss  90 a 87 a 93 a  42 b   46 cd    52 b 

Pine bark  93 a 97 a 87 a  66 a   89 a    65 ab 

Aged pine 

needles 
 83 a 93 a 93 a  40 b   62 bc    66 ab 

Fresh pine 

needles 
   7 b 80 a 97 a  18 b   41 d    59 ab 
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Table 13 (continued). 

 Germination rate (%)  Total root length (mm) 

Substrate Cress Mustard Sorghum  Cress Mustard Sorghum 

Aged whole pine 

tree
y  93 a 97 a 97 a   51 ab   52 bcd    52 b 

Fresh whole 

pine tree
x
 

 70 ab 93 a 87 a  40 b   67 b    73 ab 

z
Means followed by different letters within columns indicate significant difference at P < 0.05 using the 

Shaffer-Simulated method. 
y
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 July 2010. 

x
Processed whole pine (P. taeda) trees harvested and chipped on 14 Mar. 2011.  

 

substrates for mustard (ranging from 80% to 97%) and sorghum (ranging from 87% to 

97%). Cress total root length ranged from 18 (PNF) to 66 mm (PB), but was greatest for 

PB, RS, and WPTA. Mustard total root length was greatest in PB (89 mm) and lowest in 

PNF (41 mm). Sorghum total root length was significantly greater in RS compared with 

WPTA and PM, but similar to the remaining substrates.  

Substrate pH ranged from 4.8 (PNA) to 6.1 (WPTA) in 2010 and 4.1 (PNA) to 5.4 

(PB) in 2011 (Tables 14 and 15). It has been reported that seed germination rates may 

vary when seeds are subjected to a range of pH values (Koger et al., 2004; Shoemaker 

and Carlson, 1990). Nevertheless, substrate pH likely not significantly affect seed 

germination rate in either experiment due to the high germination rates exhibited for all 

substrates except PNF. Substrate soluble salt concentration ranged from 19 (RS) to 192 

ppm (PNA) in 2010 and from 79 (PM) to 568 ppm (PNF) in 2011. These values are 

within acceptable ranges for plug production (Cavins et al., 2000) and should not 

adversely affect seed germination rate or early seedling root growth. 

Unsatisfactory germination rates were observed in PNF in both experiments. Compounds 

(phenols, terpenoids, and organic acids) found in needles of certain Pinus spp. can have 

an inhibitory effect on seed germination (Alvarez et al., 2005). Nektarios et al. (2005) 
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reported pine needles had an inhibitory effect on initial radicle growth and seedling 

development of two turfgrass species and two biosensor species. In their experiments, the 

inhibitory effects were more pronounced in fresh pine needles compared with decaying 

pine needles. Gaches et al. (2011a) evaluated seed germination and early radicle growth 

for lettuce seeds subjected to leachates of fresh and aged pine needles. In their study, seed 

germination was not affected but radicle growth was reduced in the fresh pine needle 

leachate compared with the aged leachate. In both studies, the authors posited that 

compounds within fresh pine needles are responsible for the observed phytotoxicity. 

In my experiments, PNF had a substantially greater concentration of potassium 

compared with the other substrates in both experiments. The PNF potassium 

concentration is considered high for greenhouse substrates (Bailey et al., nd), but no 

published data were found indicating a high potassium concentration would inhibit seed 

germination. High concentrations of other minerals (phosphorus, iron, manganese, and 

aluminum) were observed in PNF, but could not be considered inhibitory to seed 

germination or initial root growth due to their presence in PNA and other substrates in the 

experiments. Inhibitory effects observed for seed germination and initial root growth are 

likely caused by phytotoxic compounds present in PNF, but these compounds break 

down over time.  

Overall, germination rate in WPTA and WPTF was similar to germination rate in 

RS in both experiments, and similar to PM and PB in the 2011 experiment. The whole 

pine tree material used in the 2011 experiment was composed of 10% by weight pine 

needles, yet did not exhibit any inhibitory properties. Gruda et al. (2009) treated lettuce 
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Table 14 

 

pH, Soluble Salt Concentration, and Mineral Nutrient Content of Substrates in 2010 Phytotoxkit and Seedling Growth Tests.  

 

Substrate pH 

Soluble 

Salts 

NO3 

-N 

NH4  

-N P Ca Mg K Na B Fe Mn Cu Zn Al Mo 

  ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

Reference 

soil 
5.4 19 0.5 3.6 4.3 24.8 2.5 7.1 24.2 0.12 0.22 0.10 0.03 0.04 1.86 < 0.05 

Aged pine 

needles 
4.8 192 < 0.5 1.0 15.4 30.1 19.0 47.7 6.3 0.37 0.92 5.41 0.05 0.51 5.77 < 0.05 

Fresh pine 

needles 
5.5 70 1.0 6.2 26.8 15.7 26.3 343.3 8.8 0.48 3.46 7.31 0.04 1.97 10.56 < 0.05 

Aged whole 

pine tree
z 6.1 51 < 0.5 < 0.5 3.3 2.3 0.6 22.2 2.2 0.15 0.27 0.05 0.01 0.03 0.76 < 0.05 

Fresh whole 

pine tree
y
 

5.7 141 < 0.5 < 0.5 2.1 6.5 3.1 58.7 3.3 0.19 0.76 0.57 0.02 0.07 0.99 < 0.05 

Peat-lite
x
 4.7 70 < 0.5 < 0.5 0.2 3.7 2.7 7.6 12.8 0.18 0.70 0.06 0.03 0.04 0.61 < 0.05 

Pine bark 4.9 128 < 0.5 < 0.5 6.4 11.8 4.7 48.8 8.7 0.29 9.90 0.45 0.06 0.12 22.69 < 0.05 
z
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 Sept. 2009. 

y
Processed whole pine (P. taeda) trees harvested and chipped on 26 May 2010. 

x
Peat-lite (3 peatmoss : 1 perlite : 1 vermiculite). 
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Table 15 

 

pH, Soluble Salt Concentration, and Mineral Nutrient Content of Substrates in 2011 Phytotoxkit and Seedling Growth Tests.  

 

Substrate pH 

Soluble 

Salts 

NO3 -

N 

NH4 -

N P Ca Mg K Na B Fe Mn Cu Zn Al Mo 

  ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

Reference 

soil 
5.1 165 < 0.5 < 0.5 2.5 29.5 3.2 7.3 26.0 0.13 0.22 0.09 0.02 0.05 1.21 < 0.05 

Peatmoss 5.2 79 < 0.5 < 0.5 0.3 4.3 2.7 2.2 12.9 0.18 0.27 0.07 0.02 0.06 0.37 < 0.05 

Pine bark 5.4 116 < 0.5 < 0.5 4.8 4.1 1.2 22.2 15.8 0.49 0.68 0.03 0.01 0.04 1.75 < 0.05 

Aged pine 

needles 
4.1 211 0.6 < 0.5 6.6 28.5 28.2 42.6 12.8 0.38 0.79 10.77 0.05 0.62 25.76 < 0.05 

Fresh pine 

needles 
4.8 568 1.3 < 0.5 20.2 43.8 53.8 328.6 7.8 0.50 3.89 10.68 0.03 2.62 20.83 < 0.05 

Aged whole 

pine tree
z 4.4 349 < 0.5 < 0.5 7.3 22.5 11.7 122.1 6.2 0.35 2.62 2.49 0.04 0.36 3.49 < 0.05 

Fresh whole 

pine tree
y
 

4.7 236 < 0.5 < 0.5 3.1 13.2 6.6 67.4 4.9 0.26 5.70 1.50 0.04 0.18 5.45 < 0.05 

Peat-lite
x
 4.9 134 < 0.5 < 0.5 2.5 4.9 4.1 9.6 15.6 0.18 0.92 0.21 0.04 0.06 0.73 < 0.05 

z
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 Sept. 2009. 

y
Processed whole pine (P. taeda) trees harvested and chipped on 26 May 2010. 

x
Peat-lite (3 peatmoss : 1 perlite : 1 vermiculite). 
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and tomato seeds with aqueous extracts of a pine tree substrate (containing no needles) 

and found that seed germination rate and radicle length was lower in a cold water extract 

compared with distilled water. They also noted that washing the pine tree substrate before 

performing the extracts improved seed germination rate and radicle length. In our study, 

cress and mustard seed germination rate and total root length were similar for RS, 

WPTA, and WPTF in both experiments. The direct contact method used in our 

experiment was chosen to more closely simulate typical production conditions. The 

aqueous extract method is commonly used in phytotoxicity evaluations, but results may 

not accurately represent the conditions encountered during production. 

Although seed germination rate and total root length tended to increase after the 

whole pine tree material was aged, there were exceptions. Mustard total root length was 

actually greater for WPTF in both experiments and for sorghum in the 2011 experiment. 

The only observed statistical differences between WPTA and WPTF were for sorghum 

total root length in 2010. Gaches et al. (2011b) reported greater plant growth for annuals 

grown in aged whole pine tree substrate compared with a fresh whole pine tree substrate. 

Taylor et al. (2012) also noted that marigold growth was greater in a peat-lite substrate 

compared with fresh pine tree substrate and a substrate composed of equal parts fresh 

pine tree substrate and peatmoss. The investigators both posited that several factors, 

including phytotoxic compounds in the wood-based materials, may be responsible for 

reduced plant growth. In my experiments, whole pine tree substrates did not exhibit any 

effects that could be definitively interpreted as phytotoxic, especially when compared 

with PM and RS. Nevertheless, the disparity in plant growth of crops produced in aged 

and fresh wood-base substrates should be more thoroughly investigated.  
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In my experiments, the Phytotoxkit was used to identify potential phytotoxicity 

associated with compounds present in whole pine tree substrates. All substrates were 

sieved to pass a 2-mm screen to minimize the effect of substrate physical properties. 

Differences in nutrient availability among substrates could potentially affect initial 

seedling development, yet such factors could not be identified in the Phytotoxkit 

experiments.   

Seedling Growth Test 

Substrate pH ranged from 4.7 (PL) to 6.1 (WPTA) in 2010 and 4.4 (WPTA) to 5.4 

(PB) in 2011 (Tables 14 and 15). Substrate soluble salt concentration ranged from 45 

(WPTA) to 128 ppm (PB) in 2010 and from 116 (PB) to 349 ppm (WPTA) in 2011. In 

the 2010 experiment, lettuce seed emergence rate ranged from 58% (PB) to 85% (WPTA) 

(Table 16). Tomato seedling emergence rate was similar for PL and WPTA, but both 

were significantly greater than PB and WPTF. Total root length was greatest for PL in 

both test species, 2.3 to 4.5 times greater than the other substrates. In the 2011 

experiment, seedling emergence rate was similar in all substrates for lettuce (ranging 

from 86% to 96 %) and oat (ranging from 83% to 89%) (Table 17). Tomato seedling 

emergence rate was greatest in WPTA (92%) and lowest in WPTF (74%). Total root 

length was greatest in PL for all test species, 2.2 to 11.1 times greater than the other 

substrates. 
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Table 16 

 

Mean Seedling Emergence Rate and Total Root Length of Three Biosensor Species      

Evaluated in a 2010 Seedling Growth Test. 

 

 Emergence rate (%)  Total root length (cm) 

Substrate Lettuce Tomato  Lettuce Tomato 

Peat-lite
z
     82 a

y
     99 a     197 a    183 a 

Pine bark     58 b     81 b       48 b      81 b 

Aged whole pine tree
x
     85 a     96 a       44 b      72 b 

Fresh whole pine tree
w
     71 ab     76 b       52 b      81 b 

z
Peat-lite (3 peatmoss : 1 perlite : 1 vermiculite). 

y
Means followed by different letters within columns indicate significant difference at P < 0.05 

using the Shaffer-Simulated method. 
x
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 Sept. 2009. 

w
Processed whole pine (P. taeda) trees harvested and chipped on 26 May 2010. 

 

Table 17 

 

Mean Seedling Emergence Rate and Total Root Length of Three Biosensor Species 

Evaluated in a 2011 Seedling Growth Test. 

 

 Emergence rate (%)  Total root length (cm) 

Substrate Lettuce Oat Tomato  Lettuce Oat Tomato 

Peat-lite
z
  86 a

y
 88 a     81 ab     208 a    294 a    186 a 

Pine bark 92 a 88 a     85 ab       35 b    258 b      67 b 

Aged whole 

pine tree
x
 

86 a 89 a     92 a 
 

     19 c    135 d      45 c 

Fresh whole 

pine tree
w
 

96 a 83 a     74 b 
 

     20 c    160 c      43 c 

z
Peat-lite (3 peatmoss : 1 perlite : 1 vermiculite). 

y
Means followed by different letters within columns indicate significant difference at P < 0.05 

using the Shaffer-Simulated method. 
x
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 July 2010. 

w
Processed whole pine (P. taeda) trees harvested and chipped on 14 Mar. 2011. 

 

Substrate physical properties (air space, container capacity, total porosity, and 

bulk density) were analyzed for both seedling growth experiments (Tables 18 and 19). 

Peat-lite had the lowest air space and greatest container capacity in both experiments. 
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Aged and fresh whole pine tree had the greatest air space in both experiments when 

compared with PL and PB. Mineral concentrations for WPTA and WPTF were within the 

acceptable ranges in both experiments, except for WPTF in 2011 which had high iron and 

aluminum concentrations (Tables 14 and 15).  

Seedling emergence rate varied among substrates, but was substantially greater in 

PL and WPTA compared with PB and WPTF in the 2010 experiment. In contrast, 

seedling emergence rate was similar among all substrates for lettuce and oat in the 2011 

experiment. Seedling emergence rate tended to be greater in WPTA compared with 

WPTF in both experiments. The opposite was observed for total root length, which 

tended to be greater in WPTF compared with WPTA. Differences in seedling emergence 

rate did not necessarily have an impact on total root length.  

Table 18 

 

Physical Properties
z
 of Processed Whole Pine Tree (Aged and Fresh), Pine Bark, and      

Peat-lite Substrates in a 2010 Seedling Growth Test. 

 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk 

density 

(g·cm
–3

) 

Substrate -----------------(% vol)----------------  

Peat-lite
y
 10.9 c

x
 62.1 a 73.0 d 0.190 b 

Pine bark 28.4 b 50.1 b 78.6 c 0.213 a 

Aged whole pine tree
w
 36.1 a 55.3 b 91.4 a 0.141 c 

Fresh whole pine tree
v
 34.9 a 50.8 b 85.7 b 0.148 c 

z
Data presented as means (n = 3) and obtained using the North Carolina State University 

porometer method. 
y 
Peat-lite (3 peatmoss : 1 perlite : 1 vermiculite). 

x
Means followed by different letters within columns indicate significant difference at P < 0.05 

using the Shaffer-Simulated method. 
w
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 Sept. 2009. 

v
Processed whole pine (P. taeda) trees harvested and chipped on 26 May 2010. 
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Table 19 

 

Physical Properties
z
 of Processed Whole Pine Tree (Aged and Fresh), Pine Bark, and      

Peat-lite Substrates in a 2011 Seedling Growth Test. 

 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk 

density 

(g·cm
–3

) 

Substrate -----------------(% vol)----------------  

Peat-lite
y
      5.5 d

x 62.3 a 67.7 c 0.209 b 

Pine bark    22.7 c 53.5 b 76.3 b 0.267 a 

Aged whole pine tree
w
    32.5 b 45.4 c 77.9 b 0.185 b 

Fresh whole pine tree
v
    37.6 a 49.9 b 87.6 a 0.196 b 

z
Data presented as means (n = 3) and obtained using the North Carolina State University 

porometer method. 
y
Peat-lite (3 peatmoss : 1 perlite : 1 vermiculite). 

x
Means followed by different letters within columns indicate significant difference at P < 0.05 

using the Shaffer-Simulated method. 
w
Processed whole pine (Pinus taeda) trees harvested and chipped on 29 July 2010. 

v
Processed whole pine (P. taeda) trees harvested and chipped on 14 Mar. 2011. 

 

Minimal shoot growth was observed in either experiment and no more than one 

set of true leaves was produced by any of the test plant species. Shoot growth was not 

measured in either experiment, but seedlings in PL were visually larger compared with 

seedlings in the remaining substrates, corresponding to the total root length data. Seedling 

growth tests conducted to detect phytotoxicity typically involve sowing seeds in the test 

substrates, then watering and fertilizing the seedlings until the experiment is terminated 

(Gruda et al., 2009; Hartz and Giannini, 1998; Nektarios et al., 2005; Ortega et al, 1996). 

Fertilizer was not applied to seedlings in our experiments in order to reduce the number 

of factors affecting seedling development. Thus, seedling development resulted from 

nutrients obtained from seed reserves, the nonamended substrates, and the irrigation 

water.  
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Gruda et al. (2009) reported marigold seedling dry mass was lower in a pine tree 

substrate compared with a pine tree substrate that was leached or soaked with water prior 

to use. The investigators suggest a lower concentration of phytotoxins was present in the 

pretreated substrates. Ortega et al. (1996) reported that leaching an oak bark substrate 

resulted in greater shoot dry mass for seedlings, compared with those grown in nontreated 

bark. In the same study, phenolic acid compounds tended to be less concentrated in the 

leached bark substrate. Naasz et al. (2009) evaluated the phytotoxic properties of washed 

and nonwashed bark from seven tree species. The investigators evaluated several factors 

including substrate physical, chemical, and biochemical properties. They determined 

substrate air porosity as the predominant factor contributing to reduced germination index 

in lettuce seeds and reduced dry weight of tomato seedlings. Moreover, they noted low 

air porosity led to increased competition for oxygen among microorganisms and plant 

roots. 

In my seedling growth experiments, substrate air space was significantly lower in 

PL compared with the other substrates. Total root length was substantially greater in PL, 

thus seedlings could have responded more positively to a lower air space. Additionally, 

PL had significantly greater container capacity compared with the other substrates, thus 

water availability could have also affected seedling growth. Throughout both 

experiments, seedlings were watered evenly at each irrigation event until all substrates 

reached saturation. Substrates with greater air space and lower container capacity would 

drain faster and could possibly limit water availability between irrigations and be a 

limiting factor in seedling growth. 
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Jackson et al. (2009) reported high levels of nitrogen immobilization in a pine tree 

substrate compared with pine bark and peatmoss substrates, while pine bark had 

intermediate levels of nitrogen immobilization compared with pine tree substrate and 

peatmoss. Wood-based substrates also have a low cation exchange capacity compared 

with peatmoss and pine bark (Jackson et al., 2010; Raviv and Leith, 2008). Although 

nitrogen immobilization and low cation exchange capacity could be responsible for 

reduced root development in WPTA and WPTF, it would not fully account for the 

significantly lower total root length in PB compared with PL. A combination of nutrient 

and water availability is likely responsible for reduced root development in PB, WPTA, 

and WPTF.    

I demonstrated seeds of six biosensor plant species could be germinated and 

seedlings could be established in aged and fresh whole pine tree substrates. Differences in 

seed germination/emergence rate and seedling root length could not be attributed to 

phytotoxic compounds in the whole pine tree substrates. An abundance of information 

has been published regarding producing crops in wood-based substrates, but little 

emphasis has been placed on seed or cutting propagation in wood-based substrates. I 

determined whole pine tree substrates could be used to germinate and establish young 

seedlings, yet further research is required to enhance seedling development in these 

substrates.  

The Phytotoxkit was sensitive to high soluble salt concentrations in pine bark, but 

further investigations are needed to determine its sensitivity for other potential phytotoxic 

properties in horticultural substrates. Including traditional substrates as “controls” in a 

Phytotoxkit evaluation would allow investigators to establish a baseline for inhibitory 
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effects observed in the test. The seedling growth test was successfully used to detect 

differences in shoot and root growth between whole pine tree and peat-lite substrates. The 

Phytotoxkit and seedling growth tests could be useful tools for researchers evaluating 

alternative horticultural substrates. 

 Seed germination and early seedling development in pine tree-based substrates 

has not been extensively evaluated. Substrates composed of processed whole pine trees or 

other wood-based materials have recently become commercially available in the United 

States, but many growers are reluctant to switch from peatmoss substrates due to their 

proven performance within various production methods. Demonstrating the versatility of 

whole pine tree substrates, from seed/cutting propagation to crop production, will 

positively influence growers’ perceptions of these substrates.  
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CHAPTER IV 

PARTICLE SIZE INFLUENCE ON INITIAL SEEDLING GROWTH AND STEM 

CUTTING ROOT DEVELOPMENT IN WHOLE PINE TREE SUBSTRATES 

Abstract 

High wood content substrates derived from pine trees have been extensively 

evaluated for crop production, and commercially available substrate blends composed of 

wood-based materials are becoming more commonplace. Processing wood-based 

materials into finer particle sizes can result in increased container capacity and reduced 

air space, but how this may affect seedling and cutting root development is unknown. The 

objective of this study was to evaluate the effects of whole pine tree substrate particle 

size on initial seedling growth and stem cutting root development. Substrates evaluated in 

an experiment examining seedling growth included processed whole pine tree (WPT), 

WPT further processed through a smaller screen to produce a fine WPT, and two 

substrates composed of peatmoss and perlite at two proportions (1:3 peatmoss:perlite and 

9:1 peatmoss:perlite). In an experiment examining rooting of stem cuttings, WPT and 

WPT processed through a smaller screen to produce a fine WPT (Fine WPT) were used 

alone and blended at three proportions. Peatmoss and perlite were also used alone and 

blended at three proportions for a total of ten substrates. Substrate physical properties (air 

space, container capacity, total porosity, bulk density, and particle size distribution) and 

chemical properties (pH, electrical conductivity, and cation exchange capacity) were 

determined for all substrates. Seedling emergence (seedling experiment), rooting 

percentage (stem cutting experiment), total root length, average root diameter, and 

number of root tips were evaluated. Processing whole pine tree substrate into finer 
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particle sizes resulted in reduced substrate air space and increased container capacity for 

both experiments. Nevertheless, whole pine tree substrates with finer particle sizes did 

not significantly affect seedling emergence (seedling experiment), rooting percentage 

(stem cutting experiment), or root development for either experiment. In the stem cutting 

experiment, total root length and number of root tips was superior in substrates composed 

of 50% or more peatmoss compared with the substrates composed of WPT and/or Fine 

WPT. In the stem cutting experiment, overall root development increased with an 

increasing proportion of peatmoss. Whole pine tree substrates can be used for 

germinating seeds and rooting stem cuttings. Further improvement of nutrient availability 

and retention properties in these substrates will likely be necessary for optimal root 

development during seed and stem cutting propagation.  

Introduction 

Sphagnum peatmoss, perlite, vermiculite, and pine bark are the most common 

components of substrates used for seed and stem cutting propagation of ornamental 

crops. These materials can be used alone or combined at various proportions resulting in 

countless substrate blends. Seeds and stem cuttings require substrates with high container 

capacity to provide ample moisture, yet adequate air space is necessary for drainage and 

to prevent oxygen deficiency. Peatmoss, aged pine bark, and vermiculite are used to 

increase water retention, while perlite is added to increase air space.  

Wood-based materials produced from loblolly pine trees are viable alternatives to 

offset peatmoss and pine bark usage in crop production (Murphy et al., 2010; Taylor et 

al., 2012). Pine wood-based materials include chipped whole pine trees, chipped pine 

logs, and clean chip residual. Although these materials are readily available throughout 
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the southeastern United States, they must be further processed for use as a container 

substrate (Boyer et al., 2008; Jackson et al., 2010).  

Pine wood-based substrates have been successfully used for crop production, but 

these substrates have not been evaluated for crop propagation. Wood-based substrates 

have a lower cation exchange capacity compared with peatmoss and aged pine bark 

(Jackson et al., 2010; Raviv and Leith, 2008). Nitrogen immobilization is another issue 

associated with wood-based substrates, whereby less nitrogen is available for plant 

uptake due to high microbial activity. Nevertheless, water and nutrient availability can be 

readily managed in wood-based substrates used for crop production. For example, such 

substrates can be amended with peatmoss for increased water retention (Boyer et al., 

2008; Jackson et al., 2009b), while higher fertilizer rates can be used to offset nitrogen 

immobilization (Jackson et al., 2009a). Saunders et al. (2006) processed pine chips 

through different hammermill screen sizes to produce substrates with a range of particle 

sizes. They demonstrated pine chip substrate air space and container capacity could be 

modified due to differences in particle size. Pine wood-based substrate particle size may 

also vary due to differences in processing equipment (Altland and Krause, 2012).  

Water and air content have long been considered the most important factors in 

selecting a substrate for cutting propagation (Bilderback and Lorscheider, 1995; 

Threadgill et al., 1985). Once roots are formed, an external source of nutrients is required 

for continued plant development. The small volume of containers used for seed and 

cutting propagation limits the amount of nutrients available for plant uptake, thus the 

added effects of nutrient leaching and reduced nitrogen availability could be detrimental 

to seedling and rooted cutting growth in wood-based substrates. 
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Water and nutrient management practices for propagation in pine wood-based 

substrates have not been investigated. In a previous study, this author demonstrated 

whole pine tree (WPT) substrates could be used to root stem cuttings of several plant 

species. In that study, the addition of peatmoss to WPT and pine bark substrates resulted 

in greater root development. It was indicated that several factors possibly contributed to 

less vigorous root development in WPT, including low cation exchange capacity, reduced 

nitrogen availability, and excessive leaching.  

Wood-based substrates typically have high air space compared with peatmoss and 

aged pine bark substrates, thus oxygen deficiency would not be a problem associated with 

wood-based substrates. High substrate air space can contribute to nutrient leaching and 

may limit moisture content due to reduced contact between roots and substrate particles. 

Although processing wood-based materials into finer particle sizes can result in increased 

container capacity and reduced air space, how this affects seedling and cutting root 

development is unknown. The objective of these experiments was to evaluate the effects 

of WPT particle size on initial seedling development and stem cutting root development.  

Materials and Methods 

Two experiments were conducted to evaluate the effect of WPT substrate particle 

size on early seedling development (seedling experiment) and stem cutting root 

development (stem cutting experiment). The experiments were conducted at the USDA-

ARS Thad Cochran Southern Horticultural Laboratory in Poplarville, MS.  

Seedling Experiment 

Whole pine tree (WPT) substrate was produced from 20- to 25-cm diameter 

loblolly pine (Pinus taeda L.) trees harvested in Macon County, AL and chipped with a 
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Woodsman Model 334 Biomass Chipper (Woodsman, LLC Farwell, MI) on 19 Jan. 

2009. Chips were ground with a Williams Crusher hammer mill (Meteor Mill #40; 

Williams Patent Crusher and Pulverizer Co., Inc St. Louis, MO) to pass a 0.95-cm screen, 

and ground WPT was stored in 1.73 m
3
 polypropylene bulk bags. On 5 Jan. 2012, WPT 

was further processed through a hammer mill (C.S. Bell No. 30, Tiffin, OH) fitted with a 

0.3-cm screen to produce a substrate with smaller particle sizes (Fine WPT). Peatmoss 

(Fertilome Pure Canadian Peat Moss; Cheek Garden Products, Austin, TX) and perlite 

(Coarse grade; SunGro Horticulture, Bellevue, WA) were combined at two proportions 

by volume to produce substrates (1:3 peatmoss:perlite and 9:1 peatmoss:perlite) with 

physical properties similar to WPT and Fine WPT, respectively.  

Individually cut cells (PROP-72-RD, T.O. Plastics Inc., Clearwater, MN) were 

filled with substrate (36 replications per substrate), randomized in 72-cell trays (36 

cells/tray), and saturated under mist. Two seeds of a single test plant species (lettuce, 

Lactuca sativa L.‘Optima’; oat, Avena sativa L. ‘Jerry’; tomato, Solanum lycopersicum 

L. ‘Arkansas Traveler’) were sown in each cell. Seed germination rates of the selected 

test species were determined prior to the experiment [lettuce (100%), oat (95%), and 

tomato (98%)]. Seeds were covered with 2.5 mL of substrate, flats were placed in growth 

chambers (22 °C day/18 °C night, oat and lettuce; 24 °C day/21 °C night, tomato) and 

subjected to a 14-h light (349 – 387 µmol·m
−2

·s
−1

) and 10-h dark photoperiod. All trays 

were hand-watered as needed, all 4 trays of individual test species watered equally. 

At 7 and 13 days after sowing (DAS), seedling emergence rate (%) was recorded 

and seedlings were thinned to 1 per cell at 13 DAS. At 17 (oat), 31 (lettuce), and 39 

(tomato) DAS, roots were washed and digitally scanned for analysis (total root length, 
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average root diameter, and number of root tips) using WinRhizo software (WinRhizo 

Version 2007d; Regent Instruments Inc., Canada). Substrate air space, container capacity, 

total porosity, and bulk density were determined (n = 3) using the North Carolina State 

University porometer method (Fonteno et al., 1995). Substrate particle size distribution 

(PSD) was determined by passing 500-mL air-dried substrate samples (n = 3) through 11 

sieves (9.5- to 0.05-mm). Sieves were shaken for 3 min with a Ro-Tap (Ro-Tap RX-29; 

W.S. Tyler, Mentor, OH) sieve shaker (278 oscillations/min, 159 taps/min). Particles 

collected on each sieve and in the pan (<0.05-mm) were weighed and grouped into three 

texture classes [coarse (>2.0-mm), medium (<2.0 to >0.5-mm), and fine (<0.5-mm)].  

Initial (0 DAS) and final (each species at termination) substrate solution pH were 

determined using an Accumet Excel XL50 multiparameter meter (Fisher Scientific, 

Pittsburgh, PA). Substrate solution was extracted using the 1:2 dilution method. 

Individual 45-mL substrate samples (n = 9) were saturated in 90-mL deionized water for 

30 min, and the mixture was filtered through a non-bleached coffee filter (#4 Cone Style; 

Supervalu Inc., Eden Prairie, MN). 

Seedling emergence rate data were analyzed with generalized linear models using 

the binary distribution and a logit link function using the GLIMMIX procedure of SAS 

(Version 9.3; SAS Institute, Inc., Cary, NC). Total root length, average root diameter, 

number of root tips, porometer data, PSD data, and pH were analyzed with generalized 

linear models using the GLIMMIX procedure of SAS. Differences between treatment 

means were determined using the Shaffer-Simulated method (P < 0.05). 
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Stem Cutting Experiment 

Root development of stem cuttings from four species (Chrysanthemum 

×morifolium Ramat. ‘Dark Splendid Reagan’, Ficus benjamina L., Ligustrum japonicum 

Thunb. ‘Texanum’, and Tagetes lucida Cav.) was evaluated in twelve substrates.  Whole 

pine tree substrate (WPT) was produced from 20- to 25-cm diameter loblolly pine (Pinus 

taeda L.) trees harvested in Macon County, AL and chipped with a Woodsman Model 

334 Biomass Chipper (Woodsman, LLC Farwell, MI) in April 2012. Chips were ground 

with a Williams Crusher hammer mill (Meteor Mill #40; Williams Patent Crusher and 

Pulverizer Co., Inc St. Louis, MO) to pass a 0.95-cm screen. On 17 Sept. 2012, WPT was 

further processed through a hammer mill (C.S. Bell No. 30, Tiffin, OH) fitted with a 0.3-

cm screen to produce a substrate with smaller particle sizes (Fine WPT).  

Whole pine tree substrate and Fine WPT were used alone and combined at three 

proportions (3:1 WPT:Fine WPT, 1:1 WPT:Fine WPT, and 1:3 WPT:Fine WPT) by 

volume to produce five substrates with varying physical properties. Peatmoss (Blonde 

Golden Sphagnum Peat Moss; Berger Peat Moss Inc., Quebec) and perlite (Coarse grade; 

SunGro Horticulture, Bellevue, WA) were used alone (Peatmoss 100% and Perlite 100%, 

respectively) and combined at three proportions (3:1 peatmoss:perlite, 1:1 

peatmoss:perlite, and 1:3 peatmoss:perlite) by volume to produce five substrates with 

varying physical properties. Two commercially available substrates [Fafard 3B (Conrad 

Fafard, Agawam, MA) and Sunshine Rediearth PS (SunGro Horticulture, Bellevue, WA)] 

were also include for observational purposes. Each substrate (except Fafard and Sunshine 

Rediearth) was amended with 2.37 kg·m
–3

 16N–2.6P–10K (5-month formulation; 

Harrell’s; Sylacauga, AL). Dolomitic limestone was added to Peatmoss 100% (3.3 
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kg·m
−3

), 3:1 peatmoss:perlite (2.5 kg·m
–3

), and 1:1 peatmoss:perlite (1.7 kg·m
–3

) for 

substrate pH adjustment. 

Individual cells were cut from 72-cell sheets (PROP-72-RD; T.O. Plastics Inc., 

Clearwater, MN) and filled with substrate (36 replications per substrate). Cells were 

randomized in 72-cell trays and placed under a greenhouse mist system to saturate 

substrates before use. Stem cuttings from individual plant species were prepared (Table 

20), all species received a 1-sec basal quick-dip in a 1000 ppm indole-3-butyric acid + 

500 ppm 1-naphthaleneacetic acid solution (Dip'N Grow; Dip'N Grow Inc., Clackamas, 

OR), and a single cutting was inserted into each container for a total of 432 experimental 

units per species. Intermittent mist was applied with mister nozzles (809 Series; Ein-Dor 

Co., Israel) for 8 to 12 sec (varied by species) every 15 min from 7:00 AM to 7:00 PM. 

Average monthly greenhouse temperature was calculated for September (23 °C, +/-1 

degrees), October (21 °C, +2/-3 degrees), and November (19 °C, +/-3 degrees). Natural 

day length ranged from 10.3 to 12 hours.  

Rooting periods varied by species, but all cuttings within a species were harvested 

at the same time (Table 20). At this time, roots (if present) were washed and digitally 

scanned for analysis (total root length, average root diameter, and number of root tips) 

using WinRhizo software. Substrate air space, container capacity, total porosity, and bulk 

density were determined (n = 3) using the North Carolina State University porometer 

method (Fonteno et al., 1995). Substrate particle size distribution (PSD) was determined 

by passing 500-mL air-dried substrate samples (n = 3) through 11 sieves (9.5- to 0.05-

mm). Sieves were shaken for 3 min with a Ro-Tap sieve shaker (278 oscillations/min, 

159 taps/min). Particles collected on each sieve and in the pan (<0.05-mm) were weighed 
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and grouped into three texture classes [coarse (>2.0-mm), medium (<2.0 to >0.5-mm), 

and fine (<0.5-mm)].  

Initial (0 DAS) and final (each species at termination) substrate pH and electrical 

conductivity were analyzed using an Accumet Excel XL50 multiparameter meter. 

Substrate solution was extracted using the 1:2 dilution method. Individual 45-mL 

substrate samples (n = 4) were saturated in 90-mL deionized water for 30 min, and the 

mixture was filtered through a nonbleached coffee filter. A complete laboratory soil test 

analysis was conducted on the four substrate components (WPT, Fine WPT, peatmoss, 

and perlite) to determine mineral nutrient content. Cation exchange capacity was 

analyzed for all substrates, and converted from meq/100 g substrate to cmol·L
–1

 substrate 

using bulk density values (g·cm
–3

). 

An F-test was used to test differences among means for substrates with WPT 

and/or FWPT as a component (WPT, 3:1 WPT:Fine WPT, 1:1 WPT:Fine WPT, 1:3 

WPT:Fine WPT and Fine WPT) using the GLIMMIX procedure of SAS. An F-test was 

also used to test differences between means for substrates with peatmoss and/or perlite as 

a component (Peatmoss 100%, 3:1 peatmoss:perlite, 1:1 peatmoss:perlite, 1:3 

peatmoss:perlite, and Perlite 100%). Rooting percentage data were analyzed with 

generalized linear models using the binary distribution and a logit link function using the 

GLIMMIX procedure of SAS. Total root length, average root diameter, number of root 

tips, porometer data, PSD data, pH, and EC were analyzed with generalized linear models 

using the GLIMMIX procedure of SAS. Differences between treatment means were 

determined using the Shaffer-Simulated method (P < 0.05). 

  



 

 

 

 

9
2
 

Table 20 

 

Plant Type, Cutting Data, Rooting Period, Cutting Description, Auxin Treatment, and Stock Plant Type/Location for Four Plant 

Species Rooted in Peat-lite and Whole Pine Tree Substrates.  

 

Species Plant type Cutting date Rooting 

period 

Cutting 

description 

Auxin 

Treatment
z
 

Stock plant type/location 

Chrysanthemum 

×morifolium ‘Dark 

Splendid Reagan’ 

Herbaceous 

perennial 

4 Oct. 2012 25 days Terminal 1000 ppm IBA 

+ 500 ppm 

NAA 

Provided by GroLink Plant 

Company 

Ficus benjamina Tropical 

tree 

2 Oct. 2012 34 days Terminal; 3-node; 

1.75-3.25 in; 

1000 ppm IBA 

+ 500 ppm 

NAA 

Container plants; MSU
y
 

greenhouse, Poplarville, 

MS 

Ligustrum japonicum 

‘Texanum’ 

Large 

shrub 

24 Sept. 

2012 

63 days Subterminal; 2-

node; 1.75-2.25 in 

1000 ppm IBA 

+ 500 ppm 

NAA 

Landscape planting; MSU, 

Poplarville, MS 

Tagetes lucida Herbaceous 

perennial 

27 Sept. 

2012 

46 days Subterminal; 3-

node; 1.25-2.5 in 

1000 ppm IBA 

+ 500 ppm 

NAA 

Field planting; MSU, 

Poplarville, MS 

z
1-sec basal quick-dip; IBA = indole-3-butyric acid and NAA = 1-naphthaleneacetic acid solution (Dip'N Grow). 

y
MSU = Mississippi State University South Mississippi Branch Experiment Station.
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Results and Discussion 

Seedling Experiment 

Seedling emergence rate was similar among all substrates for lettuce and oat at 13 

DAS (Table 21). Tomato seedling emergence rate at 13 DAS was significantly lower in 

9:1 peatmoss:perlite compared with the other substrates. The reduced seedling emergence 

rate in 9:1 peatmoss:perlite for lettuce (7 DAS) and tomato (7 and 13 DAS) is unusual 

considering similar substrates are used for commercial seedling production. Nevertheless, 

processing WPT into finer particle sizes did not affect seedling emergence rate. 

Table 21 

 

Mean Seedling Emergence Rate (%) for Three Species at 7 and 13 Days After Sowing 

(DAS) Seeds in Peat-lite and Whole Pine Tree Substrates. 

 

 Lettuce Oat Tomato 

Substrate 7 DAS 13 DAS 7 DAS 13 DAS 7 DAS 13 DAS 

1:3 peatmoss:perlite
z
 80 a

y 99 a 85 a 86 a 54 b 90 a 

9:1 peatmoss:perlite
x 41 b 83 a 92 a 92 a 11 c 75 b 

WPT
w
 84 a 94 a 88 a 90 a 81 a 93 a 

Fine WPT
v
 75 a 96 a 90 a 90 a 71 ab 94 a 

z
Composed of 1 peatmoss : 3 perlite (v:v). 

y
Means followed by different letters within columns indicate significant difference at P < 0.05 using 

the Shaffer-Simulated method. 
x
Composed of 9 peatmoss : 1 perlite (v:v). 

w
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass 

a 0.95-cm screen.  
v
WPT hammermilled to pass a 0.3-cm screen. 

 

Initial substrate pH ranged 5.3 (9:1 peatmoss:perlite) to 6.0 (1:3 peatmoss:perlite) 

(Table 22). Substrate pH was within or slightly below the recommended range (5.5 to 

6.5) for all substrates with each species at project termination. Any differences observed 

for seed emergence rate or root development would not be attributed to differences in 

substrate pH.  
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Substrate air space ranged from 19% (9:1 peatmoss:perlite) to 39% (WPT) (Table 

23). Substrate air space was lower for Fine WPT compared with WPT. Similar substrate 

air space was observed for Fine WPT and 1:3 peatmoss:perlite. Substrate container 

capacity was similar between WPT and 1:3 peatmoss:perlite, and likewise between Fine 

WPT and 9:1 peatmoss:perlite. Substrate container capacity was greater in Fine WPT 

compared with WPT. Substrate total porosity was significantly lower in 1:3 

peatmoss:perlite compared with the other substrates. Bulk density ranged from 0.10 (1:3 

peatmoss:perlite) to 0.15 g·cm
–3

 (Fine WPT). Recommended ranges for substrate 

physical properties are not available for seedling production, but substrates composed of 

75% to 90% peatmoss and have 10% to 20% substrate air space are commonly used for 

commercial seed propagation (personal observation).  

Table 22 

 

Initial (Fallow Containers) and Final (Three Species) Substrate pH of Peat-lite and         

Whole Pine Tree Substrates for a Seedling Growth Test. 

 

Substrate 

Initial 

(0 DAS
z
) 

Lettuce 

(31 DAS) 

Oat 

(17 DAS) 

Tomato 

(39 DAS) 

1:3 peatmoss:perlite
y
 6.0 a

x 5.9 a 6.0 a 6.3 a 

9:1 peatmoss:perlite
w 5.3 c 5.8 a 5.3 b 5.9 b 

WPT
v
 5.6 b 5.3 c 5.2 b 5.6 c 

Fine WPT
u
 5.6 b 5.5 b 5.3 b 5.7 c 

z
DAS = days after sowing. 

y
Composed of 1 peatmoss : 3 perlite (v:v). 

x
Means followed by different letters within columns indicate significant difference at P < 

0.05 using the Shaffer-Simulated method. 
w
Composed of 9 peatmoss : 1 perlite (v:v). 

v
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and 

hammermilled to pass a 0.95-cm screen.  
u
WPT hammermilled to pass a 0.3-cm screen. 
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Table 23 

 

Physical Properties
z
 and Particle Size Distribution

y
 of Peat-lite and Whole Pine Tree Substrates in a Seedling Growth Experiment. 

 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk 

density 

(g·cm
–3

) 

 

Texture class
x
 

Substrate -----------------(% vol)----------------  
 Coarse Medium Fine 

1:3 peatmoss:perlite
w
   28.5 b

v 
50.4 b 78.9 b 0.104 b  35.6 a 34.3 d 30.1 b 

9:1 peatmoss:perlite
u 19.3 c 66.9 a 86.1 a   0.117 ab  21.0 c 38.3 c 40.8 a 

WPT
t
 39.3 a 48.3 b 87.6 a   0.134 ab  26.0 b 53.4 b 20.6 c 

Fine WPT
s
 26.9 b 60.9 a 87.7 a 0.146 a   1.8 d 58.3 a 39.9 a 

z
Data presented as means (n = 3) and obtained using the North Carolina State University porometer method. 

y
Air-dried samples passed through 11 sieves (9.5- to 0.05-mm). Data presented as means (n = 3) of percent of particles collected on sieves 

and in pan. 
x
Texture classes: coarse (>2.0-mm), medium (<2.0 to >0.5-mm), and fine (<0.5-mm). 

w
Composed of 1 peatmoss : 3 perlite (v:v). 

v
Means followed by different letters within columns indicate significant difference at P < 0.05 using the Shaffer-Simulated method. 

u
Composed of 9 peatmoss : 1 perlite (v:v). 

t
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen.  

s
WPT hammermilled to pass a 0.3-cm screen. 
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The proportion of fine particles ranged from 20% (WPT) to 41% (9:1 

peatmoss:perlite), and was similar between 9:1 peatmoss:perlite and Fine WPT (Table 

23). The proportion of fine particles increased nearly two fold by processing WPT 

through the smaller screen size. A larger proportion of medium particles were also found 

in Fine WPT compared with WPT. This likely accounted for the differences in substrate 

air space and container capacity since particle sizes smaller than 0.5 mm affect substrate 

air and water content (Jackson et al., 2010; Owen and Altland, 2008). 

Overall, root development was less in 9:1 peatmoss:perlite than in the other 

substrates. The delayed emergence rate likely negatively affected root development of 

lettuce and tomato, but oat also had inferior root development in 9:1 peatmoss:perlite. 

Total root length and number of root tips was lowest in 9:1 peatmoss:perlite for all 

species, while average root diameter was greatest in 9:1 peatmoss:perlite for all species 

(Table 24). Among the remaining substrates, the maximum root development response 

varied by species. Maximum total root length was observed in 1:3 peatmoss:perlite for 

tomato, likewise for the number of root tips for lettuce and tomato. Total root length, 

average root diameter, and number of root tips were similar between WPT and Fine WPT 

for lettuce and tomato, whereas average root diameter of oat was greater in Fine WPT.  

Processing WPT into smaller particle sizes did not result in greater seedling root 

development for the species evaluated. In a previous study conducted by the author, total 

root length for lettuce, oat, and tomato was superior in a peat-lite (3:1:1 

peatmoss:perlite:vermiculite) substrate compared with fresh and aged WPT substrates. 

The author posited water and nutrient availability was limited in WPT substrates. 

Increased substrate container capacity and reduced substrate air space was achieved for 
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Fine WPT in the current study, yet improved root growth did not occur. Thus, limited 

nutrient availability may be the major limiting factor for seedling root development. All 

of the substrates in this experiment had inherently low nutrient content (data not shown) 

and no limestone or fertilizer was added. 

Although I demonstrated WPT substrates could be used for seed propagation, 

seedling nutrient requirements have not been determined for these substrates. Further 

research is necessary to determine the effectiveness of WPT substrates during a complete 

seedling production cycle.  

Stem Cutting Experiment 

Substrate air space, container capacity, and total porosity were each similar 

among the substrates composed of WPT and/or Fine WPT (Table 25). Substrate air space 

ranged from 18% (Peatmoss 100%) to 34% (Perlite 100%) among the substrates 

composed of peatmoss and/or perlite. Substrate container capacity was greatest for 

Peatmoss 100% (72%) and lowest for Perlite 100% (41%). Substrates with WPT and/or 

Fine WPT as a component had similar container capacity compared with 1:3 

peatmoss:perlite. Substrate bulk density ranged 0.08 g·cm
–3

 (Perlite 100%) to 0.12 g·cm
–3

 

(WPT).  

Processing WPT into finer particles led to a reduction in substrate air space and an 

increase in substrate container capacity. Nevertheless, substrate air space for Fine WPT 

was greater compared with substrates composed of peatmoss. Substrate air space between 

15% and 40% is sufficient for adequate aeration during propagation, while substrate 

container capacity between 20% and 60% is sufficient for adequate water retention 

(Hartmann et al., 1990; Threadgill et al., 1985). All substrates composed of WPT and/or  
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Table 24 

 

Mean Total Root Length (cm), Average Root Diameter (mm), and Number of Root Tips for Seedlings Grown in Peat-lite and Whole           

Pine Tree Substrates. 

 

 Total root length Average root diameter Number of root tips 

Substrate Lettuce Oat Tomato Lettuce Oat Tomato Lettuce Oat Tomato 

1:3 peatmoss:perlite
z
 28 b

y
 141 b 120 a 0.31 b 0.42 b 0.33 b 34 a 240 b 122 a 

9:1 peatmoss:perlite
x  2 c   63 c   13 c 0.42 a 0.54 a 0.41 a 11 c 146 c   29 c 

WPT
w
 40 a 191 a   62 b 0.24 c 0.36 c 0.29 c   30 ab 232 b   54 b 

Fine WPT
v
 41 a 204 a   65 b 0.24 c 0.35 c 0.30 c 28 b 288 a   58 b 

z
Composed of 1 peatmoss : 3 perlite (v:v). 

y
Means followed by different letters within columns indicate significant difference at P < 0.05 using the Shaffer-Simulated method. 

x
Composed of 9 peatmoss : 1 perlite (v:v). 

w
20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen.  

v
WPT hammermilled to pass a 0.3-cm screen. 
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Table 25 

 

Physical Properties
z
, Cation Exchange Capacity (CEC), and Particle Size Distribution

y
 of Peat-lite

x
 and Whole Pine Tree

w
 Substrates 

in a Rooting Experiment. 

 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk 

density 

(g·cm
–3

) 

CEC 

(cmol·L
–1

) 

 

Texture class
v
 

Substrate -----------------(% vol)----------------  
  Coarse Medium Fine 

Perlite 100%   33.8 bc
u
 40.5 c 74.2 e 0.075 f 0.2  58.3 a  28.3 g 13.4 g 

1:3 peatmoss:perlite
 

  27.0 cd 52.4 b 79.3 d 0.088 d 3.9  45.1 b  28.4 g 26.6 d 

1:1 peatmoss:perlite 20.9 d 62.6 a 83.5 c 0.083 e 5.7  36.8 c   29.3 fg 33.9 c 

3:1 peatmoss:perlite 19.6 d 67.7 a 87.2 b 0.082 e 7.2    29.2 de 31.0 f 39.8 a 

Peatmoss 100% 18.0 d 72.1 a 90.2 a 0.082 e 10  23.0 f 36.0 e 41.1 a 

WPT
t
 48.0 a   42.8 bc 90.8 a 0.119 a   2.2  37.1 c 49.8 d 13.1 g 
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Table 25 (continued). 

 Air space 
Container 

capacity 

Total 

porosity 

Bulk 

density 

(g·cm
–3

) 

CEC 

(cmol·L
–1

) 

 

Texture class
v
 

Substrate -----------------(% vol)----------------  
  Coarse Medium Fine 

3:1 WPT:Fine WPT 45.9 a   45.9 bc 91.7 a   0.116 ab   2.6  30.3 d 53.4 c 16.3 f 

1:1 WPT:Fine WPT 47.3 a   44.4 bc 91.7 a   0.113 bc   2.3  26.7 e 36.3 e 37.0 b 

1:3 WPT:Fine WPT   42.9 ab   48.6 bc 91.5 a   0.114 bc   2.4  15.5 g 61.6 b 22.9 e 

Fine WPT
s
   40.4 ab 52.4 b 92.8 a 0.111 c   2.3    9.4 h 63.7 a 26.8 d 

z
Data presented as means (n = 3) and obtained using the North Carolina State University porometer method. 

y
Air-dried samples passed through 11 sieves (9.5- to 0.05-mm). Data presented as means (n = 3) of percent of particles collected on sieves and in pan. 

x
Peatmoss and perlite used alone (Peatmoss 100% and Perlite 100%, respectively) and in combination at three volumetric proportions (v:v). 

w
WPT and Fine WPT used alone and in combination at various three proportions (v:v). 

v
Texture classes: coarse (>2.0-mm), medium (<2.0 to >0.5-mm), and fine (<0.5-mm). 

u
Means followed by different letters within columns indicate significant difference at P < 0.05 using the Shaffer-Simulated method. 

t
WPT produced from 20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen.  

s
Fine WPT produced from WPT hammermilled to pass a 0.3-cm screen. 



101 

 

 

 

Fine WPT were at or above 40% substrate air space, but within the sufficiency range for 

substrate container capacity.  

The proportion of fine particles ranged from 13% (WPT) to 41% (Peatmoss 

100%) (Table 25). Proportion of fine particles was similar between WPT and Perlite 

100%, and likewise between Fine WPT and 1:3 peatmoss:perlite. Although processing 

WPT through a smaller screen size resulted in a greater proportion of fine particles, 

Peatmoss 100% had 1.5 times more fine particles compared with Fine WPT. Handreck 

(1983) reported particle sizes less than 0.5 mm had a significant effect on air space and 

container capacity for pine bark substrates, while it has been reported that particle sizes 

less than 1 mm contribute to reduced air space and increased container capacity in 

peatmoss (Raviv and Lieth, 2008).  

In the seedling experiment, substrate air space was lower in WPT and Fine WPT, 

compared with WPT and Fine WPT in the cutting experiment. The WPT substrate used 

in the seedling experiment had been stored for several months and likely decomposed 

over time, resulting in a material with a greater proportion of fine particles. High 

substrate air space would contribute to nutrient leaching and could limit the contact 

between roots and substrate particles, both having a negative effect on nutrient uptake. 

The importance of maintaining a high percentage of fine particles in substrates is well 

documented, and is critical for producing a WPT substrate for propagation. 

Rooting percentage was high among all substrates (97% or greater) for all species 

except Ligustrum (Table 26). Ligustrum rooting percentage ranged from 58% (Fine 

WPT) to 97% (1:1 peatmoss:perlite). Rooting percentage for Ligustrum tended to decline 

as air space decreased for the substrates composed of WPT and/or Fine WPT, while no 
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such trend was observed for rooting percentage with the substrates composed of peatmoss 

and/or perlite. Overall, Ligustrum rooting percentage was greater in the substrates 

composed of peatmoss and/or perlite. Stem cuttings require adequate endogenous 

nutrients for root initiation and emergence (Hartmann et al., 1990). The high rooting 

success of all species (except Ligustrum) would be an indication that substrate likely did 

not have a significant effect on rooting percentage, but more species need to be evaluated.  

Root development responses (total root length, average root diameter, and number 

of root tips) were similar overall among means for substrates with WPT and/or Fine WPT 

as a component, except for Chrysanthemum average root diameter (Table 27). 

Contrastingly, root development responses were different overall among means for 

substrates composed of peatmoss and/or perlite, except for Ficus average root diameter. 

Total root length was lower for all substrates with WPT and/or Fine WPT as a component 

compared with Peatmoss 100%, 3:1 peatmoss:perlite, and 1:1 peatmoss:perlite, except for 

Ficus (Table 26). A similar trend was observed for number of root tips among the same 

substrates in all species (Table 28). Differences in average root diameter among 

substrates were more difficult to explain. Maximum average root diameter varied by 

species in regard to substrate (Table 28), thus various factors including plant species may 

contribute to differences in average root diameter. 
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Table 26 

 

Mean Rooting Percentage (%) and Total Root Length (cm) of Cuttings from Four Species 

Rooted in Peat-lite
z
 and Whole Pine Tree

y
 Substrates. 

 

Substrate 
Ficus 

benjamina 

Ligustrum 

japonicum 

‘Texanum’ 

Chrysanthemum 

×morifolium 

‘Dark Splendid 

Reagan’ 

Tagetes 

lucida 

 Rooting percentage 

Perlite 100%    97 a
x
 94 a 100 a   97 a 

1:3 peatmoss:perlite
 

100 a 92 a 100 a 100 a 

1:1 peatmoss:perlite 100 a 97 a 100 a 100 a 

3:1 peatmoss:perlite 100 a 92 a 100 a 100 a 

Peatmoss 100% 100 a 92 a 100 a 100 a 

WPT
w
 100 a 69 a 100 a   97 a 

3:1 WPT:Fine WPT 100 a 78 a 100 a 100 a 

1:1 WPT:Fine WPT 100 a 67 a 100 a 100 a 

1:3 WPT:Fine WPT 100 a 64 a 100 a 100 a 

Fine WPT
v
 100 a 58 a 100 a 100 a 

 Total root length 

Perlite 100%   111 c 224 b 157 d  177 c 

1:3 peatmoss:perlite
 

   160 abc 118 c 100 e    59 d 

1:1 peatmoss:perlite 213 a 362 a 272 b  308 a 

3:1 peatmoss:perlite 198 a 341 a 316 a    276 ab 

Peatmoss 100% 197 a 375 a 311 a  270 b 

WPT    166 abc 114 c 206 c   58 d 

3:1 WPT:Fine WPT    162 abc 109 c 202 c   72 d 

1:1 WPT:Fine WPT    159 abc 104 c 198 c   70 d 

1:3 WPT:Fine WPT   171 ab 134 c 198 c   59 d 

Fine WPT   134 bc 102 c 202 c   60 d 
z
Peatmoss and perlite used alone (Peatmoss 100% and Perlite 100%, respectively) and in 

combination at three volumetric proportions (v:v). 
y
WPT and Fine WPT used alone and in combination at three volumetric proportions (v:v). 
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Table 26 (continued). 
x
Means followed by different letters within columns indicate significant difference at P < 0.05 using 

the Shaffer-Simulated method. 
w
WPT produced from 20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and 

hammermilled to pass a 0.95-cm screen.  
v
Fine WPT produced from WPT hammermilled to pass a 0.3-cm screen.

 

 

Table 27 

 

Results from F-tests Used to Test Differences in Root Development Among Means for 

Peat-lite
z
 Substrates and Also Test Differences Among Means for Whole Pine Tree

y
 

Substrates. 

 

Substrate 
Ficus 

benjamina 

Ligustrum 

japonicum 

‘Texanum’ 

Chrysanthemum 

×morifolium 

‘Dark Splendid 

Reagan’ 

Tagetes 

lucida 

 Total root length 

Peat-lite ≤0.0001 ≤0.0001 ≤0.0001 ≤0.0001 

Whole pine tree
  

0.2815 0.8127 0.9378 0.7053 

 Average root diameter 

Peat-lite 0.3731 0.0011 ≤0.0001 ≤0.0001 

Whole pine tree
  

0.9753 0.1121 0.0428 0.0643 

 Number of root tips 

Peat-lite ≤0.0001 ≤0.0001 ≤0.0001 ≤0.0001 

Whole pine tree
  

0.8233 0.8881 0.9875 0.8416 
z
Five substrates composed of peatmoss and perlite used alone and in combination at three 

volumetric proportions. 
y
Five substrates composed of WPT (hammermilled to pass a 0.95-cm screen) and Fine WPT 

(WPT hammermilled to pass a 0.3-cm screen) used alone and in combination at three volumetric 

proportions. 
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Table 28 

 

Average Root Diameter (mm) and Number of Root Tips of Cuttings from Four Species 

Rooted in Peat-lite
z
 and Whole Pine Tree

y
 Substrates. 

 

Substrate 
Ficus 

benjamina 

Ligustrum 

japonicum 

‘Texanum’ 

Chrysanthemum 

×morifolium 

‘Dark Splendid 

Reagan’ 

Tagetes 

lucida 

 Average root diameter 

Perlite 100% 0.89 a
x 

0.96 a 0.86 a 0.59 b 

1:3 peatmoss:perlite
 

0.86 a 0.97 a 0.76 b 0.71 a 

1:1 peatmoss:perlite 0.90 a 0.86 a  0.67 cd 0.53 b 

3:1 peatmoss:perlite 0.86 a 0.89 a 0.65 d 0.54 b 

Peatmoss 100% 0.91 a 0.87 a  0.66 cd 0.55 b 

WPT
w
 0.70 b 0.91 a 0.70 c 0.73 a 

3:1 WPT:Fine WPT 0.70 b 0.94 a 0.69 c 0.70 a 

1:1 WPT:Fine WPT 0.70 b 0.86 a  0.67 cd 0.76 a 

1:3 WPT:Fine WPT 0.69 b 0.93 a  0.66 cd 0.72 a 

Fine WPT
v
 0.70 b 0.86 a  0.67 cd 0.74 a 

 Number of root tips 

Perlite 100% 208 b   178 bc 175 b 221 b 

1:3 peatmoss:perlite
 

376 a   132 cd 177 b 167 b 

1:1 peatmoss:perlite 497 a 293 a 392 a 389 a 

3:1 peatmoss:perlite 468 a    269 ab 425 a 350 a 

Peatmoss 100% 430 a 325 a 396 a 384 a 

WPT 263 b  93 d 188 b   69 c 

 

 

 

 

 

 

 

 



106 

 

 

 

Table 28 (continued). 

Substrate 
Ficus 

benjamina 

Ligustrum 

japonicum 

‘Texanum’ 

Chrysanthemum 

×morifolium 

‘Dark Splendid 

Reagan’ 

Tagetes 

lucida 

 Number of root tips 

3:1 WPT:Fine WPT 261 b  89 d 186 b   83 c 

1:1 WPT:Fine WPT 264 b  80 d 183 b   86 c 

1:3 WPT:Fine WPT 272 b      102 d 191 b   70 c 

Fine WPT 235 b        83 d 188 b   72 c 

z
Peatmoss and perlite used alone (Peatmoss 100% and Perlite 100%, respectively) and in 

combination at three volumetric proportions (v:v). 
y
WPT and Fine WPT used alone and in combination at three volumetric proportions (v:v). 

x
Means followed by different letters within columns indicate significant difference at P < 0.05 using 

the Shaffer-Simulated method. 
w
WPT produced from 20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and 

hammermilled to pass a 0.95-cm screen.  
v
Fine WPT produced from WPT hammermilled to pass a 0.3-cm screen. 

 

Significant differences in total root length and number of root tips was observed 

among substrates composed of peatmoss and/or perlite for all species. The least total root 

length was observed for 1:3 peatmoss:perlite or Perlite 100%, while the greatest total root 

length varied among Peatmoss 100%, 3:1 peatmoss:perlite, and 1:1 peatmoss:perlite. 

Increased total root length (between the least and greatest mean total root length within 

each species) ranged 92% (Ficus), 216% (Chrysanthemum), 217% (Ligustrum), and 

422% (Tagetes). Such disparity was not observed among substrates composed of WPT 

and/or Fine WPT.  

Although root development was less vigorous for the substrates composed of 

WPT and/or Fine WPT, total root length and number of root tips were comparable or  

superior to those observed for 1:3 peatmoss:perlite and Perlite 100% for Chrysanthemum 

and Ficus. Although these substrates had similar substrate air space (except 1:3 
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peatmoss:perlite) and container capacity, physical properties are not likely the main 

factor affecting root development.  

Perlite is an inert material with an extremely low cation exchange capacity 

compared with peatmoss (Ingram, 1993), while wood-based substrates also have a low 

cation exchange capacity compared with peatmoss and pine bark (Jackson et al., 2010; 

Raviv and Leith, 2008). Cation exchange capacity was analyzed for all substrates in this 

experiment (Table 25). Cation exchange capacity ranged from 0.2 (Perlite 100%) to 10.0 

meq/L (Peatmoss 100%). Cation exchange capacity increased with increasing proportion 

of peatmoss, yet processing WPT into fine particles did not result in increased cation 

exchange capacity.  

Initial substrate pH ranged from 5.8 to 6.3 among all substrates (Table 29). 

However, final substrate pH (for all species) remained within or slightly above the 

recommended range (5.5 to 6.5). Substrate electrical conductivity was below the 

recommended range throughout the experiment. 

All substrate components had inherently low nutrient content (Table 30). All 

substrates were amended with controlled-release fertilizer, thus substrates with greater 

cation exchange capacity had enhanced nutrient retention properties and could have 

contributed to differences in root development. Nitrogen immobilization has been 

associated with wood-based substrates, due to high levels of microbial activity and 

competition for nitrogen (Gruda et al., 2000; Jackson et al., 2009a). Supplemental 

nitrogen applications are required during crop production to offset reduced nitrogen 

availability in wood-based substrates (Fain et al., 2008; Jackson et al., 2008). Similar 
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strategies may be required during propagation if high proportions of WPT are used in the 

substrate. 

Table 29 

 

Initial (Fallow Containers) and Final (Four Species) Substrate pH and Electrical 

Conductivity (EC) of Peat-lite
z
 and Whole Pine Tree

y
 Substrates for a Rooting 

Experiment. 

 

Substrate Initial 
Ficus 

benjamina 

Ligustrum 

japonicum 

‘Texanum’ 

Chrysanthemum 

×morifolium 

‘Dark Splendid 

Reagan’ 

Tagetes 

lucida 

 Substrate pH 

Perlite 100%  6.3 a
x
 6.6 a 6.4 b 6.5 a 6.7 a 

1:3 

peatmoss:perlite
  5.9 cde   6.4 ab   6.4 ab 6.4 a 6.4 a 

1:1 

peatmoss:perlite 
 6.1 b 6.5 a   6.4 ab 6.2 a 6.5 a 

3:1 

peatmoss:perlite 
 6.0 bcd   6.4 ab 6.3 b 6.4 a 6.5 a 

Peatmoss 100%  6.0 bc   6.5 ab   6.4 ab 6.4 a 6.4 a 

WPT
w
  5.8 f   6.5 ab 6.7 a 6.1 a 6.5 a 

3:1 WPT:Fine 

WPT 
 5.8 ef 6.1 b   6.4 ab 6.2 a 6.6 a 

1:1 WPT:Fine 

WPT 
 5.8 ef   6.3 ab 6.3 b 6.2 a 6.5 a 

1:3 WPT:Fine 

WPT 
 5.8 f 6.5 a   6.5 ab 6.4 a 6.5 a 

Fine WPT
v
  5.9 def   6.4 ab   6.6 ab 6.3 a 6.5 a 

 Substrate EC (dS∙m
–1

) 

Perlite 100% 0.11 b 0.13 a 0.09 a 0.05 a 0.05 a 

1:3 

peatmoss:perlite
 0.13 ab   0.08 ab 0.04 a 0.08 a 0.10 a 

1:1 

peatmoss:perlite 
0.17 ab   0.08 ab 0.07 a 0.12 a 0.05 a 

3:1 

peatmoss:perlite 
0.20 a     0.1 ab 0.05 a 0.05 a 0.06 a 
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Table 29 (continued). 

Substrate Initial 
Ficus 

benjamina 

Ligustrum 

japonicum 

‘Texanum’ 

Chrysanthemum 

×morifolium 

‘Dark Splendid 

Reagan’ 

Tagetes 

lucida 

 Substrate EC (dS∙m
–1

) 

Peatmoss 100% 0.19 a   0.08 ab 0.04 a 0.08 a 0.08 a 

WPT 0.17 ab 0.04 b 0.06 a 0.06 a 0.06 a 

3:1 WPT:Fine 

WPT 
0.16 ab   0.06 ab 0.06 a 0.07 a 0.06 a 

1:1 WPT:Fine 

WPT 
0.14 ab 0.05 b 0.06 a 0.07 a 0.05 a 

1:3 WPT:Fine 

WPT 
 0.16 ab 0.05 b 0.05 a 0.05 a 0.08 a 

Fine WPT  0.14 ab 0.05 b 0.04 a 0.06 a 0.04 a 
z
Peatmoss and perlite used alone (Peatmoss 100% and Perlite 100%, respectively) and in combination 

at three volumetric proportions (v:v). 
y
WPT and Fine WPT used alone and in combination at three volumetric proportions (v:v). 

x
Means followed by different letters within columns indicate significant difference at P < 0.05 using 

the Shaffer-Simulated method. 
w
WPT produced from 20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and 

hammermilled to pass a 0.95-cm screen.  
v
Fine WPT produced from WPT hammermilled to pass a 0.3-cm screen. 

 

Industrial hammermills are the preferred equipment for processing substrates 

from wood chips. The resulting substrates have adequate physical properties for 

greenhouse crop production, but substrate physical properties may vary due to differences 

in processing equipment and methods (Altland and Krause, 2012). In the current study, 

processing WPT into finer particle sizes led to improved substrate air space and container 

capacity, yet did not result in significant differences in root development. Current 

practices for producing WPT substrates need not be modified, but methods for improving 

nutrient availability in WPT substrates during propagation should be further evaluated.  

In a previous study, the author demonstrated amending WPT with peatmoss led to 

improved root development of stem cuttings. Peatmoss is commonly blended with perlite 
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for improved aeration and drainage for propagation applications. Perlite is a dusty 

material that can irritate eyes and lungs, and it also requires a significant amount of 

energy to produce (Evans and Gachukia, 2004; Ingram et al., 1993). Perlite and WPT 

have similar chemical and physical properties, thus WPT may be a viable substitute for 

perlite in substrates used for propagation. A thorough evaluation of nutrient inputs 

(starter and controlled-release fertilizers) and alternative amendments for seed and cutting 

propagation in wood-based substrates would be a valuable resource for producers. 

Commercially available substrate blends composed of wood-based materials are 

becoming more commonplace, thus producers would benefit from the development of 

best management practices for optimizing nutrient and irrigation in these products. 
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Table 30 

 

pH, Conductivity, and Mineral Nutrient Content (ppm) of Substrate Components Used in a Rooting Experiment. 

 

Substrate pH 

Conductivity 

(dS∙m
−1

) 

NH4 

-N 

NO3 

-N P K Ca Mg Fe Mn Zn Cu B S Na Al Mo 

Perlite 7.7 0.30 0.00 0.00 0.8 6.5 21 1 1.4 0.3 0.3 0.1 0.1 1 23 9.0 0 

Peatmoss 3.7 0.50 1.00 0.00 0.7 3.7 8 12 25.2 0.3 1.3 0.1 0.2 10 21 3.1 0 

WPT
z
 5.5 0.27 0.00 0.00 8.0 55.8 37 4 3.6 11.1 1.8 0.1 0.3 1 7 0.7 0 

FWPT
y
 5.4 0.34 0.00 0.00 7.1 72.1 21 7 6.9 14.0 2.7 0.1 0.2 2 7 1.2 0 

z
WPT produced from 20- to 25-cm diameter whole pine (Pinus taeda) trees harvested, chipped, and hammermilled to pass a 0.95-cm screen.  

y
Fine WPT produced from WPT hammermilled to pass a 0.3-cm screen. 
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CONCLUSIONS 

These studies were conducted to determine the suitability of whole pine tree 

(WPT) substrates for propagating ornamental crops. Chipped whole pine trees are readily 

available throughout the southeastern United States due to their use as an alternative 

energy source. Whole pine tree chips are processed through a hammermill to produce a 

material with suitable water holding capacity for use as a container substrate. Whole pine 

tree substrates have been extensively evaluated for greenhouse and nursery crop 

production, and have been identified as acceptable supplements or replacements for 

peatmoss and pine bark. Demonstrating the versatility of WPT substrates, from 

propagation to production, is essential to expanding their commercial availability and 

use. 

In the first study, stem cuttings of Chrysanthemum, Cupressocyparis, Euonymus, 

Evolvulus, Ligustrum, Persicaria, Rosa, and Salvia were set in WPT and pine bark 

substrates used alone or combined with equal parts peatmoss. Cuttings were maintained 

under intermittent mist until project termination. Rooting percentage was similar among 

substrates for each species. Root growth increased with the addition of peatmoss to WPT 

and pine bark for five of the eight species. Shoot growth was greatest for pine bark 

amended with peatmoss compared with the other substrates for all species. I 

demonstrated a variety of plant species could be rooted in WPT substrates, yet the 

addition of peatmoss or other organic component with greater nutrient retention 

properties may be required for optimum root development in WPT substrates. 

Reduced plant growth in wood-based substrates has been attributed to a variety of 

factors, including phytotoxity. In the second study, a phytotoxicity assessment of aged 
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and fresh WPT substrates was conducted using a Phytotoxkit and a seedling growth test. 

The Phytotoxkit is a standardized, sensitive, rapid, reproducible, and cost-effective 

procedure for determining the potential phytotoxicity of a solid substrate. Aged and fresh 

WPT, aged and fresh pine needles, peatmoss, and pine bark were evaluated using the 

Phytotoxkit. Overall, seed germination rate in fresh and aged WPT was similar to 

germination rate in peatmoss and pine bark. Seedling root growth was similar for aged 

WPT and peatmoss. Fresh pine needles had an inhibitory effect on seed germination and 

seedling growth. A seedling growth test was used to evaluate potential phytotoxicity of 

aged and fresh WPT, pine bark, and a peatmoss substrate under typical production 

conditions. Lettuce, oat, and tomato seed emergence rate was similar for aged WPT and 

the peatmoss substrate. Root development was greatest in the peatmoss substrate 

compared with pine bark and aged and fresh WPT. I demonstrated seeds of six biosensor 

plant species could be germinated and seedlings could be established in aged and fresh 

whole pine tree substrates. Differences in seed germination/emergence rate and seedling 

root length could not be attributed to phytotoxic compounds in the WPT substrates. 

Processing wood-based materials into finer particle sizes can result in improved 

substrate moisture retention, but how this may affect seedling and cutting root 

development is unknown. In the final study, the effect of WPT particle size on seedling 

and stem cutting root development was evaluated. Lettuce, oat, and tomato seedling 

development was evaluated in WPT, fine WPT, and two peatmoss substrates. Stem 

cuttings of Chrysanthemum, Ficus, Ligustrum, and Tagetes were evaluated in five WPT 

substrates with a range of particle sizes, along with peatmoss and perlite used alone or in 

combination at various proportions. Processing WPT into finer particle sizes resulted in 
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decreased air space and increased container capacity, but did not affect stem cutting or 

seedling root growth. In the stem cutting experiment, total root length and number of root 

tips was superior in substrates composed of 50% or more peatmoss compared with the 

substrates composed of WPT. Overall, root development increased with an increasing 

proportion of PM. I demonstrated WPT substrates can be used for germinating seeds and 

rooting stem cuttings, yet nutrient availability and retention properties in these substrates 

during propagation should be evaluated. 

Supplemental nitrogen applications are required during crop production to offset 

reduced nitrogen availability in wood-based substrates compared with peatmoss-based 

substrates, thus similar strategies may be required during propagation if high proportions 

of WPT are used. Perlite and WPT have similar chemical and physical properties, thus 

WPT may be a viable substitute for perlite in substrates used for propagation. Current 

practices for producing WPT substrates are acceptable for propagation, but methods for 

improving nutrient availability in WPT substrates during propagation should be further 

evaluated. A thorough evaluation of nutrient inputs (starter and controlled-release 

fertilizers) and alternative amendments for seed and cutting propagation in wood-based 

substrates would be a valuable resource for producers. 
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