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ABSTRACT 

 There is a shortage of literature regarding beluga (Delphinapterus leucas) vocal 

ontogeny, as presently, there has only been one published study on the vocal 

development of beluga calves, despite the value of ontogenetic studies for our 

understanding of sound-centered species. Here I offer the second longitudinal study of 

beluga vocal development. Using a calibrated digital hydrophone with a sampling rate of 

256 kHz, I studied the vocal progression of a male beluga calf in early life. From his first 

day, the calf produced broadband pulse trains with upper frequency limits extending past 

the study’s Nyquist frequency (128 kHz); higher than what was initially reported in 

studies limited by lower sampling rates. Pulse signals were the most common sound type 

in the calf’s vocal repertoire during his first year. Mixed calls were produced in month 

one but were rare overall and not regularly produced until the calf’s fifth month of life. 

Tonal production was also infrequent and not apparent until month four. Over the calf’s 

first month of life, pulse repetition rate, source level, and third quartile frequencies of the 

calf’s pulse trains increased significantly. First and third quartile, center, and peak 

frequencies increased significantly over the first year, as did pulse repetition rate and call 

duration. In his second year of life, the calf developed a contact call that was most similar 

to his mother’s, analogous to the contact call acquisition of other beluga calves. Parallel 

findings from this and previous studies imply species-specific trends in vocal 

development. 
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CHAPTER I - INTRODUCTION 

The beluga vocal repertoire 

Beluga whales (Delphinapterus leucas) are considered one of the most vociferous 

cetacean species. Yet despite their known vocal nature, there is a dearth of literature 

across many areas of information pertaining to the beluga communication system. 

Descriptive studies of beluga signals encompass much of our current understanding of 

beluga communication (e.g., Belikov & Bel’kovich, 2006, 2007, 2008; Chmelnitsky & 

Ferguson, 2012; Fish & Mowbray, 1962; Garland, Castellote, & Berchok, 2015; Karlsen, 

Bisther, Lydersen, Haug, & Kovacs, 2002; Panova, Belikov, Agafonov, & Bel’kovich, 

2012; Schevill & Lawrence, 1949; Sjare & Smith, 1986a). These studies, however, tend 

to lack information regarding the functional significance of the calls they describe.  

Beluga emissions fall along a continuous spectrum of tonal and pulse sounds 

although the beluga vocal repertoire can generally be classified into several primary 

sound categories. These include echolocation clicks, or the sonar signals belugas use to 

navigate their environment and capture prey, and the more communicative signals: 1) 

tonal sounds, 2) pulse sounds, and 3) mixed calls. Tonal sounds (often referred to as 

whistles) are narrowband, frequency modulated signals that are generally used in social 

contexts. Sjare and Smith (1986b) noted that beluga tonal sounds were more common in 

contexts of rest, travel, or social interaction as opposed to situations of alarm. Some tonal 

sound types are believed to be used for short distance communication while others are 

believed to be used over longer distances (Belikov & Bel’kovich, 2006; Panova et al., 

2012). Karlsen et al. (2002) found instances of both whistles and pulse calls in contexts 

of travel or social interaction. Pulse sounds are generally comprised of broadband packets 

of non-echolocation clicks or pulses that are often classified based on pulse repetition 
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rate, or number of pulses per second (e.g., Belikov & Bel’kovich, 2008; Chmelnitsky & 

Ferguson, 2012; Sjare & Smith, 1986b). Mixed calls, sometimes referred to as 

biphonations or combined calls, are sounds that commonly contain overlapped pulse and 

tonal components. However, some mixed calls may also be characterized by other 

combinations of overlapping components such as two pulse sounds of varying repetition 

rate produced simultaneously (Karlsen et al., 2002; Vergara, 2011; Vergara, Michaud, & 

Barrett-Lennard, 2010).  

It has been established that some distinctive broadband long-duration pulsed calls 

are beluga contact calls, or signals used to maintain or restore contact between 

conspecifics, including related individuals like mother-calf dyads (Van Parijs, Lydersen 

& Kovacs, 2003; Vergara et al 2010). Contact calls are perhaps the most well-studied 

contextually specific call in the beluga vocal repertoire as these calls appear to serve key 

biological functions (Mishima et al., 2015; Morisaka, Yoshida, Akune, Mishima, & 

Nishimoto, 2013; Panova, Belikov, Agafonov, & Bel’kovic, 2017; Vergara & Mikus, 

2018). Simple contact calls are comprised only of broadband pulses with no additional 

overlapping component (Vergara & Mikus, 2018) and have been described for captive 

beluga social groups (Mishima et al., 2015; Morisaka et al., 2013) and for a wild mother-

calf pair (Van Parijs et al., 2003). Additionally, Van Parijs et al. (2003) described a mixed 

contact call that contained both pulse and tonal components. These mixed contact calls 

are referred to as complex contact calls (Vergara & Mikus, 2018) and again, have been 

described for both captive (Panova et al., 2017) and wild belugas (Vergara & Mikus, 

2018).  

There is a growing body of literature evaluating the potential for individual 

specificity embedded in contact calls through voice cues (Mishima et al., 2015; Morisaka 
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et al., 2013) or vocal signatures (Panova et al., 2017; Vergara & Mikus, 2018). Examples 

of individuality related to voice cues are evident in the subtle distinctions of simple 

contact calls (i.e., pulse repetition rate, Mishima et al., 2015; Morisaka et al., 2013), 

likely a result of morphological differences between whales producing these sounds 

(Boughman & Moss, 2003; Vergara & Mikus, 2018). The overlapping component of 

complex contact calls is a more obvious individual specifier and believed to be a vocal 

signature that may encode identity individually or shared with closely related animals 

(Vergara & Mikus, 2018).  

What can ontogenetic studies tell us? 

To date, there is only a single ontogenetic study describing the development of the 

beluga vocal repertoire (Vergara & Barrett-Lennard, 2008). Vergara and Barrett-Lennard 

(2008) studied the vocal development of a male beluga calf (Tuvaq) throughout his first 

year of life, and opportunistically thereafter until the calf’s 32nd month. Findings 

generated from such seminal works are vital in establishing human understanding of 

cetacean communication systems and are often the base of knowledge for future research. 

For example, Vergara and Barrett-Lennard (2008) noted contextual cues associated with 

a call (type A) produced by the study’s focal mother, Aurora. Later, this call type was 

reviewed in greater detail (Vergara et al., 2010), and determined to be a contact call based 

on its use in contexts of isolation, birth, death, the presence of external stressors, and 

group reunions. Similar contact calls have been identified in wild populations during 

analogous contexts (Churchill River, Canada, Chmelnitsky & Ferguson, 2012; 

Storfjorden, Svalbard, Van Parijs et al., 2003; Nelson River and St. Lawrence Estuaries, 

Canada, Vergara et al., 2010).  
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Vergara and Barrett-Lennard’s (2008) contextual association of the type A call 

during their study of vocal ontogeny was fundamental in elucidating the function of this 

biologically critical call. Studies of vocal ontogeny are an excellent source of information 

regarding aspects of sound that are salient to the more verbose animal taxa. For example, 

it is likely that the vocal repertoires of neonates are initially comprised of sounds that are 

key to survival. Moreover, following the progression of sound production in young 

animals may illuminate a species’ ability to vocally learn. 

Vocal learning is a form of social learning by which animals’ vocal development 

is influenced by the surrounding auditory environment (Nottebohm, 1972), and has likely 

evolved in gregarious species with complex communication and environmental 

constraints that disallow the maintenance of visual contact over periods of time (Janik, 

2014). Theoretical framework regarding two key processes of vocal learning, vocal 

production and contextual learning, has been widely established in the literature 

(Boughman & Moss, 2003; Janik & Slater, 1997, 2000). Production learning is the 

process by which an individual modifies an aspect of their vocal repertoire based on 

sounds that are available in the acoustic environment (Janik & Slater, 2000). Production 

learning has been abundantly described in the human and bird literature (for review, see 

Boughman & Moss, 2003; Kroodsma & Baylis, 1982; Soha & Peters, 2015; Tyack, 

2016). In nonhuman mammals, it has been noted in African savannah elephants 

(Loxodonta africana  Poole, Tyack, Stoeger-Horwath, & Watwood, 2005), Indian 

elephants (Elephas maximus indicus; Holden, 2006), primate species (e.g., chimpanzees, 

Pan troglodytes, Crockford, Herbinger, Vigilant, & Boesch, 2004; orangutans, Pongo 

spp., Wich et al., 2009), pinnipeds (for review, see Reichmuth & Casey, 2014), bats (for 

review, see Knörnschild, 2014) and cetaceans. Evidence of production learning ascribed 
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to cetaceans includes the humpback whale song (Megaptera novaeangliae, Janik & 

Slater, 1997, 2000; Tyack, 2008; Tyack & Sayigh, 1997), spontaneous mimicry in 

belugas (Eaton, 1979; Ridgway, Carder, Jefferies, & Todd, 2012), incorporation of novel 

sounds in bottlenose dolphin (Tursiops truncatus) repertoires (e.g., Caldwell & Caldwell, 

1972; Reiss & McCowan, 1993; Richards, Wolz, & Herman, 1984), and cross dialect-

changes (Crance, Bowles, & Garver, 2014) and mimicry (Foote et al., 2006) in killer 

whale (Orcinus orca) calls. Vergara and Barrett-Lennard (2008) cautiously provided 

evidence of beluga production learning through Tuvaq’s adaptation of his father’s calls 

once his father was re-introduced to the social group. The authors could not entirely rule 

out genetic relatedness and maturational process in the acquisition of this novel call, 

however. 

The importance of production learning in vocal development is evident through 

the acquisition of vocal signatures in some young animals. For example, the acoustic 

environment seems to largely influence the development of signature whistles in 

bottlenose dolphin calves (e.g., Caldwell & Caldwell, 1979; Fripp et al., 2005; Miksis, 

Tyack, & Buck, 2002; Sayigh, 1992; Tyack & Sayigh, 1997; Tyack, 1997). Often, 

dolphin calves develop signature whistles that resemble other sounds in their 

environment (Bojanowski et al., 2000; Caldwell & Caldwell, 1979; Fripp et al., 2005; 

Miksis et al., 2002; Tyack, 1997; Sayigh, 1992; Tyack & Sayigh, 1997) as calves in 

managed-care have been known to model marking stimuli (e.g., whistles used by trainers 

to bridge a behavior prior to reinforcement, Miksis et al., 2002; Sayigh, 1992; Tyack, 

1997) or sounds produced by unrelated social group members (Caldwell & Caldwell, 

1979; Tyack & Sayigh, 1997). When other acoustic models are available in a dolphin 

calf’s environment, calves often incorporate that model over developing signature 
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whistles that are similar to their mothers (Fripp et al., 2005; Sayigh, 1992; Tyack, 1997). 

The inclusion of sounds from alternative stimuli or non-related conspecifics into a calf’s 

repertoire is a distinguishing factor in determining the influence of production learning on 

call development. 

Contextual learning involves learning to associate existing vocalizations with a 

particular function (Janik & Slater, 1997, 2000), and is somewhat difficult to study in 

underwater species as identifying the function of a sound requires a researcher’s ability to 

associate behaviors of a signaler and recipient during a sounds’ production. Several 

cetacean species have shown the propensity to use sounds contextually. For example, as 

reviewed above, belugas produce contact calls in separation contexts (Vergara et al., 

2010). Likewise, sperm whales (Physeter macroephalus) use codas (stereotyped click 

patterns) to maintain contact with conspecifics. (Schulz, Whitehead, Gero, & Rendell, 

2008; Watkins & Schevill, 1977). Bottlenose dolphins produce signature whistles in 

order to maintain group cohesion (Caldwell & Caldwell, 1965; Tyack, 1986; Janik & 

Slater, 1998), brays during foraging (Tursiops truncatus, King & Janik, 2015), pops when 

herding (Tursiops aduncus: Connor & Smolker, 1996; Vollmer, Hayek, Heithaus, & 

Connor, 2015), and thunks during mother-calf separations and/or discipline events 

(Tursiops truncatus: Ames et al., 2017; McCowan & Reiss, 1995a). While these are 

strong cases for cetacean ability to contextually use sound, there is still little information 

regarding how young cetaceans learn to pair species-specific sounds with an appropriate 

context. 

Vocal learning studies in more controlled settings offer some insight into the 

contextual learning process. For example, preliminary evidence of object/signal 

association in a beluga indicate that the species can be trained to understand the 
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relationship between context and sound (Murayama et al., 2012). Shapiro, Slater, and 

Janik (2004) demonstrated clear contextual learning in grey seals (Halichoerus grypus) 

by showing that two young animals could be trained to produce a call type in accordance 

with presented stimuli. Grey parrots (Psittacus erithacus) can also be trained to use novel 

sounds (e.g., human speech) referentially (for review, see Pepperberg, 2010). Training in 

experimental settings implies that animals are reinforced for correct effort, and thus may 

contextually learn through a reward system. It is unclear whether some type of social 

reward is present in natural interactions with conspecifics that may shape a signal’s 

contextual association for a young animal, especially in the aquatic setting. But, long-

term studies of vocal ontogeny in controlled environments where animals can be 

observed interacting present key opportunities to study these processes more in depth. 

Species-specific patterns of development 

Given that there is only one existing published study on beluga vocal 

development (Vergara and Barrett-Lennard, 2008), we know very little about species-

specific trends in vocal ontogeny and sound acquisition. Behaviorally, beluga calves 

follow similar trends in development, although there are individual differences between 

calves (Hill, 2009; Hill, Campbell, Dalton, & Osborn, 2013). It would be useful to 

determine if the original findings by Vergara and Barrett-Lennard (2008) indicate 

species-specific vocal ontogenesis by comparing sound acquisition and development of 

the study’s focal calf (Tuvaq) to the vocal development of additional beluga calves.  

Moreover, additional information is required in order to adequately assess contact 

call development in belugas. The ontogeny of Tuvaq’s complex contact call suggested 

that beluga calves develop contact calls that are similar to their mothers (Vergara and 

Barrett-Lennard, 2008). Tuvaq began to produce rudimentary versions of his mother’s A1 



 

8 

call in his fourth month of life, continually developing the call until it was fully 

incorporated into his repertoire in month 20. However, it is unknown whether all beluga 

calves begin to acquire complex contact calls in the first year of life and if all calves first 

develop contact calls that resemble the call types of their mothers. 

Belugas are highly social animals, with variation in movement and group 

membership in wild populations (Colbeck et al., 2013; O’Corry-Crowe, Suydam, 

Rosenberg, Frost, & Dizon, 1997). They may travel great distances between seasons, 

migrating to and from summering and wintering sites (e.g., Colbeck et al., 2013; Hobbs, 

Laidre, Mahony, & Eagleton, 2005; Suydam, Lowry, Frost, O’Corry-Crowe, & Pikok, 

2001). Site-fidelity has been observed across related whales that return to the same 

summering habitats for up to 20 years (O’Corry-Crowe et al. 2018). Related belugas 

appear to maintain close associations along migration routes and within summering areas 

(Colbeck et al., 2013; O’Corry-Crowe et al. 2018), and matrilineal units of females, 

calves, and older female offspring constitute the large summering herds (Palsbøll, Heide-

Jørgensen, & Bérubé, 2002; Smith, Hammill, & Martin, 1994). Periodically, individuals 

separate or rejoin social groups, creating some fluctuation in group composition 

(Alekseeva, Panova, & Bel’kovich, 2013; Bel’kovitch & Sh’ekotov 1993; Krasnova, 

Chernetsky, Zheludkova, & Bel’kovich, 2014), indicative of a fission-fusion society. 

Belugas are an aquatic species, which means that individuals must be able to 

communicate over great distances or when visual acuity is otherwise limited in order to 

facilitate reunions with kin. In the presence of other animals, it may be easy for important 

signals to get lost in noise (Janik, 2005). Consequently, belugas may develop some call 

types that allow them to maintain social bonds across large distances and identify kin 

among a number of conspecifics.  
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Beluga calves and anthropogenic noise 

Arguably a critical piece to our understanding of beluga vocal development 

concerns characteristics of calls that may be vital to calf survival; namely, changes in call 

parameters that may indicate when young belugas can compensate for noise in their 

environment. Beluga populations inhabit Arctic and sub-Arctic waters. Anthropogenic, or 

human-made, noise continues to increase in these environments due to shipping, seismic 

exploration, offshore drilling, military operations, and construction (Erbe, 1999; Erbe, 

Reichmuth, Cunninham, Lucke, & Dooling, 2015; Erbe & Farmer, 1998), and is a 

pervasive concern regarding the welfare of marine life that reside in or use affected 

habitats. Noise can alter animal behavior (for review, see Nowacek, Thorne, Johnston, & 

Tyack, 2007), impact animal physiology (e.g., Rolland et al., 2012), and interfere with 

sounds marine mammals use to forage, navigate and communicate (Clark et al., 2009). 

Thus, noise can have deleterious consequences for the acoustic systems of marine 

mammals, and specifically, vessel noise has been a target of interest in the cetacean 

literature due to the severe impact of vessel noise on these sound-centered species.  

Current study 

Studies of beluga vocal development can provide valuable insight regarding 

species-specific ontogenetic trends and the development of biologically critical 

vocalizations. We can determine similarities in sound acquisition, parameter changes, and 

contact call development through comparing the focal calves of different studies. 

Furthermore, we can glean insights into more pervasive issues affecting wild belugas, 

like the effects of noise on neonate calls. In addition, the original study on beluga vocal 

ontogeny (Vergara and Barrett-Lennard, 2008) was limited to the lower sampling rates of 

the equipment available at the time of the study. More recent investigations of vocal 



 

10 

development that are able to employ new technologies and subsequently, higher sampling 

rates, are thus necessary in order to explore the upper frequency limits of odontocete calf 

calls that may extend past predominant vessel noise frequency bands. 

The aim of the proposed study was to build on the current vocal ontogeny 

literature by further exploration of the above topics as they relate to beluga vocal 

development. Specifically, the current report sought to answer the following questions: 1) 

what can we infer regarding the beluga communication system through studying and 

comparing the vocal development of beluga calves? 2) What more can we understand 

regarding complex contact calls? 3) Finally, how are the calls of beluga neonates affected 

by noise? I sought to answer these questions by conducting the second long-term 

observational study of beluga vocal development, beginning prior to the birth of a calf 

and continuing through his first two years of life.  
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CHAPTER II - METHODOLOGY 

Subjects and Sampling 

The subjects of this study were three belugas housed at Oceanogràfic, a managed 

care facility in Valencia, Spain. The subjects included Kylu, a calf born at Oceanogràfic 

on November 15th, 2016, Kylu’s mother, Yulka, and father, Kairo. Yulka and Kairo are 

both wild-caught belugas of Russian origin, although it is unclear which populations as 

there are gaps in the known histories of these animals prior to arriving to Oceanogràfic in 

2003. Presently, Yulka is believed to be around 20 years of age and Kairo is believed to 

be in his mid-fifties. Kairo was separated from the calf until the eighth month of life 

when physical introductions of Kairo and Kylu began. 

 Data recorded for this study consisted of underwater hydrophone recordings (see 

hydrophone details below) paired with simultaneous behavioral observations. Pre-partum 

data were recorded from September 10th, 2016 to the calf’s birth on November 15th, 2016. 

Approximately 80 hours of data were recorded for this period.  First year of life 

recordings began on the day of the calf’s birth and continued until the calf’s first 

birthday, at which point recordings for the second year of life began. Special emphasis 

was placed on data collection during Kylu’s first month of life as this period of 

development is critical to the survival of beluga infants. As such, 79 hours of data were 

recorded during the calf’s first month of life. An additional 129 hours were recorded over 

the remaining 11 months, for a total of 208 hours over the first year of life. Roughly 54 

hours were recorded for the second year. See Figure 1 for a timeline of important dates 

related to the study. Complex contact call production in the pre-partum period and second 

year of life were included in this study, however the current study primarily focuses on 

sound production and development in the first year of Kylu’s life. The Institutional 
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Animal Care and Use Committee’s approval (The University of Southern Mississippi, 

protocol number: 16041402) and approval from the Animal Care and Welfare Committee 

(project reference OCE-9-16, OCE-14-18) relating to the application for use of animals at 

Oceanogràfic were obtained for the completion of this study. 

 

 Timeline of key study dates. 

Acoustic Recordings 

All sound analyses were conducted in Raven Pro 1.5, 64-bit version (Cornell Lab 

of Ornithology) using a Fourier Transform size of 1024 points, an overlap of 50%, 1024 

samples, and Hann window. Underwater recordings were obtained with calibrated digital 

hydrophones. An icListen HF (Ocean Sonics, Great Village, N.S., Canada) was the 

primary hydrophone deployed for the entirety of the study, sampling at a rate of 256 kHz 

with 24-bit resolution and sensitivity of -171 dBV re 1 µPa. During the course of the 

study, the icListen was deployed in a semi-permanent installation in the main beluga pool 

or in the reproduction pool, depending on the location of the calf. Figure 2 illustrates the 

dimensions of the beluga pools at Oceanogràfic with the semi-permanent installations 

9/10/16: 
Begin pre-partum data 
collection

11/15/16: 
Begin first year data 
collection

11/15/17: 
Begin second year data 
collection

6/23/17: 
Begin use 
of second 
hydrophone 

8/3/17:
End use 
of second 
hydrophone

9/4/18:
Begin use 
of second 
hydrophone

3/8/18:
Begin use 
of second 
hydrophone 

3/13/18:
End use 
of second 
hydrophone

20
16

20
18

6/26/17 & 6/27/17:
Begin physical 
introduction of Kylu and 
Kairo

20
17

20
19

11/14/18: 
End second year 
data collection

9/29/18 & 
10/2/18: 
Kylu’s medical 
isolations
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clearly marked. All pools in the habitat are five meters deep, except for the medical pool 

which is two meters deep. 

 A second calibrated digital hydrophone became available sporadically for use 

over the course of the study. Simultaneous deployment of a SoundTrap HF300 (Ocean 

Instruments, Auckland, New Zealand) occurred over several periods, allowing for more 

frequent localization of the vocalizing individuals. The SoundTrap was deployed at a 

sampling rate of 288 kHz with 16-bit resolution and a clip level of 172 dB re 1 µPa. 

During these periods of simultaneous deployment, the icListen was deployed in the main 

beluga pool while the SoundTrap was deployed in the reproduction pool. The timeline 

illustrated in Figure 1 includes the periods during the calf’s first year of life when the two 

hydrophones were deployed together.  
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 Oceanogràfic's beluga habitat pools. 

The red “X” marks the semi-permanent hydrophone installations.  The remaining features include: A) The poolside observation areas, 

B) the trainer’s office, C) the medical pool, D) the reproduction pool, E) the main beluga pool, F) the public viewing area, G) training 

platforms (jet floats), and H) decorative rock features in the pool. Values in red are pool dimensions in meters. 

A 
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Behavioral Observations 

All behavioral observations were recorded in Timestamped Field Notes, an 

iPhone application that applies the time in hours, minutes, and seconds to an entered 

observation. The time codes for both digital hydrophones were synced with the time 

displayed by the iPhone prior to deploying the hydrophones so that the time stamps of the 

underwater recordings and the behavioral observations would be the same. Detailed 

behavioral observations could be generally grouped into one the following categories: 

1) Animal orientation and distance relevant to the position of the 

hydrophone(s). Pool position and orientation of the belugas were consistently 

noted so that vocalizing individuals could later be identified. Distance of an 

individual from the hydrophone was also included when deemed necessary 

(e.g., when an animal was at source level distance, or 1 m, from the 

hydrophone). 

2) Vocal information. This included observation of bubble stream emission 

from the calf and signaler identification when calls could be heard from the 

surface and localized to a beluga. 

3) Separations. Both voluntary and involuntary separations were recorded. 

Voluntary separations occurred when either the calf or the mother left the 

dyad for a period of time. Involuntary separations included the gating, or 

removal of an individual to another pool, including the medical pool for 

medical procedures, or the temporary restraint of a beluga by animal care 

staff. Temporary restraint by trainers occurred frequently during Kylu’s early 

life as he was hand-raised, requiring several daily feedings during which he 

needed to be held. When any type of separation occurred, the beluga(s) that 
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was being separated or that was responsible for the separation was recorded in 

addition to the duration of the separation and the animal responsible for the 

reunion if the separation was voluntary. 

4) On session. When any of the animals were in training sessions, the belugas 

involved and start, and end time of the session were recorded. 

5) Play. All instances and types of play were recorded for both Kylu and Yulka 

(Kairo was not especially active or playful during the study given his age). 

This included: 

a. Object play- when a beluga interacted with a toy in the pool or pool 

feature (e.g., training platforms, gates, hydrophone installations). 

b. Bubble play- when a beluga could be seen visible producing bubbles 

and interacting with their own or another beluga’s bubbles. 

c.  Motor play- when a beluga manipulated an aspect of its body. This 

manifested itself most commonly in contraction/release movements in 

the melon, mouth movements, bouncing the head up and down rapidly 

in a nodding motion, and breeching/porpoising. 

d. Water play- when a beluga “spit” or splashed water. 

e. Trainer play- when a beluga was in play or enrichment session with 

trainers. 

f. Social play- when belugas were playing together or when Kylu would 

interact with harbor seals (Phoca vitulina) that were temporarily 

housed in the beluga habitat for some of Kylu’s development. 

g. Solitary play - when Kylu was playing on his own.  
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6) Aggression/Aggravation. Obvious aggressive behaviors included jaw 

clapping, head jerking, open mouths, and chase/flee events. This also included 

aggressive instances of Yulka towards the trainers when the calf was first 

born, and the trainers attempted to separate the dyad for medical procedures or 

feeding sessions in addition to instances of calf discipline or herding by 

Yulka. Also, there were occasions when Yulka or the dyad would swim with 

high energy in stereotypical patterns. This would usually occur when the 

habitat grew noisy or sometimes prior to or after training sessions.  

7) Tactile. When a member of the dyad rubbed, bumped, or maintained physical 

contact with a body part of the other beluga. This also included affiliative 

mouthing. 

8) Sexual. Occasionally as Kylu matured, an erection could be seen while he 

swam with and/or was rubbing on his mother. 

9) Nursing. This included changes in beluga swim positions or swim speed as 

the calf prepared to nurse, Kylu’s “bumping” (Recchia, 1994) of Yulka’s 

mammary region, and actual latched on behavior. 

10) Swim position. These positions included: 

a. Mother/calf position- when the calf would swim directly under the 

mother’s peduncle. 

b. Echelon position- when the calf would swim in the mother’s slip 

stream above and to the side of her dorsal ridge. 

c. Pair swim- in which the calf and mother were swimming together in an 

unspecified position, usually side by side. 
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d. Pair swim with contact- in which the mother and calf swam together 

while keeping some form of tactile contact. 

Swim position also included periods of time when the dyad was swimming in 

stereotypical swim patterns or stationary together at the surface of the pool. 

Video recordings were collected continuously in the pre-partum period and 

opportunistically until February 14th, 2017 at which point filming stopped as observations 

entered in the Timestamped Field Notes application proved to be more useful than 

referencing video recordings. However, video recording was re-introduced during 

physical introductions of the calf to Kairo on June 26th and 27th, 2017 as these sessions 

were marked by a flurry of activity in which detailed observations were difficult to 

obtain. All videos were recorded with a Canon Vixia HF R700, except for the medical 

isolations in Kylu’s 23rd month of life (discussed further below) during which an iPhone 

8 camera was used to record video. Again, this was due to increased activity of the 

whales that was better captured on video instead of observational notes. When video 

recordings were referenced in the study, a time stamp was applied to the video and linked 

to the corresponding time in the acoustic recordings. 

Localization of vocalizing individuals 

Bubble stream methodology was employed during the calf’s early life when 

bubble streams often coincided with simultaneous sound production. This method has 

been consistently employed in studies of vocal development in young odontocetes 

(Bojanowski, Veit, & Todt, 2000; Bowles, Grebner, Musser, Nash, & Crance, 2015; 

Favaro, Gnone, and Pessani, 2013; Fripp & Tyack, 2008; Gnone & Moriconi, 2010; 

Hooper, Reiss, Carter, & McCowan, 2006; Killebrew, Mercado, Herman, & Pack, 2001; 

McBride & Kritzler, 1951; McCowan & Reiss, 1995; Mello & Amundin, 2005; Miksis et 
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al., 2002; Morisaka, Shinoharam & Taki, 2005a, b; Reiss, 1988; Vergara & Barrett-

Lennard, 2008) as calves seem to lack the musculature or motor ability to stop air flow 

from the vestibular air sacs by sealing the blowhole during underwater sound production. 

Bubble stream methodology was the only method employed in the first month of life. 

Additional methods for localizing calf calls after the first month and all adult calls were 

used opportunistically. For calf call localization, these methods became increasingly 

important as the calf aged, and bubble stream methodology became less applicable due to 

a decrease in bubble stream emission concurrently with the calf’s call production over 

time. These methods included: 

1) Calf or adult isolation. 

2)  Calf calls produced during periods when adults were participating in training 

sessions with their melons above the water surface. The melon is the structure 

through which odontocetes are believed to direct sound (e.g., Cranford, 2000; 

Cranford, Amundin, and Norris, 1996; Madsen, Wisniewska, & Beedholm, 

2010; Madsen, Lammers, Wisniewska, & Beedholm, 2013), and therefore if a 

beluga’s melon was not in the water, underwater sound production could not 

be associated with that beluga.  

3) Underwater calls produced by the calf or adults that were audible from the 

surface during observations. This was often the case with Kairo’s 

vocalizations and with Yulka’s contact call production as these calls were 

often quite loud. 

4) Calls produced at the surface by a beluga. The belugas would often open their 

blowholes when producing sounds at the surface with their melons either in or 

out of the water. Often when the melon was in the water during production of 
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sounds at the surface, the sound could be heard clearly at the surface while 

still appearing with high acoustic energy (i.e., dark coloration indicating the 

“loudness” of a sound) on spectrograms of the underwater recordings.  

5) Comparisons of the acoustic energy of the calls on spectrograms if the 

animals’ positions in the pool were known. This could easily be done when 

both hydrophones were deployed, however it was also possible during single 

hydrophone deployment given the size of the beluga habitat. For example, if a 

beluga vocalized while swimming in the main beluga pool, this sound would 

lose much of its intensity before being recorded by the hydrophone deployed 

in the reproduction pool and vice versa. Moreover, if a beluga produced a call 

that could be positively attributed to them through one of the other methods 

listed here, and additional calls of similar visible energy appeared on the 

spectrogram shortly prior to or shortly after the call with the positive 

identification, it could be reasonably assumed that the identified beluga also 

produced the additional sounds if there were no other animals in near 

proximity. 

6) Comparisons of call acoustic energy on spectrograms if animals were calling 

together and at least two of the animals’ pool positions were known. Similar 

to the method listed above, if calls could be positively attributed to belugas 

through the distance of the animals from the hydrophone or through another 

method listed here, and animals were continually exchanging vocals (i.e., one 

animal would call and another would respond shortly thereafter), it could be 

reasonably assumed that calls of similar energy belonged to the same animal 

for the duration of the vocal exchange. For example, if Yulka and Kylu could 
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be heard calling to each other from my observation position at the side of the 

pool, calls within the vocal exchange that were of similar energy to calls that 

could be attributed to either Yulka or Kylu were believed to also belong to the 

same animal. This method was often employed during mother-calf separations 

when all three animals would continually call (Kairo usually from the other 

pool).  

All call information was time stamped on the Timestamped Field Notes 

application (see above) and synced to the underwater recordings for signal processing and 

analyses (e.g., if a note reflected a calf bubble stream or an audible beluga call at a given 

time, a call recorded by the hydrophone at the same time was attributed to that beluga). 

Calf sound classification catalog 

All calls positively identified as emitted by the calf were included in a sound 

classification catalog used to determine sound acquisition (i.e., first recorded instances of 

sounds) and proportions of sound emission in the calf’s vocal repertoire. All calf calls 

were classified based on general sound categories known to be produced by belugas and 

other delphinoid species, i.e., tonal, pulse (including burst pulses, pulse tones, noisy calls, 

and pulse trains), mixed pulse, and mixed calls. It should be noted that mixed pulse calls 

are considered mixed calls, given that both sound types are biphonations with 

overlapping elements. For clarity, mixed pulses will be treated as their own category in 

this study. Likewise, pulse trains are also pulse sounds, but given the depth of analysis 

and discussion of this call type in the current study, they will be described separately of 

other pulse sounds. 

 Calls were further classified into 14 subcategories of the five general categories 

based on variations in sound types within each general classification. Subcategories were 
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created based on the visual and auditory characteristics of sounds in the recordings, and 

new subcategories were created and defined if Kylu produced a call that could not be 

classified as an already occurring subcategory. See Table 1 for operational definitions of 

sound categories and subcategories. Sound acquisition was investigated through the calf’s 

first emission of each sound subcategory, but the calf’s proportional emission of sound is 

based on the five general categories. 

Table 1 

Operational definitions of calf sound categories and subcategories 

 

 
 
 
 
 
 
 
 
 

CATEGORY SUBCATEGORY DEFINITION 

Pulse  

Noisy Buzz-like sounds that have 
undefinable characteristics 
and no clearly visible 
pulses so that pulse 
repetition rate cannot be 
assessed 

Burst pulse Pulse packet with 100-1000 
pulses per second 

Pulse tone Aurally tonal burst pulse 
sound with clear harmonic 
structure, or sideband 
intervals (SBI, Watkins, 
1968) that indicates a pulse 
repetition rate of 1000-
4000 pulses per second 

Pulse Trains A series of pulses produced 
with definable pulse 
repetition rate <100 pulses 
per second 
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Table 1 (continued) 

 

Complex contact call classification 

Beluga contact call identification is straightforward as these calls are distinctive, 

pulsed, highly stereotyped, long in duration, broadband, and produced during contexts of 

separation (Vergara and Lance Barret-Lennard, 2008; Vergara et al., 2010; Vergara and 

Mixed Pulse 

Mixed pulse trains Overlapping pulse trains 
that have two different 
pulse repetition rates 

Pulse train with pulse tone or 
burst pulse 

Pulse train overlapped by 
pulse sound with high 
pulse repetition rate; burst 
pulses in this capacity had 
>200 pulses per second 

Pulse train with noisy Pulse train overlapped by 
pulse sound with 
undefinable characteristics 

Burst pulse or noisy with 
pulse tone 

Pulse tone overlapping an 
additional pulse sound 

Mixed Call 

Pulse tone with tonal 
component 

A pulse tone overlapped 
by a tonal sound 

Pulse train with tonal 
component 

A pulse train overlapped 
by a tonal sound  

Burst pulse or noisy with 
tonal component 

Additional pulse call types 
overlapped by a tonal 
sound 

Tonal 

Whistles Narrowband, frequency 
modulated tonal sounds 
with clear contour and 
harmonic structure; 
fundamental frequency 
and harmonic integer 
interval were often >4 kHz 

Tonal elements Frequency modulated 
tonal sounds that were less 
clear in contour shape and 
were often wider 
bandwidth than whistles 
(~1-3 kHz) 

Abbreviated tonal sweep 
series (ATSS) 

A series of truncated tonal 
sounds (~6-11 ms) with 
upsweep contours 



 

24 

Mikus, 2018).  Contact calls were classified through visual and aural inspection of 

spectrograms, a technique that has been used in other studies of beluga contact calls (e.g., 

Panova et al., 2017; Vergara & Barrett-Lennard, 2008; Vergara et al., 2010; Vergara and 

Mikus, 2018) and widely accepted as a reliable method in classifying the sounds of 

cetaceans (Deecke, Ford, & Spong, 1999; Janik, 1999a; Sayigh, Esch, Wells, & Janik, 

2007).  

A contact call was considered to be a specific type if at least five emissions of the 

call across two different recording days occurred. Contact call types were further 

classified into subtypes if enough variation between calls within a broad call type existed 

so that subtypes were distinguishable, but still more similar to each other versus calls in 

different call types. A call was considered a subtype of a contact call if the variation 

appeared to be highly stereotyped with at least five emissions across two different 

recording days as well.   

Vocalization exclusion criteria 

Calls were excluded from the study if:  

1) Any ambiguity existed in localizing calling belugas. For example, as the calf 

aged calf calls became more difficult to identify as they increased in similarity 

to the adult repertoires. Thus, if the dyad was in close proximity during call 

production, these calls were excluded. 

2) There was too much overlap with other calls so that the call could not be 

easily classified. 

3) Calls had a low signal to noise ratio, and thus were too faint to see clearly 

defined elements.  
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4) The calls were produced by a beluga during a training session (i.e., the beluga 

was asked to produce a call) or at the surface with the animal’s melon out of 

the water as these calls were often too faint and given their production in air, it 

was believed that these calls would not be comparable to underwater sounds 

with complete accuracy. 

Finally, chirps, or short duration tonal sounds (< 0.2 s, Recchia, 1994), were also 

excluded from this study as these calls were difficult to localize to an individual animal. 

Parameter extraction criteria 

 Calls that did not meet any of the above criteria for exclusion and had a high 

signal to noise ratio with clear, definable elements were further analyzed through 

parameter extraction. Parameters extracted for each sound category or call type and their 

operational definitions are listed in Table 2. Pulse repetition rate (PRR) was determined 

as follows: 1) counting all pulses in a sound and dividing by the delta time of the sound 

when pulses were so few they could easily be counted, or  2) when pulse repetition rate 

was visibly high on the spectrogram, 10 pulses from the center of the sound were 

highlighted in Raven, divided by their delta time and used as a measure of center PRR. 

When PRR was so high (e.g., for burst pulses or pulse tones) that individual pulses were 

not readily apparent, PRR was measured from sideband intervals (Watkins, 1968). 

Parameters of acoustic energy distribution were derived from the power spectrum of the 

sound in Raven. The upper frequency limit of the noise band produced by the pool 

filtration system was most often around 2 kHz. Thus, peak frequencies that were less than 

or equal to 2 kHz were discarded and the second peak in the power spectrum of the sound 

was extracted instead. Other measures of acoustic energy distribution (i.e., center, first 

and third quartiles) were integrated between 500 Hz and 128 kHz. The minimum 
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frequency of calls was limited to 500 Hz to avoid including excess noise in the energy 

distribution of the call. Given that the true minimum frequency of some of the calf’s calls 

was below 500 Hz, especially in early life, this parameter was ultimately discarded from 

analyses of calf calls. The maximum frequency parameter was also excluded from 

analyses as the upper frequency limit of an overwhelming majority of the calf’s calls 

were above the Nyquist frequency of the recording system. Subsequently, precise delta 

frequency was discarded from analyses, although it was clear that the delta frequency of 

the adult contact calls and the calf’s pulse calls encompassed the bandwidth of the 

recording system. Analyses of contact calls also excluded minimum, maximum, and delta 

frequencies.  

Finally, received levels of Kylu’s pulse trains produced in his first month of life at 

known distances and orientation of Kylu to the hydrophone were integrated from 500 Hz 

to 100 kHz and used to calculate apparent source levels of Kylu’s calls using cylindrical 

spreading to approximate transmission loss (Vergara, Wood, Ames, Mikus, and Michaud, 

in prep.). These apparent source levels were used by the current study to analyze the 

change in source level of Kylu’s pulse trains over his first month. 

Table 2 

Operational definitions of parameters with sounds for which they were extracted 

PARAMETER DEFINITION 
BURST 

PULSE/PULSE 
TRAINS 

MIXED 
CALLS 

Minimum 
Frequency 

The lowest frequency of a sound 
  

Maximum 
Frequency 

The highest frequency of a sound 
  

Delta Frequency 

The frequency range of a sound 
(i.e., the differences between the 
minimum and maximum 
frequencies)   
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Table 2 (continued) 

First Quartile 
Frequency 

Frequency of the 25th percentile 
of the acoustic energy distribution  * * 

Center Frequency Frequency of the 50th percentile 
of the acoustic energy distribution  * * 

Third Quartile 
Frequency 

Frequency of the 75th percentile 
of the acoustic energy distribution  * * 

Peak Frequency The peak energy of a sound in the 
power spectrum * * 

Delta Time Sound duration (s) * * 
Pulse Repetition 
Rate (PRR) 

The number of pulses per second * * 

Dominant Tonal 
Frequency 

Harmonic of a tonal sound 
containing the peak energy   

* 

Dominant Tonal 
Frequency 
Beginning 

Beginning frequency of the 
dominant tonal element 

 
* 

Dominant Tonal 
Frequency End 

End frequency of the dominant 
tonal element  

* 

Fundamental 
Frequency 

First harmonic of a tonal sound; if 
the first harmonic also contained 
the peak energy of the tonal 
sound, the fundamental and 
dominant tonal frequency were 
considered the same  

* 

Inflection Points 

The point in a tonal sound in 
which the slope of the sound 
changes direction (i.e., increasing 
to decreasing or vice versa)  

* 

Noisy Tonal Band 

The tonal element within type Y 
calls characterized by wider 
bandwidth than pure tonal or 
pulse tone components of mixed 
calls  

* 

 

Note: Sounds less common in the calf’s repertoire are not listed here. 

Statistical analyses 

Linear regression analyses of calf call parameter changes over the first month and 

first year of life were conducted in Microsoft Excel version 16.20. Parameters included in 

regression analyses varied for each sound category analyzed (Table 3). Each day of 

recording sessions was treated as a single event. A mean for each event (i.e., each day of 
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life) was generated for each parameter included in each of the sound categories. These 

means per day were then used in the regression analyses as individual data points. The 

linear regression for PRR included the repetition rate of pulse trains and burst pulses. A 

linear regression analysis was also run on the apparent source levels of Kylu’s calls, 

estimated for the recent study completed by Vergara and colleagues (in prep.).  

 Coefficients of variation (CV) were calculated for the acoustic energy distribution 

parameters of Kylu’s pulse trains in addition to the dominant tonal frequency of the type 

Y2 calls (defined in Complex contact call development in the results section). For 

parameters of acoustic energy distribution, CVs were calculated over the calf’s first year 

of life, however, only months that had a minimum of 11 pulse trains extracted for 

parameters were included. In order to compare the end of the first year of life to previous 

months, the 11th and 12th months were combined into a period titled “End”. 

Discriminant function analyses (DFA) were completed in SPSS version 21 for the 

statistical classification of complex contact calls analyzed here. For comparison of the 

adult complex contact calls, 50 calls were randomly selected for each adult from the first 

month of life. Parameters that were included in complex contact call DFAs are also listed 

in Table 3.  The number of the inflection points of mixed call tonal components were 

considered a discrete variable, and as such, were not included in the listed analyses. 

Instead, inflection points are reported briefly below (see Complex contact call 

development) as median values. 
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Table 3  

Parameters included for each analysis 

Parameter 

Pulse Train 
& Burst 

Pulse 
Regression 

Mixed 
Call 

Regression 

Type Y 
DFAs 

Y1/K1 
DFA 

Type Y/K1 
DFA 

First 
Quartile 
Frequency 

* * * * * 

Center 
Frequency 

* * * * * 

Third 
Quartile 
Frequency 

* * * * * 

Peak 
Frequency 

* * * * * 

Delta Time * * * * * 
Pulse 
Repetition 
Rate (PRR) 

* * * * * 

Dominant 
Tonal 
Frequency  

* * * * 

Dominant 
Tonal 
Frequency 
Beginning  

* * * * 

Dominant 
Tonal 
Frequency 
End  

* * * * 

Fundamental 
Frequency  

* * * * 

Noisy Tonal 
Band  

 
* 
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CHAPTER III  - RESULTS 

Sound acquisition and use 

A total of 2,014 calf calls were included in the calf’s sound classification catalog. 

Figure 3 shows proportional use of each sound category in the calf’s recorded repertoire 

within each month of life. As expected, the calf began to produce low pulse repetition 

rate (PRR), broadband pulse trains within a few hours of his birth (Figure 4). The upper 

frequency limits of these calls reached the Nyquist frequency (128 kHz) on this first day 

of life. Pulse trains comprised the majority of the calf’s repertoire over the first month of 

life. Pulse calls (i.e., burst pulses, pulse tones, noisy calls, and pulse trains) were the most 

commonly recorded category over the first year. 

 

 Percentage of use for each general sound category in Kylu’s repertoire per 

month. 
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 Pulse trains extracted from Kylu’s first month of life. 

The three pulse trains on the left are a series from the day of Kylu’s birth. The three pulse trains on the right are a series from Kylu’s 

28th day of life. Note the extension of the upper frequency limits of Kylu’s day one pulse trains past 128 kHz. Spectrogram parameters: 

FFT 1024, Overlap 50%, 1024 Samples, Hann Window. 

A few additional sound subcategories began to appear in the calf’s recorded 

repertoire in the days following his birth. Noisy calls (Figure 5) were first recorded on the 

calf’s third day of life and appeared regularly in the calf’s recorded repertoire until the 

ninth month. Two mixed calls were recorded on the calf’s sixth day of life. These calls 

were characterized by low pulse repetition rate pulse trains overlapped by a tonal element 

at the end of the train that trailed off independent of continued pulse production (Figure 

6). An additional mixed call in which the tonal element was embedded within the pulse 

train appeared on the calf’s 19th day of life (Figure 6). These mixed calls were 

unstereotyped and not akin to the mixed calls produced by adult belugas. Mixed calls that 

appeared adult-like in structure (i.e., clearly prominent overlapping pulse and tonal 

elements) appeared in the calf’s fifth month of life at which point the calf began to 

produce these calls regularly (Figure 6). Mixed pulse calls with overlapping pulse tones 
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appeared in the second and third months of life but were also not prominently produced 

until the fifth month of life (Figure 7). 

The 26th day of life was marked by the first recordings of multiple mixed pulse 

and pulse sound subcategories produced by the calf. First emissions of pulse tones 

(Figure 5) and mixed pulse calls, including mixed pulse trains and pulse trains with either 

a 1) overlapping noisy component, 2) overlapping pulse tone, or 3) burst pulse with high 

pulse repetition rate (PRR) resulting in a visible harmonic structure, or side band intervals 

(Figure 7) occurred on this day. Burst pulses independent of overlap by pulse train 

appeared towards the end of the calf’s third month of life (82nd day) (Figure 5). 

Finally, Kylu began to produce tonal sounds (Figure 8) on their own, independent 

of pulse components, during his fourth month of life (94th day). These tonal sounds were 

similar to whistles produced by adult belugas, but they did not appear to become 

stereotyped over Kylu’s first year as he produced these sounds infrequently. During his 

first year of life, Kylu also produced abbreviated tonal sweep series (ATSS) (Figure 8), 

but this subcategory did not appear in the recordings until his eighth month of life (221st 

day) and overall production of this sound was rare as well. All tonal sounds comprised 

only 2.1% of total calls in the sound classification catalog 
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 Kylu’s early pulse sounds (excluding pulse trains). 

The noisy call was produced during Kylu’s first month, the pulse tone was produced during the second, and the burst pulses were 

produced during the third month of life. Spectrogram parameters of the enlarged boxes above the noisy (1) and burst pulses (2): FFT 

4096, Overlap 50%, 4096 Samples, Hann Window. Note the clear sideband intervals in box 2. Spectrogram parameters: FFT 1024, 

Overlap 50%, 1024 Samples, Hann Window. 
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 Kylu’s mixed calls. 

Note the tonal element at the end of the day 6 mixed call and the tonal element embedded in the day 19 mixed call. Spectrogram 

parameters: FFT 1024, Overlap 50%, 1024 Samples, Hann Window. 
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 Kylu’s mixed pulse calls. 

1) Mixed pulse train with a high frequency (HF) and low frequency (LF) component. The high frequency component has a higher 

PRR. 2) Pulse train with overlapping pulse tone. 3) Noisy with overlapping pulse tone. 4) Burst pulse overlapped by pulse train. The 

pulse train is low frequency (<10 kHz) and can be audibly deciphered from the broadband burst pulse. 5) Three individual pulses 

overlapped by a burst pulse with visible sideband intervals. 6) Pulse train with overlapping noisy component. Spectrogram parameters: 

FFT 1024, Overlap 50%, 1024 Samples, Hann Window. 
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 Kylu’s tonal sounds. 

The whistle was produced during the sixth month and the ATSS was produced during the eighth month of life. The abbreviated tonal 

sweep series (ATSS) is overlapped by a jaw clap presumably produced by one of the adults. Spectrogram parameters: FFT 1024, 

Overlap 50%, 1024 Samples, Hann Window. 

Burst pulse and mixed call development 

Of the sound subcategories, pulse trains, burst pulses, and mixed calls (pulse 

trains or burst pulse sounds with overlapping tonal element) were the only sound types 

that met inclusion criteria for parameter extraction frequently enough to warrant analyses 

of changes in these sounds over time. All other sound subcategories were too rare. A total 

number of 64 burst pulses and 29 mixed calls met inclusion criteria for parameter 

extraction and subsequent linear regression analyses. Age was not a significant predictor 

for any parameter changes related to mixed calls over the first year of life. However, all 

parameters of acoustic energy distribution (i.e., peak, first and third quartile, and center 

frequencies) for burst pulses significantly increased over the first year. The PRR of burst 
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pulses was combined with analysis of this parameter in pulse trains below. See Table 4 

for p-values and descriptive and regression statistics for burst pulses and mixed calls over 

the first year of life.  

Table 4 

P-values of linear regression analyses and descriptive statistics for the calf’s burst pulses 

and mixed calls over the first year of life  

CALL TYPE PARAMETER Mean SD R2 p-value 
Burst pulse First Quartile Frequency 18.50 21.56 0.35 <.001* 

Center Frequency 43.09 34.02 0.24 <.001* 

Third Quartile Frequency 28.87 28.00 0.20 <.001* 

Peak Frequency 19.94 25.04 0.34 <.001* 

Delta Time (s) 1.06 0.56 0.19 0.21 

PRR 420.63 209.48 
  

Mixed call First Quartile Frequency 41.17 19.79 0.05 0.45 

Center Frequency 52.21 22.29 0.06 0.39 

Third Quartile Frequency 70.38 22.04 0.04 0.52 

Peak Frequency 46.62 27.41 0.04 0.51 

Delta Time (s) 1.58 0.79 0.04 0.50 

PRR 167.82 188.13 0.11 0.24 

Dominant Tonal Frequency 8.62 3.45 0.34 0.23 

Dominant Tonal Frequency 
Beginning 

7.25 3.12 0.08 0.33 

Dominant Tonal Frequency 
End 

8.79 3.32 0.15 0.18 

Fundamental Frequency 6.74 2.00 0.09 0.29 
 

Note: Mean ± SD are the only values available for burst pulse PRR because this parameter was combined with pulse train PRR in the 

linear regression analysis of PRR over the calf’s first year. Means ± SDs were calculated from the raw data. R2 and p-values were 

calculated based on the method outlined for linear regression analyses. *Denotes significance. 
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Pulse train development 

First Month  

Parameters were extracted from 329 pulse trains in the first month of life. There 

were more useable calls for parameter extraction during the first month of Kylu’s life due 

to the increased sampling effort during this period as it was of most concern given the 

relevance to questions of noise impact on neonate calls. Further, this data set was 

characterized by consistent separations between mother and calf for feedings and medical 

care. Linear regression analyses of pulse train parameters over the first month of Kylu’s 

life showed that pulse repetition rate (PRR) increased significantly (R2 =0.65, n=15, 

p<.001). Mean PRR (M=17.77, SD=13.84) on the first day of life was much lower when 

compared to mean PRR towards the end of the calf’s first month (28th day: M=59.32, 

SD=8.94) (Figure 4). Additionally, the third quartile frequency of his pulse trains 

increased significantly (R2 =0.28, n=15, p=0.04), demonstrating shifts in acoustic energy 

distribution towards upper frequency limits of the calf’s broadband pulse trains. See 

Table 5 for a comparison of p-values and descriptive and regression statistics for pulse 

trains in the first month versus the first year of Kylu’s life.  

Apparent source levels of the calf’s pulse trains in the first week of life were 

much lower than apparent source levels of the calf’s pulse trains in weeks two through 

four (see Vergara et al., in prep). Furthermore, apparent source levels of the calf’s calls in 

the first month of life were also much lower than apparent source levels estimated for the 

parents’ contact calls during this same time period (Vergara et al., in prep). Source levels 

of the calf’s pulse trains increased significantly over the first month of life (R2=0.81, 

n=11, p<.001). See Figure 4 for spectrograms of the calf’s pulse trains on the first day of 

life versus at the end of the first month of life.  
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Table 5 

P-values of linear regression analyses and descriptive statistics for the calf’s pulse trains 

over the first month and first year of the life  

TIME PERIOD PARAMETER Mean SD R2 p-value 
First Month First Quartile Frequency 8.47 6.79 0.20 0.09 

 Center Frequency 20.08 16.94 0.15 0.15 

 Third Quartile Frequency 39.38 21.16 0.28 0.04* 

 Peak Frequency 6.16 5.88 0.18 0.11 

 Delta Time (s) 1.01 0.53 0.12 0.20 

 PRR 23.18 8.82 0.65 <.001* 
First Year First Quartile Frequency 13.11 17.01 0.58 <.001* 

 Center Frequency 29.01 24.51 0.40 <.001* 

 Third Quartile Frequency 52.38 25.83 0.33 <.001* 

 Peak Frequency 11.95 20.07 0.42 <.001* 

 Delta Time (s) 0.88 0.50 0.33 <.001* 
 PRR 99.05 150.32 0.13 0.03* 

 

Note: Means ± SDs were calculated from the raw data. R2 and p-values were calculated based on the method outlined for linear 

regression analyses. *Denotes significance. 

First Year 

An additional 81 pulse trains were used for parameter extraction over the 

remaining part of the first year for a total of 410 pulse trains from which parameters were 

extracted. Over the calf’s first year of life, linear regression analyses indicated that age 

was a significant predictor for all parameters. First (R2 =0.58, n=33, p<.001) and third (R2 

=0.33, n=33, p<.001) quartiles, center (R2 =0.40, n=33, p<.001) and peak (R2 =0.42, 

n=33, p<.001) frequencies significantly increased over this time period, indicating shifts 

in all acoustic energy distribution towards upper frequency limits of the calf’s calls in the 
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first year. Delta time (i.e., call duration) also increased significantly (R2 =0.50, n=33, 

p<.001) over the calf’s first year of life.  

For linear regression analyses of pulse repetition rate (PRR), burst pulse and pulse 

train PRR were combined. Burst pulses are analogous to high repetition pulse trains. 

While the two pulse signals were treated as separate sound types for the rest of this study, 

analyses converged on PRR in order to determine if age was a significant predictor for 

changes in repetition rate. Significant increases in PRR occurred over the calf’s first year 

of life (R2 =0.13, n=33, p=.03), however the low R2 value indicates that age was not the 

best predictor for this model and the large SD indicates high variability in this parameter. 

There appeared to be high variability across many of the parameters extracted from 

Kylu’s calls, as SD values were often large and R2 values were low. It should be noted 

that variability in Kylu’s call parameters may have been due to the low number of days 

from which mean parameter values could be extracted from the first month (n=15) and 

first year (n=33) of life or may be representative of a high degree of variation in Kylu’s 

sounds as they developed. See Figure 9 for regression plots of these parameters. 
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 Linear regression plots of Kylu’s pulse train parameters over the first year of 

life.  

Data points represent daily means (error bars: ± SD). 
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Coefficients of variation (CV) for parameters of acoustic energy distribution were 

taken for comparison over the calf’s first year in order to determine at which age in this 

time period, energy distribution of the calf’s calls became less variable. Variability in 

acoustic energy distribution of the calf’s pulse trains considerably decreased over the first 

year as variability was lowest in months 11 and 12 of life (Figure 10), however variability 

in peak frequency was still relatively high (85.4% CV) in this period in comparison to 

moderate variability in the remaining pulse train acoustic energy distribution parameters 

(Q1: 33.8% CV, Center: 28.6% CV, and Q3: 12.8% CV). See Table 6 for descriptive 

statistics of pulse train peak frequency in each month of Kylu’s first year of life as they 

correspond with CVs below. 

 
 Coefficients of variation (CV) for parameters of acoustic energy distribution 

extracted from pulse trains.  

The “End” period represents the 11th and 12th month of Kylu’s life. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 6 7 End

C
oe

ffi
ci

en
ts

 o
f V

ar
ia

tio
n

Month

Variation in Acoustic Energy Distribution

First Quartile

Third Quartile

Center

Peak



 

44 

Table 6 

Mean peak frequency of the calf’s pulse trains per month  

Month Mean   SD n 
1 7.38 14.02 329 
2 12.16 19.11 11 
3 36.30 34.40 23 
6 31.20 20.52 14 
7 37.25 29.04 13 

End 32.31 27.58 12 
 

Note: Means ± SDs were calculated from the raw data. 

 

Complex contact call development 

Adult Contact Calls  

Yulka’s individual contact call (type Y) was identified when Kylu was 

involuntarily separated from the dyad during the calf’s first month of life. Type Y calls 

were complex and Yulka used a subtype of this call (Y1) repeatedly until Kylu was 

returned to the dyad. Yulka’s type Y1 calls were easy to localize as they were audible 

from my observation position on the side of the pool. Additionally, Kairo was separated 

from the dyad during the majority of the calf’s first month of life (there were a few 

instances where Kairo and Yulka were gated together for a short period of time so that 

Kairo was not consistently in isolation). Kairo also produced complex contact calls (type 

K) that were audible from the pool side and thus easily attributable to him during these 

periods when the calf was separated from the dyad. Involuntary separations of the dyad 

would often result in simultaneous calling by calf, mother, and father in which contact 

calls could easily be attributed to each of the three individuals. Table 7 describes the 

complex contact call types and subtypes identified and investigated in this study.  
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To determine individual specificity in the adults’ contact calls, the most 

prominent contact call types produced by each adult beluga in the calf’s first month of 

life (type Y1 for Yulka and type K1 for Kairo) were compared (Figure 11).  A 

discriminant function analysis classified 100% of Y1 and K1 calls correctly, indicating a 

high degree of difference in these two call types. Preliminary analyses have identified 

several additional contact call subtypes for each adult in the pre-partum period and first 

and second years of the calf’s life. Yulka’s Y2 subtype will be discussed below as it 

relates to Kylu’s contact call development. However, analyses of remaining contact call 

subtypes are beyond the scope of this paper. 

Table 7 

Operational definitions of the complex contact calls investigated by the current study 

Complex Contact Call Definition 
Y1 A subtype of Yulka's type Y calls produced by 

Yulka prominently during Kylu's first month of 
life. The call is characterized by a low PRR and 
overlapped by a down-sweeping noisy tonal band. 

Y2 A subtype of Yulka's type Y calls produced by 
Yulka and Kylu in the 23rd month of life. The call 
is characterized by two pulse repetition rates; the 
first part of the call has a high PRR and the latter 
part of the call has a low PRR. The pulse 
component is overlapped by a noisy tonal band 
with a constant contour. 

K1 A subtyped of Kairo's type K calls produced 
prominently in Kylu's first month of life. This call 
is characterized by a high PRR and overlapping 
constant tonal component with a slight upsweep at 
the end and/or slight down-sweep at the beginning. 

A1 A subtype of the type A calls produced by Aurora, 
the beluga mother of the Vancouver aquarium. 
Tuvaq later incorporated this subtype as his own 
contact call (Vergara and Barrett-Lennard, 2008). 
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 Kairo’s K1 and Yulka’s Y1 complex contact calls.  

These subtypes represent the prominent complex contact call produced by Kairo and Yulka in Kylu’s first month of life. Spectrogram 

parameters: FFT 1024, Overlap 50%, 1024 Samples, Hann Window. 

Kylu’s Type Y Call Development 

 Kylu was involuntarily isolated in the medical pool for blood draws on two 

separate days in his 23rd month of life. During these medical separations, he produced a 

subtype of his mother’s type Y calls (type Y2). Yulka was also recorded using the Y2 

subtype more prominently than the Y1 subtype during these same isolation sessions. 

Approximately 30 Y2 calls that could be positively attributed to the calf over the two 

observation periods met parameter extraction criteria. The calf’s Y2 calls were then 
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compared to the first 30 Y2 calls produced by Yulka that also met criteria for parameter 

extraction. A discriminant function analysis classified 80% of Kylu and Yulka’s Y2 calls 

correctly (26.7% of Kylu’s Y2 calls were classified as Yulka’s and 13.3% of Yulka’s Y2 

calls were classified as Kylu’s). Parameters that had high discriminant ability (p<0.05) 

included the calls’ first quartile and peak frequencies and the beginning and end 

frequency of the noisy tonal band. In addition, the dominant tonal frequency was a 

parameter with high discriminant ability as Kylu still appeared to have an overall lack of 

stereotypy in the dominant frequency of the noisy tonal band. This was apparent when 

comparing the variability of the dominant noisy tonal frequency of Kylu’s Y2 calls 

(20.7% CV) to the variability of Yulka’s Y2 noisy tonal dominant frequency (5.3% CV). 

Kylu’s Y2 dominant tonal component was also a bit more tremulous in inflection. While 

the median value for number of inflection points was the same in both Yulka and Kylu 

(median=0), Yulka’s Y2 dominant tonal did not have any inflection (range:0) whereas the 

number of inflection points in Kylu’s Y2 dominant tonal was more variable (range: 0-2). 

Call parameters that were similar across the two animals’ Y2 calls included center and 

third quartile frequencies, call duration, fundamental frequency, bandwidth of the noisy 

tonal element, and PRR. Figure 12 illustrates Kylu and Yulka’s Y2 calls. See Table 8 for 

descriptive statistics of parameters extracted from Kylu’s Y2 calls, Yulka’s Y1 and Y2 

calls, and Kairo’s K1 calls. 

A discriminant function analysis of Kylu’s Y2 and Yulka’s Y1 calls was more 

accurate in assigning Y2 and Y1 calls to the correct categories, with 98.8% of cases 

classified correctly (one case of Kylu’s Y2 call was classified as Yulka’s Y1). The 

dominant frequency and bandwidth of the noisy tonal were the only parameters that did 

not have discriminant ability. All other parameters were significantly dissimilar (p<0.05). 
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Interestingly, a discriminant function analysis comparing Yulka’s Y1 and Y2 calls 

classified 100% of cases correctly, indicating a high degree of difference in the call 

subtypes based on the parameters extracted. A discriminant function analyses of Kylu’s 

Y2 calls, Yulka’s Y1 calls, and Kairo’s K1 calls classified 96.2% of calls correctly.  

  

 

 Kylu and Yulka’s Y2 calls.   

Each call example was selected from the representative group of 30 calls chosen for parameter extraction and discriminant function 

analyses. Spectrogram parameters: FFT 1024, Overlap 50%, 1024 Samples, Hann Window. 
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Table 8 

Descriptive statistics for each parameter of type Y and type K calls  
Beluga/ 
Contact 

Call 
Parameter Mean SD 

Beluga/ 
Contact 

Call 
Parameter Mean SD 

Kylu/Y2 

First Quartile 
Frequency 

21.73 14.57 

Yulka/Y2 

First Quartile 
Frequency 

13.37 9.83 

Center Frequency 36.79 17.68 Center Frequency 31.37 15.27 

Third Quartile 
Frequency 

60.37 20.42 Third Quartile 
Frequency 

56.06 13.19 

Peak Frequency 22.09 17.97 Peak Frequency 9.46 9.08 

Delta Time (s)  1.13 0.25 Delta Time (s) 1.18 0.17 
PRR 149.10 50.66 PRR 163.26 61.30 
Dominant Tonal 
Frequency 

7.56 1.56 Dominant Tonal 
Frequency 

6.84 0.36 

Dominant Tonal 
Frequency Beg 

7.18 1.86 Dominant Tonal 
Frequency Beg 

6.01 0.73 

Dominant Tonal 
Frequency End 

7.40 1.39 Dominant Tonal 
Frequency End 

8.15 1.16 

Fundamental 
Frequency 

7.17 1.93 Fundamental 
Frequency 

6.84 0.36 

Noisy Tonal Band 2.68 1.78 Noisy Tonal Band 2.42 0.53 

Yulka/Y1 

First Quartile 
Frequency 

9.50 4.10 

 
Kairo/K1 

First Quartile 
Frequency 

19.93 10.36 

Center Frequency 18.06 12.76 Center Frequency 31.12 13.70 

Third Quartile 
Frequency 

36.69 19.74 Third Quartile 
Frequency 

43.91 14.99 

Peak Frequency 9.32 7.03 Peak Frequency 12.89 9.92 

Delta Time (s) 1.52 0.22 Delta Time (s) 1.44 0.32 

PRR 67.79 13.80 PRR 95.40 6.95 

Dominant Tonal 
Frequency 

7.83 0.56 Dominant Tonal 
Frequency 

10.11 2.04 

Dominant Tonal 
Frequency Beg 

11.48 0.72 Dominant Tonal 
Frequency Beg 

10.49 2.14 

Dominant Tonal 
Frequency End 

5.90 0.30 Dominant Tonal 
Frequency End 

11.19 2.29 

Fundamental 
Frequency 

7.77 0.60 Fundamental 
Frequency 

4.71 1.42 

Noisy Tonal Band 2.70 0.47   
  

 

Note Dominant Tonal Frequency Beg=Dominant Tonal Frequency Beginning 
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CHAPTER IV – DISCUSSION 

Sound acquisition 

 Kylu produced pulse trains exclusively on his first day of life with acquisition of 

other sounds occurring with age. This is consistent with findings based on other beluga 

calves (Castellote, Vergara, Barrett-Lennard, & Esteban, 2007; Vergara, 2011). Kylu 

began to produce other pulse sounds within his first month of life and altogether, pulse 

signals were the most commonly produced sound over his first year. Kylu’s tonal sound 

production occurred later in life than what was reported for two calves born at the 

Vancouver Aquarium. Tuvaq, the focal calf in Vergara and Barret-Lennard’s (2008) 

study, began producing whistles on his 13th day and Tiqa, a female calf born several years 

after Tuvaq (MacLeod, 2009; Vergara, 2011), began whistle production on day 50. Tonal 

production preceded adult-like mixed call production in both Tuvaq and Kylu (unknown 

for Tiqa), however Kylu produced far fewer tonal sounds over his first year when 

compared to Tuvaq. 

Kylu produced mixed calls a few days after birth, a little earlier than Tuvaq who 

produced his first mixed calls on day 20. Both calves’ initial mixed calls were 

unstereotyped and not akin to adult beluga mixed calls. Furthermore, these early mixed 

calls were quite rare as both calves began producing adult-like mixed calls more 

consistently later in the first year (month four for Tuvaq and month five for Kylu). Kylu’s 

earliest mixed calls, characterized by pulse trains that trailed off into whistles, were 

reminiscent of Tuvaq’s early whistles (Vergara, 2011) and the whistle-squawks of 

bottlenose dolphin neonates, which also have a pulse-like attribute (Killebrew et al., 

2001). 
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In bottlenose dolphins, the squawky, tremulous nature of neonate whistles is 

believed to be caused by undeveloped vocal structures and/or lack of motor control 

(Killebrew et al., 2001). This is likely the case with beluga neonates as well. Given the 

rarity and unstereotyped nature of neonate mixed calls, it is likely that the tonal 

components overlapping these signals were an artifact of underdeveloped or poor motor 

control of the vocal structures belugas use to produce sound. Some of these early mixed 

calls may be produced if calves inadvertently actuate both pairs of phonic lips, the 

vibrating vocal structure within the melon of odontocete species (Cranford, 2000; 

Cranford et al., 1996), through increases in air pressure that occur concurrently in the 

nasal cavities (Cranford et al., 2000). All odontocete species (with the exception of sperm 

whales) possess two phonic lip pairs and both pairs are believed to be pneumatically 

actuated during biphonation (i.e., mixed call) production. This has been demonstrated in a 

recent study of beluga sound production (Ames, Beedholm, and Madsen, in prep.) and 

similar studies of other delphinoid species (bottlenose dolphins, Brill & Hader, 1991; 

Cranford et al., 2000; Cranford et al., 2011; Madsen et al., 2013, and false killer whales, 

Pseudorca crassidens, Murray, Mercado, & Roitblat, 1998; Madsen et al., 2013).  

Each pair of phonic lips is situated on one side of the medial nasal midline so that 

one pair is on the left side of an animal’s head and the other is on the right. The left 

phonic lips are smaller than the right in some delphinoid species (Cranford, 2000; 

Cranford et al., 2011) and are generally responsible for the tonal sounds produced by 

belugas (Ames et al., in prep.) and other delphinoids (bottlenose dolphins, Cranford et al., 

2011; Dormer, 1979; MacKay & Liaw, 1981; Madsen et al., 2013, and false killer 

whales, Madsen et al., 2013). In beluga calves, the delay in regular mixed call and tonal 

production is likely due to an inability to pneumatically drive whistle production as this 
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may require greater air pressure than the production of pulses (Cranford et al., 2000). 

Nothing is known regarding the development of vocal structures or related motor 

coordination in beluga infants, however some understanding can be inferred by vocal 

development studies of belugas and other odontocetes that highlight similarities in early 

sound production and development. 

Pulse train development 

Pulse trains are salient to the repertoire of beluga calves as these appear to 

function as rudimentary contact calls. The upper frequency limits of Kylu’s calls from 

birth indicate that beluga neonates are capable of broader bandwidth sounds than 

previously reported by studies limited by lower sampling rates (Castellote et al., 2007; 

Vergara and Barrett-Lennard, 2008). During the first month of Kylu’s life, source levels 

of his pulse trains increased significantly. All acoustic energy distribution parameters of 

the calf’s calls increased throughout this period as well, although the third quartile 

frequency was the only to do so significantly. It is likely that the increasing source levels 

of Kylu’s calls correlate with some changes in acoustic energy distribution. For example, 

higher source levels are related to increases in center frequency but do not appear to 

influence the peak frequency of sounds produced by other delphinoid species (Madsen et 

al., 2013). Increasing air pressure in the nasal cavities during sound production is related 

to increases in source level (Cranford et al., 2000), and given the correlation between 

source level and center frequency (Madsen et al., 2013), it is likely that as belugas gain 

the ability to increase air pressure with age, they also gain the ability to increase acoustic 

energy at higher frequencies. 

The pulse repetition rate (PRR) of Kylu’s pulse trains on his first day of life was 

nearly identical to the rate of Tuvaq’s pulse trains on his first day (Tuvaq: M=17.5, 
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SD=4.2, Vergara and Barrett-Lennard, 2008). However, it appears that PRR was far more 

variable in Kylu’s pulse trains, as indicated by a larger standard deviation in this 

parameter. Pulse repetition rate increased significantly with age for both calves.  

Findings from Tuvaq, Kylu, and the only other calf born to Yulka (born at 

Oceanogràfic in 2006, Castellote et al., 2007), indicated that the month one pulse trains of 

all three calves had low mean peak frequencies in comparison to calls produced by older 

animals. The pulse trains produced by Yulka’s first calf during the first month of life 

were very similar to Kylu’s in mean peak frequency (Yulka’s first calf: M=6.72, SD=1.9 

kHz, Castellote et al., 2007), although again, Kylu showed much more variability in this 

parameter. Peak frequencies of Tuvaq’s first month pulse trains (2.5 to 5 kHz, Vergara 

and Barrett-Lennard, 2008) were slightly lower than the two Oceanogràfic calves.  

Pulse train peak frequency (termed dominant frequency in Vergara & Barrett-

Lennard, 2008) increased significantly over the first year of life in both Tuvaq and Kylu. 

Vergara and Barrett-Lennard (2008) hypothesized that peak frequencies in Tuvaq were 

likely higher as the calf aged than what the authors were able to initially report given the 

limitations in sampling rate of the study. This is corroborated by the current study: 

beginning in Kylu’s third month of life, the peak frequencies of his pulse trains tended to 

be greater than 22 kHz, the Nyquist frequency in Vergara and Barrett-Lennard’s study 

(2008). Additional parameters of energy distribution (first and third quartile, and center 

frequencies) increased significantly over Kylu’s first year of life. As with sound 

acquisition, changes in any of the measured parameters discussed here were likely due to 

increased motor control and changes in physical development as the calf aged.  
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Complex contact call development 

A discriminant function analysis (DFA) confirmed that the primary complex 

contact calls emitted by Yulka and Kairo during Kylu’s first month of life were distinct 

contact-call types, providing further evidence for vocal signatures in beluga contact calls 

(Vergara and Mikus 2018). As expected, the complex contact call produced by Kylu 

during the medical isolations in his 23rd month was most similar to a subtype of his 

mother’s type Y contact calls. Kylu produced calls that were more consistent with the Y2 

subtype, which Yulka also produced during these separations. He had not appeared to 

incorporate a version of Yulka’s Y1 call, which she prominently produced during Kylu’s 

first month of life, into his vocal repertoire by the end of the second year. This 

development was contrary to Tuvaq, who adapted the call used predominantly by his 

mother in the first and subsequent months of his life. In order to determine how Yulka’s 

Y2 production might have influenced the development of Kylu’s Y2 calls, further 

analyses of the adult calls throughout Kylu’s first year of life are needed to asses if and 

when Yulka began to produce more Y2 calls.  

Kylu produced fewer mixed calls overall in his first year of life in comparison to 

Tuvaq (Vergara and Barrett-Lennard, 2008), which could be a factor in the delayed 

stereotypy of Kylu’s Y2 call. Tuvaq had reached full stereotypy in the production of his 

type A1 calls by his 20th month, but Kylu did not reach full stereotypy in his Y2 

production within the scope of this study. As of the 23rd month of life, the coefficient of 

variation for the dominant tonal frequency of Kylu’s calls was still considerably higher 

than Yulka’s. At 20 months, the coefficients of variation for the Vancouver belugas’ A1 

dominant tonal frequency were substantially smaller and almost identical for Tuvaq and 

his mother Aurora (Vergara, 2011). Moreover, Kylu did not clearly emit Y2 calls during 
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his first year, unlike Tuvaq’s production of rudimentary versions of the A1 call beginning 

at 4 months. 

It is not surprising that the two calves differed in their complex contact call 

development, as variability in timing of call acquisition occurs in other delphinoid 

species. For example, bottlenose dolphin calves produce whistles on the first day of life 

(Morisaka et al., 2005a), and most calves have refined their signature whistle by 17 

months (Caldwell & Caldwell, 1979; Fripp et al., 2005; Tyack & Sayigh, 1997). 

Bottlenose dolphin calves are not known to produce their own signature whistle until they 

are at least a few months old (Caldwell & Caldwell, 1979; Fripp et al., 2005; Tyack & 

Sayigh, 1997), but some appear to produce discernable signature whistles within the first 

few days of life and these whistles remain stable signatures throughout the calves’ 

development (Sayigh, 1992; Tyack & Sayigh, 1997).  

Bottlenose dolphin calves generally appear to develop signature whistles that are 

dissimilar to those of their mothers (e.g., Bojanowski et al., 2000; Caldwell & Caldwell, 

1979; Fripp et al., 2005; Miksis et al., 2002; Tyack, 1997; Sayigh, 1992; Tyack & Sayigh, 

1997). However, in instances when calves do model their signature whistle after the 

mother, calf sex may be of influence. In wild populations, male bottlenose dolphin calves 

have shown a tendency to produce signature whistles similar to their mothers, whereas 

females develop more distinctive whistles (Sayigh, Tyack, Wells, & Scott, 1990; Sayigh, 

Tyack, Wells, Scott, & Irvine, 1995). Sex differences in signature whistle modeling are 

likely a result of greater selective pressure on female calves as related females maintain 

close associations (Sayigh et al., 1990, 1995). As such, it may be necessary for females to 

develop distinctive whistles in order to maintain individuality among kin. The 

development of signature whistles in male calves may be less restrictive, and males that 
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develop signature whistles similar to their mothers may be more readily identifiable to 

kin after separating from the mother-calf dyad (Sayigh et al., 1995).  

Beluga calves may first develop complex contact calls most similar to the contact 

calls of their mothers regardless of calf sex, as evident in the contact call types 

incorporated by Kylu, Tuvaq, and Tuvaq’s half-sister, Qila, in early life (Vergara and 

Barrett-Lennard, 2008). However, additional research of vocal development in female 

beluga calves is necessary to adequately assess this hypothesis. If calves develop contact 

calls that are similar to their mothers and these call types remain stable in the vocal 

repertoires of these animals, then some beluga calls may be used for long-term kin 

identification. As previously discussed, similarity between mother and calf contact call 

repertoires may have important implications regarding the longevity of affiliation with 

related individuals. These calls may have a critical function in the reunion of related 

individuals along migratory routes or in summering areas as they may allow for kin 

identification from a long distance or within a large number of conspecifics.  

Individual identity information may be encoded in parameters with discriminant 

ability, which could aid in conspecific recognition when related individuals produce the 

same contact call type. For example, some reports of killer whale communication calls 

have shown the importance of call parameters in differentiating the same call type in the 

vocal repertoires of matrilineal units (Miller & Bain, 2000) and communities or clans 

(Riesch, Ford, & Thomsen, 2006). Likewise, parameters with discriminant ability that are 

similar across beluga contact call types may be indicative of species-specific call 

characteristics that encode individual identity.  

For the complex contact calls described by Vergara (2011) and here, the 

beginning frequency of the dominant tonal element was an important parameter in 
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determining the individual producing the call. Thus, it may be that belugas use 

differences such as this in tonal or other overlapping signature elements (Vergara and 

Mikus, 2018) in order to code identity information (Vergara and Barrett-Lennard, 2008). 

In killer whale whistles, the beginning tonal frequency was also a differentiating 

parameter when comparing whistles produced by communities or clans (Riesch et al., 

2006), although individual differences in call type production were not assessed. Future 

playback studies should investigate the salience of parameters with discriminant ability in 

order to determine whether the characteristics used to classify calls in statistical analyses 

are biologically important in identifying related individuals. 

Comparison of maternal contact call production 

Yulka and Aurora, the mother in the earlier study, both produced their contact 

calls in similar contexts of separation, when a diver was present in their respective 

habitats, and in response to their calf’s own contact calls, which supports the contextual 

specificity of contact calls highlighted by previous reports (Vergara and Barrett-Lennard, 

2008; Vergara et al., 2010). Yulka produced her type Y1 call on the day of Kylu’s birth 

and continuously in the first month of Kylu’s life, unlike Aurora who produced a 

different subtype of her contact call on the day of Tuvaq’s birth, beginning the production 

of other subtypes the following day (Vergara and Barrett-Lennard, 2008). Additionally, 

Vergara and Barrett-Lennard (2008) reported that Aurora did not use her type A calls pre-

partum, but preliminary analyses of data collected in the pre-partum period of the current 

study revealed the presence of both Yulka’s Y1 and Y2 calls within the few months prior 

to Kylu’s birth. It is likely that the variation in rates of contact call production and use of 

different subtypes are due to individual differences in the mothers. Similar variations in 

pre-partum signature whistle production in bottlenose dolphin mothers have been noted. 
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For example, two studies (Mello and Amundin, 2005; Ames, 2016) found that dolphin 

mothers increase their signature whistle production prior to their calf’s birth, although the 

timing of this increase varied. Fripp and Tyack (2008) found that no such pre-partum 

increase occurred in their study. Ames and colleagues (2017) also discussed differences 

in maternal use of an additional dolphin contact call termed “thunk” emitted in one 

population of captive bottlenose dolphin females. Variations in rates of family specific 

call production also exist between Northern Resident killer whale matrilines during the 

post-partum period (Weiß, Ladich, Spong, & Symonds, 2006). Thus, it is likely that 

individual beluga mothers differ in their emission of contact call subtypes during the pre 

and post-partum periods, although contextual use of these sounds appears more rigid. 

 Given that Kylu did not ultimately incorporate the Y1 subtype and did not 

produce complex contact calls until his second year, it is likely that beluga mothers are 

responsible for the development and maintenance of early recognition systems in the 

mother-calf dyad, similar to bottlenose dolphins (for review, see Ames, 2016). 

Furthermore, as Aurora did not produce type A calls in the months prior to Tuvaq’s birth, 

this early recognition system may begin to be established after a beluga calf’s birth, and 

not sometime in the pre-partum period as has been implied for dolphins (Tyack & 

Sayigh, 1997) and humans (e.g., DeCasper & Fifer, 1980; Partanen, Kujala, Tervaniemi, 

& Huotilainen, 2013). Beluga calves are precocial at birth, so some established 

recognition system would likely be useful to calf survival. However, it is currently 

difficult to ascertain when this system would likely be established due to the differences 

between studies in the timing of maternal contact call production. 
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Playing with sound: evidence of beluga babbling? 

One period of data collection at the end of the calf’s first month of life was 

remarkable in that the calf produced several sounds types that had previously not been 

identified in his repertoire. On the 26th day of Kylu’s life, he produced pulse tones and 

several types of mixed pulse calls. As previously discussed, this may be indicative of 

increased motor control or development of the phonic lips or associated vocal structures, 

allowing the simultaneous production of pulses with increased repetition rate. 

Communication pulses have been shown to be produced in both the left and right phonic 

lip sets in belugas (Ames et al., in prep.), so it is likely that both pairs were used in mixed 

pulse production. Two other reports (Karlsen et al., 2002; Vergara, 2011) have indicated 

mixed pulse production in beluga whales, so it was not unusual that these sounds appear 

in Kylu’s repertoire. It was curious, however, that all of these sounds would appear 

within the same recording session. 

Behavioral observations on this day revealed that during periods when Kylu 

produced these novel sound types, he was not physically interacting with his parents, but 

playfully interacting with his trainers or playing on his own. Hence, Kylu may have been 

practicing or quite literally playing with sound during this recording session. Human 

children play with language and it has been hypothesized that solitary play has a role in 

the development of contextually flexible communication for humans and animals (Kuczaj 

& Makecha, 2008). Furthermore, Kuczaj (1998) postulated that species with flexible 

communication systems are more likely to play with their sounds. Perhaps the most 

tangible evidence of sound play is babbling. 

Babbling may be an integral part of development in species that use a wide range 

of sounds for communication (Knörnschild, Behr, & von Helversen, 2006). For example, 
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in non-human animals babbling has been ascribed to birds (e.g., Goldstein, King, & 

West, 2003; Hultsch & Todt, 2004; Marler & Peters, 1982a, b), giant otters (Pteronura 

brasiliensis, Mumm & Knörnschild, 2014), marmosets (pygmy marmosets, Cebuella 

pygmaea, Elowson, Snowdon, & Lazaro-Perea, 1998a, b; Snowdon & Elowson, 2001; 

Snowdon, Elowson, & Roush, 1997, and common marmosets, Callithrix jacchus, 

Takahashi et al., 2015), and bats (Knörnschild et al., 2006; Monroy, Carter, Miller, & 

Covey, 2011), in addition to belugas (Vergara and Barrett-Lennard, 2008). It is possible 

that there is a relationship between play and babbling in beluga infants, just as there 

appears to be a relationship between single-object play and babbling with later symbolic 

and linguistic development in humans (Orr & Geva, 2015). Play and novel sound 

production may be a feature in the development in other delphinoid species as well. An 

eight-month-old female killer whale calf purportedly produced a wide variety of sounds 

at a newly deployed hydrophone that seemed to peak her interest (Bowles, Young, & 

Asper, 1998). This variety in sound production continued for the entire hour the 

hydrophone was deployed and showed increased variability in the calf’s repertoire when 

compared to an early recording period. Likewise, Kylu would often turn his attention to a 

submerged platform in the beluga pool the trainers used for feeding and play sessions 

with the calf. The platform was hinged to a ladder that extended over the wall of the pool, 

and when the belugas were not on session (i.e., trainers were not on the platform), Kylu 

would continually push the platform up in a flurry of bubbles and vocalizations. Attention 

to the hydrophone for the killer whale calf and continued interaction with the training 

platform for Kylu could represent some type of single object play, and as such, this type 

of solitary play may serve as a critical function in the development of odontocete 

communication. 
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Babbling is thought to invoke parental response in some species (e.g., giant otters, 

Mumm & Knörnschild, 2014, and pygmy marmosets, Elowson et al., 1998a, b; Snowdon 

& Elowson, 2001), but this may not be reflective of babbling in beluga calves if novel 

sound production does not result in an interaction with conspecifics. Yulka did not 

respond to Kylu’s sound production during this event at the end of his first month, or 

during later solitary play events when Kylu continually emitted several sound types. The 

absence of Yulka’s response may actually allow for some building blocks of contextual 

learning to take root, as sound play may facilitate contextual learning in addition to signal 

acquisition (Kuczaj & Makecha, 2008). Adult sac-winged bats (Saccopteryx bilineata) do 

not respond to the babbling of their pups (Knörnschild et al., 2006). When bat pups 

babble, they string together sounds adults use in specific contexts, juxtaposing sounds 

that have different contextual applications in the same bout (Knörnschild et al., 2006). 

Later, these sounds are applied to the appropriate context, suggesting that pups first 

practice sounds, perfecting their production, before applying them contextually. 

Likewise, beluga calves may first practice sound through solitary play in order to perfect 

a vocalization before applying it to the appropriate context.  

Over Kylu’s first year of life, sound acquisition and attrition were fluid as he 

acquired sound types as quickly as they disappeared from his repertoire. Many of the 

calls first recorded on his 26th day were not prominent in later months; especially as 

earlier sounds gave way to more sophisticated sound production. Bottlenose dolphins 

refine their signature whistles gradually, but also continue to increase their vocal 

repertoires over time (Tyack, 2003) as bottlenose dolphins vocally learn throughout their 

lifetime (King, Sayigh, Wells, Fellner, & Janik, 2013; Richards et al., 1984; Tyack & 

Sayigh, 1997). The continued inclusion of new sounds in a species’ adult repertoire is 
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inconsistent from babbling behavior in other species wherein babbling leads from an 

overproduction of sounds to a more polished repertoire. For example, in bird species, the 

babbling stages of subsong and plastic song (Goldstein, King, & West, 2003) lead to 

crystallized full song through attrition (Hultsch & Todt, 2004; Marler, & Peters, 1982b).  

With human babbling, infants produce an assortment of sounds that will not 

appear in the language eventually learned by the child (Kuczaj & Makecha, 2008). But it 

is important to consider that, while language itself may represent a refinement in the 

vocal repertoires of humans, adults are still capable of learning, imitating, and 

incorporating new sounds (e.g., new languages). The contrary is true for the babbling 

behavior of pygmy marmosets (Snowden et al., 1997) and bats (Knörnschild et al., 2006) 

that appear to begin life with almost a complete adult vocal repertoire, but no 

understanding of contextual application. Furthermore, it has been sufficiently 

demonstrated that the adult vocal repertoire emerges from unstereotyped sounds 

produced by beluga (Vergara and Barrett-Lennard, 2008) and dolphin (McCowan & 

Reiss, 1995) calves. Thus, it is likely that babbling is manifested somewhat differently 

between highly communicative species, and variability in a species’ developed repertoire 

should be treated as evidence for the vocal flexibility of the species, especially if newly 

incorporated sounds in an adult’s repertoire are adult-like in their initial production and 

have contextual significance.  

Species-specific developmental trajectory 

Pulse trains are consistently the first calls produced by beluga calves, as reported 

for 5 beluga calves (2 born at Oceanogràfic including Kylu; 3 born at the Vancouver 

aquarium, Vergara, 2011). These calls consistently appear in beluga calves’ vocal 

repertoires in early life and are understood to be preliminary contact calls. Pulse train 



 

63 

PRR and peak frequency are initially low in all beluga calves (see findings in Castellote 

et al., 2007 and Vergara, 2011), and changes in these parameters behave similarly over 

time. Parallels in the development of acoustic energy parameters in calves may indicate 

the stage in development at which belugas may be able to compensate for noise in their 

sound environments (further discussed below). 

Remaining sound type acquisition varied but still followed a similar pattern in the 

beluga calves. For example, Kylu was more delayed in whistle production when 

compared to the two Vancouver aquarium calves (MacLeod, 2009; Vergara, 2011), but 

whistle emission still preceded the regular production of mixed calls in both Tuvaq and 

Kylu. Regular, more adult-like mixed call production began around the same time for 

Tuvaq and Kylu, but again, Kylu was a bit more delayed in reaching this milestone when 

compared to Tuvaq. Consequently, there appear to be stages of sound acquisition that 

occur within a window of time (i.e., 1-3 months for whistle emergence and 4-5 months 

for adult-like mixed calls). Delays in Kylu’s acquisition of some sounds may have been 

influenced by the sounds available to him in his sound environment. For example, a lack 

of whistle production in the vocal repertoires of the adult belugas may have contributed 

to the delay in the production of this sound in Kylu. Continued analyses of adult calls 

produced during the calf’s first year of life may shed light on factors contributing to the 

delays in Kylu’s sound acquisition. Moreover, it should also be noted that Kylu’s social 

group was unique in that it only comprised his parents. Tuvaq developed alongside 

multiple whales, both related and unrelated, so some of Kylu’s delays may be attributable 

to his unique social situation. 

Unstereotyped mixed calls were a precursor to the development of complex 

contact calls in both calves, but with great individual variation in developmental 
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trajectory. Furthermore, the prevalence of a mother’s contact-call subtype in the first 

month of life may not influence a calf’s incorporation of that subtype in later life, as is 

evident by Kylu’s use of his mother’s alternative subtype, Y2, at 23 months of age. 

Ultimately, beluga calves appear to develop contact calls that are similar to their mothers, 

which may be group specific and important for long-term kin recognition. These calls 

appear to approach full stereotypy towards the end of calves’ second year of life. Further 

research is necessary in order to determine whether beluga contact calls are stable over 

time, or if calves alter characteristics of their contact calls once they mature and separate 

from their mothers.  

Influences on beluga vocal development: Genetics or learning? 

It can be difficult to tease apart the influence of learning processes from genetic 

predisposition in ontogenetic studies, especially when offspring develop sounds that are 

similar to their kin.  For example, killer whales are known vocal production learners 

(Crance et al., 2014; Foote et al., 2006), but biological influence cannot be discounted in 

calves that develop calls that are similar to their mothers (Bowles et al., 1988), especially 

when killer whale societies are formed of matrilineal units that have family specific calls. 

The current study was not designed to thoroughly evaluate the roles of genetics and 

learning in the development of Kylu’s complex contact call (discussed further in 

Limitations) as Kylu developed a call type that was similar to his mother’s. Perhaps if 

Kylu had modeled his contact call based on another acoustic signal in his sound 

environment, more could be said re the learning processes associated with beluga vocal 

development.  

Some arguments do support the influence of vocal learning in the development of 

complex contact calls, however. For example, if beluga calves are genetically 
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predisposed to develop the contact calls of their mothers, it should be expected that 

complex contact call development would follow the same inherent trajectory across 

calves. Tuvaq and Kylu showed slight differences in the influence of their mother’s 

subtype, as Kylu incorporated a subtype that was not acoustically abundant early in his 

life. Furthermore, the progression of Tuvaq’s contact call could be described as a slow 

perfection over time in comparison to the potentially more abrupt and less stereotyped 

emergence of Kylu’s contact call at the end of his second year. It should be noted that it 

is possible Kylu began producing his contact call sometime prior to its emission during 

the 23rd month of life. Further analyses of data recorded in the second year may be able to 

illuminate more on the development of Kylu’s Y2 call, but it’s likely that, given the more 

opportunistic nature of data collection in the second year, some earlier versions of Kylu’s 

Y2 call were not recorded. 

As previously discussed, vocal learning likely evolved in highly gregarious 

mammals as a means of developing complex signals that allow conspecifics to maintain 

social bonds in visually limited environments. This is especially true for the development 

of contact calls for use in the aquatic environment where conspecifics may be separated 

by large distances, as sounds can transmit farther and faster in water than in air (Janik, 

2014). Belugas are highly social and mobile aquatic mammals, capable of maintaining 

long-term associations with related individuals while traversing large migratory 

distances. Belugas may share specific complex contact calls with related individuals in 

order to facilitate contact with kin, and it is likely that individual identity is embedded 

within these shared vocal signatures. As reviewed above, there is a growing body of 

support for the existence of vocal signatures in the form of beluga complex contact calls 

(Panova et al., 2017; Vergara & Mikus, 2018), however it may be possible that some 
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vocal signatures are shared by related individuals. If some contact calls function as kin 

identifiers, variations in shared vocal signatures may be key in distinguishing individuals 

using the same call type, although the extent of the variation in the signature would need 

to be able to withstand certain environmental pressures. It is doubtful that voice cues 

would be sufficient in encoding identity information in calls used by cetaceans as under 

pressure, voice cues are likely altered due to changes in the vocal tract of diving animals 

(Tyack, 1991), and the noisy nature of the underwater environment may easily interfere 

in the transmission of subtle identity information (Janik, 1999b). In contrast, variations in 

vocal signatures could potentially allow belugas to convey identity information despite 

the constraints of the aquatic environment (Janik, 2014; Vergara & Mikus, 2018). Vocal 

signatures appear to be heavily influenced by vocal learning and the learning of group 

specific calls likely promote individual variation in shared vocal signatures through 

copying errors (Boughman & Moss, 2003). Thus, it would be more useful for complex 

contact calls to be learned and incorporated into the vocal repertoires of beluga calves, 

rather than genetically predisposed. 

Neonate calf calls and noise 

A component of this study focused on the changes in pulse train parameters 

during the first month of Kylu’s life. Understanding the structure of the vocalizations 

produced by newborn calves during the first few weeks of life is important in light of 

increased mortality rates of newborns in the St. Lawrence in recent years (Lesage, 

Mosnier, Measures, Lair, & Béland, 2014) and pulse trains are the primary call type used 

by beluga calves during this period critical to calf survival. Anthropogenic noise is one of 

the various factors hypothesized to play a role to high calf mortality rates in the St. 
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Lawrence Estuary belugas (DFO, 2017), and mothers and calves are exposed to vessel 

noise daily (Lesage, McQuinn, Carrier, Gosselin, & Mosnier, 2014).  

In the Pacific Northwest, a study of vessel noise integrated from 11.5 Hz to 40 

kHz from various ship types found that underwater noise emanated from vessels extended 

into the ultrasonic frequency range when ships were within a distance of three kilometers 

(Veirs, Veirs, & Wood, 2016). The findings from this study have detrimental implications 

for the many odontocete species that send or receive signals within this frequency range, 

as sounds that are critical to the survival of these species may experience masking (i.e., 

the interference of noise with an animal’s ability to detect or recognize a sound of 

interest, Erbe et al., 2015). Gervaise, Simard, Roy, Kinda, and Menard (2012) estimated 

source levels of ship noise in the Saguenay-St. Lawrence area integrated from 10 Hz-20 

kHz. The authors postulated potential serious effects of anthropogenic noise on the upper 

frequencies of beluga whale sounds, but presently, no studies have thoroughly 

investigated vessel noise at ultrasonic frequencies in the SLE. Furthermore, many studies 

of beluga whale communication signals drastically underestimate the upper frequency 

limits of these sounds. 

The mean peak frequency of Kylu’s pulse trains in his first month of life was less 

than 10 kHz, demonstrating the vulnerability of these early calf calls to shipping noise. 

Additionally, calf calls produced in the first few weeks of life have much lower source 

levels than adult belugas (Vergara et al., in prep). Lower source levels coupled with peak 

frequencies that may easily be masked by vessel noise may make it challenging for 

beluga mothers of especially young calves to detect their calf’s calls in noisy 

environments. Whether beluga mothers can hear these calls however may be dependent 

on the distance the mother is from her calf, as findings from the recent study by Vergara 
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and colleagues (in prep.) showed that the active space of calf calls is dramatically 

reduced in noisy conditions. Thus, if a separation between a beluga mother and her calf 

occurs, the mother may not be able to reunite with her calf if conditions in the 

environment are too noisy and/or the distance of the separation becomes too great. 

Cetaceans (see Erbe, 2016 for review), bats (Hage, Berquist, Feng, & Metzner, 

2013) and birds (e.g., Francis, Ortega, Cruz, & 2010; Hanna, Blouin-Demers, Wilson, & 

Mennill, 2011; Nemeth et al., 2013) appear to compensate for noise by actively shifting 

the amplitude and/or acoustic energy distribution of their calls. In the presence of 

increased environmental noise, dolphin species have been shown to alter minimum or 

maximum whistle frequencies (Papale, Gamba, Perez-Gil, Martin, & Giacoma, 2015), 

reduce frequency modulations, or alter the frequencies at which whistles were produced 

(Morisaka, Shinohara, Nakahara, & Akamatsu, 2005). Belugas are capable of shifts in 

call peak frequency in order to compensate for noise. Au, Carder, Penner, and Scronce 

(1985) showed that a beluga whale in managed care shifted the peak frequency of its 

echolocation clicks when it was moved to a new semi-captive facility with a sound 

environment that included more biotic noise from snapping shrimp within the animal’s 

previous echolocation frequency range. Lesage, Barrette, Kingsley, and Sjare (1999) 

found that belugas possess the ability to shift the peak frequencies of tonal calls to a 

higher frequency when near in proximity to vessels in the St. Lawrence.  

As discussed above, peak frequency increased over Kylu’s first year of life. This 

was particularly noticeable starting in his third month when the mean peak frequency of 

the calf’s pulse trains was near 40 kHz. This trend in month three may indicate the period 

when beluga calves are able to naturally compensate for vessel noise through increased 

energy at the higher frequencies of their calls. It is currently unknown when calves learn 
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to shift peak frequencies as a response to noise. However, it is likely that the physical 

ability to produce higher peak frequencies is a precursor to this learned ability. 

Identifying the sensitive window in which calves are at least physically able to produce 

sounds at higher frequencies is possible through vocal development studies such as the 

current report that investigate changes in acoustic energy distribution. This report has 

highlighted several differences in calf developmental trajectory, so future studies of 

beluga vocal development are important to determine if the third month increases in peak 

frequency are consistent among calves. 

Limitations 

This study initially sought to investigate changes in minimum, maximum, and 

subsequently, delta frequencies, however due to the pool noise that was previously 

discussed, minimum frequencies could not be accurately assessed. In addition, maximum 

frequency was limited by the sampling rate of the IcListen in the calf’s early life. It is 

likely that the upper frequency limits of the calf’s calls from birth extended past the 128 

kHz Nyquist frequency of this study. Because minimum and maximum frequencies could 

not be accurately assessed, delta frequency was not analyzed. 

It should also be noted that an anti-aliasing filter occurring at 40% of the 

icListen’s sampling rate may have affected energy distribution at the upper frequency 

limits of the calf’s calls recorded on this hydrophone. However, despite some filtering of 

the upper frequencies, the overall trends showed that the calf’s acoustic energy 

distribution increased with age; an indicator of the robustness of the findings presented 

here.  

It should be noted that my findings are only limited to data in which I could 

positively identify the calf’s calls. There may have been earlier instances of each sound 
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that were either 1) not recorded within my data set or 2) could not be assigned to Kylu 

with certainty. At times, single hydrophone deployment made it difficult to localize 

individuals with 100% accuracy. However, given the size of the pools in the beluga 

habitat and the ease with which other methods could be employed instead, the use of two 

hydrophones was not necessary in the localization of calling individuals a majority of the 

time. 

Finally, this study was not designed to decipher whether beluga call development 

occurs from a biological template or through production learning. Vergara and Barrett-

Lennard (2008) provided tentative evidence for vocal production learning in beluga 

calves through the acquisition of a novel sound when Tuvaq, who had previously been 

acoustically isolated from his father, Imaq, began to produce Imaq’s contact calls once he 

was introduced to Tuvaq’s sound environment. The current study cannot offer further 

insight on this phenomenon as the gates in the beluga habitat at Oceanogràfic are not 

acoustically opaque and as such, Kairo was never acoustically separated from the dyad. 

Even if Kairo had been separated acoustically from the dyad, Kylu may still have been 

predisposed to produce his father’s calls as he matured, even without exposure (Vergara 

& Barrett-Lennard, 2008). 

Conclusions 

Studies of vocal development are crucial in understanding the communication of 

species that heavily rely on sound to survive and maintain social ties with conspecifics. It 

was my objective to complete a study that added to the literature and furthered the 

scientific understanding of beluga calves through the development of Kylu’s vocal 

repertoire. As was emphasized above, the aim of this research was to answer the 

following questions: 1) what can we infer regarding the beluga communication system 



 

71 

through studying and comparing the vocal development of beluga calves? 2) What more 

can we understand regarding complex contact calls? And 3) how are the calls of beluga 

neonates affected by noise?  

Findings in the current report provide evidence in support of species-specific 

stages in sound acquisition and changes in parameters of beluga calf sounds also follow 

similar developmental trajectories. A detailed investigation into the changes of calf call 

acoustic energy distribution over the first year of life is also provided here. Furthermore, 

it appears that male beluga calves first develop contact calls that are similar to their 

mother’s contact call type, though not identical as evident through DFA classification. 

Finally, analyses of pulse train source levels and parameters of acoustic energy 

distribution in the calf’s first month of life are useful to shed light on the extent to which 

vessel noise in the SLE and other noisy beluga habitats impacts effective mother-calf 

communication. Future research will seek to further our understanding of beluga contact 

call usage in addition to elucidating the function of other contextually specific calls. 

There is still much to be learned regarding the communication systems of the 

loquacious beluga whale. Continuing studies of vocal development can tell us a good deal 

about highly communicative animal species in regard to the sounds that are salient to the 

species, learning processes or genetic predispositions that shape vocal repertoires over 

time, and how changes in characteristics of vocalizations interact with the environment, 

especially when animals are forced to respond to environmental changes that may be 

influenced by humans. Vocal development studies are sparse in the literature for many 

animal species. In cetaceans, this is partly due to difficulties in studying wild cetacean 

calves for long periods of time. However, when a species like the beluga can be well 

managed in captive care, it is of upmost importance to learn as much as we can about 
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these animals in a controlled environment in order to aid understanding of the species’ 

wild counterparts. It was the primary objective of this study to increase our knowledge of 

the beluga species through exploration of beluga vocal ontogeny.



 

73 

APPENDIX A – IACUC Approval Letter 

 
   

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE 
  

118 College Drive #5116  |  Hattiesburg, MS 39406-0001    
Phone: 601.266.6791  |  Fax: 601.266.4377  |  iacuc@usm.edu  |  www.usm.edu/iacuc 

 
 

 

NOTICE OF COMMITTEE ACTION 

The proposal noted below was reviewed and approved by The University of Southern Mississippi 
Institutional Animal Care and Use Committee (IACUC) in accordance with regulations by the United 
States Department of Agriculture and the Public Health Service Office of Laboratory Animal Welfare. The 
project expiration date is noted below. If for some reason the project is not completed by the end of the 
approval period, your protocol must be reactivated (a new protocol must be submitted and approved) before 
further work involving the use of animals can be done. 

Any significant changes should be brought to the attention of the committee at the earliest possible time. If 
you should have any questions, please contact me. 

 

PROTOCOL NUMBER:  16041402 
PROJECT TITLE:  Beluga (Delphinapterus leucas) Vocal Ontogeny 
PROPOSED PROJECT DATES:  04/2016 – 09/2018 
PROJECT TYPE:  New 
PRINCIPAL INVESTIGATOR(S):  Stan Kuczaj 
DEPARTMENT:  Psychology 
FUNDING AGENCY/SPONSOR:  N/A 
IACUC COMMITTEE ACTION:  Full Committee Approval 
PROTOCOL EXPIRATON DATE:  September 30, 2018 

 

 

4/14/2016 
Frank Moore, PhD 
IACUC Chair 

 Date 

 



 

74 

APPENDIX B – Animal Care & Welfare Committee Approval Lett

 

Fundación Oceanogràfic de la Comunitat Valenciana Address: C/. Eduardo Primo Yúfera (Científic), nº 1B 
46013  Valencia España Fiscal Address: Gran Vía Marqués del Turia 19. 46005 Valencia España Tlf: (+34) 

961 975 500    Fax(+34) 96  1975511  web:www.avanqua.org 

 

Valeria Vergara  
Vancouver Aquarium Marine Science Centre 845 Avison Way, Vancouver, BC V6G 3E2, Canada 

Valeria.vergara@vanaqua.org 

9th November 2016 
 
DECISION OF ANIMAL CARE & WELFARE COMMITTEE RELATING TO APPLICATION FOR USE OF ANIMALS 
AT OCEANOGRÁFIC – BIOLOGICAL SAMPLE 

 

Project Title:  Beluga vocal development 

Project reference: OCE-9-16     

 
Dear Valeria, 
 
We have carefully evaluated the above-named project. 
 
I am pleased to inform you that your Application to use Animals for Research was Approved as a Biological Sample 
Request 
 
The conditions under which sampling may proceed are as follows: 
 

(i) The Applicant will allow Oceanogràfic to review a draft of any project report based on analysis of the 
specimens or data originating from the Oceanogràfic.  Any communication made public or open access 
is considered a report. 

(ii) The Applicant will acknowledge Oceanogràfic in any publication arising from the Project, and provide 
Oceanogràfic with a copy of any printed publication. 

(iii) The applicant will not use the samples for any other purpose that the ones specified in the original 
request.   

(iv) The applicant will not use the samples for commercial purposes. 
 
 
Please sign a copy of this letter at the bottom of the page to confirm your agreement of the conditions and return to 
Ms. Silvia Tecles at stecles@oceanografic.org.  Silvia will be the initial point of contact for providing information, 
addressing concerns and for ensuring all aspects of the research activities follow Oceanogràfic policies.  
 
We look forward to working with you on this important project.  
 
  
Sincerely, 
  
  
Andreas Fahlman, Director of Research 
Fundación Oceanogràfic Administration 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------ 
I accept the terms and conditions detailed above: 
 
Name:  Valeria Vergara 
 
 
Date:        Signature: 
  



 

75 

REFERENCES 

Alekseeva, Y. I., Panova, E. M., & Bel’kovich, V. M. (2013). Behavioral and acoustical

 characteristics of the reproductive gathering of beluga whales (Delphinapterus

 leucas) in the vicinity of Myagostrov, Golyi Sosnovets, and Roganka Islands

 (Onega Bay, the White Sea). Biology Bulletin, 40(3), 307-317. 

Ames, A. (2016). Pre and Post Partum Whistle Production of a Bottlenose Dolphin

 (Tursiops Truncatus) Mother-Calf Dyad. Master's Theses. Paper 168.

 http://aquila.usm.edu/masters_theses/168. 

Ames, A., Beedholm, K., & Madsen, P. (2019). Lateralization of sound production in the

 beluga whale (Delphinapterus leucas). Manuscript in preparation. 

Ames, A. E., Zapetis, M. E., Witlicki, K. L., Wielandt, S. J., Cameron, D. M., Walker, R.

 T., & Kuczaj, S. A. (2017). Thunks: Evidence for graded harmonic structure in

 an Atlantic bottlenose dolphin (Tursiops truncatus) sound. International Journal

 of Comparative Psychology, 30. 

Au, W. W., Carder, D. A., Penner, R. H., & Scronce, B. L. (1985). Demonstration of

 adaptation in beluga whale echolocation signals. The Journal of the Acoustical

 Society of America, 77(2), 726-730. 

Belikov, R. A., & Bel’Kovich, V. M. (2006). High-pitched tonal signals of beluga whales

 (Delphinapterus leucas) in a summer assemblage off Solovetskii Island in the

 White Sea. Acoustical Physics, 52(2), 125-131. 

Belikov, R. A., & Bel’kovich, V. M. (2007). Whistles of beluga whales in the

 reproductive gathering off Solovetskii Island in the White Sea. Acoustical

 Physics, 53(4), 528-534. 



 

76 

Belikov, R. A., & Bel’kovich, V. M. (2008). Communicative pulsed signals of beluga

 whales in the reproductive gathering off Solovetskii Island in the White

 Sea. Acoustical Physics, 54(1), 115. 

Belkovitch, V. M., & Shekotov, M. N. (1993). The Belukha whale: natural behavior and

 bioacoustics. USSR Academy of Sciences, Shirshov Institute of Oceanology,

 translated by M. A. Svanidze. J. C. Haney and C. Recchia (Eds.). Woods Hole

 Oceanographic Institution, Woods Hole, MA. 

Bojanowski, E., Veit, F., & Todt, D. (2000). The development of a bivocal signature

 whistle in a bottlenose dolphin calf. European Research on Cetaceans, 14, 70-74. 

Boughman, J. W., & Moss, C. F. (2003). Social sounds: vocal learning and development

 of mammal and bird calls. In Acoustic communication (pp. 138-224). Springer,

 New York, NY. 

Bowles, A. E., Grebner, D. M., Musser, W. B., Nash, J. S., & Crance, J. L. (2015).

 Disproportionate emission of bubble streams with killer whale biphonic calls:

 Perspectives on production and function. The Journal of the Acoustical Society of

 America, 137(2), 165-170. 

Bowles, A. E., Young, W. G., & Asper, E. D. (1988). Ontogeny of stereotyped calling of

 a killer whale calf, Orcinus orca, during her first year. Rit Fiskideildar, 11, 251-

 275. 

Brill, L. R. and Harder, P. J. (1991). The effects of attenuating returning echolocation

 signals at the lower jaw of a dolphin (Tursiops truncatus). The Journal of the

 Acoustical Society of America, 89, 2851-2857 

Caldwell, M. C., & Caldwell, D. K. (1965). Individualized whistle contours in bottle-

 nosed dolphins (Tursiops truncatus). Nature, 207(4995), 434. 



 

77 

Caldwell, M.C., & Caldwell, D.K. (1972). Vocal mimicry in the whistle mode by an

 Atlantic bottlenosed dolphin. Cetology, 9, 1–8. 

Caldwell, M.C., & Caldwell, D.K. (1979) The whistle of the Atlantic bottlenosed dolphin

 (Tursiops truncatus) - ontogeny. In H.E. Winn & B.L. Olla (Eds) Behavior of

 Marine Animals, vol. 3 (369-401). New York, NY: Plenum Press.  

Castellote, M., Vergara, V., Barrett-Lennard, L. G., & Esteban, J. A. (2007). Sound

 production of neonate captive beluga whales. In Proceedings of the 21st

 Conference of the European Cetacean Society. 

Chmelnitsky, E. G., & Ferguson, S. H. (2012). Beluga whale, Delphinapterus leucas,

 vocalizations from the Churchill River, Manitoba, Canada. The Journal of the

 Acoustical Society of America, 131(6), 4821-4835. 

Clark, C. W., Ellison, W. T., Southall, B. L., Hatch, L., Van Parijs, S. M., Frankel, A., &

 Ponirakis, D. (2009). Acoustic masking in marine ecosystems: intuitions, analysis,

 and implication. Marine Ecology Progress Series, 395, 201-222. 

Colbeck, G. J., Duchesne, P., Postma, L. D., Lesage, V., Hammill, M. O., & Turgeon, J.

 (2013). Groups of related belugas (Delphinapterus leucas) travel together during

 their seasonal migrations in and around Hudson Bay. Proceedings of the Royal

 Society of London B: Biological Sciences, 280(1752), 20122552. 

Connor, R. C., & Smolker, R. A. (1996). 'Pop' goes the dolphin: A vocalization male

 bottlenose dolphins produce during consortships. Behaviour, 133(9), 643-662. 

Crance, J. L., Bowles, A. E., & Garver, A. (2014). Evidence for vocal learning in juvenile 

 male killer whales, Orcinus orca, from an adventitious cross-socializing

 experiment. Journal of Experimental Biology, 217(8), 1229-1237. 



 

78 

Cranford, T. W. (2000). In search of impulse sound sources in odontocetes In W. W. L.

 Au, A. N. Popper & R. R. Fay (Eds.), Hearing by Whales and Dolphins (pp. 109-

 155). New York, NY: Springer. 

Cranford, T. W., Amundin, M., & Norris, K. S. (1996). Functional morphology and

 homology in the odontocete nasal complex: implications for sound generation.

 Journal of Morphology, 228(3), 223-285. 

Cranford, T. W., Elsberry W. R., Blackwood, D. J., Carr, J. A., Kamolnick, T., Todd, M.,

 Van Bonn, W. G., Carder, D. A., Ridgway, S. H. (2000). Two independent sonar

 signal generators in the bottlenose dolphin: Physiologic evidence and

 implications. Journal of the Acoustical Society of America, 108, 2613-2614 

Cranford, T. W., Elsberry, W. R., Van Bonn, W. G., Jeffress, J. A., Chaplin, M. S.,

 Blackwood, D. J., Carder, D. A., Kamolnick, T., Todd, M. A.  & Ridgway, S. H.

 (2011). Observation and analysis of sonar signal generation in the bottlenose

 dolphin (Tursiops truncatus): evidence for two sonar sources. Journal of

 Experimental Marine Biology and Ecology, 407, 81-96. 

Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees

 produce group‐specific calls: a case for vocal learning?. Ethology, 110(3), 221-

 243. 

DeCasper, A., & Fifer, W. (1980). Of human bonding: infants prefer their mother’s

 voices. Science, 208, 1174-1176.  

Deecke, V., Ford, J., & Spong, P. (1999). Quantifying complex patterns of bioacoustics

 variation: Use of a neural network to compare killer whale (Orcinus orca)

 dialects. Journal of the Acoustical Society of America, 105, 2499–2507. 



 

79 

Dormer, K. J. (1979). Mechanism of sound production and air recycling in delphinids-

 cineradiographic evidence. Journal of Acoustical Society of America. 65, 229-

 239. 

Eaton, R. L. (1979). A beluga whale imitates human speech. Carnivore, 2, 22-23. 

Elowson, A. M., Snowdon, C. T., & Lazaro-Perea, C. (1998). Infant babbling in a

 nonhuman primate: Complex vocal sequences with repeated call

 types. Behaviour, 135(5), 643-664. 

Elowson, A. M., Snowdon, C. T., & Lazaro-Perea, C. (1998). Babbling and social context

 in infant monkeys: parallels to human infants. Trends in cognitive sciences, 2(1),

 31-37. 

Erbe, C. (1999). The effects of anthropogenic noise on Canadian marine mammals.

 Canadian Acoustics, 27(3), 10-11. 

Erbe, C., & Farmer, D. M. (1998). Masked hearing thresholds of a beluga whale

 (Delphinapterus leucas) in icebreaker noise. Deep Sea Research Part II: Topical

 Studies in Oceanography, 45(7), 1373-1388. 

Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K., & Dooling, R. (2015).

 Communication masking in marine mammals: A review and research

 strategy. Marine pollution bulletin, 103(1), 15-38. 

Favaro, L., Gnone, G., & Pessani, D. (2013). Postnatal development of echolocation

 abilities in a bottlenose dolphin (Tursiops truncatus): Temporal organization. Zoo

 Biology, 32(2), 210-215. 

Fish, M., & Mowbray, W. (1962). Production of underwater sounds by the white whale

 or beluga, Delphinapterus leucas. Journal of Marine Research, 20, 149-162. 



 

80 

Fisheries and Oceans Canada (2017). St. Lawrence Estuary Beluga: A science based

 review of recovery actions for three at-risk whale populations. Retrieved from:

 http://www.dfompo.gc.ca/speciesespeces/whalereview-revuebaleine/review

 revue/beluga/index-eng.html. 

Foote, A. D., Griffin, R. M., Howitt, D., Larsson, L., Miller, P. J., & Hoelzel, A. R.

 (2006). Killer whales are capable of vocal learning. Biology Letters, 2(4), 509-

 512. 

Francis, C. D., Ortega, C. P., & Cruz, A. (2010). Vocal frequency change reflects

 different responses to anthropogenic noise in two suboscine tyrant

 flycatchers. Proceedings of the Royal Society of London B: Biological Sciences,

 278, 2025-2031. doi:10.1098/rspb.2010.1847. 

Fripp, D., Owen, C., Quintana-Rizzo, E., Shapiro, A., Buckstaff, K., Jankowski, K.,

 Wells, R., & Tyack, P. (2005). Bottlenose dolphin (Tursiops truncatus) calves

 appear to model their signature whistles on the signature whistles of community

 members. Animal Cognition, 8(1), 17-26. 

Fripp, D., & Tyack, P. (2008). Postpartum whistle production in bottlenose dolphins. 

 Marine Mammal Science, 24(3), 479–502. doi:10.1111/j.1748-7692.2008.00195.x 

Garland, E. C., Castellote, M., & Berchok, C. L. (2015). Beluga whale (Delphinapterus

 leucas) vocalizations and call classification from the eastern Beaufort Sea

 population. The Journal of the Acoustical Society of America, 137(6), 3054-3067. 

Gervaise, C., Simard, Y., Roy, N., Kinda, B., & Ménard, N. (2012). Shipping noise in

 whale habitat: Characteristics, sources, budget, and impact on beluga in

 Saguenay–St. Lawrence Marine Park hub. The Journal of the Acoustical Society

 of America, 132, 76-89. 



 

81 

Gnone, G., & Moriconi, T. (2010). Use and function of distinctive whistle-like signals in 

 bottlenose dolphins (Tursiops truncatus) mother-calf pair. In A. G. Pearce & L.

 M. Correa (Eds.) Dolphins: Anatomy, Behavior and Threats (149-167).

 Hauppauge, NY: Nova Science Publishers. 

Goldstein, M. H., King, A. P., & West, M. J. (2003). Social interaction shapes babbling:

 Testing  parallels between birdsong and speech. Proceedings of the National

 Academy of Sciences, 100(13), 8030-8035. 

Hage, S. R., Jiang, T., Berquist, S. W., Feng, J., & Metzner, W. (2013). Ambient noise

 induces independent shifts in call frequency and amplitude within the Lombard

 effect in echolocating bats. Proceedings of the National Academy of

 Sciences, 1211533110. 

Hanna, D., Blouin-Demers, G., Wilson, D. R., & Mennill, D. J. (2011). Anthropogenic

 noise affects song structure in red-winged blackbirds (Agelaius

 phoeniceus). Journal of experimental Biology, 214(21), 3549-3556. 

Hill, H. M. (2009). The behavioral development of two beluga calves during the first year

 of life. International Journal of Comparative Psychology, 22(4). 

Hill, H. M., Campbell, C., Dalton, L., & Osborn, S. (2013). The first year of behavioral

 development and maternal care of beluga (Delphinapterus leucas) calves in

 human care. Zoo biology, 32(5), 565-570. 

Hobbs, R. C., Laidre, K. L., Vos, D. J., Mahoney, B. A., & Eagleton, M. (2005).

 Movements and area use of belugas, Delphinapterus lencas, in a subarctic

 Alaskan estuary. Arctic, 331- 340. 

Holden, C. (2006). Polly pachyderm. Science, 314, 29.  



 

82 

Hooper, S., Reiss, D., Carter, M., & McCowan, B. (2006). Importance of contextual

 saliency on vocal imitation by bottlenose dolphins. International Journal of

 Comparative Psychology, 19(1). 

Hultsch, H., & Todt, D. (2004). Learning to sing. In P. Marler & H. Slabbekoorn

 (Eds.) Nature's Music: The science of birdsong (pp. 80-107). Oxford, U.K.:

 Academic Press. 

Janik, V. M. (1999a). Pitfalls in the categorization of behaviour: a comparison of dolphin

 whistle classification methods. Animal Behaviour, 57(1), 133-143. 

Janik, V. M. (1999b). Origins and implications of vocal learning in bottlenose dolphins

 In H. O. Box & K. R. Gibson (Eds.), Mammalian Social Learning: Comparative

 and ecological perspectives (pp. 309-413). Cambridge, U.K.: Cambridge

 University Press. 

Janik, V. M. (2005). Underwater acoustic communication networks in marine mammals

 In McGregor, P. K. (Ed.), Animal communication networks (pp. 390-415).

 Cambridge, U.K.: Cambridge University Press. 

Janik, V. M. (2014). Cetacean vocal learning and communication. Current Opinion in

 Neurobiology, 28, 60-65. 

Janik, V. M., & Slater, P. J. (1997). Vocal learning in mammals. Advances in the Study of

 Behaviour, 26, 59-100. 

Janik,V. M., & Slater P. (1998). Context-specific use suggests that bottlenose dolphin

 signature whistles are cohesion calls. Animal Behaviour, 56, 829–838.  

Janik, V. M., & Slater, P. J. (2000). The different roles of social learning in vocal

 communication. Animal Behaviour, 60(1), 1-11. 



 

83 

Karlsen, J., Bisther, A., Lydersen, C., Haug, T., & Kovacs, K. (2002). Summer

 vocalisations of adult male white whales (Delphinapterus leucas) in Svalbard,

 Norway. Polar Biology, 25(11), 808-817. 

Killebrew, D., Mercado, E., Herman, L., & Pack, A. (2001). Sound production of a

 neonate bottlenose dolphin. Aquatic Mammals, 27(1), 34-44. 

King, S. L., & Janik, V. M. (2015). Come dine with me: food-associated social signaling

 in wild bottlenose dolphins (Tursiops truncatus). Animal cognition, 18(4), 969-

 974. 

King, S., Sayigh, L., Wells, R. S., Fellner, W., & Janik, V. M. (2013). Vocal copying of

 individually distinctive signature whistles in bottlenose dolphins. Proceedings of

 the Royal Society, 208.  

Knörnschild, M. (2014). Vocal production learning in bats. Current Opinion in

 Neurobiology, 28, 80-85. 

Knörnschild, M., Behr, O., & von Helversen, O. (2006). Babbling behavior in the sac

 winged bat (Saccopteryx bilineata). Naturwissenschaften, 93(9), 451-454. 

Krasnova, V. V., Chernetsky, A. D., Zheludkova, A. I., & Bel’kovich, V. M. (2014).

 Parental behavior of the beluga whale (Delphinapterus leucas) in natural

 environment. Biology Bulletin, 41(4), 349-356. 

Kroodsma, D. E., & Baylis, J. R. (1982). Appendix: a world survey of evidence for vocal

 learning in birds. Acoustic communication in birds, 2, 311-337. 

Kuczaj, S. A. (1998). Is an evolutionary theory of language play possible?. Cahiers de

 Psychologie Cognitive: Current Psychology of Condition, 17(2), 135. 

Kuczaj, S. A., & Makecha, R. (2008). The role of play evolution and ontogeny of

 contextually flexible communication. In D.K. Oller and U. Griebel (Eds.)



 

84 

 Evolution of Communicative Flexibility. Complexity, Creativity, and Adaptability

 in Human and Animal Communication (pp. 253-277). Cambridge, MA: MIT

 Press. 

Lesage, V., Barrette, C., Kingsley, M., & Sjare, B. (1999). The effect of vessel noise on

 the vocal behavior of belugas in the St. Lawrence River estuary, Canada. Marine

 Mammal Science, 15(1), 65-84. 

Lesage, V., & McQuinn, I. H., Carrier, D., Gosselin, J. F., & Mosnier, A.

 (2014). Exposure of the beluga (Delphinapterus leucas) to marine traffic under

 various scenarios of transit route diversion in the St. Lawrence Estuary. Canadian

 Science Advisory Secretariat. 

Lesage, V., Measures, L. N., Mosnier, A., Lair, S., Michaud, R., & Béland, P.

 (2014). Mortality patterns in St. Lawrence Estuary beluga (Delphinapterus

 leucas), inferred from the carcass recovery data, 1983-2012. Canadian Science

 Advisory Secretariat. 

Mackay, R. S., & Liaw, H. M. (1981). Dolphin vocalization mechanisms. Science,  

212(4495), 676-678. 

MacLeod CD (2009) Vocal learning in a captive beluga calf (Delphinapterus leucas)

 (Bachelor’s thesis). University of British Columbia, Vancouver, Canada. 

Madsen, P. T., Lammers, M., Wisniewska, D., & Beedholm, K. (2013). Nasal sound

 production in echolocating delphinids (Tursiops truncatus and Pseudorca

 crassidens) is dynamic, but unilateral: clicking on the right side and whistling on

 the left side. Journal of experimental biology, 216(21), 4091-4102. 



 

85 

Madsen, P. T., Wisniewska, D., & Beedholm, K. (2010). Single source sound production

 and dynamic beam formation in echolocating harbour porpoises (Phocoena

 phocoena). Journal of Experimental Biology, 213(18), 3105-3110. 

Marler, P., & Peters, S. (1982a). Subsong and plastic song: Their role in the vocal

 learning process In D.E. Kroodsma & E.H. Miller (Eds.), Acoustic

 Communication in Birds, Vol. 2. Song Learning and its Consequences (pp. 25-

 50). New York, NY: Academic Press. 

Marler, P., & Peters, S. (1982b). Developmental overproduction and selective attrition:

 New processes in the epigenesis of birdsong. Developmental Psychobiology, 15,

 369–378. 

McBride, A., & Kritzler, H. (1951). Observations on Pregnancy, Parturition, and

 Postnatal Behavior in the Bottlenose Dolphin. Journal of Mammalogy, 32(3),

 251–266. 

McCowan, B., & Reiss, D. (1995a). Maternal aggressive contact vocalizations in captive

 bottlenose dolphins (Tursiops truncatus): Wide‐band, low‐frequency signals

 during mother/aunt‐infant interactions. Zoo Biology, 14(4), 293-309. 

McCowan, B., & Reiss, D. (1995b). Whistle contour development in captive-born infant

 bottlenose dolphins (Tursiops truncatus): Role of learning. Journal of

 Comparative Psychology, 109(3), 242. 

Mello, I., & Amudin, M. (2005). Whistle production pre- and post-partum in bottlenose

 dolphins (Tursiops truncatus) in human care. Aquatic Mammals, 31, 169–175. 

Miksis, J., Tyack, P., & Buck, J. (2002). Captive dolphins, Tursiops truncatus, develop

 signature whistles that match acoustic features of human-made model sounds. The

 Journal of the Acoustical Society of America, 112, 728–739. 



 

86 

Miller, P. J., & Bain, D. E. (2000). Within-pod variation in the sound production of a pod

 of killer whales, Orcinus orca. Animal Behaviour, 60(5), 617-628. 

Mishima, Y., Morisaka, T., Itoh, M., Matsuo, I., Sakaguchi, A., & Miyamoto, Y. (2015).

 Individuality embedded in the isolation calls of captive beluga whales

 (Delphinapterus leucas). Zoological letters, 1(1), 27. 

Monroy, J. A., Carter, M. E., Miller, K. E., & Covey, E. (2011). Development of

 echolocation and communication vocalizations in the big brown bat, Eptesicus

 fuscus. Journal of Comparative Physiology A, 197(5), 459-467. 

Morisaka, T., Shinohara, M., Nakahara, F., & Akamatsu, T. (2005). Effects of ambient

 noise on the whistles of Indo-Pacific bottlenose dolphin populations. Journal of

 Mammalogy, 86(3), 541-546. 

Morisaka, T., Shinohara, M., & Taki, M. (2005a). Underwater sounds produced by

 neonatal bottlenose dolphins (Tursiops truncatus): I. Acoustic characteristics.

 Aquatic Mammals, 31(2), 248. 

Morisaka, T., Shinohara, M., & Taki, M. (2005b). Underwater sounds produced by

 neonatal bottlenose dolphins (Tursiops truncatus): II. Potential function. Aquatic

 Mammals, 31(2), 258. 

Morisaka, T., Yoshida, Y., Akune, Y., Mishima, H., & Nishimoto, S. (2013). Exchange

 of “signature” calls in captive belugas (Delphinapterus leucas). Journal of

 ethology, 31(2), 141-149. 

Mumm, C. A., & Knörnschild, M. (2014). The vocal repertoire of adult and neonate giant

 otters (Pteronura brasiliensis). PloS one, 9(11), e112562. 

Murayama, T., Fujii, Y., Hashimoto, T., Shimoda, A., Iijima, S., Hayasaka, K., Shiroma,

 N., Koshikawa, M., Katsumata, H., Soichi, M., & Arai, K. (2012). Preliminary



 

87 

 study of object labeling using sound production in a beluga. International Journal

 of Comparative Psychology, 25(3), 195-207. 

Murray, S. O., Mercado, E., & Roitblat, H. L. (1998). Characterizing the graded structure

 of false killer whale (Pseudorca crassidens) vocalizations. The Journal of the

 Acoustical Society of America, 104(3), 1679-1688. 

Nemeth, E., Pieretti, N., Zollinger, S. A., Geberzahn, N., Partecke, J., Miranda, A. C., &

 Brumm, H. (2013). Bird song and anthropogenic noise: vocal constraints may

 explain why birds sing higher-frequency songs in cities Proceedings of the Royal

 Society of London B: Biological Sciences, 280(1754), 20122798. 

Nottebohm, F. (1972). The origins of vocal learning. The American Naturalist, 106(947),

 116-140. 

Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of

 cetaceans to anthropogenic noise. Mammal Review, 37(2), 81-115. 

O’Corry-Crowe, G., Suydam, R., Quakenbush, L., Potgieter, B., Harwood, L., Litovka,

 D., Ferrer, T., Citta, J., Burkanov, V., Frost, K., & Mahoney, B. (2018). Migratory

 culture, population structure and stock identity in North Pacific beluga whales

 (Delphinapterus leucas). PloS one, 13(3), e0194201. 

O'Corry‐Crowe, G. M., Suydam, R. S., Rosenberg, A., Frost, K. J., & Dizon, A. E.

 (1997).  Phylogeography, population structure and dispersal patterns of the beluga

 whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial

 DNA. Molecular Ecology, 6(10), 955-970. 

Orr, E., & Geva, R. (2015). Symbolic play and language development. Infant Behavior

 and Development, 38, 147-161. 



 

88 

Palsbøll, P. J., Heide-Jørgensen, M. P., & Bérubé, M. (2002). Analysis of mitochondrial

 control region nucleotide sequences from Baffin Bay beluga, (Delphinapterus

 leucas): detecting pods or sub-populations?. NAMMCO Scientific Publications, 4,

 39-50. 

Panova, E., Agafonov, A., Belikov, R., & Melnikova, F. (2017). Vocalizations of captive

 beluga whales, Delphinapterus leucas: Additional evidence for contact signature

 “mixed” calls in belugas. Marine Mammal Science, 33(3), 889-903. 

 Panova, E. M., Belikov, R. A., Agafonov, A. V., & Bel’Kovich, V. M. (2012). The

 relationship between the behavioral activity and the underwater vocalization of

 the beluga whale (Delphinapterus leucas). Oceanology, 52(1), 79-87. 

Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M., & Giacoma, C. (2015). Dolphins

 adjust species-specific frequency parameters to compensate for increasing

 background noise. PloS one, 10(4), e0121711. 

Partanen E., Kujala A., Tervaniemi M., & Huotilainen M. (2013). Prenatal music

 exposure induces long-term neural effects. PLoS ONE 8(10): e78946.

 doi:10.1371/journal.pone.0078946. 

Pepperberg, I. M. (2010). Vocal learning in Grey parrots: A brief review of perception,

 production, and cross-species comparisons. Brain and language, 115(1), 81-91. 

Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S., & Watwood, S. (2005). Animal

 behaviour: elephants are capable of vocal learning. Nature, 434(7032), 455-456. 

Recchia, C. A. (1994). Social Behaviour of Captive Belugas, Delphinapterus Leucas

 (Doctoral dissertation). Woods Hole Oceanographic Institution, Woods Hole,

 MA.  



 

89 

Reichmuth, C., & Casey, C. (2014). Vocal learning in seals, sea lions, and walruses. 

 Current opinion in neurobiology, 28, 66-71. 

Reiss, D. (1988). Observations on the development of echolocation in young bottlenose

 dolphins. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal Sonar, (pp. 121-

 127). New York, NY: Plenum Publishing. 

Reiss, D., & McCowan, B. (1993). Spontaneous vocal mimicry and production by

 bottlenose dolphins (Tursiops truncatus): Evidence for vocal learning. Journal of

 Comparative Psychology, 107(3), 301. 

Richards, D. G., Wolz, J. P., & Herman, L. M. (1984). Vocal mimicry of computer

 generated sounds and vocal labeling of objects by a bottlenosed dolphin, Tursiops

 truncatus. Journal of Comparative Psychology, 98(1), 10. 

Ridgway, S., Carder, D., Jeffries, M., & Todd, M. (2012). Spontaneous human speech

 mimicry by a cetacean. Current Biology, 22(20), R860-R861. 

Riesch, R., Ford, J. K., & Thomsen, F. (2006). Stability and group specificity of

 stereotyped whistles in resident killer whales, Orcinus orca, off British

 Columbia. Animal Behaviour, 71(1), 79-91. 

Rolland, R. M., Parks, S. E., Hunt, K. E., Castellote, M., Corkeron, P. J., Nowacek, D. P.,

 Wasser, S. K., & Kraus, S. D. (2012). Evidence that ship noise increases stress in

 right whales. Proceedings of the Royal Society of London B: Biological

 Sciences, 279(1737), 2363-2368. 

Sayigh, L. S. (1992). Development and functions of signature whistles of free-ranging

 bottlenose dolphins, Tursiops truncatus (Unpublished doctoral dissertation).

 Massachusetts Institute of Technology, Cambridge. 



 

90 

Sayigh, L. S., Esch, H. C., Wells, R. S., & Janik, V. M. (2007). Facts about signature

 whistles of bottlenose dolphins, Tursiops truncatus. Animal Behaviour, 74(6),

 1631-1642. doi:10.1016/j.anbehav.2007.02.018 

Sayigh, L. S., Tyack, P. L., Wells, R. S., & Scott, M. D. (1990). Signature whistles of

 free-ranging bottlenose dolphins Tursiops truncatus: stability and mother

 offspring comparisons. Behavioral Ecology and Sociobiology, 26(4), 247-260. 

Sayigh, L., Tyack, P., Wells, R., Scott, M., & Irvine, A. (1995). Sex difference in

 signature whistle production of free-ranging bottlenose dolphins, Tursiops

 truncatus. Behavioral Ecology and Sociobiology, 36(3), 171–177.  

Schevill, W. E., & Lawrence, B. (1949). Underwater listening to the white porpoise

 (Delphinapterus leucas). Science, 109(2824), 143-144. 

Schulz, T. M., Whitehead, H., Gero, S., & Rendell, L. (2008). Overlapping and matching

 of codas in vocal interactions between sperm whales: insights into communication

 function. Animal Behaviour, 76(6), 1977-1988. 

Shapiro, A. D., Slater, P. J., & Janik, V. M. (2004). Call usage learning in gray seals

 (Halichoerus grypus). Journal of Comparative Psychology, 118(4), 447. 

Sjare, B. L., & Smith, T. G. (1986a). The vocal repertoire of white whales,

 Delphinapterus leucas, summering in Cunningham Inlet, Northwest Territories.

 Canadian Journal of Zoology, 64(2), 407-415. 

Sjare, B. L., & Smith, T. G. (1986b). The relationship between behavioral activity and

 underwater vocalizations of the white whale, Delphinapterus leucas. Canadian

 Journal of Zoology, 64(12), 2824-2831. 



 

91 

Smith, T. G., Hammill, M. O., & Martin, A. R. (1994). Herd composition and behavior

 of white whales (Delphinapterus leucas) in two Canadian arctic

 estuaries. Meddelelser om Grønland Bioscience, 39, 175-184. 

Snowdon, C. T., & Elowson, A. M. (2001). 'Babbling'in pygmy marmosets: Development

 after infancy. Behaviour, 138(10), 1235-1248. 

Snowdon, C .T., Elowson, A. M., & Roush, R. S. (1997). Social influences on vocal

 development in New World primates. In C. T. Snowdon & M. Hausberger (Eds.),

 Social influences on vocal development (pp. 178–207). Cambridge: Cambridge

 University Press. 

Soha, J. A., & Peters, S. (2015). Vocal learning in songbirds and humans: a retrospective

 in honor of Peter Marler. Ethology, 121(10), 933-945. 

Suydam, R. S., Lowry, L. F., Frost, K. J., O'Corry-Crowe, G. M., & Pikok Jr, D. (2001).

 Satellite tracking of eastern Chukchi Sea beluga whales into the Arctic Ocean.

 Arctic, 237-243. 

Takahashi, D. Y., Fenley, A. R., Teramoto, Y., Narayanan, D. Z., Borjon, J. I., Holmes,

 P., & Ghazanfar, A. A. (2015). The developmental dynamics of marmoset

 monkey vocal production. Science, 349(6249), 734-738. 

Tyack, P. L. (1986). Whistle repertoires of two bottlenosed dolphins, Tursiops truncatus:

 mimicry of signature whistles? Behavioral Ecology and Sociobiology, 18(4) 251-

 257.  

Tyack, P. (1991). If you need me, whistle. Natural history, (8), 60-63. 

Tyack, P. L. (1997). Development and social functions of signature whistles in bottlenose

 dolphins Tursiops truncatus. Bioacoustics, 8(1-2), 21-46. 



 

92 

Tyack, P. L. (2003). Dolphins communicate about individual-specific social

 relationships. In F. B. M. de Waal & P. L. Tyack (Eds.), Animal social

 complexity: Intelligence, culture, and individualized societies (pp. 342-362).

 Cambridge, MA, US: Harvard University Press. 

Tyack, P. L. (2008). Convergence of calls as animals form social bonds, active

 compensation for noisy communication channels, and the evolution of vocal

 learning in mammals. Journal of Comparative Psychology, 122(3), 319. 

Tyack, P. L. (2016). Vocal learning and auditory-vocal feedback. In R. A. Suthers, W. T.

 Fitch, R. R. Fay, & A. N. Popper (Eds.), Vertebrate sound production and

 acoustic communication (pp. 261-295). New York, NY: Springer. 

Tyack, P. L., & Sayigh, L. S. (1997). Vocal learning in cetaceans. In C. Snowdon & M.

 Hausberger (Eds.) Social influences on vocal development (208-233). Cambridge,

 U.K.: Cambridge University Press. 

Van Parijs, S. M., Lydersen, C., & Kovacs, K. M. (2003). Sounds produced by individual

 white whales, Delphinapterus leucas, from Svalbard during capture (L). The

 Journal of the Acoustical Society of America, 113(1), 57-60. 

Veirs, S., Veirs, V., & Wood, J. D. (2016). Ship noise extends to frequencies used for

 echolocation by endangered killer whales. PeerJ, 4, e1657. 

Vergara, V. (2011). Acoustic communication and vocal learning in belugas

 (Delphinapterus leucas) (Doctoral dissertation). University of British Columbia,

 Vancouver, Canada. 

Vergara, V., & Barrett-Lennard, L. G. (2008). Vocal development in a beluga calf

 (Delphinapterus leucas). Aquatic Mammals, 34(1), 123. 



 

93 

Vergara, V., Michaud, R., & Barrett-Lennard, L. (2010). What can captive whales tell us

 about their wild counterparts? Identification, usage, and ontogeny of contact

 calls in belugas (Delphinapterus leucas). International Journal of Comparative

 Psychology, 23(3). 

Vergara, V., & Mikus, M. A. (2018). Contact call diversity in natural beluga entrapments

 in an Arctic estuary: Preliminary evidence of vocal signatures in wild

 belugas. Marine Mammal Science. doi: 10.1111/mms.12538. 

Vergara, V., Wood, J., Ames, A., Mikus, M., & Michaud, R. (2019). Mom, can you hear

 me? Impacts of Underwater Noise on Mother-Calf Contact Calls in Endangered

 Belugas (Delphinapterus leucas). Manuscript in preparation. 

Vollmer, N. L., Hayek, L. A. C., Heithaus, M. R., & Connor, R. C. (2015). Further

 evidence of a context-specific agonistic signal in bottlenose dolphins: the

 influence of consortships and group size on the pop

 vocalization. Behaviour, 152(14), 1979-2000. 

Watkins, W. A. (1968). The harmonic interval: fact or artifact in spectral analysis of

 pulse trains. Woods Hole Oceanographic Institution. Woods Hole, MA. 

Watkins, W. A., & Schevill, W. E. (1977). Sperm whale codas. The Journal of the

 Acoustical Society of America, 62(6), 1485-1490. 

Weiß, B. M., Ladich, F., Spong, P., & Symonds, H. (2006). Vocal behavior of resident

 killer whale matrilines with newborn calves: The role of family signatures. The

 Journal of the Acoustical Society of America, 119(1), 627-635. 

Wich, S. A., Swartz, K. B., Hardus, M. E., Lameira, A. R., Stromberg, E., & Shumaker,

 R. W. (2009). A case of spontaneous acquisition of a human sound by an

 orangutan. Primates, 50(1), 56-64. 


	A Study of Beluga (Delphinapterus leucas) Vocal Ontogeny
	Recommended Citation

	Microsoft Word - Ames Dissertation.docx

