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ABSTRACT

FINITE ELEMENT MAXIMUM ENTROPY METHOD FOR APPROXIMATING

ABSOLUTELY CONTINUOUS INVARIANT MEASURES

by Tulsi Upadhyay

August 2017

In a chaotic dynamical system, the eventual behavior of iterates of initial points of a

map is unpredictable even though the map is deterministic. A system which is chaotic

in a deterministic point of view may be regular in a statistical viewpoint. The statistical

viewpoint requires the study of absolutely continuous invariant measure (ACIM) of a map

with respect to the Lebesgue measure. An invariant density of the Frobenius-Perron (F-P)

operator associated with a nonsingular map is employed to evaluate an ACIM of the map.

The ACIM is a key factor for studying the eventual behavior of iterates of almost all initial

points of the map. It is difficult to obtain an invariant density of the F-P operator in an exact

mathematical form except for some simple maps. Different numerical schemes have been

developed to approximate such densities.

The maximum entropy principle gives a criterion to select a least-biased density among

all densities satisfying a system of moment equations. In this principle, a least-biased density

maximizes the Boltzmann entropy. In this dissertation, piecewise quadratic functions and

quadratic splines are used in the maximum entropy method to calculate the L1 errors

between the exact and the approximate invariant densities of the F-P operator associated

with nonsingular maps defined from [0,1] to itself. The numerical results are supported by

rigorous mathematical proofs.

The L1 errors between the exact and approximate invariant densities of the Markov

operator associated with Markov type position dependent random maps, defined from [0,1]

to itself, are calculated by using the piecewise linear polynomials maximum entropy method.
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upper case letters with subscripts S1, S2, etc are used to denote maps and the lowercase
letters f , g, etc are used to write functions.
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Chapter 1

Introduction

Studying the asymptotic behavior of trajectories defined by a transformation is the main
concern of discrete dynamical systems. However, it is not always possible to describe the
asymptotic behavior of trajectories except for certain simple dynamical systems. Especially,
for a chaotic dynamical system, the behavior of trajectories is unpredictable for most initial
points. Therefore, it is natural to try to find ways to describe the asymptotic behavior of
trajectories.

Statistical methods have been developed to describe the behavior of a system as a whole.
In brief, these methods have been applied to prove the existence of invariant measures that
are absolutely continuous with respect to the Lebesgue measure. Absolutely continuous
invariant measures (abbreviated as ACIMs) are important physical measures in the statistical
study of dynamical systems because the computer simulation of trajectories of a system
reveals only the measures which are absolutely continuous with respect to the Lebesgue
measure [36].To know about the ACIM, one needs definitions of some basic mathematical
terms from measure theory.

Definition 1.0.1. Let (X ,A,µ) be a measure space, where X is a set, A is a σ -algebra of
subsets of X , and µ is a measure defined on A. Let S : X→X be a measurable transformation.
The measure µ is said to be invariant under the transformation S or S is invariant with respect
to the measure µ if µ(S−1(A)) = µ(A) for every A ∈ A. In this case, the transformation
S is also called a measure preserving transformation. When µ(X) = 1, the measure space
(X ,A,µ) is called a probability space.

The following are two examples of measure preserving transformations.

Example 1.0.2. Let µ be the Lebesgue measure defined on S1 = {z ∈ C : |z|= 1}. For any
fixed β ∈R, the transformation T : S1→ S1 defined by T (z) = e2πiβ z is measure preserving.

Example 1.0.3. (Baker’s transformation) Let µ be the Lebesgue measure defined on the
space [0,1]× [0,1]. Then the transformation

T (x,y) =
{

(2x, 1
2y), if x≤ 1

2 ,

(2x−1, 1
2y+ 1

2), if x > 1
2

preserves µ .
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Lemma 1.0.4. For a measure preserving transformation T : X → X , the following are
equivalent:
a) T is measure preserving;
b) for every f ∈ L1(X ,A,µ), ∫

X
f dµ =

∫
X

f ◦T dµ.

If one does not impose additional requirements for an invariant measure µ of S, the
measure µ might be trivial and has no physical importance in applications. For instance,
x = 0 is a fixed point of the logistic map S : [0,1]→ [0,1] defined by S(x) = 4x(1− x). It
can be shown that the Dirac measure δ0, defined by

δ0(A) =
{

1, if 0 ∈ A,
0, if 0 /∈ A ,

concentrated at 0 and is an invariant measure. A Dirac measure concentrates on a fixed point
a ∈ [0,1] of the logistic map is an invariant measure, but it is not absolutely continuous with
respect to the Lebesgue measure. Because of the lack of absolute continuity, this measure
can not be represented by the integral of an integrable function.

The example of the Dirac measure shows that an invariant measure might not be phys-
ically significant. For that reason, it is necessary to find an invariant measure having the
absolute continuity property with respect to the Lebesgue measure. An absolutely con-
tinuous measure can be defined in a number of alternative ways. A definition is given
below.

Definition 1.0.5. Let µ and ν be two measures on a measurable space (X ,A). The measure
µ is said to be absolutely continuous with respect to the measure ν if every ν-null set is
also a µ-null set, in other words, for every measurable set A, µ(A) = 0 whenever ν(A) = 0.
Generally, it is written as µ � ν to denote that µ is absolutely continuous with respect to ν .

Note 1.0.6. If a measure on a real line is called an ACIM, it means the measure is absolutely
continuous with respect to the Lebesgue measure.

Definition 1.0.7. Let (X ,A,µ) be a measure space. A measurable transformation S : X→ X

is a nonsingular transformation if µ(S−1(A)) = 0 for all A ∈A such that µ(A) = 0.

In this case, the measure µ is called a quasi-invariant measure for S. This assumption on
S in Definition 1.0.7 is equivalent to the statement of the measure µ ◦S−1 being absolutely
continuous with respect to the measure µ , where µ ◦S−1(A) = µ(S−1(A)) for all A ∈A.

An example of an absolutely continuous measure is:

Example 1.0.8. Let (X ,A,µ) be a measure space and f be a nonnegative integrable function.
The measure defined by

λ (A) =
∫

A
f dµ, A ∈A
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satisfies
µ(A) = 0 ⇒ λ (A) = 0.

Thus, λ is absolutely continuous with respect to the measure µ .

The importance of an invariant measure can be found in Poincaré’s Recurrence Theorem.

Theorem 1.0.9. (Poincaré’s Recurrence Theorem) Let T be a measure preserving transfor-

mation of a probability space (X ,A,µ) and A⊂ X be a measurable set. For any N ∈ N

µ
({

x ∈ X : {T n(x)}n≥N ⊂ X\A
})

= 0.

The theorem states that, for any A ∈A in a probability space (X ,A,µ) with µ(A)> 0,
almost all points in A return to A infinitely many times under the iteration of T . The phrase
“almost all points of A” refers to all points of A except for the set of points in A of µ-measure
zero. The result of the theorem is possible because of the existence of an invariant measure.

Birkhoff’s Ergodic Theorem [50] is an illustration which provides importance of invariant
measures.

Theorem 1.0.10. (Birkhoff’s Ergodic Theorem) Let T be a measure preserving transforma-

tion on a σ -finite measure space (X ,A,µ), and let f be a µ-integrable function. Then there

exists a µ-integrable function f ∗ such that

lim
n→∞

1
n

n−1

∑
i=0

f (T i(x)) = f ∗(x)

for almost all x ∈ X, and f ∗ ◦T = f ∗. Furthermore, if µ(X)< ∞, then
∫

f dµ =
∫

f ∗dµ .

When the measure µ is ergodic, that is, T−1(A) = A⇒ either µ(A) = 0, or µ(Ac) = 0,
then

lim
n→∞

1
n

n−1

∑
i=0

f (T i(x)) =
∫

A
f dµ

for almost all points x in X and all density functions f , namely f is nonnegative with integral
1. Theorem 1.0.10 gives the statistical nature of the trajectories of almost all points of
X . Let µ be an invariant ergodic measure for the transformation T : X → X , where X is a
probability space. The asymptotic behavior of almost all points of X under the iteration of
T is given by the asymptotic frequency of the visits of the trajectories of x ∈ X in A ∈ A.
The relative frequency of the first n iterates of x ∈ X ,

{x,T (x),T 2(x), . . . ,T n−1(x)},
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in A, is
1
n

n−1

∑
i=0

χA(T i(x)),

where the characteristic function, χA, is defined by

χA(x) =
{

1, if x ∈ A
0, if x /∈ A .

By Theorem 1.0.10

lim
n→∞

1
n

n−1

∑
i=0

χA(T i(x)) =
∫

X
χAdµ =

∫
A

dµ = µ(A).

The left side is called the time average, and the right side is called the space average. The
result indicates that the trajectories of almost all points x ∈ X lie in A with the probability
µ(A). The theorem establishes a relation between two entirely different quantities; however,
it does not give any information about the existence of the invariant measures.

The existence criterion of invariant measures for a certain class of transformations is
given by the Krylov-Bogolubov Theorem:

Theorem 1.0.11. [43] Any continuous transformation on a metrizable compact space has

an invariant probability measure.

Theorem 1.0.11 gives an existence criterion of an invariant measure of a certain class of
transformations, but it does not give a way to find such a measure. The study of dynamical
systems from the statistical viewpoint provides an approach to find the invariant measures
of the systems. In this viewpoint, the study focuses on iterates of state space points by
introducing a measure theoretical concept. The existence of an ACIM of a nonsingular
transformation can be studied by using the Frobenius-Perron (abbreviated as F-P) operator,
which connects an invariant density of the operator associated with a transformation with an
ACIM of the transformation. More discussion of the F-P operator can be found in Chapter 2.

For a nonsingular transformation S, a function f is a density of an ACIM (say µ) if and
only if f is an invariant density of PS, that is

PS f = f .

This equation establishes an existence criterion of ACIMs of nonsingular transformations.
The concern of this study is to find such densities f . Unfortunately, solving the equation
PS f = f for finding an invariant density f is difficult except in some simple cases.

To demonstrate how difficult it is to find an invariant density of the F-P operator even for a
simple transformation, one can take the logistic map S(x) = 4x(1−x). Let A = [0,x]⊂ [0,1].
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As will be defined in the next chapter, the F-P operator corresponding to S maps an integrable
function f to an integrable function PS f that satisfies∫ x

0
PS f (t)dt =

∫
S−1([0,x])

f (t)dt. (1.1)

Differentiating (1.1) with respect to x gives

PS f (x) =
d
dx

∫
S−1([0,x])

f (t)dt, (1.2)

where,

S−1[0,x] =
[

0,
1
2
− 1

2

√
1− x

]
∪
[

1
2
+

1
2

√
1− x

]
.

By using the chain rule, (1.2) becomes

PS f (x) =
1

4
√

1− x

[
f
(

1
2
− 1

2

√
1− x

)
+ f

(
1
2
+

1
2

√
1− x

)]
.

This is the formula to find the F-P operator associated with the map S. This formula
demonstrates how the operator changes a density function f into a new density function PS f .
For a uniformly distributed initial points, the density function is f (x)≡ 1 and the density
function PS f is

PS f (x) =
1

2
√

1− x
.

The function sequence {Pn
S f} then converges to the density

f ∗(x) =
1

π
√

x(1− x)
(1.3)

as n→ ∞. The graphs of the density functions PS f and f ∗ are presented respectively in
Figure 1.1 and in Figure 1.2. The above example shows the difficulty in obtaining an
invariant density of the F-P operator.

1.1 Literature Review

Numerical schemes have been developed to overcome the difficulties of obtaining invariant
densities of the F-P operator. The main concern of a numerical scheme is to make a suitable
conversion of the infinite dimensional F-P operator into a finite dimensional matrix. In this
scheme, a nonnegative fixed point of the operator equation PS f = f , which is called an
invariant density, can be approximated by a fixed point of a corresponding finite dimensional
matrix operator. Ulam [69] suggested a numerical scheme for approximating invariant
densities of the F-P operator corresponding to one-dimensional nonsingular maps defined
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Figure 1.1: The Density Function PS f (x) Figure 1.2: The Invariant Density f ∗(x)

from [0,1] to itself. The scheme was based on piecewise constant functions. Although the
convergence of the scheme was slow, it served as a basis for the development of the more
advanced numerical schemes. In the general case, the convergence of Ulam’s numerical
scheme is still an open question.

Li [51] proved Ulam’s conjecture for a class of C2 and stretching maps S : [0,1]→ [0,1].
Li’s proof was based on the Lasota and Yorke [49] result for the existence of ACIMs for
a class of piecewise C2 and stretching maps. In the paper, Li gave a numerical procedure
which can be implemented on a computer with negligible round-off errors. The paper
showed how the original infinite-dimensional operator can be approximated by a finite
dimensional operator (even though the original operator is not compact). It also gave a
solution to Ulam’s conjecture concerning a finite approximation for the F-P operator.

The result in [49] was generalized into higher dimensions, but the generalization took a
long time due to the difficulty in defining bounded variation in higher dimensions. Analogous
to Lasota and Yorke’s proof, Jablonski proved the existence of ACIMs for piecewise C2-
transformations of the n-dimensional cube using the Tonelli definition of the functions
of bounded variation [40]. The results for the existence of ACIMs of smooth maps on
boundary-less domains were investigated in [45].

Rychlik [63] proved the existence of ACIMs in a more general setting for the monotonic
piecewise functions, S, satisfying three specific conditions. The proof is considered to be
a general proof because it did not depend on the principle of bounded variation. Under
the given conditions, the sequence {Pn

S 1}∞
n=1 is bounded in L∞ and the boundedness of this

sequence shows a weak compactness of the sequence in L1. Due to the weak compactness
condition, any of the weak limit points of the sequence, according to the Kakutani-Yosida
theorem, is a PS invariant density.
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Ding and Zhou [21] proved the convergence of Ulam’s piecewise constant approximation
algorithm for the computation of an absolutely continuous invariant measure associated with
a piecewise C2 expanding transformation or a Jablonski transformation S : [0,1]N ⊂ RN →
[0,1]N . It was an extension of Ulam’s conjecture from a one dimensional space to a higher
dimensional space.

Kohda and Murao [54] proposed a piecewise polynomial Galerkin approximation to
invariant densities of the F-P operator associated with one-dimensional maps from [0,1]
to itself. The piecewise polynomial functions are linear combinations of N×K piecewise
polynomial bases of degree K− 1, where N is the number of subintervals of [0,1]. The
approximate solution for K = 1 was identical to the Ulam-Li solution. The sufficient
condition for the L1 convergence of the approximate solution for (K = 2,3) and a large N

was given in the paper. The numerical results of the paper showed that the approximate
solution for K = 3 is a significant improvement on the Ulam-Li solution, but the results
were not supported by a rigorous convergence analysis.

Ulam’s scheme was based on piecewise constant functions so its convergence rate was
low. To improve the convergence rate, a piecewise linear Markov finite approximation
method was proposed in [22]. The method has a better convergence rate than Ulam’s method
had. In the paper, Ulam’s piecewise constant approximation was extended to a higher
dimensional space and it was established that the method is a first-order method.

A piecewise linear least squares method was proposed in [27] for the F-P operator and
the norm convergence of the method was also proved. Linear algebra arguments were used
to prove L1-norm and BV-norm convergence for computing invariant densities of the F-P
operator associated with piecewise C2 and stretching maps defined from [0,1] to itself. The
paper also gave a theoretical proof of the convergence rate under the BV-norm. A standard
hat function was used to define a basis for the vector space of continuous piecewise linear
functions. The proof of the BV-norm convergence was based on L1-norm convergence, on
the Lasota-Yorke inequality, and on the local convergence of the BV-norm. According to
the numerical results, the L1-norm convergence rate was close to the order 2.

In the paper [14] Bose and Murray investigated how the exact rate of convergence in
Ulam’s method can not be better than O( logn

n ), where n is the number of subintervals in the
discretization. The results of the paper showed that the conjectured rate of O(1

n) cannot be
obtained even for extremely regular maps.

The maximum entropy method (abbreviated as MEM) was first introduced in [20] for
solving the F-P operator equation. The paper developed a foundation to use the MEM in the
numerical approximation to find an invariant density of the F-P operator. Especially, the
author of the paper used fundamental relations between the F-P operator and the Koopman
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operator to develop a general MEM. The rigorous theoretical work, which linked the MEM
with this type of approximation scheme, was the main outcome of the paper. The proof of
the convergence rate of the proposed method was based on the general convergence analysis
of the best entropy estimate. The results were better in comparison to the results from
Ulam’s method. The results of the paper, obtained by the implementation of monomials,
can be improved by the use of higher order piecewise polynomials, orthogonal polynomials,
or splines. Newton’s iteration method with three-node Gaussian quadrature was used to
obtain the numerical results. The paper also showed that the sequence { fN} of the maximum
entropy solution converges, at least weakly, to an invariant density f ∗.

Ding and Mead [24] described how to compute both the invariant densities of the Markov
operator in stochastic analysis and the F-P operator in ergodic theory of chaotic dynamics
using the MEM. The authors used a high precision Gaussian quadrature to approximate an
invariant density f ∗ of the Markov operator and they also applied the method to the Markov
operator P : L1(0,1)→ L1(0,1) with a stochastic kernel

P f (x) =
∫ 1

0

yexy

ey−1
f (y)dy.

The unique invariant density f ∗ of P is

f ∗(x) =
ex−1

ax
,

where a≡
∫ 1

0
ex−1

x dx' 1.317902151. In the paper, the authors defined the dual operator P∗

of the integral operator P to find P∗xn explicitly. The dual operator

P∗g(y) =
∫ 1

0

yexy

ey−1
g(x)dx =

y
ey−1

∫ 1

0
exyg(x)dx

gave the explicit expression for P∗xn as

P∗xn =
x

ex−1

∫ 1

0
exttn dt =

ex
∑

n
j=0(−1) j n!

(n− j)x
n− j +(−1)n+1n!

xn(ex−1)
.

The paper also provided approximations of the invariant density of the F-P operator PS,
where S is a nonsingular transformation S : [0,1] to itself, and the Lyapunov exponent
corresponding to S. Newton’s iteration method, to a high precision (up to 15 significant
digits), was used to solve the nonlinear system,

∫ 1

0
[I−P∗]exp

N

∑
n=1

λn(I−P∗)xn dx = 0, i = 1,2, . . . ,N,
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to obtain the unique solution,

fN(x) =
exp∑

N
n=1 λn(I−P∗)xn∫ 1

0 exp∑
N
n=1 λn(I−P∗)xn dx

,

of the maximum entropy problem

max
{

H( f ) :
∫ 1

0
f (x)(I−P∗)xn dx = 0, 1≤ n≤ N

}
.

To compute the numerical value of the integration, a 50-node Gaussian quadrature was used.
Ding, Jin, Rhee, and Zhou [25] developed the MEM based on piecewise linear poly-

nomials for the recovery of an invariant density of the F-P operator. A set of piecewise
linear polynomials, {φi, i = 0,1,2, . . . ,n}, are used as moment functions. The set forms a
canonical basis for the space of all continuous piecewise linear functions and satisfies the
partition of unity property, i.e.,

n

∑
i=0

φi(x) = 1, ∀x ∈ [0,1].

The partition of unity property of the moment functions plays an important role in defining
a modified MEM. The modified MEM removed the singularity problem presented in the
traditional MEM. The modified method also simplified the computational problem by
converting the Jacobian matrix of the nonlinear system∫ 1

0
φi(x)e∑

n
k=0 λkφk(x) dx = mi, i = 0,1, . . . ,n,

into a positive definite and tri-diagonal matrix. The modified method was more efficient than
the traditional MEM and produced more accurate results than the results obtained from the
Markov finite approximation method and traditional maximum. This paper [25] is the first
paper to lay a foundation for the possible extension of the MEM by using different moment
functions such as higher order piecewise polynomials and spline functions to approximate
invariant densities of the F-P operator.

1.2 Organization of the Dissertation

The dissertation extends the results of the paper [25] by applying piecewise quadratic
polynomials and quadratic splines in the MEM for approximating invariant densities of
the F-P operator associated with nonsingular transformations defined from [0,1] to itself.
The L1 errors between the approximate and exact invariant densities are calculated and
supported by rigorous theoretical proofs. The efficiency of the methods can be judged by
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the time taken by the Matlab program, used for numerical calculation, to get the numerical
results. Similarly, the accuracy of the methods can be found by comparing the errors given
by this method with the errors produced by contemporary methods. The numerical results
are given along with sufficient theoretical discussion. A brief study of position dependent
random maps is included in this dissertation. A study to compare the errors between the
exact and approximate invariant densities of the F-P operator associated with some Markov
type random maps with position dependent probabilities has been done.

Chapter 2 contains definitions and introduction of entropy, maximum entropy. In the
chapter, some examples are presented to show how a density function can be chosen, when
a set of density functions satisfy same constraints, by maximizing Boltzmann entropy. The
chapter also gives the definition and some properties of the F-P operator.

Chapter 3 consists of an approximation of invariant densities of the F-P operator as-
sociated with some nonsingular transformations defined from [0,1] to itself. A piecewise
quadratic MEM is presented using finite element method by dividing the interval [0,1]
into finite number of subintervals. How the scheme overcomes the singularity problems
of classical MEMs is discussed there. The numerical results of the L1 errors between the
exact and approximate invariant densities are presented in tabular forms. A rigorous theory
is developed to study the convergence analysis of the method and the numerical results
follow the theoretical convergence rate which is of O(h3). The numerical results of the
study are compared with the results from both the Piecewise Linear Maximum Entropy
Method (PLMEM) [25] and of the Piecewise Quadratic Markov Finite Approximation
Method (PQMFA) [18].

Chapter 4 presents the background required to understand splines in general and
quadratic splines in particular and their applicability in the MEM. Theoretical detail of the
convergence of the method is followed by the tabular presentations of L1 errors between
the exact and approximate invariant densities of the F-P operator associated with some
nonsingular maps defined from [0,1] to itself. In the tabular presentations, errors from this
method are compared with erros from PQMFA [18], PLMEM [25], and Piecewise Quadratic
Maximum Entropy Method (PQMEM) [70].

In Chapter 5 a brief introduction of position dependent random maps defined from [0,1]
to itself is given. A Piecewise Linear MEM is used to approximate invariant densities of
the F-P operator associated with Markov random maps defined from [0,1] to itself. The L1

errors between exact and approximate invariant densities of the F-P operator are presented
in tabular forms.

Chapter 6 contains both concluding comments and suggestions for future research.



11

Chapter 2

Terminology and Definition

2.1 Entropy

The concept of entropy was first introduced by Clausius. It gained its importance when
L. Boltzmann used it in his pioneering work on the kinetic theory of gasses in 1866, and
Shannon used it in his work on information theory in 1948.

In a physical system, entropy provides a measure of the amount of thermal energy that
cannot be used to do work. In some other definitions of entropy, it is a measure of how
evenly energy (or some analogous property) is distributed in a system.

In probability theory, the entropy of a random variable measures the uncertainty about
the value that might be assumed by the variable. If a random variable X takes different
values x1, . . . ,xn, and the probability of xi is pi, for 1≤ i≤ n, then the equation

S =−K ∑
i
[Pi log(Pi)] , (2.1)

gives a way of using entropy in probability theory. Here logu = loge u.
Claude Shannon is recognized as the father of modern communication and information

theory. In his work [64], he defined entropy as follows:
Suppose there is a set of possible events whose probabilities of occurrence are p1, p2, . . . , pn.

From these known probabilities, the concern is to know which event will occur. Can a
measure be found to quantify how much “choice” is involved in the selection of the event or
how much uncertainty would exist in the outcome? The uncertainty is quantified by using a
probability measure H(p1, . . . , pn).

The measure, H(p1, . . . , pn), should have the following properties:

1) H is continuous at pi.

2) If all pi are equal, that is pi =
1
n , i = 1,2, . . . ,n, then H is a monotonically increasing

function of n. With equally likely events, there is more choice or uncertainty when
there is a great number of events.

3) If a choice is broken down into two successive choices, the original H is the weighted
sum of the individual values of H.
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Figure 2.1: Three Possibilities

Figure 2.2: Decomposition of a Choice From Three Possibilities

In Figure 2.1, there are three probabilities: p1 =
1
2 , p2 =

1
3 , and p3 =

1
6 . In Figure 2.2,

the first event between the two events, each with the probability 1
2 , is chosen. If the second

event is chosen, the next choice would have the probabilities 2
3 or 1

3 . The final result has the
same probability as before. In this case,

H
(

1
2
,
1
3
,
1
6

)
= H

(
1
2
,
1
2

)
=

1
2

H
(

2
3
,
1
3

)
.



13

Shannon derived the information entropy in Appendix 2 of [64]. The derivation was
based on the three facts given above and the entropy was the same as in (2.1) with K = 1.
The entropy defined in this way is the entropy of a discrete set of probabilities p1, . . . , pn.

The mathematical expression, −∑ pi log pi, which appears both in statistical mechanics
and in information theory, does not establish any connection between these two fields [41].

Figure 2.3: Graph of η(u) =−u log(u)

Let η be the function defined by

η(u) =−u logu, η(0) = 0.

Definition 2.1.1. If f ≥ 0 and η ◦ f ∈ L1, then the entropy of f is defined as

H( f ) =
∫

X
η( f (x))µ(dx). (2.2)

Remark 2.1.1. The integral (2.2) is always well defined for a function f ≥ 0 when µ(X)< ∞

and the integral is either finite or −∞.

The function η is continuous for all u≥ 0. Since,

η
′′(u) =−1

u
,

the function η(u) is concave for u > 0.
A line tangent to the graph of the function always lies above the graph, so

η(u) ≤ η(u1)+η
′(u1)(u−u1)

= η(u1)− (1− logu1)(u−u1)

= −u+u1−u logu1 +u1.
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By the definition of η

−u logu ≤ −u+u1−u logu1

u−u logu ≤ u1−u logu1, u,u1 > 0. (2.3)

The inequality (2.3) is called the Gibbs inequality. The inequality is used to prove some
important theorems and inequalities which are necessary for the later use.

Let f and g be two densities. If η ◦ f and f logg are integrable functions, then the Gibbs
inequality (2.3) gives that∫

X
f (x)µ(dx)−

∫
X

f (x) log( f (x)) µ(dx) ≤
∫

X
g(x)µ(dx)−

∫
X

f (x) log(g(x)) µ(dx)

−
∫

X
f (x) log( f (x)) µ(dx) ≤ −

∫
X

f (x) log(g(x)) µ(dx). (2.4)

The equality in (2.4) holds if and only if f = g.
The following theorem is an application of the inequality (2.4).

Theorem 2.1.1. Let (X ,A,µ) be a finite measure space and f be a density defined on X.

The maximal entropy, H( f ) of f , attains for the constant density

fc(x) =
1

µ(X)
.

Proof. Let f be a density in X . The entropy of f is

H( f ) =−
∫

X
f (x) log( f (x))µ(dx).

The inequality (2.4) gives

H( f ) = −
∫

X
f (x) log( f (x))µ(dx)

≤ −
∫

X
f (x) log( fc(x))µ(dx)

= − log
(

1
µ(x)

)
.

The entropy of fc(x) is

H( fc(x)) = −
∫

X
fc(x) log( fc(x))µ(dx)

= −
∫

X

1
µ(x)

log
(

1
µ(x)

)
µ(dx)

= − log
(

1
µ(x)

)
.

Thus, H( f )≤ H( fc(x)) for all densities f defined on X .
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Remark 2.1.2. The theorem fails if µ(X) = ∞ because there does not exist any constant
density under this condition.

The following examples on the maximum entropy are from [50].

Example 2.1.2. Let X = [0,∞) and consider all possible densities f such that the first
moment of f is given by ∫

∞

0
x f (x)dx =

1
λ
. (2.5)

Then the density

fλ (x) = λe−λx (2.6)

maximizes the entropy. From the inequality (2.4), for any density f that satisfies (2.5) holds

H( f ) = −
∫

∞

0
f (x) log( f (x))dx

≤ −
∫

∞

0
f (x) log

(
λe−λx

)
dx

= − logλ

∫
∞

0
f (x)dx+

∫
∞

0
λx f (x)dx

= − logλ +1.

The entropy of the density function fλ defined in (2.6) is

H( fλ ) = −
∫

∞

0
λe−λx log

(
λe−λx

)
dx

= − logλ +1.

Thus H( f )≤ H( fλ ) for all densities defined on X that satisfy (2.5).

In the following example, the second moment is used as a constraint for a density
function defined on X .

Example 2.1.3. Consider all densities f defined on X = (−∞,∞) such that the second
moment of f is ∫

∞

−∞

x2 f (x)dx = σ
2. (2.7)

Then the Gaussian density

fσ (x) =
1√

2πσ2
e
(
− x2

2σ2

)
, (2.8)
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has maximum entropy. The entropy of a density function f defined on X is

H( f ) =
∫

∞

−∞

f (x) log( f (x))dx

≤
∫

∞

−∞

f (x) log
(

1√
2πσ2

e
(
− x2

2σ2

))
dx

= − log
(

1√
2πσ2

)∫
∞

−∞

f (x)dx+
1

2σ2

∫
∞

−∞

x2 f (x)dx

=
1
2
− log

(
1√

2πσ2

)
.

On the other hand,

H( fσ (x)) = −
∫

∞

∞

(
1√

2πσ2
e
(
− x2

2σ2

))
log
(

1√
2πσ2

e
(
− x2

2σ2

))
dx

=
1
2
− log

(
1√

2πσ2

)
.

It shows that H( f )≤ H( fσ ) for all densities f satisfy (2.7). Thus the entropy is maximum
for the Gaussian density (2.8).

2.2 Markov Operators

Markov operators are used in the study of dynamical systems and dynamical systems
with stochastic perturbations [62]. In the statistical observation of dynamical systems, the
evolution of a probability measure describing the distribution of points in a phase space is
generally observed. This kind of observation is related to a transformation defined on the
space of probability measures. The transformation defined in this way is linear.

Definition 2.2.1. Let (X ,A,µ) be a measure space. A linear operator

M : L1(X ,A,µ)→ L1(X ,A,µ)

is called a Markov operator if:

1) M f ≥ 0, for all f ≥ 0;

2)
∫

X M f dµ =
∫

X f dµ , for all f ≥ 0.

Some properties of a Markov operator are given below.

Proposition 2.2.2. [50] Let (X ,A,µ) be a measure space and M be a Markov operator. Then
for every f ∈ L1,
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1) (M f )+ ≤M f+,

2) (M f )− ≤M f−,

3) |M f | ≤M| f |,

4) ‖M f‖ ≤ ‖ f‖,

5) If f ≤ g, then M f ≤Mg, for all f ,g ∈ L1.

The property 4) is called the contraction property of the operator.

2.3 Frobenius-Perron Operator

The F-P operator is a transfer operator named after Ferdinand Georg Frobenius and Oskar
Perron, however; they did not propose the operator. Ulam gave the name because the
operator shares some properties of nonnegative matrices. Those properties are studied by the
classic Perron-Frobenius theorem for irreducible nonnegative matrices. In linear algebra, the
F-P theorem says that a real square irreducible nonnegative matrix has a positive eigenvalue
(spectral radius) which is greater than or equal to absolute value of other eigenvalues
and the eigenvector corresponding to the eigenvalue has nonnegative components. This
theorem has applications in probability theory, ergodic theory, economics [57] and others.
In mathematics, the transfer operator generally provides information about the density
evolution for an iterated map, so it is mostly used to study dynamical systems, statistical
mechanics, chaos, and fractals.

According to [10], the transfer operator approach to the study of a dynamical system
allows:

• the exploration of global dynamics and the characterization of global attractors,

• an estimation of invariant manifolds,

• the partitioning of the phase space into invariant regions, almost invariant regions, and
coherent sets,

• an estimation of the rates of transport between these partitioned regions,

• the calculation of the decay of correlation.

The F-P operator associated with a transformation transfers a density function into another
density function. A graphical representation of this transformation is given here. The density
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Figure 2.4: Density f (x) = 1
2 χ[−1,1](x) Figure 2.5: PS f (x) = (2x)−1χ[e−1,e1](x)

function in Figure 2.4 is transferred to the new density function in Figure 2.5 by the action
of the F-P operator. Here the transformation is S = ex, x ∈ R [47].

The use of this operator, in the measure-theoretic approach, can be described as [15]:
Let {xi} be a collection of initial points in a phase space X . Consider a transformation
S : X→ X that describes the dynamics of a system and transfers each point xi ∈ X into a new
point S(xi) ∈ X . If the starting points are distributed according to a probability distribution
function f , then the set of points {S(xi)} is distributed according to another probability
distribution function, denoted by PS f . The operator PS is a linear operator known as the F-P
operator. Now, instead of studying orbits of points in the phase space, it is easy and suitable
to study the evolution (orbit) { f ,PS f ,P2

S f , . . . ,Pn
S f , . . .} of the initial density f . If such a

sequences converges, it generally converges to the density of a measure that is invariant
under S and supported on the strange attractor. The advantage of studying PS comes from
the fact that, PS is linear as well as bounded on L1(X) even if S is discontinuous on the
phase space. Due to this fact, one can apply functional analysis tools to study the asymptotic
behavior of dynamical systems.

Before giving a more general set up for the existence of the F-P operator, the following
intuitive idea, from [50], is given to describe the operator.

Let S : [0,1]→ [0,1] be a map. Let

{x0
1,x

0
2,x

0
3, . . . ,x

0
n}

be a set of initial points of S. The set of initial points will change to a new set of points by
an application of S. The new set of points is

{x1
1,x

1
2,x

1
3, . . . ,x

1
n},

where x1
i = S(x0

i ) for i= 1,2, . . . ,n. The density function f0 of the initial points {x0
1,x

0
2,x

0
3, . . . ,x

0
n}
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roughly says that, for any interval I0 ⊂ [0,1] (not too small),∫
I0

f0(u)du' 1
n

n

∑
i=1

χI0(x
0
i ). (2.9)

Similarly, the new density function f1(x) for the set of points {x1
1,x

1
2,x

1
3, . . . ,x

1
n} ⊂ [0,1],

gives ∫
I

f1(u)du' 1
n

n

∑
i=1

χ∆(x1
i ). (2.10)

The inverse image of an interval I ⊂ [0,1] under S is

S−1(I) = {x ∈ [0,1] : S(x) ∈ I}.

For any I ⊂ [0,1],
x1

i ∈ I if and only if x0
i ∈ S−1(I).

It gives,

χI(S(x)) = χS−1(I)(x). (2.11)

Rewriting (2.11) using (2.10) gives∫
I

f1(u)du' 1
n

n

∑
i=1

χS−1(I)(x
0
i ). (2.12)

For a arbitrary subinterval I, define I0 = S−1(I). This definition makes the right-hand side
of (2.9) and (2.12) equal and∫

I
f1(u)du =

∫
S−1(I)

f0(u)du. (2.13)

The equation (2.13) shows a relation between f0 and f1 and says how a density function f0

of initial states transfers into a density function f1 of new states.
Taking I = [a,x] and using the fact in (2.13) gives∫ x

a
f1(u)du =

∫
S−1([a,x])

f0(u)du,

differentiating it with respect to x,

f1(x) =
d
dx

∫
S−1([a,x])

f0(u)du. (2.14)

We write f1 = PS f0, so (2.14) becomes

PS f0(x) =
d
dx

∫
S−1([a,x])

f0(u)du.
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The change of the arbitrary function f0 into f1 in (2.14) yields

P f (x) =
d
dx

∫
S−1([a,x])

f (u)du. (2.15)

The equation (2.15) explicitly defines the F-P operator.
The study of absolutely continuous invariant measures is an important component of

study in the physical sciences. Many problems in the physical sciences are related to the
study of existence and computation of densities of absolutely continuous invariant measures
of nonsingular transformations. The study of absolutely continuous invariant measure in
statistical physics, especially in the Boltzmann ergodic hypothesis in statistical physics, is
related to the study of measure preserving transformations on measure spaces [7].

The Radon-Nikodym Theorem provides a rigorous basis for the existence of the F-P
operator. Nonsingular transformations and absolutely continuous invariant measures are the
main ingredients for defining the operator.

Theorem 2.3.1. (Radon-Nikodym Theorem) Let λ be a finite measure and µ be a σ -finite

measures on (X ,A). If λ � µ , then there exists a µ-integrable function f such that

λ (A) =
∫

A
f (x)µ(dx), A ∈A. (2.16)

The function f is unique µ-a.e. It means that if λ (A) =
∫

A gdµ for all A ∈ A, then
f (x) = g(x) µ-a.e.

Let S : X → X be a nonsingular transformation. For a given f ∈ L1(X) define

µ f (A) =
∫

S−1(A)
f (x)µ(dx), A ∈A.

S is nonsingular, so µ(A) = 0 implies that µ f (A) = 0. By the Radon-Nikodyn Theorem
2.3.1 there exists a function PS f ∈ L1(X) such that

µ f (A) =
∫

A
PS f (x)µ(dx), A ∈A.

The operator PS : L1→ L1 defined by∫
A

PS f (x)µ(dx) =
∫

S−1(A)
f (x)µ(dx), A ∈A, (2.17)

is called the F-P operator associated with S.
From the above definition, it is clear that the F-P operator is a linear operator with norm

1.
The F-P operator PS has the following properties:
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Proposition 2.3.2.

(i) PS(λ1 f1+λ2 f2+ · · ·+λn fn) = λ1PS f1+λ2PS f2+ · · ·+λnPS fn, for all f1, f2, . . . , fn ∈ L1,
and λ1,λ2, . . . ,λn ∈ R.

(ii) PS f ≥ 0 if f ≥ 0; and

(iii)
∫

X PS f (x)µ(dx) =
∫

X f (x)µ(dx)

(iv) If Sn = S◦S◦ · · · ◦S and PSn is the F-P operator associated with Sn, then PSn = Pn
S .

(v) Let f be a density function. Then the measure µ f defined by

µ f (A) =
∫

A
f dm,

for all measurable subsets A, is absolutely continuous with respect to the Lebesgue measure
m. The measure µ f is invariant under S if and only if f is a fixed point of PS, that is PS f = f .

Proof. The proofs of (i)− (iii) are straightforward from the definition. The proof of (iv) is
given below. Let S and T be two nonsingular transformations. By the definition of the F-P
operator, we have ∫

A
PT◦S f (x)µ(dx) =

∫
(T◦S)−1(A)

f (x)µ(dx)

=
∫

T−1(A)
PS f (x)µ(dx)

=
∫

A
PT PS f (x)µ(dx).

The required result is obtained by generalizing this process to a composite of n nonsingular
transformations S. The proof of the first part of (v) comes from the definition of absolutely
continuous invariant measure. For the proof of the second part, we proceed as follows:
If the measure µ is invariant under S, that is µ(S−1(A)) = µ(A) for all A ∈A, then∫

A
f dm = µ f (A) =

∫
S−1(A)

f dm

=
∫

A
PS f dm,

since A ∈A is arbitrary, thus f = PS f .
Conversely, let PS f = f .

µ f (A) =
∫

A
f dm

=
∫

A
PS f dm,

which is true for every A ∈A, hence µ f (A) = µ f (S−1(A)).
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Remark 2.3.1. The F-P operator is not one-to-one in general. For example, let S be the
symmetric triangle transformation on [0,1]. Take

f (x) =
{

1, if 0≤ x < 1
2 ,

−1, if 1
2 ≤ x≤ 1.

Then

PS f (x) =
d
dx

[∫ 1
2

0
µ(dx)+

∫ 1

1
2

−1 µ(dx)

]
= 0,

which shows that PS is not one-to-one.

A large amount of literature in dynamical systems concerns the study of absolutely
continuous invariant measures. The invariant densities of the F-P operators associated
with the nonsingular transformations are used to find the absolutely continuous invariant
measures. The existence criteria of invariant densities of the F-P operators are considered
important topics in the literature. The iterates of the F-P operator PS starting from an initial
density function f0 produce a sequence { fn = Pn

S f0}. If the sequence { fn} converges to a
density f ∗, then f ∗ is an invariant density of PS. In this formulation, the convergence of
{ fn = Pn

S f0} is in question. When does the sequence { fn = Pn
S f0} converge?

To answer the above question, the question can be divided into two parts. In the first
part PS is a finite dimensional, and in the second part, PS is an infinite dimensional. For
the finite and infinite dimensional cases, we use completely different approach to prove the
convergence.

When PS is a finite dimensional and has an irreducible matrix representation under
a density basis, if 1 is the unique eigenvalue with absolute value 1, then the sequence
{ fn = Pn

S f0} converges to f ∗.
Bounded and closed sets of the L1 space may not be compact or weakly compact.When

PS is an infinite dimensional, the convergence of the sequence { fn =Pn
S f0} can be guaranteed

by the Kakutani-Yosida Theorem, under certain conditions.

Theorem 2.3.3. [15] (Kakutani-Yosida Theorem)

Let P : L1→ L1 be a Markov operator, and let f be a density function. If the Césaro sum

sequence from the iterates Pk f , {
1
n

n−1

∑
k=0

Pk f

}
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is weakly precompact, i.e., it contains a weakly convergent subsequence, then

1
n

n−1

∑
k=0

Pk f → f ∗

under the L1- norm, and P f ∗ = f ∗, i.e., f ∗ is a fixed density of P.

2.3.1 The Frobenius-Perron Operators for a Certain Class of Transformations

When the transformation S : [0,1]→ [0,1] is bijective, the F-P operator associated with S is
defined by

PS f (x) = f (S−1(x))|(S−1)(x)|′, (2.18)

which is obtained from (2.17) by using the fundamental theorem of integral calculus If
there exists a partition 0 = a0 < a1 < a2 < .. . < an = 1 of [0,1] such that S is bijective and
differentiable in each subinterval [ai−1,ai], i = 1,2, . . . ,n, one-sided limits being counted at
the end points, then the F-P operator associated with S is

PS f (x) =
n

∑
i=1

f (S−1
i (x))|(S−1

i )(x)|′ f ∈ L1(0,1). (2.19)

To compute the F-P operator numerically, sometimes it is convenient to write the operator
using the delta function

δ (x) =
{

∞, if x = 0,
0, if x 6= 0.

It satisfies the property ∫ b

a
f (x)δ (x)dx =

{
1, if 0 ∈ [a,b]
0, if 0 /∈ [a,b] .

Using the basic property ∫
∞

−∞

δ (x− y) f (x)dx = f (y),

where f is any function with compact support and y any real number, the F-P operator
associated to S can be written in the form

PS f (x) =
∫ 1

0
δ (x−S(y)) f (y)dy, f ∈ L1(0,1). (2.20)

An equivalence relation can be established between the formulas (2.17) and (2.20) when
S is bijective and differentiable on the interval [0,1] (differentiable at the end points means
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the existence of one-sided derivative at those points).

PS f (x) =
∫ 1

0
δ (x−S(y)) f (y)dy

=
∫ 1

0
δ (x− z) f (S−1(z))(S−1)′(z)dz

= f (S−1(x))|(S−1)′(x)|,

which is defined in (2.18).
When S is piecewise differentiable and bijective on each subinterval from the given

partition, as described above, then

PS f (x) =
n

∑
i=1

∫ 1

0
δ (x−Si(y)) f (y)dy

=
n

∑
i=1

∫ 1

0
δ (x− z) f (S−1

i (z))(S−1
i )′(z)dz

=
n

∑
i=1

f (S−1(x))|(S−1)′(x)|,

which is the equation (2.19).
It is not so easy to find an expression for the F-P operator for general maps; however,

for a certain class of maps, it is possible to express the F-P operator in a precise form.
The F-P. operators corresponding to a class of piecewise monotonic maps, having certain
properties, have nice representations in matrix forms. The definition of a class of piecewise
monotonic and expanding maps is given before discussing the expressions of the F-P
operators associated with those maps.

Definition 2.3.4. [15] Let I = [a,b] be an interval. A transformation S defined from I to
itself is called a piecewise monotonic transformation if there exists a partition

P= {Ii = (ai−1,ai) : i = 1, . . . ,q}

of I and a number p such that
i) S|Ii is a Cp function, i = 1,2, . . . ,q, and
ii) |S′(x)|> 0 on Ii, i = 1,2, . . . ,q.

If S is a piecewise monotonic on I and f ∈ L1, then the representation of the F-P operator
associated with S is

PS f (x) = ∑
z∈{S−1(x)}

f (z)
|S′(z)|

. (2.21)

For any x, the set {S−1(x)} consists of at most q points.
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The representation (2.21) is obtained by the following way:
The definition of the F-P operator gives∫

A
PS f (x)dx =

∫
S−1(A)

f (x)dx, (2.22)

for any measurable A⊂ I.
As S is monotonic on each Ii, i = 1,2, . . . ,q, it is possible to define inverse function for

each S|Ii . Let Ji = S(Ii), i = 1,2, . . . ,q. Define

φi = S−1|Ji.

Now, φi : Ji→ I j and

S−1(A) = ∪q
i=1φi(Ji∩A), (2.23)

so the sets φi(Ji∩A) are mutually disjoint. Substituting (2.23) in ((2.22)) yields∫
A

PS f (x)dx =
q

∑
i=1

∫
φi(Ji∩A)

f (x)dx

=
q

∑
i=1

∫
Ji∩A

f (φi(x))|φ ′i (x)|dx,

by the change of variable formula.∫
A

PS f (x)dx =
q

∑
i=1

∫
A

f (φi(x))|φ ′i (x)|χJi(x)dx

=
∫

A

q

∑
i=1

f (S−1
i (x))

|S′(S−1
i (x))|

χS(Ii)(x)dx, Si = S|Ii.

Since A is arbitrary,

PS f (x) =
q

∑
i=1

f (S−1
i (x))

|S′(S−1
i (x))|

χS(Ii)(x).

The more compact form is (2.21).

Example 2.3.5. Let S : [0,1]→ [0,1] be defined by

S(x) =


−2x+1, x ∈ [0, 1

2 ],

2x−1, x ∈ (1
2 ,1].

We find the representation of the F-P operator associated with S as follows.
The transformation S is monotonic on the intervals I1 = (0, 1

2), I2 = (1
2 ,1). As above

PS f (x) =
2

∑
i=1

f (φi(x))|φ ′i (x)|χS(Ii)(x).
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Here,

φ1(x) =
1− x

2
, φ
′
1(x) =−

1
2
, and

φ2(x) =
1+ x

2
, φ
′
2(x) =

1
2
.

Hence,

PS f (x) =
1
2

(
f
(

1− x
2

)
+ f

(
1+ x

2

))
,

where f ∈ L1(0,1).

2.3.2 Matrix Representation of the Frobenius-Perron Operator

The F-P operator associated with a transformation S has a matrix representation when S is a
piecewise linear Markov transformation.

Definition 2.3.6. Let P =
{

Ii = (ai−1,ai) : i = 1, . . . ,q, a0 = a, aq = b
}

be a partition of
I = [a,b]. A transformation

S : I→ I

is said to be a Markov transformation if Si ≡ S|Ii, i = 1,2, . . . ,q, is a homeomorphism from
Ii onto some connected union of intervals of P. The partition is called a Markov partition
with respect to S.

If |S′(x)|> 0 on each Ii, then S is called piecewise monotonic. If each Si is linear on Ii,
then S is called a piecewise linear Markov transformation.

Definition 2.3.7. Let S : I→ I be a piecewise monotonic transformation and P= {Ii}q
i=1 be

a partition of I. The incidence matrix AS = (ai j)1≤i, j≤q induced by S and P is defined by

ai j =


1, if I j ⊂ S(Ii),

0, otherwise.

The matrix is called the 0−1 matrix induced by S if the partition P is clear, and the matrix
is called 0−1 matrix induced by P is S is clear.

The representation of PS turns into a matrix when S is a piecewise linear Markov trans-
formation. If g is a piecewise constant function on the partition P, then the representation of
g is

g(x) =
q

∑
i=1

ciχIi(x),

where c1,c2, . . . ,cq are constants. In such a case the function can be represented by

g(x) = cg = (c1,c2, . . . ,cq)
T ,

where T denotes the transpose.
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Theorem 2.3.8. [15] Let S : I → I be a piecewise linear Markov transformation on the

partition P= {Ii}q
i=1. Then there exists an q×q matrix MS such that

PS f = MT
S cg

for every piecewise constant function g and cg is the column vector obtained from g.

The matrix MS is of the form

MS = (mi j)1≤i, j≤q,

where

mi j =
ai j

|S′|
=

λ (Ii∩S−1(I j))

λ (Ii)
, 1≤ i, j ≤ q,

where λ (B) is the measure of B and AS = (ai j)1≤i, j≤q is the incidence matrix induced by S

and P.

Remark 2.3.9. For a given S, the matrix MS is unique, but the converse is not true. There
may be piecewise Markov transformations, other than S, which induce MS. For instance,
the transformation Si on Ii can be replaced by a linear transformation which has the same
domain and range as Si has but having slope −S′i. In this way, we can find 2n piecewise
linear Markov transformations which induce the same matrix MS.
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Chapter 3

A Continuous Piecewise Quadratic Maximum Entropy Method

3.1 Piecewise Quadratic Polynomials in the Maximum Entropy Method

Moment problems can be found in spectra estimation, geophysics, radio astronomy, sonar
and radar (see [44, 46] and references therein). They also arise in theoretical physics such as
quantum spin systems, Ising models, and the divergent series obtained from Stieltjes trans-
formations [56]. The moment problem has appeared in pure mathematics since Hausdorff
[38].

In 1866, L. Boltzmann used the concept of entropy for the kinetic theory of gasses.
The second law of thermodynamics states that in an isolated system, the entropy never
decreases. Jaynes introduced the principle of maximum entropy in 1957. In his paper [41]
he formulated the maximum entropy problem to recover a least biased density among all
densities satisfying a finite number of given constraints. This concept has been widely used
in different fields of science and engineering [56, 72].

The author of [20] developed a method for solving the fixed point equation of the F-P
operators based on Jaynes’ maximum entropy principle and it was extended to find the
Lyapunov exponents of chaotic maps in [23]. A discrete version of the MEM for comput-
ing invariant densities of the F-P operator and the Lyapunov exponent using Boltzmann
entropy functional can be found in [9], whereas its continuous version, based on orthogonal
polynomials is found in [26].

The use of polynomials in the continuous version of MEM to the recovery of an invariant
density leads to solving systems of nonlinear equations. The difficulty arises in solving such
systems when they are in ill-condition. The difficulty can be resolved by taking piecewise
polynomial functions instead of taking polynomial functions over the whole domain.

Piecewise constant polynomials to approximate the F-P operator in the MEM were used
in [28], which was the first publication on MEM based on piecewise polynomials to recover
invariant densities. The authors of [25] considered piecewise linear polynomials for the
approximation of an invariant density of the F-P operator.

This research uses piecewise quadratic polynomials for solving the maximum entropy
problem in order to numerically recover an invariant density of the F-P operator associated
with a nonsingular transformation defined from [0,1] to itself. The use of piecewise quadratic
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polynomials as the moment functions gives a system of nonlinear equations. The Jacobian
matrix of the system is five-diagonal, nonsingular, and positive definite.

Gaussian quadrature of order 3 is used to find the numerical evaluations of the integrals.
The three weights and three nodes are respectively 5

9 , 8
9 , and 5

9 ; and −
√

3
5 , 0, and

√
3
5 .

Newton’s method is implemented to solve the system of nonlinear equations.

3.2 The Maximum Entropy Problem

Let (X ,A,µ) be a σ -finite measure space. As defined in the previous chapter, the Boltzmann
entropy of f is

H( f ) =−
∫

X
f (x) log f (x)µ(dx). (3.1)

Some properties of the Boltzmann entropy H( f ) described below can be found in [12, 50].
i) H( f ) is either finite or −∞.
ii) H is a proper, upper semi continuous, concave functional and strictly concave on the set

{ f ∈ L(X ,µ), f ≥ 0 : H( f )>−∞}.

iii) The level sets
{ f ∈ L1(X ,µ) : f ≥ 0,H( f )≥ α}

for all α ∈ R are weakly compact.
In what follows, the set of all densities is denoted by D.
As proved in the previous chapter, for every f ,g ∈ D, the Gibbs inequality implies that

−
∫

X
f (x) ln f (x)µ(dx)≤−

∫
X

f (x) lng(x)µ(dx). (3.2)

Here, MEM is related to solving the following constrained optimization problem:

max
{

H( f ) : f ∈ D,
∫

X
f (x)gi(x)µ(dx) = mi, 1≤ i≤ r

}
, (3.3)

where gi ∈ L∞(X ,µ) are known moment functions and mi are given moments for all 1≤ i≤ r.
The inequality (3.2) is helpful to prove the following proposition.

Proposition 3.2.1. The solution of the constrained optimization problem (3.3) is

fr(x) =
e∑

r
i=1 λigi(x)∫

X e∑
r
i=1 λigi(x) µ(dx)

, (3.4)

where the numbers λ1,λ2, · · · ,λr satisfy the relations∫
X

e∑
r
j=1 λ jg j(x)gi(x)µ(dx) = mi

∫
X

e∑
r
j=1 λ jg j(x) µ(dx). (3.5)
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Proof. See [50].

When the moment functions gi are {1,x,x2, · · · ,xr}, the maximum entropy problem
(3.3) with X = [0,1] is the traditional maximum entropy problem where the moments mi are
given by

mi =
∫ 1

0
xi p(x)dx,

where p is a probability density.

3.3 Piecewise Quadratic Polynomials

A piecewise quadratic MEM for the numerical recovery of an invariant density of the F-P
operator is proposed in this research. For this purpose, two types of piecewise quadratic
polynomials as the moment functions are considered. The mathematical formulation of the
piecewise polynomials is given in the following way:

Let X = [0,1] be partitioned into n subintervals I j = [x j−1,x j], j = 1,2, . . . ,n, of uniform
length h j = x j− x j−1 = h = 1/n. On the set X , define the space

P=
{

φ : φ ∈C0(X),φ |I j ∈ P2(I j), j = 1,2, . . . ,n
}
, (3.6)

where C0(X) denotes the space of continuous functions defined on X , and P2(I j) the space
of quadratic polynomials defined on I j. The piecewise quadratic polynomials {φk}2n

k=0 are
defined as

φ2 j(x) = τ

(
x− x j

h

)
, j = 0,1, . . . ,n,

and
φ2 j−1(x) = ρ

(
x− x j−1

h

)
, j = 1,2, . . . ,n,

where

τ(x) =


(x+1)2, −1≤ x≤ 0,
(x−1)2, 0≤ x≤ 1,
0, otherwise,

(3.7)

ρ(x) =

{
2x(1− x), 0≤ x≤ 1,
0, otherwise.

(3.8)

The set {φ0,φ1, · · · ,φ2n} of polynomials forms a basis for the space P of continu-
ous piecewise quadratic polynomials. It is a 2n + 1 dimensional vector subspace of
C0(X). The support of φk is the set supp(φk) =

{
x ∈ [0,1] : φk(x) 6= 0

}
. So supp(φ0) =
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(0,h), supp(φ2n) = (1−h,1), supp(φ2 j) = (( j−1)h,( j+1)h) for j = 1,2, , . . . ,n−1, and
supp(φ2 j−1) = (( j−1)h, jh) for j = 1,2, . . . ,n. These polynomials satisfy the partition of
unity property

2n

∑
k=0

φk(x)≡ 1, ∀ x ∈ [0,1].

The partition of unity property plays an important role in modifying the maximum
entropy problem in a relatively new form which leads to an easier numerical computation.

Figure 3.1: Graph of τ(x) Figure 3.2: Graph of ρ(x)
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Figure 3.3: Piecewise Quadratic polynomials

For each k = 0,1, . . . ,2n, we define the kth moment, mk, of an invariant density f ∗ with
respect to the basis functions φk as

mk =
∫ 1

0
f ∗(x)φk(x)dx. (3.9)

Proposition 3.3.1. The sum of the moments mk in (3.9) is unity.

Proof.

Since
2n

∑
k=0

φk(x) = 1 and f ∗ is a density,

2n

∑
k=0

mk =
2n

∑
k=0

∫ 1

0
f ∗(x)φk(x)dx =

∫ 1

0
f ∗(x)

2n

∑
k=0

φk(x)dx =
∫ 1

0
f ∗(x)dx = 1.
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3.4 Solution of the Maximum Entropy Problem by Piecewise Quadratic
Polynomials

The Birkhoff individual ergodic theorem in [50] gives,

mi = lim
M→∞

1
M

M−1

∑
j=0

φi(S j(x)), ∀ x ∈ [0,1] µ f ∗−a.e., i = 0,1, · · · ,2n, (3.10)

so, for a large natural number N, the moments mi are

mi '
1
N

N−1

∑
j=0

φi(S j(x)), ∀ x ∈ [0,1] µ f ∗−a.e., i = 0,1, · · · ,2n.

Solving the maximum entropy problem (3.3), using the piecewise quadratic polynomials φi,
requires solving the following problem:

max
{

H( f ) : f ∈ D,
∫ 1

0
f (x)φi(x)dx = mi,0≤ i≤ 2n

}
. (3.11)

The solution of the problem is

f (x) =
e∑

2n
k=0 λkφk(x)∫ 1

0 e∑
2n
k=0 λkφk(x) dx

, (3.12)

where the Lagrange multipliers λ0,λ1, . . . ,λ2n satisfy the relations∫ 1

0
φi(x)e∑

2n
k=0 λkφk(x) dx = mi

∫ 1

0
e∑

2n
k=0 λkφk(x) dx, i = 0,1, . . . ,2n. (3.13)

Due to the partition of unity property of the basis functions φi, the Jacobian matrix
J(λ0,λ1, . . .λ2n) of the equation (5.10) has left eigenvector e1 = (1,1, . . . ,1) corresponding
to the eigenvalue 0, so it is a singular matrix.

To overcome this singularity problem, a modified method was developed in [25] by
defining a new form of (5.10) based on the following Proposition:

Proposition 3.4.1. If λ0,λ1, . . . ,λ2n satisfy∫ 1

0
φi(x)e∑

2n
k=0 λkφk(x) dx = mi, i = 0,1, . . . ,2n, (3.14)

then e∑
2n
k=0 λkφk(x) is a density.

Proof. Since By Proposition 3.3.1, ∑
2n
i=0 mi = 1. Thus,∫ 1

0
e∑

2n
k=0 λkφk(x) dx =

∫ 1

0
e∑

2n
k=0 λkφk(x)

2n

∑
i=0

φi(x)dx

=
2n

∑
i=0

∫ 1

0
e∑

2n
k=0 λkφk(x)φi(x)dx

=
2n

∑
i=0

mi = 1.
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It can be easily seen that the numbers λ0,λ1, . . . ,λ2n, which are the solutions of the
nonlinear system (3.14), are also solutions of (5.10).

Remark 3.4.2. Let λ=(λ0,λ1, . . . ,λ2n) ∈ R2n+1 and F = (F0,F1, . . . ,F2n)
T , where

Fi(λ )=
∫ 1

0 φi(x)e∑
2n
k=0 λkφk(x) dx−mi, i = 0,1, . . . ,2n. The system (3.14) can be written as

F(λ ) = 0.

Proposition 3.4.3. The Jacobian matrix J(λ0,λ1, . . . ,λ2n) of the nonlinear system (3.14) is
symmetric, nonsingular, five-diagonal, and positive definite.

Proof. The (i, j)th entry of the Jacobian matrix J at (λ0,λ1, . . . ,λ2n) is

Ji, j =
∂Fi

∂λ j
=

∂

∂λ j

(∫ 1

0
φi(x)e∑

2n
k=0 λkφk(x) dx−mi

)
=

∫ 1

0
φi(x)e∑

2n
k=0 λkφk(x)φ j(x)dx.

The symmetry of the matrix is clear from the fact that φi(x)φ j(x) = φ j(x)φi(x) for all
i, j = 0,1, . . . ,2n. The supports of φi and φ j are disjoint for | i− j |> 2 so the matrix J is
five-diagonal. Furthermore, the (i, j)th entries of Ji j are zero when i and j are both odd and
| i− j |= 2. Ji j 6= 0 for at least one pair of (i, j), otherwise φi(x) = 0 for every i = 0,1, . . . ,2n

which is impossible.
Let yT = (y0,y1, . . . ,y2n) be a nonzero vector in R2n+1. Then

yT Jy =
2n

∑
j=0

2n

∑
i=0

y jyiJi, j

=
2n

∑
j=0

2n

∑
i=0

y jyi

∫ 1

0
φi(x)e∑

2n
k=0 λkφk(x)φ j(x)dx

=
∫ 1

0

2n

∑
j=0

2n

∑
i=0

y jyiφi(x)e∑
2n
k=0 λkφk(x)φ j(x)dx

=
∫ 1

0

2n

∑
i=0

yiφi(x)e∑
2n
k=0 λkφk(x)

2n

∑
j=0

y jφ j(x)dx

=
∫ 1

0

( 2n

∑
i=0

yiφi(x)
)2

e∑
2n
k=0 λkφk(x) dx > 0.

Thus J is positive definite and it completes the proof.

The system (3.14) has a unique solution which can be shown exactly the same way as
shown in [25].
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In our algorithm, we calculate mi using the formula (3.9) and use them in equation (3.14)
to get λ0,λ1, . . . ,λ2n. By Proposition 3.4.1, the solution of the maximum entropy problem
(3.11) is given by

fn(x) = e∑
2n
j=0 λ jφ j(x). (3.15)

3.5 Convergence Analysis

In this section, we analyze the L1 error of the proposed MEM. We provide the convergence
rate and approximate error bounds of our method that concentrates on the numerical recovery
of the unique invariant density f ∗ of the F-P operator PS of a nonsingular transformation
S : [0,1]→ [0,1]. The convergence analysis of the proposed numerical method is based on
the convergence theory for the moment problem developed in [12, 13] and used in [25] .

Let X be a locally convex topological vector space with a nested sequence of closed
subsets {Gn} and let K : X → [−∞,∞) be a functional with compact level sets.

Lemma 3.5.1. Let fn be an optimal solution of

max{K( f ) : f ∈ Gn},

and f∞ the unique optimal solution of the limiting problem

max
{

K( f ) : f ∈
⋂∞

n=1
Gn
}

with K( f∞) > −∞. Then limn→∞ fn = f∞ under the topology of X and limn→∞ K( fn) =

K( f∞).

Proof. See [13] (Propositions 1.4 and 1.5).

To fit the result of Lemma 3.5.1 in our scheme, we use the following method developed
in [25]. Divide the interval [0,1] into two equal subintervals,divide one of those intervals
into two subintervals, and keep this procedure for each step for each subinterval until getting
n subintervals. On these subintervals, define a set of piecewise quadratic polynomials
{φ0,φ1, . . . ,φ2n}. Taking these functions as basis functions, we have a sequence of subspaces
∆n, of C0[0,1], of dimension 2n+1, of piecewise quadratic polynomial. Since ∆n is a nested
increasing sequence of subspaces, the set {Gn} of feasible solutions of the maximum entropy
problem (3.11) is a monotonically decreasing sequence of sets of L1(0,1). The entropy
functional H defined in the previous section has weakly compact level sets; it implies that
the set of feasible solutions is weakly compact in L1(0,1). The space L1(0,1) is a locally
convex topological vector space under the weak topology, so we have the following weak
convergence result of our method:
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Proposition 3.5.2. If the entropy H( f ∗) =−
∫ 1

0 f ∗ ln f ∗ dx of f ∗ is finite, then the solution
fn given by (3.15) associated with ∆n has the following properties
i) fn converge weakly to f ∗, that is
limn→∞

∫ 1
0 fn(x)g(x)dx =

∫ 1
0 f ∗(x)g(x)dx, ∀ g ∈ L∞(0,1).

ii) limn→∞ H( fn) = H( f ∗).

Proof. The result follows from Lemma 3.5.1 and Theorem 3.1 of [12].

Since the Boltzmann entropy functional H is Kadec, from Theorem 2.7 of [12], the weak
convergence of Proposition 3.5.2 implies the strong convergence of the entropy solutions.
Hence, Proposition 3.5.2 implies that limn→∞ ‖ fn− f ∗‖= 0.

Now the convergence rate analysis of the piecewise quadratic MEM is given. By the
general convergence theory for the moment problem from [12, 13], it is enough to estimate
the minimal distance of a continuous function g to the subspace of C0[0,1] spanned by
φ0,φ1, . . . ,φ2n under the maximum norm ‖g‖∞ = max

{
|g(x)| : x ∈ [0,1]

}
. In other words,

we want to estimate the quantity

min
(λ0,λ1,...,λ2n)

max
x∈[0,1]

|g(x)−
2n

∑
k=0

λkφk(x)|.

For this purpose, note that the continuous piecewise quadratic polynomials φ0,φ1, . . . ,φ2n

have the expressions

φ2 j(x) =
(x− jh

h
−1
)2

=
(x− ( j+1)h

h

)2

φ2 j+1(x) = 2
(x− jh

h

)(
1− x− jh

h

)
= 2
(x− jh

h

)(( j+1)h− x
h

)
φ2( j+1)(x) =

(x− ( j+1)h
h

+1
)2

=
(x− jh

h

)2

on each subinterval [x j,x j+1] = [ jh,( j+1)h] of [0,1]. Our next lemma shows that if we set
λ2 j = g(x j) for j = 0,1,2, . . . ,n, then the difference |g(x)−∑

2n
k=0 λkφk(x)| is of order O(h3)

for a suitable choice of λ2 j+1, j = 0,1,2, . . . ,n−1.

Lemma 3.5.3. Let g∈C3[0,1] and p(x) = g(x j)φ2 j(x)+µ2 j+1φ2 j+1(x)+g(x j+1)φ2( j+1)(x),
where x ∈ [x j,x j+1] ⊆ [0,1], j = 0,1, . . . ,n− 1. If µ2 j+1 = g( jh)+ h

2g′( jh), then g(x)−
p(x) = 1

3!

[
g′′′(ξ )(x− jh)−g′′′(η)h

]
(x− jh)2 = O(h3), where ξ ∈ ( jh,x) and η ∈ ( jh,( j+

1)h).
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Proof. Using the expressions of φ2 j, φ2 j+1, and φ2( j+1), we have

p(x) = g( jh)
(x− ( j+1)h

h

)2
+2µ2 j+1

(x− jh
h

)(( j+1)h− x
h

)
+g(( j+1)h)

(x− jh
h

)2

=
1
h2

[
g( jh)(x− ( j+1)h)2 +2µ2 j+1(x− jh)( jh− x+h)+g(( j+1)h)(x− jh)2

]
=

1
h2

[
g( jh)(x− jh−h)2 +2µ2 j+1(x− jh)(( j+1)h− x)+g(( j+1)h)(x− jh)2

]
=

1
h2

[
g( jh)

{
(x− jh)2−2h(x− jh)+h2}−2µ2 j+1

{
(x− jh)2−h(x− jh)

}
+ g(( j+1)h)(x− jh)2

]
=

1
h2

[(
g( jh)−2µ2 j+1 +g(( j+1)h)

)
(x− jh)2−2h

(
g( jh)−µ2 j+1

)
(x− jh)+h2g( jh)

]
=

1
h2

(
g( jh)−2µ2 j+1 +g(( j+1)h)(x− jh)2

)
− 2

h

(
g( jh)−µ2 j+1

)
(x− jh)+g( jh).(3.16)

Expanding g(x) near x = jh and using (3.16),

g(x)− p(x) = g( jh)+g′( jh)(x− jh)+
g′′( jh)

2!
(x− jh)2 +

g′′′(ξ )
3!

(x− jh)3− 1
h2

(
g( jh)−2µ2 j+1

− g(( j+1)h)(x− jh)2)+ 2
h

(
g( jh)−µ2 j+1

)
(x− jh)−g( jh),where ξ ∈ ( jh,x)

=
(

g′( jh)+
2
h
(g( jh)−µ2 j+1)

)
(x− jh)+

(g′′( jh)
2!
−

g( jh)−2µ2 j+1 +g(( j+1)h)
h2

)
(x− jh)2 +

g′′′(ξ )
3!

(x− jh)3.

Choose µ2 j+1 such that g′( jh)+ 2
h(g( jh)− µ2 j+1) = 0, that is µ2 j+1 = h

2g′( jh)+ g( jh).
Then

g(x)− p(x) =
(g′′( jh)

2!
− g( jh)−hg′( jh)−2g( jh)+g(( j+1)h)

h2

)
(x− jh)2 +

g′′′(ξ )
3!

(x− jh)3

=
g′′′(ξ )

3!
(x− jh)3− g′′′(η)

3!
h(x− jh)2,

=
1
3!

[
g′′′(ξ )(x− jh)−g′′′(η)h

]
(x− jh)2

= O(h3)

where ξ ∈ ( jh,x), and η ∈ ( jh,( j+1)h).

Theorem 3.5.4. Let g ∈ C3[0,1] and {φk}2n
k=0 be the basis of the space of continuous

piecewise quadratic functions. Then

min
λ0,λ1,...,λ2n

max
x∈[0,1]

|g(x)−
2n

∑
k=0

λkφk(x)|= O(h3).
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Proof. Apply Lemma 3.5.3 on each subinterval [x j,x j+1], j = 0,1, . . . ,n−1.

The combination of the above result with g = ln f ∗ ∈C3[0,1] and Theorem 4.7 of [12]
gives the L1 norm estimation as expressed in the following theorem:

Theorem 3.5.5. Let g = ln f ∗ ∈C3[0,1]. If fn is defined as above, then ‖ f ∗− fn‖= O(h3).

Proof. Let En = min
{
‖∑

2n
k=0 λkφk− ln f ∗‖∞ : λk ∈ R

}
. From Theorem 4.7 of [12], ‖ fn−

f ∗‖ ≤ Ene
En
2 , so En = O(h3) by Theorem 3.5.4. Since e

En
2 = O(1), it follows that ‖ fn−

f ∗‖= O(h3).

3.6 Numerical Results

In this section we present the numerical results of error analysis corresponding to the fol-
lowing five transformations from [0,1] to itself.

S1(x) =

{
2x

1−x2 , 0≤ x≤
√

2−1
1−x2

2x ,
√

2−1≤ x≤ 1
,

S2(x) =

{
2x

1−x , 0≤ x≤ 1
3

1−x
2x , 1

3 ≤ x≤ 1
,

S3(x) = 4x(1− x),

S4(x) = 1−
√
|2x−1|,

S5(x) =

(
1
8
−2|x− 1

2
|3
)1/3

.

The unique invariant densities of the F-P operator corresponding to the above transformations,
Si, i = 1, . . . ,5, are respectively:

f ∗1 (x) =
4

π(1+ x2)
,

f ∗2 (x) =
2

(1+ x)2 ,

f ∗3 (x) =
1

π
√

x(1− x)
,

f ∗4 (x) = 2(1− x),

f ∗5 (x) = 12
(

x− 1
2

)2

.
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The graphs of the nonsingular transformations S1, . . . ,S5, and the invariant densities of
the F-P operator associated with those transformations are given below:

Figure 3.4: Graph of S1(x) Figure 3.5: Invariant Density

Figure 3.6: Graph of S2(x) Figure 3.7: Invariant Density

To calculate the error, we divide the interval [0,1] into n = 2r, r = 2,3, . . . ,8 subintervals
Ii = [xi−1,xi], i = 1,2, . . . ,n of equal length h = 1

n . The mi, i = 0,1, . . . ,2n, are calculated
using the actual invariant densities f ∗1 , f ∗2 , f ∗3 , f ∗4 , and f ∗5 in (3.9); those mi are used in (3.14)
to get λ0,λ1, . . . ,λ2n. Finally, the λ0,λ1, . . . ,λ2n are used in (3.15) to obtain the approximate
invariant densities. The errors, en, are calculated using the formula

en = ‖ fn− f ∗‖L1 =
∫ 1

0
| fn− f ∗|dx.

The errors are presented in Table 3.1, Table 3.2, Table 3.3, Table 3.4, and Table 3.5.
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Figure 3.8: Graph of S3(x) Figure 3.9: Invariant Density

Figure 3.10: Graph of S4(x) Figure 3.11: Invariant Density

Figure 3.12: Graph of S5(x) Figure 3.13: Invariant Density
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n PQMFA PLMEM PQMEM CPU Time (Sec)
4 2.096419×10−2 2.3×10−3 1.5314×10−4 0.774722
8 7.047357×10−3 5.7×10−4 2.0188×10−5 0.500334

16 2.159652×10−3 1.4×10−4 2.5498×10−6 0.554427
32 6.358728×10−4 3.6×10−5 3.1965×10−7 0.796904
64 1.836483×10−4 8.9×10−6 4.0000×10−8 1.563933

128 5.215950×10−5 2.2×10−6 5.0034×10−9 3.2084285
256 * 5.6×10−7 6.2562×10−10 6.443589
512 ∗ ∗ 7.8216×10−11 13.487430

1024 ∗ ∗ 9.7778×10−12 28.769752
2048 ∗ ∗ 1.2223×10−12 69.269342

Table 3.1: Comparison of Errors, en, Associated with S1

n PQMFA PLMEM PQMEM CPU Time (Sec)
4 4.366420×10−2 2.4×10−3 1.1855×10−4 0.846421
8 1.920112×10−2 5.9×10−4 1.6623×10−5 0.589024

16 8.297540×10−3 1.5×10−4 2.2120×10−6 0.702382
32 3.117798×10−3 3.7×10−5 2.8645×10−7 0.890773
64 1.034574×10−3 9.2×10−6 3.6522×10−8 1.638339

128 3.202538×10−4 2.3×10−6 4.6107×10−9 3.228516
256 * 5.7×10−7 5.7920×10−10 6.522812
512 ∗ ∗ 7.2580×10−11 13.318838

1024 ∗ ∗ 9.0837×10−12 28.698942
2048 ∗ ∗ 1.1362×10−12 69.510323

Table 3.2: Comparison of Errors, en, Associated with S2
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n PQMFA PLMEM PQMEM CPU Time (Sec)
4 3.681119×10−1 2.4×10−1 1.6916×10−1 26.191738
8 3.057296×10−1 1.7×10−1 1.1931×10−1 30.665695
16 2.453954×10−1 1.2×10−1 8.3465×10−2 29.392794
32 1.801104×10−1 8.4×10−2 5.8523×10−2 35.060111
64 1.346728×10−1 5.9×10−2 4.1834×10−2 38.502450
128 9.663345×10−2 4.2×10−2 2.8717×10−2 1093.743123
256 * 3.0×10−2 2.0026×10−2 2379.527132

Table 3.3: Comparison of Errors, en, Associated with S3

n PQMEM CPU Time (Sec)
4 6.2000×10−3 0.418198
8 1.6000×10−3 0.333783
16 4.0657×10−4 0.583267
32 1.0230×10−4 1.277854
64 2.5671×10−5 2.758252
128 6.4278×10−6 5.528695
256 1.6065×10−6 12.291537
512 4.0093×10−7 27.524598
1024 1.0025×10−7 60.307657
2048 2.5066×10−8 151.421663

Table 3.4: Errors, en, Associated with S4

n PQMEM CPU Time (Sec)
4 1.0126×10−2 0.597442
8 2.2500×10−3 0.409689
16 4.0313×10−4 0.828435
32 6.1283×10−5 1.647523
64 9.0157×10−6 3.495872
128 1.2920×10−6 8.132633
256 1.8222×10−7 17.538370
512 2.5364×10−8 40.068020
1024 3.4935×10−9 92.235110
2048 4.7705×10−9 215.851727

Table 3.5: Errors, en, Associated with S5
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The errors of the Piecewise Linear MEM (PLMEM) are taken from the paper [25] and
the errors of the Piecewise Quadratic Markov Finite Approximation Method (PQMFA) are
obtained from [18]. The numerical results, except the last two rows of the Table 5.3, show
that the proposed Piecewise Quadratic MEM (PQMEM) is the best among the three. The
invariant densities which are taken in Table 3.1, Table 3.2, Table 3.4, and Table 3.5 are
smooth functions on [0,1] and the order of convergence of errors is close to O(h3) for S1, S2

and S5 and close to O(h2) for S4. The function f ∗ in Table 3.3 is unbounded on [0,1] so the
order of convergence of errors doesn’t follow any definite rule. The tabulated errors for this
function are obtained by keeping λ0 and λ2n fixed.
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Chapter 4

A Quadratic Spline Maximum Entropy Method

4.1 Introduction

When two or more curves are connected to form a curve that satisfies given conditions,
the curve is called a spline. These constraints may consist of parametric and geometric
continuity. Splines have been used to approximate complex curves. The use of splines was
increased after the invention of computers.

Before the use of splines, one generally used a polynomial for approximation problems.
In computational works, step functions and polynomials have been applied due to their
simplicity in writing and easy-to-execute nature.

The following is a way to get a spline of degree n. Let {(xi,yi)
n
i=0} be a set of n+ 1

points. The ordered numbers x1 < x2 < .. . < xn are called knots. A piecewise polynomial
function f (x) defined by

f (x) =


f0(x), x0 ≤ x < x1
f1(x), x1 ≤ x < x2

...
...

fn−1(x), xn−1 ≤ x≤ xn

is called a spline of degree n if

1) each fi is a polynomial of degree n,

2) f (x) is n−1 times differentiable,

3) for each j = 1,2, · · · ,n−1,

f( j−1)(x j) = f j(x j)

f ′( j−1)(x j) = f ′j(x j)

...

f (n−1)
( j−1) (x j) = f (n−1)

j (x j).

Linear, quadratic and cubic splines are common in applications. Among these three, cubic
is the most used spline function.
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A basis of a spline is known as B-splines and a spline function formed from basis
functions. A spline function is given in the form

n

∑
i=0

Bk
i (t)Pi,

where Bk
i (t) is a basis function that can be defined by using the Cox-de Boor recursion

formula and P0,P1, . . . ,Pn are control points.
In the previous chapter, a piecewise quadratic maximum entropy method was developed

to approximate an invariant density of the F-P operator associated with nonsingular transfor-
mations S, S : [0,1]→ [0,1]. The scheme was based on the partition of the interval [0,1] into
n uniform subintervals and application of 2n+1 continuous piecewise quadratic polynomials
which satisfy the partition of unity property. This method improved the numerical results
by producing the smaller errors than the errors produced by the piecewise linear maximum
entropy method [25] and the piecewise quadratic Markov finite approximation method [18].
The scheme in [70] also opened a way to implement continuous higher order piecewise
polynomials that satisfy the partition of unity property. Although this scheme produced the
best results in comparison to two existing methods, it needed a long time and a large amount
of computing memory for the numerical accomplishment due to the implementation of a
large number, 2n+1, of piecewise quadratic polynomials.

A new numerical scheme based on finite element MEM which will overcome the
drawbacks of the PQMEM will be presented in this chapter. In that scheme, quadratic
splines are used as moment functions and this new scheme reduces the number of nonlinear
equations to n+2 which is nearly one half in comparison to the number of equations, 2n+1,
required in [70]. Since the number of moment functions reduces by nearly one half, this
numerical scheme is faster and more efficient than PQMEM and other methods.

4.2 Quadratic Spline and B-Spline

The theory of splines and their applications are relatively new but splines are widely used in
applications due to their approximation powers and other characteristics [65].

Definition 4.2.1. Let a = x0 < x1 < .. . < xn−1 < xn = b, and we write ∆ = {xi}n
i=0. The set

∆ partitions the interval [a,b] into n subintervals Ii = [xi−1,xi], i = 1,2, . . . ,n. Let d be a
positive integer. Define

Sd(∆) = Pd(∆)∩Cd−1[a,b],

where Pd(∆) is the space of piecewise polynomial functions of degree at most d with respect
to ∆ and Cd−1[a,b] is the space of functions having continuous d−1 derivatives on [a,b].
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Thus, Sd(∆) is the set of the piecewise polynomials of degree at most d that are d−1 times
continuously differentiable at all nodes x0,x1, . . . ,xn, and each function in this set is called a
degree-d spline function associated with the partition.

From the above definition, S2(∆) consists of all continuously differentiable functions
f such that f is a quadratic polynomial on each subinterval [xi−1,xi], i = 1,2, . . . ,n. It is
well known from [65] that the space Sd(∆) of degree d spline functions associated with ∆

is a vector space of dimension n+d. A special basis of Sd(∆), consisting of the so-called
B-splines, can be constructed via a recurrence relation with respect to the lower degree
B-splines. This can be done as follows.

It is easier to develop the recurrence relations for the B-splines if we assume that there
are nodes · · ·< x−2 < x−1 to the left of a and xn+1 < xn+2 < · · · to the right of b; in other
words,it can be written as a bi-infinite sequence

· · ·< x−2 < x−1 < x0 < x1 < x2 < · · ·

of nodes on the real line.
The B-splines of degree 0, denoted as B0

i , are just piecewise constant functions and
defined as

B0
i (x) =

{
1, xi ≤ x < xi+1,
0, otherwise

on the ith subinterval for i = 1,2, . . . ,n, which are nothing but the characteristic functions
of the subintervals. Starting from B0

i , the recursive formula of degree-d B-splines with
d = 1,2, . . . are defined as

Bd
i (x) =

x− xi

xi+d− xi
Bd−1

i (x)+
xi+d+1− x

xi+d+1− xi+1
Bd−1

i+1 (x)

for each i. It is obvious to see that each Bd
i is a piecewise polynomial of degree d and belongs

to Sd(∆), so it is called a B-spline of degree d. Some basic properties of the B-splines are
summarized in the following theorem; more properties can be referred to [11, 65].

Theorem 4.2.2. (i) If x ∈ (xi,xi+d+1), then Bd
i (x)> 0.

(ii) If x 6∈ [xi,xi+d+1), then Bd
i (x) = 0.

(iii) ∑i Bd
i (x)≡ 1 for all x.

(iv) The B-splines of degree-d

Bd
−d,B

d
−d+1, . . . ,B

d
n−2,B

d
n−1

constitute a basis for the space Sd(∆) of all functions in Cd−1[0,1] which are polynomials

of degree at most ≤ d on each of the n subintervals

[x0,x1], [x1,x2], . . . , [xn−1,xn].
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The properties (i) and (ii) mean the local positive support of the B-splines, which shows
that B-splines are positive on their support which is the union of only d + 1 consecutive
subintervals of the partition. The property (iii) gives the partition of unity and plays an
important role in our numerical scheme when the B-splines are used as the moment functions.
The property (iv) is the continuity property of the derivatives of the degree-d B-splines up
to the order d−1, and it also gives the dimension of the space Sd(∆), which is n+d. In
practical computations with the splines, the nodes xi are usually evenly distributed so the
resulting subintervals have the same length h = b−a

n . The resulting B-splines can be obtained
from a “mother spline” followed by scaling and translation techniques. For example, the
degree-1 B-splines used in [29], can be expressed as

B1
i (x) = l

(
x− xi

h

)
,

where

l(x) =


x, 0≤ x≤ 1,
2− x, 1 < x≤ 2,
0, x 6∈ [0,2]

is the standard tent function.
The degree-2 B-splines can be expressed as

B2
i (x) = q

(
x− xi

h

)
,

where

q(x) =


1
2x2, 0≤ x≤ 1,
3
4 −
(
x− 3

2

)2
, 1 < x≤ 2,

1
2(x−3)2, 2 < x≤ 3,
0, x 6∈ [0,3].

.

4.3 B-spline Functions in Maximum Entropy

B-splines are employed in the numerical estimation of an invariant density of the F-P operator
associated with a nonsingular transformation S : [0,1]→ [0,1]. To define the B-splines
properly, we divide the interval [0,1] into the n subintervals I j = [x j−1,x j], j = 1,2, . . . ,n,
of equal width h = 1/n. As mentioned previously, 2d external knots will be needed for
the B-spline of degree d. The knots are defined as x−i = −ih and xn+i = (n+ i)h for
i = 1,2, . . . ,d.

The maximization problem in term of B-spline functions has the form:

maximize
{

H( f ) : f ∈ D,
∫ 1

0
f (x)Bd

i (x)dx = mi, i =−d,−d +1, . . . ,n−1
}
. (4.1)
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Since the B-splines Bd
i of degree d satisfy the partition of unity property, the solution of

the maximum entropy problem (4.1) is:

fn(x) = e∑
n−1
i=−d λiBd

i (x), (4.2)

where the Lagrange multipliers λi satisfy the constraint conditions∫ 1

0
e∑

n−1
j=−d λ jBd

j (x)Bd
i (x)dx = mi, i =−d,−d +1, . . . ,n−1. (4.3)

Quadratic splines are used in MEM, so d = 2 in what follows. The figures of a single
quadratic B-spline basis function, with the simple nodes at x = 0,1,2,3, and the correspond-
ing B-splines are given in Figure 4.1 and in Figure 4.2, respectively. When [0,1] is divided
into n subintervals with the uniform length h = 1/n, then there will be n+ 2 B-splines
B−2,B−1, . . . ,B(n−1), where the superscript “2” are removed for simplicity.

Figure 4.1: A Quadratic Spline Function Figure 4.2: Quadratic B-Splines

4.4 Convergence Analysis

In this section, the error bounds for the proposed quadratic spline maximum entropy method
are presented with respective mathematical proofs. If the F-P operator PS associated with a
nonsingular transformation S : [0,1]→ [0,1] has an invariant density f ∗, a useful result in
the maximum entropy method will be obtained, which gives the weak convergence of the
method when the Boltzmann entropy of f ∗ is finite.

Theorem 4.4.1. (Theorem 3.1 [12]) If the entropy H( f ∗) =−
∫ 1

0 f ∗ log f ∗ dx of f ∗ is finite,

then the solutions fn for all n given by (4.2) associated with S2(∆) has the following
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properties:

i) fn converge weakly to f ∗, that is

limn→∞

∫ 1
0 fn(x)g(x)dx =

∫ 1
0 f ∗(x)g(x)dx, ∀ g ∈ L∞(0,1).

ii) limn→∞ H( fn) = H( f ∗).

According to the theory developed in the papers [12, 13], it is essential to estimate
the minimal distance of a function f ∈ C[0,1] to the subspace spanned by the functions
B−2, B−1, . . . , Bn−1 under the infinity norm ‖ f‖∞ =max{| f (x)| : x∈ [0,1]}. The estimation
of the following quantity fulfills the above requirement:

min
(λ−2,λ−1,...,λn−1)

max
x∈[0,1]

∣∣∣∣∣ f (x)− n−1

∑
k=−2

λkBk(x)

∣∣∣∣∣ .
Define a linear operator Q : C[0,1]→ S2(∆n) by

(Q f )(x) =
n−1

∑
i=−2

µi( f )Bi(x), ∀ x ∈ [0,1], (4.4)

where

µi( f ) =


f (x0), i =−2,
1
2

[
4 f (xi+3/2)− f (xi+1)− f (xi+2)

]
, i =−1,0, . . . ,n−2,

f (xn), i = n−1.

Here for convenience, we write xk+1/2 = (xk + xk+1)/2 for any k. A direct computation
shows that Q satisfies that Qp = p for p(x) = 1, x, and x2.

Let f ∈C3[0,1]. To estimate maxx∈[0,1] | f (x)−(Q f )(x)|, it is enough to estimate | f (x)−
(Q f )(x)| on a particular subinterval [xi,xi+1] for some 1≤ i≤ n−2. The error analysis on
the subinterval [x0,x1] and [xn−1,xn] can be done similarly. So we focus on the subinterval
[xi,xi+1] with a fixed i ∈ {1, . . . ,n−2}. On this interval, there are only three nonzero terms
in the expression (4.4) of Q f , which are associated with the B-splines

Bi−2(x) =
1
2

(
x− xi−2

h
−3
)2

,

Bi−1(x) =
3
4
−
(

x− xi−1

h
− 3

2

)2

,

Bi(x) =
1
2

(
x− xi

h

)2

.
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Then for x ∈ [xi,xi+1], from the definition of Q f , we have

(Q f )(x) = µi−2( f )Bi−2(x)+µi−1( f )Bi−1(x)+µi( f )Bi(x)

=
1
2
[
4 f (xi−1/2)− f (xi−1)− f (xi)

]
Bi−2(x)

+
1
2
[
4 f (xi+1/2)− f (xi)− f (xi+1)

]
Bi−1(x)

+
1
2
[
4 f (xi+3/2)− f (xi+1)− f (xi+2)

]
Bi(x)

=
1
4
[
4 f (xi−1/2)− f (xi−1)− f (xi)

](x− xi−2

h
−3
)2

+
1
2
[
4 f (xi+1/2)− f (xi)− f (xi+1)

](3
4
−
(

x− xi−1

h
− 3

2

)2
)

+
1
4
[
4 f (xi+3/2)− f (xi+1)− f (xi+2)

](x− xi

h

)2

.

Let t = (x− xi)/h. Then

(Q f )(x) =
1
4
[
4 f (xi−1/2)− f (xi−1)− f (xi)

]
(t−1)2 +

1
2
[
4 f (xi+1/2)− f (xi)− f (xi+1)

]
(

3
4
−
(

t− 1
2

)2
)
+

1
4
[
4 f (xi+3/2)− f (xi+1)− f (xi+2)

]
t2

=

[
f (xi−1/2)−

1
4

f (xi−1)−
1
4

f (xi)

](
t2−2t +1

)
+

[
2 f (xi+1/2)−

1
2

f (xi)−
1
2

f (xi+1)

]
(
−t2 + t +1/2

)
+

[
f (xi+3/2)−

1
4

f (xi+1)−
1
4

f (xi+2)

]
t2

=

[
f (xi−1/2)−

1
4

f (xi−1)−
1
4

f (xi)−2 f (xi+1/2)+
1
2

f (xi)+
1
2

f (xi+1)+ f (xi+3/2)

− 1
4

f (xi+1)−
1
4

f (xi+2)

]
t2 +

[
−2 f (xi−1/2)+

1
2

f (xi−1)+
1
2

f (xi)+2 f (xi+1/2)

− 1
2

f (xi)−
1
2

f (xi+1)

]
t + f (xi−1/2)−

1
4

f (xi−1)−
1
4

f (xi)+ f (xi+1/2)−
1
4

f (xi)−
1
4

f (xi+1)

=

[
f (xi−1/2)−

1
4

f (xi−1)+
1
4

f (xi)−2 f (xi+1/2)+
1
4

f (xi+1)+ f (xi+3/2)−
1
4

f (xi+2)

]
t2

+

[
−2 f (xi−1/2)+

1
2

f (xi−1)+2 f (xi+1/2)−
1
2

f (xi+1)

]
t

+

[
f (xi−1/2)−

1
4

f (xi−1)−
1
2

f (xi)+ f (xi+1/2)−
1
4

f (xi+1)

]
.
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Expanding each term inside the brackets of the above expression at the point xi gives

(Q f )(x) =

[
f (xi)+ f ′(xi)(−h/2)+

f ′′(xi)

2!
(−h/2)2 +O(h3)

− 1
4

(
f (xi)+ f ′(xi)(−h)+

f ′′(xi)

2!
(−h)2 +O(h3)

)
+

1
4

f (xi)

− 2
(

f (xi)+ f ′(xi)(h/2)+
f ′′(xi)

2!
(h/2)2 +O(h3)

)
+

1
4

(
f (xi)+ f ′(xi)h+

f ′′(xi)

2!
h2 +O(h3)

)
+ f (xi)+ f ′(xi)(3h/2)+

f ′′(xi)

2!
(3h/2)2 +O(h3)

− 1
4

(
f (xi)+ f ′(xi)(2h)+

f ′′(xi)

2!
(2h)2 +O(h3)

)]
t2

+

[
−2
(

f (xi)+ f ′(xi)(−h/2)+
f ′′(xi)

2!
(−h/2)2 +O(h3)

)
+

1
2

(
f (xi)+ f ′(xi)(−h)+

f ′′(xi)

2!
(−h)2 +O(h3)

)
+ 2
(

f (xi)+ f ′(xi)(h/2)+
f ′′(xi)

2!
(h/2)2 +O(h3)

)
− 1

2

(
f (xi)+ f ′(xi)h+

f ′′(xi)

2!
h2 +O(h3)

)]
t

+

[
( f (xi)+ f ′(xi)(−h/2)+

f ′′(xi)

2!
(−h/2)2 +O(h3)

− 1
4

(
f (xi)+ f ′(xi)(−h)+

f ′′(xi)

2!
(−h)2 +O(h3)

)
− 1

2
( f (xi)+ f (xi)+ f ′(xi)(h/2)+

f ′′(xi)

2!
(h/2)2 +O(h3)

− 1
4

(
f (xi)+ f ′(xi)h+

f ′′(xi)

2!
h2 +O(h3)

)]
.

After simplification and substituting t back to x = xi +ht, we have

(Q f )(x) =
(

1
2

f ′′(xi)+O(h)
)
(x− xi)

2 +
(

f ′(xi)−O(h2)
)
(x− xi)+ f (xi)+O(h3).

Thus, by expanding f (x) at xi and noting that x− xi = O(h), we obtain

(Q f − f )(x) =

(
1
2

f ′′(xi)+O(h)
)
(x− xi)

2 +
(

f ′(xi)−O(h2)
)
(x− xi)+ f (xi)− f (xi)

− f ′(xi)(x− xi)−
f ′′(xi)

2!
(x− xi)

2−O(h3) = O(h3).

This proves the following approximation result.
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Theorem 4.4.2. For a given function f ∈C3[0,1],

min
(λ−2,λ−1,...,λn−1)

max
x∈[0,1]

∣∣∣∣∣ f (x)− n−1

∑
k=−2

λkB2
k(x)

∣∣∣∣∣= O(h3),

where h is the length of the uniform subintervals.

The combination of the above result with the assumption log f ∗ ∈C3[0,1] and Theorem
4.7 of [12] gives the L1-norm estimation as the following convergence rate result shows.

Theorem 4.4.3. Suppose f ∗ is a unique invariant density of the F-P operator such that

log f ∗ ∈C3[0,1]. If fn is the sequence of the degree-2 spline maximum entropy approxima-

tions of f ∗, then ‖ f ∗− fn‖= O(h3).

Proof. Let En = min
{
‖∑

n−1
k=−2 λkBk− log f ∗‖∞ : λk ∈ R

}
. Then En = O(h3) by Theorem

4.4.2. From Theorem 4.7 of [12], ‖ fn− f ∗‖ ≤ Ene
En
2 . Since, e

En
2 = O(1), it follows that

‖ fn− f ∗‖= O(h3).

4.5 Numerical Results

This section presents the numerical results from the degree-2 spline MEM implemented to
the same set of the five transformations given in Section 3.6.

To calculate the errors, divide the interval [0,1] into n = 2s, s = 2,3, . . . ,8 subintervals
Ii = [xi−1,xi], i = 1,2, . . . ,n of equal length h = 1

n . The moments mi, i =−2,−1, . . . ,n−1,
are calculated using the actual invariant densities f ∗1 , f ∗2 , and f ∗3 , so

mi =
∫ 1

0
Bi(x) f ∗j (x)dx, i =−2,−1, . . .n−1.

Those mi are used in (4.3) to get λ−2,λ−1, . . . ,λn−1. Finally, the λ−2,λ−1, . . . ,λn−1 are used
in (4.2) to obtain the approximate invariant densities. The errors en are calculated using the
formula

en = ‖ fn− f ∗‖=
∫ 1

0
| fn(x)− f ∗(x)|dx

and presented in Table 4.1, Table 5.2, Table 5.3, Table 5.1, and Table 4.5. The errors of the
PQMFA are taken from [18], the errors for the PLMEM are based on [25], and the errors in
the PQMEM are obtained from [70].

From the comparison between the performance of our degree-2 spline method and the
piecewise quadratic method from the last chapter, it is clear that, although both of them have
the same order of convergence with respect to the same partition of the interval, the involved
numerical work of the current method is much reduced due to the fact that the number of



53

the nonlinear equations of the new system for the Lagrange multipliers from the maximum
entropy method using the continuously differentiable B-splines of degree 2, is about half of
that from the method that uses only continuous piecewise quadratic moment functions in
[70].

The convergence and errors estimation are shown when the moments are exactly known.
The moments m−2,m−1, . . . ,mn−1 can’t be calculated when the corresponding invariant
density f ∗ is unknown. In this situation, the way to estimate those moments, via iteration,
is to use the Birkhoff individual ergodic theorem [15]. The approximated moments, no
matter how large N may be, have errors in comparison to the exact moments. The the-
oretical analysis of the effects, of the errors in moments that influence the approximate
maximum entropy solution, was presented in [70]. The analysis established that, under
certain conditions, the estimated moments influence the maximum entropy estimation by
O(‖δ‖∞), where δ = (δ−2,δ−1, . . . ,δn−1)

T , and δi is the difference between an ith exact
(mi) and estimated (m̂i) moment. Though the ergodic theorem very often exhibits a slow
convergence, we think that the choice of a large N in the ergodic theorem can produce a
small difference between two moments mi and m̂i as we desire. When ‖δ‖∞ is small enough,
the approximated invariant density is not much affected by the choice of the moments.

n PQMFA PLMEM PQMEM QSMEM CPU Time(Sec)
4 2.096419×10−2 2.3×10−3 1.5314×10−4 1.6895×10−4 0.654131
8 7.047357×10−3 5.7×10−4 2.0188×10−5 2.0848×10−5 0.498099
16 2.159652×10−3 1.4×10−4 2.5498×10−6 2.5718×10−6 0.577895
32 6.358728×10−4 3.6×10−5 3.1965×10−7 3.2038×10−7 0.786626
64 1.836483×10−4 8.9×10−6 4.0000×10−8 4.0027×10−8 1.705700
128 5.215950×10−5 2.2×10−6 5.0034×10−9 5.0043×10−9 3.234171
256 * 5.6×10−7 6.2562×10−10 6.2566×10−10 6.460725
512 ∗ ∗ 7.8218×10−11 7.8218×10−11 12.816098
1024 ∗ ∗ 9.7778×10−12 9.7779×10−12 26.251176
2048 ∗ ∗ 1.2223×10−12 1.2223×10−12 53.800612

Table 4.1: Comparison of Errors, en, Associated with S1
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n PQMFA PLMEM PQMEM QSMEM CPU Time (Sec)
4 4.366420×10−2 2.4×10−3 1.1855×10−4 1.2210×10−4 0.559815
8 1.920112×10−2 5.9×10−4 1.6623×10−5 1.6783×10−5 0.529327
16 8.297540×10−3 1.5×10−4 2.2120×10−6 2.2244×10−6 0.628871
32 3.117798×10−3 3.7×10−5 2.8645×10−7 2.8745×10−7 0.888102
64 1.034574×10−3 9.2×10−6 3.6522×10−8 3.6581×10−8 1.631717
128 3.202538×10−4 2.3×10−6 4.6107×10−9 4.6144×10−9 3.247069
256 * 5.7×10−7 5.7920×10−10 5.7944×10−10 6.542880
512 ∗ ∗ 7.2580×10−11 7.2594×10−11 13.552166
1024 ∗ ∗ 9.0837×10−12 9.0846×10−12 27.303408
2048 ∗ ∗ 1.1362×10−12 1.1362×10−12 55.576483

Table 4.2: Comparison of Errors, en, Associated with S2

n PQMFA PLMEM PQMEM QSMEM CPU Time (Sec)
4 3.681119×10−1 2.4×10−1 1.6916×10−1 1.8881×10−1 23.740532
8 3.057296×10−1 1.7×10−1 1.1931×10−1 1.3768×10−1 24.584100
16 2.453954×10−1 1.2×10−1 8.3465×10−2 9.7225×10−2 27.577844
32 1.801104×10−1 8.4×10−2 5.8523×10−2 6.8380×10−2 30.930162
64 1.346728×10−1 5.9×10−2 4.1834×10−2 4.8221×10−2 35.086297
128 9.663345×10−2 4.2×10−2 2.8717×10−2 3.4053×10−2 65.791768
256 * 3.0×10−2 2.0026×10−2 1.5171×10−1 354.794894

Table 4.3: Comparison of Errors, en, Associated with S3

n PQMEM QSMEM CPU Time (Sec)
4 6.2000×10−3 7.4000×10−3 0.855025
8 1.6000×10−3 2.0000×10−3 0.283095
16 4.0657×10−4 4.9250×10−4 0.578824
32 1.0230×10−4 1.2378×10−4 1.282375
64 2.5671×10−5 3.1023×10−5 2.747500
128 6.4278×10−6 7.7658×10−6 5.504208
256 1.6065×10−6 1.9417×10−6 12.064600
512 4.0093×10−7 4.8622×10−7 26.236218
1024 1.0025×10−7 1.2157×10−7 52.520748
2048 2.5066×10−8 3.0396×10−8 112.108948

Table 4.4: Comparison of Errors, en, Associated with S4
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n PQMEM QSMEM CPU Time (Sec)
4 1.0126×10−2 1.0640×10−1 0.491448
8 2.2500×10−3 2.2700×10−2 0.466884
16 4.0313×10−4 3.200×10−3 0.626806
32 6.1283×10−5 4.1322×10−4 1.386648
64 9.0157×10−6 5.3001×10−5 2.999914
128 1.2920×10−6 6.7911×10−6 6.969542
256 1.8222×10−7 8.6961×10−7 14.974448
512 2.5364×10−8 1.1129×10−7 32.576887
1024 3.4935×10−9 1.4234×10−8 71.906818
2048 4.7705×10−9 1.8196×10−9 151.107587

Table 4.5: Comparison of Errors, en, Associated with S5
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Chapter 5

Invariant Densities of the Frobenius-Perron operator Associated with
Random Maps

5.1 Introduction

A random dynamical system is a family of maps defined from a state space into itself in
which iterates of a point are determined by a given probability distribution. For a random
map T = {T1,T2, . . . ,Tk; p1, p2, . . . , pk} a sequence of iterates of an initial point, x0, is defined
in the following way:

Suppose a member of the family of the maps, say Tk1 , is chosen randomly with a
probability pk1 . When the map acts on x0 with the probability pk1 , the first iterate is
x1 = Tk1(x0). If a map Tk2 is chosen randomly, independent with Tk1 , with a probability pk2 ,
then the second iterate is x2 = Tk2(x1) = Tk2(Tk1(x0)). In this way the nth iterate will be

xn = Tkn(xn−1) = Tkn ◦Tkn−1 ◦ · · · ◦Tk1(x0).

The sequence {xn} is called a Markov process. A Markov process which is stable in
distribution is studied in [8].

Let T1,T2, . . . ,Tk be a family of maps defined from [0,1] to itself, and let p1, p2, . . . , pk be
the probabilities, where pi ≥ 0,∀i and ∑

k
i=1 pi = 1. A random map T is a random dynamical

system written as T = {T1,T2, . . . ,Tk; p1, p2, . . . , pk}. The iterates of a point in the state
space are generated according to the rule defined above. Bhattacharya and Majumdar [8]
described Solow’s growth model [66] using a random dynamical system with state space
R+, and taking a continuous map depending on saving rate and net output function in per
capita. Random maps are used to construct a generalized binomial model [3] for the study
of existence of an invariant asymptotic density. Random maps with contraction property
have been used to study fractals [6]. In the position dependent random map, the probability
of switching from one transformation to another transformation depends on the position of
the point in the iteration process. In a more precise way, a position dependent random map
T = {T1,T2, . . . ,Tk : p1, p2, . . . , pk} is a collection of maps defined on state space and the
selection of such maps depend on a probability distribution function p = {pi(x)}k

i=1 where
each pi depends on the position x. The probability functions, pi(x), are all point functions.
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Pelikan [58] described a sufficient condition for the existence of invariant measures
for a random map with constant probabilities and also discussed the number of ergodic
components of the map. The study focused on finding a class of random maps for which it is
possible to describe the distribution of almost every trajectory. In the paper, Pelikan used the
concept of pseudo skew product so every random map may be realized as a transformation
of the square [0,1]× [0,1] to itself.

A deterministic representation of random maps is presented in [5] that discussed the
structure of sets which have invariant measures. The deterministic skew-type representation
for random maps with constant probabilities was provided. This representation coincides
with the skew product for random maps with constant probabilities. It also established a
one-to-one correspondence between eigenfunctions of the F-P operator associate with the
deterministic skew-type maps and the eigenfunctions of the transform operator associated
with the random maps for which the skew-type products are defined.

If random maps have position dependent probabilities, then the maps can not be taken as
a skew product. A sufficient condition for the existence of an invariant density of the F-P
operator associated with position dependent random maps was studied in [37]. The geomet-
rical and topological properties of the sets of absolutely continuous invariant measures were
also discussed there. Few attempts have be done for numerical approximations of invariant
densities of the Markov operator associated with random maps and error analysis of such
approximations. In this research, the invariant densities of the F-P operator associated with
different random maps are approximated by using the piecewise linear MEM. The L1 errors
between the exact and approximate invariant densities of the Markov operator are calculated
and presented in tabular form.

5.2 Markov Operator of Position Dependent Random Maps

Let ([0,1],A,µ) be a normalized measure space. Let T = {T1,T2, . . . ,Tk; p1, p2, . . . , pk} be
a position dependent random map, where Ti : [0,1]→ [0,1], i = 1,2, . . . ,k, are one-to-one
and onto functions defined on common partitions I j = [x j−1,x j], j = 1,2, . . . ,n, and each Ti

is chosen by the probability function pi(x)≥ 0, i = 1,2, . . . ,k with ∑
k
i=1 pi(x) = 1, for all

x ∈ [0,1]. The restriction of Ti on the partition I j is given by

Ti, j = Ti| j , ∀i = 1,2 . . . ,k; j = 1,2, . . . ,n.

A measure ν is called an invariant measure of T if

ν(A) =
n

∑
i=1

∫
T−1

i (A)
pi(x)dν(x), ∀A ∈A.
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Under the transition probability

P(x,A) =
n

∑
i=1

pi(x)χA(Ti(x)),

where χA denotes the characteristic function of A ∈A, and the random map T is a Markov
process.

Definition 5.2.1. [37] The Markov operator corresponding to T , P : L1[0,1]→ L1[0,1], is
defined by

PT f (x) =
k

∑
i=1

PTi (pi(x) f (x)) , (5.1)

where PTi is the F-P operator corresponding to Ti and

PTi f (x) =
n

∑
j=1

f (T−1
i, j (x))

|T ′i (T
−1

i, j (x))|
χTI j (x)

.

Let T = {T1,T2, . . . ,Tk; p1, p2, . . . , pk} be a random map, the Nth iteration of T is taken as

T N(x) = (TrN ◦TrN−1 ◦ · · · ◦Tr1(x)),

with the probability

prN (TrN−1 ◦· · ·◦Tr1(x))prN−1(TrN−2 ◦· · ·◦Tr1(x)) · · · pr1(x), where rN ,rN−1, · · · ,r1 ∈{1,2, . . . ,k}.

Let (I,A,λ ) be a normalized measure space with I = [a,b]. Let a random map T =

{T1,T2, . . . ,Tk; p1, p2, . . . , pk} defined on I. Let Tr : I→ I, r = 1,2, . . . ,k be one-to-one and
differentiable on a partition P. Let BV(I) be the set of functions of bounded variations
defined on I equipped with the norm ‖ · ‖BV =V (·)+‖ · ‖1, where V (·) is the variation of a
function. Define

hr(x) =
pr(x)
|T ′k (x)|

,r = 1,2, . . . ,k. (5.2)

If
k

∑
r=1

hr(x)< α < 1, x ∈ I, (5.3)

and

hr ∈ BV (I), r = 1,2, . . . ,k, (5.4)

then

VIP
n
T f ≤ AVI f +B‖ f‖1, (5.5)

for some n≥ 1, 0 < A < 1 and B > 0. The inequality (5.5) is a criterion for the existence of
an absolutely continuous invariant measure for the position dependent random map T [4].
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5.3 Piecewise Linear Polynomials

Let Pn be a partition of the interval [0,1] consisting of n uniform subintervals I j = [x j−1,x j], j =

1,2, . . . ,n of length h = 1/n. Piecewise linear polynomials are defined by:

φk(x) = r(x−xk
h ), k = 0,1, . . . ,n, (5.6)

where the function r(x) is

r(x) =


1+ x, x ∈ [−1,0]
1− x, x ∈ [0,1]

0, otherwise
. (5.7)

The function r(x) is called a Hat function. From definitions (5.6) and (5.7),

φk(x) = r
(

x− xk

h

)
=


1+ x−xk

h , −1≤ x−xk
h ≤ 0

1− x−xk
h , 0≤ x−xk

h ≤ 1
,

for k = 0,1, . . . ,n.
The support of φ0 is [0,h], the support of φk is [xk−1,xk+1] for k = 1,2, . . . ,n−1, and the

support of φn is [1−h,1]. The piecewise functions satisfy the partition of unity property

p

∑
k=0

φk(x) = 1, ∀x ∈ [0,1].

The partition of unity property will be utilized to find the numerical approximation of
invariant densities of the F-P operator. Let ∆n be a, n+1 dimensional, subspace of L1[0,1]
generated by the piecewise linear polynomials defined on the partition Pn of [0,1]. That is
∆n = span{φk(x) : φk(x) ∈C0[0,1],k = 0,1, . . . ,n}.

5.4 Piecewise Linear Maximum Entropy

The piecewise linear maximum entropy problem has the form

maximize
{

H( f ) : f ∈ D,
∫ 1

0
f (x)φk(x)dx = mk,0≤ k ≤ n

}
. (5.8)

The unique solution of the above problem is

fn(x) =
e∑

n
k=0 λkφk(x)∫ 1

0 e∑
n
k=0 λkφk(x) dx

, (5.9)

where the coefficients λ0,λ2, . . . ,λn satisfy the system of equations∫ 1

0
φi(x)e∑

n
k=0 λkφk(x) dx = mi

∫ 1

0
e∑

n
k=0 λkφk(x) dx, i = 0,1, . . . ,n. (5.10)
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Figure 5.1: A Hat Function Figure 5.2: Piecewise Linear Polynomials

If the F-P operator, PT , associated to a nonsingular transformation T : [0,1]→ [0,1] has an
invariant density f ∗, then the kth moment, mk, is defined by

mk =
∫ 1

0
f ∗(x)φk(x)dx.

It can be shown that the sum, ∑
n
k=0 mk, of the moments mk is unity. Using this fact, it can be

shown that the function

fn(x) = e∑
n
k=0 λkφk(x) (5.11)

is a density function [70] that maximizes (5.8) under the given constraints.

5.5 Numerical Results

Example 5.5.1. [37] Let T1 and T2 be two maps defined by:

T1(x) =


2x, 0≤ x≤ 0.2
3x−0.2, 0.2≤ x≤ 0.4
2x−0.6, 0.4 < x≤ 0.6
2x−1.2, 0.6 < x≤ 0.8
2x−1, 0.8 < x≤ 1

, (5.12)

T2(x) =


2x+0.4, 0≤ x≤ 0,2
2x−0.4, 0.2 < x≤ 0.4
2x−0.2, 0.4 < x≤ 0.6
2x−0.6, 0.6 < x≤ 0.8
3x−2.4, 0.8 < x≤ 1

.
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Let the probability be defined by,

p1(x) =



3
4 , 0≤ x≤ 0.2

3
4 , 0.2 < x≤ 0.4

1
4 , 0.4 < x≤ 0.6

1
4 , 0.6 < x≤ 0.8

1
4 , 0.8 < x≤ 1

,

p2(x) =



1
4 , 0≤ x≤ 0,2

1
4 , 0.2 < x≤ 0.4

3
4 , 0.4 < x≤ 0.6

3
4 , 0.6 < x≤ 0.8

3
4 , 0.8 < x≤ 1

,

and τ1 = {T1,T2; p1, p2} be the random map.

Figure 5.3: Graph of T1(x) Figure 5.4: Graph of T2(x)

Since the maps T1(x) and T2(x) are Markov, the F-P operator associated with each of
these maps has a matrix representation. The matrix representation of the F-P operator
associated with T1(x) can be derive in the following way:

Let T11(x) = 2x, T12(x) = 3x−0.2, T13(x) = 2x−0.6, T14 = 2x−1.2, T15(x) = 2x−1,
and I1 = [0,0.2], I2 = (0.2,0.2], I3 = (0.4,0.6], I4 = (0.6,0.8], I5 = (0.8,1].
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Let f = [ f1, f2, f3, f4, f5] be a piecewise constant function on the given partitions
I1, I2, I3, I4, I5. The F-P operator associated with T1(x) is

PT1 f (x) =
5

∑
i=1

fi|T ′1i(x)|−1
χT1i(Ii)

(x)

= f1|T ′11(x)|−1
χT11(I1)(x)+ f2|T ′12(x)|−1

χT12(I2)(x)+ f3|T ′13(x)|−1
χT13(I3)(x)

+ f4|T ′14(x)|−1
χT14(I4)(x)+ f5|T ′15(x)|−1

χT15(I5)(x)

=
1
2

f1χ[0,0.4](x)+
1
3

f2χ(0.4,1](x)+
1
2

f3χ(0.2,0.6]

+
1
2

f4χ(0,0.4]+
1
2

f5χ(0.6,1]. (5.13)

Consider the following cases in (5.13):

1) when x ∈ [0,0.2]

PT1 f (x) =
1
2

f1 +0+0+
1
2

f4 +0. (5.14)

2) when x ∈ (0.2,0.4]

PT1 f (x) =
1
2

f1 +0+
1
2

f3 +
1
2

f4 +0. (5.15)

3) when x ∈ (0.4,0.6]

PT1 f (x) = 0+
1
3

f2 +
1
2

f3 +0+0. (5.16)

4) when x ∈ (0.6,0.8]

PT1 f (x) = 0+
1
3

f2 ++0+
1
2

f5. (5.17)

5) when x ∈ (0.8,1]

PT1 f (x) = 0+
1
3

f2 ++0+
1
2

f5. (5.18)

The matrix representation of the F-P operator, using (5.14), (5.15), (5.16), (5.17), and (5.18),
is

PT1 f (x) = [ f1 f2 f3 f4 f5]



1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 1
2

1
2 0 0

1
2

1
2 0 0 0

0 0 0 1
2

1
2


. (5.19)
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The F-P operator matrix associated with T1 is

M1 =



1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 1
2

1
2 0 0

1
2

1
2 0 0 0

0 0 0 1
2

1
2


. (5.20)

Similarly, the F-P operator matrix associated with T2 is

M2 =



0 0 1
2

1
2 0

1
2

1
2 0 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

1
3

1
3

1
3 0 0


. (5.21)

From (5.2),

2

∑
k=1

hk(x) =
2

∑
k=1

(
5

∑
i=1

pki

|T ′ki(x)|

)

=
p11(x)
|T ′11(x)|

+
p12(x)
|T ′12(x)|

+
p13(x)
|T ′1(x)|

+
p14(x)
|T ′14(x)|

+
p15(x)
|T ′15(x)|

+
p21(x)
|T ′21(x)|

+
p22(x)
|T ′22(x)|

+
p23(x)
|T ′23(x)|

+
p24(x)
|T ′24(x)|

+
p25(x)
|T ′25(x)|

,

1) when x ∈ [0,0.2],

2

∑
k=1

hk(x) =
p11(x)
|T ′11(x)|

+
p21(x)
|T ′21(x)|

=
3
4
2
+

1
4
2
=

4
8
< 1,

2) when x ∈ (0.2,0.4]

2

∑
k=1

hk(x) =
3
8
< 1,

3) when x ∈ (0.4,0.6]

2

∑
k=1

hk(x) =
4
8
< 1,
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4) when x ∈ (0.6,0.8]

2

∑
k=1

hk(x) =
4
8
< 1,

5) when x ∈ (0.8,1]

2

∑
k=1

hk(x) =
3
8
< 1.

Since ∑
2
k=1 hk(x)< 1 for all x ∈ [0,1], τ1 satisfies the condition (5.3) and (5.4). By theorem

4.5 of [4], τ1 has an invariant measure absolutely continuous with respect to Lebesgue
measure.

An invariant density g = [g1 g2 g3 g4 g5] of the F-P operator associated with the map
T1(x) is obtained by solving

[g1 g2 g3 g4 g5]M1 = [g1 g2 g3 g4 g5]

[g1 g2 g3 g4 g5]



1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 1
2

1
2 0 0

1
2

1
2 0 0 0

0 0 0 1
2

1
2


= [g1 g2 g3 g4 g5] (5.22)

Solving the system (5.22) gives:

g = g1

[
1

3
2

1
5
6

2
3

]
.

Normalizing g

g1

(∫ 0.2

0
dx+

3
2

∫ 0.4

0.2
dx+

∫ 0.6

0.4
dx+

5
6

∫ 0.8

0.6
dx+

2
3

∫ 1

0.8
dx
)
= 1

g =
1
5

[
1

3
2

1
5
6

2
3

]
.

The normalized invariant density of the F-P operator associated with the map T2(x) is

10
13

[
1 1 1 2

3
2

]
.
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The F-P operator of the random map τ1 = {T1,T2; p1, p2} [4] is

Mτ1 =


3
4 0 0 0 0
0 3

4 0 0 0
0 0 1

4 0 0
0 0 0 1

4 0
0 0 0 0 1

4




1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 1
2

1
2 0 0

1
2

1
2 0 0 0

0 0 0 1
2

1
2

+


1
4 0 0 0 0
0 1

4 0 0 0
0 0 3

4 0 0
0 0 0 3

4 0
0 0 0 0 3

4




0 0 1
2

1
2 0

1
2

1
2 0 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

1
3

1
3

1
3 0 0



=


3
8

3
8

1
8

1
8 0

1
8

1
8

1
4

1
4

1
4

0 1
8

1
8

3
8

3
8

1
8

1
8 0 3

8
3
8

1
4

1
4

1
4

1
8

1
8

 .
Let f ∗ = [ f ∗1 f ∗2 f ∗3 f ∗4 f ∗5 ] be an invariant density of the F-P operator associated with the
random map τ1 = {T1,T2; p1, p2} satisfying f ∗Mτ1 = f ∗. The invariant density is in the
form:

f ∗ =
1

1608
f ∗3 [1968 2169 1608 2721 2475] .

After normalization,

f ∗ = [0.8994 0.9912 0.7349 1.2435 1.1310].

Example 5.5.2. [3] Consider the maps T1,T2 : [0,1]→ [0,1] defined by

T1(x) =


2x, 0≤ x < 0.5
2x−0.3, 0.5≤ x < 0.6
x+0.1, 0.6≤ x < 0.7
x 0.7≤ x≤ 1

, T2(x) =


x, 0≤ x < 0.1
x−0.1, 0.1≤ x < 0.3
x−0.2, 0.3≤ x < 0.5
2x−0.9 0.7≤ x≤ 0.9
2x−0.1 0.9≤ x≤ 1

.

Let p1 and p2 be the probabilities corresponding to T1 and T2 respectively,

p1(x) =


0.8, ≤ x < 0.5
0.725, 0.5≤ x < 0.7
0.4, 0.7≤ x < 1

, p2(x) =


0.2, 0≤ x < 0.5
0.275, 0.5≤ x < 0.7
0.6, 0.7≤ x < 1

.

The normalized invariant density, f ∗ = [ f ∗1 f ∗2 f ∗3 f ∗4 f ∗5 f ∗6 f ∗7 f ∗8 f ∗9 f ∗10], of the F-P
operator associated with the random map τ2 = {T1,T2; p1, p2} is

f ∗ = [0.11591 0.23183 0.48548 0.44184 0.19419 1.28694 1.26949 3.64250 2.07290 0.25892].

Theorem 5.5.3. Let B,D be two row stochastic matrices of order n. If A,C are diagonal

matrices of order n with the corresponding entries sum to unity, then

AB+CD

is a row stochastic matrix.
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Figure 5.5: Graph of T1(x) Figure 5.6: Graph of T2(x)

Let A = {ai j}n
i, j=1,ai j = 0, i 6= j, B = {bi j}n

i, j=1, C = {ci j}n
i, j=1,ci j = 0, i 6= j, and

D = {di j}n
i, j=1 such that ∑

n
j=1 bi j = ∑

n
j=1 di j = 1, for all i = 1,2, . . . ,n. The i, jth entry of

the matrix AB is {aiibi j} for all i, j = 1,2, . . . ,n and the i, jth entry of the matrix CD is
{ciidi j} for all i, j = 1,2, . . . ,n. Consequently, the i, jth entry of the matrix AB+CD is
the {aiibi j + ciidi j} for all i, j = 1,2, . . . ,n. The sum of entries in the ith row of the matrix
AB+CD is

n

∑
j=1

aiibi j + ciidi j = aiibi1 +aiibi2 + · · ·+aiibin + ciidi1 + ciidi2 + · · ·+ ciidin

= aii(bi1 +bi2 + · · ·+bin)+ cii(di1 +di2 + · · ·+din)

= aii + cii

= 1, ∀i = 1,2, . . . ,n.

Hence AB+CD is a row stochastic matrix.

Corollary 5.5.4. Let B,D be two column stochastic matrices of order n. If E,F are diagonal

matrices of order n with the corresponding entries sum to unity, then

BE +DF

is a column stochastic matrix.

Example 5.5.5. [39] Take a position dependent random map τ3 = {T1,T2; p1, p2}, where
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Ti : [0,1]→ [0,1], i = 1,2 defined by

T1(x) =



3x+ 1
4 , 0≤ x < 1

4 ,

3x− 3
4 ,

1
4 ≤ x < 1

2 ,

4x−2, 1
2 ≤ x < 3

4 ,

4x−3, 3
4 ≤ x≤ 1

,

T2(x) =



4x, 0≤ x < 1
4 ,

4x−1, 1
4 ≤ x < 1

2 ,

3x− 3
2 ,

1
2 ≤ x < 3

4 ,

3x− 9
4 ,

3
4 ≤ x≤ 1

.

The probability functions are defined by pi : [0,1]→ [0,1], i = 1,2,

p1(x) =



1
4 , 0≤ x < 1

4

1
4 ,

1
4 ≤ x < 1

2

3
4 ,

1
2 ≤ x < 3

4

3
4 ,

3
4 ≤ x≤ 1

,

p2(x) =



3
4 , 0≤ x < 1

4

3
4 ,

1
4 ≤ x < 1

2

1
4 ,

1
2 ≤ x < 3

4

1
4 ,

3
4 ≤ x≤ 1

.

The F-P operator matrix of the random map τ3 = {T1,T2; p1, p2} is

Mτ3 =



3
16

13
48

13
48

13
48

13
48

13
48

13
48

3
16

13
48

13
48

13
48

3
16

13
48

13
48

13
48

3
16


.
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Figure 5.7: Graph of T1(x) Figure 5.8: Graph of T2(x)

The invariant density, f = [ f1 f2 f3 f4], of τ3 satisfying f Mτ3 = f , after normalization, is

f =
[

1
13
12

13
12

5
6

]
.

5.5.1 Error Calculation

In MEM, an invariant density of the F-P operator associated with a random map is approxi-
mated by the formula

fn(x) = e∑
n
k=0 λkφk(x),

given in (5.11). The numbers λ1,λ2, . . . ,λn satisfy the relations (3.5). The L1 errors between
the exact, f ∗, and approximate, fn, invariant densities of the F-P operator associated with a
random map τi, i = 1,2,3 is defined by

en = ‖ fn− f ∗‖L1(0,1) =
∫ 1

0
| fn(x)− f ∗(x)|dx

. The L1 errors associated to the random map are given below. The numerical work has been
done by MATLAB c© on a 64-bit OS and 16 GB memory with Intel(R) Core(TM) i7-4770K
CPU @ 3.50GHz processor.
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n Error CPU Time (Sec)
4 1.7700×10−02 14.682806
8 7.5000×10−03 14.627364
16 7.600×10−03 14.777599
32 2.600×10−03 15.020649
64 1.300×10−03 15.253307
128 4.7164×10−04 15.507617
256 4.5027×10−04 16.802797
512 1.6036×10−04 19.223928
1024 7.9284×10−05 25.052764

Table 5.1: Errors, en, Associated with τ1

n Error CPU Time (Sec)
4 2.4300×10−02 14.342839
8 6.810×10−02 28.820306
16 4.990×10−02 28.784264
32 2.700×10−02 30.018860
64 9.000×10−03 29.466120
128 5.800×10−03 30.209280
256 3.200×10−03 31.907281
512 1.700×10−03 35.226260
1024 5.5179×10−04 41.971688

Table 5.2: Errors, en, Associated with τ2

n Error CPU Time (Sec)
4 3.1000×10−03 0.044880
8 3.2000×10−03 0.067648
16 1.7000×10−03 0.126008
32 8.4117×10−04 0.236896
64 4.1393×10−04 0.500686
128 2.0534×10−04 0.980884
256 1.0227×10−04 1.917636
512 5.1033×10−05 3.408522
1024 2.5491×10−05 8.764972

Table 5.3: Errors, en, Associated with τ3
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

The dissertation focuses on approximating the invariant densities of the F-P operator asso-
ciated with various nonsingular maps defined from [0,1] to itself and the Markov operator
associated with random maps, by using the maximum entropy method combined with
the finite elements idea. The L1(0,1) errors between the exact and approximate invariant
densities of the F-P operator are presented with necessary theoretical works. The finite
elements are the uniform divisions of the interval [0,1] into the subintervals. Piecewise
polynomial functions having partition of unity property are defined on such subintervals.
The MEMs based on piecewise quadratic functions, quadratic splines and piecewise linear
polynomials are applied on the finite elements of [0,1]. The estimated errors between exact
and approximate invariant densities based on piecewise quadratic functions are presented in
Chapter 3. Similar results based on quadratic splines are presented in Chapter 4. Chapter 5
introduces position dependent random maps defined from the unit interval [0,1] to itself. It
also gives an overview of how to use the MEM based on piecewise linear functions in error
estimation.

When a unique invariant density f ∗ has a continuous third order derivative on [0,1], the
numerical and theoretical results of PQMEM show that the order of convergence of the
L1 errors is O(h3), but for an invariant density which is unbounded on [0,1] the proposed
method does not work well. In this case, the order of L1 error is not of order O(h3). The
method gives better results in comparison to the results from PQMFA and PLMEM, but due
to the lack of differentiability of the moment functions

{
φk
}2n

k=0, a large number of moment
functions are needed. This is a drawback of this method.

Quadratic B-splines are used in MEM, which needs only n+1 moments. The number
is nearly half of the moment functions, 2n+ 1, needed in PQMEM. QSMEM is used in
error estimation between the exact and approximate invariant densities of the F-P operator
associated with different nonsingular maps defined from [0,1] to itself. A theoretical
discussion is presented to show the L1 norm convergence rate of this method.

When a unique invariant density f ∗ exists and it has a continuous third derivative on
[0,1], the convergence rate of the L1 errors is O(h3) unless the invariant density is unbounded
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on [0,1]. The slow convergence for such an invariant density is due to the singularity of the
density at the end points of the interval [0,1].

Both methods have the same convergence rate. Since QSMEM needs a fewer number
of piecewise quadratic functions than PQMEM does, the former method is faster than the
latter.

Piecewise linear functions have been utilized in the MEM for the error estimation
between exact and approximate invariant densities of the F-P operator associated with
random maps defined from the unit interval [0,1] to itself. The L1 errors between the exact
invariant densities and approximated densities are presented in tabular forms. The numerical
results show that the convergence rate is of O(h). The low convergence rate can be improved
by applying higher order piecewise polynomials or splines or other suitable functions.

6.2 Future Work

The dissertation shows that MEM based on piecewise linear and quadratic polynomials
can be used to approximate invariant densities of the F-P operator associated to various
nonsingular maps defined from [0,1] to itself. The following research can be done in the
future:

• Using numerical methods other than Newton-Raphson method to solve nonlinear
systems. Applying different integration techniques in place of the Gaussian 3-point
Quadrature method.

• Applying higher degree polynomials and higher order splines in the MEM to develop
a fast convergence method.

• Developing a fast numerical scheme, based on a rigorous theory, to calculate moments
from given maps.

• Investigating a homogeneous maximum entropy method (HMEM) based on piecewise
polynomials with a faster convergence rate than in the original HMEM [20] which
used the monomials 1,x,x2, · · · for the moment functions and which had a slow
convergence rate.

• Extending MEM to higher dimensional spaces.

• Investigating new criteria for the existence of invariant densities of position dependent
random maps.
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• Developing fast and efficient numerical methods to calculate moments of position
dependent random maps.
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